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PREFACE 

The objective of this research is to present a 

framework for classifying and describing the uncertainties 

that affect the performance of a multi-echelon distribution 

system and to determine effective policies for allocating 

safety stocks under various operating conditions within the 

system. Computer simulation programs written in FORTRAN 

programming language are used to model a multi-echelon 

distribution system which has the assumed environmental 

conditions and the identified experimental factors to answer 

the research questions in this study. 
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CHAPTER I 

INTRODUCTION 

Today, our uncertain economy is facing mature markets, 

the globalization of industry, high energy costs, potential 

energy.and raw material shortages, high interest rates and a 

low growth rate in productivity. Maintaining corporate 

profit growth and return on investment is becoming 

increasingly difficult. It has become necessary for 

management to investigate alternative methods of generating 

revenue and/or reducing costs. Few areas offer the 

potential for system improvements that can be found in the 

logistics function. This is because logistics cost can 

exceed 25 percent of each sales dollar in numerous business 

operations (LaLonde, 1990). 

Two major sub-systems in logistics are materials 

management and physical distribution. The Council of 

Logistics Management (CLM) defines materials management as 

an interest in the movement and storage of raw materials and 

semifinished goods and activities surrounding movement and 

storage up to the point of manufacturing. Physical 

distribution, which concerns the movement and storage of 

finished goods from the end of the production line or 

vendors to the customer, is the subject of interest in this 

research. 
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Everyone who is involved with the physical distribution 

of goods is concerned with increasing the efficiency and 

effectiveness of the channel system. Efficient is defined 

as "producing the desired effect or results with a minimum 

of effort, expense, or waste." Effective is defined as 

"producing a definite or desired result" or, "effectiveness 

is a measure of accomplishment with objectives." To achieve 

efficiency and effectiveness, it is necessary to understand 

how the overall distribution system operates, the forces 

that infringe upon the system and the effects of the forces 

on the successful operation on the system. 

The major force that impedes understanding of the 

distribution system and hinders the achievement of efficient 

and effective operation is uncertainty. If a physical 

distribution system operates under conditions of certainty, 

then .the problem of operating an efficient and effective 

system is easily solved. However, our world is not certain 

and operation of a distribution system is done with 

imperfect knowledge. Uncertainty is not new and it will 

always be with us as a simple fact in business. 

Most efforts in past research to cope with uncertainty 

have attempted to reduce its impact, for example, more 

accurate sales forecasting, more effective inventory control 

methods, etc. However, a potentially fruitful approach to 

solving the same problem is to first accept that there will 

always be uncertainty and ask, can it be classified and 

described? If so, can one isolate how the various types of 



uncertainty affect a physical distribution system. This 

study attempts to answer these questions, specifically when 

a physical distribution system is operated under 

Distribution Requirement Planning (DRP). 

3 

Safety stock, defined as a quantity of stock planned to 

be in inventory to protect against fluctuations in demand or 

supply by the American Production and Inventory Control 

Society (APICS), is widely accepted as protection against 

uncertainty in a physical distribution system. While safety 

stock is generally considered to be necessary in the 

distribution system, where and how much safety stock to 

carry is still an open issue. Another important issue 

needing investigation is the performance of various safety 

stock policies in a multi-echelon distribution system under 

different operating conditions. 

Multi-Echelon Distribution System 

A typical example of a multi-echelon distribution 

system is shown in Figure 1.1. The physical flow of the 

system is as follows: (1) warehouse receives finished goods 

from factory or vendor and ships to two distribution 

centers, and (2) distribution centers then move the finished 

goods to retailers. Information flow is reversed, (1) from 

retailers to distribution centers, and then (2) from 

distribution centers to the warehouse or vendor. 



w 

DC 1 DC 2 

W warehouse 
DC distribution center 

R retailer 

4 

DC 3 

Figure 1.1 An Example of a Multi-Echelon Distribution System 
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The multi-echelon distribution system studied in this 

research has several important characteristics. Figure 1.1 

shows an arborescent distribution system, which is a special 

type of multi-echelon distribution system. In an 

arborescent distribution system, the material flows from one 

upper echelon member directly to several lower echelon 

members (Clark 1972}. Arborescent flow does not flow 

between members of the same echelon or back to an upper 

echelon member. 

A second aspect of a multi-echelon distribution system 

is the means to determine the timing and quantity of flow in 

the system. After the development of Material Requirements 

Planning (MRP} in the late 1950's, the concept of working 

backwards from the due date of the end items to determine 

the time-phased requirement for component and raw materials 

was extended to a distribution system. This concept was 

developed by Whybark in 1975. DRP is used as the inventory 

control method in this study. DRP's logic and operation are 

introduced in a later section. 

A third aspect of a multi-echelon distribution system 

is the functional relationships between channel members, 

assuming the system is integrated. The system must 

recognize the importance of sharing information and 

resources between channel members. In other words, the 

channel members intend to optimize the efficiency and 

effectiveness of the whole system instead of only one 

individual's. 
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A fourth aspect of a multi-echelon distribution system 

is that the system owns the material from initial receipt at 

the warehouse to final demand occurring at retailers. 

Therefore, the purchasing cost of material remains the same 

for all channel members. The only changes are in inventory 

cost, which are caused by added-values from transportation 

costs. Actual distribution systems usually have multiple 

items and several sources. The number of items and the 

number of sources do not affect the nature of the 

uncertainty problem, and nor do they affect the question of 

allocating safety·stock in a multi-echelon distribution 

system (Allen, 1983}; this study uses a multi-echelon 

distribution system with a single source and only one item. 

A fifth aspect in a multi-echelon distribution system 

is the channel members involved to ship products. Different 

products may go through different channel members in the 

distribution system, they are so-called different 

distribution networks. For example, product A is shipped 

from an outside vendor to warehouse, warehouse then ships to 

two distribution centers, and distribution centers move the 

product A to retailers. Product Bis shipped from an 

outside vendor to the warehouse, and then product B moves 

directly from the warehouse to the retailers. This is a so­

called "distribution network change". 

A sixth aspect in a multi-echelon distribution system 

involves the relationships between customer demand at 

retailers. Customer demands are assumed independent; if a 



customer can't satisfy the demand at retailer 1, the 

customer will not go to retailer 2, 3, or 4. Therefore, an 

unsatisfied demand is regarded as a stockout at retailer 1. 

Distribution Requirement Planning -- An Overview 

7 

Distribution Requirement Planning (DRP) is widely 

accepted as an effective inventory control method in 

physical distribution systems. Whybark (1975) first notes 

that the dependent demand in a multi-echelon distribution 

system is the same as the demand in a multi-stage production 

system. He then applies MRP logic to manage inventories in 

a multi-echelon distribution system. Stenger and Cavinato 

(1979) formalize the ideas of Whybark into Distribution 

Requirement Planning. They illustrate the potential 

benefits through an MRP approach to distribution planning. 

A well-developed DRP system helps the company to plan 

delivery schedules more effectively and to increase customer 

service levels. For example, American Hardware Supply 

Company, a national-wide hardware distributor, improved 

their productivity, profit and service levels after 

replacement of a reorder point system with Distribution 

Requirement Planning (Smith, 1985). Also, Lipton Corp. in 

Canada managed inventories from plants to ten distribution 

centers using a PC-based DRP system (Krepchin, 1989). The 

system helped cut inventories even while sales increased. 

Martin (1980, 1982) and Ford (1981) suggest the potential 

benefits by implementation of DRP are substantial. More 
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enhanced DRP systems are presented by Bregman (1990) and Ho 

(1990, 1992) ~ Bregman recognizes the capacity limitations 

of transportation resources and manages the economic trade­

off between inventory costs and transportation costs. Ho 

proposes a generalized DRP system for delivery scheduling in 

a multi-sourcing distribution system. 

DRP derives from MRP logic and principles in similar 

environments to deal with delivery scheduling and inventory 

control problems in a multi-echelon distribution system. 

Orlicky (1975) explains the main objective of MRP is to 

provide the right part at the right time to meet the 

schedules for completed products. MRP makes it possible by 

constructing a time-phased requirement record for any part 

number. MRP data then also are used as input to the 

detailed capacity planning model. The logic of MRP is 

explained by a basic MRP record, which is shown in Table 

1.1. There are three inputs to an MRP record: (1) a master 

production schedule (MPS), (2) a bill of material (BOM) for 

each part number, and (3) an inventory status record for 

each item. An MRP system explodes the MPS, using a bill of 

materials, into the lower level requirements needed to 

support the MPS. Net requirements are then obtaining by 

·offsetting on-hand inventory and scheduled receipts. A lot­

sizing rule is then applied to these time-phased net 

requirements. Finally, the order release dates are 

determined by offsetting lead time. 



Table 1.1 A Basic MRP Record 

Lead time 
Lot size 

Period 

1 period 
so 

Gross requirements 

Scheduled Receipts 

On-hand 

Planned order releases 

I 

1 2 3 

10 

so 

4 54 44 44 

9 

4 5 

40 10 

4 44 

so 
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DRP is a management process that determines the needs 

of inventory stocking locations and ensures that supply 

sources are able to meet the demand (Martin, 1993). Like 

MRP, there are three major inputs for a DRP system: (1) the 

time-phased replenishment requirements from retailers, (2) 

the inventory records at all channel members, and (3) the 

"bill of materials" type of distribution network structure. 

The data elements in a DRP system are detailed records for 

individual products at specific locations. A DRP record is 

shown in Table 1.2, which is a retailer DRP record. The 

record look likes an MRP record. It keeps the same format 

and processing logic as an MRP system to integrate a 

logistic system. The first row in the DRP record is the 

forecast requirements from customers. The equivalent row in 

the MRP record is called "gross requirements". The second 

row shows shipments in-transit to the retailer; it is 

equivalent to "scheduled receipts" in the MRP record. The 

third row shows the projected available balance that is 

calculated by using the forecast requirement and in-transit 

rows. The logic is the same as calculating on-hand 

inventory in an MRP record. The last row is planned 

shipments, which indicates when a shipment has to be made to 

avoid a stockout. For example, the projected balance for 

period 4 is 25 units, but the forecast requirement for 

period 5 is 30 units. Therefore, a shipment of product must 

be available in period 5. A planned shipment of 60 units is 

released in period 3, because it takes 2 periods to process 
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the order. The equivalent row in the MRP record is called a 

"planned order release". 

Table 1.2 DRP Record for Retailer 

Period 1 2 3 4 5 

Forecast reauirements 20 20 20 20 30 

In-transit 60 

Projected available balance I 45 25 65 45 25 55 

Planned shipments 60 

Safety stock 20; shipping quantity 60; lead time 2. 



Types of Uncertainty Affecting a Multi-Echelon 
Distribution System 

Bowersox (1974) classifies uncertainty in a physical 

distribution system as demand uncertainty and lead time 
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uncertainty. Demand is defined as a request by the ultimate 

consumer made upon the system to deliver a product or 

service. It is uncertain as to when demand occurs and how 

much is demanded. Lead time is defined as the amount of 

time between placing an order and receipt of that order. 

More specifically, it is broken down into three components: 

(1) order communication, (2) order processing, and (3) 

transportation. Each of these components represents a 

source of uncertainty. It is not known with certainty the 

overall time from order placement to receipt of the order. 

Allen (1983) categorizes uncertainty in a multi-echelon 

distribution system into: (1) customer demand, (2) system 

resupply, and (3) central to field shipment. 

In summary, there are three major sources of 

uncertainty in a multi-echelon distribution system: (1) 

uncertainty in customer demand, (2) uncertainty in supply, 

and (3) uncertainty in order processing. Uncertainty in 

each source is timing uncertainty or/and quantity 

uncertainty. Although the actual distribution system 

experiences all types of uncertainty, this study focuses on 

quantity uncertainty of customer demand, quantity 

uncertainty of supply, and timing uncertainty in order 

processing. 
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Suggested Buffering Methods to Solve Uncertainty 

This paper is concerned with the problem of effective 

management of a multi-echelon distribution system under 

uncertainty. Several alternatives are available to protect 

the physical distribution system against uncertainty. One 

approach is to use buffering methods. These suggested 

buffering methods use "slack" to protect the system against 

uncertainty. Two important types of "slacks" are safety 

stock and safety lead time. 

Safety stock is the method to solve uncertainty by 

putting more inventory at channel members in the 

distribution system. Although the inventory investment is 

increased, this cost is justified by improving ·service 

level, or reducing total related cost of the system. 

Regarding safety lead time, the principle is to bring 

materials into stock before the requirement indicates a 

planned need for them. For example, if the safety lead time 

is one period, the planned shipments should be released one 

period ahead, so the order is received one period before the 

normal schedule. 

The Research Question 

The purpose of this study is to present a framework for 

classifying and describing the uncertainties that can affect 

the performance of a multi-echelon distribution system, and 

then to determine effective polices for allocating safety 

stocks within a- multi-echelon distribution system. Current 
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literature has partially addressed these problems, but does 

not provided detailed cross comparison of various types of 

uncertainties. No previous work has evaluated the 

performance of various safety stock policies in a multi­

echelon distribution system operated by DRP. 

The research questions asked include: 

(1) Can demand uncertainty, supply uncertainty, and order 

processing uncertainty be described and classified and, 

if so, how will each affect the performance of a multi­

echelon distribution system? 

· (2) What are the main effects of various. types of 

uncertainties and interactions among different 

performance measures, including total related cost(TRC), 

customer service level, average stockout units, and 

average inventory level? 

(3) What are the best ways to allocate safety stocks at 

distribution channel members under different operating 

conditions? 

Importance of the Research 

The answers to the research questions have theoretical 

and practical value. Few studies have been performed to 

discuss the uncertainty problem in a multi-echelon 

distribution system. The studies that have been performed 

restrict their investigation to a single type of uncertainty 

(Brown, Lusch and Koenig, 1984, Speh, 1974, and Wagenheim, 

1974). They do not address multiple types of uncertainties, 
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nor do they consider the possible impact of interaction on 

the multi-echelon distribution system, where various types 

of uncertainties are considered at the same time. This 

study is an exploratory work to consider the impacts from 

three different types of uncertainties on a the performance 

of a multi-echelon distribution system. The results of this 

study will provide a guideline about the nature of various 

types of uncertainties existing in a multi-echelon 

distribution system or even outside the system. 

Another important task in this study is to compare the 

performances of various safety stock policies in a multi­

echelon distribution system under different operating 

conditions. Most of the efforts in past research related to 

the safety stock problem in a multi-echelon distribution 

system are based on a reorder point system or other 

inventory control method. This study is a pilot study to 

find a more effective safety stock policy in a multi-echelon 

distribution system under DRP's operation. The results can 

give practitioners a rule about positioning safety stocks in 

a multi-echelon distribution system. To academicians, the 

results offer an opportunity to clarify some of the 

theoretical uncertainty about inventory control policies in 

a multi-echelon distribution system, and to compare the 

results from MRP's research. 



Research Objectives 

The primary objectives of this research are listed as 

follows. 

(1) To provide insights into the behavior and operation of 

a multi-echelon distribution system under three sources of 

uncertainties. 
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(2) To give a procedure for choosing effective safety stock 

policies at all channel members in a multi-echelon 

distribution system under different operating conditions, 

which include different cost values, lot-sizing rules, and 

degrees of uncertainty. 

To accomplish the above two objectives, several tasks 

must be undertaken. There are also several sub-tasks within 

each task. Those tasks and sub-tasks are: 

(1) To classify and describe the sources and types of 

uncertainties which potentially affect the performance of a 

multi-echelon distribution system. 

• To conduct a literature review in uncertainty related 

topics in an MRP system. 

• To conduct a literature review in uncertainty related 

topics in a physical distribution system. 

(2) To develop several performance measures of a multi­

echelon distribution system to evaluate different sources 

and types of uncertainties' impacts. 

• To find out one single cost performance measure and its 

components, which are appropriate in this study. 
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• To identify some non-monetary performance measures, which 

may be viewed as supplementary performance measures to 

examine the impacts of demand quantity uncertainty, supply 

quantity uncertainty and transportation lead time 

uncertainty on a multi-echelon distribution system. 

(3) To develop a computer program to· evaluate alternative 

safety stock policy performance under different operating 

conditions in a multi-echelon distribution system. 

• To study the differences among several safety stock 

policies described in earlier studies, and then develop 

several safety stock policies used to test those 

performances in a multi-echelon distribution system. 

• To develop general language programs to resolve those 

research questions defined in this study. 

• To compare the safety stock policies used in a multi-level 

production system and a multi-level distribution system. 

(4) To conduct sensitivity analyses to evaluate the multi­

echelon distribution system's performance due to 

distribution network changes. 

• To decide the way to change the distribution network, 

which reflects a different product shipped in the 

distribution system. 

• To test the impacts on some distribution system 

performances under various operating conditions, if a 

different distribution network is used. 



(5) To conduct sensitivity analysis to evaluate the multi­

echelon distribution system's performance due to cost 

structure change. The cost structure is used to determine 

the inventory costs incurred at each channel member in a 

distribution system. 

• To develop several different cost structures of a multi­

echelon distribution system to present different market 

channels. 

• To test the impacts on some distribution system 

performances under various operating conditions, if 

different cost structures are used. 

18 



19 

CHAPTER II 

LITERATURE REVIEW 

The inventory control method (DRP) studied in this 

research is only a branch of a wide tree of inventory 

theory. This chapter begins by reviewing the classification 

of inventory theory. Because the environment of a multi­

echelon distribution system is similar to the environment of 

a multi-level production system, some significant literature 

relevant to multi-echelon distribution systems and MRP 

systems are also studied in this chapter. Topics included 

are: (1) uncertainties in the physical distribution system, 

(2) uncertainties in the MRP system, (3) safety stock in the 

physical distribution system, and (4) safety stock in the 

MRP system. 

Classification of Inventory Systems 

The inventory problem involves making decisions 

concerning an inventory system to minimize total system 

cost, which includes inventory holding cost, stockout cost, 

or to achieve such goals as improving service level or 

reducing average inventory level. Though inventory is a 

large and costly investment, it does exist in most 

manufacturing and distribution systems. 

Inventory serves five purposes within the firm: (1) it 
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enables the firm to achieve economies of scale; (2) it 

balances demand and supply; (3) it enables specialization in 

manufacturing; (4) it provides protection against 

uncertainties in demand and order cycles; and (5) it acts as 

a buffer between critical interfaces within the channel of 

distribution (Lambert and Stock, 1993). The basic decisions 

in inventory control are the timing and quantity of 

inventory to order for stock. To develop an appropriate 

inventory policy one needs to consider the cost limit and 

decision variables involved in the system. 

There are several schemes for classifying inventory 

systems presented in surveys about inventory theory 

(Aggarwal, 1974, Clark, 1972, Hollier and Vrat, 1977, 

Silver, 1981). Hollier and Vrat (1977) classify inventory 

systems into four groups: (1) structure, (2) environmental 

limit, (3) inventory policies, and (4) inventory related 

cost. Within each group, there are additional 

classification items. Table 2.1 depicts the groups and sub­

categories from the Hollier and Vrat scheme. Considering 

the research questions and research scope of this study, the 

inventory system of interest is classified as a single-item, 

single source, multi-echelon, arborescent flow, stochastic 

demand, non-zero random lead time, fixed cost of parameters, 

lost sales, and time-phased requirements planning 

replenishment policy. The settings of these alternatives 

are addressed in a later section. 
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Table 2.1 Classification of Inventory Systems 
Adapted from Scheme of Hollier and Vrat (1977) 

Group 

Structure 

Environment 

Policy 

Costs 

Category 

Number of items 

Number of sources 

Number of echelons 

Number of stock locations 

Item flow 

Demand 

Replenishment time 

Shortage action 

Statistical Order Point 

Replenishment Cycle 

Dynamic Models 

Requirements Planning 

Carrying 

Shortage 

Ordering 

Procurement 

Alternatives 

Single/Multiple 

Single/Multiple 

Single/Multiple 

Single/Multiple 

Arborescent/Transship/Return 

Deterministic/Stochastic 

Constant/Random Zero/None-zero 

Backlog/Lost Sale/Emergency Ship 

QR/QT/SR/ST 

S-1,S /s,S 

Dynamic Programming/ 

Linear Programming/Markov Chain 

Time-Phased Net Requirements 

Fixed/Linear/Concave/Convex 
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Aggarwal's (1974) classification scheme is less 

specific than Hollier and Vrat's. He uses categories of 

static/dynamic, deterministic/stochastic, known/unknown 

distribution, single/multi-item, and single/multi­

location/multi-echelon. Most of the past research in 

inventory theory concentrates on the simple inventory 

systems, especially the single-level system. These results 

obtained from single-level systems are applied at all levels 

in a multi-echelon system. Aggarwal and Dhavale (1975) find 

those simulation results in a complex environment are not 

simple extensions of a single-level model. Aggarwal (1974) 

describe the distinction of a static or dynamic system with 

the variation over time of limit values. A static system 

assumes uniform demand, fixed lead time, and constant cost 

values. His distinction of a deterministic or stochastic 

system refers to the certainty or uncertainty of period 

demand and lead time used in the inventory policy. 

According to Aggarwal's classification, this research is a 

stochastic, known distribution, single item and multi­

echelon inventory system. This classification is useful for 

deciding upon the experimental design and developing the 

simulation model of the distribution system. 

Uncertainty in the Physical Distribution System 

Uncertainty is the major force that impedes 

understanding of the distribution system and hinders the 

achievement of efficient and effective operations of the 
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distribution system. Leading-edge companies are making 

major efforts to solve problems caused by uncertainties 

(Stenger, 1994). The most important uncertainties existing 

in a distribution system are demand uncertainty and supply 

uncertainty. The simplest way to interpret them is as 

follows: (1) demand uncertainty - it is difficult to know 

exactly what demand will be in the future. (2) supply 

uncertainty - when an order is released to supplier, it 

cannot be certain that it will arrive on time. Bowersox 

(1974) identifies another source of uncertainty in a 

physical distribution system. It is transportation lead 

time uncertainty, which occurs within the distribution 

system. 

Methods to Solve Uncertainties Problems in a Physical 

Distribution System 

The analysis of distribution systems requires 

consideration and selection of distribution channels, 

inventory, transportation, and location of warehouses. 

These problems are interrelated, dynamic, characterized by 

uncertainty and, therefore, complicated to resolve. 

Numerous methods have been raised to solve uncertainty 

problems in the distribution system. Developing 

relationships, where information is shared between channel 

members in the distribution system, can reduce the impacts 

from demand uncertainties. Stenger and Cavinato (1979) find 

that the firm can reduce wholesale safety stocks 
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substantially by forecasting aggregate retail demand for 

each product and using the DRP inventory control method to 

develop wholesale inventory requirements. The old way of 

controlling the warehouse inventory consists of forecasting 

wholesale demand based on the past history of warehouse 

shipments. In fact, reducing demand uncertainty requires 

close cooperation with the downstream demand points. Major 

retailers in the United States have taken the lead in this 

area, using their point-of-sale (POS) systems to collect 

demand at the lowest possible level and then communicating 

these data electronically to their suppliers (Stalk, Evan 

and Schulman, 1992). Manufacturers like Procter and Gamble, 

and Polaroid use this type of information to push 

inventories to downstream customers (Byrne and Shapiro, 

1992) . 

Improving forecasting accuracy can also reduce the 

impacts from demand uncertainties. Better forecasts lead to 

lower safety stock inventories, because safety stock levels 

vary with the size of the forecast error. Thus, reducing 

forecast error can reduce inventories. Another method to 

reduce demand uncertainties involves working with the 

marketing function. Sales incentives and promotions 

generally create "noise" in the actual demand. Some 

companies have taken action to avoid such noise. For 

example, Kumar and Sharman (1992) report that at one 

company, "the president announces that he will fire anyone 

who takes the orders in the last week of the month for 
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delivery before the end of the month." Several consumer 

product manufacturers have changed their policy of promotion 

to customers; customers have to buy large quantities only 

during price discount periods, and do not buy at times 

between these promotions (Sellers, 1992). 

Stenger (1994) addresses the cause and the solution of 

supply uncertainties. He describes that supply uncertainty 

arises from the nature of operations at the supply source 

providing the replenishment shipment and the nature of 

transportation operations regarding delivery from the 

source. To reduce supply uncertainties, the supply source 

needs advance information about future requirements it will 

have to supply, just as does the demand source. Therefore, 

the demand source needs to develop the same kind of 

information-sharing relationships with its key supply 

sources. Stenger presents some transportation modes, in 

which uncertainty may occur, such as in the railroad, less­

than truckload, and water carrier businesses. This 

uncertainty, compounded with supply source uncertainty, 

leads to substantial safety stocks to protect against these 

uncertainties. In this study, he proposes using better 

information sharing on the part of the supplier, carrier, 

· and receiver can lead to great improvements in on-time 

delivery and hence reductions in inventory. 



Types and Impacts of Uncertainties in the Physical 

Distribution System 
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The sources of uncertainty existing in a physical 

distribution system are varied. Many cannot be identified 

and, if identifiable, then the measurement can be difficult. 

All physical distribution activities (inventory, 

warehousing, handling, communication, and transportation} 

may be affected by various sources of uncertainty. 

Connors, Coray, Cuccaro, Green, Low, and Markowitz 

(1972} design a software system called Distribution System 

Simulator (DSS}, which is a modeling tool which produces a 

mathematical representation of a distribution system. The 

options of the model allow the user to take the 

characteristics of customers' demand and order shipment lead 

time into account. They use separate inventory policies at 

each stock location. These behave like an independent unit 

and use their own inventory policies for each of their 

stocked items. This simulation still can not be regarded as 

a total system approach. The objective of DSS is to aid the 

user in finding better ways for the distribution system to 

respond to the variations in demand points and lead time 

based on inventory and service information. 

Spen and Wagenheim (1975} describe the behavior of a 

simulated physical distribution system under conditions of 

variable demand and variable lead time. They use the gamma 

distribution and the normal distribution for demand 

distributions to indicate the range of possible quantities 



27 

demanded and their probability of occurrence. Likewise, 

they choose the exponential distribution and gamma 

distribution for lead time to indicate the possible time to 

complete an order cycle. They mention that the impact of 

demand and lead time uncertainties upon a channel of 

distribution are evidenced in two material ways: (1) the 

cost, and (2) the service capability of the physical 

distribution operations. Therefore, a simulation model of a 

physical distribution system is selected to measure the cost 

and service response under various types and levels of 

uncertainty. 

Spen and Wagenhein (1975) find that; (1) the percentage 

of demand stockouts is greater than it is under either the 

variable lead time (fixed demand) or variable demand (fixed 

lead time) case, and the lead time has a much stronger 

impact upon stockouts than does demand uncertainty; (2) the 

total cost per unit incurred by the channel system falls 

between the total cost levels associated with those 

conditions where one of the experimental variables is held 

constant; and (3) in general, lead time uncertainty creates 

more serious impacts on the physical distribution system 

than demand uncertainty in their study. 

Aggarwal and Dhavale (1975) conduct simulation 

experiments based on empirical data to analyze the influence 

of various factors that affect the performance measures of a 

distribution system. The factors in this experiment are 

demand, lead time and cost-rate structure. Three levels of 
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demand, three different lead times, and three sets of 

inventory-related costs are considered. In their study, 

weekly demands are nearly normally distributed with a 

standard deviation, which is one third of the respective 

mean demand for each. Lead times are fixed for each 

location based on empirical data. From the results of their 

study, the following important findings are: (1) The average 

inventory investment and inventory carrying costs of the 

system increase in direct proportion to the mean demands of 

the system, but they increases by a very small proportion of 

the increase in lead time. (2) The annual shortage costs of 

a system are most sensitive to lead times, and less 

sensitive to mean demands. (3) Lead times affect the annual 

number of orders placed in the system. As the lead time 

increases, the number of reorders decreases. The 

conclusions drawn by Aggarwal and Dhavale are different from 

Spen and Wagenheim's results. This is because Aggarwal and 

Dhavale only consider different levels of factors (demand, 

lead time, cost structure), and Spen and Wagenhein try two 

different distributions and coefficients of variation of 

demand and lead time in their study. 

Brown, Lusch and Koenig (1984) examine the environment 

uncertainty regarding inventory ordering in a two-echelon 

physical distribution system. They design a questionnaire, 

which includes 12 items (Table 2.2) to reflect uncertainties 

in a physical distribution system. The findings indicate 

that increased levels of environmental uncertainties 
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Table 2.2 Uncertainty Item 
Adapted from Brown, Lusch and Koenig. (1984) 

(1) Difficulty in determining inventory level* 

(2) Reliability of supplier's deliveries 

(3) Difficulty in obtaining forecasting information* 

(4) Predictability in seasonal fluctuations in demand 

(5) Supplier's order filling accuracy 

(6) Stability of supplier's price 

(7) Influence of forecasting accuracy on store's 

profitability 

(8) Availability of forecasting information 

(9) Rapidity in market growth 

(10) Fluctuations in market demand* 

(11) Intensity of competition* 

(12) Difficulty in determining inventory mix* 

* Items dropped from the final environmental uncertainty 
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regarding inventory ordering result in high levels of 

retailer-supplier conflict. Suppliers can offer retailers 

better service to reduce environmental uncertainties and to 

improve their relationship with retailers. Therefore, a 

more efficient distribution system can be developed. 

Dorairaj (1989) presents a simulation model for a 

multi-echelon production-distribution system (PDS), which 

includes a plant warehouse, branches, and dealers in the 

physical distribution network. In this simulation model, 

demands from customers and order processing lead times are 

deterministic. Different levels (3 levels) of lead times 

are tested on the total cost per day. The one-way Analysis 

of Variance (ANOVA) is used to test the influence of lead 

time; the results show that the variation in lead times has 

no significant effect on the total cost at all the service 

levels. This conclusion is different from previous related 

study (Connors, et al., 1972, Aggarwal, 1975). 

DRP has been successfully implemented in several 

industries. For example, Stenger and Cavinato (1979) report 

implementation for a state liquor control agency; Martin 

(1982) reports for a pharmaceutical company. Bookbinder and 

Heath (1988) conduct simulation research on the distribution 

system of the Grocery Division of Canada Packers, Inc. The 

physical distribution system of this company includes a 

national distribution center and four regional distribution 

centers. A simulation model of DRP in a two-level 

environment is used to examine the performance of five 



lot-sizing rules under conditions of both certain and 

uncertain demand. 
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Three different patterns of demand are used in this 

study: constant, uniform distribution, and normal 

distribution with the same mean. The effect of different 

demand patterns is significant, when a lot-for-lot ordering 

procedure is used to evaluate system performance in terms of 

total costs of the system. This lot-sizing study in a 

distribution system is perhaps the earliest study for a 

multi-echelon system with random demand. 

Bregman, Ritzman and Krajewiki (198.9) develop a 

heuristic algorithm to manage inventory in a multi-echelon 

environment, the algorithm is an improved heuristic that can 

be implemented as an add-on module to a DRP system. They 

consider the capacity of transportation and storage 

resources in their simulation model. The example scenario 

used in this research consists of four distribution centers 

ordering from two regional warehouses, which in turn order 

from a central warehouse. They examine the demand 

uncertainty to determine if the performance of the heuristic 

is affected by the amount of demand uncertainty. The 

results show that demand uncertainty is found to have a 

significant effect on customer service performance by 

Multivariate Analysis of Variance (MANOVA) analysis. The 

average customer service level falls from 90.8% to 63.1% 

when the standard deviation of forecasted demand increases 

from 10% to 50%. 
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Ho (1992) examines one operational problem in the 

implementation of DRP within the physical distribution 

system. This problem is called "system nervousness", which 

is a situation of frequent rescheduling in a requirement 

planning because of some uncertainties within or even 

outside the distribution system. A simulation experiment is 

conducted to investigate the effect of uncertainty in 

transportation lead time on DRP system performance measured. 

by the total related cost and weighted rescheduling measure. 

In his findings, the presence of lead time uncertainty 

indeed causes system nervousness, and deteriorates the 

performance of the DRP system. 

Uncertainties in the Material Requirements Planning System 

The use of MRP is well established in production 

control by Orlicky in 1975. MRP is a system approach used 

in the production process for planning. A well established 

MRP system can provide answers to the following questions: 

(1) what materials and components are needed, and (2) when 

and how many are needed to meet a specified demand. The 

study of MRP.has received considerable attention and the 

literature on this topic is vast. Most of the early 

literature deals with deterministic MRP, but in industry 

many forms of uncertainties affect the production process. 

This leads to the examination of MRP under uncertainty. 

Previous research related to MRP under uncertainty and the 

impacts of uncertainty are reviewed in this section. 
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Types of Uncertainty in an MRP System 

Ma and Murphy (1991) categorize the different types of 

uncertainties that affect a production process into two 

groups - (1) environmental uncertainty, and (2) system 

uncertainty, as indicated in Figure 2.1. This 

classification is used to organize the literature review 

related to uncertainty in an MRP system. Environmental 

uncertainty is comprised of uncertainties beyond the 

production process. This includes (1) demand uncertainty 

due to uncertainty in customer orders and uncertainty in 

forecasting (also called forecast errors) and, (2) supply 

uncertainty due to unreliable vendors. The supply 

uncertainty can be either in the quantities delivered and/or 

the timing of the delivery. System uncertainty comprises of 

uncertainties within the production process. These include 

operation yield uncertainty, production lead time 

uncertainty, quality uncertainty, failure of the production 

system, and changes to product structure. Obviously, the 

types of system uncertainties in an MRP system are more 

complex than those in a distribution system. The only type 

of system uncertainty studied in this research is 

transportation lead time within the distribution system. 

Whybark and Williams (1976) present a framework for 

characterizing and studying the uncertainty which can affect 

inventory investment and service level performance in an MRP 

system. They combine sources and types of uncertainty into 

four categories, which are summarized in Table 2.3. They 
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ENVIRONMENT UNCERTAINTY 

* Forecast errors 

* Uncertainty in customer orders 

* Uncertainty in vendor supply 

MRP SYSTEM IMPACT 

* High rescheduling cost 

* Increase in penalty cost 

* MRP system nervousness 

SYSTEM UNCERTAINTY 

* Variation in product quality 

* Variation in product structure 

* Variation in product lead time 

* Equipment breakdown 

Figure 2.1 Uncertainty and Impact on MRP 
Adapted from Ma and Murphy (1991) 



Table 2.3 Categories of Uncertainty in MRP Systems 
Adapted from Whybark and Williams (1976) 

Source 

Demand Supply 

Types Timing Requirement shift Orders not received 

from one period to when scheduled 

another 

Quantity Requirements for Orders received for 

more or less than more or less than 

planned planned 
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consider only environmental uncertainty in the MRP system, 

according to.Ma and Murphy's classification. A simulation 

model of the period-by-period transactions for a 

representative part in an MRP system is developed for this 

study, but only one of the four categories of uncertainty is 

used one at a time. Whybark and Williams (1976) do not 

consider all types and sources of uncertainty in the MRP 

system which may occur simultaneously. The 'ANOVA results 

shows that both demand uncertainty and supply uncertainty 

have a significant effect on the customer service level. In 

their findings, they conclude safety lead time is the 

preferred technique to protect against uncertainty in 

timing, and safety stock is preferred under quantity 

uncertainty. 

DeBodt and Wassenhove (1983a, 1983b) study lot sizing 

and safety stock decisions and the total system cost 

increments under demand uncertainty in a single level MRP 

system. They show that forecast errors in customer's demand 

have a tremendous effect on the cost effectiveness of lot 

sizing and safety stock decisions. Their results indicate 

that safety stocks and lot-sizing policies are important to 

a company using MRP in an uncertain environment. 

Schmitt (1984) examines the effectiveness of three 

commonly used methods to resolve the uncertainty problem in 

a multi-stage manufacturing system. In this paper, he 
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develops a simulation model of a multi-stage process to 

characterize the behavior of three resolution methods under 

demand uncertainty and process time uncertainty. The 

results indicate that choice among method depends upon the 

source of uncertainty. 

After Whybark and Williams (1976) classify the sources 

of uncertainty in MRP in their paper, Grasso and Taylor III 

(1984) concentrate on the impacts of specific operating 

policies on the performance of an MRP system under 

conditions of supply uncertainty in terms of timing. Three 

different lead time distributions are used in this 

experimentation. They are the discrete uniform 

distribution, symmetrical discrete distribution, and 

asymmetrical discrete distribution. In their findings, the 

average total cost is highest when the lead time 

distribution is uniformly distributed, and the mean average 

total cost is lowest when the lead time distribution is 

asymmetrically distributed. Another important conclusion in 

this study is that the amount of safety lead time, but not 

the amount of safety stock, has an impact on the total cost 

of an MRP system. When buffering against uncertainty of the 

supply/timing variety, it is more effective to use safety 

stock instead of safety lead time. This conclusion is 

different from Whybark and Williams' results; they suggest 

that it is more appropriate to use safety lead time to deal 

with time uncertainty in an MRP system. 
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Melnyk and Piper (1985) study the impacts of lead time 

errors in an MRP system. They define the lead time errors 

as the difference between the time actually used to 

manufacture an item and the planned lead time used by MRP. 

It is a system uncertainty which occurs in production lead 

time. They set planned lead time as the average observed 

lead time plus a multiple of the standard deviation of the 

lead time error distribution. Through simulation 

experiments they show that increases in lead time allowance 

multipliers consistently improve the end item service level. 

They define the lead time allowance multiplier as follows: 

Multiplier= (Planned lead time - Actual lead time) 
(Actual standard error) 

Wemmerlov (1986) considers the effects of demand 

uncertainty in connection with an MRP system. The system is 

observed under three conditions: (1) no demand uncertainty, 

(2) demand uncertainty present but no safety stocks, and (3) 

demand uncertainty present with safety stock to account for 

its effects. The results from a simulation experiment show 

that stockouts, larger inventories and more orders occur 

when demand uncertainty is introduced in the operating 

environment. Service levels are decreased and inventory 

levels increase when demand forecast errors become larger. 

Minifie and Robert (1990) study the interaction effects 

on the MRP system by incorporating both demand and supply 

variability simultaneously. Most of previous studies hold 



demand or supply constant, and only consider one source of 

uncertainty in the problems. Most cases even ignore the 

supply uncertainty in their simulation environment. The 

conclusions of this study provide an opportunity to verify 

the results of previously related research with simplistic 

operation environments.· 
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Ho and Lau (1994} extend some earlier works (Lee and 

Adam, 1986; Lee, Adam and Ebert, 1987} in the impact of lead 

time uncertainty in an MRP system. They investigate the 

effects of fluctuating manufacturing lead time on MRP system 

performance under various environmental factors such as the 

lot sizing rule and product/cost structures. Their results 

show that the expected lengths of lead times must be 

considered in studying the relative performance of lot­

sizing rules in an MRP system with lead time uncertainty. 

Impact of Uncertainties on MRP System 

Several alternatives are suggested for preventing or 

reducing uncertainty. One approach is to reschedule the 

system more frequently, but this leads to "system 

nervousness". As a rule, the more frequent the 

rescheduling, the more nervous the system. And although 

rescheduling may avoid some uncertainty, it can not 

completely prevent shortages. MRP system nervousness 

generally refers to the frequent rescheduling of open orders 

that is beyond the capability of a production system to 

handle. Changes in production schedules in a multi-level 
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manufacturing environment are indicated by the exception 

messages generated by the MRP system. These exception 

messages may be greater in number than the order release 

messages, and the material planner can't take action in 

time. The changes in production schedules are costly, since 

the schedule is the basis for manpower planning and material 

purchasing (Graves, 1981). 

In multi-level manufacturing systems, due to 

manufacturing and /or purchasing lead times, lower level 

orders may be released to the shop as early as the 

cumulative lead times. When the planned orders at higher 

levels change due to a demand forecast revision, the lower 

level orders that have already been released may need to be 

rescheduled. The rescheduling of open orders have been 

studied by both academicians and practitioners (Campbell, 

1971, Peterson, 1975, Steele, 1975, Mather, 1977, Wemmerlov, 

1979, Grave, 1981). In summary, the negative effects of 

rescheduling are listed as increased costs, decreased 

productivity, and confusion on the shop floor (Campbell, 

1971) . 

Many solutions are suggested in the literature to 

reduce nervousness in scheduling (see Blackburn, Kropp, and 

Millen, 1985, 1986 for a complete review). Some suggest 

freezing the master production schedule (MPS) to improve 

schedule stability (Blackburn, et al., 1986, Sridharan and 

LaForge, 1989, 1994 and Sridharan, et al., 1987). Carlson 

(1982) and Chand (1982) prove that forecasting beyond the 
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planning horizon is an effective method to resolve system 

nervousness. Other approaches to deal with nervousness in 

an MRP system also exist, such as changing cost procedures 

(Carlson, 1979), using lot-sizing procedures (Blackburn and 

Millen, 1980, DeBodt and Wassenhove, 1983, Wemmerlov and 

Whybark, 1984), and using buffer stock at the end item level 

(Mather, 1977, Blackburn, Kropp and Millen, 1986, Chu and 

Hayya, 1988, Sridharan and LaForge, 1989}. 

Demand uncertainty can also affect inventory systems. 

Wemmerlov (1986} conducts a simulation experiment under 

demand uncertainty to achieve a cost-independent picture. 

The system is studied along several non-monetary dimensions: 

inventory levels, number of orders placed, number of 

stockouts, maximum number of units stocked out, service 

levels and safety stock levels. He states, based on his 

previous studies under demand uncertainty, that the 

introduction of forecast errors leads to an increased number 

of stock-outs, declining service levels, increased 

inventory, and increased ordering activities. Also, the 

situation gets worse as the forecast errors increase in 

size. 

Grasso and Taylor III (1984} address the effects caused 

by supply/timing uncertainty in an MRP system. They 

conclude that supply lead time uncertainty has a significant 

effect on the average total cost of the system. The holding 

cost per week and the lateness penalty charges both increase 

to reflect this lead time uncertainty. 
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Melnyk and Piper (1985) investigate the processing lead 

time error in a manufacturing system. A simulation 

experiment is performed to measure the processing lead time 

uncertainty effects of five lot-sizing rules. The results 

show that part period balancing (PPB) and the Silver and 

Meal heuristic (S&M) are better rules than lot-for-lot 

(L4L), economic order quantity (EOQ) and period order 

quantity (POQ) under processing lead time errors. 

Safety Stock in the Physical Distribution System 

In a multi-level distribution system, the effect of a 

lumpy demand can cause stockouts or increase ordering 

activity. The problem becomes worse when stochastic supply 

lead time is involved. Supply interruption frequently 

filters through the whole distribution system, creating 

costly stockouts at different locations. Safety stock is 

one way to provide protection against uncertainty in a 

distribution system. Where and how much safety stock to 

carry in a distribution system is still an open issue; only 

a few studies discuss this issue during the past three 

decades. 

Perhaps the first important theoretical model for 

multi-level production/inventory planning is the Clark and 

Scarf model (1960). They examine an N-location series 

production/inventory system with demand uncertainty 

occurring at the lowest stage where independent demand 

occurs. Under a periodic review policy, they demonstrate 



that the globally optimal system policy for an n-level 

problem may be determined by first determining the optimal 

policy at the lowest stage and the proceeding sequentially 

to determine the correspondingly optimal policy for the 

next-lowest stage, etc. 
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Schwarz (1981) discusses the effective safety stock and 

predecessor safety stock problems in a deterministic multi­

level system. He considers a two-stage series system, and 

assumes that stage 1 faces constant customer demand, and the 

lead time needed to replenish inventories from stage 2 to 

stage 1 is fixed.· The optimization problem of interest is 

to allocate a fixed system safety stock S to maximize 

customer fill rate (F) and minimize customer expected delay 

(T). Mathematically, 

and 

subject to 

Max F 

Min T 

S1 + S2::;; S 

Where S1 is stage l's safety stock and S2 is stage 2's 

safety stock. The detailed definitions of "fill rate" and 

"expected delay" are found in Schwarz's paper (1981). He 

states, despite its simplicity, the deterministic model. does 

provide some interesting and useful guidelines for 

understanding and modeling uncertainty in a multi-level 

system. He also compares two safety stock policies under 

stochastic demand. First consider a decentralized system 
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with N identical stocking locations. Alternatively, 

consider centralizing these inventories at a single 

location. In his findings, the centralized system is more 

cost effective than the decentralized system. For example, 

if N=2, then total cost of a decentralized system is 

approximately 40% larger than those of a centralized 

system.; For N=9, cost is three times larger. 

Allen (1983} compares three different policies for 

positioning safety stock in a two-echelon distribution 

system: (l} a "force-balance" policy which positions safety 

stock at the central echelon facility, (2} a "push­

allocation" policy which positions safety stocks at both the 

central facility and the field facilities, and (3} a "fare­

share" policy which positions safety stock at the field 

facilities and occasionally at the central facility. He use 

the results from simulation to compare the fill rate and 

inventory operating performance of the alternative safety 

stock policies. The results show that the "Force-balance" 

and "push-allocation" policies have significant lower 

average fill rate and higher average inventory than the 

"fair-share" policy. 

Salameh and Schmidt (1984} try to identify the safety 

· stock levels needed to minimize the expected annual total 

cost for a multi-level inventory system with known demand 

rate and stochastic supply lead time. They adopt an 

analytical approach to find the optimum safety levels in a 

multi-level inventory system. Finally, a relation equation 
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based on total related costs is presented to find the 

optimum safety stock levels. 

Chakravarty and Shtub (1986) discuss two important 

issues in a two-echelon inventory system operating under 

stochastic demand and stochastic lead time. The first issue 

is to decide the aggregate level of safety stock carried in 

the system. The second issue is the allocation of the total 

safety stock within the system. They perform a simulation 

study to investigate the sensitivity of the system to both 

issues. In their study, they develop a method to allocate 

safety stock among field facilities. The amount of safety 

stocks allocated in field facilities are in proportion to 

the standard deviation of demand during lead time and the z 
I 

value that yields the desired probability of stock out. 

They define the entire system service level as the ratio of 

(total number of products supplied without backlog to the 

customers from all field facilities) I (total number of 

product units demanded from all field facilities). In their 

findings, they suggest that up to 20% of the system's safety 

stock be allocated to the central distribution center. 

Because the total safety stock in the system can be reduced 

up to about 80% of the level of a system in which no safety 

stock is carried in the central distribution to achieve the 

same level of system service. This also implies that by 

allocating a fraction of the total safety stock to the 

central distribution center, an increase in service level is 
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achieved without additional investment in the total system's 

safety stock. 

Safety Stock in the Material Requirements Planning System 

Safety stocks were introduced long ago to protect an 

MRP system against uncertainty. A general statement of a 

safety stock problem is that "given an inventory system, 

determining the optimal buffer, by trading off the risk of 

shortage with the cost of excess inventory." Though much 

research has been done in the past two decades, the use of 

buffers in an MRP system still raises some questions that 

are yet unanswered. One of those questions is where to 

place safety stocks in a multi-level system such as MRP. 

That is the similar problem for MRP that is discussed in 

this study for DRP. A comparison will be conducted between 

a multi-level production system and a multi-level 

distribution system, if the same conclusions of safety stock 

policies from MRP system can be applied directly in a multi­

level distribution system. 

Safety stock is one buffering method to deal with 

uncertainty in an MRP system. Chu and Hayya (1988) review 

the buffering issues in an MRP system and develop an 

information flow for buffering decisions as shown in Figure 

2.2 This information flow also provides a guideline to make 

decisions in choosing safety stock policies. In summary, 

three-step decisions are made to allocate safety stocks in 

an MRP system: (1) decide where to place safety stocks, (2) 



Identify systems 

uncertainty 

Source, types, amount 

l 
Try alternatives for 

uncertainty reduction 

l 
Use buffering mechanisms 

Safety Safety Safety 

capacity stocks lead time 

,, 

Decide where to 

place buffers 

Determines the amount 

of buffers needed 

Decide the method 

to handle buffer 

Figure 2.2 An Information Flow for Buffering Decisions 
Adopted from Chu and Hayya (1988) 
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determine the amounts of safety stocks at all channel 

members, and (3) decide the method to handle safety stocks. 

After a safety stock policy is made, it is important to find 

some criteria for evaluating the effect of buffering. For 

example, the effects can be measured in terms of customer 

service level, total number of stockouts, average inventory, 

and total related cost. Previous research related to safety 

stock policy will be reviewed by the same order to make a 

decision. 

Where to Place Safety Stocks? 

There are at least three different types of safety 

stock in a multi-level production system; (l)finished 

product, (2)work-in-process (WIP) inventory, and (3)raw 

materials. Magee (1956) outlines the functions of those 

safety stocks with order point systems as follows: 

a. Finished inventories serve to protect individual 

products or sizes, to protect the operating manning 

levels, and to protect the warehouse or dealer against 

the time to place and receive an order, or the factory 

against the time to schedule and make a run. 

b. In the case of WIP inventories, they serve to shorten 

times for serving erratic needs of later operations 

(in a job shop) or to absorb fluctuations in 

production rates (in an assembly line). 

c. In the case of raw materials inventories, they serve 

to protect against uncertainty in availability or 
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delivery times and variations in usage rates. 

In a multi-level MRP system, uncertainty can occur at 

one or more levels. To provide enough protection and to 

keep low inventory, a decision of where to place safety 

stocks must be made. The most generally accepted one is to 

place safety stocks at the end items to protect against 

demand uncertainty and at the raw material level to protect. 

against supply uncertainty (Moore, 1973, and Orlicky, 1975). 

The second view is to put safety stocks at the lower 

levels. Because it is better to use pipeline safety stocks 

than finished-goods safety stocks according to the principle 

of forecast delay and the concept of value-added over time 

(Miller, 1979). 

The third view is that safety stocks shall be put at 

all levels. This is because every effort shall be made to 

protect against uncertainty, and that may occur at all 

levels (Liaw, 1979, Chu, 1984). 

How Much Safety Stock? 

How much buffer is not an easy question to be answered. 

The amount of safety stock necessary to satisfy a given 

service level can be determined by computer simulation or by 

a statistical approach (Lambert and Stock, 1993). Early 

researchers assume that safety stocks can be calculated 

statistically even under demand uncertainty and lead time 

uncertainty. The statistical approach can only work under 



single-level, single location conditions, and may not be 

appropriate for a time-phased demand item (New, 1975). 
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New (1975) shows two methods for determining safety 

stocks. These include: (1) the economic approach, and (2) 

the service level approach. The economic approach tries to 

set safety stock levels such that the total variable costs 

of setting-up, holding stock and incurring shortages is 

minimized. The shortcoming of the economic approach is to 

decide the shortage cost. Lambert, Luyten, and Eecken 

(1985) conduct a simulation experiment to find an optimal 

solution in a two-stage system. Under the service level 

approach, management must decide what level of customer 

service to achieve, and safety stocks can then be set in 

order to achieve such service levels (Miller, 1979). 

How to Handle Safety Stocks? 

Moore (1973) illustrates two methods to deal with 

safety stocks in an MRP system. The general approach used 

to handle safety stocks in an MRP system is to subtract them 

at the beginning from on-hand inventory. A system based on 

such a logic is called a "free stock system." The system 

adds two extra rows in addition to the normal MRP table. 

The first, "safety stock", indicates the amount of safety 

stock available in the plan to deal with uncertainties. The 

second added row, "net requirements", exists to determine 

when a scheduled receipt is required. Another approach is 

to use safety stock as a trigger criterion; that is, when 



the on-hand inventory is expected to drop below the safety 

stock, an order is placed. 

Criteria for Evaluating the Effects of Safety Stocks 
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The performance of an MRP system can be evaluated by 

several criteria. To investigate the effects of safety 

stocks on an MRP system, the system can be measured in terms 

of inventory investment, customer service level or total 

costs (Liaw, 1979, Schmitt, 1984); by non-monetary measures 

such as total number of end item stockouts, number of orders 

placed (Wemmerlov, 1986); or by measuring the system 

nervousness (Sridharan and LaForge, 1989). 

Chu and Hayya (1988) summarize that three major 

problems may occur when considering these performance 

measures. First, total cost is sensitive to the parameters 

chosen. This can lead to biased results. The second 

problem is how to define and determine the appropriate 

service level. The last problem is to select suitable 

performance measures. In general, that can be a single 

measure or multiple criteria. 

Summary 

In this chapter, a literature survey related to the 

research objectives is presented. Sources, impacts, and 

resolving methods of uncertainties problems occurring in a 

physical distribution system and an MRP system are fully 

discussed. It is important to recognize the nature and 

impact of various sources of uncertainty occurring in a 



physical distribution system. A conventional buffering 

method (safety stock} to resolve uncertainty problems is 

also discussed. 
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This survey indicates that most past studies related to 

uncertainty problems are based on a single source of 

uncertainty within or outside the system. It is obvious 

that these studies ignore the possible interactions within 

several types of uncertainties. Usually the impacts of 

those interactions cannot be understood by intuition or by 

results from simplistic models. There is a need to 

investigate the nature and impacts of various uncertainties 

in a multi-level distribution system. 

Providing safety stocks within the system is proven to 

be an effective method to protect against uncertainty in a 

physical distribution system. But there is still no clear 

guideline available to make a decision for safety stock 

policy, especially in a multi-echelon environment. Again, 

there is a need to develop some safety stock policies under 

different operational environments in a multi~echelon 

distribution system. 
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CHAPTER III 

RESEARCH METHODOLOGY 

First, this chapter presents the model structure used 

in this study. Then, six experimental factors used in the 

base experiment and two factors used in the sensitivity 

analysis experiment are also discussed. Research hypotheses 

are presented in the third section. The fourth section of 

this chapter illustrates the performance measures for 

testing the hypotheses. Experimental design of this study 

is presented in the last section. 

Research Framework 

A conceptual model of the research problem is shown in 

Figure 3.1. It is a multi-echelon distribution system with 

the replenishment of finished product from an outside vendor 

and with independent demand occurring at retailers. 

Three main sources of uncertainty occur within and/or 

outside the distribution system; each may be defined as 

either system uncertainty or environmental uncertainty. 

Daily demand is the force which initiates the functioning of 

the channel system. Daily demand occurs at each retailer 
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SUPPLIER (Supply Quantity Uncertainty) 

····································································· ·································································--; 

Lead Time Uncertainty j 

Warehouse /i 
--~~~~~~----..._~~~~~~--, 

DC 1 DC 2 

Retailer 1 Retailer 2 Retailer 3 Retailer 4 

CUSTOMERS (Demand Quantity Uncertainty) 

Figure 3.1 A Conceptual Model of the Research Problem 
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and varies according to a chosen probability distribution. 

That is known as environmental uncertainty caused by the 

customer demand uncertainty in quantity. Lead time 

associated with order processing is defined as the time 

interval between order placements and order receipts. 

Transportation lead time is the main component that causes 

lead time uncertainty within a physical distribution system. 

Thus, uncertainty in transportation lead time occurring at 

distribution centers and retailers is regarded as system 

uncertainty in this study. Another environmental 

uncertainty discussed in this study is the supply 

uncertainty, which occurs when the supplier does not ship 

the planned order quantity to the warehouse. 

This research is an exploratory study, investigating 

the impacts of various types of uncertainty on a multi­

echelon distribution system's performance. Every research 

project has its restrictions and limitations. Several 

assumptions have been mentioned for the multi-level 

distribution system in the first chapter. To.conduct the 

research, the following additional assumptions are made 

about the nature of those decision factors used in this 

study: 

1. There is no backorder allowed in the system. 

2. Only demand quantity uncertainty is considered; 

there are no trend, seasonal, or cyclical patterns 

in the demand requirements. 

3. Only transportation lead time uncertainty is 



considered within the distribution system. 

4. Only supply quantity uncertainty under 

shortage condition is studied. 

5. A fixed cost structure is used in the base 

experiment. 

Other assumptions, which are not discussed here, are 

presented in appropriate sections. 

Research Design 
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This research is designed to investigate the impact of 

various types of uncertainty on a multi-echelon distribution 

system. Computer simulation is used to model a multi­

echelon distribution system which has the assumed 

environmental conditions and the identified experimental 

factors to answer the research questions in this study. 

Among types of research methods, the computer simulation is 

most appropriate for this study because it provides adequate 

representation of the system. As discussed in the 

literature review, analytical formulation of a multi-echelon 

distribution system has been addressed by several authors 

(Muckstadt and Thomas, 1980, Schwarz, 1981, Salameh and 

Schmidt, 1984). Most of the models are developed under 

simplified environmental conditions and inventory policies. 

There is no known analytical formulation or simulation model 

of the problem discussed in this study. 

There are two types of simulation experiments, the base 

experiment and the sensitivity analysis experiments. The 



base simulation experiments are designed to examine the 

impact of various types of uncertainties and safety stock 

policies on a multi-echelon distribution system. 

57 

Sensitivity analysis experiments are conducted to see how 

the results obtained in the base experiment are changed; 

when some factors are changed, which are held to be 

constants in base experiment. Two factors allowed to alter 

in the sensitivity analysis experiment are the cost 

structure of the product and the distribution network. The 

factors used in the base experiments and the sensitivity 

analysis experiments are shown in Table 3.1. Detailed 

descriptions of each factor are given in following sections. 

Factors Bearing on the Research 

It is important to identify the factors which are 

important to the research question; these factors are 

essential to a valid experiment. The main purpose in the 

base simulation experiments is to investigate the impact of 

various types of uncertainties on a multi-echelon 

distribution system under different safety stock policies. 

Six factors considered in the base simulation experiments 

are as follows: 

FACTOR 1: Customer Demand Uncertainty 

The nature of customer demand is a very important 

factor which may affect the performance of a distribution 

system. Demand uncertainty may cause stockout or excess 

inventory in the distribution system. Demand uncertainty is 



Table 3.1 Experiment Factors Bearing on the Research 

Base Experiment 

Experimental Factors 

1. Demand Quantity Uncertainty 

2. Lead Time Uncertainty 

Levels 

1. Normal Distribution with 

mean=O, O'e=l5 

2. Normal Distribution with 

mean=O, O'e=30 

1. Uniform Discrete Distribution 
(Cv=0.47) 
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2. Symmetric Discrete Distribution 
(Cv=0.33) 

3. Supply Quantity Uncertainty 1. Normal Distribution with 
Cv=0.05 

4. Cost Values 

5. Lot-Sizing Rule 

6. Safety Stock Policies 

2. Normal Distribution with 
Cv=0.15 

1. Inventory Carrying Cost=l0% 
/unit/year; Stockout Cost=l0% 
/unit 

2. Inventory Carrying Cost=30% 
/unit/year; Stockout Cost=20% 
/unit 

1. Lot-For-Lot (L4L) 

2. Economic Order Quantity (EOQ) 

8 Different Safety Stock 
Policies (See Table 3.5) 

Sensitivity Analysis Experiment 

Value-added Factors 

Distribution Network 

4 Different Cost Structures 
(See Table 3.6) 

Base: 1-2-4 (See Figure 3.1) 
Sensitivity Analysis: 1-4 (See Figure 3.2) 
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generally modeled by generating forecast errors from a 

normal distribution with a mean of zero and various standard 

deviations to achieve differing levels of uncertainty. In 

this study, the forecast errors are generated in the same 

way, normally distributed with a mean of zero and standard 

deviations of 15 and 30. The forecast error generated for 

each period is added to the forecast demand for that period 

to achieve the actual demand quantity for that period. This 

relation is shown as: 

Actual Demand= Forecast Demand+ Forecast Error 

Forecast demand is generated from a normal distribution with 

a coefficient of variation (Cv) of 0.20. For those periods 

where generated forecast demand is less than zero, it is 

truncated to zero. The coefficient of variation (Cv) is a 

measure of variability that has been widely used in previous 

research (Bobko and Whybark, 1985) and the value selected 

for this study is within the range used by previous studies 

(Berry, 1972, Wemmerlov, 1982). Although it has been 

included as a variable factor in previous research, it is 

held constant in this study to control the number of 

experimental combinations. The means and standard 

deviations of forecast demand for each retailer are 

displayed in Table 3.2. 
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Table 3.2 Forecast Demand for Each Retailer 

Mean Standard 

Deviation 

Retailer 1 50 10 

Retailer 2 100 20 

Retailer 3 150 30 

Retailer 4 200 40 
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FACTOR 2: Lead Time Uncertainty 

Lead time uncertainty is modeled by two different 

discrete probability distributions as shown in Table 3.3. 

The uniform distribution causes more variability in the lead 

time than other symmetrical distribution. Grasso and Taylor 

(1984) use the same lead time distribution to express lead 

time uncertainty in their study. The same lead time 

distribution is applied between all channel members. For 

example, when the uniform distribution is chosen to generate 

the transportation lead time, the uniform distribution is 

used to decide the transportation lead time from the 

warehouse to the distribution centers and from the 

distribution centers to the retailers. This study only 

considers lead time uncertainty occurring between the 

warehouse and distribution centers; and between distribution 

centers and retailers. The lead time from the outside 

vendor to the warehouse is assumed fixed, and there is no 

lead time concerned when the customers purchase products 

from the retailers. 

FACTOR 3: Supply Uncertainty 

The specific supply uncertainty examined in this study 

is caused by order shrinkage from the outside vendor to the 

warehouse. The supply uncertainty is defined by the 

coefficient of variation (Cv) of the deviation of "actual 

receipt" from "planned order". The actual receipt is 

generated as: 



62 

Table 3.3 Lead Time Distributions 

Uniform Discrete 
Distribution Value (period) 1 2 3 4 5 

Probability 0.2 0.2 0.2 0.2 0.2 

Symmetrical Discrete 
Distribution Value (period) 1 2 3 4 5 

Probability 0.1 0.1 0.6 0.1 0.1 
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Actual Receipt = Planned Order (1-lrl•Cv) (1) 

where the planned order is imploded from two distribution· 

centers and r - N(O,l) is a standard normal variate. This 

is because only supply shortage is"allowed in the 

experiment, an absolute value is applied to guarantee only 

supply shortages occur in the experiment. The presumed 

supply shortages only condition is realistic in many current 

industrial operations since few customers will accept larger 

delivery quantities in these days. Two levels of Cv 

expressed as uncertainty are 0.05 and 0.15; and when the 

value of the actual receipt generated from equation (1) is 

negative, it is assumed to be O. 

When supply shortage occurs, the available inventory in 

the warehouse cannot meet the demand from two distribution 

centers. The way that the warehouse replenishes the 

"planned orders" from the two distribution centers is 

weighted by the planned order quantities from two 

distribution centers. For example, the planned order from 

DCl is 40 units and the planned order from DC2 is 60 unit. 

Now warehouse only receives 80 units from the vendor. 

According to.the "allocating method", 32 units are shipped 

to DCl and 48 units are shipped to DC2. The same method is 

used to deal with the allocation problem between 

distribution centers and retailers. 
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FACTOR 4: Cost Values 

In order to facilitate the inclusion of cost parameter 

changes into the model, a factor which combines inventory 

carrying cost and stockout cost is shown in Table 3.4. The 

cost values are va~ied over a high and low range. Inventory 

carrying cost is initially set at a rate of 10% of the 

dollar value carried at all channel members per year and is 

varied between 10% and 30%. The stockout cost is initially 

set at 10% of the dollar value per unit, and will be varied 

between 10% and 20%. The ordering cost is held constant at 

30 times of product's nominal unit cost per order. This is 

a reasonable setup because it falls within the range of cost 

structures used in earlier related studies (Collier, 1982, 

Veral and LaForge, 1985}. 

FACTOR 5: Lot-sizing Rule 

The use of a lot-sizing rule has a significant impact 

on the performance of a distribution system (Martin, 1993}. 

The lot sizes and order frequencies determined by different 

lot-sizing rules may affect the variation of inventory 

carried in the distribution system. Several earlier studies 

identify the interaction between various types of 

uncertainties and a lot-sizing rule (Melnyk and Piper, 1985, 

Wemmerlov, 1989, Minifie and Robert, 1990}. Furthermore, 

Collier (1982} suggests examining the relationship between 

safety stock policies and lot-sizing rules in an MRP system. 



Table 3.4 Cost Values in the Experiment 

Cost Component Low Level Value High Level 

Ordering Cost 30 30 

Carrying Cost 0.10 0.30 

Stockout Cost 0.10 0.20 

*The figures shown in the table are the fraction of 
nominal value of product. 
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Value 
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Once the MRP user combines the lot-sizing rule with a safety 

stock policy, the cumulative effect must be understood. The 

same principle likely applies in a DRP system. 

Two typical lot-sizing rules are applied in this study: 

lot-for-lot (L4L} and economic order quantity (EOQ}. Lot­

for-lot, known as a discrete ordering technique, is the 

simplest and most straightforward of all. It provides 

period-by-period coverage of net requirements, and the 

planned-order quantities always equal the quantity being 

covered. The use of this technique minimizes the inventory 

carrying cost but· also increase the ordering cost. 

The EOQ policy is a batch-type ordering 

technique. The lot size is decided by the equation as 

follows: 

where 

Q=~2:2 (2) 

A is the forecasted annual demand 

k is the ordering cost per order 

h is the carrying cost per unit per year 

For example, the lot size of retailer 1 is decided by the 

equation (2) as: 

A= 50 (unit/week}* 52 (week} = 2600 (unit/year} 

k = 20 * (product's nominal cost/unit} 

h = 0.25 *(product's nominal cost/unit} 



Q = ~2kh2 = 2·20·2600 = 645 (units) 
0.25 
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Usually EOQ ordering techniques cover the net requirements 

of several periods·. Considering the truck-loading problem, 

which does not prefer the less-than-truck loading, exists in 

the operation of a distribution system. It is appropriate 

to apply EOQ ordering technique to meet truck-loading 

requirement by releasing an order size close to the full 

truck loading. 

FACTOR 6: Safety Stock Policies 

Safety stock provides protection against uncertainty 

occurring within or outside the physical distribution 

system. This study expands Schwaze's work (1981) and 

Allen's study (1983) to examine several different ways of 

allocating safety stocks among all distribution members 

based on a predetermined safety stock level. Eight 

different safety stock policies are shown in Table 3.5. 

Several safety stock policies are discussed as follows: 

Policy 1 is no buffering, and no safety stock is held at any 

channel members. Policy 1 may provide a benchmark which can 

be compared with other safety stock policies with buffering. 

Policy 2 is a so-called centralized safety stock policy; all 

the safety stocks are held at the warehouse. Policy 3 is a 

so-called decentralized safety stock policy; all the safety 

stocks are held at the retailer level. Furthermore, the 
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Table 3.5 Safety Stock Policies 

Policies Safety Stock Location and 

Amount of Safety Stock 

Warehouse Distribution Retailer 

Center 

1 0 0 0 

2 1 0 0 

3 0 0 1 

4 0 1 0 

5 1/3 1/3 1/3 

6 1/2 1/2 0 

7 1/2 0 1/2 

8 0 1/2 1/2 

Note: The figures are fraction of total safety stock 
in the system. 
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amount of safety stocks allocated to each retailer are based 

on the mean of the forecast demand. For example, the total 

amount of safety stocks invested in the distribution system 

is 300 units. Then-the amount of safety stocks allocated to 

each retailer are 30, 60, 90, and 120 respectively based on 

the mean of forecast demand of each retailer shown in Table 

3.2. 

Policy 5 is that safety stocks are held at all levels 

in the distribution system. The same logic is used to 

_allocate safety stocks between distribution centers as used 

'in Policy 3. Again, if the total amount of safety stocks is 

300 units. First, 100 units of safety stocks are allocated 

to each level; 100 units at warehouse, 100 units at two 

distribution centers~ and 100 units at four retailers. 

Second, the way to allocate 100 units at two distribution 

centers is based on the mean of gross requirement. The mean 

of gross requirement of distribution center 1 is calculated 

by adding the means of forecast demand of retailer 1 and 

retailer 2, which is 150 units per period. The mean of 

gross requirement of distribution center 2 is calculated by 

the same way, which is 350 units per period. Then, 30 units 

of safety stocks is allocated at distribution center 1, and 

70 units of safety stocks is allocated at distribution 

center 2. Finally, the same logic used in Policy 3 is 

applied to allocate safety stocks among retailers; 10 units 

allocated to retailer 1, 20 units allocated to retailer 2, 

30 units allocated to retailer 3, and 40 units allocated to 



retailer 4. 

Based upon previous studies, some people advocate 

placing safety stock near final users to protect against 

demand uncertainty, and at the warehouse higher level to 

protect against supply uncertainty (Moore, 1973, and 

Orlicky, 1975). Another view is to place safety stocks at 

all levels (Liaw, 1979, Chu, 1984). 
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The purpose of allocating safety stocks in the 

distribution system in different ways is to check the 

performance of different safety stock policies under various 

operating conditions. 

Factors Bearing on the Sensitivity Analysis Experiments 

The value-added factor is viewed as the transportation 

cost incurred when the product is shipped from the warehouse 

to lower echelon channel members in a multi-echelon 

distribution system. The purpose of the sensitivity 

analysis experiments is to examine the performance 

sensitivity of the factors held constant in the base 

experiments. Therefore, in the sensitivity analysis 

experiments, different combinations of the value-added 

factor are used to test the performance sensitivity caused 

by changing the value-added factor. A similar value-added 

approach is used by Collier (1982) and Ho (1992) to 

determine the costs incurred at each level in a distribution 

network. In their study, three levels of value-added factor 



71 

(0.05, 0.1, 0.2) are randomly chosen to determine item costs 

by the following equation: 

Cj+l = Cj * (l+a) (3) 

Where: 

Cj the nominal unit cost of product at the jth level 

a = the value-added factor, randomly selected from 0.05, 

0.1, and 0.2. 

It is assumed that the nominal unit cost of product at the 

warehouse is $1. If the value-added factor chosen is 0.05 

when product is shipped from warehouse to the distribution 

centers, then the nominal unit cost of product at the 

distribution center is $1.05. Once the nominal value of 

product is changed, the inventory carrying cost, stockout 

cost and ordering cost are also affected. This is because 

all of cost components are calculated by the product's 

nominal value as defined previously. Table 3.6 presents 

four combinations of the cost structure used in the base and 

validation experiments. Different cost structures may 

stand for different products or different marketing 

channels. For example, the cost structure of a discount 

store like Wal-Mart is different from that of brand name 

store like Safeway supermarket. 

Another factor considered in the sensitivity analysis 

experiment is to allow the distribution network to change as 

shown in Figure 3.2. Different products may be distributed 

by a different distribution network. In the sensitivity 
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Table 3.6 Cost Structure 

Channel Base Validation 
Member* Experiment Experiment 

Cl C2 C3 C4 
Level VLA** Cost VLA Cost VLA Cost VLA Cost 

1 w 1.0 1. 0 1. 0 1.0 

0.1 0.2 0.3 0.4 

2 DC1-DC2 1.1 1.2 1.3 1.4 

0.1 0.2 0.3 0.4 

3 Rl-R4 1.21 1.44 1.69 1.96 

* For channel member, W = warehouse; DC = distribution 

center; and R = retailer. 

** V/A represents value-added factor. 
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Warehouse 

Retailer 1 Retailer 2 Retailer 3 Retailer 4 

Figure 3.2 Distribution Network in Sensitivity Analysis 
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analysis experiment, products are shipped directly from 

warehouse to the retailers. This is because the geographic 

relationships between the warehouse and retailers are the 

same as a three-echelon distribution network, the same 

transportation mode is used to ship products. Therefore, 

the transportation lead time from warehouse to retailers is 

the sum of the original lead time from warehouse to 

distribution centers plus the original lead time from 

distribution centers to retailers. 

The lead time distributions used in this sensitivity 

analysis experiment is modified Table 3.3 by changing lead 

time values from (1,2,3,4,5) to (2,4,6,8,10). 

System Performance Measures 

In general, the goal is to design and operate a 

physical distribution system to minimize total cost, and 

evaluate the performance of each channel member. One 

performance measure of the system is to examine the cost 

performance in terms of the sum of ordering cost, inventory 

carrying cost and stockout cost. To evaluate the 

performance of each channel member, three non-monetary 

performance measures are also applied at warehouse, 

distribution centers, and retailers: 

• The Mean Service Level 

• The Average Stockout Unit Per Period 

• The Average Inventory Level 
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Total Related Cost 

Three components which may affect the inventory plan in 

a physical distribution system are ordering cost, inventory 

carrying cost and stockout cost. The total related cost 

(TRC) is calculated for the whole simulation period. 

Ordering cost includes all the costs to release an order. 

Inventory carrying costs include a number of cost 

components, which vary with the quantity of inventory, and 

can be categorized into the following groups: (1) capital 

costs, (2) inventory service costs, (3) storage space costs, 

and (4) inventory risk costs (Lambert and Stock, 1993). The 

inventory carrying costs generally represent one of the 

highest costs in the physical distribution system. La Londe 

and Lambert (1975) present a methodology designed to provide 

managers with a practical framework for determining the 

costs of carrying inventory. Usually, the costs range from 

12% to 35% of product value. 

Different inventory carrying costs may occur at 

different locations in the physical distribution system. 

The main reason for using different inventory carrying costs 

is the transportation value added to products when products 

are shipped from one channel member to another. The effect 

·of the value-added factor is examined in the sensitivity 

analysis experiment. Stockout costs include all of those 

costs which occur directly or indirectly as a consequence of 

an out-of-stock condition at all inventory locations. 

Usually, an expected value is used to include all 
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consequences of stockout and their penalties. An example of 

calculating stockout cost in terms of the percentage of a 

product's nominal value is shown as: 

Outcomes of stockout Probability cost/unit 

Losing the customer 0.05 50% 

Waiting for products 0.30 5% 

Finding a substitute from 0.25 10% 
the same company 

Finding a substitute from 0.20 25% 
other companies 

Not purchasing 0. 20. 5% 

The expected value of stockout cost per unit is : 

[(0.05*50%)+(0.30*5%)+(0.25*10%)+(0.20*25%)+(0.20*5%)] 

= 12.5%(per unit) 

Different levels stockout costs are used to present 

different impacts on the system's performance in the base 

experiment. Furthermore, different stockout costs are 

applied at all inventory locations by considering a value-

added factor in the sensitivity analysis experiments. 

Finally, the total related cost (TRC) function is defined 

as: 

where O· 'k lJ 

i j k i j k i j k 

ordering cost of channel level(i), channel 

member(j) at period(k) 

Cijk = inventory carrying cost of channel level(i), 



channel member(j) at period(k) 

Sijk = Stockout cost of channel level(i), channel 

member(j) at period(k) 

i = 1,2,3 (l=warehouse,· 2=distribution center, 

3=retailer) 

j = 1 when i=l (warehouse) 

= 1,2 when i=2 (l=distribution center 1; 

2=distribution center 2) 

= 1,2,3,4 when i=3 (l=retailer 1; 2=retailer 

3=retalier 3; 4=retailer 4) 

k = 1, ... , n (n periods) 

The Mean Service Level 
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2; 

The mean service level measures the ability of the 

physical distribution system to satisfy the demand from 

outside customers or other channel members in the system. 

It is the percentage of total demand which is satisfied by 

available inventory. This proportion is calculated as the 

sum of the minimum number of product units in each time 

period which is either available in inventory or demanded, 

divided by the total product demand. For example, during 

one simulation run, the total amount of products calculated 

by the above method is 875 units and the total demand is 

1000 units. Then the mean service level is calculated as: 

Mean Service Level= 
875 

1000 
= 87.5% 
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Thus, a mean service level of 1.0 indicates that all product 

demands are satisfied. The mean service level is recorded 

for each channel member in the system. 

The Average Stockout Units Per Period 

When the available inventory amount can not meet 

current demand, a shortage occurs. This is known as a 

stockout. The stockout is calculated as: 

stockout units= max [actual demand - (on-hand inventory+ 

in-transit},O] 

The records are kept for each channel member as an 

individual performance measure. Then, the average stockout 

units per period is calculated as the sum of the stockout 

units of each period, divided by the total number of periods 

in one simulation experiment. 

The Average Inventory Level 

The average inventory level for each period is 

calculated as the average of beginning inventory and ending 

inventory. The average inventory level of each simulation 

experiment is calculated as the sum of average inventory of 

each period, divided by the total number of periods in one 

simulation experiment. Again, the average inventory level 

is recorded for each channel level. 
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Research Hypothesis 

The main purpose of this research is to investigate the 

impact of demand uncertainty, transportation lead time 

uncertainty and supply uncertainty on a multi-echelon 

distribution system's performance and then to evaluate the 

effects of various safety stock policies under different 

operating conditions. Furthermore, the impacts of changing 

cost structure and distribution network on a multi-echelon 

distribution system are examined. 

To achieve the research objectives defined previously, 

the formal hypotheses statements are presented. The first 

six hypotheses are about the main effects of experimental 

factors used in this study on the specified performance 

criterion. The next four hypotheses are about the 

interactions between the safety stock policies and three 

types of uncertainty, and the interaction between the safety 

stock policies and different lot-sizing rules. These 

hypotheses are used to test whether the relative effect of 

the safety stock policies differ when the level of three 

types of uncertainty are varied and the lot-sizing rules are 

changed. The hypotheses are stated in detail as follows: 

Hypotheses on Total Related Cost 

1: There is no significant difference in distribution 

system performance as measured by the total related 

cost for the whole system among different levels of 

demand uncertainty. 



2: There is no significant difference in distribution 

system performance as measured by the total related 

cost for the whole distribution system among different 

levels of transportation lead time uncertainty. 

3: There is no significant difference in distribution 

system performance as measured by the total related 

cost for the whole distribution system among different 

levels of supply uncertainty. 
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4: There is no significant difference in distribution system 

performance as measured by the total related cost for the 

whole distribution system among different safety stock 

policies. 

5: There is no significant difference in distribution 

system performance as measured by the total related 

cost for the whole distribution system when different 

lot-sizing rules are used. 

6: There is no significant difference in distribution 

system performance as measured by the total related 

cost for the whole system among different .cost values of 

inventory carrying cost, stockout cost, and ordering 

cost. 

7: There is no significant difference in distribution 

system performance as meas~red by the total related 

cost for the whole system under different safety stock 

policies when different lot-sizing rules are used. 

8: There is no significant difference in distribution 

system performance as measured by the total related 



cost for the whole system under different levels of 

demand uncertainty when different safety stock policies 

are used. 

9: There is no significant difference in distribution 

system performance as measured by the total related 

cost for the whole system under different levels of 

transportation lead time uncertainty when different 

safety stock policies are used. 

10:There is no significant difference in distribution 

system performance as measured by the total related 

cost for the whole system under different levels of 

supply uncertainty when different safety stock policies 

are used. 

Hypotheses on Average Stockout Units 

11:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members among different levels 

of demand uncertainty. 

12:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members among different levels 

of transportation lead time uncertainty. 

13:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members among different levels 

of supply uncertainty. 
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14:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members among different safety 

stock policies. 

15:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members when different lot-sizing 

rules are used. 
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16:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members among different cost values 

of inventory carrying cost, stockout cost, and ordering 

cost. 

17:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members under different safety 

stock policies when different lot-sizing rules are used. 

18:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members under different levels 

of demand uncertainty when different safety stock 

policies are used. 

19:There is no significant difference in distribution 

system performance as measured by the average stockout 

units at each channel members under different levels 

of transportation lead time uncertainty when different 

safety stock policies are used. 



20:There is no significant difference in distribution 

system performance as measured the average stockout 

units at each channel members under different levels 

of supply uncertainty when different safety stock 

policies are used. 

Hypotheses on Average Inventory Level 

21:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members among different levels of 

demand uncertainty. 

22:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members among different levels of 

transportation lead time uncertainty. 

23:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members among different levels of 

supply uncertainty. 

83 

24:There is no significant difference in distribution system 

performance as measured by the average inventory level at 

each channel members among different safety stock 

policies. 

25:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members when different lot-sizing 

rules are used. 
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26:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members among different cost values 

of inventory carrying cost, stockout cost, ordering cost. 

27:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members under different safety 

stock policies when different lot-sizing rules are used. 

28:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members under different levels of 

demand uncertainty when different safety stock policies 

are used. 

29:There is no significant difference in distribution 

system performance as measured by the average inventory 

level at each channel members under different levels of 

transportation lead time uncertainty when different 

safety stock policies are used. 

30:There is no significant difference in distribution 

system performance as measured the average inventory 

level at each channel members under different levels of 

supply uncertainty when different safety stock policies 

are used. 

Hypotheses on Mean Service Level 

31:There is no significant difference in distribution 

system performance as measured by the mean service level 
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at each channel members among different levels of demand 

uncertainty. 

32:There is no significant difference in distribution 

system performance as measured by the mean service level 

at each channel members among different levels of 

transportation lead time uncertainty. 

33:There is no significant difference in distribution 

system performance as measured by the mean service level 

at each channel members among different levels of supply 

uncertainty. 

34:There is no significant difference in distribution system 

performance as measured by the mean service level at each 

channel members among different safety stock policies. 

35:There is no significant difference in distribution 

system performance as measured by the mean service level 

at each channel members when different lot-sizing rules 

are used. 

36:There is no significant difference in distribution 

system performance as measured by the mean service level 

at each channel members among different cost values of 

inventory carrying cost, stockout cost, ordering cost. 

37:There is no significant difference in distribution 

system performance as measured by the mean service level 

at each channel members under different safety stock 

policies when different lot-sizing rules are used. 
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38:There is no significant difference in distribution 

system performance as measured by the mean service level 

at each channel members under different levels of demand 

uncertainty when different safety stock policies'are 

used. 

39:There is no significant difference in distribution 

system performance as measured by the mean service level 

at each channel members under different levels of 

transportation lead time uncertainty when different 

safety stock policies are used. 

40:There is no significant difference in distribution 

system performance as measured the mean service level at 

each channel members under different levels of supply 

uncertainty when different safety stock policies are 

used. 

Experimental Design 

The main objective of this study is to examine the 

impact of three different types of uncertainties on a multi­

echelon distribution system under various safety stock 

policies. The simulation models are written in the FORTRAN 

programming language. A full factorial design is used in 

the analysis and the evaluation of the research hypotheses. 

A summary of the experimental factors and their number of 

levels in the base experiments is shown in Table 3.7. 

There are 256 experimental conditions in the base 

experiments. Five replications are made for each 
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Table 3.7 Summary of Experimental Factors Used in the Base 
Experiment and Their Levels 

Factors Levels 

Demand quantity uncertainty 2 

Lead time uncertainty 2 

Supply quantity uncertainty 2 

·Cost value 2 

Lot-sizing rule 2 

Safety stock policy 8 

Replications 5 

Total observations 1280 
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experimental condition. A similar number of replications is 

used in previous research (Carlson, Krop and Juker, 1983, 

Grasso and Taylor III, 1984, Sridharn and LaForce, 1989). 

The random number generator used in this study is a linear 

congruential generator (LCG), introduced by Lehmer (1951). 

This random number generator provides an accurate 

approximation to the true continuous U(O,l) distribution. 

Furthermore, the demand forecast, the forecast error terms 

and the supply uncertainty are generated from normal 

distributions using the polar method as described in Law and 

Kelton (1991). 

The MINITAB package is used in the statistical analysis 

of the results. Separately ANOVA procedures are used to 

determine the effects of the experimental variables on total 

related cost (TRC) of the whole distribution system, and 

mean service level, average stock units, and average 

inventory level for each channel members in the distribution 

system. 
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CHAPTER IV 

SIMULATION MODEL 

Simulation is the tool used to answer the research 

questions in this study. The first part of this chapter 

presents the flowcharts for the simulation programs of the 

multi-echelon distribution system and illustrates the logic 

of operating the DRP system. Then, several statistical 

issues in simulation are addressed. The last section of 

this chapter illustrates the procedures used to verify and 

to validate the simulation model. 

Formulation of the Simulation Model 

The simulation programs are written in the FORTRAN 

programming language as shown in Appendix A. 'The main 

program's flowchart of the multi-echelon distribution system 

is shown in Figure 4.1. ·First, the levels of experimental 

factors as shown in Table 3.1 are specified in the beginning 

of every simulation run. These experimental factors include 

demand uncertainty, supply uncertainty, lead time 

uncertainty, cost values and lot-sizing rule. Once they are 

specified, 40 simulation runs are executed with five 

replications for each sof the eight afety stock policies 

under each specific experimental condition. A macroscopic 

view of the simulation experiment is shown in Figure 4.2. 
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Reset all initial inventory level, stockout, and service 
level, and use first 40 weeks as warmup period 
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Figure 4.2 A Macroscopic View of the Simulation Experiment 
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As observed in Figure 4.2, the batch sampling is used to 

collect data for evaluating the performance of various 

safety stock policies without reinitialization the random 

number seed. In turn, this may cause more variabilty in the 

simulation output data. Future research should consider 

applying common random number streams to each safety stock 

policy to reduce the variances of the output random variable 

by reinitialization (Law and Kelton, 1991). 

As shown in Figure 4.2, after initializating inventory 

level, stockout, and service level, the forecast and actual 

requirements for 500 periods at retailers are generated. 

The actual supply rates from vendor to warehouse and the 

actual lead time taken to ship products within channel 

members are also generated. The first 40 periods of each 

500 period block are used as warmup data which is discarded. 

The DRP I module shown in Figure 4.3 is used to explain 

how the DRP information flow works in the multi-echelon 

distribution system. The DRP records for the first 12 

periods of each channel are also shown in Table 4.1 to 

illustrate an example of DRP logic. 

Table 4.1 is the initial DRP schedule of a three­

echelon distribution system, used to demonstrate the 

information flow and scheduling mechanism of DRP. There are 

four retailers (Rj), two distribution centers (DCj), and one 

warehouse (W) in this distribution system. A basic DRP 

record is shown in Table 1.2, and a more detailed 

description of DRP records is explained as follows: 
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Forecast Requirement: The expected demand for the product 

occurs in each time period. At retailers, the forecast 

requirements are generated from specific distributions. At 

distribution centers and the warehouse, the forecast 

requirements are calculated from the lower level's planned 

shipment. In Table 4.1, the forecast requirement for DC1 is 

162 in week 1, which is calculated by adding the planned 

shipment of R1 in week 1 (46) to the planned shipment .of R2 

in week 1 (116). The forecast requirement for Win week 1 

(509) is calculated by the same method, adding the plan~ed 

shipment of DC1 in week 1 (185) to the planned shipment of 

DC2 in week 1 (324). 

In-Transit: This is the open order scheduled to be received 

by the warehouse, distribution centers or retailers in the 

beginning of each time period. One assumption made is that 

the in-transit quantities in the first three periods are 

equal to forecast requirements in the first three periods 

considered. 

Projected Available Balance (PAB): The expected on-hand 

inventory of a channel member at the end of each time 

period, and the amount is calculated as follows: 

P.A.B. (t) = MAX(P.A.B. (t-i) + Planned Receipt(t)+In-Transit(t) 

- Forecast Requirement(t) , 0) 

As shown in Table 4.1, the projected available balance of 

retailer 2 in week 4 is calculated as: MAX(20+116-116,0)=20. 
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Net Requirement: This is the projected quantity needed in 

each time period to prevent a stockout. The net requirement 

is calculated as follows: 

N.R.(t) = MAX(Forecast Requirementct> + Safety Stockct> -

(P.A.B.ct-l) + In-Transitct)},O} 

Planned Receipt: This indicates the planed receipt in the 

beginning of each time period, and the quantity of the 

planned receipt is decided by lot-sizing rules. In this 

study, only lot-for-lot (L4L} and economic order quantity 

(EOQ} are applied to calculate the planned receipt quantity. 

The planned receipt is equal to net requirement when L4L is 

used. And, the planned receipt is calculated by the EOQ 

formula when EOQ is applied to be the lot-sizing rule. 

Planned Shipment: This indicates a planned order to be 

released in the beginning of each time period. The planned 

shipment is calculated by offsetting the lead time for the 

planned receipt in each time period.· 

The DRP II module shown in Figure 4.4 is used to 

explain the physical flow and inventory replenishment method 

in the multi-echelon distribution system. At first, the 

actual receipt in the action period at the warehouse is 

calculated by considering supply uncertainty, and then 

checking whether the available inventory at the warehouse is 

enough to replenish the demand from two distribution 

centers. If the available inventory is more than the 

requirement, then the exact quantity required is shipped to 
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the two distribution centers. If the available inventory is 

less than the requirement, the warehouse is allowed to 

replenish the order partially. The quantities shipped to 

the two distribution centers are weighted by the order 

quantities. For instance, let 100 units be required by two 

distribution centers at in the beginning of period t, 30 

units from DC1 and 70 units from DC2 . Let there be only 80 

units available at the warehouse. According to the 

weightedmethod, 24 units are shipped to DC1 , and 56 units 

are shipped to DC2 . 

The transportation time is generated from specific 

probability distributions to determine the shipping time 

actually taken from the warehouse to the distribution 

centers_. The same method applied at the warehouse is used 

to determine the shipping quantity and transportation time 

from distribution centers to retailers. The "Status Update" 

and "Data Collection" are two main activities in the 

"Collect Performance Measurement" event as shown in Figure 

4.1. These activities are simply the actions to advance the 

simulation in time by changing the ending stock status to 

beginning status, advancing shipments in transit, and 

recording period fill rates, stockouts, and inventory levels 

of all channel members. 

In summary, the simulation occurs as a repeated 

sequence of four events in a period: (1) demand forecast at 

retailers, (2) inventory review and ordering at all channel 

members, (3) inventory replenishment at all channel members, 
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and (4) collection and update of performance measurements. 

The simulation at a specific configuration of the 

experimental condition operates for a specific number of 

time periods and then calculates an average of the periods' 

performance. 

Statistical Issues in Simulation 

Three important issues are considered in this study 

when conducting the simulation experiment. These are: (1) 

the model initialization and steady state conditions, (2) 

the determination of the run length, and (3) the 

determination of the number of replications. 

To facilitate the system reaching a steady state 

condition, two assumptions are made regarding the initial 

conditions. First, the on-hand inventory in the beginning 

at each channel member is equal to its safety stock level. 

Second,. the in-transit quantities of the first three periods 

are equal to the forecast requirements at each channel 

member. A pilot run is made to determine the warm-up period 

at which a steady state is reached. The pilot run use the 

L4L rule with high demand uncertainty, high lead time 

uncertainty, and high supply uncertainty. The main reason 

to have the pilot run under high uncertainty is to ensure 

that the warm-up period found in the pilot run exceeds those 

warm-up periods found using other experimental conditions. 

Initially, the simulation is run for 500 periods, and 

the method used to find the warm-up period is based on 
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Welch's procedure (1981, 1983). Its specific goal is to 

determine a ti~e index 1 such that E(Yi) ~ v for i > 1, 

where 1 is the warm-up period, E(Yi) is the process mean at 

period i, and vis the steady state mean of the system. The 

statistic collected in the pilot run is the moving average 

of total related cost with.window size w equals 30 (61 

averaged observations) based on 5 replications as shown in 

Figure 4.5. 
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Figure 4.5 Moving Averages for TRC of the System 
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reaches a stead state within 30 to 40 periods, so a 

truncation point is determined to be 40 periods in this 

study. 

There is no explicit rule to determine the run length 

of the simulation experiment. However, a larger run length 

is used to avoid those biased observations. Based on rule 

of thumb, the simulation run length is at least ten times 

that of warmup period. Therefore, the simulation is run for 

40 periods initially, and all statistics on cost, inventory, 

and stockout are cleared. Then, each experimental condition 

is simulated for an additional 400 periods. For example, 

each experimental condition is run until the 440 periods are 

completed. 

Neter and Wesserman (1974) suggest that planning of 

sample size can be determined by controlling the desired 

confidence intervals. The following equation is used to 

determine the necessary sample size. 

where n = sample size 

ta/2, n-1 = tabulated t value for the desired confidence 

level from pilot run 

d = the half-width of the desired confidence interval 

s = the estimate of the standard deviation from pilot 

runs 
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Five replications are made based on initial conditions 

and the run length specified above. The results shows is 

equal to 3 .46 and t 0 • 025 , 4 is equal to 2. 776 for the TRC at 

the 0.05 level of significance. The l;lalf-width of the 

desired confidence interval is set to be 4.22, which is 1% 

of the average of the pilot run. The number of replications 

are decided by the above equation, the result is calculated 

as follows: 

n = (2.776}2 (3.46)2 = S.1 S 
4.222 

Based on the result, the closest integer is five. The same 

numbers of replications are adopted in other similar studies 

( Blackburn et al., 1986; Whybark and Wemmerlov, 1984). 

Therefore, five replications are used to collect data for 

all experimental conditions in this study. 

Model Verification and Validation 

Verification refers to the comparison of the conceptual 

model to the computer code used to implement the concept. 

Many common sense suggestions about model verification are 

given by Banks and Carson (1984). Two approaches are used 

to verify the simulation model in this study. One approach 

is the use of trace. A detailed computer output which gives 

the value of every variable in a DRP table for the first 24 

iterations is compared with the results from manual 

simulation. The results show the value of variables in a 
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DRP table from the computer program are exactly the same as 

the results from manual simulation. Thus, the program of 

the simulation model can represent the conceptual model in 

this study. 

Another approach suggested by Banks and Carson is a 

close and thorough examination of the module output for 

reasonableness under a variety of settings of the input 

parameters. All the uncertainties are removed from the 

model. Forecast requirements at retailers 1, 2, 3, and 4 

are equal to 50, 100, 150, and 200, respectively. The 

transportation lead time from warehouse to distribution 

centers and from distribution centers to retailers are equal 

to 3 weeks. And, the vendor ships the amount of product 

which the warehouse requests. The results from the module 

output are as expected; no stockout occurs at any channel 

member, and the Projected Available Balance is equal to the 

safety stock level. 

Validation is determining whether a simulation is an 

accurate representation of the system under study (Law and 

Kelton, 1991). An idealistic goal in validation is to 

ensure that a model is developed which can actually be used 

by a decision maker to make the same decision that would be 

made if it were feasible and cost-effective to experiment 

with the system itself (Law and Kelton, 1991). 

A three-step approach is proposed by Naylor and Finger 

(1967) for validating a simulation model: 

Step 1: Develop a model with high face validity. 
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Step 2: Test the assumptions of the model empirically. 

Step 3: Determine how representative the simulation output 

data are. 

It is generally impossible to validate a simulation model 

completely. Two aspects are checked to validate the 

simulation model used in this study. First, the assumptions 

of the input distributions are tested. Two distributions 

are examined here. One is the forecast demand which occurs 

at retailer 1 and the other is the uniform lead time 

distribution. As shown in Table 4.2, the results show that 

the observed forecast demand at retailer 1 is fitted to a 

normal distribution with mean (49.798) and variance 

(105.2066). And, the lead time distribution is fitted to a 

uniform distribution with mean (2.96) and variance (1.98). 

Both results are very close to theoretical values. 

Table 4.2 Empirical and Theoretical Mean and Variance of 
Two Input Distributions 

Normal Distribution Uniform Distribution 

Empirical Mean 49.796 2.96 

Empirical Variance 105.207 1.980 

Theoretical Mean 50 3 

Theoretical Variance 100 2.083 
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Second, a sensitivity analysis is conducted to 

determine if the simulation model output changes reasonably 

when the value of an input parameter is changed, or when a 

safety stock policy is changed. It is found that the multi­

echelon distribution system with safety stock at all levels 

($139.28/period} performs better than the one without safety 

stock ($392.91/period} in terms of the mean total related 

cost of the distribution system. Furthermore, the mean 

total related cost for a system with low demand uncertainty 

($401.86/period) is lower than the system with high demand 

uncertainty ($449.99/period}. It can be concluded the 

simulation model can represent the system under study. The 

results of the simulation are presented and discussed in the 

next section. 
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CHAPTER V 

RESULTS 

In the following sections the results of the Analysis 

of Variance for total related cost of the entire 

distribution system, and the stockout, inventory level, and 

service level for each channel member are presented, 

respectively. Finally, a summary of the results for all 

performance criteria is shown in the last section. 

Results for Total Related Costs Analysis 

As shown in Table 5.1, Analysis of Variance (ANOVA) is 

performed on the total related co.st obtained from the 

simulation. The total related cost (TRC) is defined as the 

sum of inventory carrying cost, stockout cost and order cost 

incurred at each channel member. Mean TRC, averaged over 

the whole simulation, is used as an aggregate performance 

measure for the distribution system. The analysis consists 

of 1280 data points, with five replications for each of the 

256 experimental conditions. The ANOVA results for the main 

effects and the interactions of safety stock policy with all 

other effects are shown in Table 5.1. The results lead to 

the rejection of hypotheses 1, 2, 3, 4, 5, 6, 7, 8, and 9, 

but there is not enough evidence to reject hypothesis 10 at 

the 5% significant level. All the hypotheses are 
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Table 5.1 'ANOVA Results for Mean TRC 

Analysis of Variance for Mean TRC 

Source DF ss MS F p 

L.R. 1 68009305 68009305 3861. 23 0.000 
D.U. 1 741339 741339 42.09 0.000 
L.T. 1 976612 976612 55.45 0.000 
s.u. 1 190273 190273 10. 80 0.001 
c.v. 1 17290525 17290525 981.67 0.000 
S.S. 7 89474673 12782096 725.70 0.000 
L.R.*D.U. 1 746969 746969 42.41 0.000 
L.R.*L.T. 1 937886 937886 53.25 0.000 
L.R.*S.U. 1 111200 111200 6.31 0.012 
L.R.*C.V. 1 12717110 12717110 722. 01 0.000 
L.R.*S.S. 7 88853765 12693395 720.67 0.000 
D.U.*L.T. 1 120085 120085 6.82 0.009 
D.U.*S.U. 1 10064 10064 0.57 0.450 
D.U.*C.V. 1 33140 33140 1. 88 0.170 
D.U.*S.S. 7 602613 86088 4.89 0.000 
L.T.*S.U. 1 81546 81546 4.63 0.032 
L.T.*C.V. 1 69235 69235 3.93 0.048 
L.T.*S.S. 7 550186 78598 4.46 0.000 
S.U.*C.V. 1 15223 15223 0.86 0.353 
S.U.*S.S. 7 205550 29364 1. 67 0.113 
C.V.*S.S. 7 4582729 654676 37.17 0.000 
L.R.*D.U.*L.T. 1 122227 122227 6. 94 0.009 
L.R.*D.U.*S.U. 1 10671 10671 0.61 0.437 
L.R.*D.U.*C.V. 1 33211 33211 1. 89 0.170 
L.R.*D.U.*S.S. 7 610100 87157 4.95 0.000 
L.R.*L.T.*S.U. 1 60518 60518 3. 44 0.064 
L.R.*L.T.*C.V. 1 97731 97731 5.55 0.019 
L.R.*L.T.*S.S. 7 612172 87453 4. 97 0.000 
L.R.*S.U.*C.V. 1 22869 22869 1. 30 0.255 
L.R.*S.U.*S.S. 7 146206 20887 1.19 0.308 
L.R.*C.V.*S.S. 7 4208280 601183 34.13 0.000 
D.U.*L.T.*S.U. 1 15272 15272 0.87 0.352 
D.U.*L.T.*C.V. 1 37192 37192 2.11 0.147 
D.U.*L.T.*S.S. 7 481162 68737 3.90 0.000 
D.U.*S.U.*C.V. 1 758 758 0.04 0.836 
D.U.*S.U.*S.S. 7 161497 23071 1.31 0.242 
D.U.*C.V.*S.S. 7 501867 71695 4. 07 0.000 
L.T.*S.U.*C.V. 1 12594 12594 0.72 0.398 
L.T.*S.U.*S.S. 7 215366 30767 1. 75 0.095 
L.T.*C.V.*S.S. 7 589526 84218 4.78 0.000 
S.U.*C.V.*S.S. 7 104194 14885 0.85 0.550 
L.R.*D.U.*L.T.*S.U. 1 14737 14737 0.84 0.361 
L.R.*D.U.*L.T.*C.V. 1 36942 36942 2.10 0.148 
L.R.*D.U.*L.T.*S.S. 7 484535 69219 3.93 0.000 
L.R.*D.U.*S.U.*C.V. 1 812 812 0.05 0.830 
L.R.*D.U.*S.U.*S.S. 7 160404 22915 1. 30 0.246 
L.R.*D.U.*C.V.*S.S. 7 501098 71585 4.06 0.000 
L.R.*L.T.*S.U.*C.V. 1 15711 15711 0.89 0.345 
L.R.*L.T.*S.U.*S.S. 7 197993 28285 1. 61 0.130 
L.R.*L.T.*C.V.*S.S. 7 562664 80381 4.56 0.000 
L.R.*S.U.*C.V.*S.S. 7 114542 16363 0.93 0.483 
D.U.*L.T.*S.U.*C.V. 1 20458 20458 1.16 0.281 
D.U.*L.T.*S.U.*S.S. 7 127166 18167 1. 03 0.407 
D.U.*L.T.*C.V.*S.S. 7 712933 101848 5.78 0.000 
D.U.*S.U.*C.V.*S.S. 7 152693 21813 1. 24 0.279 
L.T.*S.U.*C.V.*S.S. 7 151815 21688 1. 23 0.282 
L.R.*D.U.*L.T.*S.U.*C.V. 1 20645 20645 1.17 0.279 
L.R.*D.U.*L.T.*S.U.*S.S. 7 127712 18245 1. 04 0. 404 
L.R.*D.U.*L.T.*C.V.*S.S. 7 712765 101824 5.78 0.000 
L.R.*D.U.*S.U.*C.V.*S.S. 7 153110 21873 1. 24 0.277 
L.R.*L.T.*S.U.*C.V.*S.S. 7 155174 22168 1. 26 0.268 
D.U.*L.T.*S.U.*C.V.*S.S. 7 148835 21262 1. 21 0.296 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 14891 7 21274 1. 21 0.295 
Error 1024 18036102 17613 
Total 1279 317121207 
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shown in Chapter Three. The analysis of significant main 

effects and the interactions of safety stock policy with 

lot-sizing rule, demand uncertainty, and transportation lead 

time uncertainty are addressed below. 

Main Effects 

Six main experimental factors are considered in this 

study. These are: lot-sizing rule (L.R.), demand 

uncertainty (D.U.), lead time uncertainty (L.T.), supply 

uncertainty (S.U.), cost value (C.V.), and safety stock 

policy (S.S.). A plot of main effects for mean TRC is 

presented in Figure 5.1, and the mean TRC for each main 

effect at each level is shown in Table 5.2. Visual 

examination of the experimental results in Figure 5.1 shows 

that economic order quantity (EOQ) yields much higher mean 

TRC than lot-for-lot (L4L). 

The negative results of the three sources of 

uncertainties are expected. The mean TRC is higher when 

demand uncertainty increases. This is mainly because more 

stockouts occur at all channel members. The mean TRC 

increases 14% when transportation lead time follows a 

discrete uniform distribution. This is because a great 

number of purchased products are received early as well as 

·1ate. As the supply shortage increases, the mean TRC also 

increases. This is because the supply shortage incurred at 

the warehouse may cause stockouts at all channel members. 
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Figure 5.1 Main Effects Plot for Mean TRC 

Table 5.2 Mean TRC of Each Main Effect at Each Level 
of the System 

Means 

L.R. N TRC 
1 640 195.42 
2 640 656.43 

D.U. N TRC 
1 640 401. 86 
2 640 449.99 

L.T. N TRC 
1 640 453.55 
2 640 398.31 

s.u. N TRC 
1 640 413.73 
2 640 438.12 

c.v. N TRC 
1 640 309.70 
2 640 542.15 

S.S. N TRC 
1 160 392.91 
2 160 296.96 
3 160 420.44 
4 160 881.20 
5 160 139.58 
6 160 135.14 
7 160 319.82 
8 160 821. 38 
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As shown in Figure 5.2, the best safety stock policy is 

policy 6 in terms of the mean TRC, and policy 5 is the 

second best. Policy 6 allocates safety stocks at the 

warehouse and two distribution centers to absorb the 

uncertainties incurred in the system. Policy 5 allocates 

safety stocks evenly among three levels to deal with 

uncertainties. Policies 4 and 8 result in much higher mean 

TRC than other safety stock policies. This is mainly caused 

by allocating no safety stock at the warehouse. Once the 

stockout occurs at distribution centers or retailers, the 

warehouse can not replenish the stock in time. 

Finally, as the cost value of inventory carrying cost 

increases, the mean TRC also increases. To examine the 

interactions between main effects, the mean TRC averaged 

over five replications are presented in Table 5.3. 

IVsin Effects Plot - Means for TRC 
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Figure 5.2 Mean TRC Plot as a Function of Safety Stock 
Policy 
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EOQ 259. 04 60:92 151. 05 810.13 51.30 48. 94 63. OB 313.13 178.55 160.22 174. 61 1092. 66 

CV=High LU 199.19 200.48 239.55 192.66 195. 96 192.73 214 .33 204. 41 199. 65 200. 89 237. 94 193.10 

EOQ 755. 67 551.59 761. 53 1829.62 101. 67 100. 03 578.22 1508. 60 955.31 598.40 991. 35 1692.51 

S.U.=High CV=Low LU 177. 75 173.12 205.16 180.95 177. 80 172.19 184.14 191.29 177. 63 173.36 204 .18 179. 71 

EOQ 208. 63 65.10 104.02 1358.73 52.01 51.98 69.99 829. 91 451.10 174.26 294. 09 1428.49 

CV=High L4L 206. 72 199. 82 256.53 212.40 205.52 195.51 217. 94 229. 85 206.58 200. 22 254. 90 210. 34 

EOQ 704. 95 812. 95 727.12 1800. 89 106.32 103. 77 467.96. 1681. 06 978. 97 541. 84 1157.08 1774.91 

Table 5.3 Experimental Results for Mean TRC per week 

5 6 

173.57 168.42 

65.66 61. 75 

205 .14 197 .48 

132. 07 123.44 

175.42 168. BO 

68. 50 66. 72 

207. 94 197. 72 

145. 04 140.07 

5 6 

172.43 170. 60 

50. 91 50. 79 

196.43 193.44 

105.91 107 .52 

177.25 172. 00 

52.56 53.56 

204. 89 195.56 

121. BB 117. 69 

7 

183. 96 

109. 93 

224. 85 

835. 29 

184. 61 

193. 46 

225.51 

777.05 

181. 88 

156.53 

214. 34 

833. 55 

183. 86 

110. 04 

217. 55 

890.26 

175.45 

1426.22 

206. 83 

1712.47 

183.19 

1561.21 

220.51 

1732.68 

176.99 

1483.11 

203.51 

1515.38 

190.19 

1422.49 

228.20 

1704.97 

I-' 
I-' 
I-' 
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Interaction of Lot-Sizing Rule and Safety Stock Policy 

The interaction of lot-sizing rules and safety stock 

policies has a significant effect on TRC. As shown in Table 

5.4, the effect of the safety stock policies is 

significantly influenced by the lot-sizing rules used in 

terms of the mean TRC. 

Table 5.4 Mean TRC for Lot-sizing Rule and Safety Stock 
Policy (n=BO) 

~ 
1 2 3 4 5 6 7 8 

L.R. 
L4L 190.3 188.5 225.9 186.1 189.2 182.8 202.1 198.5 

EOQ 595.5 405.4 615.0 1576.3 90.0 87.5 437.5 1444.3 

When L4L is used to calculate the planned order 

quantity, most safety stock policies result in a lower mean 

TRC than when EOQ is used, except for policies 5 and 6 as 

displayed in Figure 5.3 and Table 5.4. Though L4L may 

result in higher ordering cost than EOQ, it can be justified 

by the lower mean inventory level and less stockouts. 

Furthermore, L4L is less sensitive to the changes in 

safety stock policies used, but EOQ presents dramatically 

different results under various safety stock policies. For 

instance, safety stock policies 4 and 8 result in extremely 

high mean TRC when EOQ is applied, and policies 5 and 6 

perform under EOQ even better than L4L does. There is no 

safety stock kept at the warehouse using safety stock 

policies 4 and 8, all the safety stocks are allocated at 
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distribution centers or retailers. When EOQ is used, due to 

the built-in safety stock associated with EOQ, it helps to 

absorb the uncertainty. But once a shortage occurs at the 

distribution centers or retailers, there is a delay before 

the inventory can be replenished by the vendor. That may 

deteriorate the system performance by increasing stockouts 

at all channel members. On the other hand, policies 5 and 6 

prevent the stockout problem by keeping safety stock at the 

warehouse. That means the safety stock policy should be 

considered along with the lot-sizing rule to achieve the 

best system performance. 

ln!eraction Plot- Means for TRC 

1600 ;, LR. 
I 

I \ I -L4L 
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Figure 5.3 Mean TRC Plot as a Function of Lot-sizing 
Rule and Safety Stock Policy 

Interaction of Demand Uncertainty and Safety Stock Policy 

As shown in Table 5.5 and Figure 5.4, when the demand 

uncertainty increases, the mean TRC increases for most 

safety stock policies. Good safety stock policies such as 5 

and 6 are less sensitive to changes in demand uncertainty, 
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and policies 1, 2, 3, 7 and 8 result in higher mean TRC 

under high demand uncertainty. 

Table 5.5 Mean TRC for Demand Uncertainty and Safety Stock 
Policy (n=80) 

I~ 1 2 3 4 5 6 7 8 

. 
Low 357.80 276.32 373.78 881.87 138.18 133.68 294.47 758.79 

High 428.01 317.60 467.10 880.53 140.98 136.60 345.17 883.96 

The interaction of demand uncertainty and safety stock 

policy is displayed below in Figure 5.4, which is a plot of 

Table S.S. As demand uncertainty increases at retailers, 

the mean TRC also increases under most safety stock 

policies. Safety Stock policy 8 results in much higher TRC 

when demand uncertainty increases. The change in cost, when 

uncertainty is increased, is mainly caused by an increase in 

stockout cost at all channel members. 

900 
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71D 

BCD 

Mean 500 
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2CXl 

Interaction Plot- Means for TRC 

100 L..~-~-.---.-----,...------,.-_..,... 
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D.U. 

-Low 
-·High 

! 

Figure 5.4 Mean TRC Plot as a Function of Demand 
Uncertainty and Safety Stock Policy 
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Interaction of Lead Time Uncertainty and Safety Stock Policy 

When the transportation lead time distribution varies 

from a symmetric discrete distribution with low variation to 

a discrete uniform distribution with high variation, the 

mean TRC increases under all safety stock policies. The 

interaction of these two factors for mean TRC is displayed 

in Table 5.6. 

Table 5.6 Mean TRC for Lead Time Uncertainty and Safety 
Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
Low 375.44 278.75 384.37 831.11 134.07 131.15 297.85 753.80 

High 410.38 315.18 456.51 931.29 145.08 139.23 341.79 888.95 

The lead time uncertainty may cause a stockout when the 

actual lead time is longer than planned lead time. It can 

also cause extra inventory carrying cost when products 

arrive early. That explains why mean TRC increases under 

high transportation lead time variations. As shown in 

Figure 5.5, safety stock policies 5 and 6 are less sensitive 

to the changes in transportation lead time. 

Results for Stockout Analysis 

Stockout is one of the three non-monetary performance 

measures used in this study. The warehouse, distribution 
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Figure 5.5 Mean TRC Plot as a Function of Lead Time 
Uncertainty and Safety Stock Policy 
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centers, and retailers are either owned or fully controlled 

by the same company. Under this condition, only the 

stockouts occurring at retailers are of major concern to the 

company. However, if each channel member in the 

distribution system is operated by different owners, the 

performance of each channel member plays the same important 

role for each owner. Three non-monetary performance 

measures: average stockout units per period, mean inventory 

level, and mean service level, are presented for each 

channel member in this study to provide more information to 

meet different distribution organizations' needs. 
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Stockout at Warehouse (SOW) 

ANOVA is performed on the average stockout units 

obtained from the simulation. The analysis consists of 1280 

data points, with five replications for each of the 256 

experimental conditions. The ANOVA results for the main 

effects and the interactions of safety stock policy with all 

other main effects are shown in Table 5.7. The results lead 

to the rejection of all hypotheses. All the main effects 

and the interactions of safety stock policy with all other 

main effects, which are significant at the 5% level, are 

addressed below. 

Main Effects 

A plot of main effects for average SOW is presented in 

Figure 5.6; the average SOW for each main effect at each 

level is shown in Table 5.8. Visual examination of the 

experimental results in Figure 5.6 shows that EOQ yields 

much higher average SOW than L4L. It is mainly because the 

warehouse fails to respond to the operating uncertainty in 

time when EOQ is applied. In this study, since 

transportation lead time uncertainty occurs between channel 

members, a shipping delay can cause demand shortage over 

several periods when using EOQ as the lot-sizing rule. The 

stockout problem caused by transportation lead time 

uncertainty does not affect the system as much as when the 

L4L lot-sizing rule is applied. This is because the order 

is replenished once an order is released. 
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Table 5.7 ANOVA Results for Average SOW 

Analysis of Variance for Average SOW 

Source DF ss MS F p 

L.R. 1 300934981 300934981 3213.36 0.000 
D.U. 1 984521 984521 10.51 0.001 
L.T. 1 2786436 2786436 29.75 0.000 
s.u. 1 87 9870 879870 9.40 0.002 
c.v. 1 13324007 13324007 142.27 0.000 
S.S. 7 840517657 120073951 1282.14 0.000 
L.R.*D.U. 1 1028019 1028019 10.98 0.001 
L.R.*L.T. 1 3586879 3586879 38.30 0.000 
L.R.*S.U. 1 312414 312414 3.34 0.068 
L.R.*C.V. 1 13324007 13324007 142.27 0.000 
L.R.*S.S. 7 806218239 115174034 1229.82 0.000 
D.U.*L.T. 1 969325 969325 10.35 0.001 
D.U.*S.U. 1 107527 107527 1.15 0.284 
D.U.*C.V. 1 990311 990311 10.57 0.001 
D.U.*S.S. 7 5268096 752585 8.04 0.000 
L.T.*S.U. 1 680700 680700 7.27 0.007 
L.T.*C.V. 1 2119647 2119647 22.63 0.000 
L.T.*S.S. 7 7773168 1110453 11. 86 0.000 
S.U.*C.V. 1 248301 248301 2.65 0.104 
S.U.*S.S. 7 1666175 238025 2.54 0.014 
C.V.*S.S. 7 38836315 5548045 59.24 0.000 
L.R.*D.U.*L.T. 1 999612 999612 10.67 0.001 
L.R.*D.U.*S.U. 1 1014 77 101477 1. 08 0.298 
L.R.*D.U.*C.V. 1 990311 990311 10.57 0.001 
L.R.*D.U.*S.S. 7 5309427 758490 8.10 0.000 
L.R.*L.T.*S.U. 1 457560 457560 4.89 0.027 
L.R.*L.T.*C.V. 1 2119647 2119647 22.63 0.000 
L.R.*L.T.*S.S. 7 8924853 1274~79 13.61 0.000 
L.R.*S.U.*C.V. 1 248301 248301 2.65 0.104 
L.R.*S.U.*S.S. 7 934426 133489 1. 43 0.191 
L.R.*C.V.*S·.s. 7 38836315 5548045 59.24 0.000 
D.U.*L.T.*S.U. 1 133251 133251 1. 42 0.233 
D.U.*L.T.*C.V. 1 1181028 1181028 12.61 0.000 
D.U.*L.T.*S.S. 7 4230345 604335 6.45 0.000 
D.U.*S.U.*C.V. 1 161864 161864 1. 73 0.189 
D.U.*S.U.*S.S. 7 274384 39198 0.42 0.891 
D.U.*C.V.*S.S. 7 4429833 632833 6.76 0.000 
L.T.*S.U.*C.V. 1 306677 306677 3.27 0.071 
L.T.*S.U.*S.S. 7 2123575 303368 3.24 0.002 
L.T.*C.V.*S.S. 7 6166030 880861 9.41 0.000 
S.U.*C.V.*S.S. 7 888199 126886 1.35 0.221 
L.R.*D.U.*L.T.*S.U. 1 128929 128929 1. 38 0.241 
L.R.*D.U.*L.T.*C.V. 1 1181028 1181028 12.61 0.000 
L.R.*D.U.*L.T.*S.S. 7 4260023 608575 6.50 0.000 
L.R.*D.U.*S.U.*C.V. 1 161864 161864 1. 73 0.189 
L.R.*D.U.*S.U.*S.S. 7 266986 38141 0.41 0.898 
L.R.*D.U.*C.V.*S.S. 7 4429833 632833 6.76 0.000 
L.R.*L.T.*S.U.*C.V. 1 306677 306677 3.27 0.071 
L.R.*L.T.*S.U.*S.S. 7 1778425 254061 2.71 0.009 
L.R.*L.T.*C.V.*S.S. 7 6166030 880861 9.41 0.000 
L.R.*S.U.*C.V.*S.S. 7 888199 126886 1.35 0.221 
D.U.*L.T.*S.U.*C.V. 1 177190 177190 1. 89 0.169 · 
D.U.*L.T.*S.U.*S.S. 7 971540 1387 91 1. 48 0.170 
D.U.*L.T.*C.V.*S.S. 7 4833685 690526 7. 37 0.000 
D.U.*S.U.*C.V.*S.S. 7 410970 58710 0.63 0.734 
L.T.*S.U.*C.V.*S.S. 7 1414278 202040 2.16 0.036 
L.R.*D.U.*L.T.*S.U.*C.V. 1 177190 177190 1. 89 0.169 
L.R.*D.U.*L.T.*S.U.*S.S. 7 979138 139877 1. 49 0.166 
L.R.*D.U~*L.T.*C.V.*S.S. 7 4833685 690526 7.37 0.000 
L.R.*D.U.*S.U.*C.V.*S.S. 7 410970 58710 0.63 0. 734 
L.R.*L.T.~S.U.*C.V.*S.S. 7 1414278 202040 2.16 0.036 
D.U.*L.T.*S.U.*C.V.*S.S. 7 835369 119338 1.27 0.260 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 835369 119338 1.27 0.260 
Error 1024 95898902 93651 
Total 1279 2254134264 
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Figure 5.6 Main Effects Plot for Average SOW 

Table 5.8 Average Stockout Units per Week of Each Main 
Effect at Each Level at the Warehouse 

Means 

L.R. N sow 
1 640 16.58 
2 640 986.34 

D.U. N sow 
1 640 473.73 
2 640 529.19 

L.T. N sow 
1 640 548.12 
2 640 454.80 

s.u. N sow 
1 640 475.24 
2 640 527.68 

c.v. N sow 
1 640 603.49 
2 640 399.43 

S.S. N sow 
1 160 20.7 
2 160 13.4 
3 160 24.0 
4 160 1974.5 
5 160 69.1 
6 160 61.2 
7 160 16.8 
8 160 1832.1 
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The results of the three sources of uncertainties are 

expected. As demand uncertainty, transportation lead time 

uncertainty, and supply uncertainty increase, average 

stockout units also increase at the warehouse. 

As shown in Figure 5.7, the best safety stock policy is 

policy 2 in terms of minimizing average stockout units; 

policy 7 is the second best. Safety stock policy 2 puts all 

safety stocks at the warehouse to absorb the supply 

uncertainties occurring in the system. Safety stock policy 

7 distributes safety stocks evenly among the warehouse and 

the four retailers to deal with uncertainties. The same 

reason addressed in the TRC analysis explains why safety 

stock policies 4 and 8 cause high average stockout units at 

the warehouse. As the cost ratio decreases from 300:1 to 

100:1, the average stockout units also decrease at the 

warehouse. This is mainly because the order frequency by 

EOQ increases as the cost ratio decreases. 

Main Effects Plot- Means for SOW 

2000 

sow 1000 

! 

S.S. Policy 

Figure 5.7 Means Plot for SOW per Week as a Function 
of Safety Stock Policy 
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S.U.=Low CV=Low L4L 0.39 o. 00 3.02 

EOQ 45.31 26.48 52.87 

CV=High L4L 0.39 0.00 3.02 

EOQ 15.03 22.73 4.32 

S.U.=High CV=Low L4L 6.82 0.08 17.38 

EOQ 70.67 31.39 61.58 

CV=High L4L 6.82 0.08 17. 38 

EOQ 11.23 32.34 8. 90 

2 3 

S.U.=Low CV=Low L4L 2.95 0 .00 7 .15 

_EOQ 37.96 15.47 34.35 

CV=High L4L 2.95 o. 00 7.15 

EOQ 21.33 24. 07 10.92 

S.U.=High CV=Low L4L 22. 71 0.22 32. 62 

EOQ 48.60 28.42 56.12 

CV=High L4L 22. 71 0.22 32. 62 

EOQ 12.33 14.90 9.52 

Table 5.9 

D.U.=Low L.T.=Low D.U.=High 

S.S.Policy S.S.Policy 

4 5 6 7 8 1 2 3 4 

7.76 1.56 0.31 o.oo 18. 54 0.36 0.00 2.97 7.33 

5440.48 94.31 110.26 33.34 5255.51 59.79 23.59 80.54 5466. 79 

7.76 1.56 0.31 o. 00 18.54 0.36 0. 00 2.97 7.33 

3108.48 137 .14 130. 63 11.48 2913.51 10.82 29.96 4.42 3086. 90 

36.13 11.69 3.98 2.25 57.84 6.51 0.07 17.28 34. 44 

5473.00 143. 47 113. 76 48.52 5013.17 47.21 55.89 54. 08 4996.44 

36.13 11.69 3.98 2.25 57.84 6.51 0.07 17.28 34 .44 

3122.22 183.09 167 .33 22.90 2824. 86 7.99 14. 78 1. 87 3064. 04 

L.T.=High 

D.U.=Low D.U.=High 

S.S.Policy S.S. Policy 

4 5 6 7 8 1 2 3 4 

19.66 3.23 0.37 0.03 36.36 2.29 0.00 6. 74 15.23 

2966.67 73.79 54 .24 26.73 1227.09 66.84 32.24 73.68 3931.18 

19.66 3.23 0.37 0.03 36.36 2.29 0.00 6. 74 15.23 

3102.55 95.11 92.82 32.63 2633. 67 10.11 20.44 6.97 2888.50 

101.16 31.95 13.12 7.62 103.20 21.43 0.19 32.19 88.55 

4774.50 77.87 85.87 32.30 2963.86 59.57 26.53 68.90 5038. 35 

101.16 31.95 13.12 7.62 103.20 21.43 0.19 32.19 88.55 

3075. 93 124. 49 112.26 45.61 2894. 60 9.64 26.99 1. 4 7 3026.60 

Experimental Results for Average SOW per Week 

5 6 

1.51 0.28 
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1.51 0.28 
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5 6 

2.68 0.30 

75. 74 76.59 
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0. 00 17. 78 
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Interaction of Lot-Sizing Rule and Safety Stock Policy 

The interaction of lot-sizing rules and safety stock 

policies for average SOW is displayed in Table 5.10. As 

observed in Table 5.10, the interaction of lot-sizing rules 

and safety stock policies has a significant effect on the 

average stockout units at the warehouse. The effect of the 

safety stock policies is significantly influenced by the 

lot-sizing rules used in terms of average SOW. 

Table 5.10 Average SOW per Week for Lot-sizing Rule and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 

. 
8 

L4L 7.9 0.1 14.9 38.8 11. 7 4.1 2.4 52.8 

EOQ 33.4 26.6 33.2 3910.2 126.S 118.3 31.3 3611. 3 

When L4L is used to calculate the planned order 

quantity, all safety stock policies result in much lower 

average stockout units than when EOQ is used. When the lot-

sizing rule is changed from L4L to EOQ, there is a 

considerable impact on safety stock policies 4 and 8. As 

shown in Figure 5.8 and Table 5.10, the average stockout 

units increase dramatically for policies 4 and 8 under the 

EOQ lot-sizing rule. As addressed before, this is because 

safety stocks at retailers and distribution centers may 

satisfy few periods of demand. Once the inventories at 

distribution centers and retailers are depleted, there is no 

stock available at the warehouse to meet these demands. It 



takes nine weeks to replenish the stocks from the vendor. 

It may take longer when the transportation lead time 

uncertainty between channel members is a concern. 
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Figure 5.8 Means Plot for SOW per Week as a Function of 
Lot-sizing Rule and Safety Stock Policy 

Interaction of Demand Uncertainty and Safety Stock Policy 

When the demand uncertainty increases, the average 

stockout units at the warehouse increases from 1% to 17% 

under most safety stock policies. As shown in Table 5.11, 

when demand uncertainty increases, there is an immense 

impact when using policy 8. 

Table 5.11 Average SOW per Week for Demand Uncertainty and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
Low 20.5 12.3 22.4 1962.1 64.1 56.4 17.1 1634.9 

High 20.8 14.4 25.1 1981.9 74.0 65.9 16.6 2029.2 
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As demand uncertainty increases, the forecast demand 

error also increases. Forecast demand error which occurred 

at the retailers may affect the accuracy of forecast 

requirements at the warehouse, and.then causes more 

stockouts as demand uncertainty increases. As displayed in 

the interaction of demand uncertainty and safety stock 

policy in Table 5.11 and Figure 5.8, most safety stock 

policies are less sensitive to the changes in demand 

uncertainty, except policy 8. As shown in Table 5.9, policy 

8 results in higher average SOW when using the EOQ lot-

sizing rule with a low cost value. As addressed before, it 

is because the EOQ lot-sizing rule with safety stock policy 

8 can not respond to the demand uncertainty well. 

lnlerac:tioo Plot-Mlans 1br s::>N 

2 3 4 5 6 7 8 
S.S. Policy 

D.U. 

-LaN 
--High 

Figure 5.9 Means Plot for SOW per Week as a Function of 
Demand Uncertainty and Safety Stock Policy 

Interaction of Lead Time Uncertainty and Safety Stock 

Policy 

When the transportation lead time distribution changes 

from a discrete distribution with low variation to a uniform 
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distribution with high variation, the average stockout units 

increase under most safety stock policies. The average 

stockout units for the interaction of these two factors is 

displayed in Table 5.12, and a plot of the interaction of 

lead time uncertainty and safety stock policy is shown in 

Figure 5.10. 

Table 5.12 Average SOW per Week for Lead Time Uncertainty 
and Safety Stock Policy (n=80) 

:~ 1 2 3 4 5 6 7 8 

. 
Low 22.8 11.9 26.2 1828.3 59 50.4 18.4 1621. 3 

High 18.5 14. 8 21.9 2120.6 79.1 71.9 15.3 2042.8 

The lead time uncertainty may cause stockouts when the 

actual lead time is longer than the planned lead time. That 

explains why average stockout units increase under high 

transportation lead time variations for most safety stock 

policies. Policies 4 and 8 are more affected by lead time 

uncertainty than other policies. 

Interaction Plot - Means for SOW 

2000 L.T. 

-Low 

- • High 

Mean 
1000 ! 

4 5 

S.S. Policy 

Figure 5.10 Means Plot for SOW per Week as a Function of 
Lead Time Uncertainty and Safety Stock Policy 
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Stockout at Distribution Center 1 (SODCl) 

ANOVA is performed on the average SODCl obtained from 

the simulation. The ANOVA results for the main effects and 

the interactions of safety stock policy with all other main 

effects are shown in Table 5.13 and discussed below. The 

results lead to the rejection of hypotheses 11, 12, 13, 15, 

16, 17, and 18 at the 5% level. 

Main Effects 

A plot of main effects for average SODCl is presented 

in Figure 5.11, and the average SODCl for each main effect 

at each level is shown in Table 5.14. Visual examination of 

the experimental results in Figure 5.11 shows that EOQ 

yields much higher average SODCl than L4L. The reason is 

the same as that given for the situation at the warehouse. 

The results of three sources of uncertainties are 

similar to the results at the warehouse. As the demand 

uncertainty, transportation lead time uncertainty, and 

supply uncertainty increase, the average SODCl also 

increases. 

·As shown in Figure 5.12, the best safety stock policy 

is policy 6 in terms of the average SODCl; policy 5 is the 

second best. Again, safety stock policies 4 and 8 result in 

higher average SODCl than other safety stock policies. As 

the cost value increases, the average SODCl decreases. This 
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Table 5.13 ANOVA Results for Average SODCl per Week 

Analysis of Variance for Average SODCl 

Source DF ss MS F p 
L.R. 1 222625235 222625235 1077.86 0.000 
D.U. 1 7607622 7607622 36.83 0.000 
L.T. 1 4309614 4309614 20. 87 0.000 
s.u. 1 672132 672132 3.25 0.072 
c.v. 1 4058700 4 0587 00 19.65 0.000 
S.S. 7 163868641 23409806 113.34 0.000 
L.R.*D.U. 1 7800262 7800262 37.77 0.000 
L.R. *L.T. 1 4085002 4085002 19. 78 0.000 
L.R.*S.U. 1 594 867 594867 2.88 0.090 
L.R.*C.V. 1 4058700 4058700 19.65 0.000 
L.R.*S.S. 7 165067328 23581047 114.17 0.000 
D.U.*L.T. 1 494583 494583 2.39 0.122 
D.U.*S.U. 1 175538 175538 0.85 0.357 
D.U.*C.V. 1 1121323 1121323 5. 43 0.020 
D.U.*S.S. 7 7337875 1048268 5.08 0.000 

/ 

L.T.*S.U. 1 766967 766967 3. 71 0.054 
L.T.*C.V. 1 912641 912641 4.42 0.036 
L.T.*S.S. 7 2255608 322230 1. 56 0.144 
S.U.*C.V. 1 231277 231277 1.12 0.290 
S.U.*S.S. 7 1366513 195216 0.95 0.470 
C.V.*S.S. 7 13483528 1926218 9.33 0.000 
L.R.*D.U.*L.T. 1 511620 511620 2.48 0.116 
L.R.*D.U.*S.U. 1 177274 177274 0.86 0.354 
L.R.*D.U.*C.V. 1 1121323 1121323 5.43 0.020 
L.R.*D.U.*S.S. 7 7404805 1057829 5.12 0.000 
L.R.*L.T.*S.U. 1 730042 730042 3.53 0.060 
L.R.*L.T.*C.V. 1 912641 912641 4.42 0.036 
L.R.*L.T.*S.S. 7 2277 4 02 325343 1. 58 0.139 
L.R.*S.U.*C.V. 1 231277 231277 1.12 0.290 
L.R.*S.U.*S.S. 7 1281391 183056 0.89 0.517 
L.R.*C.V.*S.S. 7 13483528 1926218 9.33 0.000 
D.U.*L.T.*S.U. 1 121059 121059 0.59 0.444 
D.U.*L.T.*C.V. 1 119282 119282 0.58 0.447 
D.U.*L.T.*S.S. 7 3235183 462169 2.24 0.029 
D.U.*S.U.*C.V. 1 20432 20432 0.10 0.753 
D.U.*S.U.*S.S. 7 2041111 291587 1. 41 0.197 
D.U.*C.V.*S.S. 7 2567525 366789 1. 78 0.089 
L.T.*S.U.*C.V. 1 373294 373294 1. 81 0 .17 9 
L.T.*S.U.*S.S. 7 977409 139630 0.68 0.693 
L.T.*C.V.*S.S. 7 2537867 362552 1. 76 0.093 
S.U.*C.V.*S.S. 7 735817 105117 0.51 0.828 
L.R.*D.U.*L.T.*S.U. 1 122309 122309 0.59 0.442 
L.R.*D.U.*L.T.*C.V. 1 119282 119282 0.58 0.447 
L.R.*D.U.*L.T.*S.S. 7 3244032 463433 2.24 0.029 
L.R.*D.U.*S.U.*C.V. 1 20432 20432 0.10 0. 753 
L.R.*D.U.*S.U.*S.S. 7 2038613 291230 1. 41 0.197 
L.R.*D.U.*C.V.*S.S. 7 2567525 366789 1. 78 0.089 
L.R.*L.T.*S.U.*C.V. 1 373294 373294 1. 81 0.179 
L.R.*L.T.*S.U.*S.S. 7 984057 140580 0.68 0.689 
L.R.*L.T.*C.V.*S.S. 7 2537867 362552 1. 76 0.093 
L.R.*S.U.*C.V.*S.S. 7 735817 105117 0.51 0.828 
D.U.*L.T.*S.U.*C.V. 1 184625 184625 0.89 0.345 
D.U.*L.T.*S.U.*S.S. 7 1200470 171496 0.83 0.562 
D.U.*L.T.*C.V.*S.S. 7 2532135 361734 1. 75 0.094 
D.U.*S.U.*C.V.*S.S. 7 1463634 209091 1. 01 0.421 
L.T.*S.U.*C.V.*S.S. 7 822012 117430 0.57 0.782 
L.R.*D.U.*L.T.*S.U.*C.V. 1 184625 184625 0.89 0.345 
L.R.*D.U.*L.T.*S.U.*S.S. 7 1198310 171187 0.83 0.563 
L.R.*D.U.*L.T.*C.V.*S.S. 7 2532135 361734 1. 75 0.094 
L.R.*D.U.*S.U.*C.V.*S.S. 7 1463634 209091 1. 01 0.421 
L.R.*L.T.*S.U.*C.V.*S.S. 7 822012 117430 0.57 0.782 
D.U.*L.T.*S.U.*C.V.*S.S. 7 892039 127434 0.62 0.742 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 892039 127434 0.62 0.742 
Error 1024 211500129 206543 
Total 1279 892185269 
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Figure 5.11 Main Effects Plot for Average SODCl 

Table 5.14 Average Stockout Units per Week of Each Main 
Effect at Each Level at Distribution Center 1 

Means 

L.R. N SODCl 
1 640 22.11 
2 640 856.20 

D.U. N SODCl 
1 640 362. 06 
2 640 516.25 

L.T. N SODCl 
1 640 497.18 
2 640 381.13 

s.u. N SODCl 
1 640 416.24 
2 640 462.07 

c.v. N SODCl 
1 640 495.47 
2 640 382.85 

S.S. N SODCl 
1 160 . 481. 6 
2 160 312.9 
3 160 479.4 
4 160 1037.2 
5 160 22.3 
6 160 18.1 
7 160 223.1 
8 160 938.6 
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is mainly because the order frequency increases when using 

high cost value with EOQ lot-sizing rule. Thus, it can 

respond to changes in operating condition quickly. As shown 

in Table 5.15, EOQ with high cost value results in lower 

average SODCl than low cost value under most operating 

conditions. 

IVlain Effects Plot- Means for S0DC1 
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Figure 5.12 Means Plot for SODCl per Week as a Function 
of Safety Stock Policy 



D.U.=Low L.T.=Low 

S.S.Policy 

2 3 4 5 6 7 8 

S.U.=Low CV=Low L4L 14. 78 14.83 73.88 3.08 16. 91 5.94 38.41 20.27 

EOQ 1279. 59 127.57 123 .33 2887.34 24.16 31.56 1023 .36 2731.06 

CV=High L4L 14. 78 14.83 73.88 3.08 16.91 5. 94 38.41 20.27 

EOQ 344. 68 412.98 876.49 1686.39 34.90 35.82 734.21 1455.81 

S.U.=High CV=Low L4L 15.66 14.83 78. 77 3.56 17.84 6.04 38.82 24.89 

EOQ 729.56 209.12 669.07 2997.00 39.26 36.23 120.20 2673.17 

CV=High L4L 15.66 14.83 78. 77 3.56 17.84 6.04 38.82 24.89 

EOQ 745. 97 679. 91 1038.35 1705. 75 43. 01 33.49 449.62 1387. 83 

L.T.=High 

D.U.=Low 

S.S.Policy 

2 3 4 5 6 7 8 

S.U.=Low CV=Low L4L 14.69 13.27 60.50 2.93 13.23 6.83 30.87 16.28 

EOQ 893.13 74.89 328. 97 1409.16 19. 50 22.03 44.60 413.09 

CV=High UL 14 .69 13.27 60.50 2.93 13.23 6.83 30.87 16.28 

EOQ 616. 63 414. 46 347.37 1688.98 18.62 22.43 338. 64 1299.90 

S. U. =High CV=Low L4L 17 .82 13.28 71.40 5.87 16.48 7.36 32.96 26.42 

EOQ 653.52 117.71 385.43 2481.44 22.57 21.46 69.09 1484. 89 

CV=High L4L 17. 82. 13.28 71.40 5.87 16.48 7.36 32.96 26.42 

EOQ 78. 70 725.15 77.27 1647. 70 20.48 21.45 267. 74 1473.12 

Table 5.15 Experimental Results for 

D.U.=High 

S.S. Policy 

1 2 3 4 

13.99 14.10 71.12 2.65 

1369. 08 1693 .24 1233.94 2973.70 

13. 99 14 .10 71.12 2.65 

1126. 98 981. 95 1229. 85 1659.78 

14.81 14.10 76.13 3.10 

1989.23 966. 94 1687 .21 2629.04 

14.!fl 14 .10 76.13 3.10 

995°.33 1050. 72 1396.36 1646.56 

D.U.=High 

S.S. Policy 

1 2 3 4 

12.92 11.88 54 .28 2.21 

702.66 619. 06 870 .15 1952.67 

12.92 11.88 54 .28 2.21 

770.38 420.49 919.47 1545.29 

15. 81 11. 88 65.02 4.32 

1977. 45 903. 99 1508. 84 2600.27 

15. 81 11.88 65.02 4.32 

898. 84 398. 07 1546.67 1623.69 

Average SODCl per 

5 6 

15.58 5.47 

37 .20 30.46 

15.58 5.47 

37 .49 39.00 

16. 49 5.54 

32.88. 40.28 

16.49 5.54 

38.06 41.23 

5 6 

11.63 5.32 

27.19 23. 75 

11.63 5.32 

26.93 30.52 

14 .15 5.69 

18.07 24. 01 

14.15 5.69 

28.57 30.40 

Week 

7 

36.94 

184. 52 

36.94 

674. 05 

37.34 

270. 81 

37 .34 

136.20 

7 

27.55 

174.27 

27.55 

652. 60 

29.51 

375.96 

29.51 

1078.06 

8 

18.22 

2616.36 

18.22 

1490. 61 

22.60 

2919.39 

22.60 

1540. 87 

13.65 

2777.36 

13.65 

1298 .08 

22.60 

2631.68 

22.60 

1512.30 

,_. 
l,.J 
0 
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Interaction of Lot-Sizing Rule and Safety Stock Policy 

The interaction of lot-sizing rules and safety stock 

policies for average SODCl is displayed in Table 5.16. 

Thus, the interaction of lot-sizing rules and safety stock 

policies has a significant effect on the average SODCl. The 

effect of the safety stock policies is significantly 

influenced by the lot-sizing rules used. 

Table 5.16 Average SODCl per Week for Lot-sizing Rule and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
L4L 15.1 13.5 68.9 3.5 15.3 6.0 34.1 20.6 

EOQ 948.2 612.3 889.9 2070.9 29.3 30.3 402.1 1856.6 

As shown in Table 5.16, L4L outperforms EOQ in terms of 

the average SODCl under all safety stock policies. And L4L 

is less sensitive to the safety stock policy used. When 

lot-sizing is changed from L4L to EOQ, there is an immense 

impact on safety policies 4 and 8. The average SODCl 

increases dramatically for policies 4 and 8 when using the 

EOQ lot-sizing rule as shown in Figure 5.13. As discussed 

before, the high average SODCl for policies 4 and 8 when 

using EOQ, is due to the stockouts which occurred at the 

warehouse. In turn, the stockouts at the warehouse affect 

distribution centers and retailers. On the other hand, 

policy 4 results in the lowest average SODCl when L4L is 



used. That implies the safety stock policy should be 

considered along with the lot-sizing rule to achieve a 

better system performance. 
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Figure 5.13 Means Plot for SODCl per Week as a Function 
of Lot-sizing Rule and Safety Stock Policy 

Interaction of Demand Uncertainty and Safety Stock Policy 

When the demand uncertainty increases, it affects 

safety stock policies to a different degree. As shown in 

Table 5.17 and Figure 5.14, when demand uncertainty 

increases, there is a severe impact on the average SODCl for 

policies 1, 2, 3, and 8. 

Table 5.17 Average SODCl per Week for Demand Uncertainty 
and Safety Stock Policy (n=BO) 

~ 
1 2 3 4 5 6 7 8 

. 
Low 341. 7 179.6 276.0 1033.4 22.0 17.3 208.1 818.4 

High 621.6 446.6 682.8 1041. 0 22.6 19.0 238.1 1058.8 
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The reason for this has been explained previously. The 

change in stockouts, when demand uncertainty increases, is 

mainly caused by an increase in demand forecast error at the 

retailers. Compared to the result in SOW, demand 

uncertainty from customers has more impact on the 

performance of distribution centers than on the warehouse. 

This is because distribution centers are closer to the 

source of uncertainty. 

Interaction Plot- !\leans for S0DC1 
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Figure 5.14 Means Plot for SODCl per Week as a Function of 
Demand Uncertainty and Safety Stock Policy 

· Stockout at Retailer l(SORl) 

ANOVA is performed on the average SORl obtained from 

the simulation. The ANOVA results for the main effects and 

the interactions of safety stock policy with all other main 



effects are shown in Table 5.18. The results lead to the 

rejection of hypotheses 11, 12, 13, 15, 16, 17, and 18 at 

the 5% level. All the important main effects and 

interactions are addressed below. 

Main Effects 

A main effects plot for average SORl is presented in 

Figure 5.15, and the average SORl of each main effect at 

each level is shown in Table 5.19. Visual examination of 

the experimental results in Figure 5.15 shows that EOQ 

yields higher average SORl than L4L. However, the lot­

sizing rules do not make as much difference in terms of 

average stockout units at the retailers as they do at 

distribution centers or the warehouse. 
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The results of three sources of uncertainties at the 

retailers are the same as at the warehouse and distribution 

centers. As the demand uncertainty, transportation lead 

time uncertainty, and supply uncertainty increase, the mean 

stockout units also increase. As the cost value increases, 

the average SORl also increases. The results of changes in 

cost value at retailers differ from those at the warehouse 

and distribution centers. As shown in Figure 5.16, the best 

safety stock policy is policy 5 in terms of average SORl; 

policy 6 is the second best. Policies 4 and 8 result in 

higher average SORl than other policies. To examine the 

interaction effects, the experimental results for average 

SORl are shown in Table 5.20, and discussed below. 
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Table 5.18 ANOVA Results for Average SORl per Week 

Analysis of Variance for Average SORl 

Source OF ss MS F p 

L.R. 1 4673.0 4673.0 51. 45 0.000 
D.U. 1 6031.1 6031.1 66. 40 0.000 
L.T. 1 5904.5 5904.5 65.00 0.000 
s.u. 1 331.6 331.6 3.65 0.056 
c.v. 1 2163.4 2163.4 23.82 0.000 
S.S. 7 73488.1 10498.3 115. 58 0.000 
L.R.*D.U. 1 207 9. 0 207 9. 0 22.89 0.000 
L.R.*L.T. 1 27.9 27.9 0.31 0.580 
L.R.*S.U. 1 120.9 120.9 1.33 0.249 
L.R.*C.V. 1 2163.4 2163.4 23.82 0.000 
L.R.*S.S. 7 75510.5 10787.2 118.76 0.000 
D.U.*L.T. 1 254.1 254.1 2.80 0.095 
D.U.*S.U. 1 59.4 59.4 0.65 0.419 
D.U.*C.V. 1 29.4 29. 4 0.32 0.570 
D.U.*S.S. 7 2767.8 395.4 4.35 0.000 
L.T.*S.U. 1 297. 7 297.7 3.28 0. 071 
L.T.*C.V. 1 91. 6 91. 6 1. 01 0.315 
L.T.*S.S. 7 950.6 135.8 1.50 0.165 
S.U.*C.V. 1 36.3 36.3 0. 40 0.527 
S.U.*S.S. 7 691. 3 98.8 1. 09 0.369 
C.V.*S.S. 7 1815.9 259.4 2.86 0.006 
L.R.*D.U.*L.T. 1 98.3 98.3 1. 08 0.298 
L.R.*D.U.*S.U. 1 73.9 73.9 0.81 0.367 
L.R. *D.U. *C.V. 1 29. 4 29.4 0.32 0.570 
L.R.*D.U.*S.S. 7 3385.1 483.6 5.32 0.000 
L.R.*L.T.*S.U. 1 197. 2 197. 2 2.17 0.141 
L.R.*L.T.*C.V. 1 91. 6 91. 6 1. 01 0.315 
L.R.*L.T.*S.S. 7 997.1 142.4 1. 57 0.141 
L.R.*S.U.*C.V. 1 36.3 36.3 o. 40 0.527 
L.R.*S.U.*S.S. 7 454.9 65.0 0.72 0.659 
L.R.*C.V.*S.S. 7 1815.9 259.4 2.86 0.006 
D.U.*L.T.*S.U. 1 102.5 102.5 1.13 0.288 
D.U.*L.T.*C.V. 1 7.3 7.3 0.08 0. 776 
D.U.*L.T.*S.S. 7 14 80. 8 211.5 2.33 0.023 
D.U.*S.U.*C.V. > 1 0.3 0.3 0.00 0.955 
D.U.*S.U.*S.S. 7 724.4 103.5 1.14 0.336 
D.U.*C.V.*S.S. 7 1012.0 144.6 1. 59 0.134 
L.T.*S.U.*C.V. 1 71. 9 71. 9 0.79 0.374 
L.T.*S.U.*S.S. 7 467.1 66.7 0. 73 0.643 
L.T.*C.V.*S.S. 7 1011.1 144.4 1. 59 0.134 
S.U.*C.V.*S.S. 7 250.7 35.8 0.39 0.906 
L.R.*D.U.*L.T.*S.U. 1 116.4 116. 4 1. 28 0.258 
L.R.*D.U.*L.T.*C.V. 1 7.3 7.3 0.08 0.776 
L.R.*D.U.*L.T.*S.S. 7 1485.6 212.2 2.34 0.023 
L.R.*D.U.*S.U.*C.V. 1 0.3 0.3 0.00 0.955 
L.R.*D.U.*S.U.*S.S. 7 727.7 104. 0 1.14 0.333 
L.R.*D.U.*C.V.*S.S. 7 1012.0 144.6 1. 59 0.134 
L.R.*L.T.*S.U.*C.V. 1 71. 9 71. 9 0. 7 9 0.374 
L.R.*L.T.*S.U.*S.S. 7 484.9 69.3 0. 76 0.619 
L.R.*L.T.*C.V.*S.S. 7 1011.1 144.4 1. 59 0.134 
L.R.*S.U.*C.V.*S.S. 7 250.7 35.8 0.39 0.906 
D.U.*L.T.*S.U.*C.V. 1 162.2 162.2 1. 79 0.182 
D.U.*L.T.*S.U.*S.S. 7 478.2 68.3 0.75 0.628 
D.U.*L.T.*C.V.*S.S. 7 1198. 0 171.1 1. 88 0.069 
D.U.*S.U.*C.V.*S.S. 7 429.4 61. 3 0.68 0.693 
L.T.*S.U.*C.V.*S.S. 7 366.3 52.3 0.58 0.776 
L.R.*D.U.*L.T.*S.U.*C.V. 1 162.2 162.2 1. 7 9 0.182 
L.R.*D.U.*L.T.*S.U.*S.S. 7 474.7 67.8 0. 75 0.632 
L.R.*D.U.*L.T.*C.V.*S.S. 7 1198.0 171.1 1. 88 0.069 
L.R.*D.U.*S.U.*C.V.*S.S. 7 429.4 61. 3 0.68 0.693 
L.R.*L.T.*S.U.*C.V.*S.S. 7 366.3 52.3 0.58 0. 776 
D.U.*L.T.*S.U.*C.V.*S.S. 7 413.2 59.0 0.65 0.715 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 413.2 59.0 0.65 o. 715 
Error 1024 93013.7 90.8 
Total 127 9 296067.7 
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Figure 5.15 Main Effects Plot for Average SORl 

Table 5.19 Average Stockout Units per Week of Each Main 
Effect at Each Level at Retailer 1 

Means 

L.R. N SORl 
1 640 14.748 
2 640 18.570 

D.U. N SORl 
1 640 14.488 
2 640 18.830 

L.T. N SORl 
1 640 18.807 
2 640 14. 511 

s.u. N SORl 
1 640 16.150 
2 640 17.168 

c.v. N SORl 
1 640 15.359 
2 640 17.959 

S.S. N SORl 
1 160 18.093 
2 160 14.619 
3 160 16.877 
4 160 30.209 
5 160 7.291 
6 160 7.822 
7 160 12.441 
8 160 25.921 
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Main Effects Plot- Means forS0R1 
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Figure 5.16 Means Plot for SORl per Week as a Function of 
Safety Stock Policy 



D.U.=Low L.T.=Low D.U.=High 

S.S. Policy 
S.S.Policy 

2 3 4 5 6 7 8 1 2 3 4 5 

S.U.=Low CV=Low L4L 17.48 17.57 15.52 16.08 14.46 16.06 16.59 13.45 18.62 18.38 16.67 18.12 16.39 

EOQ 21.12 1.66 1.19 47. 99 0.57 0.42 16.27 44.65 22.70 28.24 19.41 51.57 0.96 

CV=High L4L 17.48 17.57 15.52 16.08 14 .46 16.06 16.59 13.45 18.62 18.38 16.67 18.12 16.39 

EOQ 9.70 10.44 24.42 48.91 0.99 0.97 20.37 39.47 32.24 28.28 34 .92 49.38 1.54 

S.U.=High CV=Low L4L 17.64 17.57 16.24 16.22 14.60 16.08 16.69 14.06 18. 77 18.38 17.36 18.22 16.54 

EOQ 12.14 3.29 9.96 49.84 0.47 0.75 0.92 43.58 33.32 15 .24 28.06 44. 78 0.89 

CV=High LU 17.64 17.57 16.24 16.22 14.60 16. 08 16.69 14.06 18. 77 18.38 17.36 18.22 16.54 

EOQ 21.08 18.54 28.71 49.27 1.14 1.17 11. 70 38.85 28.47 30.12 39.60 49.21 1.49 

L.T.=High 

D.U.=Low D.U.=High 

S.S. Policy 
S.S.Policy 

2 3 4 5 6 7 8 1 2 3 4 5 

S.U.=Low CV=Low LU 13.52 12.67 10.28 11.63 10.43 11.26 11. 87 9.13 15.27 14.14 12. 07 14.69 13.04 

EOQ 15.12 1.67 4.35 22.91 0.23 0.26 0.46 5.99 11.97 10.22 13.16 33.20 0.62 

CV=High LU 13.52 12.67 10.28 11.63 10.43 11.26 11.87 9.13 15.27 14.14 12.07 14.69 13. 04 

EOQ 16.62 11. 75 8. 49 48. 72 0.46 0.56 9.44 36.27 22.15 11.05 26.08 46.07 1.29 

S.U.=High CV=Low LU 14.27 12.67 11. 78 12.30 10.95 11. 40 12.16 10. 62 15.81 14.14 13.32 15. 09 13.39 

EOQ 11. 02 1.13 5.90 41. 50 0. 48 0.47 1.01 23. 77 31.55 14.44 23. 73 43.31 0.69 

CV=High LU 14.27 12.67 11. 78 12.30 10.95 11.40 12.16 10. 62 15.81 14 .14 13.32 15. 09 13.39 

EOQ 1.35 20.38 1.15 47.23 0.46 0. 77 6.68 40. 81 25.65 10.32 44.43 48.10 1.39 

Table 5.20 Experimental Results for Average SORl per Week 

6 

17.71 

0. 44 

17.71 

1. 38 

17. 70 

1.05 

17. 70 

1. 64 

6 

13. 78 

0.57 

13. 78 

1.52 

13.86 

o. 73 

13.86 

1.87 

7 

17.87 
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Interaction of Lot-Sizing Rule and Safety Stock Policy 

The interaction of lot-sizing rules and safety stock 

policies has a significant effect on the average SORl. As 

observed in Table 5.21, the effect of the safety stock 

policies is significantly influenced by the lot-sizing rules 

used 

Table 5.21 Average SORl per Week for Lot-sizing Rule and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
L4L 16.423 15.691 14.155 15.294 13.733 14.733 15.120 12.845 

EOQ 19.762 13.548 19.598 45.125 0.854 0.911 9.762 38.997 

As shown in Figure 5.17 and Table 5.21, when L4L is 

used, safety stock policies 1, 3, 4, and 8 perform better 

than when the EOQ is used. On the other hand, safety stock 

policies 2, 5, 6, and 7 result in fewer stockouts at 

retailers when EOQ is applied. This result is different 

from the results at the warehouse and distribution centers, 

where L4L outperforms EOQ under all safety stock policies in 

terms of minimizing average stock units. This result may be 

explained by the built-in safety stock feature of the EOQ 

lot-sizing rule which can absorb operating uncertainty along 

with appropriate safety stock policies. 
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Interaction Plot- Weans for SOR1 
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Figure 5.17 Means Plot for SORl per Week as a Function 
of Lot-sizing Rule and Safety Stock Policy 

Interaction of Demand Uncertainty and Safety Stock Policy 

Although the ranking of the safety stock policies stays 

the same when the demand uncertainty increases, the 

magnitude of the increases in average SORl is different 

under various safety stock policies. As shown in Table 

5.22, when demand uncertainty increases, safety stock 

policies 5 and 6 are less sensitive to the changes in the 

demand uncertainty. 

Table 5.22 Average SORl per Week for Demand Uncertainty and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
Low 14.623 11.865 11. 988 29.301 6.606 7.187 11.342 22.994 

High 21.562 17.394 . 21. 766 31.117 7.975 8.457 13.540 28.847 
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The interaction of demand uncertainty and safety stock 

policy is displayed below in Figure 5.18, which is a plot of 

Table 5.22. As observed in Figure 5.18, when demand 

uncertainty is increased, it also results in an increase in 

average stockout units at retailers. Compared to the result 

in SOW or SODCl, the safety stock policy used at retailers 

are more sensitive to the changes in demand uncertainty. 

This is because the retailer is the closest to the 

uncertainty source than the warehouse and distribution 

centers. 

Interaction Plot - l\leans for S0R1 
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Figure 5.18 Means Plot for SORl per Week as a Function of 
Demand Uncertainty and Safety Stock Policy 
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Results for Inventory Level Analysis 

The inventory type considered in this study is finished 

goods. The average inventory for each period is calculated 

as the average of the beginning inventory and the ending 

inventory. The average inventory level of the whole 

simulation experiment is calculated as the sum of average 

inventory of each period, divided by the number of 

simulation periods. This is one of the three non-monetary 

performance measures used in this study, and the average 

inventory level is recorded for each channel member. 

Average Inventory Level at Warehouse (INVW} 

ANOVA is performed on the mean INVW obtained from the 

simulation. The ANOVA results for the main eff°ects and the 

interactions of safety stock policy with all other main 

effects are shown in Table 5.23. The results lead to the 

rejection of all hypotheses, except for hypotheses 26 and 

30. Hypotheses 21 - 30 are stated in chapter 3. All 

important effects and interactions are addressed below. 

Main Effects 

A plot of main effects for average INVW is presented in 

Figure 5.19. The average INVW of each main effect at each 

level is shown in Table 5.24. Visual examination of the 

experimental results in Figure 5.19 shows that EOQ yields 

much higher average INVW than L4L. As EOQ is used, the 

average INVW increases because the built-in safety stock 

feature of the EOQ lot-sizing rule. Unlike L4L which always 
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Table 5.23 ANOVA Results for Average INVW per Week 

Analysis of Variance for Average INVW 

Source DF ss MS F p 

L.R. 1 450699073 450699073 5900.46 0.000 
D.U. 1 1683618 1683618 22.04 0.000 
L.T. 1 535184 535184 7.01 0.008 
s.u. 1 4927621 4 927621 64.51 0.000 
c.v. 1 43120 43120 0.56 o. 453 
S.S. 7 360027874 51432553 673.34 0.000 
L.R.*D.U. 1 1487079 1487079 19.47 0.000 
L.R.*L.T. 1 7 4597 8 745978 9.77 0.002 
L.R.*S.U. 1 5566 5566 0.07 0.787 
L.R.*C.V. 1 43120 43120 0.56 o. 453 
L.R.*S.S. 7 263163668 37594810 492.18 0.000 
D.U.*L.T. 1 5 5 0.00 o. 994 
D.U.*S.U. 1 55723 55723 0.73 0.393 
D.U.*C.V. 1 1751578 1751578 22.93 0.000 
D.U.*S.S. 7 3711997 530285 6.94 0.000 
L.T.*S.U. 1 242524 242524 3.18 0.075 
L.T.*C.V. 1 567910 567910 7.43 0.007 
L.T.*S.S. 7 1921198 274457 3.59 0.001 
S.U.*C.V. 1 247941 247941 3.25 0.072 
S.U.*S.S. 7 615257 87894 1.15 0.329 
C.V.*S.S. 7 43536478 6219497 81. 42 0.000 
L.R.*D.U.*L.T. 1 1477 1477 0.02 0.889 
L.R.*D.U.*S.U. 1 61485 61485 0.80 0.370 
L.R.*D.U.*C.V. 1 1751578 1751578 22.93 0.000 
L.R.*D.U.*S.S. 7 3797334 542476 7.10 0.000 
L.R.*L.T.*S.U. 1 24 407 9 244079 3.20 0.074 
L.R.*L.T.*C.V. 1 .567910 567910 7.43 0.007 
L.R.*L.T.*S.S. 7 1394742 1992~9 2.61 0.011 
L.R.*S.U.*C.V. 1 247941 247941 3.25 0.072 
L.R.*S.U.*S.S. 7 633096 90442 1.18 0.309 
L.R.*C.V.*S.S. 7 43536478 62194 97 81. 42 0.000 
D.U.*L.T.*S.U. 1 114984 114 984 1.51 0.220 
D.U.*L.T.*C.V. 1 611685 611685 8.01 0.005 
D.U.*L.T.*S.S. 7 1128472 161210 2.11 0.040 
D.U.*S.U.*C.V. 1 4273 4273 0.06 0.813 
o.u.*s.u·.*s.s. I 7 107488 15355 0.20 0.985 
D.U.*C.V.*S.S. 7 1443690 206241 2.70 0.009 
L.T.*S.U.*C.V. 1 153355 153355 2.01 0.157 
L.T.*S.U.*S.S. 7 178295 25471 0.33 0.939 
L.T.*C.V.*S.S. 7 510395 72914 0.95 0. 463 
S.U.*C.V.*S.S. 7 361505 51644 0.68 0.692 
L.R.*D.U.*L.T.*S.U. 1 109141 109141 1. 43 0.232 
L.R.*D.U.*L.T.*C.V. 1 611685 611685 8.01 0.005 
L.R.*D.U.*L.T.*S.S. 7 1141842 163120 2.14 0.038 
L.R.*D.U.*S.U.*C.V. 1 4273 4273 0.06 0.813 
L.R.*D.U.*S.U.*S.S. 7 106375 15196 0.20 0.986 
L.R.*D.U.*C.V.*S.S. 7 1443690 206241 2.70 0.009 
L.R.*L.T.*S.U.*C.V. 1 153355 153355 2.01 0.157 
L.R.*L.T.*S.U.*S.S. 7 184511 26359 0.35 0.933 
L.R.*L.T.*C.V.*S.S. 7 510395 72914 0.95 0.463 
L.R.*S.U.*C.V.*S.S. 7 361505 51644 0.68 0.692 
D.U.*L.T.*S.U.*C.V. 1 105171 105171 1.38 0.241 
D.U.*L.T.*S.U.*S.S. 7 533817 76260 1. 00 0.431 
D.U.*L.T.*C.V.*S.S. 7 1603417 229060. 3.00 0.004 
D.U.*S.U.*C.V.*S.S. 7 297003 42429 0.56 0. 792 
L.T.*S.U.*C.V.*S.S. 7 545717 77960 1. 02 0.415 
L.R.*D.U.*L.T.*S.U.*C.V. 1 105171 105171 1.38 0.241 
L.R.*D.U.*L.T.*S.U.*S.S. 7 537253 76750 1.00 0.426 
L.R.*D.U.*L.T.*C.V.*S.S. 7 1603417 229060 3.00 0.004 
L.R.*D.U.*S.U.*C.V.*S.S. 7 297003 42429 0.56 o. 792 
L.R.*L.T.*S.U.*C.V.*S.S. 7 545717 77960 1.02 0.415 
D.U.*L.T.*S.U.*C.V.*S.S. 7 303676 43382 0.57 0.782 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 303676 43382 0.57 0.782 
Error 1024 78216960 76384 
Total 127 9 1282487543 
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Table 5.24 Average Inventory Level per Week of Each Main 
Effect at Each Level at the Warehouse 

Means 

L.R. N INVW 
1 640 476.0 
2 640 1662.8 

D.U. N INVW 
1 640 1033.1 
2 640 1105.6 

L.T. N INVW 
1 640 1089.8 
2 640 1048.9 

s.u. N INVW 
1 640 1131. 4 
2 640 1007.3 

c.v. N INVW 
1 640 1063.6 
2 640 1075.2 

S.S. N INVW 
1 160 1325.5 
2 160 1630.1 
3 160 1552.1 
4 160 228.7 
5 160 984.2 
6 160 1044.3 
7 160 1551.4 
8 160 238.7 
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orders the exact quantity for the current period's need, the 

EOQ model chooses the order quantity to minimize the average 

cost per unit. When EOQ is used as the lot-sizing rule, 

usually excessive inventories are carried during the order 

interval. 

As the demand uncertainty and transportation lead time 

uncertainty increase, the mean INVW also increases. It is 

because high demand forecast error may cause excess 

inventory at the warehouse. Transportation lead time within 

the distribution system may also cause excessive stocks held 

at the warehouse. When an order is delivered to 

distribution centers or retailers early, the open orders at 

the warehouse have to be held longer. The result of supply 

uncertainty is expected: as supply uncertainty increases the 

average INVW decreases. This is mainly because the supply 

shortage from vendor increases. However, the cost value 

factor is not significant at the 5 % level in this case. 

As shown in Figure 5.20, the best safety stock policy 

is policy 2 in terms of the average INVW; policy 7 is the 

second best. Policies 4 and 8 result in lower average INVW. 

It is consistent with the results found in the average SOW 

analysis previously. To examine the interaction effects, 

the experimental results are shown in Table 5.25 and 

discussed below. 
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3 

S.U.-Low CV-Low UL 552.67 870. 67 486.76 

EOQ 1964. 90 2546.79 1968. 06 

CV-High UL 552. 67 870. 67 486.76 

EOQ 2482.47 2372.35 3664.29 

S.U.-High cv-Low L4L 431.90 752.28 387 .18 

EOQ 1486.43 2505.09 2030. 72 

CV-High LU 431. 90 752. 28 387 • .18 

EOQ 2270.00 2259.89 3241.95 

2 3 

S.U.-Low CV:Low L4L 444. 66 766.80 399.05 

EOQ 2074. 69 2561. 63 2205. 79 

CV-High UL 444. 66 766.80 399. 05 

EOQ 1999.24 2116.26 2774. 61 

S.U.-High CV-Low L4L 328. 35 627.75 309. 25 

EOQ 1631. 79 2372.20 1722.04 

CV-High LIL 328.35 627. 75 309.25 

EOQ 2091. 64 2323.27 2807 .56 

Table 5. 25 

D.U.-Low L.T.-Low D.U.-High 

S.S.Policy S.S. Policy 

4 5 6 7 8 1 2 3 4 5 6 

467.07 559. 92 648.59 656. 34 393.50 554. 41 871. 88 4 87. 4 7 471.33 562.43 652.11 657 .06 

3.81 1974. 74 2026.07 2472.70 38.88. 2168.46 2702.60 1943.00 0.94 2011.41 2001. 73 204.47 

467.07 559. 92 648.59 656.34 393.50 -554.41 871. 88 487.47 471. 33 562. 43 652.11 657 .06 

7.85 1114. 71 1195. 89 2629. 61 40.82 2744.37 2515.37 3845.49 9.76 1127.06 1180.30 2935.54 

345.00 428. 59 518.90 525. 72 287.29 433.55 753.66 387. 43 348.95 130. 72 522.63 526.34 

0.00 1916. 89 1826.21 2196.47 69.86 2193.25 2551.46 2063.25 100.20 1879.66 1804. 77 2376.59 

345.00 428.59 518. 90 525. 72 287.29 433. 55 753.66 387.43 34_8. 95 430. 72 522. 63 526.34 

5. 71 964.56 1019.18 2454.26 55.19 2631.17 3438.76 3581.50 16.80 941.02 1017.36 2991.94 

L.T.-High 

D.U.-Low D.U.-High 

S.S.Policy S.S. Policy 

4 5 6 7 8 1 2 3 4 5 6 7 

372. 73 470.17 550. 44 564. 75 330. 71 451. 95 773.43 401. 66 388. 07 478.33 561.44 569. 05 

580.13 2005. 65 2205. 36 2467.92 1125. 75 2174.26 2781.48 2003.11 435.15 1973.33 2131.53 2619. 77 

372.73 470.17 550.44 564. 75 330. 71 451. 95 773.43 401. 66 388.07 4 78. 33 561.44 569.05 

7.34 1182.24 1202. 71 2276. 75 152. 03 3180.93 2235.36 3877. 84 64.94 1192.69 1190.20 3277.06 

256. 74 342.41 409. 51 426. 30 249.55 332.58 635. 24 310.61 266.62 348. 45 419.55 429. 22 

160.95 1983,17 1958.99 2335. 86 533.40 1596. 99 2589. 74 1668.59 59.35 1941.19 1904. 70 2319.86 

256.74 342. 41 409.51 426.30 249. 55 332. 58 635.24 310.61 266. 62 348.45 419.55 429.22 

11.46 1053.91 1104. 54 2026. 02 52.58 2665.59 2188. 07 3931. 03 19. 83 990.22 1081.62 3119.88 

Experimental Results for Average INVW per Week 
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Interaction of Lot-Sizing Rule and Safety Stock Policy 

The average inventory level for the interaction of lot-

sizing rules and safety stock policies is displayed in Table 

5.26. As shown in Table 5.26, the interaction of lot-sizing 

rules and safety stock policies has a significant effect on 

the average inventory level at the warehouse. 

Table 5.26 Average INVW per Week for Lot-sizing Rule and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 

. 
8 

L4L 441.3 756.5 396.2 364.6 452.6 535.4 544.3 317.0 

EOQ 2209.8 2503.8 2708.1 92.8 1515.8 1553.2 2558.4 160.3 

Furthermore, L4L results in lower average INVW than 

EOQ, and is less sensitive to the changes of the safety 

stock policy. When lot-sizing is changed from L4L to EOQ, 

there is an immense impact on safety stock policies 4 and 8. 

As shown in Figure 5.21, the mean inventory level drops 

dramatically for policies 4 and 8 under the EOQ lot-sizing 

rule. Other safety stock policies result in a higher 

average inventory level at the warehouse under the EOQ rule. 

This is consistent with previous results discussed in 

"stockout analysis". Policies 4 and 8 result in low mean 

inventory levels, which cause the stockouts at the 

warehouse. 
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Figure 5.21 Means Plot for INVW per Week as a Function of 
Lot-sizing Rule and Safety Stock Policy 

Interaction of Demand Uncertainty and Safety Stock Policy 

The mean inventory levels for demand uncertainty and 

safety stock policy are shown in Table 5.27. As observed in 

Table 5.27, when the demand uncertainty increases, the 

average inventory level at the warehouse increases under 

safety stock policies 1, 2, 3, and 7. 

Table 5.27 Average INVW per Week for Demand Uncertainty and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
Low 1219.8 1568.3 1473.7 228.8 987.4 1049.6 1450 .4 286.9 

High 1431.2 1692.0 1630.5 228.6 981.0 1039.0 1652.4 190.4 
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The interaction of demand uncertainty and safety stock 

policy is shown in Figure 5.22. As shown in Figure 5.22, 

the average INVW under policies 4, 5, 6, and 8 are not 

affected by demand uncertainty. As discussed before, 

policies 5 and 6 are the two best safety stock policies in 

terms of the average SOW. It is believed that safety stocks 

can absorb demand uncertainty when they are put in the right 

place. As shown in Table 5.25, demand uncertainty has 

different effects on policies 4 and 8 under various 

operating conditions. Safety stock policies 4 and 8 are 

less sensitive to the changes in demand uncertainty when the 

L4L rule is applied. 

Interaction Plot - ti.lleans for INWV 

2 3 4 5 6 7 8 

S.S. 

Figure 5.22 Means Plot for INVW per Week as a Function of 
Demand Uncertainty and Safety Stock Policy 
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Interaction of Lead Time Uncertainty and Safety Stock 

Policy 

The average INVW for the interaction of the lead time 

uncertainty and safety stock policies is displayed in Table 

5.28 and Figure 5.23. When the transportation lead time 

variations increase, the average INVW increases under most 

safety stock policies. As addressed before, this is mainly 

due to the early arrival of the order at distribution 

centers or retailers. Thus, excessive stocks have to be 

kept at the warehouse longer. 

Table 5.28 Average INVW per Week for Lead Time Uncertainty 
and Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
Low l.283.l. l.548.4 l.489.5 244.2 975.l. l.041.. 3 l.526.4 283.3 

High l.367.9 l. 71.l.. 8 l.61.4.7 21.3.l. 973.3 l.047.2 l.576.4 l.94.0 

Interaction Plot - Means for INWV 
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Figure 5.23 Means Plot for INVW per Week as a Function of 
Lead Time Uncertainty and Safety Stock Policy 



152 

Average Inventory Level at Distribution Center l(INVDCl) 

ANOVA is performed on the mean INVDCl obtained from the 

simulation. The ANOVA results for the main effects and the 

interactions of safety stock policy with all other main 

effects are shown in Table 5.29. The results lead to the 

rejection of all hypotheses 21-30, except for hypothesis 30 

at the 5% level. All the important main effects and 

interactions are addressed below. 

Main Effects 

A plot of main effects for average INVDCl is presented 

in Figure 5.24, and the average INVDCl of each main effect 

at each level is shown in Table 5.30. Visual examination of 

the experimental results in Figure 5.24 shows that EOQ 

yields a mu·ch higher average INVDCl than L4L. The reason is 

the same as given for the situation at the warehouse. 

As the demand uncertainty and transportation lead time 

uncertainty increase, the average INVDCl decreases. This is 

consistent with the results from the average SODCl analysis. 

As expected, when the supply shortage from the vendor 

increases, the average INVDCl decreases. Furthermore, when 

the cost ratio decreases, the order quantity decided by the 

EOQ lot-sizing rule also decreases. This may cause lower 

average INVDCl under low cost ratio. 
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Table 5.29 ANOVA Results for Average INVDCl per Week 

Analysis of Variance for Average INVDCl 

Source DF ss MS F p 

L.R. 1 47276037 47276037 1957.75 0.000 
D.U. 1 840707 840707 34.81 0.000 
L.T. 1 366503 366503 15'.18 0.000 
s.u. 1 179091 179091 7.42 0.007 
c.v. 1 8687229 8687229 359.75 0.000 
S.S. 7 34182922 4883275 202.22 0.000 
L.R.*D.U. 1 1010608 1010608 41. 85 0.000 
L.R.*L.T. 1 967 015 967015 40.05 0.000 
L.R.*S.U. 1 76452 76452 3.17 0.075 
L.R.*C.V. 1 8687229 8687229 359. 7 5 0.000 
L.R.*S.S. 7 35479013 5068430 209.89 0.000 
D.U.*L.T. 1 171314 1 71314 7.09 0.008 
D.U.*S.U. 1 17002 17002 0. 70 o. 402 
D. U. *C. V. 1 121956 121956 5.05 0.025 
D.U.*S.S. 7 899369 128481 5.32 0.000 
L.T.*S.U. 1 85993 85993 3.56 0.059 
L.T.*C.V. 1 136854 136854 5. 67 0.017 
L.T.*S.S. 7 504374 72053 2. 98 0.004 
S.U.*C.V. 1 33552 33552 1. 39 0.239 
S.U.*S.S. 7 191186 27312 1.13 0.341 
C.V.*S.S. 7 1796406 256629 10.63 0.000 
L.R.*D.U.*L.T. 1 205680 205680 8.52 0.004 
L.R.*D.U.*S.U. 1 17203 17203 0. 71 0.399 
L.R.*D.U.*C.V. 1 121956 121956 5.05 0.025 
L.R.*D.U.*S.S. 7 871989 124570 5.16 0.000 
L.R.*L.T.*S.U. 1 57130 57130 2.37 0.124 
L.R.*L.T.*C.V. 1 136854 136854 5.67 0.017 
L.R.*L.T.*S.S. 7 510667 72952 3.02 0.004 
L.R.*S.U.*C.V. 1 33552 33552 L39 0.239 
L.R.*S.U.*S.S. 7 129103 18443 0. 76 0.618 
L.R.*C.V.*S.S. 7 1796406 256629 10.63 0.000 
D.U.*L.T.*S.U. 1 8852 8852 0.37 0.545 
D.U.*L.T.*C.V. 1 76055 76055 3.15 0.076 
D.U.*L.T.*S.S. 7 454565 64938 2.69 0.009 
D.U.*S.U.*C.V. 1 22 22 0.00 o; 976 
D.U.*S.U.*S.S. 7 250587 35798 1. 48 0.170 
D.U.*C.V.*S.S. 7 367534 52505 2.17 0.034 
L.T.*S.U.*C.V. 1 34410 34410 1. 42 0.233 
L.T.*S.U.*S.S. 7 134099 19157 0. 7 9 0.593 
L.T.*C.V.*S.S. 7 375122 53589 2.22 0.031 
S.U.*C.V.*S.S. 7 110825 15832 0.66 0. 710 
L.R.*D.U.*L.T.*S.U. 1 9065 9065 0.38 0.540 
L.R.*D.U.*L.T.*C.V. 1 76055 76055 3.15 0.076 
L.R.*D.U.*L.T.*S.S. 7 447660 63951 2.65 0.010 
L.R.*D.U.*S.U.*C.V. 1 22 22 0.00 0. 976 
L.R.*D.U.*S.U.*S.S. 7 249647 35664 1. 48 0.172 
L.R.*D.U.*C.V.*S.S. 7 367534 52505 2.17 0.034 
L.R.*L.T.*S.U.*C.V. 1 34410 34410 1. 42 0.233 
L.R.*L.T.*S.U.*S.S. 7 118644 16949 0. 70 0.671 
L.R.*L.T.*C.V.*S.S. 7 375122 53589 2.22 0.031 
L.R.*S.U.*C.V.*S.S. 7 110825 15832 0.66 o. 710 
D.U.*L.T.*S.U.*C.V. 1 28551 28551 1.18 0.277 
D.U.*L.T.*S.U.*S.S. 7 158082 22583 0.94 0.478 
D.U.*L.T.*C.V.*S.S. 7 332695 47528 1. 97 0.056 
D.U.*S.U.*C.V.*S.S. 7 154681 22097 0.92 0. 4 94 
L.T.*S.U.*C.V.*S.S. 7 111845 15978 0.66 0. 705 
L.R.*D.U.*L.T.*S.U.*C.V. 1 28551 28551 1.18 0.277 
L.R.*D.U.*L.T.*S.U.*S.S. 7 157508 22501 0.93 0.481 
L.R.*D.U.*L.T.*C.V.*S.S. 7 332695 47528 1. 97 0.056 
L.R.*D.U.*S.U.*C.V.*S.S. 7 154681 22097 0.92 0. 4 94 
L.R.*L.T.*S.U.*C.V.*S.S. 7 111845 15978 0.66 0.705 
D.U.*L.T.*S.U.*C.V.*S.S. 7 135997 19428 0.80 0.584 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 135997 19428 0.80 0.584 
Error 1024 24727718 24148 
Total 1279 175763257 
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Table 5.30 Average Inventroy Level per Week of Each Main 
Effect at Each Level at Distribution Center 1 

Means 

L.R. N INVDCl 
1 640 149. 91 
2 640 534.28 

o.u. N INVDCl 
1 640 367. 72 
2 640 31-6. 46 

L.T. N INVDCl 
1 640 325.17 
2 640 359.01 

s.u. N INVDCl 
1 640 353.92 
2 640 330.26 

c.v. N INVDCl 
1 640 424.47 
2 640 259. 71 

S.S. N INVDCl 
1 160 282.38 
2 160 329.39 
3 160 263.66 
4 160 160.69 
5 160 586.26 
6 160 616.03 
7 160 346.43 
8 160 151. 89 
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As shown in Figure 5.25, the best safety stock policy 

is policy 6 in terms of the average INVDCl; policy 5 is the 

second best. Policies 4 and 8 result in much lower average 

INVDCl than other policies. This is consistent with the 

previous stockout analysis at the distribution center 1. To 

examine the interactions, the average inventory level over 

five replications is presented in Table 5.31 and discussed 

below. 

Main Effects Plot- Means for INVDC1 

600 
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l 400 

INVDC1 
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200 
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Figure 5.25 Means Plot for INVDCl per Week as a Function of 
Safety Stock Policy 



D.U.=Low L.T.=Low 

S.S.Policy 

2 3 4 5 6 7 8 

S.U.=Low CV=Low L4L 149.31 151. 40 82.50 263.10 165.53 206. 04 111. 98 163. 62 

EOQ 468.62 779.37 813. 38 20.44 1297. 67 1359. 83 495.12 52.68 

CV=High LU 149.31 151. 4 0 82.50 263.10 165.53 206.04 111. 98 163. 62 

EOQ 481.94 403.35 285.13 5.47 724 .28 814.48 305. 86 44 .52 

S.U.=High CV=Low LU 145.28 151.39 76.82 253. 84 161.19 204 .50 111.08 148.18 

EOQ 608. 40 765.14 676.27 0.00 1185.27 1273.63 795. 09 89. 73 

CV=High UL 145.28 151. 39 76.82 253. 84 161.19 204. 50 111. 08 148.18 

EOQ 354. 60 320.52 196.79 1.68 770.50 795. 71 381. 73 51.97 

L.T.=High 

D.U.=Low 

S.S.Policy 

3 4 5 6 7 8 

S.U.=Low CV=Low LU 127. 73 128. 77 86. 72 222. 07 145. 27 175.25 106. 03 139. 64 

EOQ 574.57 929. 83 881. 98 504. 00 1306. 08 1247.94 969. 85 1019.27 

CV=High LU 127. 73 128. 77 86. 72 222.07 145.27 175.25 106. 03 139. 64 

EOQ 380.16 452. 98 489.38 2.70 750. 72 786. 68 450.13 109.52 

S.U.=High CV=Low UL 117.97 128. 65 77.90 193.70 134. 60 170. 97 102. 05 114. 95 

EOQ 706.34 809. 06 778.08 170.79 1306. 93 1290. 71 957. 93 579.25 

CV=High LU 117. 97 128. 65 77.90 193.70 134.60 170. 97 102. 05 114. 95 

EOQ 570.65 380.43 587.77 10.17 775.20 725. 94 459. 04 48.85 

Table 5.31 Experimental Results for 

1 2 

151.20 153 .19 

426.68 316.22 

151.20 153.19 

183. 50 260.68 

147 .44 153.19 

262. 00 553. 90 

147 .44 153.19 

212.50 219.98 

1 2 

133. 74 134 .14 

708. 75 625.27 

133.74 134.14 

363.24 444. 68 

123. 79 134. 05 

262. 73 588. 87 

123. 79 134. 05 

278.56 420.58 

Average 

D.U.=High 

S.S. Policy 

3 4 5 

84.39 266. 08 169.19 208. 99 

498.69 0. 75 1378. 40 1337 .62 

84.39 266. 08 169.19 208. 99 

153.17 13.12 773.80. 806.46 

78.33 257. 00 164. 85 207. 62 

285.10 82.34 1297 .90 1394. 79 

78.33 257. 00 164. 85 207 .62 

140. 86 13.18 708.89 754 .24 

D.U.=High 

S.S. Policy 

3 4 5 6 

92.29 232. 77 152. 51 183. 72 

586.07 352. 03 1326. 76. 1217 .49 

92.29 232. 77 152 .51 183. 72 

287 .10 50.67 731.42 768.03 

82.11 206. 93 142.45 180.37 

401.58 99.08 1205.37 1320.59 

82.11 206.93 142.45 180. 37 

53.61 24.63 750. 09 743. 94 

INVDCl per Week 

114.02 

855. 94 

114. 02 

319.13 

113.16 

777 .15 

113.16 

510. 75 

7 

110.35 

762.41 

110.35 

335.22 

106.56 

756. 65 

106.56 

203.32 

168. 39 

114. 64 

168.39 

34.58 

152.35 

23. 75 

152.35 

21.67 

148.36 

94 .45 

148.36 

110.35 

122. 60 

111. 39 

122. 60 

37.80 

I-' 
U1 
O'I 



Interaction of Lot-Sizing Rule and Safety Stock Policy 

The interaction of lot-sizing rules and safety stock 

policies has a significant effect on average INVDCl. The 

effect of the safety stock policies i.s significantly 
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influenced by the lot-sizing rules used. As shown in Table 

5.32, L4L is less sensitive to the safety stock policy used 

at distribution center 1. EOQ results in different average 

INVDCl under various safety stock policies. The reason for 

this has been addressed in the previous stockout analysis. 

As observed in Figure 5.26, EOQ results in higher average 

INVDCl than L4L under most safety stock policies except for 

policy 4. This is because the warehouse can not replenish 

the stock at distribution center 1 when EOQ is used along 

with policy 4. 

Table 5.32 Average INVDCl per Week for Lot-sizing Rule and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
L4L 137.1 141.8 82.6 236.9 154.4 192.2 109.4 144.8 

EOQ 427.7 516.9 444.7 84.7 1018.1 1039.9 583.5 159.0 

Interaction of Demand Uncertainty and Safety Stock Policy 

When the demand uncertainty increases, it affects 

safety stock policies to a different degree. As shown in 

Table 5.33, when demand uncertainty increases, there is a 
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Interaction Plot - IVeans for IN'vt)C1 

2 3 4 5 6 7 8 

S.S. Policy 

Figure 5.26 Means Plot for INVDCl per Week as a Function of 
Lot-sizing Rule and Safety Stock Policy 

Table 5.33 Mean INVDCl per Week for Demand Uncertainty and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
Low 326.62 372.59 334.79 161. 29 583 .11 613.03 354.81 195.54 

High 238.14 286.21 192.53 160.09 589.41 619.04 338.05 108.25 

severe impact on policies 1, 2, 3, and 8. However, policies 

5 and 6 are not much affected by demand uncertainty 

The same reason used in stockout analysis at 

distribution center 1 may explain the interaction between 

the demand uncertainty and safety stock policies at 

distribution center 1. The change in the average inventory 

level is due to the increase in demand forecast error at 

retailers. In turn, that results in lower average inventory 
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level at distribution center 1 when demand uncertainty 

increases. The interaction of demand uncertainty and safety 

stock policy is displayed in Figure 5.27. Compared to the 

results obtained from INVW, demand uncertainty from 

customers has more impact on the performance of distribution 

center 1 than on the warehouse. There is an opposite change 

at the warehouse when demand uncertainty changes. This is 

because distribution centers are affected more directly by 

the demand uncertainty than the warehouse. 

Interaction Plot- Means for IN'vOC1 

SXl D.U. 

-Low 
SJ() - • High 

4Xl 

Mean 
3Xl _ ...... 

...... ' i 
:100 ' ·--
100 

2 3 4 5 6 7 8 

S.S. Policy 

Figure 5.27 Means Plot for INVDCl per Week as a Function of 
Demand Uncertainty and Safety Stock Policy 
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Interaction of Lead Time Uncertainty and Safety Stock 

Policy 

When the transportation lead time distribution varies 

from a symmetric discrete distribution with low variation to 

a discrete uniform distribution with high variation, the 

average INVDCl decreases under most safety stock policies, 

except for policies 5 and 6. The average inventory level 

for the interaction of these two factors is displayed in 

Table 5.34 and Figure 5.28. As shown in Table 5.34, policy 

8 under the EOQ lot-sizing rule results in much lower 

average INVDCl when lead time uncertainty is increased. 

Table 5.34 Average INVDCl per Week for Lead Time 
uncertainty and Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 

. 
Low 303.22 356.43 296.47 182.81 581. 39 595.12 359.03 

High 261. 54 302.34 230.84 138.56 591.14 636.94 333.83 

Interaction Plot - Means for INVDC 1 

LT. 
600 

-Low 

500 - • High 

400 

ean 
300 l 200 

100 

2 3 4 5 6 7 8 

S.S. Policy 

8 

197.62 

106.16 

Figure 5.28 Means Plot for INVDCl per Week of Lead Time 
Uncertainty and Safety Stock Policy 
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Average Inventory at Retailer l(INVRl) 

ANOVA is performed on the average INVRl obtained from 

the simulation. The ANOVA results for the main effects and 

the interactions of safety stock policy with all other main 

effects are shown in Table 5.35. The results lead to the 

rejection of all hypotheses 21-30 except for hypotheses 23 

and 30 at the 5% level. All the important main effects and 

interactions are addressed below. 

Main Effects 

A plot of main effects for average INVRl is presented 

in Figure 5.29; the average INVRl of each main effect at 

each level is shown in Table 5.36. As observed in the 

experimental results in Figure 5.29, EOQ yields a much 

higher average INVRl than L4L. This is because when EOQ is 

used to calculate the planned order, the built-in safety 

stock feature of EOQ may carry excessive stocks until the 

next order point. 

As the demand uncertainty and transportation lead time 

uncertainty increase, the average INVRl decreases. This is 

because the demand forecast error becomes worse when demand 

uncertainty increases. This is especially true when the 

actual demand exceeds the forecast demand. That may cause 

·1ower average INVRl due to stockouts. On the other hand, 

when actual demand is less than forecast demand, all the DRP 

system must do is to adjust the next period's planned order 
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Table 5.35 ANOVA Results for Average INVRl per Week 

Analysis of Variance for Average INVRl 

Source DF ss MS F p 

L.R. 1 35104309 35104309 2711. 32 0.000 
D.U. 1 444783 444783 34.35 0.000 
L.T. 1 94666 94666 7.31 0.007 
s.u. 1 29507 29507 2.28 0.131 
c.v. 1 4928079 4928079 380.63 0.000 
S.S. 7 10499684 1499955 115. 85 0.000 
L.R.*D.U. 1 618240 618240 47.75 0.000 
L.R.*L.T. 1 73071 73071 5.64 0.018 
L.R.*S.U. 1 24048 24048 1. 86 0.173 
L.R. *C.V. 1 4928079 4928079 380.63 0.000 
L.R.*S.S. 7 10629875 1518554 117.29 0.000 
D.U.*L.T. 1 29103 29103 2.25 0.134 
D.U.*S.U. 1 3329 3329 0.26 0.612 
D.U.*C.V. 1 86190 86190 6.66 0.010 
D.U.*S.S. 7 391752 55965 4.32 0.000 
L.T.*S.U. 1 28658 28658 2.21 0.137 
L.T.*C.V. 1 34334 34334 2.65 0.104 
L.T.*S.S. 7 275209 39316 3.04 0.004 
S.U.*C.V. 1 11765 11765 0. 91 0.341 
S.U.*S.S. 7 72512 10359 0.80 0.587 
C.V.*S.S. 7 703415 100488 7.76 0.000 
L.R.*D.U.*L.T. 1 35162 35162 2.72 0.100 
L.R.*D.U.*S.U. 1 3400 3400 0.26 0.608 
L.R. *D.U. *C.V. 1 86190 86190 6.66 0.010 
L.R.*D.U.*S.S. 7 400415 57202 4.42 0.000 
L.R.*L.T.*S.U. 1 26496 26496 2.05 0.153 
L.R. *L.T. *C.V. 1 34334 34334 2.65 0.104 
L.R.*L.T.*S.S. 7 274554 39222 3.03 0.004 
L.R.*S.U.*C.V. 1 11765 11765 0. 91 0.341 
L.R.*S.U.*S.S. 7 65379 9340 0. 72 0.654 
L.R.*C.V.*S.S. 7 703415 100488 7.76 0.000 
D.U.*L.T.*S.U. 1 12150 12150 0.94 0.333 
D.U.*L.T.*C.V. 1 6567 6567 0.51 0.477 
D.U.*L.T.*S.S. 7 221610 31659 2.45 0.017 
D.U.*S.U.*C.V. 1 355 355 0.03 0.868 
D.U.*S.U.*S.S. 7 113718 16245 1.25 0.270 
D.U.*C.V.*S.S. 7 131211 18744 1. 45 0.183 
L.T.*S.U.*C.V. 1 9977 9977 0.77 0.380 
L.T.*S.U.*S.S. 7 41362 5909 0. 46 0.866 
L.T.*C.V.*S.S. 7 1 76191 25170 1. 94 0.060 
S.U.*C.V.*S.S. 7 37366 5338 0.41 0.895 
L.R.*D.U.*L.T.*S.U. 1 12293 12293 0.95 0.330 
L.R.*D.U.*L.T.*C.V. 1 6567 6567 0.51 0.477 
L.R.*D.U.*L.T.*S.S. 7 220537 31505 2.43 0.018 
L.R.*D.U.*S.U.*C.V. 1 355 355 0.03 0.868 
L.R.*D.U.*S.U.*S.S. 7 1137 95 16256 1.26 0.269 
L.R.*D.U.*C.V.*S.S. 7 131211 18744 1. 45 0.183 
L.R.*L.T.*S.U.*C.V. 1 9977 9977 0.77 0.380 
L.R.*L.T.*S.U.*S.S. 7 42080 6011 0. 46 0.861 
L.R.*L.T.*C.V.*S.S. 7 176191 25170 1. 94 0.060 
L.R.*S.U.*C.V.*S.S. 7 37366 5338 0.41 0.895 
D.U.*L.T.*S.U.*C.V. 1 9199 9199 0.71 0.399 
D.U.*L.T.*S.U.*S.S. 7 60379 8626 0.67 0. 701 
D.U.*L.T.*C.V.*S.S. 7 150696 21528 1. 66 0.114 
D.U.*S.U.*C.V.*S.S. 7 72202 10315 0.80 0.590 
L.T.*S.U.*C.V.*S.S. 7 55542 7935 0.61 0. 746 
L.R.*D.U.*L.T.*S.U.*C.V. 1 9199 9199 0. 71 0.399 
L.R.*D.U.*L.T.*S.U.*S.S. 7 60316 8617 0.67 0. 701 
L.R.*D.U.*L.T.*C.V.*S.S. 7 150696 21528 1. 66 0.114 
L.R.*D.U.*S.U.*C.V.*S.S. 7 72202 10315 0.80 0.590 
L.R.*L.T.*S.U.*C.V.*S.S. 7 55542 7935 0.61 0.746 
D.U.*L.T.*S.U.*C.V.*S.S. 7 74326 10618 0.82 0.571 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 74326 10618 0.82 0.571 
Error 1024 13258052 12947 
Total 127 9 86255272 
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Table 5.36 Average Inventory Level per Week of Each Main 
Effect at Each Level at Retailer 1 

Means 

L.R. N INVRl 
1 640 41.21 
2 640 372. 43 

D.U. N INVRl 
1 640 225.46 
2 640 188.18 

L.T. N INVRl 
1 640 198.22 
2 640 215.42 

s.u. N INVRl 
1 640 211. 62 
2 640 202.02 

c.v. N INVRl 
1 640 268.87 
2 640 144. 77 

S.S. N INVRl 
1 160 186.35 
2 160 229.63 
3 160 201. 81 
4 160 53.88 
5 160 319.63 
6 160 310.13 
7 160 266.12 
8 160 87.01 
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to offset the excessive inventories. This may explain why 

the average INVRl decreases when demand uncertainty 

increases. When the actual transportation lead time takes 

longer than 3 weeks, the on-hand inventories will be 

depleted. This explains how high lead time variations 

result in lower mean INVRl. As addressed in the analysis of 

average INVDCl, when the cost value increases, the average 

INVRl also decreases. 

According to Figure 5.30, the best safety stock policy 

in terms of the mean INVRl is policy 5; policy 6 is the 

second best. Policies 4 and 8 still result in lower mean 

INVRl than other safety stock policies. The same reason 

given at the warehouse may explain the performance of these 

safety stock policies. To examine the interactions, the 

average inventory level over five replications is given in 

Table 5.37 and discussed below. 

Main Effects Plot- Means for INVR 1 

300 

l 200 

INVR1 

100 

S.S. Policy 

Figure 5.30 Means Plot for INVRl per Week as a Function of 
Safety Stock Policy 



D.U.=Low L.T.=Low 

S.S.Policy 

2 3 4 5 6 7 8 1 2 

s .• U.=Low CV=Low L4L 32.35 30.89 42.70 36.08 41.07 35.86 37.52 44.26 38.38 36.96 48.25 

EOQ 403.99 731.39 692. 58 31.84 815.56 779.35 562 .10 74.91 373.37 317.78 440. 48 

CV=High L4L 32.35 30.89 42.70 36.08. 41. 07 35.86 37.52 44.26 38.38 36.96 48.25 

EOQ 334. 32 335.54 226.24 8. 72 467.92 413.19 287 .10 70.01 151.37 184.55 127 .48 

S.U.=High CV=Low L4L 32.07 30.89 41.09 35.85 40.74 35.79 37.32 42.43 38.13 36.97 46.65 

EOQ 570.86 668.17 554. 89 10. 04 761.60 712. 72 737. BB 92.13 260.25 502.10 309.41 

CV=High L4L 32.07 30.89 41.09 35.85 40. 74 35.79 37.32 42.43 38.13 36.97 46.65 

EOQ 246. 35 263.25 200 .14 5.98 473.47 446.47 330. 68 70. 77 185. 63 168.56 92.B2 

L.T.=High 

D.U.=Low 

S.S.Policy 

2 3 4 5 6 7 8 1 2 3 

S.U.=Low CV=Low L4L 32.95 33.21 47.11 35.89 40. 95 36.66 40. 09 46.21 40.49 41.12 55.52 

EOQ 492.53 661. 21 628. 91 356.11 739.51 722. 04 739. 99 633.00 505.32 563.10 500.52 

CV=High L4L 32.95 33.21 47.11 35.89 40. 95 36.66 40. 09 46.21 40.49 41.12 55.52 

EOQ 244. 97 302.22 344. 04 8. 95 423.16 438.17 336.69 99.75 227.23 332.40 193.20 

S.U.=High CV=Low L4L 31. 73 33.20 43.29 34.90 39.89 36. 45 39.52 43.14 39.40 41.12 52.00 

EOQ 539. 76 696. 30 599. 95 121. 55 728. 83 704. 36 731. 32 418.33 263.44 509.54 345. 92 

CV=High L4L 31. 73 33.20 43.29 34.90 39. B9 36.45 39.52 43.14 39.40 41.12 52. 00 

EOQ 401. 87 232. 95 406.07 17. 58 428. 65 429.00 362. 00 64.91 190.99 310.33 42.03 

Table 5.37 Experimental Results for Average INVRl per Week 

D.U.=High 

S.S. Policy 

41.36 46.38 

3.05 768. 24 

41.36 46.38 

15.57 457. 84 

41.17 45. 92 

106. 75 769. 68 

41.17 45.92 

17.24 443.46 

D.U.=High 

S.S. Policy 

42.81 47. 93 

232 .37 698. 05 

42.Bl 47.93 

39.86 430. 09 

42. 07 46.99 

104. 07 712. 09 

42.07 46. 99 

24.22 410.17 

41.15 

741.45 

41.15 

448.16 

41.13 

795.95 

41.13 

457.09 

44.29 

674.94 

44 .29 

411.65 

44 .14 

692. 65 

44 .14 

426. 08 

42.69 

702. 71 

42.69 

293.52 

42.52 

649.57 

42.52 

446. 79 

47.21 

646.59 

47.21 

244.21 

46. 68 

617 .28 

46 •. 68 

160.23 

51.38 

86. 72 

51.38 

48.98 

49.49 

12.80 

49.49 

41.80 

54.08 

55.42 

54.08 

97. 73 

51.22 

102.18 

51.22 

50.60 

.... 
O'\ 
U1 
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Interaction of Lot-Sizing Rule and Safety Stock Policy 

As observed in Table 5.38 and Figure 5.31, the 

interaction of lot-sizing rules and safety stock policies 

are obviously significant. Furthermore, L4L is very 

insensitive to the safety stock policies used at the 

retailer 1. However, EOQ results in different mean INVRl 

under various safety stock policies. 

As observed in Table 5.37, EOQ results in higher mean 

INVRl than L4L under most operating conditions. It can be 

explained by the built-in safety stock associated with EOQ. 

Thus, excessive stocks will be carried until the next order 

point. 

Table 5.38 Mean INVRl per Week for Lot-sizing Rule and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
L4L 35.69 35.54 47.08 38.77 43.73 39.44 41.69 47.78 

EOQ 337.01 423.71 356.54 68.99 595.52 580.83 490.54 12,.25 

Interaction of Demand Uncertainty and Safety Stock Policy 

Although the ranking of the safety stock policies stays 

the same when the demand uncertainty increases, the 

magnitude of the decreases in the average inventory levels 

are different under various safety stock policies. As shown 

in Table 5.39 and Figure 5.32, policies 4, 5, and 6 are less 

sensitive to the changes in demand uncertainty. 
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Figure 5.31 Means Plot for INVRl per Week as a Function of 
Lot-sizing Rule and Safety Stock Policy 

Table 5.39 Average SORl per Week for Demand Uncertainty and 
Safety Stock Policy (n=80) 

~ 
1 2 3 4 5 6 7 8 

. 
Low 218.30 259.21 250.08 52.89 322.75 308.43 274.79 117.24 

High 154.40 200.04 153.54 54.57 316.50 311. 84 257.44 56.79 

The interaction of demand uncertainty and safety stock 

policy is displayed in Figure 5.32. As observed in Figure 

5.32, when demand uncertainty increases, it results in a 

decrease of average INVRl under most safety stock policies. 

Compared to the results in average INVDCl, the interaction 

between these two factors at the retailer 1 follows the same 

pattern as distribution center 1. The same reason given in 

the mean INVDCl analysis may explain why average INVRl 

decreases when demand uncertainty increases. 
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Figure 5.32 Means Plot for INVRl per Week as a Function of 
Demand Uncertainty and Safety Stock Policy 

Interaction of Lead Time Uncertainty and Safety Stock 

Policy 

Average INVRl for the interaction of lead time 

uncertainty and safety stock policy is displayed in Table 

5.40 and Figure 5.33. When the transportation lead time 

distribution changes from a symmetric discrete distribution 

with low variation to a discrete uniform distribution with 

high variation, the average INVRl decreases under most 

safety stock policies. The pattern is the same as at the 

distribution centers. This is because lead time uncertainty 

occurs both at the distribution centers and at the 

retailers. 
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Table 5.40 Average INVRl per Week for Lead Time Uncertainty 
and Safety Stock Policy (n=80) 

~ 
1 

. 
Low 

High 

197.20 

175.50 

ZD 

Mean 

13> 

2 3 4 5 

244.08 216.03 76.00 307.63 

215.17 187.59 31. 76 331.62 

Interaction Plot-Means for INVR1 

2 3 4 5 6 7 

S.S. Policy 

6 7 

301.37 261.58 

318.87 270.65 

8 

LT. 

-Low 
- • high 

l 

8 

119.45 

54.58 

Figure 5.33 Means Plot for INVRl per Week as a Function of 
Lead Time Uncertainty and Safety Stock Policy 
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Results for Service Level Analysis 

The mean service level measures the ability of the 

physical distribution system to satisfy the demand from 

outside customers or other channel members in the system. 

The mean service level is the percentage of the total demand 

which is satisfied by available inventory at each channel 

member. It is calculated as the sum of the minimum number 

of product units in each time period which is either 

available in inventory or demanded, divided by the total 

demand. 

The simulation results for the mean service level at 

the warehouse, distribution centers and retailers are the 

same as those for average stockout units. This is because 

these two performance measures are essentially the same. 

They describe the same thing from two different viewpoints. 

The higher the mean service level, the lower the average 

stockout units. Only a brief discussion of the simulation 

results for all channel members is provided below. The 

analysis of the results is given previously in the stockout 

analysis. All the main effects, important two-way 

interaction plots, and ANOVA table are listed in Appendix B. 

Mean Service Level at Warehouse{SERW) 

All main effects are significant at the 5% level. As 

demand uncertainty, transportation lead time uncertainty, 

and supply uncertainty increase, the mean SERW decreases. 

When the cost value increases, the mean SERW also decreases. 
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The best safety stock policy is policy 2 in terms of the 

mean SERW; the second best policy is policy 7. The results 

are the same as stockout analysis. 

L4L always generates higher mean SERW than EOQ. The 

mean SERW drops below 10% under policies 4 and 8, when EOQ 

is used. When lead time uncertainty increases, all safety 

stock policies result in lower mean SERW. This is because 

only supply shortage is considered. Thus, all safety stock 

policies result in lower mean service level when supply 

uncertainty increases. 

Mean Service Level at Distribution Center l(SERDCl) 

All main effects are significant at the 5% level. As 

demand uncertainty, transportation lead time uncertainty, 

supply uncertainty and cost value increase·, the mean SERDCl 

decreases. The best safety stock policy is policy 6 in 

terms of the mean SERDCl. Policy 6 puts safety stocks at 

the warehouse and two distribution centers. The second best 

policy is policy 5, which puts safety stocks at all channel 

members. 

L4L outperforms EOQ in terms of the mean SERDCl. The 

mean SERDCl under policies 5 and 6 is not much affected by 

the lot-sizing rule used. When lead time uncertainty 

increases, all safety stock policies result in lower mean 

SERDCl. Again, this is because only supply shortage is 

considered in this study. All safety stock policies result 



in lower mean service level when supply uncertainty 

increases. 

Mean Service Level at Retailer l(SERRl) 
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All main effects are significant at the 5% level, 

except for supply uncertainty. As demand uncertainty, 

transportation lead time uncertainty and cost value 

increase, the mean SERRl decreases. The best safety stock 

policy is policy 5 in terms of the mean SERRl; the second 

best policy is policy 6, which allocates safety stocks at 

the warehouse and at two distribution centers. 

L4L doesn't always generate higher service levels than 

EOQ in this case. While safety stock policies 1, 3, 4 and 8 

result in a higher mean service level under L4L, safety 

stock policies 2, 5, 6 and 7 have better performance in 

terms of mean SERRl when EOQ is used. Furthermore, all 

safety stock policies result in lower mean SERRl under high 

demand variations. 

Discussion of Results 

The purpose of this study is to examine the impact of 

selected main effects and the interactions of safety stock 

policy with those selected main factors on various 

performance measures in a multi-echelon distribution system. 

Based on the previous discussion, a summary of experimental 

results in the base experiment is presented in Table 5.41. 

As shown in Table 5.41, six main effects, four two-way 

interactions, and the best safety stock policy are listed 
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for each channel member under all performance measures. A 

follow-up discussion of the main effects and interaction 

analysis are based on the summary. 

Table 5.41 Summary of Experimental Results in the Base 
Experiment 

TRC Stockout Inventor Service 
Unit y Level 

Level 
w DC R w DC R w DC 

L.R. + + + + + + + + + 
D.U. + + + + + + + + + 
L.T. + + + + + + + + + 
s.u. + + - - + + - + + 
c.v. + + + + - + + + + 
S.S. + + + + + + + + + 

L.R.*S.S. + + + + + + + + + 
D.U.*S.S. + + + + + + + - + 
L.T.*S.S. + + - - + + + + -
S.U.*S.S. - + - - - - - + -
Best S.S. 6 2 6 5 2 6 5 2 6 

Second Best 5 7 5 6 3 5 6 7 5 

Best L.R. L4L L4L L4L L4L L4L L4L L4L L4L L4L 

. 
+ Significant at the 5% Level 

Not Significant at the 5% Level 

Lot-Sizing Rule 

The lot-sizing rules used at each channel member 

R 

+ 
+ 

+ 
-
+ 

+ 

+ 

+ 
-
-
5 

6 

L4L 

results in significantly different values in all performance 

measures. The EOQ lot-sizing rule results in higher mean 

TRC than L4L. Although L4L results in higher ordering cost 

than EOQ, it can be justified by lower stockout cost and 

lower inventory carrying cost as shown in Table 5.42. The 

L4L rule also performs better than EOQ in terms of the 
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average stockout units and the mean service level at all 

channel members. 

Although lot-sizing rules have a significant effect on 

all channel members, the magnitude of effect on each channel 

Table 5.42 Average Stockout Units, Average Inventory Level, 
and Mean Service Level for All Channel Members 
under Two Lot-sizing Rules 

Lot-sizing Rule Warehouse Distribution Retailer l 
Center 1 

Average Stockout L4L 16.58 22.11 14.748 
Unit 

EOQ 986.34 856.20 18.57 

Average L4L 476.0 149.91 41.21 
Inventory Level 

EOQ. 1662.8 534.28 372.43 

Mean Service L4L 
Level 

0.961 0.847 0.70 

EOQ 0.659 0.411 0.63 

member is different. When average stockout units are 

considered, the lot-sizing rule used to decide the planned 

order quantity has a larger effect at the warehouse and 

distribution centers than at the retailers. The average 

stockout units under the two lot-sizing rules for all 

channel members are shown in Table 5.42. When the EOQ lot-

sizing rule is used, the average stockout units increase at 

all channel members mainly due to the interaction of 

transportation lead time uncertainty and safety stock 

policies. As shown in Figure 5.34, the EOQ lot-sizing rule 
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is more sensitive to the changes in lead time uncertainty in 

terms of the average SOW. 

1CXXl 

Mean 
500 

0 

Interaction Plot-11/eans for SON 

---------------

L.T. 
2 

LR. 

-L4L 
-·EOQ 

1 

Figure 5.34 Means Plot for SOW per Week as a Function of 
Lot-Sizing Rule and Lead Time Uncertainty 

Demand Uncertainty 

While the nature of customer demand is an important 

factor which affects the performance of the whole 

distribution system, it affects individual channel members 

to a different degree. The system performance deteriorates 

in terms of mean TRC when the demand uncertainty increases. 

As shown in Table 5.43, demand uncertainty has less effect 

on the warehouse than on distribution centers and retailers 

in terms of the three non-monetary performance measures. 

For instance, as the demand uncertainty increases, the 

average SOW increases 12%, the average SODCl increases 42%, 

and the average SORl increases 30%. This is because the 
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Table 5.43 Average Stockout Units, Average Inventory Level, 
and Mean Service Level for All Channel Members 
under Two Levels of Demand Uncertainty 

Demand Warehouse Distribution Retailer 1 
Uncertainty Center 1 

Average Stockout Low 473.73 362.06 14.48 
Unit 

High 529.19 516.25 18.83 

Average Low 1033.1 367.72 225.46 
Inventory Level 

High 1105.6 316.46 188.18 

Mean Service Low 0.818 0.658 0.710 
Level 

High 0.803 0.602 0.626 

demand uncertainty has a more direct influence on retailers 

and distribution centers. 

Demand uncertainty has different effects on each 

channel member in terms of average inventory level. When 

the demand uncertainty increases, the average INVW will 

increase and average INVDCl, average INVRl will decrease. 

Furthermore, the mean service level decreases at all channel 

members when the demand uncertainty increases. This is 

consistent with the result found by Bregman (1989): the 

demand uncertainty has a significant effect on customer 

service. 

Lead Time Uncertainty 

As shown in Table 5.41, the transportation lead time 

uncertainty has significant effects on all channel members 

under each performance measure. The mean TRC is higher when 
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transportation lead time follows a uniform discrete 

distribution rather than a symmetric discrete distribution, 

since a greater number of products are received early as 

well as late. Both the stockout cost and inventory carrying 

cost may increase when the transportation lead time 

variations increase. Similar results are found by Grasso 

and Taylor III (1984). In their study, the mean total cost 

is the highest under a uniform discrete distribution in a 

multi-echelon MRP system. 

Again, the lead time uncertainty has different effects 

on each channel member in terms of average stockout·units, 

average inventory level, and mean service level as shown in 

Table 5.44. For example, when the transportation lead time 

uncertainty increases, average SOW increases 17%, and 

average SODCl, SORl increase 23%. In this study, lead time 

Table 5.44 Average Stockout Units, Average Inventory Level, 
and Mean Service Level for All Channel Members 
under Two Levels of Lead Time Uncertainty 

Lead Time Warehouse Distribution Retailer 1 
Uncertainty Center 1 

Average Stockout Low 548.12 497.18 18.81 
Unit 

High 454.80 381.13 14.51 

Average Low 1089.80 325.17 198~22 
Inventory Level 

High 1048.90 359.01 215.42 

Mean Service Low 0.807 0.600 0.625 
. Level 

High 0.814 0.659 0.711 
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uncertainty occurs only at distribution centers and 

retailers. For this reason, lead time uncertainty has less 

effect on the warehouse than distribution centers and 

retailers in terms of the three non-monetary performance 

measures. 

Supply Uncertainty 

The supply uncertainty does not have a consistent 

effect on all channel members as observed in Table 5.41. In 

this study, the supply uncertainty only occurs when product 

is shipped from an outside vendor to the warehouse. That 

explains why supply uncertainty always has a significant 

effect at the warehouse on all non-monetary performance 

measures. 

In this study, only a supply shortage at the warehouse 

is of concern. When supply uncertainty increases, the mean 

TRC increases 6%. This is because the frequent supply 

shortage at the warehouse may cause more stockouts at all 

channel members. Furthermore, the warehouse is more 

sensitive to the changes of supply uncertainty as shown in 

Table· 5.45. The average inventory level at the warehouse 

drops 11%, which is the highest of all channel members, when 

supply uncertainty increases. 
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Table 5.45 Average Stockout Units, Average Inventory Level, 
and Mean Service Level for All Channel Members 
under Two Levels of Supply Uncertainty 

Supply Warehouse Distribution Retailer 1 
Uncertainty Center 1 

Average Stockout Low 475.24 416.24 16.15 
Unit 

High 527.68 462.07 17.17 

Average Low 1131.40 353.92 211. 62 
Inventory Level 

High 1007.30 330.26 202.02 

Mean Service Low 0.828 0.641 0.678 
Level 

High 0.793 0.618 0.658 

Cost Value 

The cost values of inventory carrying cost, stockout 

cost, and ordering cost have a significant effect at all 

channel members in all performance measures. In this study, 

when the cost value increases, only inventory carrying cost 

is changed from 0.1 unit price/year to 0.3 unit price/year. 

The mean TRC increases 75% when the cost value increases. 

It is mainly caused by an increase of inventory carrying 

cost. As shown in Table 5.46, when cost value increases, 

the average stockout units decrease at the warehouse and 

distribution centers. However, the average stockout units 

increase at retailers when the cost value increases. As 

observed in Table 5.20, it is possible because the cost 

ration drops from 300:1 to 100:1, thus the planned order 

quantity determined by the EOQ is decreased. Furthermore, 
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the built-in safety stock provided by EOQ is not enough to 

absorb the operating uncertainty. 

Table 5.46 Average Stockout Units, Average Inventory Level, 
and Mean Service Level for All Channel Members 
under Two Levels of Cost Value 

Cost Value Warehouse Distribution Retailer 1 
Center 1 

Average Stockout Low 603.49 495.47 15.36 
Unit 

High 399.43 382.85 17.96 

Average Low 1063.60 424.47 268.87 
Inventory Level 

High 1075.20 259.71 144.77 

Mean Service Low 0.817 0.644 0.694 
Level 

High 0.813 0.615 0.642 

Safety Stock Policy 

The way of allocating safety stock in a multi~echelon 

distribution system has a significant effect on all 

performance measures. Different safety stock policies may 

be preferred by different channel members based on various 

performance measures as displayed in Table 5.41. Generally 

speaking, policies 5 and 6 are good safety stock policies, 

which satisfy most performance criteria. Policy 5 suggests 

putting safety stock at all channel members, and policy 6 

allocates safety stock for the warehouse and two 

distribution centers. This result contradicts the 

simulation results by Allen (1983). He suggests that all 

safety stock be kept at field facilities in order to obtain 
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the highest fill rate. It is a "so-called" decentralized 

policy. He also describes a "fair-share" policy which 

allocates safety stock for field facilities and the central 

facility. The performance of a "fair-share" policy is very 

close to a decentralized policy. Allen only considers a 

two-level distribution system under different operating 

conditions. However, the result found by Chakravarty and 

Shtub (1986) is consistent with this study. They suggest 

keeping safety stock at the central distribution center to 

achieve the same level of system service at lower cost. 

Policy 2 advocates putting all safety stock at the 

warehouse. The safety stock allocated for the warehouse is 

used to deal with various uncertainties. This is the best 

policy when only the various performance measures are 

considered at the warehouse. The centralized system is also 

favored by Schwarz (1981) in his study. 

Policies 4 and 8 are found to be the two worst safety 

stock policies under all performance criteria. Policy 4 

suggests putting all safety stock at two distribution 

centers. Policy 8 allocates safety stock for distribution 

centers and retailers. Policies 4 and 8 perform much worse 

when the EOQ lot-sizing rule is applied. They yield the 

highest mean TRC, highest average stockout units and lowest 

mean service level. This is because safety stocks at 

retailers and distribution centers may satisfy a few periods 

of demand. Once the inventories at distribution centers and 

retailers are depleted, it takes nine weeks to replenish the 
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stocks; this does not even consider transportation lead time 

uncertainty. 

The mean TRC plot and values under revised safety stock 

policies are displayed in Figure 5.35 and Table 5.44. A 

follow-up analysis is made to examine the pattern of safety 

stock policies 4 and 8, which yield a high mean TRC. A set 

of revised safety stock policies as shown in Table 5.43 is 

modified from the safety stock policies shown in Table 3.5, 

and are used to calculate the TRC. The operating condition 

for this follow-up analysis is applying the EOQ lot-sizing 

rule with low demand and low supply uncertainties. Policies 

1, 3, 4 and 8 show the same pattern. All the policies do 

not put any safety stock at the warehouse and yield higher 

mean TRC than other safety stock policies. 

Table 5.47 Revised and Original Safety Stock Policies 

S.S. Policy Revised Original 
(W, DC, R) (W, DC, R) 

1 (0,0.7,0.3) (0,0,0) 

2 (1,0,0) (1,0,0) 

3 (0,0.3,0.7) (0,0,1) 

4 (0,1,0) (0,1,0) 

5 (1/3,1/3,1/3) (1/3,1/3,1/3) 

6 (1/2,1/2,0) (1/2,1/2,0) 

7 (1/2,0,1/2) (1/2,0,1/2) 

8 (0,1/2,1/2) (0,1/2,1/2) 
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Figure 5.35 Mean TRC per Week Plot under Revised and 
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Table 5.48 Mean TRc· per Week for Each Revised and 
Original Safety Stock Policy 

S.S. Policy l 2 3 4 5 6 7 

TRC(Revised) 970.85 76.03 1555.47 1559.14 58.69 60.55 193.59 

TRC(Original) 325.06 76.03 188.86 1559.14 58.69 60.55 193.59 
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8 

1492. 94 

1492.94 



184 

Furthermore, an extended study is conducted to examine 

the pattern of safety stock policy 5, which is a "so-called" 

fair-share policy by allocating safety stock at all channel 

members. As observed in Table 5.49, three new safety stock 

policies are used to examine the impact due to changing the 

quantity of safety stock at all channel members in the 

distribution system. The operating condition is the same as 

the previous follow-up analysis. It is found that the mean 

TRC increases when the quantity of safety stock at the 

retailers increases. This implies that increased safety 

stock at the retailers may deteriorate the system 

performance. This is because more stock occurs at all 

channel members when more safety stock put at retailers. 

Table 5.49 Mean TRC for Revised and Original Safety stock 
Policy 5 

S.S. Policy (W, DC, R) TRC 

5 (1/3,1/3,1/3) 58.69 

5-1 (3/7, 3/7, 1/7) 55.90 

5-2 (2/7, 2/7, 3/7) 60.46 

5-3 ( 1/7, 1/7, 5/7) 61.36 

In summary, the way of allocating safety stock in the 

distribution system has a great effect on mean TRC. 

Allocating safety stock for the warehouse yields better 

performance in terms of mean TRC and all three non-monetary 

performance measures. 
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Interaction Analysis 

The interactions between safety stock policy and lot­

sizing rule, demand uncertainty, transportation lead time 

uncertainty, and supply uncertainty are examined in this 

study. As shown in Table 5.41, most of the interactions are 

significant at the 5% level for all performance measures, 

except for the interaction between supply uncertainty and 

safety stock policy. 

There is a strong interaction between lot-sizing rule 

and safety stock policy. In general, L4L is less sensitive 

to the safety stock policy used than EOQ. This is because 

L4L can respond to the changes in operating conditions more 

effectively due to the order frequency. L4L provides 

period-by-period coverage of net requirements, and it allows 

the channel members to respond to various uncertainties. 

Although the lot-sizing rules result in different values in 

all performance measures under most safety stock policies, 

the lot-sizing rules affect the safety stock policies to a 

different degree. Safety· stock policies 5 and 6 are not 

affected by the lot-sizing rule in terms of all performance 

measures. However, the performance of safety stock policies 

4 and 8 deteriorates when the EOQ lot-sizing rule is used. 

That means the safety stock policy should be considered 

along with the lot-sizing rule in order to achieve the best 

system performance. 

The effects from demand uncertainty, lead time 

uncertainty, and supply uncertainty on safety stock policies 
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are different. As observed in Figure 5.36, safety stock 

policies 5 and 6 exhibit the least sensitivity to the 

changes in operating conditions. This is because the safety 

stock policies absorb the operating uncertainty effectively. 

Furthermore, policy 8 is the most sensitive to the changes 

in operating conditions. The mean TRC of policy 8 drops to 

550 in LHL, and goes up to 965 in LLH. LHL represents an 

operating condition in which there is a low level of demand 

uncertainty, a high level of transportation lead time 

distribution, and a low level of supply shortage. 

As shown in Figure 5.36, safety stock policies 5 and 6 

outperform other policies in all operating conditions, and 

policies 4 and 8 perform poorly in all operating conditions. 

Howe~er, the preference of policies 1, 2, 3, and 7 are 

different in various operating conditions. Furthermore, in 

LHL all policies result in the lowest mean TRC; in HLH most 

policies present the highest mean TRC, except for policies 4 

and 8. This can be explained by the added effect of the 

sources of uncertainties considered in this study. 

Furthermore, it does appear that demand uncertainty and 

supply uncertainty have a strong impact on mean TRC under a 

low variation transportation lead time distribution. The 

overriding impact of lead time variations may explain this 

fact. One extreme lead time deviation can measurably 

increase the stockout or inventory level; an extremely large 

demand will be offset by an extremely small demand over the 
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transportation lead time period. The effects of demand 

variation an~ supply uncertainty on mean TRC are overridden 

by lead time variation. 

The interaction between cost value and safety stock 

policy is significant at the 5% level. As shown in Table 

5.3, safety stock policies 5 and 6 are less sensitive to 

changes of the cost value in terms of mean TRC. 

Furthermore, L4L is not much affected by the cost value in 

terms of the mean TRC. As the cost value changes, that will 

only affect the order quantity decided by the EOQ rule. 

Thus, EOQ is sensitive to the safety stock policy used. As 

shown in Figure 5.3, EOQ presents very close results to L4L 

in terms of mean TRC under safety stock policies 5 and 6. 

That may explain why safety stock policies 5 and 6 are not 

affected much by the cost value in terms of mean TRC. 

This chapter describes the impact of selected main 

effects and interactions of safety stock policy with those 

main effects on the performance in a multi-echelon 

distribution system. Further study of altering the value­

added factor and changing the distribution network is 

presented in the next chapter. 
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CHAPTER VI 

SENSITIVITY ANALYSIS 

Based on the results of the base experiments, a further 

study of two factors used in the base experiments is 

conducted. The first factor involves the value-added factor 

used between channel members. The value-added factor is the 

transportation cost incurred when the product is shipped 

from one higher echelon channel member to the lower echelon 

members in a multi-echelon distribution system. Rather than 

fixing the value-added factors, four different sets of 

value-added factors are used in the sensitivity analysis 

experiment. 

Another factor considered in the sensitivity analysis 

is the structure of distribution networks. Two levels of 

distribution network are investigated in the sensitivity 

analysis. The distribution centers are removed from the 

network. Products are shipped directly from warehouse to 

retailers. The results of two experiments of sensitivity 

analysis are described below. 

Experimental Procedure 

In the base experiments, the value-added factor and 

distribution network are fixed as described previously. In 

the experiments for sensitivity analysis, several 

experimental conditions are changed to conduct a valid 



experiment. The detailed experimental procedures for two 

sets of sensitivity analysis experiments are described as 

follows: 

Changing Value-Added Factor 
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The purpose of this experiment for sensitivity analysis 

is to examine the performance of the value-added factor held 

constant in the base experiment. The value-added factor is 

the transportation cost incurred between channel members. 

In the base experiment, the value-added factor is fixed at 

(0.1, 0.1}, which is within the value range used by Collier 

(1982} in his study. That means the nominal unit cost of 

product increases 10 percent when product is shipped from 

the warehouse to distribution centers or from the 

distribution centers to retailers. As shown in Table 3.6, 

four different combinations of the value-added factor are 

used to test the performance sensitivity. 

In the sensitivity analysis, both cost value and supply 

uncertainty are held at the low levels and are held constant 

to obtain a manageable experimental design. A summary of 

experimental factors used in this sensitivity analysis is 

shown in Table 6.1. Runs are replicated five times with a 

run length of 400 weeks and a warm-up period of 40 weeks. 
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Table 6.1 Summary of Experimental Factors Used in a 
Changing Value-added Factors Sensitivity Analysis 

Factors Levels 

Cost Value Fixed 

Supply Uncertainty Fixed 

Lot-Sizing Rule 2 

Demand Uncertainty 2 

Lead Time Uncertainty 2 

Safety Stock Policy 8 

Value-added Factors 4 

Replications 5 

Total-Observations 1280 

Changing Distribution Network 

The purpose of this experiment for sensitivity analysis 

is to examine the performance sensitivity caused by changing 

the distribution network. In the sensitivity analysis, the 

products are shipped directly from the warehouse to the 

retailers. The distribution network is changed from a 

three-level distribution system to a two-level distribution 

system as displayed in Figure 3.2. 

Supply uncertainty, cost value, and value-added factors 

are held at the low levels. To keep the same mean 

transportation lead time from the warehouse to retailers as 

in the base experiment, the lead time distributions are 

modified as shown in Table 6.2. Only four different safety 

stock policies, as shown in Table 6.3, are applied in this 
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sensitivity analysis when the structure of distribution 

network is changed. A summary of experimental factors used 

in the experiment of changing distribution network is shown 

in Table 6.4. 

Table 6.2 Lead Time Distributions Used in Distribution 
Network Sensitivity Analysis 

Uniform Discrete 
Distribution Value (period) 2 4 6 8 

Probability 0.2 0.2 0.2 0.2 

Symmetrical Discrete 
Distribution Value (period) 2 4 6 8 

Probability 0.1 0.1 0.6 0.1 

Table 6.3 Safety Stock Policies Used in Distribution 
Network Sensitivity Analysis 

Safety Stock 

Policy (W, R) 

1 (0, 0) 

2 ( 1, 0) 

3 ( 0, 1) 

4 (1/2, 1/2) 

10 

0.2 

10 

0.1 



Table 6.4 Summary of Experimental Factors Used in a 
Changing Distribution Network Sensitivity 
Analysis 

Factors Levels 

Cost Value Fixed 

Supply Uncertainty Fixed 

Lot-Sizing Rule 2 

Demand Uncertainty 2 

Lead Time Uncertainty 2 

Safety Stock Policy 4 

Value~added Factors Fixed 

Replications 5 

Total Observations 160 

Results for Changing Value-Added Factor 

In this sensitivity analysis, only mean TRC of the 

distribution system is examined. The three non-monetary 
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performance measures are not affected by changing the value-

added factor. 

ANOVA is performed on the mean TRC obtained from the 

simulation. The analysis consists of 1280 data points, with 

five replications for each of the 256 experimental 

conditions. The ANOVA results· for the main factors and the 

interactions of safety stock policy with all other main 

factors are shown in Table 6.5. All main effects and 



194 

important interactions are significant at the 5% level, and 

are addressed below. 

Table 6.5 ANOVA Results for Mean TRC When Changing 
the Value-added Factor 

Analysis of Variance for TRC 

Source DF ss MS F p 

L.R. 1 19184916 19184916 617.28 0.000 
D.U. 1 1172576 1172576 37. 73 0.000 
L.T. 1 3401546 3401546 109.45 0.000 
V.A. 3 1410829 4 7 027 6 15.13 0.000 
S.S. 7 85021488 12145927 390.80 0.000 
L.R.*D.U. 1 1174034 1174034 37.77 0.000 
L.R.*L.T. 1 3395033 3395033 109.24 O.ObO 
L.R.*V.A. 3 17346 5782 0.19 0.906 
L.R.*S.S. 7 86699699 12385671 398.51 0.000 
D.U.*L.T. 1 790639 790639 25.44 0.000 
D.U.*V.A. 3 7149 2383 0.08 o. 973 
D.U.*S.S. 7 3302605 471801 15.18 0.000 
L.T.*V.A. 3 21501 7167 0.23 o. 975· 
L.T.*S.S. 7 5362736 766105 24.65 0.000 
V.A.*S.S. 21 382642 18221 0.59 0.930 
L.R.*D.U.*L.T. 1 7 91783 791783 25.48 0.000 
L.R.*D.U.*V,A. 3 7048 2349 0.08 0.973 
L.R.*D.U.*S.S. 7 3316048 473721 15.24 0.000 
L.R.*L.T.*V.A. 3 20370 6790 0.22 0.884 
L.R.*L.T.*S.S. 7 5489002 784143 25.23 0.000 
L.R.*V.A.*S.S. 21 399496 19024 0.61 0.912 
D.U.*L.T.*V.A. 3 3899 1300 0.04 0.989 
D.U.*L,T.*S,S. 7 4273384 610483 19.64 0.000 
D.U.*V.A.*S.S. 21 19148 912 0.03 LOOO 
L.T.*V.A.*S.S. 21 26363 1255 0.04 1.000 
L.R.*D.U.*L.T.*V.A. 3 3874 1291 0.04 0.989 
L.R.*D.U.*L.T.*S;S. 7 427 9044 611292 19.67 0.000 
L.R.*D.U.*V.A.*S.S. 21 19252 917 0.03 1.000 
L.R.*L.T.*V.A.*S.S. 21 27166 1294 0.04 1.000 
D.U.*L.T.*V.A.*S.S. 21 23385 1114 0.04 1.000 
L,R.*D.U.*L.T.*V.A.*S.S. 21 23422 1115 0.04 1.000 
Error 1024 31825652 31080 
Total 1279 261893077 

Main Effects 

A plot of main effects for the mean TRC is presented in 

Figure 6.1, and the mean TRC of each main effect at each 

level is shown in Table 6.6. Visual examination of the 

experimental results in Figure 6.1 shows that EOQ yields 

much higher mean TRC than L4L. The results of two sources 

of uncertainties are consistent with the results from the 

base experiment. 
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Main Effects Plot- Means for TRC 
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Figure 6.1 Main Effects Plot for Mean TRC When Changing 
the Value-added Factor 

Table 6.6 Mean TRC of Each Main Effect at Each Level 
When Changing the Value-added Factor 

Means 

L.R. N TRC 
1 640 215.51 
2 640 460.36 

D.U. N TRC 
1 640 307. 67 
2 640 368.20 

L.T. N TRC 
1 640 389.48 
2 640 286.38 

V.A. N TRC 
1 320 2 94. 06 
2 320 322. 43 
3 320 352.11 
4 320 383.13 

S.S. N TRC 
1 160 254.23 
2 160 189. 70 
3 160 240.88 
4 160 799.10 
5 160 138.19 
6 160 135.41 
7 160 187.55 
8 160 758.39 



As the demand uncertainty and transportation lead time 

uncertainty increas~, the mean TRC also increases. The 

forecast demand error incurred at the retailers niay cause 
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either stockout or excessive stock at all channel members. 

Furthermore, the lead time uncertainty may cause an order to 

arrive early as well as late. That explains why the mean 

TRC increases under high demand uncertainty and high 

transportation· lead time variations. The effect on the mean 

TRC is significant when value-added factors are changed. 

The higher the value-added factors, the higher the mean TRC. 

As shown in Figure 6.2 and Table 6.6, the best safety 

stock policy in terms of the mean TRC is policy 6; policy 5 

is the second best safety stock policy for all levels of the 

added-value factor. 

Mean Rot for TRC as a Function of Safety Stock Fblicy for Each Level of 
Added-value Factor 

X 

700 -+-V.A.=1 

---6-- V .A. =2 
TRC 500 

-o-V.A.=3 

-x-V.A.=4 

300~ 

100 I 1 1 

2 3 4 .5 6 7 8 

S.S. 

l 

Figure 6.2 Means Plot for TRC as a Function of Safety Stock 
Policy When Changing the Value-added Factor 



D.U.=Low D.U.=High 

S.S. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
Policy 

VA=l LT=Low L4L 173. 82 173. 02 198. 58 166.91 173.62 168.01 183.96 175. 72 173.96 172.87 198.23 166.94 17 3. 57 168.42 183.96 175.45 

EOQ 325.60 76.03 188.86 1559.14 58.69 60.55 193.59 1492.94 256.49 279.44 321. 70 1581.39 65.66 61. 75 109. 93 1426.22 

LT=High L4L 173.53 173.26 195.92 170.30 172.34 170.46 181. 95 177. 75 173. 75 173.51 194.93 170.37 172. 43 170.60 181. 88 176.99 

EOQ 259.04 60. 92 151. 05 810.13 51.30 48. 94 63.08 313.13 178. 55 160. 22 174.61 1092.66 50.91 50.79 156. 53 1483 .11 

VA=2 LT=Low L4L 198.45 197.47 225.84 190.35 197.97 191.65 209.69 200.01 198.62 197.32 225.46 190.41 197.93 192 .13 209.70 199.75 

EOQ 360.11 84.28 208.68 1666.53 64.54 66.43 214.25 1595.29 283.61 309.33 355.34 1690.89 71.79 67.60 121.47 1524 .. 33 

LT=High L4L 197.89 197.56 222.58 193.89 196.37 194.33 207.24 202.00 198.19 197.88 221.50 194.08 196.52 194.52 207.20 201. 20 

EOQ 286.52 67. 64 167. 08 864.76 56.54 54.05 69.91 333.78 197.21 177.19 192.84 1166. 85 56.07 55.89 173.00 1585.76 

VA=3 LT=Low L4L 224.87 223.70 254.96 215.49 224.06 217.00 237.24 226.03 225.07 223.55 254.55 215.58 224.05 217.57 237.26 225. 77 

EOQ 395.58 92.91 229.12 1776.44 70.71 72.64 2235.57 1700.04 311. 55 340 .12 389.93 1802.95 78.26 73.77 133.47 1624.75 

LT=High L4L 224.01 223.62 251.04 219.19 222.12 219.91 234.29 227.95 224.39 224.00 249.87 219.49 222.33 220.16 234.30 227.13 

EOQ 314.82 74.69 183.66 920.75 62.08 59.46 77 .OB 355.05 216.47 194.72 211.68 1242.84 61.54 61.29 190.02 1690.82 

VA=4 LT=Low L4L 253.07 251.70 285.92 242.34 251.91 244.07 266.60 253.78 253. 31 251. 54 285.48 242.47 251. 91 244.73 266.64 253.53 

EOQ 432.03 101.92 250.17 1888.87 77 .20 79.18 257.56 1807.20 340.31 371.81 425.45 1917.58 85. 06 80.27 145. 91 1727. 49 

LT=High L4L 251.88 251.42 281.30 246.18 249.58 247.21 263.12 255.63 252. 36 251. BB 280. 03 246.62 249.86 247.53 263.19 254. 77 

EOQ 343.92 82.08 200. 77 978.10 67.93 65.17 84.58 376.95 236.35 212.83 231.13 1320.62 67.30 66.98 207.59 1798.31 

Table 6.7 Experimental Results for Mean TRC When Changing the Value-added Factor 

1-J 
U) 

....J 
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Important Two-Way Interactions 

Three two~way interactions are of concern in the 

sensitivity analysis. As shown in Table 6.7, the 

interactions between lot-sizing rule and safety stock 

policy, demand uncertainty and safety stock policy, and lead 

time uncertainty and safety stock policy, are all 

significant. 

The results of these three two-way interactions are 

consistent with the mean TRC analysis in the base 

experiment. The interaction of lot-sizing rules and safety 

stock policies has a significant effect on mean TRC. The 

effect of the safety stock policies is significantly 

influenced by the lot-sizing rules used. When L4L is used, 

safety stock policies 1, 3, 4, and 8 yield a lower mean TRC 

than EOQ does. Policies 2, 5, 6, and 7, however, perform 

better under the EOQ rule. The mean TRC for the interaction 

of lot-sizing rule and safety stock policy at each level 

with value-added factor is shown in Table 6.8. The plot for 

interaction effects between the lot-sizing rules and safety 

stock policies when value-added factor is at level 1 is 

shown in Figure 6.3. The means plot of TRC as a function of 

lot-sizing rule and safety stock policy is similar under 

various levels of the value-added factor. 

According to Table 6.9, when demand uncertainty 

increases, the mean TRC increases under all safety stock 

policies. 
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Table 6.8 Mean TRC for Lot-sizing Rule and Safety Stock 
· Policy at each level of Value-added Factor 

V.A. =l / V.A. =2 V.A. =3 V.A. =4 
S.S. L4L EOQ L4L EOQ L4L EOQ L4L EOQ 

Policy 
1 173.8 254.9 198.3 281. 9 224.6 309.6 252.7 338.2 
2 173.2 144.2 197.6 159.6 223.7 175.6 251.6 192.2 
3 196.9 209.1 22;3.8 231.0 252.6 253.6 283.2 276.9 
4 168.6 1260.8 192.2 1347.3 217.4 1435.7 244.4 1526.3 
5 173.0 56.6 197.2 62.2 223.1 68.1 250.8 74.4 
6 169.4 55.5 193.2 61 218.7 66.8 245.9 72.9 
7 182.9 130.8 208.5 144.7 235.8 159.0 264.9 173.9 
8 176.5 1178.9 200.7 1259.8 226.7 1342.7 254.4 1427.5 

Interaction Plot- Means for TRC (V.A.=1) 
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Figure 6.3 Means Plot for TRC as a Function of Lot-sizing 
Rule and Safety Stock Policy When Changing the 
Value-added Factor (V.A.=1} 
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Table 6.9 Mean TRC for Demand Uncertainty and Safety Stock 
Policy at each level of Value-added Factor 

V.A. =l V.A. =2 V.A. =3 V.A. =4-

S.S. D.U.=Low D.U.=High D.U.=Low D.U.=High D.U.=Low D.U.=High D.U.=Low D.U.=High 
Policy 

1 233.0 195.7 260.7 219.3 289.8 244.4 320.2 270.6 

2 120.8 196.5 136.7 220.4 153.7 245.6 1741.8 272.0 

3 183.6 222.4 206.0 248.8 229.7 276.5 254.5 305.5 

4 676.6 752. 8 728.9 810.6 783.0 870.2 838.9 931.8 

5 114.0 115.6 128.9 130.6 144.7 146.5 161. 7 163.5 

6 112.0 112. 9 126.6 127.5 142.3 143.2 158.9 159.9 

7 155.6 158.1 175.3 177 .8 196.0 198. 8 218.0 220.8 

8 539.9 815.4 582.8 877.8 627.3 942.1 673.4 1008.5 

Although the ranking of the safety stock policies stays 

the same under both demand uncertainty levels, the magnitude 

of the increase in mean TRC is different. As shown in 

Figure 6.4, safety stock policies 5, 6, and 7 are less 

sensitive to the changes in demand uncertainty. 

Furt~ermore, there is a great effect on safety stock policy 

8, when demand uncertainty increases. This is because a 

good safety stock policy can absorb the demand uncertainty. 

Interaction Plot - Means for TRC (V .A.=1) 
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Figure 6.4 Means Plot for TRC as a Function of Demand 
Uncertainty and Safety Stock Policy When 
Changing the Value-added Factor (V.A.=1) 
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When the transportation lead time distribution changes 

from a symmetric discrete distribution with low variation to 

a uniform discrete distribution with high variation, the 

mean TRC increases under all safety stock policies to a 

different degree. Safety stock policies 5, 6, and 7 are not 

much affected by the lead time uncertainty. The performance 

of safety stock policies 4 and 8 becomes much worse when 

transportation lead time uncertainty increases. The mean 

TRC for the interaction of lead time uncertainty and safety 

stock policy at each level of value-added factor is shown in 

Table 6.10. As shown in Figure 6.5, the interaction of 

these two factors is consistent with the result in the base 

experiment. 

Table 6.10 Mean TRC for Lead Time Uncertainty and Safety 
Stock Policy at each level of the Value-added 
Factor 

V.A.=1 V.A.=2 V.A.=3 V.A.=4 

S.S. L.T.=Low L.T.=High L.T.=Low L.T.=High L.T.=Low L.T.=High L.T.=Low L.T.=High 
Policy 

1 232.5 196.2 260.2 220.0 289.3 244.9 319. 7 271.1 

2 175.3 142. 0 197 .1 160.1 220.1 179.3 244.2 199.6 

3 226.8 179.1 253.8 201. 0 282.1 224.1 311.8 248.3 

4 868.6 560.9 934.5 604.9 1002.6 650.6 1072.8 697.9 

5 117. 9 111. 7 133.1 126.4 149.3 142.0 166.5 158.7 

6 114. 7 110.2 129.5 124.7 145.2 140.2 162.1 ·156.7 

7 167.9 145.9 188.8 164.3 210.9 183.9 234.2 204.6 

8 817.6 537.7 879. 8 580.7 944.1 625.2 1010.5 671. 4 



lnteaction Plot - Means for TRC (V.A.=1) 
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Figure 6.5 Means Plot for TRC as a Function of Lead Time 
Uncertainty and Safety Stock Policy When 
Changing Value-added Factor (V.A.=1) 

Results for Changing Distribution Network 

Based on experimental results from the sensitivity 

analysis, there is an effect on all performance measures 

when the distribution network is changed. In this 

sensitivity analysis, the mean TRC of the distribution 

system and the mean service level for each channel member 

are discussed. The results of average stockout units and 

average inventory level are shown in Appendix C. 

Total Related Cost Analysis 

ANOVA is performed on the mean TRC obtained from the 

simulation. The analysis consists of 160 data points, 

including five replications for each of the 32 experimental 

conditions. The ANOVA results for the main factors and the 

interactions of safety stock policy with all other main 

factors are shown in Table 6.11. The results show that lot-

sizing rule, lead time uncertainty and safety stock policy 



are significant at the 5% level. And,· the interaction 

between lot-sizing rule and safety stock policy is 

significant. 

Table 6.11 ANOVA Results for Mean TRC When 
Changing Distribution Network 

Analysis of Variance for TRC 

Source DF ss MS F p 

L.R. 1 135158.4 135158.4 1496.62 0.000 
D.U. 1 0.6 0.6 0.01 0.936 
L.T. 1 1124.8 1124.8 12. 46 0.001 
S.S. 3 15962.6 5320.9 58.92 0.000 
L.R.*D.U. 1 2.1 2.1 0.02 0.879 
L.R.*L.T. 1 672.0 672.0 7.44 0.007 
L.R.*S.S. 3 2936.5 978. 8 10. 84 0.000 
D.U.*L.T. 1 160.5 160.5 1. 78 0.185 
D.U.*S.S. 3 257.7 85.9 0.95 0.418 
L.T.*S.S. 3 636.9 212.3 2.35 0.075 
L.R.*D.U.*L.T. 1 167 .2 167.2 1. 85 0.176 
L.R.*D.U.*S.S. 3 252.1 84 ._o 0.93 0.428 
L.R.*L.T.*S.S. 3 357.4 119.1 1.32 0.271 
D.U.*L.T.*S.S. 3 349.7 116.6 1.29 0.280 
L.R.*D.U.*L.T.*S.S. 3 383.9 128.0 1. 42 0.241 
Error 128 11559.6 90.3 
Total 159 169981. 9 

Main Effects 
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A plot of main effects for the mean TRC is presented in 

Figure 6.6, and the mean TRC of each main effect at each 

level is shown in Table 6.12. Visual examination of the 

experimental results in Figure 6.6 shows that EOQ yields 

much ~igher mean TRC than L4L. The results of two sources 

of uncertainties are different from the results observed in 

the base experiment. The mean TRC is not affected by demand 

uncertainty when the distribution network is changed. It 

may be explained by the change in distribution network. The 

warehouse can work closely with retailers to absorb the 

demand uncertainty. The transportation lead time variations 
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have significant effect on mean TRC when the distribution 

network is changed. The lead time uncertainty still exists 

between the warehouse and retailers. As addressed in the 

base experiment, higher transportation lead time variations 

may cause more stockouts or excessive inventories, and 

increases the mean TRC of the distribution system. 

190 

175 

TRC 1Sl 

145 

130 

Main Effects Plot- Means for TRC 

----- ---'='"--~ - -~-

DU. LT. S.S. 

Figure 6.6 Main Effects Plot for TRC When 
Changing Distribution Network 

Table 6.12 Mean TRC of Each Main Effect at Each Level 
When Changing Distribution Network 

Means 

L.R. N TRC 
1 80 130.43 
2 80 188.55 

D.U. N TRC 
1 80 159.55 
2 80 159.43 

L.T. N TRC 
1 80 162 .14 
2 80 156.84 

S.S. N TRC 
1 40 156.65 
2 40 151. 84 
3 40 176.51 
4 40 152.96 
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As shown in Figure 6.7, the best safety stock policy is 

policy 2 in terms of the mean TRC; policy 4 is the second 

best safety stock policy. There is only one warehouse and 

four retailers in the distribution system used in the 

sensitivity analysis. As shown in Table 6.3, safety stock 

policy 2 suggests putting all safety stocks at the 

warehouse, and policy 4 allocates safety stocks for the 

warehouse and retailers. The results are consistent with 

the results in the base experiment. The best safety stock 

policies in terms of the mean TRC in the base experiment are 

either keeping safety stock evenly at the warehouse, 

distribution centers and retailers (policy 5) or allocating 

safety stock for the warehouse and two distribution centers 

(policy 6). Furthermore, safety stock policy 3 is about 16% 

higher than other policies in terms of mean TRC. Safety 

stock policy 3 keeps all the safety stock at retailers only. 

As explained in the base experiment, it may cause more 

stockout at the warehouse. Once the inventories at 

retailers are depleted, there is no stock at the warehouse 

to replenish the demand immediately. 

To examine the main effects and interaction effects, 

the mean TRC and three non-monetary performance measures 

averaged over five replications are presented in Table 6.13 

and discussed below. 
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Main Effects Plot - Means for TRC 
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Figure 6.7 Means Plot for TRC as a Function of Safety Stock 
Policy When Changing Distribution Network 
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D.U. = Low D.U.= High 

S.S. 1 2 3 4 1 2 3 4 
Policy 

TRC LT=Low L4L 123.34 120.91 156.26 123.3 123.05 121. 28 156.34 123.41 

EOQ 196.4 183.06 216.36 185.99 193. 68 182.82 200.05 187.68 

LT=High L4L 123.85 121. OB 153.36 120.88 123.85 121. 7 152.73 121.15 

EOQ 175.63 184.69 186.59 181.11 193.13 179.15 188.92 180.14 

sow LT=Low L4L 9.79 0 248.44 41.14 8.04 0 247.24 39.17 

EOQ 253.54 82.15 535.94 78.94 268.81 81. 63 283.92 93.97 

LT=High L4L 13.48 0 255.33 17.21 11.58 0 247.24 39.17 

EOQ 52.14 43.02 113.82 45.39 240.83 43.02 146.88 41. 81 

INVW LT=Low L4L 266.32 536.98 185.63 256.12 311. 98 539.15 185.63 258.61 

EOQ 1137. 72 2337. 29 1233. 04 2207. 91 1091. 75 2277. 33 1119. 61 2221. 95 

LT=High L4L 258.85 519.56 207.87 290.68 262. 61 531.24 207.99 300.39 

EOQ 16.32.012246.611587.01 2145.36 1394.1 2247.721642.14 2205.2 

SERW LT=Low L4L 0.97 1 0.6 0.91 0.98 1 0.6 0.91 

EOQ 0.61 0.83 0.54 0.84 0.59 0.83 0.59 0.81 

LT=High L4L 0.97 1 0.62 0.96 0.97 1 0.63 0.97 

EOQ 0.88 0.9 0.79 0.9 0.63 0.9 0.75 0.91 

SORl LT=Low L4L 14.99 14.19 12.81 10.65 16.1 15.17 13.65 11. 87 

EOQ 1. 88 0.44 3.39 0.7 3.13 0.83 1. 43 1. 08 

LT=High L4L 9.97 9.06 8.55 6.3 11. 96 11. 22 9.97 8.52 

EOQ 0.76 0.39 0.37 0.3 2.04 0.83 2.1 0.52 

INVRl LT=Low L4L 42.58 46.91 48.37 62.02 51. 37 56.6 57.96 70.96 

EOQ 871.86 1164.97 877.95 1021.22 850.88 1028.45 821. 61 967.29 

LT=High L4L 45.22 48.96 50.47 63.24 54.91 61.16 62 .1 73.53 

EOQ 788.38 840.9 812.52 851.33 795.27 862.91 876.77 828.24 

SERRl LT=Low L4L 0.7 0. 72 0.74 0.79 0. 68 0.7 0.73 0.76 

EOQ 0.96 0.99 0.93 0.99 0. 94 0.98 0.97 0.98 

LT=High L4L 0.8 0.82 0.83 0.87 0.76 0.78 0.8 0.83 

EOQ 0.98 0.99 0.99 0.99 0.96 0.98 0.96 0.99 

Table 6.13 Summary of Experimental Results for TRC, SOW, 
INVW, SERW, SORl, INVRl, and SERRl When 
Changing Distribution Network 
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Important Two-way Interactions 

Two two-way interactions are of concern in the 

sensitivity analysis. As shown in Table 6.8, the 

interaction between lot-sizing rules and safety stock 

policies, as well as the interaction between the lead time 

uncertainty and safety stock policies, is significant. The 

results are consistent with the previous results from the 

mean TRC analysis in the base experiment. 

The interaction plot between the lot-sizing rule and 

safety stock policy is shown in Figure 6.8. As shown in 

Figure 6.8, the L4L lot-sizing rule outperforms the EOQ rule 

under all safety stock policies. This is because stockout 

costs do not decrease enough to justify the increased 

inventory carrying costs when the EOQ rule is applied. 

Furthermore, the EOQ lot-sizing rule is less sensitive to 

the safety stock policy used in terms of the mean TRC. 
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Figure 6.8 Means Plot for TRC as a Function of Lot-sizing 
Rule and Safety Stock Policy When Changing 
Distribution Network 
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When the transportation lead time distribution varies 

from a symmetric discrete distribution with low variation to 

a uniform discrete distribution with high variation, the 

mean TRC increases under most safety stock policies. 

However, safety stock policy 2 is not affected much by lead 

time uncertainty. This is because when all safety stocks 

are allocated at the warehouse, :the. lead time variations . . 

have been absorbed. The interaction of these two factors is 

shown in Figure 6.9. 
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Figure 6.9 Means Plot for TRC as a Function of Lead Time 
Uncertainty and Safety Stock Policy When 
Changing Distribution Network 
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Mean Service Level Analysis at Warehouse (SERW) 

ANOVA is performed on the mean SERW from the 

simulation. The ANOVA r:esul ts for the main factors and the 

interactions of ·.safety stock policy with all other main 

factors are shown in Table 6 .14. The .results show that lot-

sizing rule, lead time uncertainty and safety stock policy 

are significant at the 5.% level. And, the interaction 

between lot-sizing.rule and safety stock policy is also 

significant. 

Table 6.14. ANOVA Results for·Mean SERW per Week 
When Changing P.istribution Network 

Analysis of .Variance for Me·an SERW 

Source DF ss MS F p 
L.R. 1 0.50400 0.50400 120.09 0.000 
D.U. 1 0.01321 0.01321 3.15 0.078 
L.T. 1 0.21199 0~21199 50.51 0.000 
S.S. 3 2.13860 ·o.71287 ·i69.86 0.000 
L.R.*D.U. 1 0:01735 0.01735 4.13 0.044 
L.R.*L.T. 1 0.11385 0.11385 27.13 0.000 
L.R.*S.S. 3 0.61276 0.20425 48.67 0.000 
D.U.*L.T. 1 0.01556 0.01556 3.71 0.056 
D.U.*S.S. 3 0.03022 0.01007 2. 40 0.071 
L.T.*S.S. 3 0.02563 0.00854 2.04 0.112 
L.R.*D.U.*L.T. 1 0.01768 0.01768 4.21 0.042 
L.R.*D.U.*S.S. 3 0.03031 0.01010 2.41 0.070 
L.R.*L.T.*S.S. 3 0.03773 0.01258 3.00 0.033 
D.U.*L.T.*S.S. 3 0.02837 0.00946 2.25 0.085 
L.R.*D.U.*L.T.*S.S. 3 0.03049 0.01016 2.42 0.069 
Error 128 0.53720 0.00426 
T.otal . 159 4.36496 

Main Effects 

A plot of mair1: effects ;for the mean SERW is presented 

in Figure 6.10, and the mean service level of each main 

effect at each level is shown in Table 6.15. Visual 

examination of experimental results in Figure 6.10. shows 

that L4L yields a much higher mean SERW than the EOQ does. 
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Figure 6.10 MainEffects Plot for Mean SERW When 
Changing Distribution Network 
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Table 6.15 Mean Service Level per Week at the Warehouse 
of Each Main Effect at Each Level When 
Changing Distribution Network 

Means 

L.R. N SERW 
1 80 0.87940 
2 80 0. 76715 

D.U. N SERW 
1 80 0.83236 
2 80 0.81419 

L.T. N SERW 
1 80 0.78688 
2 80 0.85967 

S.S. N SERW 
1 40 0.82490 
2 40 0.93307 
3 40 0. 634.90 
4 40 0.90022 
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The results of two sources of uncertainties are consistent 

with the results in the base experiment. Although the mean 

SERW is not affected by demand uncertainty statistically, 

the mean SERW still decrease.s when demand uncertainty 

increases. However, the lead time uncertainty has the 

similar ef,fect on mean SERW as in the base.experiment. As 

the transpo~tation lead time.uncertainty increases, the mean 

SERW decreases. The negative effect on the mean SERW is 

mainly caused by an increc:tsed number.of stockout units at 

the warehouse when transportation lead time·increases. 

As shown.in Figure 6.11/ the best safety stock policy 

is policy 2 in terms of the mean SERW (93%), and policy 4 is 

the second best (90%). All safety stocks are either 

allocated for the warehouse or kept at the warehouse and 

retailers to achieve the highest mean SERW. The mean SERW 

drops to 63% when policy 3 is applied. This is mainly. 

because policy 3 causes more stockouts at the warehouse. 

0.82 

0.82 
SERW 

Main Effects Plot- Means for SERW 

3 

S.S. Policy 

l 

Figure 6~11 Means Plot for SERW as a Function of Safety 
Stock Policy When Changing Distribution Network 



213 

Important Two-Way Interactions 

As shown in Table 6.13, the interaction between lot-

sizing rule and safety stock policy is significant. The L4L 

lot-sizing rule outperforms the EOQ rule under all safety 

stock policies except policy·3. As observed in Table 6.13, 

EOQ outperforms L4L in,.terms of the mean SERW under policy 3 

with low·transportation lead time variation. This can be 

explained by the buLl,.t-in safety stock feature of EOQ that 

performs effectively under.low lead time uncertainty. The 

interaction plot between lot-sizing rule and safety stock 

policy is shown in Figure 6. 12 .· 

1.0 

0.9 

0.8 

Mean 

0.7 

0.6 
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Means Plot for SERW as a Function of Lot-sizing 
Rule and Safety Stock Policy When Changing 
Distribution Network 



Mean Service Level Analysis at Retailer 1 (SERRl) 

ANOVA is performed on the mean SERRl from the 
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simulation .. The ANOVA results for the main effects and the 

interactions of safety stock policy with all other factors 

are shown in Table 6.16. The results show that lot-sizing 

rule, lead time uncertainty, demand uncertainty, and.safety 

stock policy are significant at the 5% level in terms of the 

mean SERRl. Also, the interaction between lot-sizing rules 

and safety stock policies is significant. All the important 

main effects and interactions are addressed below. 

Table 6.16 ANOVA Results for Mean SERRl per Week 
When Changing Distribution Network 

Analysis of Variance for Mean SERRl 

Source DF ss MS F p 

L.R. 1 1. 693734 1.693734 2776.47 0.000 
D.U. 1 0.016402 0.016.402 26.89 0.000 
L.T. 1 0.095942 0.09.5942 157.27 0.000 
S.S. 3 0.058633 0.019544 32.04 0.000 
L.!'l.*D.U. 1 0.003960 0.003960 6. 4 9 0.012 
L.R.*L.T •. 1 0.051768 0:051768 84.86 0.000 
L.R.*S.S. 3 0.028155 0.009385 15.38 0.000 
D.U.*L.T. 1 0.003534 0.003534 5. 79 0.018 
D.U.*S.S. 3 0.001421 0.000474 0. 78 0.509 
L.T.*S.S. 3 0.001227 0.000409 0.67 0.572 
L.R.*D.U.*L.T. 1 0.000020 0.000020 0.03 0.858 
L.R.*D.U.*S.S. 3 0.000600 0.000200 0.33 0.805 
L.R.*L.T, .• *S.S .. 3 0.001332 0.000444 0.73 0.537 
D.U.*L.T.*S.S. 3 0.002661 0.000887 1. 45 · b .• 230 
L.R.*D.U.*L.T.*S.S. 3 0.003858 0.001286 2.li 0.102 
Error 128 0.078084 0.000610 
Total 159 2.041330 

'· 

Main Effects 

A main effects plot for mean SERRl is presented in 

Figure 6.13, and the mean SERRl of each main effect at each 

level is shown in Table 6.17. Visual examination of the 
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Figure 6.13 .Main· Effects .Plot for SERRl When­
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Table 6.17 Mean Service Level per Week at Retailer 1 of 
Each Main Effect at Each Level When Changing 
Distribution Network 

Mean·s 

L.R. N SERRl 
1 -_- 80 0.76842 
2 . 80 0. 9742'0 

D.U. N SERRl 
1 80 0.88144 
2 80 0.86119 

L,T. N SERRl 
1 80 0.84682 
2 80 0.89580 

S.S. N SERRl 
1 40 o. 84720 
2 40 0.86965 
3 40 0. 86762 
4 40 0.90077 
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experimental results in Figure 6. 1.3 shows that EOQ yields 

much higher ~ean SERRl than L4L does. The mean SERRl 

decreases when demand uncertainty increases. It is 

explained by the forecast error incurred at retailers. The 

extremely high forecast· error.may cause stockout at 

retailers. ·. Furthermore, as the transportation lead time 

uncertainty increases, the mean SERRl decreases. If the 

actual delivery t,ime becomes much longer than the planned 

lead time, it maycause a stockout at the retailers, and 

deteriorate the mean SERRl. 

As shown in Figure 6.14; the, best safety stock policy 

is policy 4 in terms of the mean SERRl. Safety stocks are 

allocated for the warehouse and retailers to achieve the 

highest mean service level for retailers. This is 

consistent·· with the result observed in the base experiment. 

Safety stocks are kept with each channel member (policy 5) 

to achieve highest mean SERRl in the base experiment. As 

observed in Table 6.13, safety stock policy 1 results in 

lower mean ·sERRl under most operating conditions when no 

safety stock is applied in the distribution system. 

Important Two-Way Interactions 
. . . . . 

As shown in Table 6.16 and Figure 6.15, the interaction 

between the lot-sizing rule and safety stock policy is 

significant. It is shown that the EOQ rule outperforms the 

L4L rule under all safety stock policies. 
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Main Effeds Plot-Means forSERR1 
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Figure 6. 14 .Means Plot fqr .,SERRl. as· a Function of Safety 
Stock Policy When Changing·Distribution Network 
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Discussion of Results in Sensitivity Analysis 

·Two constant factors in the base experiments are varied 

in the sensitivity analysis to examine their effects on mean 

TRC, average stockout units,. mean inventory level, and mean 

service level. Based on previous discussion, a summary of 

experimental results in the sensitivity analysis experiment 

is presented in Table 6.18. The results of the sensitivity 

analysis are consistent with the conclusion drawn from the 

base experiment when the value-added factors.are changed. 

As addressed before, different value-added factors may stand 

for different products or di°fferent marketing channels. 

That means the results drawn from the base experiment can be 

generalized for different products or different marketing 

channels. 

Lot-sizing rule, demand uncertainty and lead time 

uncertainty have similar effects on the mean TRC of the 

distribution system under different value-added factors .. 

These results support the conclusions drawn in the base 

experiment. The best stock policy is still". policy 6 in 

terms of the mean TRC. Safety stock policies 5 and 6 are 

less sensitive to the changes in lot-sizing rule, demand 

uncertainty, or lead time uncertainty. Safety stock policy 

appears to be an effective way to reduce the mean TRC by 

dampening the effects caused by operating uncertainty. 

The results changes in the structure of the 

distribution network as seen in the sensitivity analysis 

also confirm most of the conclusions drawn in the base 
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experiment. However, both the demand uncertainty and lead 

time uncertainty have less effect on the mean TRC when the 

distribution network is. changed. This is because the 

warehouse may respond to the changes in operating conditions 

effectively.· in a two-level distribution network. 

Table 6.18 Summary of Experim~ntal Results in the 
Sensitivi~y Analysis Experiment 

Value-·added 
Factor 

Source TRC TRC stockout 
Unit 

w R 

L.R. + '+ .+ + 
D.U. +· - .- + 
L.T. + + + + 
S.U; fixed fixed fixed fixed 

c.v. fixed fixed fixed fixed 

S.S. + + + + 
L.R.*S.S. + + + + 
D.U.*S.S. + - \,.- -
L.T.*S.S. + - - -
S.U.*S.S. NIA NIA NIA NIA 

Best S.S. 6 2 2 4 

Second 5 4 4 2 
Best S.S. 
Best L.R. L4L L4L L4L EOQ 

+ Significant at the 5% Level 
Ins_ignificant at the 5% Level 

Distribution 
Network 

Inventory Service 
Level Level 

w R w R 

+ + + + 

- - - + 

+ + + + 
fixed fixed fixed fixed 

· fixed ·. fixed fixed fixed 

+ + + + 

+ + + + 
- - - -
+ + - -

NIA NIA NIA NIA 

2 2 2 4 

4 4 4 2 

L4L L4L L4L EOQ 

Most of the results ·of the' sensitivity analysis at 

retailers due to a change in the distribution network 

structure are consistent with the conclusions drawn from the 

base· experiment in terms of the mean service level. 

Retailers are still highly affected by the change in demand 

variations than the warehouse. This is mainly because 
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retailers are closer to the source of uncertainty. As 

observed in Table 6.13, lead time uncertainty has a 

significant effect on retailer I.in terms of three non­

monetary performance measures. It would be worthwhile .to 

investigate the use of the EOQ lot-sizing rule at the 

retailers. The EOQ rule yields_ fewer stockouts and·a much 

higher mean service.level than L4L at reta:i.lers. This is 

because the built-i~.safety ·stock.feature of the EOQ lot­

sizing :r;ule works more e.ffectively in the two-level 

distribution network. 

The ne;xt-chapter provides ·a.summary of the study, 

discusses the practical implicat.i,ons of.the findings, and 

outlines directions for future.research. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The purpose of this research is first to evaluate the 

impact of three different sources and types of uncertainties 

in terms of tot.al related cost, average stockcmt uni ts, mean 

inventory level ancl mean service level in a multi-echelon 

distribution system. The three .uncertainties considered 
. ··. 

are; (1) .demand uncertainty from the outside customers, (2) 

transportation lead time uncertainty within the distribution 

system, and (3) supply uncertainty from the outside vendor. 

The polices for allocating safety stoc::ks are then · 

evaluated in a multi-echelon distribution system. Current 

studies have partially addressed these problems, but do not 

provide detailed cross comparison of various types of 

uncertainties. Most of the efforts in past research related 

to the safety stock problem in a multi-echelon distribution 

system are based on a reorder point system or.other 

inventory control methods. This pilot study is to find a 

more effective safety stock policy in a multi-echelon 
. . . 

distribution .. system. under the operation of DRP. 

In the preceding chapters" the types and effects of 

uncertainty are discussed, the research methodology is 

described, and the results of the simulation data analysis 

are presented. A summary of major findings of this chapter 
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and contributions of this study are presented in the first 

two sections. Finally, the directions for further research 

are suggested. 

Summary of.· Maj or Findings 

This objectives of this study are to explore two 

research issues: (1) the impact .. of various· operating 
' ' . 

condition:s on the pe.rformance. of.~ multi-echelon 

distribution system; and (2) 0 the'effectiveness of 

alternative safety stock policies. Based on the simulation 

results analyses in Chapters Five and Six, the following 

conclusions are reached: 

1. The effect of demand uncertainty, transportation 

lead time uncertainty, and supply uncertainty on DRP system 

performance is significant. The impact of these 

uncertainties on a distribution system are demonstrated in 

terms of mean TRC of the whole system, and the average 

stockout units, average inventory level and mean service 

level of each channel member. The effect of these 

uncertainties.does not stop with one Channel member. Thus, 

the impact occur~ing .at one channel member will adversely 

affect the performance of the other channel members in the 

distribution system. 

In general, demand uncertainty from the outside 

customer and lead time uncertainty within the distribution· 

system creates a more serious impact in terms of three non-

monetary performance measures at the retailer and 
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distribution center levels. This impact creates stockouts 

in the distribution system, which, in turn, causes a low 
. .. : 

mean service level at the retailers and distribution 

centers. The lead time uncertainty impacts the retailers 

and distril:mtion centers more directly. This is consistent 

with the. findings of Wagenheim and Spen (1975), and Allen 

(1983}. The impact from supply uncertainty is caused by the 

supply shortage at. the warehouse. However, the effect will 

prevail to distribution centers and retailers. 

2. It is found that there are significant interactions 

among the experimental factors. .. This suggests that these 

factors should be examined together, rather than 

individually. To make sure that the best safety stock 

policy is used in a multi-echelon distribution system, all 

operating conditions have to be examined at the same time. 

As shown in Table 5.2, the L4L rule outperforms the EOQ rule 

in terms of mean TRC; the best safety stock policy is policy 

6. 

. All the Conclusions drawn above are. based on· .. 

performance in.general. Ignoring the. interaction between 
. . 

lot-sizing rule and safety stock policy in this case may be 

misleading. Based on the mean TRC•shown in Table 5.3, the 

best operating condition is to apply the EOQ rule under 

.safety stock policy 6. This result holds true under various 

operating conditions, except when high supply uncertainty, 

low lead time uncertainty, high demand uncertainty, and low 

cost value are applied. 
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3. When non-monetary performance measures are examined 

for each channel member, distribution centers and retailers 

·show very similar r~sults. These results indicate that the 

operating condition in terms of main effects in this 

experiment have similar.effects on DRP system performance at 

these two channel members .. 

4. In general, the L4L rule outperforms the EOQ rule 

under most operating conditions. The same conclusions are 

found by Melnyk and Pipier (1985), and Minifie and Davis 

(1986). When the interaction between the lot-sizing rule 

and safety stock.policy is observed, the L4L is robust in 

terms of all performance measures under all safety stock 

policies. 

5. When investigating the impact of a·changing 

distribution network on the performance of the distribution 

system, it is found that changes in the structure of the 

distribution network have an effect on the distribution 

system. When the non-monetary performance measures are 

9onsidered .at the retailer level, tbe EOQ ru],e is better 

than L4L. It is believed that there are some interaction 

. effects which exist between the lot-sizing rule and other 

experimental factors in this study. In the .base experiment, 

the performance of the EOQ rule is deteriorated in all 

performance measures when the iead time uncertainty 

increases. When the distribution network is changed from 

three levels to two levels, it can be viewed as a way to 

mitigate lead time uncertainty. This is because lead time 
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uncertainty only occurs at the warehouse and retailers. In 

turn, it makes the built-in safety stock feature of EOQ work 

effectively in the two-,.1evel distribution network. 

6. Good safety stock policies are less sensitive to 

the.changes in operating uncertain~y .. Effective safety 

stock policies allocate safety stock at the warehouse and 

distribution centers,.or put safety stocks at all channel 

members. Safety stocks provide protection against various 

sources of uncertainty in this study. Safety.stocks at the 

warehouse can protect against supply shortages caused by the 

order shipping delays from>the vendor occurring at 

distribution centers. Safety stocks at distribution centers 

can absorb the order shrinkage caused by supply uncertainty, 

lead.time uncertainty at distribution ce~ters and retailers, 

or demand uncertainty at the retailers. The same function 

of safety stock is applied at the retailer level. 

These findings are consistent with the results in 

Salameh and Schmidt (1984). They reserve the safety stocks 

at the first two :Levels in a multi-level inventory system. 

Liaw (1979) evaluates several safety ~tock policies in an 

MRP system. Furthermore, Liaw indicates that holding safety 

stock at an. inventory stage with more significant 
: . .. 

uncertainty may generate better return on inventory. 

In the experiment for sensitivity analysis, it is found 

that .allocating safety stock for the warehouse can always 

yield-better performance than allocating no safety stock. 
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Similar results are found by Chakravarty and Shtub (1986) in 

a two-echelon distribution simulation study. 

Contributions of· this Study 

This research is one step closer to real life settings 

than previous research in this area. First, it considers 

the stochastic nature of dE!mand, transportation lead time, 

and supply simultaneously in a multi-echelon distribution 

system.. Secondly, this study evaluates the system 

performance under a rolling schedule with the DRP inventory 

control method. Most of the related research is based on a 

reorder point system or other inventory.control methods. 

Therefore, the safety stock policy is evaluated under 

operating conditions_ incorporating more of the complexities 

faced in a real-life distribution system. 

The results of this study can provide decision rules 

that.specify which policies are used under various operating 

conditions. The results also provide practical guidelines 

for the practitioners as follows: 

(1) The EOQ rule shouldnot be used at the warehouse level 

and distribution center level in a multi~echelon 

distribution system~ The EOQ rule, when used at the 

warehouse t~vel; yields the worst performance under most 

operating conditions in this study. The EOQ rule, however, 

can be applied at the retailer level with an appropriate 

safety stock policy. For example, safety stock policies 5 
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and 6 result in the lowest average stockout units when EOQ 

is used at retailer 1. 

(2) The transportation lead time uncertainty that exists 

within the warehouse, distribution centers, and retailers 

should be reduced. Two probability dist.ributions to 

describe transportation lead. time uncertainty are examined 

in this study. · The symmetrical discrete distribution yields 

better performance · than the 1.m,iform discrete distribution 

due to tighte~ lead time varia:t;>ility. 

(3) When allocating safety stocks within the distribution 

system, it is more prudent to keep safety stock at the top 

level (warehouse). The simulation ~esults indicate that. 

safety stock policies with safety stock at the warehouse 

(S.S. Policies 2 , 5, ··· 6., and 7) ·are better than those 

policies with no safety stock at the warehouse. 

(4) The aggregate performance measure (TRC) should be 

examined with non-monetary measures when evaluating system 

performance. The mean TRC of the distribution system is 

sensitive to changes in the v~lues of cost parameters. That 

may lead to a wrong decision based on the single TRC 

performance measure.· 

To academicians, this research p:tovi~es a methodology 

to evaluate the safety stock policy in a multi-echelon· 

distribution system under the operation of DRP. 

Furthermore, the results offer an opportunity to illustrate 

the impact of various sources of uncertainties on a multi­

echelon distribution system. Demand uncertainty, 
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transportat.ion lead time uncertainty, and supply uncertainty 

affect the whole distribution system and each channel member 

to a different degree. The relationships between safety 

stock policy and other experimental factors are also 

discussed in. this study. Although the interaction between 

safety stock policy and lot-sizing rule is significant, some. 

policies (5 and 6) are not affected much by the lot-sizing 

rule. 

To practitioners, this study provides a guideline for 

conducting_an effective safety stock policy in a multi­

echelon distribution under DRP's operation. Allocating all 

safety stock for the warehouse (policy 2) is the best way to 

minimize the stockouts at the warehou.se. And keeping safety 

stoc]:c at each channel member (policy 5) or at the warehouse 

and distribution centers are the two best policies for 

reducing the mean TRC for the distribution system. 

Directions for Future Study 
. . . 

It is impqrtant to recognize that this study considers 

only a limited variety of operating environments. However, 

some of the assumptions made in this study may limit the 

generalization of its findi~gs. ·. Specifically, backorders 

are not·allowed, and capacity is assumed to be unrestricted. 

Only shortage from supply side uncertainty is considered in 

this study. Removing the above restrictions would make it 

possible to extend the current study. The behavior of 
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conditions may provide direction for future research. 

229 

Another avenue for future research is to evaluate the 

performance of such buffering methods as safety lead time or 

safety capacity in a multi-echelon distribution system. The 

result from using other buffering methods could be compared 

with the results of using the safety stock method alone. 

In this study, the same lot-sizing rule is applied 

globally at every channel member in the distribution system. 

The results of this study show L4L performs better at the 

warehouse and distribution centers, but EOQ may be more 

appropriately applied at retailers. It is worth 

investigating the behavior of a mixed lot-sizing rule. That 

allows one to use a different lot-sizing rule for different 

channel members in the distribution system. 

An effective safety stock policy is suggested to 

achieve high performance of the distribution system. This 

study only examines eight fixed types of safety stock 

policies. Further development of the safety stock policy to 

allocate safety stock within channel members is suggested 

for future study. 
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APPENDIX A 

FORTRAN PROGRAMS FOR CHAPTER IV 

PROGRAM INITll 
***~********~******~***~******~********.******************************** 
* THIS IS A PROGRAM WITH 5 REPS, 8 SAFETY S'l'OCK POLICIES, * 
* USING L4LWITH WARMUP PERIOD 40 WEEKS (THREE LEVELS) * 
**************.~******************~*~*********************************** 

C 
C 

INTEGER FDR(4~500) 
INTEGER ADR(4, 500) 
INTEGER LTR(4, 500) ,.LTDC (2,500) ,ARW (500) 
REAL ·ARRATE(500) 
REAL AVGINV(3,4,500) 
REAL VAW,VADC,VAR 
REAL CC,SC,OC 
REAL CV. 
REAL TRC(500),TRCW(500),TRCDC(2,500),TRCR(4,500),TRCSUM, 

+ CAVTRC (500) . 
REAL INSUMW,INSUMD(2),INSUMR(4) 
REAL CAVGW(500) ,CAVGD(2,500) ,CAVGR(4,500) 
REAL CAVGRW(500) ,CAVGRD(2.;500) ,CAVGRR(4,500) 
REAL SERVW(500),SERVD(2,500),SERVR(4,5bO) 
REAL SOSUMW,SOSUMD(2),SOSUMR(4) 
REAL GRSUMW,GRSUMD(2),GRSUMR(4) 
REAL CAVSOW(500);CAVSOD(2,500),CAVSOR(4,500) 
REAL SOW(8,5);INVW(8,5),SERW(8,5),SODC1(8,5),INVDC1(8,5) 
REAL SERDCl ( 8, 5) , SODC2 ( 8, 5) , INVDC2 (8; 5) , SERDC2 ( 8, 5) , SORl ( 8, 5) 
REAL INVRl (8, 5), SERRl (8, 5) ,.SOR2 (8 .. , 5), INVR2 (8, 5), SERR2 (8, 5) 
REAL ·soR3(8,5),INVR3(8,5),SERR3(8,5),SOR4(8,5),INVR4(8,5) 
REAL SERR4(8,5),TRCSYSTEM(8,5) 
INTEGER S0(3,4,500) 
INTEGER GR(3,4,500),TRANSIT(3,4,500),PAB(3,4,0:500) 
INTEGER NR(3,4,500),PR(3,4,500),PS(3,4,500) 
INTEGER SS(3,4) 
DATA VAW/1.0/,VADC/1.1/,VAR/1.21/ 
DATA CC/0.002/,SC/0.1/,0C/30.0/ 
DATA CV/0.05/ 

.. · . 

INPUT SAFETY STOCK POLICY 
DO 1 S=l,8 
IF(S.EQ.1) GOTO 201 
IF(S.EQ.2) GOTO 202 
IF(S.EQ.3) GOTO 203 
IF(S,EQ.4) GOTO 204 
IF (S. EQ.5) GOTO 205 
IF(S,EQ.6) GOTO. 206· 
IF(S.EQ.7) GOTO 207 
IF (S. EQ. 8) GOTO 208 

201 SS(l,1)=0 
SS(l,2)=0 
SS(l,3)=0 
SS(l,4)=0 
SS(2,1)=0 
SS(2,2)=0 
SS(3,1)=0 
GOTO 333 



C 

202 SS(l,1)=0 
SS(l,2)=0 
SS(l,3)=0 
SS(l,4)=0 
SS(2,1)=0 
SS(2,2)=0 
SS(3,1)=300 
GOTO 333 

203 SS(l,1)=30 
SS(l,2)=60 
SS(l,3)=90 
SS(l,4)=120 
SS(2,1)=°0 
SS(2,2)=0 
SS(3,1)=0 
GOTO 333 

204 SS(l,1)=0 
SS (1, 2) =O 
SS(l,3)=0 
SS(l,4)=0 
SS(2,1)=90 
SS(2,2)=210 
SS(3,1,)=0 
GOTO 333 . 

205 SS(l,1)=10 
SS(l,2)=20 
SS(l,3)=;30 
SS(l,4)=40 
SS(2,1)=30 
SS(2,2)=70 
SS(3,1)=100 
GOTO 333 

206 SS(l,1)=0 
SS(l,2)':"0 
SS(l,3)=0 
·ss(l,4):=6 
SS(2,1)=45 
SS(2,2)=105 
SS(3,1)=150 
GO.TO 333 

207 ' ss (1, 1) =15 
SS(l;.2)=30 
SS(l,3)=45 
ss ( 1, 4) =60 · 
SS(2,1)=0 
SS(2,2)=0 
SS(3,1)=150 
GOTO 333 

208 SS(l,1)=15 
SS(l,2)=30 
SS(l,3)=45 
SS(l,4)=60 
SS(2,1)=45 
SS(2,2)=105 
SS(3,1)=0 

333 DO 2 K=l,5 
DO 101 P=l,3 
DO 102 J=l,4 
DO 103 Q=l,500 

240 



C 

C 

C 

C 

GR(P,J,Q)=O 
'i'RANSIT(P,J,Q)=O 
PAB(P,J,Q)=O 
NR(P,J,Q)=O 
PR(P,J,Q),.;0 
PS(P,J,Q)=O 

103 CONTINUE 
102 CONTINUE ·· 
101 CONTINUE 

INSUMW=O.O 
INSUMD(l)=O.O 
INSUMD(2)=0.0 
INSUMR ('1) =O .O 
INSlJil,IR ( 2) =O. 0 · 
INSUMR(3)=0.0 
INSUMR(4)=0.0 

SOSUMW=O.O 
SOSUMD(l)=O.O 
SOSUMD(2)=0.0 
SOSUMR(l) =O. 0 
SOSUMR(2)=0.0 
SOSUMR (.3) =O. 0 
SOSUMR(4)=0.0 

GRSUMW=O.O 
GRSUMD(l)=O.O 
GRSUMD(2)=0.0 
GRSUMR(l) =O. O· 
GRSUMR(2)=0.0 
GRSUMR (.3) =O. 0 
GRSUMR(4)=0.0 

TRCSUM=O.O 

DO 5 T=l,500 
FDR(l,T)=NINT(XNORMAL()*10)+50 
FDR(2,T)=NINT(XNORMAL()*20)+100 
FDR(3,T)=NINT(XNORMAL()*30)+150 
FDR(4,T)=NINT(XNORMAL()*40)+200 
ADR(l,T) =MAX.(FDR(l,'r) +NINT (XNORMAL () *30), 0) 
ADR( 2, T) =Mru(( FDR ( 2, T) +NINT (XNORMAL ( ). *30}, 0) 
ADR(3,T) =MAX (FDR(3,T.) +NINT (XNORMAL () *.30), 0) 
ADR(4,T) =MAX. (FDR (4, T) +NINT (XNORMAL () *30), 0) 
ARRATE (Tl =MAX (1-ABS (XNO:RMAL ()) *CV;. 0. 0) 
LTDC(l,T)=LT2() 
LTDC (2, T) =LT2 () 
LTR(l,T)=LT2 () 
LTR (2, TJ ;,,LT2 () 
LTR(3,T)=LT2() 
LTR ( 4, T) =LT2 () 

5 CONTINUE 
****~******************************************************** 
* THIS PART IS DRP I (INFORMATION FLOW) * 
**~**.******************************************************* 
C INPUT FORECAST REQUIREMENT FOR Rl,R2,R3,R4 
C 

DO 15 T=l,500 
GR(l,l,T)=FDR(l,T) 
GR(l,2,T)=FDR(2~T) 

241 



GR(l,3~T)=FDR(3,T) 
GR(l,4,T)=FDR(4,T) 

15 .CONTINUE 
C INPUT FIRST THREE IN-TRANSIT AT Rl,R2,R3,R4 

DO 22 T=l,3 
TRANSIT(l,l,T)=FDR(l,T) 
TRANSIT ( l; 2, T) =FDR(·2, T) 
TAANSIT(l,3,T)=FDR(3,T) 
TRANSIT(l,4,T),,;FDR(4,T) 

22 CONTINUE -
C CALCULATE NET REQUIREMENT FOR Rl/R2,R3,R4 

DO 13 L=l,450 
DO 23 J=l,4 
PAB (1, J, 0) =SS (1, J) 
DO 33. T=L,L+ll 
IF(T,LE,L+2) THEN· 
NR(l,J,T)=O 
PR (1, J, T) =NR ( l, J, T) . 
PAB ( 1, J, T) =MAX (PAB ( 1, J, T-l) +TRANSIT (1, J, T)-GR (1, J, T), 0) 

ELSE . , ·· · · .. . · -

242. 

NR( 1, J, T) =MAX (GR (1, J ,.T)+SS ( 1, J)-PAB ( 1, J, T-1) -TRANSIT (1, J, T), 0) 
PR(l,J,T)=NR(l~J,T) 
PAB(l,J,T),,;MAX(PAB(l;J,T-'-l)+PR(l,J,T)+TRANSIT(l,J,T)-GR(l,J,T),O) 
PS(l,J,T-3)=PR(l,J;'i') " . END IF . .. . .,.· .. 

33 CONTINUE 
23 CONTINUE 

C CALCULATE THE FORECAST REQUIREMENT AT DC1,DC2 
DO 41 T=L,L+B 

_GR(2,l,T)=PS(l,l,Tf+PS(l,2,T) 
GR(2,2,T)=PS(1,3,T)+PS(l,4,T) 

41 CONTINUE .. 
C CALCULATE NET REQUIREMENT FOR DC1,DC2 

IF(L.GT.l) GOTO 10 
DO 42 J=l,2 
TRANSIT(2,J,l)=GR(2,J,l) 
TRANSIT(2,J,2)=GR(2,J,2) 
TRANSIT(2,J,3)=GR(2,J,3) 
PAB(2,J,O)=SS(2,J) 

42 CONTINUE 
10 DO 43 J=l, 2, 

DO 44 T=L,L+B 
IF(T.LE.L+2) THEN 
NR(2,J,T)=O 
PR(2,J,T)=NB,(2,J,T) 
PAB(2,J,T)=MAX(PAB(2,J,T-l)+TRANSIT(2,J,'I')-GR(2,J,T),O) 

ELSE 
NR (2, J, T) =MAX(GR (2, J,T) +ss (2, J)-PAB.(2, J, T-1)-TRANSIT (2, J, T), 0) 
PR(2,J,T)=NR(2,J,T) . ,, . . . 
PAB(2,J,T),,;MAX(PAB(2,J,T-l)+PR(2,J,T)+TRANSIT(2,J,T)-GR(2,j,T),O) 
PS(2,J,T-3)=PR(2,J,T) 
END IF 

44 CONTINUE 
43 CONTINUE 

C CALCULATE THE FORECAST REQUIREMENT AT W 
DO 51 T=L,L+5 
GR(3,1,T)=PS(2,l,T)+PS(2,2,T) 

51 CONTINUE 
C CALCULATE NET REQUIREMENT FOR W 

IF(L.GT.l) GOTO 20 



TRANSIT (3, 1, l') =GR(3, 1, 1) 
TRANSIT(3,1,2)=GR(3,l,2) 
TRANSIT(3,1,3)=GR(3,l,3) 
PAB(3,l,O)=SS(3,l) 

20 DO 52 T=L,L+5 
IF(T.LE.L+2) THEN· 

NR(3,1,T)=O 
PR(3,1,T)=NR(3,1,T) . 
PAB ( 3, 1, T) =MAX (PAB (3, 1,. T-1) +TRANSIT ( 3, 1, T) -GR (3, 1, T), 0) 
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ELSE 
NR(3,1,T)=MAX(GR(3,l,T)+SS(3,1)-PAB(3,1,T-1)-TRANSIT(3,1,T),O) 
PR(3,l,T)=NR(3,1,T) 
PAB(3,1,T)=MAX(PAB(3,l,T-l)+PR(3,l,T)+TRANSIT(3,1,T)-GR(3,1,T),0) 
PS(3,1,T-3)=PR(3,1,T) . 
EN.D IF 

52 CONTINUE 
************************************************************* 
* THIS PART IS DRP II (PHYEiICAL FLOW) * 
************************************************************* 
C CALCULATE. THE ACTUAL RECEIPT FROM VENDOR AT WAREHOUSE & 
C ACTUAL SHIPMENT TO DC1,DC2 

ARW(L) =NINT (TRANSIT (3, 1, L) *ARRATE(L)) 
IF ((PAB(3,1,L-l)+ARW(L)) .GE.GR(3,1,L)) THEN 

TRANSIT(2,1,L+LTDC(l,L))=PS(2,1,L)+TRANSIT(2,1,L+LTDC(l,L)) 
TRANSIT(2,2,L+LTDC(2,L))=PS(2,2,L)+TRANSIT(2,2,L+LTDC(2,L)) 

ELSE 
TRANSIT(2,1,L+LTDC(l,L))=NINT((PAB(3,l,L-l)+ARW(L))*(PS(2,1,L)/ 

+ REAL (PS (2, 1, L) +PS (2, 2, L)))) +TRANSIT (2, 1, L+LTDC (1, L)) 
TRANSJ:T (2, 2, L+LTDC (2, L) ) =PAB ( 3, 1, L-1) +ARW (L)-NINT ( (PAB ( 3, 1, L-1) 

+ +ARW(L))*(PS(2,1,L)/REAL(PS(2,1,L)+PS(2,2,L))))+TRANSIT(2,2,L+ 
+ LTDC (2, L)) 

END IF 
C CALCULATE THE ACTUAL SHIPMENT FROM DCl TO Rl,R2 

IF ( (PAB(2,1,L-l)+TRANSIT(2,1,L)) .GE.GR(2,1,L)) THEN 
TRANSIT(l,1,L+LTR(l,L))=PS(l,1,L)+TRANSIT(l,l,L+LTR(l,L)) 

TRANSIT(l,2,L+LTR(2,L))=PS(l,2,L)+TRANSIT(l,2,L+LTR(2,L)) 
ELSE 
TRANSIT(l,1,L+LTR(l,L))=NINT((PAB(2,1,L-l)+TRANSIT(2,1,L)) 

+ *(PS(l,1,L)/REAL(PS(l,1,L)+PS(l,2,L))))+TRANSIT(l,1,L+LTR(l,L)) 
TRANSIT(l,2,L+LTR(2,L))=PAB(2,1,L-l)+TRANSIT(2,l,L)-. 

+ NINT ( (PAB (2, 1, L~l) +TRANSIT (2, 1, L) +PR (2, 1, L)) 
+ *(PS(l,1,L)/REAL{PS(l,l,L)+PS(l,2,L))))+TRANSIT(l,2,L+LTR(2,L)) 

END IF 
C CALCULATE THE ACTUAL .SHIPMENT FROM DC2 TO R3,R4 

C 

IF ( (PAB(2,2,L-l)+TRANSIT(2,2,L)) .GE.GR(2,2,L)) THEN 
TRANSIT(l,3,L+LTR(3,L))=PS(l,3,L)+TRANSIT(l,3,L+LTR(3,L)) 

TRANSIT(l,4,L+LTR(4,L))=PS(l,4,L)+TRANSIT(l,4,L+LTR(4,L)) 
ELSE 

TRANSIT ( 1, 3, L+LTR (3, L)) =NINT ( ( PAB (2, 2, L-1) +TRANSIT (2, 2, L)) 
+ *(PS(l,3,L)/REAL(PS(l,3,L)+PS(l,4,L))))+TRANSIT(l,3,L+LTR(3,L)) 

TRANSIT(l,4,L+LTR(4,L))=PAB(2,2,L-l)+TRANSIT(2,2,L)-
+ NINT( (PAB(2,2,L-l)+TRANSIT(2,2,L)+PR(2,2,L)) 
+ *(PS(l,3,L)/REAL(PS(l,3,L)+PS(l,4,L))))+TRANSIT(l,4,L+LTR(4,L)) 

END IF 

C UPDATE THE PORJECTED AVAILABLE BALANCE AT Rl,R2,R3,R4,DC1,DC2,W 
C & IN-TRANSIT AT W 
C 

PAB(l,l,L)=MAX((PAB(l,l,L-l)+TRANSIT(l,l,L)-ADR(l,L)),O) 
PAB(l,2,L)=MAX((PAB(l,2,L-l)+TRANSIT(l,2,L)-ADR(2,L)),O) 



PAB(l,3,L)=MAX((PAB(l,3,L-l)+TRANSIT(l,3,L)-ADR(3,L)),0) 
PAB(l,4,L)=MAX({PAB(l,4,L-l)+TRANSIT(l,4,L)-ADR(4,L)),0) 
PAB (2, 1, L) =MAX ( (PAB (2, 1, L-1) +TRANSIT (2, 1, L)-GR(2, 1, L)), 0) 
PAB (2, 2, L) =MAX ( (PAB (2, 2, L-1 ).+TRANSIT (2, 2, L)-GR (2, 2, L)), 0) 
PAB (3, 1, L) =MAX ( (PAB (3, 1, L-1) +ARW (L) -GR (3, 1, L)), 0) 
TRANSIT(3,l,L+3)=PS(3,l,L) . , 
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**************************i*******~************************************ 

* THIS PART IS STAT: COLLECT THE PERFORMANCE MEASURE * 
*******************~**********j***************~************************ 
C CALCULATE THE AVERAGE INVENTORY ,STOCKOUT AND SERVICE LEVEL AT W 
C 

C 

IF(L.IiE_.40) GOTO 13 . .. 
S0(3,1,L)=MAX(GR(3,l,L)-(PAB(3,1,L-l)+ARW(L)),0) 
SOSUMW=:=SOSUMWfS0(3,l,L) 
CAVSOW(L)=SOSUMW/(L-40) 

AVGINV(3, l,L) = ( (PAB (3, l/L-1) +ARW (I.SJ +MAX (PAB (3, 1, L-1) +ARW (L)-
+ . . GR ( 3' LL) ' 0) rl 2 • 0 . . 

INSUMW=INSUMW+AVGINV(3, l,L), • 
CAVGW (L) =INSUMW/ (L-40) .. 
GRSUMW=GRSUMW+GR(3,l,L) 
CAVGRW ( L) =GRSUMW /( L-:4 0) 
SERVW (L) =1- (CAVSOW(L) /CAVGRW (L)) 

C CALCULATE THE AVERAGE INVENTOR¥ AND.STOCKOUT AT DC1,DC2 
C 

DO 61 J=l,2 
so (2, J, L) =;=MAX (GR(2, J, L)- (PAB (2, J,L-1) +TRANSIT (2, J, L)), 0) 
SOSUMD(J)=SOSUMD(J)+S0(2,J;L) 
CAVSOD(J,L)=SOSUMD(J)/(L-40) 
AVGINV(2,J,L)=((PAB(2,J,L-l)+T~SIT(2,J,L))+MAX(PAB(2,J,L-1)+ 

+ TRANSIT(2,J,L)-GR(2,J,L) ,0) )/2.0 
INSUMD(J)=INSUMD(J)+AVGINV(2,J,L) 
CAVGD(J,L)=INSUMD(J)/(L-40) 
GRSUMD(J)=GRSUMD(J)+GR(2,J,L) 
CAVGRD(J,L)=GRSUMD(J)/(L-40) 
SERVD(J,L)=l-(CAVSOD(J,L)/CAVGRD(J,L)) 

61 CONTINUE 
C CALCULATE THE AVERAGE INVENTORY AND STOCKOUT AT Rl,R2,R3,R4 

DO 62 J=l, 4 

C 

SO (1, J, L) =MAX (ADR(J·, L) - (PAB (1, J, L-1) +TRANSIT (i, J, L)), 0) 
SOSUMR( J}=so·sUMR {,J) +so ( 1, J, L) . . ' .. . 
CAVSOR(J,.L)=SOSUMR(J)/ (L-40) · 
AVGINV(l,J,L)=((PAB(l,J,L-l)+TRANSIT(l,J,L))+MAX(PAB(l,J,L-1)+ 

+ TRANSIT(l,J,L)~ADR(l,L).,O) )/2.0 
INSUMR ( J) =INSUMR ( J) +AVGINV ( 1, J, L) . 
CAVGR(J,L)=INSUMR(J)/(L-40) 
GRSUMR(J) =.GRSUMR(J) +GR (1, J., L) 
CAVGRR(J,L)=GRSUMR(J)/(L-40) 
SERVR(J/L) =1- (CAVSOR(J, L) /CAVGRR(J, L)) 

62 CONTINUE 

C UPDATE THE PORJECTED AVAILABLE BALANCE AT Rl,R2,R3,R4,DC1,DC2,W 
C & IN-TRANSIT AT W 
C 

PAB(l,l,L)=MAX((PAB(l,l,L-l)+TRANSIT(l,1,L)-ADR(l,L)),O) 
PAB(l,2,L)=MAX((PAB(l,2,L-l)+TRANSIT(l,2,L)-ADR(2,L)),O) 
PAB ( 1, 3, L) =MAX ( (PAB.( 1, 3, L-1) +TRANSIT ( 1, 3, L)-ADR(3, L))., 0) 
PAB (1, 4, L) =MAX.( (PAB (1, 4, L-1) +TRANSIT (1, 4, L)-ADR(4, L)), 0) 
PAB (2, 1, L) =MAX ( (BAB (2, 1, L-1) +TRANSIT (2, 1, L) -GR (2, 1, L)), 0) 
PAB(2,2,L)=MAX((PAB(2,2,L-l)+TRANSIT(2,2,L)-GR(2,2,L)),O) 



C 

PAB (3, 1, L) =MAX ( (PAB (3, 1, L-1) +ARW (L) -GR (3, 1, L)), 0) 
TRANSIT(3,1,L+3)=PS(3,l,L) 

C CALCULATE THE TOTAL RELATED COST AT PERIOD T 
C 
C TOTAL COST AT W 

C 

IF (PS(3,1,L}.GT.0) THEN 
OC=20.0 

ELSE 
oc=o.o· 

END IF 
TRCW(L)=(S0(3,1,L)*SC+AVGINV(3,1,L)*CC+OC)*VAW 

C TOTAL COST AT DC 
DO 72 J=l,2 

C 

IF ( PS ( 2 , J, L) . GT . 0) THEN 
OC=20.0 

ELSE 
OC=O.O 

END IF 
TRCDC ( J, L) =; (SO (2, J, L) *SC+AVGINV (2, J, L) *CC+OC) *VADC 

72 CONTINUE 

C TOTAL COST AT R 
DO 73 J=l,4 

C 

IF (PS(l,J,L).GT.0) THEN 
OC=20.0 

ELSE 
OC=O.O 

END IF 
TRCR(J,L)=(SO(l,J,L)*SC+AVGINV(l,J,L)*CC+OC)*VAR 

73 CONTINUE 

C TOTAL COST FOR THE WHOLE SYSTEM 
TRC(L)=(TRCW(L)+TRCDC(l,L)+TRCDC(2,L)+TRCR(l,L)+TRCR(2,L)+ 

+ TRCR(3,L)+TRCR(4,L)) 
TRCSUM=TRCSUM+TRC(L) 
CAVTRC (L)=TRCSUM/ (L-40) 

13 CONTINUE 
C 
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C SUMMARY REPORT ATW,DC,R FOR EACH REP IN EACH PERFORMANCE MEASURE: 
C AVG STOCKOUT, f..VG INVENTORY AND SERVICE LEVEL 
C 

SOW (S, K) =CAVSOW (440) 
INVW(S,K)=CAVGW(440) 
SERW (S, K).=SERVW (440) 

C FOR DC 
SODCl(S,K)=CAVSOD(l,440) 
INVDCl(S,K)=CAVGD(l,440) 
SERDCl(S,K)=SERVD(l,440) 
SODC2(S,K)=CAVSOD(2,440) 
INVDC2(S,K)=CAVGD(2,440) 
SERDC2(S,K)=SERVD(2,440) 

C FOR R 
SORl(S,K)=CAVSOR(l,440) 
INVRl(S,K)=CAVGR(l,440) 
SERRl(S,K)=SERVR(l,440) 
SOR2(S,K)=CAVSOR(2,440) 
INVR2(S,K)=CAVGR(2,440) 
SERR2(S,K)=SERVR(2,440) 



S0R3(S,K)=CAVSOR(3,440) 
INVR3(S,K)=CAVGR(3,440) 
SERR3(S,K)=SERVR(3,44Q) 
SOR4(S,K)=CAVSOR(i!,440) 
INVR4(S,K)=CAVGR(4,440) 
SERR4(S,K)=SERVR(4,440) 
TRCSYSTEM(S,K),,;,CAVTRC(440) 

2 CONT.INUE 
1 CONTINUE 
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*************~**********************************~***********~****** 
* SUMMARY REPORT * 
************~*****************~************************************ 

C 

C 
C 

C 

C 

. •. . 

OPEN (UNIT=2, FILE=' SETl 6-6. DAT', STATUS=' NEW' ) · . . 
WRLTE(2,894) ( (TRCSYSTEM(S:,K) ,SOW(S,K) ,INVW(S,K) ,SERW(S,K), 

+SODCl(S,K),INVDCl{S,K),SERDCl(S,K),SODC2(S,K),INVDC2(S,K), 
+SERDC2.(S, K), SORl (.S, K), INVRl (S, K),. SERRi ($, K), SOR2 (S, K), INVR2 ( S, K) 
+,SERR2(S,K),SOR3(S,K),INVR,3(S,K),SERR3(S,K),SOR4(S,K),INVR4(S,K) 
+,SERR4(S,K),K=115),S=l,8) . 

CLOSE(2) 
894 .FORMAT(1X,22F8.3). 

END 

FUNCTION RAND ( ) 
SAVE SEED 
INTEGER SEED,Cl,C2,C3 
PARAMETER' ''(Cl=29, C2=217, C3=2**22) 
REAL RAND 
DATA SEED/1/ 
SEED=MOD(SEED*Cl+C2,C3) 
RAND=REAL(SEED)/C3 . 
END 

FUNCTION XNORMAL() 
REAL Ul,U2,Vl,V2,W 

10 Ul=RAND ( ) 
U2=RAND( ) 
V1=2*Ul-1 
V2=2*U2-1 
. W,:~ (Vl ,..:Vl )+(V2.*V2) 
IF (W.GT.1) GOTO 10 
XNORMAL=(-2*LOG(W)/W)**0.5*V2 
END . 

FUNCTION LTl ( ) 
REAL X, 
X=RANDU ... 
IF(X.LE.0.2) THEN 
LTl=l. 
ELSE IF(X.LE.0.4) THEN 
LT1=2 
ELSE IF(X.LE.0.6) THEN 
LT1=3 
ELSE IF (X, LE. 0. 8) .THEN 
LT1=4 
ELSE IF (X. LE, 1. 0) THEN 
LT1=5 
END IF 
END 



C 
FUNCTION LT2 ( ) 
REAL X 
X=RAND() 
IF(X.LE.0.1) THEN 
LT2=1 
ELSE IF(X.LE;0.2) THEN 
LT2=2 
ELSE IF(X.LE.0.8) THEN 
LT2=3 
ELSE IF(X.LE.0.9) THEN 
LT2=4 
ELSE IF. (X. LE .1. 0) THE.N 
LT2=5 
END IF 
END 
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PROGRAM INIT3 
**********~************************************************************* 
* 
* 

THIS IS A PROGRAM WITH 5 REPS, 4 SAFETY STOCK POLICIES, 
USING L4L WITH WARMUP PERIOD 40 WEEKS ( TWO LEVELS) 

* 
* 

********************************~******~******************************** 

C 

INTEGER FDR ( 4, 5 0.0) · 
INTEGER ADR(4,500) 
INTEGER LTR(4, 500) ,ARW (500) 
REAL ARRATE(500) 
REAL AVGINV(2,4,500) 
REAL VAW,VAR 
REAL CC,SC,OC 
REAL CV . 
REAL TRC(500),TRCW(500),TRCR(4,500)~TRCSUM, 

+ CAVTRC (500) . . 
REAL INSUMW,INSUMR(4) 
REAL CAVGW (500), CAVGR(4, 500) 
REAL CAVGRW (500), CAVGRR(4, 500) 
REAL SERVW(500) ~ SERVR(4, 500) 
REAL SOSUMW,SOSUMR(4) 
REAL.GRSUMW,GRSUMR(4) 
REAL CAVSOW(500) ,CAVSOR(.4,509) 
REAL sow(4;5),INVW(4,5),sERW(4~5l 
REAL SOR1(4,5) 
REAL INVRl (4, 5), SERRl (4 1 5), SOR2 (4, 5), INVR2 (4, 5) ,SERR2 (4, 5) 
REAL SOR3 (4 , 5) , INVR:3 ( 4, 5) , SERR3 ( 4, 5 ) , SOR4 ( 4, 5) , INVR4 ( 4, 5) 
REAL. SERR4 ( 4, 5) , TRCSYSTEM ( 4, 5) 
lNTEGER S0(2,4,500) 
INTEGER GR(2,4,500),TRANSI'l'(2,4,500),PAB(2,4,0:500) 
INTEGER NR(2,4,500),PR(2,4,500),PS(2,4,500) 
INTEGE~ SS(2,4) 
DATA VAW/1.0/,VAR/1.21/ 
DATA CC/0.002/,SC/0.1/,0C/30.0/ 
DATA CV/0.05/ 

C INPUT SAFETY STOCK POLICY 
DO 1 S=l,4 
IF(S.EQ.l) GOTO 201 
IF(S.EQ.2) GOTO 202 
IF(S.EQ.3) GO'l'O 203 
IF(S.EQ.4) ~OTO 204 

201 SS(l,l)=O 
SS(l,2)=0 
.ss (1, 3) =O 
SS(l,4)=0 
SS(2,L)::;:0 
GOTO 3.3 3 ,: , 

202 SS(l,l)=O 
SS(l,2)=0 
SS(l,3)=0 
SS(l,4)=0 
SS(2,1)=300 
GOTO 333 

203 SS(l,1)=30 
SS(l,2)=60 
SS(l,3)=90 
SS(l,4)=120 
SS(2,1)=0 
GOTO 333 



C 

C 

C 

C 

C 

204 SS(l,1)=15 
SS(l,2)=30 
SS(l,3)=45. 
SS(l,4)=60 
SS(2,1)=150 

333 DO 2·K=l,5 
DO 101 P=l,2 
DO 102 J=l,4 
DO 103 Q=l,500 

GR(P,J,Q)=O 
TRANSIT(P,J,Q)=O 
PAB.(P~J,Q)=O 
NR(P,J,Q)=O 
PR(P, J, Q) =O 
PS(P,J,Q)=O 

103 CONTINUE 
102 CONTINUE. 
101 CONTINUE 

INSUMW=O. 0. 
INSUMR(l)=O.O 
INSUMR(2)=0~0 

·INSUMR(3)=0.0 
INSUMR(4)=0.0 

SOSUMW::::;0.0 
· SOSUMR ( 1) =0. 0 

SOSUMR (2) ::::;0. 0 
SOSUMR(3)=Q.O 
SOSUMR(4)=0.0 

GRSUMW;::::0.0 
GRSUMR(l)=O.O 
GRSUMR(2)=0.0 
GRSUMR(3)=0.0 
GRSUMR(4)=0.0 

TRCSUM=O. 0 

D0.5 T=l,500 
FDR(l,T)=l:1INT(XNORMAL()*10)+50 
FDR(2,T)=NINT(XNORMAL()*20)+100 
FDR(3,T)=NINT(XNORMAL()*30)+150 
FDR(4,T)=NINT(XNORMAL()*40)+200 
ADR(l,T) =MAX (FDR(i, T) +NINT (XNORMAL () *30), 0) 
ADR(2,T)=MAX(FDR(2,T)+NINT(XNORMAL()*30),0) 
ADR(3,T)=MAX(FDR(3,T)+NINT(XNORMAL()*30),0) 
ADR(4,T)=MAX(FDR(4,T)+NINT(XNORMAL()*30),0) 
ARRATE(T)=MAX(l-ABS(XNORMAL( ))*CV,0.0) 
LTR(l,T)=LT2 () . 
LTR (2, T) =LT2 () 
LTR(3, T) =LT2 () 
LTR ( 4, T) =LT2 () 

5 CONTINUE 
************************************************************* 
* THIS PART IS DRP I (INFORMATION FLOW) * 
************************************************************* 
C INPUT FORECAST REQUIREMENT FOR Rl,R2,R3,R4 
C 

DO 15 T=l,500 
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GR(l,1,T)=FDR(l,T) 
GR(l,2,T)=FDR(2,T) 
GR(l,3,T)=FDR(3,T) 
GR(l,4,T)=FDR(4,T) 

15 CONTINUE 
C INPUT FIRST SIX IN-TRANSIT AT Rl;R2,R3,R4 

DO 22 T=l,6 
TRANSIT(l,1,T)=FDR(l,T) 
TRANSIT ( 1, 2, 'I').=FDR(2, T) 
TRANSIT(l,3,T)=FDR(3,T) 
TRANSIT(l,4;T)=FDR(4,T) 

22 CONTINUE 
C CALCULATE NET REQUIREMENT FOR Rl,R2,R3,R4 

DO 13 L=l,450 
DO 23 J=l,4 
PAB(l,J,O)=SS(l,J) · 
DO 33 T;,,,L,L+ll 
IF(T.LE.L+5) THEN 
NR(l,J,T)=O 
PR(l,J,T)=NR(l,J,T) 
PAB_( 1, J, T) =MAX (PAJ3 ( 1, J, T;:_l) +TRANSIT ( 1, J, T) -GR ( 1, J, T), 0) 

ELSE 
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NR(l; J.,T) =MAX (GR(l,.J,T) +ss (1, J)-PAB (1, J,T-1)-TRANSIT (1, J,T), 0) 
PR(l,J,T)=NR(l,J,T) . 
PAB(l;J,T)=MAX(PAB(l,J,T:...l)+PR(l,J,T)+TRANSIT(l,J,T)-GR(l,J,T),0) 
PS(l,J,T-6)=PR(l,J,T) 
END IF . 

33·CONTINUE 
23 CONTINUE 

C CALCULATE THE FORECAST REQUIREMENT AT W 
DO 51 T=L, L+5 . .. 
GR(2,1,T)=PS(l,1,T)+PS(l,2,T)+PS(l,3,T)+PS(l,4,T) 

51 CONTINUE 
C CALCULATE NET REQUIREMENT FOR W 

IF. ( L. GT . 1) GOTO 2 0 
TRANSIT(2,1,l)=GR(2,1,1) 
TRANSIT (2, 1, 2) =GR(2, 1., 2) 
TRANSIT(2,l,3)=GR(2,1,3) 
PAB(2,1,0)=SS(2,1) 

20 DO 52 T=L,L+5 
IF(T.LE.L+2) THEN 

NR(2, 1,T) =O 
· PR ( 2, 1, '1') =NR ( 2., 1, T) 
PAB(2,1,T)=MAX(PAB(2,1,T-l)+TRANSIT(2,1,T)-GR(2,1,T),O) 

ELSE .... 
NR(2,.1,T) =MAX (GR(2, 1, T) +ss (2, 1)-PAB (2, 1;T-l)-TRANSIT (2, 1,T), 0) 
PR(2,1,T)=NR(2,1,T) 
PAB (2, 1, T) =MAX (PAB (2, 1, T-1) +.PR (2, 1, T) +TRANSIT (2, 1, T) -GR (2, 1, T), 0) 
PS(2,l,'1'~3)~~R(2,l,~) . 
END IF. . 

52 CONTINUE 
************************************************************* 
* THIS PART IS DRP II . (PHYSICAL FLOW) '* 
***~********************************************************* 
C CALCULATE THE ACTUAL RECEIPT FROM VENDOR AT WAREHOUSE & 
C ACTUAL SHIPMENT TO Rl,R2,R3,R4, 

ARW (L) =NI.NT (TRANSIT (2, 1, L) *ARRATE (L)). 
IF ((PAB(2,1,L-l)+ARW(L)) .GE.GR(2,l;L)) THEN 

TRANSIT ( 1, 1, L+LTR ( 1, L)) =PS ( 1; 1, L) +TRANSIT ( 1, 1, L+LTR (1, L)) 
TRANSIT(l,2,L+LTR(2,L))=PS(l,2,L)+TRANSIT(l,2,L+LTR(2,L)) 



C 

TRANSIT(l,3,L+LTR(3,L))=PS(l,3,L)+TRANSIT(l,3,L+LTR(3,L)) 
TRANSIT(l,4,L+LTR(4,L))=PS(l,4,L)+TRANSIT(l,4,L+LTR(4,L)) 

ELSE 
TRANSIT(l,1,L+LTR(l,L))=NINT((PAB(2,1,L-l)+ARW(L))* 

+ ( PS ( 1, 1, L) / ( GR ( 2, 1, L) * 1. 0) ) ) +TRANSIT ( 1, 1, L+ LTR ( 1, L) ) 
TRANSIT(l,2,L+LTR(2,L))=NINT((PAB(2,1,L-l)+ARW(L))* 

+ (PS(l,2,L)/(GR(2,l,L)*l.0)) )+TRANSIT(l,2,L+LTR(2,L)) 
TRANSIT(l,3,L+LTR(3,L))=NINT((PAB(2,l,L-l)+ARW(L))* 

+ (PS(l,3,L)/(GR(2,l,L)*l.0)) )+TRANSI.T(l,3,L+LTR(3,L)) 
TRANSIT(l,4,L+LTR(4,L))=NINT((PAB(2,l,L-l)+ARW(L))* 

+ (PS(l,4,L)/(GR(2,l,L)*l.0)) )+TRANSIT(l,4,L+LTR(4,L)) 
END IF 

C UPDATE THE PORJECTED AVAILABLE BALANCE AT Rl,R2,R3,R4,W 
C & IN-TRANSIT AT W 
C 

PAB(l,l,L)=MAX((PAB(l,1,L-l)+TRANSIT(l,1,L)~ADR(l,L)),O) 
PAB(l,2,L)=MAX((PAB(l,2,L-l)+TRANSIT(l,2,L)-ADR(2,L)),O) 
PAB (1, 3, L) =MAX ( ( PAB ( 1, 3, L-1) +TRANSIT ( 1, 3, L) -ADR ( 3, L) ) , 0) 
PAB ( 1, 4, L) =MAX( (PAB ( 1, 4, L-1) +TRANSIT ( 1, 4, L)-ADR( 4, L)), 0) 
PAB (2, 1, L) =MAX ( (PAB (2, 1, L-1) +ARW (L) -GR (2, 1, L)) ,.0) 
TRANSIT(2,1,L+3)=PS(2,1,L) 
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*********************************************************************** 
* THIS PART IS STAT: COLLECT THE PERFORMANCE MEASURE * 
*********************************************************************** 
C CALCULATE THE AVERAGE INVENTORY ,STOCKOUT AND SERVICE LEVEL AT W 
C 

C 

IF(L.LE.40) GOTO 13 
S0(2,1,L)=MAX(GR(2,l,L)-,-(PAB(2,1,L-l)+ARW(L)) ,0) 
SOSUMW=SOSUMW+S0(2,1,L) . 
CAVSOW(L)=SOSUMW/(L-40) 

AVGINV(2,1,L)=((PAB(2,1,L-l)+ARW(L))+MAX(PAB(2,1,L-l)+ARW(L)-
+ GR(2,1,L),0))/2.0 

INSUMW=INSUMW+AVGINV(2,l,L) 
. CAVGW (L) =INSUMW/ (L-40) 

GRSUMW=GRSUMW+GR(2,1,L) 
CAVGRW(L)=GRSUMW/(L-40) 
SERVW(L)=l-(CAVSOW(L)/CAVGRW(L)) 

C CALCULATE THE AVERAGE.INVENTORY AND STOCKOUT AT·Rl,R2,R3,R4 

C 

DO 62 J=l, 4 
SO(l,J,L)=MAX(ADR(J,L)-(PAB(l,J,L-l)+TRANSIT(l,J,L)),0) 
SOSUMR(J)=SOSUMR(J)+SO(l,J,L) 
CAVSOR(J,L)=SOSUMR(J)/(L-40) 
AVGINV(l,J,L)=((PAB(l,J,L-l)+TRANSIT(l,J,L))+MAX(PAB(l,J,L-1)+ 

+ TRANSI'I'(l,J,L)-ADR(l,L),0))/2.0 
INSUMR ( J) =INSUMR ( J)+AVGINV ( 1, J, L) . . 
CAVGR (J ,.L) =INSUMR (J) / (L-40) 
GRSUMR(J)=GRSUMR(J)+GR(l,J,L) 
CAVGRR(J,L)=GRSUMR(J)/(L-40) 
SERVR(J,L)=l-(CAVSOR(J,L)/CAVGRR(J,L)) 

62 CONTINUE 

C UPDATE THE PORJECTED AVAILABLE BALANCE AT Rl,R2,R3,R4,W 
C & IN-TRANSIT AT W 
C 

PAB(l,l,L)=MAX((PAB(l,1,L-l)+TRANSIT(l,1,L)-ADR(l,L)),O) 
PAB(l,2,L)=MAX((PAB(l,2,L-l)+TRANSIT(l,2,L)-ADR(2,L)),O) 
PAB(l,3,L)=MAX((PAB(l,3,L-l)+TRANSIT(l,3,L)-ADR(3,L)),O) 
PAB(l,4,L)=MAX((PAB(l,4,L-l)+TRANSIT(l,4,L)-ADR(4,L)),O) 



C 

PAB(2,1,L)=MAX((PAB(2,1,L-l)+ARW(L)~GR(2,1,L)),O) 
TRANSIT(2,1,L+3)=PS(2,1,L) 

C CALCULATE THE TOTAL RELATED COST AT PERIOD T 
C 
C TOTAL COST AT W 

C 

IF. (PS ( 2, 1, L) . GT . 0) THEN 
OC=20.0 

ELSE 
OC=O.O 

END IF. 
TRCW(L)=(S0(2,l,L)*SC+AVGINV(2,1,L)*CC+OC)*VAW 

C TOTAL COST AT R 
D073 J=l,4 

C 

IF (PS ( 1, J, L) . GT . 0) THE.N 
OC=20.0 

ELSE 
OC;=:0,0 

END IF 
TRCR(J,L)=(SO(l,J,L)*SC+AVG!NV(l,J,L)*CC+OC)*VAR 

73 CONTINUE 

C TOTAL COST FOR THE WHOLE SYSTEM 
TRC(L)=(TRCW(L)+TRCR(l,L)+TRCR(2,L)+TRCR(3,L)+TRCR(4,L)) 
TRCSUM~TRGSUM+TRC(L) 
CAVTRC (L) ,;,;TRCSUM/ (L-40) 

13 CONTINUE 
C 
C SUMMARY REPORT AT W,R FOR.EACH REP IN EACH PERFORMANCE MEASURE: 
C AVG STOCKOUT, AVG INVENTORY AND SERVICE LEVEL 
C 

SOW(S,K)=CAVSOW(440) 
INVW(S,K)=CAVGW(440) 
SERW(S,K)=SERVW(440) 

C FOR R 
SORl (S, K) =CAVSOR(l, 440) 
INVRl(S,K)=CAVGR(l,440) 
SERRl(S,K)=SERVR(l,440) 
SOR2 (S, K) =~VSOR.(2,.440) 
INVR2(S,K)=CAVGR(2,440) 
SERR2(S,K)=SERVR(2,440) 
SOR3(S,K)=CAVSOR(3,440) 
INVR3 (S~ K) '."'CAVGR(3, 440) 
SERR3(S,K)=SERVR(3,440) 
SOR4(S,K)=CAVSOR(4,440) 
INVR4(S;K)=CAVGR(4,440) 
SERR4(S,K)=SERVR(4,:440) 
TRCSYSTEM(S,K)=CAVTRC(440) 

2 CONTINUE 
1 CONTINUE 

************************************'****************************** 
* SUMMARY REPORT * 
******************************************************************* 

OPEN(UNIT=2,FILE='SET4-7.DAT',STATUS='NEW') 

252 

WRITE(2,894) ( (TRCSYSTEM(S,K) ,SOW(S,K) ,INVW(S,K) ,SERW(S,K) 
+,SORl(S,K),INVRl(S,K),SERRl(S,K),SOR2(S,K),INVR2(S,K) 
+,SERR2(S,K),SOR3(S,K),INVR3(S,K),SERR3(S,K),SOR4(S,K),INVR4(S,K) 
+,SERR4(S,K),K=l,5),S=l,4) 

CLOSE(2) 



C 
C 

C 
C 

C 
C 

C 
C 

894 FORMAT(1X,16F8.3) 
END 

FUNCTION RAND ( ) 
SAVE SEED 
INTEGER SEED,Cl,C2,C3 
PARAMETER (Ci=29,C2=217,C3=2**18) 
REAL RAND 
DATA SEED/1/ 
SEED=MOD(SEED*Cl+C2,C3) 
RAND=REAL(SEED)/C3 
END 

FUNCTION XNORMAL() 
REAL Ul, U2,Vl, V2,W 

10 Ul=RAND ( ) 
U2=RAND ( ) . 
Vl=2*Ul-l 
V2=2*U2-1 
W= (Vl *Vl) + (V2*V2) 
IF (W.GT.1). GOTO 10 
XNORMAL=(-2*LOG(W)/W)**0.5*V2 
END 

FUNCTION LTl ( ) 
REAL X 

.X=RAND() 
IF(X.LE.0.2) THEN 
LT1=2 
ELSE IF(X.LE.0.4) THEN 
LT1=4 
ELSE IF(X.LE.0.6) THEN 
LT1=6 
ELSE IF(X.LE.0.8) THEN 
LT1=8 
ELSE IF(X.LE.1.0) THEN 
LTl=lO 
END. IF 
END 

FUNCTION LT2 ( ) 
REAL X 
X=RAND() 
IF(X.LE.0.1) THEN 
LT2=2 
ELSE IF(X.LE.0.2) THEN 
LT2=4 
ELSE IF(X.LE.0.8) THEN 

. LT2=6 
ELSE IF(X.LE.0.9) THEN 
LT2=8 
ELSE IF(X.LE.1.0) THEN 
LT2=10 
END IF 
END 
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Table Bl. ANOVA Results for Mean SERW per Week 

Analysis of Variance for Mean SERW 

Source DF ss MS F p 

L.R. 1 29.1910 29.1910 7589.26 0.000 
D.U. 1 0.0711 o. 0711 18.49 0.000 
L.T. 1 0.0187 0.0187 4.87 0.028 
s.u. 1 0.3959 0.3959 102.93 0.000 
c.v. 1 0.0639 0.0639 16.62 0.000 
S.S. ·7 50;2795 7.1828 186_7. 42 0.000 
L.R.*D.U. 1 0.0945 '_0,0945 24.56 0.000 
L.R.:"L.T. 1, 0.3133 0.3133 81. 45 0.000 
L.R.*S,U. 1 0.0512 0.0512 13.32 0.000 
L.R.*C.V. 1 0.0639 0.0639 16.62 0.000 
LR. *S.S. 7 33.4791 4.7827 1243.44 0.000 
D.U.*L.T. 1 0.0212 0.0212 5.50 0.019 
D.U.*S.U. 1 '0.0077 0. 0.077 2.00 .0.158 
D.U.*C.V. 1 0.0127 0.0127 3. 2_9 0.070 
D.U.*S.S. 7 0.0412 0.0059 1.53 0.154 
L.T.*S.U. 1 0.0301 0.0301· 7.82 0.005 
L.T.*C.V. 1 0.0281 0.0281 7.31 0.007 
L;T.*S.S. 7 0.0587 0.0084 2.18 0.034 
S.U.*C.V. 1 0.0039 0.0039 1. 01 0.315 
S.U.*S.S. 7 0.1747 o. 025.0 6. 49 0.000 
C.V.*S.S. 7 0.0622 0.0089 2.31 0.024 
L. R. *D. u. *L. 'I'.· 1 ·0.0299 0.0299 7.78 0.005 
L.R.*D.U.*S.U. 1 0.0052 0.0052 1.36 0.243 
L.R. *D,_.U .. *C. V. 1 0.0127 0.0127 3.29 0.070 
L.R.*D.U.*S.S. 7 0.0409 o .• 0058 1. 52 0.157 
L. R. *L. T. *S. U. 1 0.0091 ·0.0091 2.35 0.125 
L.R.*L.T .. *C.V. 1 o.02e1 0.0281 7.31 0.007 
L.R.*L.T.*S.S. 7 0.1372 0.0196 5.09 0.000 
L.R.*S.U.*C.V. 1 q.0039 o .• 0039 1. 01 0.315 
L.R.*S.U.*S.S. 7 0.0953 O.Q136 3.54 0.001 
L.R.*C.V.*S.S. 7 0.0622 0.0089 2.31 0.024 
D.U.*L.T.*S.U. 1 0.0000 0.0000 0.01 0.931 
D.U.*L.T.*C.V. 1 0.0017 0.0017 0.45 0.501 
D.U.*L.T.*S.S. 7 0.0515 0.0074 1. 91 0. 064_ 
D.U.*S.U.*C.V. 1 0.0004 0.0004 0.11 0.740 
D.U.*S.U.*S.S. 7 0.0251 O.OQ36 0.93 0.481 
D.U.*C.V.*S.S. 7 0.0494 0.0071 1. 84 0.077 
L.T.*S.U.*C.V. 1 0.0027 0.0027 o. 70 o. 402 
L.T. *S."U. *S. S. 7 0.0676 0.0097 2.51 0.015 
L.T.*C.V.*S.S. 7 0.0408 ci.0058 1.52 0.158 
S.U.*C.V.*S.S. 7 0.0144 0.0021 0.54 0.807 
L.R.*D.U.*L.T.*S.U.· 1 0.0002 0.0002 0.05 0.820 
L.R.*D.U.*L.T.*C.V. 1 0.0017 0.0017 0.45 0.501 
L.R.*D.U.*L.Ts*S.S, '' 7 · 0;_0539 0.0077 2.00 0.052 
L.R.*D.U.*S.b.*c:v~ 1 0.0004 0.0004 0.11 0.740 
L.R.*D.U.*S.U.*S.S. 7 0.0266 0.0038 0.99 0.438 
L.R.*D.U.*C.V.*S.S. 7 0.0494 0.0071 1. 84 0.077 
L.R;*L.T.*S.U.*C.V. 1 0.0027 0.0027 0. 70 0.402 
L.R.*L.T.*S.U.*S.S~ 7 0.0291 0.0042 1.08 0.373 
L.R.*L.T.*C.V.*S.~. 7 0.0408 0.0058 1. 52 0.158 
L.R.*S.U.*C.V.*S.S. 7 0.0144 0.0021 0.54 0.807 
D.U.*L.T.*S.U.*C.V. 1 0.0122 0.0122 3.17 0.075 
D.U~*L.T.•s:ti:•s.s. 7 0.017,6 ·o. 0025 0.65 o. 711 
D.U.*L.T.*C.V.*S.S,·· 7 0.0714' 0.0102 2.65 0.010 
D. U. *S. U. *C, V-. *S. S. 7 0.0235 0.0034 .0. 87 0.528 
L.T.*S.U.*C.V.*S.S. 7 0.0395 0.0056 1.47 0.175 
L.R.*D.U.*L.T.*S.U.*C.V. 1 0.0122 0.0122 3.17 0.075 
L.R.*D.U.*L.T.*S.U.*S.S. 7 0.017,8 0.0025 0.66 o. 706 
L.R.*D.U.*L.T.*C.V.*S.S. 7 0.0714 0.0102 2.65 0.010 
L.R.*D.U.*S.U.*C.V.*S.S. 7 0.0235 0.0034 0.87 0.528 
L.R.*L.T.*S.U.*C.V.*S.S. 7 0.0395 0.0056 1. 47 0.175 
D.U.*L.T.*S.U.*C.V.*S.S. 7 0.0073 0.0010 0.27 0.965 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 0.0073 0.0010 0.27 0.965 
Error 1024 3.9387 0.003 
Total 1279 119.6421 
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Table B2. ANOVA Results for Mean SERDCl per Week 

Analysis of Variance for Mean SE:RDCl 

Source DF ss MS F p 

L.R. 1 60. 7026 6.0. 7026 2980.26 0.000 
D.U. 1 0.9934 0.9934 48.77 0.000 
L.T. 1 1.1182 1.1182 54.90 0.000 
s.u. 1 0.1710 0.1710 8.40 0.004 
c.v. 1 0.2639 0.2639 12.96 0.000 
S.S. 7 30.6892 4 .. 3842 215.25 0.000 
L.R.*D.U. 1 1. 3954 1. 3954 68.51 0.000 
L.R.c*L .. T. 1 0. 2 942 0.2942 14.44 0.000 
L.R.*S.U. 1 0.0137 0.0137 0.67 0.412 
L.R.*C.V. 1 0.2639 0.2639 12.96 0.000 
L.R.*S.S. 7 27.5642 3.9377 193.33 0.000 
D.U.*L.T. 1 0.1661 0.1661 8.15 0.004 
D.U.*S.U. 1 0.0186 0.0186 0.91 0.339 
D.U.*C.V. 1 0.0602 0.0602 2.96 0.086 
D.U.*S.S. 7 0. 7 914 0.1131 5.55 0.000 
L.T.*S.U. 1 0.0820 0.0820 4.03 0.045 
L'.T.*C.V. 1 0.0252 0.0252 1. 23 0.267 
L.T.*S.S. 7 0.1568 0.0224 1.10 0.361 
S.U.*C.V. 1 0. 0119 0.0119 0.58 0.445 
S.U.*S.S. 7 0.1125 0.0161 0. 7 9 0.597 
C.V.*S.S. 7 0.2323 0.0332 1. 63 0.123 
L.R .. *D.U.*L;T, 1 0 .2184. 0.2184 10. 72 0.001 
L.R.*D.U.*S.U. 1 0.0218 0.0218 1. 07 0.301 
L.R.*D.U.*C.V. 1 0.0602 0.0602 2.96 0.086 
L.R.*D.U.*S.S. 7 0.8374 0.1196 5.87 0.000 
L.R.*L.T.*S.U. 1 0.0243 0.0243 1.19 0.275 
L.R.*L.T.*C.V. 1 0.0252 0.0252 1. 23 0.267 
L.R.*L.T.*S.S. 7 0.1448 0. 0207 i. 02 0.418 
L.R.*S.U.*C.V. 1 0. 0119 0.0119 0.58 0.445 
L.R.*S.U.*S.S. 7 0.0695 0.0099 0. 4 9 0.844 
L.R.*C.V.*S.S. 7 0.2323 0.0332 1. 63 0.123 
D.U.*L.T.*S.U. 1 0.0309 0.0309 1. 52 0.218 
D.U.*L,T.*C.V. 1 0.0013 0.0013 0.07 0.799 
D.U.*L.T.*S.S. 7 0.2932 0.0419 2.06 0.046 
D.U.*S.U.*C.V. 1 0. 0007 0.0007 0.03 0.852 
D.U.*S.U.*S.S. 7 0.1999 0.0286 1. 40 0.201 
D.U.*C.V.*S.S. 7 0.2410 0.0344 1. 69 0.108 
L.T.*S.U.*C.V. 1 0.0170 0.0170 0.83 0.361 
L.T.*S.U.*S.S. 7 0.1243 0.0178 0.87 0.528 
L.T.*C.V.*S.S. 7 0.2603 0.0372 1. 83 o. 07 9 
S.U.*C.V.*S.S. 7 0.0467 0.0067 0.33 0.942 
L.R.*D.U.*L.T.*S.U. 1 0.0342 0.0342 1. 68 0.196 
L.R.*D.U.*L.T.*C.V. 1 0.0013 0.0013 0.07 0.799 
L.R.*D.U.*L.T.*S.S. 7 0.3116 ·0.0445 2.19 0.033 
L.R.*D.U.*S.U;*C.V. 1 0.0007 0;0007 0.03 0.852 
L.R.*D.U.*S.U.*S.S. 7 0.1942 0.0277 1. 36 0.218 
L.R.*D.U.*C.V.*S.S. 7 0.2410 0.0344 1. 69 0.108 
L.R.*L.T.*S.U.*C.V, 1 0.0170 0.0170 0.83 0.361 
L.R.*L.T.*S.U.*S.S. 7 0.1195 0.0171 0.84 0.556 
L.R.*L.T.*C.V.*S.S. 7 0.2603 0.0372 1. 83 0. 079 
L.R.*S.U.*C.V.*S.S. 7 0.0467 0.0067 0.33 0.942 
D.U.*L.T.*S,U.*C.V. 1 0. 0618 0.0618 3.04 0.082 
D.U.*L.T.*S.U.*S.S. 7 0.1883 0.0269 1. 32 0.237 
D.U.*L.T.*C.V.*S.S. 7 0.1616 0.0231 1.13 0.339 
D.U.*S.U.*C.V.*S.S. 7 0.1238 0.0177 0.87 0.531 
L.T.*S.U.*C.V.*S.S. 7 0.0630 0.0090 0.44 0. 876 
L.R.*D.U.*L.T.*S.U.*C.V. 1 0.0618 0.0618 3.04 0.082 
L.R.*D.U.*L.T.*S.U.*S.S. 7 0.1826 0.0261 1.28 0.256 
L.R.*D.U.*L.T.*C.V.*S.S. 7 0.1616 0.0231 1.13 0.339 
L.R.*D.U.*S.U.*C.V.*S.S. 7 0.1238 0.0177 0.87 0.531 
L.R.*L.T.*S.U.*C.V.*S.S. 7 0.0630 0.0090 0.44 0. 876 
D.U.*L.T.*S.U.*C.V.*S.S. 7 0.0530 0.0076 0.37 0. 919 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 0.0530 0.0076 0.37 0. 919 
E:rror 1024 20.8571 0.0204 
Total 127 9. 151. 3686 
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Table B3. ANOVA Results for Mean SERRl per Week 

Analysis of Variance for Mean SERRl 

Source DF ss MS F p 

L.R. 1 1. 72563 1.72563 48.42 0.000 
D.U. 1 2.31523 2.31523 64.96 0.000 
L.T. 1 2.33210 2.33210 65.43 0.000 
s.u. 1 0.13534 0.13534 3.80 0.052 
c.v. 1" 0.85140 0,85140 23.89 0.000 
S.S. 7 28.66195 4.09456 114. 88 0.000 

. L.R:.*o·.u. 1 0.77333 0.77333 21. 70 0.000 
L.R.*L.T. 1 0.00910 0.00910 0.26 0.6i4 
L.R.*S.U. 1 0.04963 0.04963 1.39 0.238 
L.R .. *C.V. 1 0.85140 0.85140 23.89 0.000 
L.R.*S.S. 7 29.63416 4 .23345'. 118.78 0.000 
D .. U.*L.T. 1 O.J,0253 0.10253 2.88 0.090 
o;u.*s.u. ~' 1 o:0241.3 0.02413 0.68 0.411 
D.U.*C.V. 1 0.01268 0.01268 0.36 0.551 
D.U.*S.S. 7 1.11152 0.15879 4.46 0.000 
L. T·.*S. U. 1 0.11598 0.11598 3.25 0.072 
L.T.*C.V. 1 0.03640, 0.03640 1. 02 0.312 
L.T . .*S. S. 7 0.37419 0.05346 1.50 0.163 
S.U.*C.V. 1 ·.0.01510 0.01518 0.43 0.514 
S.U.*S.S. 7 Q.2713(; 0.03877. 1. 09 0.369 
C.V.*S.S. 7 0.68860 0.09837 2.76 0.008 
L.R.*D.U .. *L.T. 1 0.04023 0.04023 1.13 0.288 
L.R.*D.U.*S.U. 1 0.03009 0 •. 03009. 0.84 0.358 
L.R.*D.U .. *C.V. 1 0.01268 0.01268 0.36 0.551 
L.R.*D.U.*S.S. 7 1.36096 0.19442 5. 46 0.000 
L.R.*L.T.*S.U. 1 . o. 07601 0·.07601 2.13 0.144 
L.R.*L.T.*C.V. 1 0,.03640 .0.03640 ·1.02 0.312 
L.R.*L.T.*S.S. 7 0.39283 : 0. '05612 1.57 0.139 
L.R.*S.U.*C.V. .. 1 0.01518 0.01518 o. 43. 0.514 
L.R.*S.U.*S.S. 7 0.17788 0.02541 0.71 0.661 
L.R.*C.V.*S.S. 7 0.68860 0.09837 2.76 0.008 
D.U.*L.T.*S.U. 1 0.03987 0.03987 1.12 0.290 
D.U.*L.T.*C.V. 1 0.00316 0.00316 0.09 ·o •. 766 
D.U.*L.T.*S.S. 7 0.585·56 0.08365 2.35 0.022 
D.U.*S.U.*C.V. 1 0.00023 0.00023 0.01 0.935 
D. U. *S. U. *S. S·. 7 0.28689 0.04098 1.15 0.329 
D.U.*C.V.*S.S. 7 0.39005 0.05572 1.56 0.143 
L. T. *S. U .·*c. V. 1 0.02867 0.02867 0.80 0.370 
L.T.~S.U.*S.S. 7 0.18024 0.02575 0.72 0.653 
L.T.*C.V.*S.S. 7 0.39805 0.05686 1.60 0.133 
S.U.*C.V.*S .. S. 7 0.10277 0.01468 0. 41 0.895 
L.R.*D'.p;*L.r.*s.u. 1 0.04541 0.04541 1.2,7 0~259 
L.R.*D.U,*L.T.*C.V. 1 0.00316 0.00316 0.09 0.766 
L.R.*D.U.*L.T.*S.S. 7 0.58575 0.08368 2.35. 0.022 
L.R.*D.U.*S.U;fC.V. 1 0.00.023 0.00023 0.01 0.935 
L.R.*D.U.*S~U.*s:s~ 7 0.28768 0.04110 1.15 0.327 
L,R. *D.U. *c.:v. *S.S. 7 0.39005 0.05572 1.56 0.143 
L.R.*L.T.*S.U.*C.V. 1 0.02867 0.02867 0.80 0.370 
L.R.*L.T.*S.U.*S.S. 7 0.18775 0.02682 0.75 0.627 
L.R.*L.T.*C;V.*S.S. 7 0.39805 0.05686 1. 60 0.133 .. 
L.R.*s.0.*c.v:*~.s. 7 . 0.1027·7 .· o i cn.4 68 0.'41 0. 9'95 · 
D.U.*L.T.*S.U.*C.V. 1 0.06472 0.06472 1. 82 0.178 
D.U.*L.T.*S.U.*S.S. 7 0.18935 0.02705 o. 76 0.622 
D.U.*L.T.*C.V.*S.S. 7 0.48140 o. 06877 1. 93 0.062 
D.U.*S.U.*C.V.*S.S. 7 0.16752 0.02393 0.67 0.696 
L.T.*S.U.*C.V.*S.S. 7 0.13842 0.01977 0.55 0.793 
L.R.*D.U.*L.T.*S.U.*C.V. 1 0.06472 0.06472 1. 82 0.178 
L.R.*D.U.*L.T.'*S.U.*S.S. 7 0.18722 0.02675 o. 75 o. 629 
L.R.*D.U.*L.T.*C.V.*S.S. 7 0.48140 0.06877 1. 93 0.062 
L.R.*D.U.*S.U.*C.V.*S.S. 7 0.16752 0.02393 0.67 0.696 
L.R.*L.T.*S.U.*C.V.*S.S. 7 0.13842 0.01977 0.55 0. 793 
D.U.*L.T.*S.U.*C.V.*S.S. 7 0.16004 0.02286 0.64 0.722 
L.R.*D.U.*L.T.*S.U.*C.V.*S.S. 7 0.16004 0.02286 0.64 0.722 
Error 1024 36.49640 0.03564 
Total 1279 115.86491 
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APPENDIX C. 

RESULTS OF, STOCKOUT ANALYSIS. AND INVENTORY LEVEL ANALYSIS_ 

WH_EN CHANGING DISTRIBUTION NETWORK 

. . . 

Table Cl. ANOVA Results · for Average • SOW When Changing Distribution 
Network 

· Table C2; ANOVA Results for Av~rage SORl When Changing Distribution 
Network 

.· . . 

Table C3. ANOVA Results for Average INVW When Changing Distribution 
Network 

Table C4. ANOVA Results for Average INVRl When Changing Distribution 
Network 

Figure Cl. Main Effects Plot for Ave.rage SOW When Changing Distribution 
Network 

Figure C2. Means Plot for SOW as Function of Lot-Sizing Rule and 
Safety Stock Policy When Changing Distribution Network 

Figure C3. Main Effects Plot for Average ·soRl When Changing 
Distribution Network 

Figure C4. Means Plot for SORl as Function of Lot-Sizing Rule and 
Safety Stock Policy When Changing Distribution Network 

. ,.. ... . . .· 

Figure cs; ·Main.Ef:f;ects Plot for Avera9e INVW When Changing 
Distribution Network 

Figure C6. Means.P+ot for INVW as Function of Lot-Sizing Rule and 
Safety Steck Policy When Changing Distribution Netwo.rk 

Figure C7. Main Effects.Plot for Average INVRl When Changing 
, Distribution Network 

Figure CB. Means Plot for INVRl as Function of Lot-Sizing Rule .and 
Safety Stock Policy When Changing Distribution Network 

Figure C9. Means Plot for INVRl as Function of Lead Time Uncertainty 
and Safety Stock Policy When Changing Distribution Network 



Table Cl. ANOVA Results for Average SOW When 
Changing Distribution Network 

Analysis of Variance for Average sow 

Source DF ss MS F p 

L.R. 1 252464 252464 14.89 0.000 
D.U. 1 1 1 0.00 0.993 
L.T .. 1 145476 145476 8.58 0.004 
S.S. 3 1340682 446894 26.35 0.000 
L.R.*D.U. 1 .169 169 0.01 0.921 
L.R.*L.T. 1 125143 125143 7.38 0.008 
L.R.*S.S. 3 178099 59366 3.50 0.017 
D.U.*L.T. 1 32107 32107 1. 89 0.171 
D.U.*S.S. 3 52069 17356 1. 02 0.385 
L.T.*S.S. 3 76337 25446 1. 50 0.218 
L.R.*D.U.*L.T. 1 34502 34502 2.03 0.156 
L.R.*D.U .. *S.S. 3 48736 16245 0. 96 0. 415 
L.R.*L.T.*S.S. 3 99623 33208 1. 96 0.124 
D.U.*L.T.*S.S. 3 42.91 7 14306 0.84 0.472 
L.R.*D.U.*L.T.*S.S. 3 46169 15390 0.91 o. 439 
Error 128 2170703 16959 
Total 159 4645199 
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Figure Cl. Main Effects Plot for Average SOW When 
Changing Distribution Network 

265 



Mean 

100 

0 

Interaction Plot - Means for SOW 

2 3 

S.S. Policy 
4 

LR. 

- L4L 
-·EOQ 

l 

266 

Figure C2. Means Plot for SOW as a Function of Lot-Sizing 
Ru:J..e. and ~afetyStock Policy When Changing 
Distribution Network 

Table C2 . AN_OVA Results for Average SOR.1 When Changing 
Distribution Network 

Analysis of Variance for Average SORl 

Source DF ss MS. F p 

L.R. 1 4229.27 4229.27 2851.69 0.000 
D,U. 1 40.88 40.88 27.57 0.000 
L.T. 1 240.41 240.41 162.10 0.000 
S.S. 3 140.10 46. 70 31. 4 9 0.000 
L.R.*D.U. 1 9.83 9.83 6.63 0. 011 
L.R.*L.T, 1 129.69 129,69 87 ;45 0.000 
L.R.*S.S. 3 68.19 22.73 15.33 0.000 
r:i.U.*L.T. 1 8.88 8.88 5. 9.9 b.016 
D.U.*S.S. 3 3.50 1.17 0. 79 0.503 
L.T.*s.s·, 3 2.j36 Q.95 0.64 0.589 
L.R.*D.U.*L.T. 1 0.03 0.03 0.02 0.886 
L.R.*D.U.*S.S. 3 i.62 0.54 0.36 o. 780 
L.R.*L.T.*S.S. 3 3.20 1. 07 0.72 0.543 
D.U.*L.T.*S.S. 3 . 6. 45 2.15 1. 45 0.231 
t.R.*D.U.*L.T.*S.S. 3 9.52 3.17 .2.14 0.098 

: 
128 189.83 1 .. 48 Error 

Tot~l 159 5084.27 
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Figure C4. Means Plot for SORl as a Function of Lot~Sizing 
Rule and Safety Stock Policy When Changing 
Distribution Network 



Table C3. ANOVA Results for Average INVW When 
Changing Distribution Network 

' 

Analysis of Variance for Average INVW 

Source DF ss MS F p 

L.R. 1 86627390 86627.390 7815.19 0.000 
D.,U. 1 25490 25490 2.30 0.132 
L.T. 1 328678 328678 29. 65 0.000 
S.S. 3 11992676 3997559 360.64 0.000 
L.R.*D.U. 1 3361.8 33618 3.03 0.084 
L.R.*L.T. 1 257311 2.57311 23.21 0.000 
L.R.*S.S. 3. 5420900 1806967 163.02 0.000 
D.U.*L.T. 1 2 2 0.00 0.989 
D.U.*S.S. 3 4 6432, 15477 1. 40 0.247 
L.T.*S.S. 3 483781 161260 14.55 0.000 
L.R.*D.U.*L.T. 1 288 288 0.03 0.872 
L.R.*D.U.*S.S. 3 40837 13612 1.23 0.302 
L.R.*L.T.*S.S. 3 500897 166966 15.06 0.000 
D.U.*L.T.*S.S. 3 29611 9870 0.89 0.448 
L.R.*D.U.*L,T.*S.S. 3 28401 9467 0.85 o. 467 
Error 128 1418815 11084 
Total 159 107235125 
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Figure C6. Means Plot for INVWas a Function of Lot-Sizing 
Rule and Safety Stock Policy When Changing 
Distribution Network 

Table C4. AN OVA Results for Average INVRl When 
Changing Distribution Network 

Analysis of Variance for Average INVRl 

Source DF ss MS F p 

L.R. l 27852608 27852608 5350.47 0.000 
D.U. .1 2701 2701 0.52 0.473 
L.T. 1 137474 137474 26. 41 .0.000 
S.S. 3 154.659 51553 9.90 0.000 
L.R.*D.U. 1 13273 13273 2.55 0.113 
L.R. *L.T. 1 151694 151694 29.14 0.000 
L.R.*S.S. 3 129185 43062 8.27 0.000 
D.U.*L.T. 1 17195 17,195 3.30 0.071 
D.U.*S.S. 3 4903 1634 0.31 0.815 
L.T.*S.S. 3 77630 25877 4. 97 0.003 
L .. R.*D.U.*L.T. 1 15647 15647 3.01 0.085 
L .. ·R. * D. U. *S.S. 3 5232 17 44 , 0. 34 0.800 
L.R,*L.T.*S.S. 3 77240 25747 4.95 0.003 
D.U.*L.T.*S.S. 3 7619 2540 0.49 0.691 
L.R.*D.U.*L.T.*S.S. 3 7402 2467 0.47 0. 701 
Error 128 666322 5206 
Total 159 29320783 
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Figure ca. Means P],ot for INVRl as a Function of Lot-Sizing 
Rule and Safety Stock Policy When Changing 
Distribution Network 
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Figure C9. Means.Plot for INVRl as a Function of Lead Time 
Uncertainty and Safety Stock Policy When 
Changing Distribution Network 
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