Speedfest xi black team

CRITICAL DESIGN REVIEW

Outline

MISSION STRATEGY
 DESIGN UPDATES
 PROPULSION
 AERODYNAMICS
 STRUCTURES
 MARKETING

Gantt chart

Speedfest XI Objectives

- DESIGN AN ELECTRIC-POWERED AIRCRAFT OPTIMIZED FOR VERTICAL AND HORIZONTAL ACCELERATION USING A 6S BATTERY LIMITED BY A 40A FUSE
- CLIMB TO 500 FT, DESCEND, AND COME TO A FULL-STOP LANDING IN THE SHORTEST TIME
- ACHIEVE THE FASTEST SPEED IN 10 SECONDS AFTER TAKEOFF
- Perform a 4-minute airshow, including aerobatic maneuvers
- DESIGN THE MOST MARKETABLE PLANE

CONOPS REVIEW - VERTICAL DRAG RACE

Score Optimization

- MAXIMIZE THE POWER DRAWN FROM THE BATTERY & CONVERSION TO THRUST
- MINIMIZE THE WEIGHT OF THE AIRCRAFT TO INCREASE ACCELERATION
- UTILIZE THE PROPULSION SYSTEM TO DECELERATE WITH REVERSE THRUST
- MITIGATE TORQUE WITHOUT POWER COSTS
- MAINTAIN PROPER CONTROLLABILITY AND HANDLING QUALITIES

Objective scoring:													
5.1.1	Vertical Drag Race	Based on place	1 st 2 nd 3 rd and lower	1 1 5	5 0								
5.1.2	Horizontal Drag Race	Based on place	1 st 2 nd 3 rd and lower	1 1 5	5 0								
		Three	Threshold 0										
5.2	Aerobatics		3	5	;								
5.3	Unit Cost bid		2	5	;								

Aircraft Design						
Fit and finish	0-5					
Handling Qualities ¹	0-5					
Design optimization	0-5					
Cost bid certification	*					
Subtotal Possible	15					
Marketing						
Online Marketing Display ²	0-5					
Video	3 Threshold					
	5 Winner					
5.4 Expert Marketing ³	0 or 5 (Winner only)					
Subtotal Possible	15					

CAD

- HOW CAN CAD SCORE POINTS?
- WHAT PLANE ARE WE ACTUALLY DESIGNING?
- MANUFACTURABILITY

Design for Manufacturing

TOLERANCE WITHIN SOLIDWORKS DESIGN CORNER FITTING TOOLS FOR THE MOLDS ENSURE AIRPLANE IS CONFIGURABLE

Final CAD

Final CAD

CAD Next Steps

- CNC THE PLUGS AND PARTING BOARDS
- MAKE JIGS-N-STUFF FOR STRUCTURES
- FINALLY GET SOME SLEEP?

Motor testing: quad motors

MOTIVATION

- BEST THRUST TO WEIGHT (≤25)
- VERY LIGHT (40 GRAMS)
- WIDE RANGE OF KV RATINGS

DISCOVERIES

- NONE SURVIVED >50A
- RATED FOR USE WITH OTHER MOTORS
- NOT SUITABLE FOR CURRENT APPLICATION

Motor Testing: Inrunners

MOTIVATION

- MOST RELIABLE
- ACCEPTABLE THRUST-TO-WEIGHT RATIO (≤ 11)
- OUTER CASING HELPS HEAT MITIGATION
- AVAILABLE TO TEST DURING
 SNOWSTORM

Top 10s Speed	Time to 500 ft	Static Thrust (Ibs)						
167 mph	6.46 s	2.8						

Motor testing: BadAss Motors

MOTIVATION

- SLIGHTLY HEAVIER THAN QUADS (100 120 GRAMS)
- GOOD THRUST-TO-WEIGHT RATIO (≈17)
- WIDE RANGE OF KV RATINGS
- BETTER REPUTATION THAN QUAD MOTORS

Top 10s Speed	Time to 500 ft	Static Thrust (Ibs)
173 mph	4.84 s	4.2

Thrust vs. KV

MOTORS OPTIMIZED FOR 65A MULTIPLE PROPS TESTED TO FIND OPTIMUM CONFIGURATION

Horizontal Speed (10s) vs. KV Rating

Time to 500ft vs. KV Rating

Testing setup

Motor Selection

Motors Optimized for 65A Multiple props tested to find optimum configuration

Temperature After 10s

Thrust vs. Mass

Final Selection: BadAss Motors

QUANTITATIVE BENEFITS

- Better thrust-to-weight
- HIGHER STATIC THRUST
- SUPERIOR CLIMB RATE
- BEST 10s HORIZONTAL SPEED

QUALITATIVE BENEFITS

- EASIER TO OBTAIN
- HIGH DURABILITY
- External mounting helps internal heat generation
- UNIQUE/MARKETING BENEFIT

Reverse thrust testing

- REQUIRED FOR SUCCESSFUL DECELERATION
- PRODUCED ABOUT -3 LBF OR ≈70% OF FORWARD THRUST
- LARGER PROPELLER REQUIRED FOR
 HANDLING
- BEST RESULTS WHEN THROTTLED

Velocity [ft/s]								
Cut Plot 1: contours								

Fuse considerations

- FUSE DIMENSIONS: 0.16 x 0.73 x 0.75
 IN
- FUSE OPERATING VALUES LOWER THAN PREDICTED
- 3D PRINTED FUSE HOLDER TO REDUCE WEIGHT

Predicted vs Actual Fuse Limit

ESC testing

Capable of reverse thrusting: BL Heli Nominal Rating: 80A Comfortable operating at 120°F Wire length has large impacts

- ESC: 170°F
- CAPACITOR: 170°F

Commutator Timing

400,000/# of Poles Outrunner # of Poles: 14 RPM: \leq 35,000 RPM UPPER KV LIMIT: \approx 1900KV

Battery Selection

MINIMUM REQUIRED CAPACITY: 1000 MAH MINIMUM DISCHARGE RATE: ≈ 60C MAX. RECORDED TEMPERATURE: 100°F

Heat generation

Heat Generation Break-Down

HEAT MITIGATION STRATEGIES

- ALUMINUM HEAT-SINK (ESC)
- AIR-SCOOP
- EXTERNALLY MOUNTED MOTOR

Current Propulsion Configuration

- BADASS 2814 1560 KV MOTOR
- APC 7X5 PROPELLER
- BLHELI 80A ESC
- 1050 MAH BATTERY
- 4.4 LBS STATIC THRUST @ 80% THROTTLE
- 3.8 LBS-IN TORQUE

Testing casualties

FINE-TUNE DIAMETER SELECTION

ALLOWS TESTING OF LARGE PITCH OVER DIAMETER

COMPATIBLE WITH 3-BLADE PROPELLER

DREMEL ATTACHMENT ENSURES EVEN CLIPPING

Prop-timization: Current vs. Speed

Propulsion next steps

PICK BEST BADASS FIND BEST PROPELLER CONTINUE REVERSE THRUST TESTING DETERMINE OPTIMAL WIRE SIZE CONNECT/PROGRAM THE TRANSMITTER

Aerodynamics

Aero optimization procedures

- DETERMINE HOW TO MAXIMIZE POINTS
 CONDUCT SENSITIVITY ANALYSIS
- 3. CHOOSE PLANFORM THAT WINS !!

	Wing								Fuselage - use these for now (mostly for APG spreadsheet)			Use these values pls !! - will change at some point but I'll tell you				Wing Geom.		Electric Propulsion					
												Weight											
			mean							max		(use 2.2 lb for inrunner								M	ax H Velocity in		
	Area		geom.		Taper	Sweep				width/height	wetted	option or 1.9 lb for									10 s		
your name	(ft^2)	Span (ft)	chord (ft)	AR	Ratio	Angle	ng	climb angle	length (ft)	(ft)	area (ft^2)	outrunner option)	Thrust (lb)	Airfoil	V (ft/s)	AOA (2 deg)	AR	Wing Area	Stall speed (ft/s)	Time to launch (s)	(mph)	Time to climb (s) ti	ime to 500 ft (s)
Trends in S	0.9	2.167	0.415	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	0.9	43	0.668	151	8.56	9.228
Trends in S	1	2.285	0.438	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1	41	0.574	151	8.78	9.354
Trends in S	1.1	2.396	0.459	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.1	39	0.494	151	9	9.494
Trends in S	1.2	2.503	0.479	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.2	37	0.436	150	9.26	9.696
Trends in S	1.3	2.605	0.499	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.3	36	0.35	150	9.38	9.73
Trends in S	1.4	2.703	0:518	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.4	35	0.272	149	9.52	9.792
Trends in S	1.5	2.798	0.536	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.5	33	0.186	148	9.78	9.966
Trends in S	1.6	2.890	0.554	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.6	32	0.122	148	9.94	10.062
Trends in S	1.7	2.979	0.571	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.7	31	0.08	147	10.08	10.16
Trends in S	1.8	3.065	0.587	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.8	31	0.016	146	10.1	10.116
Trends in S	1.9	3.149	0.603	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	1.9	30	0	146	10.24	10.24
Trends in S	2	3.231	0.619	5.2	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.2	2	29	0	145	10.4	10.4
Trends in AR	1	1.732	0.577	3.0	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	3.0	1	41	0.56	150	8.84	9.4
Trends in AR	1	2.000	0.500	4.0	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	4.0	1	41	0.56	151	8.8	9.36
Trends in AR	1	2.236	0.447	5.0	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.0	1	41	0.574	151	8.76	9.334
Trends in AR	1	2.449	0.408	6.0	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	6.0	1	41	0.58	151	8.7	9.28
Trends in AR	1	2.646	0.378	7.0	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	7.0	1	41	0.57	151	8.74	9.31
Trends in AR	1	2.828	0.354	8.0	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	8.0	1	41	0.57	151	8.74	9.31
Minimum AR + S Combos	0.7	2.229	0.314	7.1	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	7.1	0.7					
Minimum AR + S Combos	0.8	2.173	0.368	5.9	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.9	0.8	46	0.8	151	7.9	8.7
Minimum AR + S Combos	0.9	2.142	0.420	5.1	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	5.1	0.9					
Minimum AR + S Combos	1	2.098	0.477	4.4	0.7	2	10	70	2	0.1667	0.75	2.2	2.6	NACA 2412 700k	265	2	4.4	1					

Launch Testing

GOALS

- MINIMIZE TIME TO STALL
- MAXIMIZE SPEED AT LAUNCH

METHODS - TESTING

- MULTIPLE PEOPLE
- MULTIPLE THROW METHODS

Overhead Launch speed range: 22 – 41 ft/s Sidearm Launch speed range: 28 – 55 ft/s

Launch: Analysis

ANGLE OF ATTACK VS. TIME

SIDEARM LAUNCH AT 10 DEG (50 FT/S)

OVERHEAD LAUNCH AT 10 DEG (30 FT/S)

Launch Angle vs. Time to Stall Speed 1:1 Thrust to Weight

WING Design Space – wing Sizing

Horizontal Top Speed v. S (Uniform T, AR, Launch V) Upward Vertical Time v. S (Uniform T, AR, Launch V)

S (ft^2)

0.6

0.8

1.2

1.4

Turning Gs v. AR (Uniform T, S, Launch V)

Sizing: wing geometry

WING SUMMARY

- $S = 0.9 FT^2$
- B = 28 IN
- TAPER RATIO = 0.7
 - MOVES STALL POINT OUTBOARD FROM ROOT (76% OF B/2) BUT PREVENTS TIP STALL
 - STRUCTURAL STRENGTH

Sweep = -0.5 deg

Spanwise Lift Coefficient and Load Distribution

Airfoils: mission strategies

THIN AIRFOILS - OPTIMIZED FOR LOW DRAG AT HIGH SPEEDS (EX. NACA 64-108) THICK AIRFOILS - OPTIMIZED FOR GREATER LIFT COEFFICIENT (EX. NACA 2412)

DRAG POLAR AT TOP SPEED (Re = 700,000)

DRAG POLAR AT LAUNCH SPEED (Re = 100,000)

Airfoil: High Speed OPS

NACA 64-108

NACA 2412

■ NACA 1412

Time to 500 ft Trends

Lifty Boi 13

■ Ritz 2-30-13

38

AirfoiL: Low Speed OPS

NACA 64-108 NACA 2412 NACA 1412 Ritz 2-30-13 Lifty Boi 13

Forward half based on NACA 2412 - Rear half based on NACA 1412

Drag Polars

Control issues during dive reverse thrust testing motivated some tail design considerations and CFD analysis

Tail sizing

Surface	Airfoil	Area (ft^2)	Span (in)	Tail Volume Coefficient	Static Margin (Low Speed)	Static Margin (High Speed)
Horizontal Tail	NACA 0014	0.14	9	0.61	12%	22%
Vertical Tail	NACA 0012-0010 Blend	0.08	4	0.05	1 97 %	157%

Pitch Moment Coefficient vs. Alpha At Low Speed

Stability / CG analysis

Control surface sizing

Control surface sizing

AILERON SIZE

- 7 in span
- 20% CHORD
- MAX DEFLECTION ANGLE OF 15 DEG

ELEVATOR SIZE

- CONTINUOUS ELEVATOR
- 30% CHORD
- MAX DEFLECTION ANGLE OF 20 DEG

Servo sizing

70 63.35 60 Hinge Moment(oz-in) 20 20 0 10 0 Ailerons Elevator KST X08 Plus

Hinge Moment Data

KST X08 PLUS

- 7.4 V OPERATING VOLTAGE
- O.32-OUNCE WEIGHT (SMALLEST WE COULD FIND)
- 0.3-INCH THICKNESS (SMALLEST WE COULD FIND)

CFD

GOALS

- Drag Braking Methods
- CONTROLS IN REVERSE THRUST

CFD: drag braking methods

Change in Drag Forces

12 10 8 Moment (Ibf-ft) 6 2 0 Flaperons Fuselage Drag Brakes -2

PREFER FLAPERONS OVER DRAG BRAKES FOR EFFECTIVENESS AND COMPLEXITY, BUT NEED TO OVERCOME PITCHING MOMENT

Change in Pitching Moment

CFd: forward thrust

FORWARD THRUST

- WING RECEIVES GOOD PROPWASH SO AILERONS WILL BE MORE EFFECTIVE
- TAIL RELATIVELY UNAFFECTED
- DISCLAIMER: DONE TO SHOW TRENDS, NOT FINAL CAD

MESH: 7,300,000 FLUID CELLS FLUID CELLS CONTAINING SOLIDS: 323,000 FREE STREAM VELOCITY: 100 FT/S

POINT VELOCITY: 98 FT/S

Cfd: reverse thrust

REVERSE THRUST

- DISCOVERED THAT AT HIGH RPM, THE WING RECEIVES SIGNIFICANT REVERSE PROPWASH – ATTEMPTED WITH TWO RPM CASES
- TAIL REMAINS RELATIVELY UNAFFECTED
- NOT FINAL CAD

MESH: 14,500,000 FLUID CELLS FLUID CELLS CONTAINING SOLIDS: 715,000 FREE STREAM VELOCITY: 100 FT/S

POINT VELOCITY: 97 FT/S

Expected performance

FLIGHT SIMULATOR ALLOWS FOR A ROUGH ESTIMATE OF HANDLING AND ANALOG FOR REAL WORLD PERFORMANCE

ACHIEVED PERFORMANCE (UNTRAINED PILOT)

VERTICAL DRAG RACE: 16 SEC

HORIZONTAL DRAG RACE: ~150 MPH IN 10 SEC

Simulated Vertical Drag Race

Simulated Horizontal Drag Race

Aero next steps

AILERON SIZING

AVIONICS CONFIGURATION

Assisting Structures

MARKETING

Structures

GOALS:

- DESIGN STRUCTURE TO MEET THE AERODYNAMIC AND PROPULSION NEEDS
- TEST AND FINALIZE MATERIAL SELECTION
- LEARN AND OPTIMIZE MANUFACTURING PROCESSES

SINCE PDR:

- 20+ COMPOSITE LAYUPS TESTED
- COMPARED BONDING TECHNIQUES
- TESTED CORE TYPES AND COMPOSITE APPLICATION METHODS

WING layout

SHEAR WEBS

REINFORCE WING AND AILERON

SERVO

BONDED TO TOP OF WING INTERNAL SKIN

OPTIONAL BLISTER

<u>Wing spar design</u>

WING SPAR WAS SIZED WITH A GOAL OF A MAXIMUM 1% WINGTIP DEFLECTION.

Core Width	G loading	Deflection %
1/16"	26.3	1
1/4"	39]
1/2"	39	1

SPAR INPUTS

$h_1 \equiv 20.005$	Spar cap thickness (compression) [in]	V = 280	V Airspeed [ft/s]
$\mathbf{h}_3 \equiv 20.0.005$	Spar cap thickness (tension) [in]	$\alpha g \equiv 15$	Angle of attack
b ₁ ≡ .5	cap width [in]	W ≡ 2.55	Weight of plane (if g load needed)
b _c ≡ .25	core width [in]		

Ailerons and Wipers

Shear Web Locations

- LIVE HINGE AT 80% CHORD
- AFT WING SHEAR WEB 0.45 INCHES FORWARD OF HINGE
- AILERON SHEAR WEB 0.25 INCHES AFT OF HINGE

WIPER SIZING

- MAXIMUM DEFLECTION OF 30 DEGREES
- CUTOUT 0.15 INCHES
- WIPER SIZED TO BE 0.32 INCHES

Servo systems

AILERON SERVO - 63.65 OZ-IN

INTEGRATED DRIVE SYSTEM (IDS) FOR WING

- 30-DEGREE MAX DEFLECTION
- SLIMMER SYSTEM REMOVING NEED FOR BLISTER

Elevator Servo

- 20-DEGREE MAX DEFLECTION ANGLE
- RIGID 0.05" CF PUSH-ROD
- TOP MOUNTED CONTROL HORN

WING attachment

GOALS: STRONG, EASY, LIGHT

LEADING EDGE TAB

- CARBON TOW
- 20 LAYERS, APPROX. ¹/₄ INCH

TRAILING EDGE SCREWS

- SIZE 8-32 CLICK BOND NUT PLATE
- SIZE 8-32 TORX HEAD SCREW
- TINNERMAN WASHERS

ATTACHMENT POINTS - PARTIAL BULKHEADS

- Balsa
- LOCATED ON LE AND TE OF WING TAB
- REINFORCED SKIN WITH CARBON TOW

Bulkheads

FIREWALL

- 0.1" CARBON FIBER, 1.35" DIAMETER
- OUTRUNNER MOUNT
- CARBON TOW REINFORCED SKIN
- BALSA CORE STOPS AS REAR SUPPORT

BULKHEADS

- REDUCED WEIGHT & EXTRA FUSELAGE ROOM
- SPREAD TOW SKIN REINFORCEMENT POST LAYUPS
- LE HAS TAB SLOT
- TE HAS SCREW MOUNT

Fuselage design

GOALS

- ROOM FOR THE COMPONENTS
- STABILITY

METHODS

- CREATED TO SIZE DESIGNS OF FUSELAGE AND REARRANGED COMPONENTS REPEATEDLY
- 3D-Printed Models
- INCREMENTED THE LENGTH OF FUSELAGE
- INCREMENTED THE WIDTH OF FUSELAGE

FUSELAGE LENGTH: 28.5 IN WITH MOTOR AND SPINNER (26 IN WITHOUT MOTOR AND SPINNER)

MAX WIDTH: 2.1 IN

MAX HEIGHT: 2.1 IN

Fuselage layout

GOAL: AS FEW HOLES IN THE PLANE AS POSSIBLE

AIRFLOW

- INLET SCOOP
- REAR 'EXHAUST VENT'
- LOCATION FOR RECEIVER
 ANTENNAS

PITOT TUBE

- 3D PRINTED MOUNT
- ALLOWS FOR EASY
 REPAIR/REPLACEMENT

HATCH LOCATIONS

- REMOVABLE WING
- FUSE PORT
- SERVO MAINTENANCE POINTS
 ON UNDERSIDE OF WING

Fuselage layout

Vertical tail layout

VERTICAL STABILIZER

- SLOT CUT INTO FUSELAGE WITH A JIG
- ATTACHED TO FUSELAGE USING EPOXY ON SIDEWALLS
- SLOTTED ALONG MOLD LINE FOR PUSH ROD
 PASSAGE

Horizontal tail layout

HORIZONTAL STABILIZER

- PART OF FUSELAGE MOLD
- CORE IN FRONT OF ELEVATOR HINGE LINE
- Shear webs to reinforce skin around hinge line

Mold lines

Fuselage

- TOP/BOTTOM
- ALLOWS FOR SEXY LEADING EDGE ON HORIZONTAL TAIL

WING

- TOP/BOTTOM MOLD
- Speed Sensor can sit under tab in wing hatch slot

Vertical Tail

- SIDE/SIDE MOLD
- Flared bottom to allow for bonding to fuselage
- EASE OF INSTALLATION OF ELEVATOR
 SERVO

Materials

MATERIALS TESTED:

FIBERGLASS – 0.73 OZ, 1.4 OZ, 2.0 OZ, 2.75 OZ 1K CARBON FIBER WEAVE – 3.5 OZ CARBON SPREAD TOW – 2.36 OZ

CORE TESTED:

Divinycell Tooling Glass Balsa

Skin Weight

CAD SKIN AREAS CALCULATED/RESEARCHED WEIGHT DENSITIES DOUBLE FIBER LAYERS FOR EPOXY APPROXIMATIONS COMBINATION SELECTED, SHOWN AS OPTION 9

- WING AND VTAIL ARE CST, BALSA CORE, 45/90 FG
- FUSELAGE AND HTAIL ARE 90/45 FG, BALSA CORE, 45/90 FG

Internal Weight

SPAR						
Shear Web						
width	0.25	in	Weight			
height	0.45	in	0.137363	oz		
length	22	in	0.008585	lb		
Volume	2.475	in^3				
<u>Caps</u>						
width	0.5	in	Weight			
length	22	in	1.3354	oz		
layers	20	-	0.083463	lb		
thickness	0.1	in				
Volume	1.1	in^3				
	1	Total Weigh	0.092048	lb		
TAB		guessing 0	5in tab area			
width	0.15 in			Weight		
length	6.5	in		0.177548	oz	
layers	30	-		0.011097	lb	
thickness	0.15	in				
Volume	0.14625	in^3				
	Total Weight			0.011097	lb	
AFT SHEAR WEBS	located just in front of 80% chord					
width	0.125	in	Weight			
height	0.3	in	0.029138	oz		
length	14	in	0.001821	lb		
Volume		1.40				
	0.525	In^3				
	0.525	in^3				

FIREWALL			Weight	
Diameter	1.4	in	0.005011	lb
width	0.125	in		
Volume	0.192423	in^3		
TAB BULKHEAD			Plywood Weig	ght
Diameter	2	in	0.001091	lb
height of arc	0.85	in		
% of circle	0.425	-	CST Weight	:
thickness	0.125	in	0.047674	oz
volume	0.166897	in^3	0.00298	lb
Slot				
height	0.25	in		
width	0.5	in	Total Tab	
CST Strip			0.004071	lb
width	1	in		
layers	5	-		
thickness	0.025	in		
strip volume	0.07854	in^3		
Total Volume	0.041897	in^3		
TE BULKHEAD			Plywood Weig	ght
Diameter	2	in	0.008693	lb
height of arc	0.85	in		
% of circle	0.425	-	CST Weight	
thickness	0.25	in	0.047674	oz
volume	0.333794	in^3	0.00298	lb
CST Strip				
width	1	in		
layers	5	-		
thickness	0.025	in	Total BH	
strip volume	0.07854	in^3	0.011672	lb
Total Volume	0.412334	in^3		

AFT SHEAR WEB	EB located just in fro				chord	
width	0.125	in	Weight			
height	0.3	in	0.018731	oz		
length	9	in	0.001171	lb		
Volume	0.3375	in^3				
	Total Weight			0.001171	lb	

- INITIAL INTERNAL DIMENSIONS
- MATERIAL DENSITIES FOR BALSA, CARBON TOW, AND AERO BIRCH PLYWOOD
- ALL WEIGHTS USED TO FIND
 CG

Weight Estimations

Skin vs Internal Weight Estimations

🗖 Internal Total 🗖 Skin Total

Total Structural weight estimated to be <u>0.7lbs</u> Mostly skin weight

Total Aircraft Weight

■ Structures ■ Propulsion ■ Avionics

TOTAL PLANE WEIGHT ESTIMATED TO BE 1.8LBS

Preliminary testing

Over 20 test layups Practice molds

- CORE PLACEMENT
- BALSA FORMING
- AILERON RIGIDITY
- Spar

FIBERGLASS VS BALSA BONDING DAMS 3D PRINTED HATCHES

Marketing

Marketing: General

DESIGN THE DEFINITIVE RC DRAGSTER IN A NEW CLASS OF AIRPLANE

- CREATIVE PAINT SCHEMES
- CARBON FIBER ACCENTS

OPTIMIZE FOR ACCELERATION WITHOUT SACRIFICING EXTREME SPEED

COMPLIMENT EXCELLENT MANUFACTURING WITH EXQUISITE ARTISTIC DESIGN (WE MADE DUR DWN FDNT)

CREATE A PROFESSIONAL WEBSITE THAT EMPHASIZES PERFORMANCE

Reviewed past SpeedFest videos to determine preferred format & additions

PLAN TO DEVOTE FRAMES TO UNIQUE ASPECTS OF PLANE—AS WELL AS THE NAME OF THE PLANE (TBD)

- OUTRUNNER MOTOR (POSSIBLE)
- LIGHT & SMALL DESIGN
- Speed
- HORIZONTAL & VERTICAL MISSIONS
- ELECTRIC PROPULSION SYSTEM

Top view as plane reaches apex of vertical drag race of vertical drag race of vertical drag race of vertical drag race of vertical drag race

Maintain top view & plane size in frame as flight field shrinks behind it ("vertigo effect")

STORYBOARD OF VIDEO OPENING SHOTS

Questions?

appendix

Schedule

Speedfest Operational Hours (Pre CDR) Monday - Friday: 10-3 Saturday: 12 - 3 Critical Day - Operations will be 24/7						
SUN	MON	TUE	WED	THU	FRI	SAT
		1 Materials & Structural Design Sizing & Aero Analysis	2	3	4	5
6	7 (8	9 All Final	10 Start CED	11	12
		Final Propulsion System Selection	Dimensions given to CAD			· · · · · · · · · · · · · · · · · · ·
13	14	15		17 Marketing Team Forms	18	19 Epoxy plug balves together
	Mock CDR 1	Mock CDR 2	Plug, PB sent to CNC. (ALL CAD FINALIZED)	Fit plug to parting board		(24 hr. cure)
20	21	22	23	24	25	26
Priming and Sanding the Plug	Priming and Sand	ding the PB and Dams		Start making the molds		
27	28					

- Common airfoils (ex. NACA 2410/2412) chosen as baseline for mission performance and launch
- Between the wing and tail, 24 established and 13 custom-blended airfoils were considered.
 - Thin airfoils didn't generate enough lift during launch/early part of drag races to be selected
 - Thick airfoils were close to thin airfoils in performance during vertical climb and horizontal race

Motor testing: overview

QUADCOPTER MOTORS

- NONE SURVIVED TESTING
- COULD NOT REACH 65 A
- BEST THRUST TO WEIGHT (≤25)

INRUNNER MOTORS

- OUTLASTED FUSES
- REACHED CURRENT THRESHOLD
- MEDIOCRE THRUST TO WEIGHT (≤11)

BADASS MOTORS

- Outlasted Fuses
- REACHED CURRENT THRESHOLD
- ACCEPTABLE THRUST TO WEIGHT (≈17)

Motor testing: inrunners

- MOST RELIABLE
- SMALLEST THRUST-TO-WEIGHT RATIO
- 160-180 GRAMS
- CUSTOM ORDER

Drag breakdown

- Airfoil, near-to-launch airspeed, and aircraft geometry provide aircraft drag polar.
- Total Drag Contributions (Races: Re = 700k, low a)
 - Wing 46.6%
 - Tail 28.4%
 - Fuselage 25%

Aero questions

