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NOMENCLATURE 

The nomenclature used in this thesis is consistent with that used by Bird et al. 

(1987). The representation of scalars, vectors and tensors is as follows except where 

otherwise indicated. 

s = scalar ( no underline) 

y_= vector (single underline) 

i = second-order tensor ( double underline) 

B = tensor of arbitrary order (boldface sans serif) 

Also, the notation for quantities drawn from the literature and not used in the development 

of the models in this thesis are described in the text. The following list is not a complete 

list of variables in this thesis, but include only those terms that are most closely related to 

equations developed specifically for this thesis. Any consistent set of units may be used. 

Aj Rouse matrix 

!!as Base vector 

Cij Kramers matrix 

DP Degree of Polymerization, equivalent # of mers 

E Depth of the potential well 

f(b) Brownian force 

f(hl Hydrodynamic force 
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!(q,) Intermolecular force 

_z{h) Generalized Brownian force 

s.[(h) Generalized Hydrodynamic force 

Lcr> Generalized Intermolecular force 

F Phase space probability distribution function 

f Configurational probability distribution function 

.fc Probability of obtaining ECC crystal growth 

JH Hermann's orientation distribution function 

./Eee Probability of obtaining an ECC crystal 

!Fee Probability of obtaining an FCC crystal 

g,t Metric matrix components 

G,1 Inverse metric matrix components 

G st Modified contravariant metric matrix components 

g Determinant of the metric matrix 

H Hamiltonian of system 

LiH Enthalpy Change 

J Normalization constant 

k Boltzmann's constant 

k Avrami coefficient 

K Kinetic energy of polymer molecule 

L Length of dumbbell or length of connector rod 

L • Dimensionless length of dumbbell; L/Lc or connector rod 

xii 



Le Lattice spacing in the crystal; distance between two adjacent dumbbells 

m Mass of the dumbbell 

mp Mass of the polymer molecule 

ma Mass of bead a 

Mt Coupling Tensor 

n A vrami exponent 

l!a. Momentum vector of bead a 

J!c Momentum vector of center of mass 

P Generalized Momentum 

Q Orientation vector along the length of the dumbbell 

Q Generalized coordinate 

Q Generalized velocity 

Ba Position vector of bead a with respect to the center of mass of the dumbbell. 

r* Dimensionless distance between beads of adjacent dumbbells; r.e/Lc 

!c position vector of center of mass of dumbbell 

!a position vector of bead a 

r velocity vector 

r.ep Distance between beads used to specify intermolecular and/or intramolecular 

interaction 

! Unit vector corresponding to spherical polar coordinate e 

L\S Entropy Change 

T Temperature 
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Tm Melting point temperature 

! Unit vector corresponding to spherical azimuthal coordinate <I> 

!! Unit orientation vector along length of dumbbell 

!! Unit vector corresponding to spherical radial coordinate r 

v Mass-average velocity of solution/melt 

Ya.' Velocity due to perturbation of flow field at bead a 

Yo Fluid velocity at origin 

v Bead reference number; for rigid dumbbell, + 1 or -1 

\Jf Configurational probability distribution function = fsin8 

~ Crystalline volume fraction 

( Friction coefficient 

k Friction tensor 

3 General velocity-space distribution function 

E Strain Rate, also called elongation or extension rate 

<I> Spherical azimuthal coordinate 

cp(t) Volume fraction of crystal at time t 

cr Potential well parameter corresponding to lower limit of attractive well 

8 Spherical polar coordinate 

r Potential energy 

A Time constant for rigid dumbbell 

~ Traceless tensor equal to the transpose of the velocity gradient tensor 

~ Unit tensor 
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Dimensionless Quantities 

We=Ai Weissenberg number 

* r = rsep/Lc Interbead separation distance 

Crystal lattice parameter 

E/kT Potential well parameter, Inverse dimensionless temperature 
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CHAPTER 1 

INTRODUCTION 

The extended chain crystal (ECC) microstructure has been shown to result in 

polymeric materials that rival steel and carbon fibers for strength and stiffness (Barham 

and Keller, 1985; Balta-Calleja et al., 1994, Govaert et al., 1993). The ECC structure can 

be generated in commodity polymers using conventional processing techniques like fiber 

spinning, die extrusion, and sheet drawing (Bayer et al., 1989; Elyashevich et al., 1982, 

1990, 1993; Hsiung and Cakmak, 1993). The process of generating a crystal structure by 

the application of a flow field is called Flow-Induced Crystallization (FIC). However, the 

ECC morphology is often generated at the expense of toughness, isotropy, strength in the 

transverse direction, and is sometimes responsible for the delamination of injection molded 

parts and gelation (Barham and Keller, 1980; Cabane, 1997). Therefore, there is a need to 

optimize polymer processing operations to yield products that fully exploit the potential of 

the ECC morphology while minimizing the undesirable· effects. However, optimization 

algorithms require mathematical models of ECC development which have not been 

available to date. This thesis draws on well established thermodynamic and rheological 

principles to develop a kinetic based, mechanistic model of flow-induced crystallization 

that could be used to optimize polymer processing operations. 

Polymer crystals may have either a folded chain crystal (FCC) or an extended chain 

crystal structure. A polymer molecule in an FCC structure may fold several times within a 
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crystallite before leaving the crystallite, and then may either become part of an amorphous 

domain or may re-enter another crystallite. Extended chain crystals do not fold within the 

crystal. ECC formation is further complicated by the introduction of rheological variables 

into the process. As a result, there is no universally accepted theory of ECC structure 

formation. The presence of a flow field also increases the complexity of in-situ 

observation of FIC, and conventional experimental techniques are found to be inadequate 

to observe and record the process (Tree, 1990; Kakani, 1996). 

Experimental investigations of FIC have been underway since the discovery of FIC 

by van der Vegt and Smit (1967). Significant milestones in this effort include the first 

direct observation of FIC in polymer melts by Sakellarides and McHugh (1985, 1987) and 

the first quantitative crystallization kinetics data generated by McHugh et al. ( 1991 a, 

1991 b, 1992, 1993, 1995). More recently, research at Oklahoma State University has 

produced kinetics data from in-situ observation of extensional FIC from a one-phase 

polymer melt (Kakani, 1996; Jacob, 1998). 

The experimental evidence shows that quiescent crystallization is primarily a 

function of the degree of undercooling and is relatively slow due to the low self diffusion 

rate of polymer molecules in the melt (Alfonso et al., 1979; Baranovskii et al., 1991 ). In 

contrast, flow-induced crystallization, which is a function of rheological variables such 

stress, strain, or rate of strain as well as temperature, occurs much more rapidly than 

quiescent crystallization (Chang et al., 1993). For a model to successfully capture the FIC 

process, the rheological and thermodynamic contributions must be combined in a unified 

theory of crystallization. 
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Table 1-1 gives a chronological summary of the vanous approaches used m 

modeling FIC processes, including the kinetic model presented in this thesis. 

Modeling Approach Major Features Major Drawbacks 

Avrami Theory First Crystallization Model Semi-Empirical, 
(1941, 1942, 1943) Volumetric Balance Basis Quiescent 

Thermodynamic Melting Point Elevation (MPE) Equilibrium 
(Flory, 194 7) First Statistical Theory MPE not always seen 

Nucleation-Based Enhanced Nucleation Non- Predictive 
(Ziabicki, 1974) 

Continuum Models Orientation Factors Non-Predictive 
(J aneschitz-Kriegl, Equilibrium 

1983) 
Hamiltonian Bracket Hamiltonian Bracket Formalism Vague Molecular 

(Bushman and Non-equilibrium Characterization 
McHugh, 1996) Sequential Approach 
Kinetic Theory Simple, Non-Equilibrium, Not Fully Developed 

(Tsai, 1997, This Predictive, 
Thesis) General, Integrated Approach 

Table 1-1. Summary ofFIC Modeling Techniques 

The first four modeling techniques in Table 1-1 have hitherto been associated with 

equilibrium-based models and cannot be used to model transient flows associated with 

FIC. The continuum models of Ziabicki and Jarecki (1974, 1978, 1988, 1996) and Eder 

Janechitz-Kriegl and coworkers (1988, 1990, 1992) have been recently improved 

(Jerschow and Janeschitz-Kriegl, 1996, 1997) to model shearing flows associated with 

FIC. However, the continuum models lack the general predictive capability of the kinetic 

model presented in this thesis. While the older models (Avrami, 1939; 1940, 1941; Flory, 

194 7) have some merit in laying the framework for future development, they have been 

widely regarded as unsuitable for modeling FIC processes because of the absence of an 
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integrated coupling between the rheological and thermodynamic components of the FIC 

process. 

The Hamiltonian Bracket model (Bushman and McHugh, 1997) is the most recent 

model to be reported in the literature. This model is the first predictive, non-equilibrium 

model of its kind. However, the use of dumbbell kinetic theory for model characterization 

appears to be inconsistent with the description of multiple segments associated with the 

polymer molecule. This approach is open to question and is also too complex to be easily 

incorporated into optimization algorithms. Thus, there is a need for a non-equilibrium 

model that will seamlessly integrate the flow and thermodynamic effects in a predictive 

manner. 

In the FIC model presented in this thesis, a novel approach was taken to blend the 

rheological and thermodynamic components of the crystallization process. Kinetic theory 

as applied to polymer molecules, was combined with the well known Lennard-Jones 

potential function to describe the kinetics of flow-induced crystallization. The major focus 

was on prediction of the polymer structure for extensional, flow-induced crystallization. 

The model presented here can be generalized to include any flow field. However, an 

extensional flow field was chosen since it corresponded to experiments that were 

concurrently being performed. (Kakani 1996; Jacob, 1998). 

In addition to modeling the formation of extended chain crystals (ECC), an 

attempt was also made to develop the working equations for the simultaneous prediction 

of Folded Chain Crystals (FCC) and ECCs using a multi-bead-rod approach. A more 

explicit description of polymer kinetic theory, as applied to modeling orientation and 
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crystallization, along with the selection criteria for mechanical models and a detailed 

review of the modeling techniques will be provided in Chapter 2. 

The model presented in this thesis was developed as part of a more general 

research project at Oklahoma State University to study the formation of extended chain 

crystals by flow-induced crystallization. The project comprises experimental, modeling 

and optimization efforts. Figure 1-1 (Tsai, 1997) shows the different steps involved in 

achieving the ultimate objective of the FIC project, which is to develop computer tools for 

designing polymer processes and equipment that will effectively utilize the potential 

enhancement in mechanical properties offered by extended chain crystals. 

The work of Tsai (1997) represents a major breakthrough in the development of 

optimization algorithms using microstructure models based on kinetic theory. In the 

development of his optimization technique, Tsai chose an objective function based on 

molecular orientation and modeled the flow of a polymer resin in a die using the 

conservation equations: motion, continuity and energy. A kinetic model was combined 

with the conservation equations and data from the experiments, as shown in the box at the 

right of Figure 1-1, to provide information about polymer configurations and the 

probability of obtaining a certain morphology. The resulting information was used in an 

optimization algorithm to predict the optimum design of a polymer process. Tsai' s model, 

however, was an equilibrium-based kinetic model which modeled polymer orientation 

above the melting point and did not account for intermolecular interactions. Hence, 

estimates of crystallinity or rate of crystallization were not possible using Tsai's model. 

Nevertheless, Tsai's work represented the first time that kinetic theory was used with 

optimization algorithms for die design. 
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Control Variables 
AP, T, Geometry 

Equation of Continuity 
Equation of Motion 
Equation of Energy 
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Mechanical 
Properties 

Optimum 
Configuration 

Yes 

Stop 

Figure 1-1. Algorithm for Development of Computer Tools for 
Process and Equipment Design Based on FIC 
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The model developed in this thesis is expected to provide more insights into the 

transient development of ECC configurations for different flow and temperature 

conditions and will eventually be incorporated into optimization algorithms. Also, the 

predictive nature of the model will help in devising experiments needed to achieve 

different microstructures in polymers. 

1.1 Thesis Organization 

Chapter 1 (this chapter) introduces the concept of flow-induced crystallization and 

presents the need for a model that will capture the essential physics of the process in a 

manner that is consistent with experiment and which does not separate the flow and 

thermodynamic contributions. Chapter 2 provides background information and a literature 

review on experimental research relevant to the model development ( e.g. flow fields, 

temperature ranges, and crystallization behavior), a discussion of various models used to 

describe quiescent and FIC processes, a section on polymer kinetic theory and how kinetic 

theory relates to the development of the current model, and finally, a discussion of 

methods of solving partial differential equations that arise in the development of the 

model. A detailed description of the assumptions, model parameters and a derivation of 

the working equations and boundary conditions that form the basis of the model is 

provided in Chapter 3. In Chapter 4, the results from various simulations using the model 

are presented with some interpretation and discussion. Comparisons were made to 

experiment and a parametric evaluation was performed. Finally, in Chapter 5 some 

conclusions are drawn from the work presented in this thesis and recommendations for 

future research in modeling FIC are provided. 
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CHAPTER2 

BACKGROUND AND LITERATURE REVIEW 

The purpose of this chapter is to provide a framework of fundamental concepts 

and a summary of recent, relevant research in the area of flow-induced crystallization. 

References will be made to current FIC research efforts at Oklahoma State University 

wherever applicable. The discussion will specifically focus on topics germane to the 

development of a new dynamic, flow-induced crystallization model that will be discussed 

in detail in Chapter 3 and Chapter 4. These topics include the following: 

Experimental Research 

Experimental research will be discussed in relation to the types of flow fields used 

to characterize flow-induced crystallization and especially with reference to experiments 

that are being concurrently performed at OSU. 

Modeling Research 

In the section on modeling, the different approaches used to model flow-induced 

crystallization will be described along with the relative merits and demerits of each 

method. 

Polymer Kinetic Theory 

A description of kinetic theory modeling and the basic concepts involved therein 

will be provided since the model developed in this thesis was based on polymer kinetic 

theory. 
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Solution Techniques and Partial Differential Equations 

This section will discuss the classification and solutions of partial differential 

equations (PDEs). 

2.1 Experimental Research 

There has been considerable debate about the nature of the flow field that should 

be used to generate the extended chain crystal morphology in the laboratory. In theory, if 

extensional flows can be successfully implemented they can potentially produce materials 

with higher degrees of extended chain crystallinity than shearing flows (Eder et al., 1992). 

However, since flows in actual polymer processing operations have both extensional and 

shearing components, experiments in both regimes have been performed to identify the 

mechanism of crystallization. 

In all cases, the FIC observations were made usmg optical or spectroscopic 

measurements. Among the techniques used to observe on-line FIC are birefringence 

(McHugh et al., 1987, 1997; Hoff and Pelzbauer, 1992; Nagai et al., 1992; Kalashnikov 

and Tsiklaury, 1996; Kakani, 1996; Navarro et al., 1997), dichroism, NMR, IR 

(Sterzynski, 1988; Voice et al., 1993a), Raman spectroscopy (Bulkin, 1985; Wunder, 

1986; Citra et al., 1995), refractometry (Bernabeu et al., 1993), and X-Ray diffraction 

(Pazur et al., 1993; Voice et al., 1993b; Gosche! et al, 1996). 

Birefringence measurement is the least expensive optical technique and also offers 

the advantages of non-intrusiveness and the ability to perform localized measurements and 

measurement of the stress tensor components where the SOR is applicable (Tree, 1990). 

Recently, techniques have been developed to perform three-dimensional birefringence 
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measurements, providing a more complete picture of molecular orientation (Fuller, 1995). 

Bansal and Shambaugh ( 1996) used simultaneous measurements of density and 

birefringence to correlate crystallinity data for fiber spinning operations. They found that 

the rise in density corresponded well with the rise in crystallinity measured by 

birefringence. 

Although m many cases, the linear stress-optic relationship (SOR) has been 

successfully used to interpret optical data in terms of rheological variables, sometimes, the 

validity of the SOR is questioned especially for higher strain rates and after the onset of 

crystallization (Ziabicki and Jarecki, 1988). The deviation from the linear SOR is often 

represented by an additional stress term, called the stress offset, which arises when the 

temperature approaches the glass transition temperature. 

Kroger ( 1997) used a modified version of the stress optic relationship to study 

amorphous orientation in elongational flows of polystyrene. Kroger found that the stress 

offset is not directly proportional to the elongation rate above 0.1 sec ·1 for a given 

temperature. For elongation rates higher that 1 sec·1, Kroger (1997) found that the stress 

offset reaches an asymptotic value. Kroger also found that for a given elongation rate the 

stress offset becomes increasingly significant as the temperature decreases. 

2.1.1 Extensional Flow Experiments 

Extensional flow experiments using capillary rheometry have been widely reported 

in the literature (Southern and Porter, 1970, 1972; Titomanlio and Marucci; 1990; Muller 

et al, 1994). However, these methods present die blockage and interfacial curvature 

problems (Han and Drexler, 1973) and hence are unsuitable for in-situ FIC observation. 

10 



Tree (1990, 1993) and Guy (1992) generated the first in-situ crystallization 

kinetics data for planar elongational flow of a two-phase polymer melt using a 4-Roll Mill. 

Siddiquee (1992) and Ma (1994) modified and improved Tree's original experimental set­

up to include a Meissner-type rheometer with an optical train to study the deformation of 

thick polymer films. This was a significant improvement over the earlier technique since it 

obviated the need for a second carrier phase and it was possible to observe the 

crystallization behavior directly and for a wider range of strains and strain rates. 

Kakani ( 1996) refined Ma's experimental technique and collected a large amount 

of data that described the birefringence behavior of polyethylene following brief 

extensional deformations. Jacob (1998) further improved Kakani's experimental 

technique using better temperature control and strain measurement methods. Jacob used 

both birefringence and dichroism to characterize the FIC process. 

In their experiments, Kakani and Jacob used a polyethylene resin which had a 

melting point of 132°C. The polymer sample (a thick film) was annealed at 135°C and 

then quenched to 124.6°C. An extensional flow field was applied thereafter, and the 

birefringence and dichroism behavior was recorded during and after the cessation of flow. 

The strain rates used in these experiments were typically in the range of 0.1 s-1 to 8 s- 1. 

The times of deformation ranged from 0.2 to 20 seconds, so that the extensional strain 

was on the order of 2. Typical light transmission and torque data from Kakani and Jacob 

are shown in Figure 2-1. From the results shown in Figure 2-1, one can see that there are 

three distinct regions in the data. 

Region 1 corresponds to the sample quench time (from 135 °C to 124.6°C) before 

the onset of flow. The pixel value drops towards the end of the quench period from 18 to 
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10 and then remains constant until the application of flow. . This observation was also 

reported by Ma (1994). Kakani attributed the drop in pixel value to the quiescent 

formation of nucleation sites. The nucleation sites were responsible for scattering the light 

which resulted in a decrease in the pixel value. Kakani performed experiments under 

quiescent conditions and found a similar pattern of behavior (Region 1) when the polymer 

was quenched. He concluded, therefore, that the drop in pixel value in Region 1 occurred 

regardless of whether a flow was applied and hence, was not related to FIC. However, in 

his experiments, Kakani also observed that if the drop off in pixel value (Region 1 ) was 

not observed, then subsequent flow-induced crystallization was also not observed. 

Region 2 in Figure 2-1 corresponds to the duration of flow or deformation. A 

rapid increase in the light intensity is observed in this region which is manifested in the 

form of a spike in the pixel value and torque data. The pixel value then decreased rapidly 

until it reached a value of about 16. This decrease is not evident in Figure 1-1 because of 

the time scale used to plot the data. The spike is superimposed on the subsequent increase 

in pixel value. Kakani (1996) provides detailed figures plotted on a shorter time scale. 

The initial increase in intensity was attributed mainly to the amorphous orientation of the 

polymer molecules. However, since the pixel value did not drop to the pre-deformation 

value, a hypothesis was proposed that crystallization had begun during the deformation. 

Kakani and Jacob confirmed this hypothesis by running experiments with polystyrene 

(PS), a non-crystallizable polymer and found a similar increase in the pixel value upon 

elongation, but a subsequent decrease to pre-deformation pixel values. 
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Region 3 starts a short time after the cessation of flow and continues until the end 

of the experiment. The pixel value was observed to decrease for a short period of time 

immediately after the flow stopped. Region 3 begins when the pixel value starts to 

increase. The pixel value increased until it reached a peak and then decreased to an 

equilibrium value. Figure 2-1 also shows that in Region 3 the torque remained constant. 

The observation of constant torque suggests that the increase in pixel value cannot be 

attributed to stress-induced orientation and, hence, is exclusively due to flow-induced 

crystallization. The decrease in pixel value in Region 3 from the peak value was attributed 

to the sinusoidal relationship of the light intensity to crystallinity ( Guy, 1991, Kakani, 

1996). 

The reduced retardance vs. time behavior for the data in Figure 2-1 is shown in 

Figure 2-2. The reduced retardance, which is directly proportional to the relative 

crystallinity of the polymer, is defined as the retardance at any given time t, divided by the 

retardance at infinite time. The time scale in Figure 2-2 starts at the cessation of flow. 

Figure 2-2 shows that the reduced retardance initially increases rather quickly with time 

and then approaches an asymptotic plateau of 1. 0 at large values of time. This behavior is 

directly indicative of crystallization and was also observed by Tree (1990); Guy (1991 ), 

Ma (1994), McHugh et al. (1994); Bushman and McHugh (1996, 1997) and Jacob (1998). 

In summary, the following conclusions can be drawn from Kakani and Jacob's 

experiments. 
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a) FIC was observed only for materials which had pre-existing orientation. 

b) The FIC process began during the deformation. 

c) There was a rapid increases in crystallinity immediately after cessation of flow. 

d) After very long time periods, the rate of crystallization was essentially zero. 

Another recent effort in the area of experimental characterization of FIC using 

extensional flow fields is that of McHugh and coworkers ( 1997) who studied the 

deformation of an HOPE droplet in an LDPE carrier phase using Tree's original 4-roll 

mill. An optical train was used to measure the birefringence and scattering dichroism 

during and after the flow. 

Two types of experiments were considered. In the first experiment, the suspended 

droplet was deformed for about one minute and then the flow was stopped. For each run, 

the birefringence and dichroism video images were recorded. In the second experiment, 

the droplet was deformed continuously and the images related to the absorbance and 

retardation of the scattering dichroism were recorded. 

Bushman and McHugh (1996, 1997) used strain rates on the order of 0.03 s-1 and 

deformation times on the order of 1 minute. The relaxation time for polyethylene was 

found to be about 50s. The experiments showed that the initial crystallization rate 

increased with strain rate and deformation time. Bushman and McHugh also showed, by 

comparison to their model predictions, that immediately after the cessation of flow, the 

molecules are under the opposing influences of amorphous relaxation and orientation due 

to crystallization. However, after a few seconds the tendency to crystallize dominated and 

the birefringence signal was seen to increase until it reached an equilibrium value. This 
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observation is in perfect agreement with the observations of Kakani and Jacob. Bushman 

and McHugh' s model will be described later in the section on modeling. 

One of the most frequently encountered parameters in FIC research is the 

orientation function used to characterize molecular configurations based on optical 

observations. The most widely used orientation function is the Hermann's orientation 

function,JH, shown in equation (2-1). 

f H = f ( 3( cos2 8 )- 1) (2-1) 

where, 8 is the angle between the chain axis direction in the crystal and the machine 

direction and <cos28> is an average value. This function has also been used elsewhere to 

characterize orientation/crystallinity observed by X-ray diffraction and other spectroscopic 

methods (Desai and Abhiraman, 1983, 1985, 1986; Pazur et al., 1993). An orientation 

function value of 1 is indicative of perfect alignment or orientation in the chain axis 

direction, whereas a value of O represents random orientation. 

Under the influence of dynamic small-strains, polyethylene shows three kinds of 

mechanical relaxation mechanisms, called a, ~' and y relaxations, in order of decreasing 

temperature. The a relaxation is attributed to the relaxation mechanisms in the crystalline 

phase. The ~ relaxation mechanism is attributed to relaxation in the amorphous phase and 

the y mechanism is attributed to the localized motions of chain ends or branches in the 

amorphous phase. 

Zhou and Wilkes ( 1997) conducted experiments to analyze the relationship 

between orientation and mechanical relaxation phenomena usmg uniaxially drawn 

polyethylene films. The polymer film samples were 5 cm wide and 10 cm long and were 
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annealed at 120°C for 20 minutes. The films were mounted in a Seiko dynamic mechanical 

stress (DMS) instrument and a tensile force was applied in the frequency range from 0.01 

to 10 Hz. The film samples were cut at different angles relative to the machine direction 

and the temperature was increased from 30°C to 120°C at a heating rate of 0.5°C/min. 

Zhou and Wilkes observed an increase in crystallinity of upto 16% and concluded 

that the orientation process was linked to mechanical relaxation processes. They also 

concluded that there were three types of coupled a-relaxation processes that were 

responsible for the orientation behavior of the polymer. The first was a 1 relaxation, which 

was an intra-lamellar process and which was related to a grain boundary motion within the 

crystalline lamellae. The second process, the an relaxation, was an intra-crystalline 

process believed to be related to the anisotropy of the crystal lattice potential. Finally 

there existed an inter-lamellar relaxation responsible for orientations in the 8 = 45° 

direction which is related to the area and nature of the interface between crystalline 

lamellae and the amorphous phase. 

Elyashevich et al. (1982, 1990,1993a, 1993b) studied the molecular morphology 

and enhancement in mechanical properties obtained due to extensional FIC using two 

processes. In the first process, crystallization was due to melt extrusion or melt extension 

of a resin to a relatively low degree of crystallinity. In the second process, crystallization 

was due to uniaxial drawing or stretching of a polymer to a higher degree of initial 

crystallinity. They observed that the final morphology of PE and PP samples were 

different for the two cases. Higher strength materials were obtained using uniaxial 

drawing as compared to the melt extruded polymer. However, the drawn material had 
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microcracks present, whereas, no discontinuities were observed for the melt extruded 

material. 

Porter and Kanamoto (1993, 1994) studied the extensional drawing of 

poly(ethylene terephthalate) (PET) and poly (ethylene-2, 6-naphthalate) and found that the 

crystallinity that develops in the polymer increases with draw ratio and temperature above 

the glass transition temperature up to a saturation value. 

Buckley et al. (1996) found that the maximum crystallinity achievable in a PET 

sample undergoing biaxial extension at strain rates between 1 and 30 -I s, and temperatures 

between 75 and 120°C depended on the total strain. However, no crystallization rate 

dependence on total strain was observed. 

On the other hand, some researchers have found that the crystallization rate did in 

fact, depend on the total strain. For example, Alvarez et al. (1995) studied the 

crystallization kinetics of poly(isobutylene) under elongational flow, using Hencky strains 

of up to 3, and found that the onset of crystallization depended on the strain rather than 

the strain rate. Kobayashi et al. (1995) also reported that the orientation of whiskers of 

composite polymers in a uniaxial elongational flow field depended on the total strain only. 

From the above discussion, one can conclude that researchers used several 

different parameters to characterize the rate and extent of crystal growth and the 

morphology of the crystal structure that develops as a result of the FIC process. 

However, for the most part, experiments using extensional flows have shown that the FIC 

process begins sometime before the cessation of the flow, but is most significant after the 

cessation of flow. Also, the initial rate of crystallization is dependent on the strain rate 

and the extent of crystal growth depends on the relative magnitude of the amorphous 
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relaxation and crystallization driving forces. In some cases, the induction time to 

crystallization is also affected. Usually, the kinetics is determined only by the strain rate 

and the temperature. A theoretical model which can predict the effect of strain and strain 

rate is thus required to rationalize the experimental observations and explain the trends 

observed. 

Other accounts of experimental characterization of FIC using extensional flows 

available in the literature (Picot et al, 1989; Binding et al., 1990; Chang et al., 1993; 

Maffetone et al., 1996; Desai, Abhiraman and coworkers,1985, 1986, 1988, 1989). The 

works of Kakani ( 1996) and Jacob (1998) are good starting points for a review of the 

recent literature on experimental FIC. 

2.1.2 Shearing Flow Experiments 

There has been considerably more effort devoted to shearing flow experiments as 

compared with extensional flow experiments. The reason for this is the generation of a 

shearing flow is easier than that of an extensional flow. For example, the flows in 

extrusion and injection molding operations are generally accepted to have larger shearing 

components that extensional components. On the other hand, fiber spinning from the melt 

or solution, and film tentering in web handling operations are associated with extensional 

flows. Titomanlio et al. (1997) have shown that even in processes like injection molding 

elongational stresses can be as relevant as shear stresses and even more important than 

shear stresses at the gates of the mold. The effect of elongational stress components on 

crystallization kinetics is especially important for quick gate sealing when the gates are 

very t~n. 
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Proponents of shearing flow have argued that shearing flows are easier to 

reproduce. Nevertheless, McHugh and coworkers (1988, 1990, 1996), Tree (1990, 1993) 

and others (Kroger, 1997; Titomanlio, 1997) contend that in order to maximize the 

potential improvement in mechanical properties of polymers, there is a need to devise new 

processes and equipment around extensional flows. The process of devising new die 

geometries using optimized conditions has only just begun, and the work of Tsai ( 1997) 

represents a major step in this direction. 

Eder et al. (1988, 1992) and Liedauer et al. (1993, 1995) propose that 

crystallization induced by elongational flow at a constant extension rate can be explained 

in terms of a shear flow with a shear rate exponentially increasing with time. They believe 

that because extension rates in industrial spinning processes are not constant, but increase 

considerably along the spinning line, it is even more difficult to experimentally characterize 

extensional flow than previously thought. 

Eder and coworkers (1988, 1990a, 1990b, 1992) also observed that since the 

crystallization curves obtained from experiment and correlated by most models, indicate 

that the plot of relative crystallinity versus time is essentially a sigmoidal curve, with a 

steep growth section, the time scale covered by the steep growth section was relatively 

small compared to the time it took to eventually reach equilibrium. Hence they assumed 

that the induction time to crystallization was equal to the time taken to reach half the 

eventual degree of crystallinity. Eder et al. found that the induction time to crystallization 

increased as the shearing rate decreased until finally, at about 0.001 f1, the induction time 

was about the same as that for quiescent crystallization. The use of the half-time of the 

linear growth section as an induction time however may not always be a good 
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approximation especially in cases where the time until the onset of the steep growth 

section is long and where the equilibrium value of crystallinity is reached quickly. 

Jerschow and Janeschitz-Kriegl (1996, 1997) have suggested the use of short-term 

shearing flows with a high shear rate instead of elongational flows. They found two 

distinct morphologies corresponding to two stages of crystal development. The first stage 

of crystallization occurred during or just after the cessation of flow where oblong 

precursor particles were observed to form in a direction perpendicular to the flow. This 

phenomenon was attributed to the rotational component of the shearing flow. 

Subsequently, these particles aligned themselves in the direction of the flow and formed 

highly oriented layers at regions of high shear (material near the walls of the experimental 

duct) and fine grained layers at regions oflow shear (away from the walls). In every case, 

Janeschitz-Kriegl et al. found that orientation increased as the strain rate increased. 

Hamdan and Swallowe (1996) studied the strain-rate and temperature-dependence 

of the mechanical properties of polyetherketone and polyetheretherketone in shearing 

flow. They found that the crystallization and the consequent degree of orientation were 

found to be highly strain-rate dependent with no increase in crystalline content occurring 

in quasi-static tests and increases of up to 20 percent in higher rate tests. 

The increase in orientation with increasing shearing rate was not observed by Altan 

et al. (1990), who studied short fiber orientation. Altan et al. believe that the shearing rate 

is only a kinetic factor and does not significantly affect the eventual degree of crystallinity. 

This meant that for a given total strain, a higher strain rate might accelerate the orientation 

process, but does not affect the overall degree of orientation of the polymer. Although 

Altan et al. did not study crystallization per se, smce they were interested in fiber 
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orientation, their analysis used the same rheological parameters for characterization of the 

orientation process. Since crystallization essentially involves orientation, qualitative 

deductions based on fiber orientation work, for purely rheological correlation, are not 

entirely out of order. 

Titomanlio et al. (1997) performed isothermal viscometric tests on a polypropylene 

sample to evaluate the enhancement of crystallization kinetics due to shearing flow. Since 

Tiotmalio et al. were most interested on the effect of shear stresses on crystallization on, 

they defined the induction time of crystallization as the time required for the shear stress to 

increase by a factor of 10. Their results showed that above a shear rate of 0.01 sec 1, 

crystallization increases as the shear rate increases, but for a shear rate less than 0.01 sec-1, 

the crystallization rate remains essentially constant. They also found that the effect of 

shearing on crystallization kinetics was greater at 145°C than it was at 13 5 °C which 

seemed to suggest that elevated temperatures had a positive effect on the crystallization 

kinetics under the influence of shear stresses. 

In summary, work on shearing flows seems to suggest that the strain rate affects 

the crystallization kinetics positively through shorter induction times and/or faster initial 

rates. Also, higher temperatures can be used in conjunction with shearing flows to 

produce crystalline polymers. There is still uncertainty regarding the issue of whether a 

higher strain rate increases the degree of crystallinity and more research needs to be 

performed to investigate this effect. However, the total strain does promote higher 

crystalline content just as in extensional flow. Researchers in the area of FIC still remain 

divided on the issue of whether shearing flows are indeed better at producing ECC 

morphologies than are extensional flows. 
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The ECC morphology can also be produced by quiescent processes and by a 

pressure gradient. In some cases, ECC formation during polymerization (Agarwal, 1993; 

Orr et al., 1997) and under the influence of an electromagnetic field have also been 

reported. 

The effect of pressure and sub-cooling on the time required to achieve half the 

ultimate crystallinity is shown in Figure 2-3. These observations are based on the 

experiments of Baranovskii et al. ( 1991) who studied the isothermal crystallization of 

isotactic polypropylene under hydrostatic pressure. Although higher crystalline content 

was obtained for higher pressures (not shown), Baranovskii, found that higher half-times 

result at these pressures, for temperatures closer to the melting point. In other instances, 

whenever pressure-induced crystallization was analyzed, it was most often investigated 

within the context of a flow field and using compressive stresses to characterize the 

process (Kowalewski and Glaeski, 1992, Bartczak et al., 1992). 

2.2 Modeling Research 

The models used to describe flow-induced crystallization have traditionally been 

extensions of the models used in quiescent crystallization. Hence, in this section, a 

description of the techniques used to model quiescent crystallization will first be 

presented, followed by a discussion of the modifications of the quiescent models and the 

more recent methods used to characterize crystallization in polymers due to a flow field. 
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Figure 2-3. Half-Time of Crystallization as a Function of Degree of 
Sub-Cooling for Various Pressures (Baranovskii et al., 1991) 
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2.2.1 Quiescent Crystallization Models 

Isothermal, quiescent crystallization processes have historically been modeled 

using the Avrami (1939,1940,1941) equation which expresses the relative crystallinity, ~, 

as an exponential function of time t, as shown below. 

In logarithmic form, equation (2-2) can be rewritten as 

- In[ 1- ~(t)] = ktn 

where the relative crystallinity ~' is given by 

and, 

~(t) = <l>(t) 
<l>oo 

<p(t) = volume fraction of crystal at a given time, 

¢co = volume fraction of crystal obtained at infinite time, 

k = Avrami coefficient, 

n = A vrami exponent. 

(2-2) 

(2-3) 

(2-4) 

According to equation (2-3), a plot of In[- In( 1- ~)] vs. ln[t] should yield a 

straight line with a slope equal to n and a y-intercept equal to ln(k). The Avrami 

coefficient k is a rate constant and is related to the rate of crystal front advancement. The 

Avrami exponent n is indicative of the dimensionality of crystal growth. If a nucleation-

rate limited process is assumed in the A vrami analysis, then an exponent of 1 corresponds 

to nucleation without growth, whereas exponents of 2, 3 and 4 correspond to one-

dimensional, two-dimensional and three-dimensional growth, respectively. For growth 
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rate-limited processes, the exponent has a value of one, two and three for one, two and 

three dimensional processes, respectively. 

Although the A vrami equation is widely considered to be the earliest expression 

capable of explaining the principles of nucleation and crystal growth, the first crystal 

growth equation was actually proposed in 1937 by Kolmogoroff (1937). Janeschitz­

Kriegl (1992) showed that the Avrami equation is a special case of the Kolmogoroff 

equation where heterogeneous nucleation and volume changes due to temperature are 

neglected and a frequency of activation of nuclei is introduced. Evans ( 1945) later 

rederived the A vrami equation by relaxing the assumption of an unrestricted volume for 

crystal nucleation and growth. 

Several other versions of the A vrami equation have appeared since, adding new 

parameters to the expression, but the original equation has been found in many cases, to 

be more than adequate in correlating isothermal quiescent crystallization data. Cobbs et 

al.(1952) studied the crystallization of poly (ethylene terephthalate) films and found that 

between 120°C and l 70°C , the Avrami exponents were between 2.2 and 3 .1. At higher 

temperatures, the value of the exponent decreased to about 1. 3. Mink ova et al. ( 1992) 

investigated the crystallization kinetics of various blends of poly (phenylene sulfide) and 

obtained an Avrami exponent of 3, which was indicative of tridimensional spherulitic 

crystal formation. The three-dimensional structure was confirmed by electron microscopy 

tests. 

Kakani (1996) tabulated values of Avrami exponents from various sources in the 

literature. For the most part, exponents were found to lie between 1 and 4. Whenever 

exponents fractionally less than the above values were obtained, ( Auer et al, 1994, Dainelli 
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and Chapoy, 1993 ), they were attributed to secondary crystallization which occured 

behind the growing front of the primary crystal and caused the exponent to decrease. 

Another explanation was that the density of the crystal actually changed with time and 

temperature, whereas in the A vrami development the density was assumed to be constant. 

This variation in density could cause the exponent to be actually lower than that predicted 

by the A vrami equation. 

Unlike the Avrami exponent, whose range of "ideal" values has been universally 

accepted to be between 1 and 4, widely varying values of the Avrami coefficient have been 

reported in the literature (Kakani, 1996). Kakani obtained values between 0.006 and 1.0 

and found that the A vrami exponent and coefficient were related by the following 

exponential relationship. 

k = 3.24 exp(- 7n) (2-5) 

Jacob (1998) has also discussed various accounts of Avrami coefficient and exponent 

dependence including temperature, cooling rate and sample thickness effects. 

Eder and Jansechitz-Kriegl (1997) suggested that in order to obtain the correct 

value of the Avrami coefficient, the Avrami exponent must first be correctly determined 

through morphological studies. After determining the direction and dimensionality of 

crystal growth and the corresponding Avrami exponent, the "zero point" on the time scale 

should be determined by fitting a line to· the data with the slope corresponding to the 

A vrami exponent. Eder stated that this procedure is necessary because the A vrami 

coefficient is very sensitive to the location of the zero point on the time scale. 

There are some potential limitations to Eder's approach in calculating Avrami 

parameters. The most obvious drawback is that two experiments must be performed, 
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instead of one, to determine the value of n and k. Also, Eder' s approach assumes that the 

Avrami equation must correlate the data and hence the possibility exists that after 

extrapolating backwards on the time scale, a zero point might be obtained which 

corresponds to a negative. This is especially possible when Eder' s approach is applied to 

a deformation experiment. 

For non-isothermal processes, the Avrami equation had to be modified to include 

temperature dependence. Ding · and Spruiell { 1997) provide a review of the non-

isothermal A vramian models. Nakamura et al. ( 1972, 1973) introduced an "isokinetic 

assumption" according to which, the kinetics of primary nucleation and crystal growth are 

similar, so that the ratio of growth rate, G, to the nucleation rate, N is constant. The 

corresponding equation derived by Nakamura et al. is as follows: 

(2-6) 

where K is the cooling rate and t is any arbitrary time at which the crystallinity is measured 

and n is the A vrami exponent. 

In obtaining equation (2-6), secondary crystallization and the fold length of the 

polymer chain were ignored. Dietz ( 1981) proposed the following equation to correct for 

secondary crystallization. 

(2-7) 

Lopez and Wilkes (1989) later showed that the error introduced by omitting secondary 

crystallization is negligible. 
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Patel et al. ( 1991) suggested the following differential form of the Nakamura 

equation for use in simulations involving crystallization during polymer processing. 

n-1 

: ~ nK(T)(l- ~)[{ ~ ~) J-;;- (2-8) 

Patel et al. showed that the Nakamura model adequately describes non-isothermal 

crystallization in spite of the "isokinetic" approximation. 

Ozawa ( 1971) proposed a modification of the Avrami theory to account for non-

isothermal effects by assuming that the polymer is quenched at a constant cooling rate. 

The Ozawa equation could be written as 

[ K'(T)] 
I;= 1-exp -7 (2-9) 

or, in logarithmic form 

ln[- ln(l-1;)] = ln[K'(T)]- n lnlal (2-10) 

where, 

K'(T) is a cooling function of non-isothermal crystallization at temperature T, 

a is the cooling rate, 

n is the Avrami exponent. 

The Ozawa model required values of relative crystallinity at a given temperature for 

different cooling rates. The cooling function K' is a complex function of nucleation and 

growth rates. 

Hammami et al. (1995) derived a model based on the fundamental equation of 

Ozawa, which incorporated a surface nucleation theory and a growth rate theory. The 

equation has the following form: 
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~(T) == 1- exp[- \J'(T)tn] (2-11) 

K(T) 
where \J'( T) = , 

(t1Tt 
(2-12) 

tis the time required to cool the sample from the melting point Tm to T, and LlT is the 

degree of supercooling. An expression for the function \J'(T) is obtained by assuming that 

\J'(T) is controlled by the growth rate and then using a suitable growth rate theory. 

The model was tested against DSC experimental data for three isotactic 

polypropylene resins with different molecular weights at five cooling rates from 2-40 

K/min. Model predictions were found to be in agreement with the experimental data. 

A vrami exponents of 3. 0 were obtained for all of the experiments. 

Other forms of the Avrami equation that account for non-isothermal effects like 

the Kamal-Chu model (Kamal and Chu, 1983) are also available and have been discussed 

by Ding and Spruiell (1997). Ding and Spruiell argued that none of the non-isothermal 

models adequately account for the nucleation rate, which they contended is key to 

understanding the kinetics of crystallization since the nucleation rate might change during 

crystallization. Ding and Spruiell proposed the following expression for the nucleation 

rate, f.r: 

(2-13) 

where Ne is referred to as the nucleation rate constant, mis called the crystallization index 

and t is the time of crystallization. The nucleation constant is temperature dependent, but 

# of nuclei 
time independent and has the units of + 1 3 . Equation (2-13) was used to rederive 

sm cm· 
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the Avrami equation and the resulting Avrami exponent and coefficient were functions of 

the nucleation rate constant Ne and the crystallization index, m. 

Another notable development in the area of quiescent polymer melt crystallization 

modeling was the Lauritzen-Hoffman (L-H) theory (Hoffman et al., 1976, 1979, 1997; 

Snyder, 1997). This theory predicts the initial crystal lamellar thickness, <l> and the 

isothermal crystal growth rate G. According to this theory, there are two rate processes 

which determine the overall crystallization kinetics. The first is the secondary nucleation 

rate (i) which is the rate of placement of an isolated stem on to the crystal growth face and 

the second is the lateral substrate completion rate (g), which is the rate at which 

subsequent crystal stems are added adjacent to the first. The L-H theory predicts three 

crystal growth regimes depending on the relative magnitudes of (i) and (g). Regime I 

corresponds to lower sub-coolings, where (i) << (g), Regime II corresponds to 

intermediate sub-coolings where (i) ;;::; g and Regime III corresponds to high sub-coolings 

where (i) >> (g). 

Some researchers have found that the three regime temperature dependence curves 

corresponding to the Lauritzen-Hoffman theory have not been observed for some 

polymers (Fatou et al., 1990; Point, 1997). For example, Point et al. (1997), in their 

experiments with poly( ethylene oxide), have found breaks in the crystallization rate curves 

which they attribute to the onset of molecular weight segregation. Also, Point proposed 

that the thermal dependence of the crystal growth rate is only manifested in the flat region 

of the crystal growth curve because all of the molecules can crystallize at that temperature. 

At temperatures higher than the break in the curve, increasingly greater fractions of the 

molecules cannot crystallize. 
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2.2.2 Flow-Induced Crystallization Models 

Until very recently, there were two main approaches used to model FIC processes. 

The first approach involved extensions of the Avrami formalism obtained by modifying 

equation (2-2) to account for the effect of flow using an enhanced nucleation, growth or a 

melting point elevation argument. The second approach was based on the strain-induced 

theory of crystallization originally proposed by Flory (1947). These two approaches are 

described below. Detailed descriptions of the models presented by Flory (1947), 

Krigbaum and Roe (1961, 1965, 1968), Gaylord and Lohse (1976a, 1976b) and Bushman 

and MchHugh ( 1996, 1997) will be provided because these models represent, in 

chronological order, the development of the most complete characterization of flow­

induced crystallization to date. 

2.2.2.1 Melting Point Elevation and Avramian Models 

Avramian theories, as applied to quiescent crystallization, were inadequate to 

characterize flow-induced crystallization processes because of the absence of rheological 

variables like stress, strain, and strain rate. However, since the method had effectively 

been able to correlate quiescent crystallization kinetics data, researchers believed that the 

Avrami equation could be used to correlate FIC kinetics data if suitable modifications 

were made to somehow include stress and strain variables related to the flow field. 

The first manifestation of the effect of a flow field on a polymeric material came 

from observations of melting point elevations. Early reports of superheatability in ECC 

polymers (Flory, 194 7, Volkenstein, 1966) led researchers to believe that the flow 

contribution was solely a thermodynamic effect. Since the melting of polymer crystals had 

long been recognized as a first order phase transition, the melting point Tm could hence be 
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thermodynamically related to the change in enthalpy (L1H) and the change in entropy (L1S) 

by the following equation (Flory, 1947). 

L1Hm T: =--
m /1Sm 

(2-14) 

The melting point elevation (MPE) hypothesis suggests that the change in enthalpy 

is the same for both FCC and ECC, but that the change in entropy for a liquid-FCC 

transition is much greater than the change in entropy for an oriented melt and hence 

corresponds to a higher melting point. 

The increase in melting point due to flow was assumed to enhance nucleation and 

growth rates because of the lowered entropy of the deformed chain. Models based on 

enhanced nucleation were developed that assumed nucleation-controlled growth. Early 

work by Mandelkern (1964), Pennings (1977), McHugh (1975) and Hoffman (1977) 

resulted in models that were consistent with quiescent theory in the asymptotic limit, 

(Bushman and McHugh, 1997), but that accounted for the effect of flow by merely using 

parameters related to enhanced nucleation. There was no explicit contribution from 

rheological variables like stress and strain In addition, these models were not predictive. 

In many cases, experimental results have contradicted the MPE hypothesis (Haas 

and Maxwell, 1969, McHugh and Spevacek, 1991) and in cases where superheatability has 

been reported, the MPE has been attributed to variable heating rates employed in 

determining the melting point and not to the existence of ECC (McHugh, 1995). Also, 

significant enhancements were obtained in the crystallization rate without the observation 

of any melting point elevations (McHugh and Yung, 1992). 
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McHugh et al. (1993) showed that the MPE model was incapable of correlating 

experimental FIC kinetics. Their counter argument for the MPE hypothesis can be 

described as follows. 

The MPE hypothesis is most commonly quantified using the following expression 

(Treloar, 1975, Ziabicki, 1976). 

T.o Af 
_!!!__ = l + T.o a 
T. m A rrO 

m D.Tlm 

(2-l 4a) 

In equation (2- l 4a), Tn~ is the equilibrium quiescent melting point, Tm is the elevated 

melting point, 11Sa is the entropy change per unit volume associated with deformation of 

the amorphous chains and Aff ~1 is the equilibrium heat of fusion of a perfect crystal. For 

Gaussian chains, the configurational entropy 11Sa associated with an affine planar 

deformation is given by 

Nk( 2 1 ) 11S =-- '"J.., +--2 
a 2 A2 ' 

(2-14b) 

where, N is the number density of amorphous entangled chains, · A is the molecular 

elongation produced by the flow and k is Boltzmann's constant. The value of A can be 

related to the birefringence, 11', using the following relationship. 

(2-14c) 

In equation (2- l 4c ), a is the polarizability per unit volume and n0 is the refractive index of 

the medium. 

35 



McHugh et al. determined the value of A from equation (2- l 4c) usmg their 

experimental birefringence data, and polarizability and refractive index values of 

polyethylene from the literature (Treloar, 1975). They used a value of 2300 for the 

molecular weight of the amorphous entanglements and determined the corresponding 

value of N by dividing the total molecular weight of the polymer by 23 00. The resultant 

value of A was substituted in equation (2-l 4b) to obtain the value of 11Sa. When the !iSa 

value was substituted into equation (2-14a), McHugh et al. found that the ratio T1r~ 
was almost identically equal to one. This meant that there was no significant MPE and 

hence, no enhancement in crystallization rate should have been observed. McHugh et al. 

concluded that not only was the MPE model inadequate for predicting FIC, its suitability 

for correlating experimental data was also in question. 

Continuum models based on Avrami's original theory were later developed that 

successfully accounted for the flow rate dependence in polymer crystal growth (McHugh 

and Spevacek, 1991). One of the most famous continuum models was developed by 

Ziabicki (1978, 1984) who used an orientation function, f, which was a complex scalar 

function of the applied stress to account for the effect of the flow field. A transition 

parameter o was defined as follows. 

(2-15) 

where, 

t ffl = the half-time of orientation 
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and t 112 is defined such that 

ln[ 1-l;{t112 )] = 0.5. (2-16) 

When 6 < < 1 or 6 > > 1, the solutions obtained were A vramian. For intermediate 

values of 6, the solution was non-Avramian. In all cases however, the kinetics depended 

on the orientation function and although this model was sufficiently general, it was not 

predictive and hence could not be used for a priori characterization ofFIC processes. 

Tree (1990) proposed the use of flow factors E>i which were functions of time and 

the invariants of the flow to account for the stress field. The Avrami equation was 

rewritten in integral form as follows. 

t 

-ln[1-1;] = f K(t, z, a )M(z, a )dz (2-17) 

0 

where 

K(t,z,a) = fm[G(t-z)E>1 r (2-18) 

and 

(2-19) 

(2-20) 

In equations (2-17) to (2-20), vis the activation frequency of nuclei, G is the linear 

crystal growth rate, N is the number of initial nucleation sites and /m is a shape factor. 

Equation (2-17) was useful in correlating experimental FIC data and interpreting the 

37 



significance of the resultant parameters, but it was not predictive and hence had limited 

application. 

Eder, Janeschitz-Kriegl and coworkers (1984, 1988, 1990) suggested that the flow 

influenced the induction time to crystallization and proposed that the nucleation rate 

should be proportional to the fraction of entanglements that were destroyed by shearing. 

They developed an equation for the time to achieve 50% of the ultimate degree of 

crystallinity and suggested that this was a measure of the induction time since the 

crystallization rate was very high just after the onset of crystallization. In effect, they 

suggested that the nucleation and growth processes could be separated as processes 

occurring during the flow and after the flow, respectively, on very different time scales. 

The Avramian models were also found to be insufficient in correlating 

experimental data in some cases because model parameters obtained were outside the 

range of physically explicable phenomena. For example Desai and Abhiraman (1988) in 

their experiments on shear-induced crystallization of polypropylene consistently obtained 

exponents as low as 0.2 when they correlated their data with an Avramian model. In other 

cases, exponents as high as 7-8 were reported for fiber spinning experiments with 

polyethylene (Desai and Abhiraman, 1988). 

2.2.2.2 Models Based on Flory's Theory of Strain-Induced Crystallization 

2.2.2.2.1 Flory's Model 

Flory (1947) originally developed a crystallization theory for elongated polymers 

with network structures (e.g. vulcanized rubber) based on change in entropy of the 

system. The model related the incipient crystallization temperature with the molecular 

elongation, the degree of crystallinity with the molecular elongation and temperature and 
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finally, the retractive force at equilibrium with the molecular elongation. The development 

of Flory's model assumed that the polymer was initially deformed at an elevated 

temperature (close to its melting point) and was then quenched to a lower temperature. 

Crystallinity developed only after cessation of flow. 

According to Flory's theory, the polymer was modeled as a chain consisting of 

small rigid segments connected by bonds which allowed complete freedom of movement. 

Nuclei were formed when a segment assumed an orientation (which may or may not be 

transitory) perpendicular to the direction of elongation (z-direction). The formation of 

nuclei did not involve an entropy change. Crystal growth occurred in the direction of 

elongation and involved two entropy changes. The first entropy change was a decrease in 

entropy associated with a segment entering the crystal and thus sacrificing its freedom of 

orientation 

The second change in entropy was due to the decrease in the z-component of the 

distance that the remaining amorphous segments must travel and also due to the decrease 

in the number degrees of freedom of the remaining segments. As the crystal grew, the z­

components of the segments in the crystal increased. This increase allowed the 

amorphous segments to assume a greater number of configurations since the decrease in 

the displacement length of the amorphous segments was out of proportion with the 

reduction in their corresponding numbers. Hence the change in entropy of the amorphous 

segments (the second entropy change) due to crystallization was initially a positive 

mcrease. As a larger fraction of the total amorphous segments joined the crystal, the 

entropy increase diminishes because the elongated z-component of the amorphous portion 
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is rapidly decreased by the length of the crystallite and also, fewer segments were available 

to travel the x and y distances which were not affected by the deformation. 

Flory developed the model equations in the following manner. The totally 

crystalline state (single crystal) was chosen to be the reference state. The configurational 

probability W, or the relative number of segments available for a totally amorphous chain 

was assumed to be a Gaussian function of its displacement length ( end-to end distance) r 

(x, y, z) and hence could be written as 

(2-21) 

where x2 +y2 +z2 =r2 (2-22) 

and 1/f3 represented the most probable value of the displacement length r. . 

For segments with unrestricted motion, 

(2-23) 

For segments with bonds fixed at tetrahedral angles, 

(2-24) 

where 1 was the length of each segment and n was the number of segments per polymer 

chain. The maximum extension of the chain L, was taken to be equal to the product nl. 

After extension by a factor of a, at constant volume, along the z-axis, the configurational 

probability distribution of all chain coordinates v (x, y, z) is given by 
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(2-25) 

where cr is the number of chains considered. If~ segments of the total n segments of the 

chain are in a crystalline region, then the configurational probability for the remaining (n-

Q segments could be obtained by applying equation (2-21) to obtain 

where 

and 

w = ~[_!!__]1 
n-~ 

z'= (lzl-~t) for z > 0 

z'= -(lzl-q) for z < 0 

(2-26) 

(2-27) 

(2-28) 

The term z', in equations (2-26) and (2-28), is the algebraic sum of the z displacement 

lengths of the amorphous sections of the chain. The x and y displacements, were assumed 

to be unaffected by the formation of crystallites with axes parallel to the direction of 

elongation. However, the z displacement changed by a factor of ~1, since it was assumed 

that all chains traverse the crystallite in the same direction as the z displacement of one end 

of the chain with respect ot the other. The effect of this assumption will be shown later in 

this section. 

The expression for the configurational entropy was developed by assuming the 

following two hypothetical steps: 

41 



a) n-~ segments of each of the a chains were assumed to undergo melting. The ends of 

each chain were free to occupy the most probable locations such that the distribution 

of displacement lengths x, y and z' is given by 

v' (x,y, z') = aW' (x,y, z') (2-29) 

b) The ends of the chains were assigned to cross-link locations within the elongated 

polymer. The manner in which this occurred was governed by the configurational 

distribution given by equation (2-25). 

The entropy change for part (a), s., is given by 

(2-30) 

The entropy of fusion per segment Sf was obtained from the lattice theory of 

thermodynamic properties of polymers (Flory, 1942) and is given by 

(2-31) 

where k is Boltzmann's constant and y is the coordination number of the lattice. Equation 

(2-31) reflects the entropy change due to the randomness of arrangement of the segments 

in space, but not due to the enhanced freedom of oscillation within the liquid lattice cell 

Equation (2-31) also does not account for internal changes within the segments during 

melting. 

The entropy change for part (b) was due to the transformation of the chain length 

distribution of amorphous segments from v'(x,y,z) given by equation (2-29)to v(x,y,z) 

given by equation (2-25). This entropy change was obtained by applying the Boltzmann 

relationship given below in equation (2-32). 
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(2-32) 

Applying equation (2-32) to the probability distributions v and v' and noting that each 

entropy yielded the expression for the entropy change for step (b). Thus, 

Sb = k L v(x,y,z) In W'(x,y,z')-k L v'(x,y,z') In W'(x,y,z') (2-33) 
.\)'Z 

Substituting for v, W', and v' from equations (2-25), (2-26) and (2-29), respectively, 

transforming to integral form, and simplifying yielded 

Since the entropy change is with respect to a perfect crystal at the standard state, 

equations (2-30) and (2-34) are the configurational entropies. Hence, the notation ~S was 

not used. The total configurational entropy, S, of the a chains involved in the crystal was 

obtained by adding equations (2-30) and (2-34). Also, the enthalpy change (heat change 

according to Flory) corresponding to the fusion of n-~ segments per chain is given by 

(2-35) 

where hr is the enthalpy of fusion per segment of the polymer. If the internal energy 

change for step (b) is assumed to be zero, then the free energy F of the system, (free 

energy change with respect to the perfect crystal at the standard state) could then be 

written using equations (2-30), (2-34) and (2-35). Thus 

F=aR {
n8(l -11,) + (nf3l) 2 (1- 11,) 2 I 11, -( 2anf3l / n f )(1- 11,) I 11, +J 

(a2 /2+11a)/11,-f-ne 
(2-36) 
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where 

A=_(n-_~) 
n 

e = h1 [-1-_ _!_J 
R o T Tm 

0 h1 
T =­

m S 
f 

(2-3 7) 

(2-38) 

(2-39) 

The quantity (1-A) represents the fractional degree of crystallinity of the cr polymer chains 

and the temperature T!, is the incipient crystallization temperature for the undeformed 

polymer. The condition for equilibrium for longitudinal growth of the crystallite can be 

stated as 

( BF) = o a,J . 
a 

(2-40) 

Differentiation of equation (2-36) with respect to A, equating to zero and solving for the 

equilibrium value of A yielded 

where 

"= {(!-cp(a) )}1 
(f-e) 

(2-41) 

(2-42) 

Equation (2-41) was used to generate plots of the relative crystallinity (1-A) as a function 

of the molecular elongation a. Flory found that degree of crystallinity increased with 

1 

elongation until it reached a maximum at a = (2n) 2 . Flory questioned the significance of 
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this value of a in view of the assumptions made in the model especially because of the 

assumption of equilibrium crystallinity and unidirectional motion of the chains. The values 

of crystallinity predicted for low elongations were also to high to be realistic. Also, the 

model predicted that the entropy at the melting point was a small positive value which 

resulted in a small value of crystallinity at low elongations, i.e. at a= 1. Since the entropy 

should always be zero or negative ("because the final state may not have a higher entropy 

than the most probable state"), Flory attributed this departure from expected behavior to 

the assumption that each chain travels the crystallite in the direction of the displacement of 

its ends with respect to the z-axis. 

In summary, Flory's model was the first model to describe crystallization of 

polymers under the influence of a stress field by using the principles of statistical 

mechanics. The assumption of a network structure allowed the macroscopic deformation 

to be readily related to the microscopic or molecular deformation. For polymer melts and 

solutions however, it is not easy to relate the macroscopic deformation to the microscopic 

deformation and hence Flory's theory cannot be used for melts and solutions. Also, 

Flory's theory cannot be used for non-equilibrium systems. 

2.2.2.2.2 Krigbaum-Roe Model 

Krigbaum, Roe and coworkers (1961, 1965, 1968) derived an expression for the 

free energy of crystallization by using the statistical mechanical principles outlined by 

Flory. The free energy of the crystallization process was assumed to be due to two 

contributions. The first part was related to the way in which amorphous polymer 

segments were transferred to the crystal. The growing crystal caused the free energy to 

decrease and this decrease in free energy was the driving force for further crystal growth. 
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The second free energy term was due to the deformation produced in the amorphous 

regions because of crystallization. The second free energy term gradually increased until 

the increase eventually exceeded the decrease in free energy due to crystallite formation. 

At that point, crystallization was said to have ceased. Thus, Roe et al. incorporated strain 

as an effect of crystallization rather than a cause and hence was essentially a quiescent 

theory predicting mainly folded chain crystal growth. Nevertheless, their theory merits 

some description in this section, because it formed the basis of subsequent theories of non­

equilibrium strain-induced crystallization. 

Roe et al. originally developed models for the equilibrium crystallinity for two 

types of crystal morphology. In the first case, folded chains were considered, where the 

polymer segments of each molecule folded several times in each crystallite before re­

entering the amorphous region. In the second case, segments of different molecules 

entered the crystalline region once without folding, then re-entered the amorphous region. 

The model predicted that the folded chain morphology yielded higher degrees of 

crystallinity than the "once-through" single crystal or extended chain crystal morphology. 

Roe and Krigbaum ( 1965), later, combined the principles of irreversible 

thermodynamics (De Groot, 1951, Prigogine, 1951) for processes not far removed from 

equilibrium to model the kinetics of crystallization According to the non-equilibrium 

theory, nuclei were assumed to have already been formed (an assumption also made in the 

model in this thesis) and interconnected by polymer chains each consisting of N flexible 

segments. If n/2 segments at each end of a chain underwent crystallization by 

"deposition" over nuclei, then the crystallinity could be defined as 
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n 
~=­

N 
(2-43) 

For a constant number of nuclei, the crystallinity ~ was related to the free energy change 

AF by the following equation: 

(2-44) 

where y is a proportionality constant which could be thought of as a "resistance" to 

crystallization since the free energy gradient on the right hand side of equation (2-44) was 

the driving force for crystallization. Initially, the rate of crystallization was assumed to be 

controlled by the rate of transfer of amorphous segments to the crystalline regions. The 

rate-controlling step might changed towards the end of the crystallization process as 

effects related to secondary crystallization and crystallization of branched and lower 

molecular weight chains became prominent. In that case, the number of nuclei changes 

and the value ofy had to be adjusted accordingly. 

A Gaussian expression was used to describe the distribution of amorphous 

segments and for temperatures not far below the melting point, the free energy change for 

the folded chain model was given by 

AF= -nM! (1-_Z_J + .1 RJ_n J 
.! T.o 2 i L N - n 

m 

(2-45) 

where, AHr is the molar heat change associated with an equivalent number of segments 

melting from a perfect crystal, R is the universal gas constant and T! is the melting point 

of a large perfect crystal. Substitution of equation (2-45) into equation (2-44) and 

integrating yielded, 
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(2-46) 

where 

B = Mi (1-_l_J(_J_J (2-47) 
f r_O N2 

m 

In the above equations, ~0 refers to the crystallinity at time t = 0. The equilibrium 

crystallinity ~00, in equation (2-48) is the crystallinity at time t= oo, and is obtained from the 

condition 

(8F) - -o 
8n NT ' ,p 

(2-49) 

Equation (2-46), which has the form of a kinetic predictive A vrami-type equation, was 

used to obtain plots of crystallinity versus time which were compared with experimental 

data. The model predictions showed good agreement with experimental results in that 

sigmoidal curves were obtained for crystal growth behavior. In the early part of the 

process however, some deviation was obtained from experiment which was attributed to 

the assumption of a Gaussian distribution of amorphous segments. This deviation was 

corrected by assuming a more realistic "Inverse Langevin" distribution, the details of 

which can be found in the paper by Krigbaum and Roe (1965). 
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2.2.2.2.3 Gaylord-Lohse Model 

Gaylord and Lohse (1976a) developed a model based on Flory's theory, to predict 

morphological changes that occurred during oriented equilibrium polymer crystallization in 

crosslinked systems by performing a more rigorous accounting of the free energy of the 

system. Polymer molecules were modeled as chains consisting of N links, each of length 

b, and the end-to-end vector !N was assumed to have a Gaussian distribution. The chains 

were assumed to be deformed "affinely" and n links were allowed to enter a crystal or fold 

within the crystal, leaving behind t = N - n links in the amorphous portion. 

The deformation process, along with the relevant vector quantities is shown in 

Figure 2-4. Fig 2-4 (a) shows the undeformed amorphous polymer chain. The vector !to 

represents the original end-to-end vector of the t segments that would be eventually left 

behind in the amorphous section of the chain. Figure 2-4 (b) shows the polymer chain just 

after deformation. Crystallization had not started to occur and the N links were in the 

process of reacting to the flow field. At this intermediate stage, the end-to-end vector of 

the amorphous portion of the chain is represented by !! and the end-to-end vector of the 

entire chain is now r'N'· Finally the polymer was cooled and the crystallization process 

was completed. Figure 2-4 (c) shows the deformed, crystallized chain. The vector re 

represents the end-to-end vector of the amorphous portion of the chain at the end of 

crystallization and the vector t represents the crystallite orientation. As in Flory's theory, 

the vector twas assumed to be in the direction of the elongation and did not depend on the 

crystal morphology. 
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Figure 2-4. Gaylord-Lohse Crystallization Model 
a) Undeformed Amorphous Chain 
b) Deformed Amorphous Chain 
c) Deformed Crystallized Chain 
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The Gaylord-Lohse model included surface free energy contributions at the 

boundary of the crystal in the overall free energy of crystallization expression in addition 

to the free energy contribution due to amorphous chains being transferred to the crystal 

and the free energy associated with the remaining amorphous segments (akin to Flory's 

free energy account) to produce a new overall free energy expression. The resultant 

expression is shown below in Equation (2-50). 

t;F( call mole) ~ cr = +ft;, -C(J + i)l!Gµ + [ ( JRT) ] 2 [(,? )-(,i)] 
2 N - ~ f + 1 - \jlf b 

where ~(! + 1) = Nro 

(2-50) 

The following are the definitions of the terms used in equation (2-50). 

AF Free energy of crystallization 

O'em Free energy of the interface between amorphous and crystalline portions 

f Number of folds in the crystal 

O'e Free energy of fold surface 

~ Number of links along crystal thickness 

AGµ Free energy of fusion of a link from the crystal 

MIµ Enthalpy of fusion of a link from the crystal 

T Temperature of crystallization 

T! Temperature of crystallization of a perfect crystal without strain 

\jl Number of chain links in the fold 
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ro Degree of crystallinity 

The angular brackets used to characterize the end-to-end vectors in equation (2-

50) indicate that average quantities were used. These average quantities were determined 

from internal link calculations and Gaussian statistics and expressed in terms of the 

extension ratio a. The expressions for the average quantities were then substituted into 

equation (2-50) to obtain the working equation for the free energy of crystallization for 

folded chain crystals with odd or even number of folds. The term (rt;) was evaluated 

using internal link calculations (Volkenstein, 1963) and was expressed as follows. 

(2-50a) 

The vector.!£ was written in terms of the r'N and fas follows 

!:c = !:~ - { 

,2 = ,,2 +/2 - 2r' ·l 
C N - N -

(2-50b) 

For an affine deformation, 

(2-50c) 

where, Ax- Ay and Az are the deformation ratios in the x, y, and z directions, respectively. 

Using Gaussian statistics, the following relationship could be used. 

(,i) = Nb 2 (2-50d) 

Gaylord and Lohse then assumed that the vector I was in the direction of stretch i.e. the 

same direction as the x-component of the vector !'N, irrespective of the morphology of the 
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crystallite. Hence, only the x-component of the !'N·t term needed to be considered and 

therefore, 

00 00 

(x') = f xW(!' N )d!' N = 2 f lx'IW(~· N )d~' N . (2-50e) 
-00 0 

where W(!'N) is the Gaussian distribution function given by 

(2-50±) 

Equation (2-50b) could then be written as follows 

(2-50e) 

By considering simple extension along the x-axis and substituting equations (2-50a) and 

(2-50±) into equation (2-50), Gaylord and Lohse obtained the free energy for three cases. 

By setting the number of folds, f equal to zero the formation of extended chain crystals 

could be modeled as is shown below in equations (2-51), (2-52) and (2-53). 

Gaylord-Lohse ECC Model Equation 

In this case,/= 0 and l = Nrob 

{ '} RT 2 2 2 6N 2 3RT 
M'Ecc = cr em - Nro/J.G µ + ( ) a + - + 3Nro - 2am [-] · - --

21- ro a n 2 
(2-51) 

53 



Gaylord-Lohse FCC Model Equations 

For folded chain crystals, the model equations depended on whether the number of folds in 

the crystal was even or odd and was accounted for, by using a different equation for l. 

Hence, the following two cases were considered . 

Casel: Even Number of Folds 

For J, even: l 2 = f 2 a 2 + C: 2 h 2 , where a is the chain thickness 

MFcC = a em+ fa e - Nro/!,.Gµ 

(2-52) 

Case 2: Odd Number of Folds 

For f odd, l = fa 

(2-53) 

Gaylord and Lohse' s model could predict free energy profiles as a function of the 

degree of crystallinity for various values of the fold parameter. The morphology with the 

lowest free energy was assumed to be the predominant morphology. Thus, the free energy 

profiles could be used to determine the morphology of the polymer as a function of the 

extension ratio. 

According to their model predictions, Gaylord and Lohse believed that at lower 

degrees of crystallinity (which were assumed to correspond to the initial stages of the 

crystallization process), there was a preference for extended chain crystals to form. For 
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higher degrees of crystallinity (the latter stages of crystallization), the extended chain 

morphology was predicted to change to a folded chain structure. The extension ratio was 

observed to have an effect on the number of folds that develop at higher crystallinity 

values. For low extension ratios (less than 2), a single fold or a one-fold crystal was 

predicted whereas for higher extension a two-fold crystal was predicted. 

Gaylord later, (1976b) extended the model to include non-equilibrium predictions 

of initial rate of crystallization by using ideas from Krigbaum and Roe's theory of non-

equilibrium crystallization. Since extended chain crystal formation was assumed to 

dominate the initial stages of the crystallization process, the initial rate of crystallization 

was then equal to the rate of ECC growth. Hence, Gaylord applied Equation (2-44) to 

equation (2-51) in the limit co ~O, to determine the initial rate of crystallization. 

_!_[dco] = Nl1Gµ - RT{[a 2 +~][1-2-J-2Na8+.!2.ao} 
y dt O)~o 2 a N IO 

3RT { 8 8 ( ) } -20N 3a4+4a+a2-3a3+1No (2-54) 

where o-[:Y 
In equation (2-54), y is the proportionality constant originally introduced in 

equation (2-44). The initial rate of crystallization was observed to increase with increasing 

extension ratio a. A linear dependence was observed for extension ratio values between 2 

and 8. The initial rate of crystallization was also observed to decrease with increasing 

temperature and increasing crosslinking. 

The predictions of the initial rate of crystallization were consistent with 

experimental observation. However, a satisfactory description of the entire crystallization 
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process could not be obtained because of uncertainty related to the choice of the 

proportionality parameter y after the initial stages. 

2.2.2.2.4 Bushman-McHugh Model 

Bushman and McHugh (1996, 1997) developed a model, which used a 

Hamiltonian Bracket formalism in conjunction with a model based on Gaylord and Lohse' s 

modification of Flory's ( 194 7) theory of free energy of crystallization to characterize non­

equilibrium crystallization processes with mild deformation histories (i.e. from 0.005 to 

0.1 s-1 with a relaxation time of 5-50 s). Unlike Flory and Gaylord, Bushman and 

McHugh did not model crosslinked molecules, rather they assumed that physical 

entanglements in non-crosslinked macromolecular systems played the same role that 

crosslinks did in Flory's original theory. 

In Bushman and McHugh's model, a polymer molecule was represented by an 

elastic dumbbell, i.e. beads connected by springs. There were N segments each of length 

b. The physical representation of the crystallization process was similar to that used by 

Gaylord and Lohse, shown in Figure 2-4, except for the following nomenclature changes. 

Initially, the end-to-end vector of the molecule was represented by RNo while the final 

end-to-end vector was represented by RN. All the other configurational vectors were the 

same as those in the Gaylord model. 

A diffusion equation was written for the configurational probability distribution 

function \jJ in terms of the dumbbell orientation vector R by considering Brownian, 

hydrodynamic and intramolecular spring forces acting on the dumbbell. This diffusion 

equation is shown in equation (2-55). 
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O\jJ = _ _j_·{[K·R]\jl-[2kT _j__\j/]- 2 p(c)\j/} at aR = - ~ aR ~ -
Hydrodynamic Brownian Intramolecular Spring 

where, 

~ = (vy)t 

y Velocity field between chain ends 

~ Friction coefficient 

k Boltzmann's constant 

T Temperature 

pc) Spring force 

Hooke's Law was used to represent the spring force, and hence 

p(c) =KR 

where the spring constant K is given by 

3kT. 
K=­

Nb2 

(2-55) 

(2-56) 

(2-57) 

(2-58) 

Bushman and McHugh used Lodge and Wu's (1971) and van Wiechen and Booij's (1971) 

solution of equation (2-55) for Hookean dumbbells to obtain 

(2-59) 

Bushman and McHugh then used the following relation to describe the Helmholtz 

free energy A of the extended polymer chain. 

(2-60) 
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where \jfo is the equilibrium PDF. 

Equation (2-59) was then substituted into equation (2-60) to yield 

(2-61) 

where <Pc is the degree of crystallinity 

The term (1-<l>c) in equation (2-61) was included to account for the reduction in the 

number of segments in the amorphous portion of the molecule due to crystallization. 

Also, since Bushman and McHugh intended to model the formation of extended chain 

crystals only, no fold term was included in the equation for the Helmholtz free energy. 

The substitution of equation (2-59) into (2-60) to yield equation (2-61) suggests a 

dichotomy in the way Bushman and McHugh characterize the crystallizing molecule. On 

one hand, they determine the probability distribution function ( equation 2-59) assuming 

the molecule is an elastic dumbbell, while on the other hand in equation (2-61) the average 

quantities are determined with respect to multiple segments which seems to suggest a 

degree of inconsistency. 

Also, Bushman and McHugh make the assumption that crystallization occurs only 

after cessation of flow. This assumption is valid when comparing model predictions with 

experiments in which the polymer melt was elongated at an elevated temperature close to 

the melting point and then quenched to the run temperature. However, in the 

experimental work published by McHugh et al. (1997), this sequence of operations was 

not always followed. Inspite of the apparent discrepancy in characterization, the 
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Bushman-McHugh model was a significant advance because it accounted for flow 

dynamics and crystallization in a self consistent though sequential manner. 

The average end-to-end vector of the amorphous portion of the molecule, <&Re>, 

in equation (2-61) was rewritten in terms of the conformation tensor c = <.fuiRN> by using 

vector relationships and by assuming that the crystallite vector t lied along the principal 

stretch direction. For extensional flows, the off-diagonal elements of the conformation 

tensor are identically equal to zero. Thus, 

0 

c~J (2-62) 

0 

When the resultant expression for <&&> was substituted into equation (2-61 ), 

the following equation was obtained for the Helmholtz free energy of the deformed 

molecule 

The determination of an expression for the Helmholtz free energy (equation 2-63) 

was the first step in the development of the McHugh-Bushman model. The next step was 

to generate an expression for the dynamic change of crystallinity and other parameters 

using a suitable rate expression. To this end, McHugh and Bushman used the Hamiltonian 

Bracket structure techniques ofBeris and Edwards (1994). According to the Hamiltonian 
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bracket structure method, the dynamic expression for an arbitrary functional F (in this case 

F would be equal to <Pc, the crystallinity) is given by 

dF = {[F,H]} = {F,H}+[F,H] (2-64) 
dt C . o· .. ontmuum 1ss1pat1ve 

Bracket Bracket 

Equation (2-64) shows that the rate of change of system variables has two 

components. The first component, represented by the term in braces, is a conservative or 

continuum component and is called the continuum Poisson bracket term. The second 

component represented in equation (2-64) by the term in brackets is the non-conservative 

or dissipative component and is called the dissipative bracket term. The construction of 

the Hamiltonian bracket structure is consistent with the principles of irreversible 

thermodynamics and continuum mechanics. A detailed explanation of the Hamiltonian 

bracket method is available in the book by Beris and Edwards (1994). 

In order to construct the dissipative bracket term for a flowing polymer, it is 

necessary to account for the dissipation of energy due to relaxational processes in the 

system. For an incompressible fluid and for isothermal conditions, the dissipative bracket 

is given by 

(2-65) 

In equation (2-65) n represents the domain of interest for integration, the first integral 

defines the dissipation of energy due to the flow of molecules and the second integral 

defines the dissipation of energy due to crystallization. Axf3rs, a relaxation parameter, and 

Z, a crystallization rate parameter, are both characteristic of the polymer. When there is 

no flow, the first integral term vanishes. When there is no crystallization, the second 
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integral term is zero. The expression for the rate of crystallization was obtained by 

performing the Volterra differentiation of the Hamiltonian of the system. However, before 

performing the differentiation, an expression for the Hamiltonian had to be established. 

The Hamiltonian H, is defined as the summation of the potential and kinetic 

energies of the system. The potential energy is the summation of the Helmholtz free 

energy of the system (Equation 2-63) and the free energy of crystallization, the form of 

which was similar to that used by Gaylord and Lohse. The kinetic energy was expressed 

in terms of a momentum density M, which was defined as follows 

M=py (2-66) 

Using the above definitions for the energy terms, McHugh and Bushman obtained the 

following expression for the conservative Hamiltonian of a crystallizing (ECC only) 

polymer melt undergoing extensional flow. 

1 p ( T) 3nkT ( ) nkT -M·M +a --"' !!JI 1-- +--In 1-"' --2p- _ em M 'l'c u yo 2 'l'c 2 
u m 

where 

p Total density of the polymeric fluid 

Molecular weight of a single chain 

Interfacial free energy between amorphous and crystalline regions 
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3c 
c=--­
= Nb 2 

Non-dimensionalized conformation tensor 

Using the principles of the bracket structure, Bushman and McHugh obtained the 

following equation for the rate of crystallinity 

~i' ~ -[ ( f Vp V p$}( Z :~)] (2-68) 

Continuum Dissipative 
Tenn Tenn 

When H was substituted from equation (2-67) and the indicated Volterra differentiation 

performed, equation (2-68) became 

[ 
1 J 8cl> c p T nkTZ _ 24Nl\ 1 2 2 

- = -ZM!u(1- 0 J- 2 tr£_-[ J + 6Ncpc - 3Ncpc + 3cpc -3 
8t Mu Tm 2(1-cpc) - 1t 

nkTZ 
+--

2 

1 

{ 4) (24Nc11 ) 2 1-- <l>cN-
1t 7t 

(2-69) 

Equation (2-69) was the working equation used by Bushman and McHugh to predict 

flow-induced crystallization kinetics. Examination of equations (2-68) and (2-69) reveal 

that the flow contribution to the dissipation term, A1.J3re, introduced earlier in equation (2-

65) is absent. A separate equation was obtained for the dynamic change of the 

conformation tensor, which included the flow dissipative term, but excluded the 

crystallization dissipative term. This approach at first glance, appears to be seemingly 

inconsistent with the development . of a unified theory of the rheological and 

thermodynamic effects involved in flow-induced crystallization. However, the dynamic 

change of the conformation tensor is implicitly assumed to be incorporated into the rate of 
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crystallinity expression through the terms containing components of the conformation 

tensor. Also, Bushman and McHugh combined the rheological and thermodynamic effects 

explicitly inasmuch as the continuum term in equation (2-68) is a rheological term. An 

expression was also developed for the total stress and the model was extended to include a 

non-linear force factor (by modeling the molecules as Finitely extensible Non-linear Elastic 

(FENE) dumbbells) and the Hermann's orientation factor /H-

The Bushman-McHugh model predicted that the crystallinity increased rapidly first 

and then plateaued out at some equilibrium value. An increase in· the rate parameter Z 

(range: 0.0001- 0.001) resulted in a significant increase in the initial slope of the 

crystallinity versus time curves indicating an increase in the initial crystallization rate. The 

model predicted that the extent and rate of crystallization increased as the strain rate 

increased. The model also predicted that an extensional flow generated a higher degree of 

crystallinity than shearing flow. Finally, Bushman and McHugh found that the induction 

time to crystallization decreased with increasing strain rate. 

In many cases, models were specifically developed to simulate a particular polymer 

processing operation. For example, the micromechanical description of nonisothermal 

flow-induced crystallization of a polymeric liquid with rodlike molecules is the main part 

of the fiber spinning model described by Yarin (1992). .Solutions of the governing 

equations showed that an increase in winding velocity beyond a critical value leads to the 

appearance of an on-line flow-induced crystallization zone in the fibers. 

In summary, there are a number of models that have been proposed to correlate 

polymer crystallization data. Nearly all of these models are extensions of the Avramian 

quiescent models, or Flory's original theory of strain-induced crystallization. The 
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extensions involve the addition of arbitrary parameters to account for the flow field or the 

use of flow-enhanced nucleation theories. However, most models lack predictive 

capabilities or are purely equilibrium models. 

The only model which combines thermodynamic and rheological contributions self­

consistently in a unified predictive theory is that of Bushman and McHugh. However, 

Bushman and McHugh's model seems to be mathematically complex and hence might be 

difficult to incorporate into polymer processing optimization routines. Also the 

characterization of the model in terms of a dumbbell consisting of multiple segments 

appears to be inconsistent. 

In this thesis, a model was developed by considering all possible contributions to 

the flow-induced crystallization process simultaneously and self-consistently. This 

approach is simple, easy to physically correlate and combines thermodynamic and 

rheological variables and could be used for a priori predictions of crystallinity and 

crystallization rate as a function of the process variables. Unlike McHugh and Bushman's 

model (1996), which incorporated several parameters and complicated Bracket structures, 

the model presented in this thesis is based on simple continuum physics, is easy to 

visualize in terms of physical processes and can adequately interpret and predict flow­

induced crystallization. 

Although the physical model described in this thesis ( Chapter 3) may appear to be 

similar to Flory's physical model, there are vast differences in the way in which the 

governing equations are derived and the predictions of crystallinity are made. The theory 

described in this thesis draws from the same ideas to represent polymer molecules as Flory 
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However, the model developed here is an entirely new approach and is not a successor to 

the models based on Flory's work. 

Flory's theory is based purely on thermodynamic considerations, and does not 

explicitly relate the macroscopic rheological changes to the configurational statistics of the 

polymer chains. Since Flory considered cross-linked systems, the molecular elongation, a, 

was assumed to be the same as the macroscopic elongation. For entangled or dilute fluid 

systems, however, the assumption of equal elongations cannot be made and the 

macroscopic elongation has to be related to the microscopic elongation using some other 

relationship. McHugh et al. (1993) used the experimental birefringence to determine the 

molecular elongation, as discussed in section 2.2.2.1 but this approach is not predictive. 

In this thesis however, the macroscopic elongation itself is used an input parameter to the 

model and does not require experimental orientation data to predict the FIC kinetics. 

Finally, Flory's model was an equilibrium model and hence could not predict 

crystallization kinetics. 

2.3 Polymer Kinetic Theory 

Polymer kinetic theory is based on the utilization of molecular models and methods 

of statistical mechanics to relate the bulk flow behavior of macromolecules to their 

structure. The principles of polymer kinetic theory are described extensively in the texts 

by Bird et al. (1987) and Doi and Edwards (1986). Recent developments have been 

reviewed by Bird et al. (1996) and by Ottinger et al. (1996). Some of the relevant 

concepts are discussed below. 
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Polymer molecules have to be treated differently than smaller molecules considered 

in the kinetic theory of gases and liquids because of the vast diversity in their structure, the 

existence of molecular weight distributions, and the large number of internal degrees of 

freedom. Polymer molecules are in a continual state of motion at any given time. These 

motions include large-scale motions of the molecule as a whole and more rapid segmental 

motions. Quantum effects like torsional and bond vibration and rotation also occur 

though they are not of great rheological importance (Bird et al., 1987). 

The starting point for a discussion of polymer kinetic theory is the phase-space 

theory for polymeric liquids. Phase-space refers to a generalized coordinate system which 

is defined in terms of position and momentum. The term "configuration space" refers to a 

coordinate system which is defined in terms of position only. The classification of 

modeling approaches used in polymer kinetic theory in shown in Fig. 2-5. The general 

phase-space theory can be subdivided into theories applied to melts and dilute solutions. 

Dilute solutions are easier to model than polymer melts because intermolecular 

interactions can be neglected or represented in relatively simple terms. In both cases, 

however, simplified mechanical models are used to represent the molecules. 

Some of the mechanical models commonly used in polymer kinetic theory are 

shown in Figure 2-6. They consist of discrete masses e.g. beads, ellipsoids needles, etc. 

connected by rods and/or springs. The Rouse (1953) chain shown in Figure 2-6(a) 

consists of beads connected by springs that follow some elastic law. For rheological 

purposes, polymer molecules in the melt are most often represented by Kramers chains 

(shown in Figure 2-6 (b )) which consist of freely jointed chains of beads joined by rigid 

connectors. 
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General Phase-Space Kinetic Theory 

I 

Dilute Solution Theory Theory of Undiluted 
Polymers 

1 I I 

Elastic Multibead Bead-Spring Bead-Rod 

Dumbbells Rods Chains Chains 

Figure 2-5. Classification of Polymer Kinetic Theory 
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There are two primary reasons for using the Kramers chain model (Bird, 1987b ). 

Kramers chains have a constant contour length and can be stretched, oriented and 

deformed - operations which represent all the fundamental rheological processes. 

Secondly, unlike solutions, molecular motion in a polymer melt is severely restricted and 

so, bending motions are not important. Hence, spring connectors need not be used. 

However, in a dilute solution, it might be more advantageous to use a spring connector 

because of the relatively high freedom of movement. Other models where the beads or 

point masses are replaced by needles or ellipsoids (Figure 2-6 c and d) are sometimes used 

in studies on hydrodynamic interaction. The mathematics, however, is the same except for 

the way in which the beads are geometrically represented. The mathematical development 

of a kinetic theory model begins with the derivation of the equation of continuity for the 

configuration-space distribution function from first principles, followed by the equations of 

internal motion for the constituent molecules. The configurational probability distribution 

function (PDF) describes the possible configurations that the molecule can be in, under the 

action of the forces considered. 

Simply stated, the main idea of an equation of continuity for probability 

distributions of molecular configurations is that if a bead-connector element leaves one 

orientation, it must end up in another (Bird, 1987b). Thus, the equation of continuity is a 

conservation statement with respect to orientations of "bead-connector" elements. 

Mathematically, the equation of continuity can be represented as follows (Bird, 1987b ). 
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Rouse chain 

Kramers chain 

(b) 

Freely jointed 
chain of "needles" 

(cl 

Rouse chain with 
ellicsoidal beads 

(d) 

Figure 2-6. Types of Mechanical Models Used in Polymer Kinetic Theory. 
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(2-70) 

In equation (2-70), \jJ represents the configurational PDF, and Qs and Qs are the 

generalized coordinates and velocity, respectively, used to represent the bead-connector 

element. The equation of continuity (Equation 2-70) for a rigid dumbbell model (two 

beads connected by a rod) can be derived from first principles (Bird et al., 1987b, Tsai, 

1997) and is presented in Appendix D. An equation for [I Q5 I] is obtained by considering a 

force balance on the system. The expression for the average velocity is then substituted 

back into the equation of continuity to yield the diffusion equation. 

The development of the continuity, motion and diffusion equations forms the basis 

of all polymer kinetic theory studies. These equations are then manipulated using different 

assumptions and conditions for determination of various rheological and thermodynamic 

quantities. A complete description of the rigid bead-rod model as applied to FIC will be 

presented in Chapter 3. 

2.3.1 Polymer Kinetic Theory and Modeling 

Kinetic theory has been successfully used to develop rheological equations of state 

(Wedgewood and Bird, 1988; Wiest et al, 1989; Ng and Leal, 1993; Manke and Williams, 

1991, 1993; Bird and Weist, 1995), Brownian dynamics simulations (van den Brule, 

1993a; Ottinger, 1993; Hua and Scheiber, 1996; Andrews et al., 1998), microrheological 

models of heat conduction (van den Brule, 1993b; Bird and Curtiss, 1996) and 

macroscopic-level models of fibers in reinforced polymer blends (Tucker et al., 

1988,1995; Altan et al., 1990; Chung and Kwon, 1995). Other applications include the 
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determination of optical, electrical and diffusional properties, and the development of virial 

and hypervirial theorems. (Bird and Weist, 1995). 

Curtiss and Bird (1996) modeled polymer molecules as flexible bead-spring 

structures and showed how the phase-space kinetic theory of polymeric liquid mixtures 

leads to a set of extended Maxwell-Stefan equations describing multicomponent diffusion 

for dilute solutions and for undiluted polymers. To obtain the Maxwell-Stefan equations, 

the usual expression for the hydrodynamic drag force on a bead, used in previous kinetic 

theories, was replaced by a new expression that accounts explicitly for bead-bead 

interactions between different molecules. 

Recently, researchers (Kobe and Wiest, 1993, Ottinger, 1996) have started using 

kinetic theory to describe molecular orientation due to extensional FIC. Schneggenburger 

et al. (1996) extended the original FENE dumbbell kinetic theory to describe 

concentration dependent shear-induced anisotropy in dilute polymer solutions A mean­

field term was introduced into the model equations to take into account intermolecular 

forces. For the case of stationary shear flow the corresponding coupled non-linear 

relaxation equations for the components of the tensor of gyration were solved numerically. 

Schneggenburger et al. presented results for the shear and concentration dependence of 

the orientation angle, radius of gyration, and the Eigen values which are in good 

qualitative agreement with data from light-scattering experiments. 

Nyland et al. (1996) used kinetic theory to derive a stochastic differential equation 

for a Brownian dynamics needle chain model. This model included needle translation­

translation and rotation-rotation hydrodynamic interactions, a homogeneous solvent flow 

field, external forces, excluded volume effects, and bending and twisting stiffness between 
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nearest neighbor segments. They found that by proper generalization of the parameters 

involved, the mathematical analysis of the polymer dynamics, in great detail, maps onto 

the analysis of the bead:-rod-spring polymer chain model with constraints presented by 

Ottinger ( 1994). 

Jongschaap et al. (1996, 1997) have developed a thermodynamic approach to 

rheological modeling at the configuration space level of description. Their method 

combines continuum mechanics principles with molecular modeling concepts into a matrix 

formulation. This formulation is combined with the Lagrangian simulation developed by 

Szeri and Leal (1992) to yield a constitutive equation. 

The matrix formulation for a rigid dumbbell at the configurational space level of 

description can be derived as follows. If f(X,t) is the configurational probability 

distribution function for a set of configurational variables X, then the rate of change of 

internal energy can be expressed in terms of state variables by the following equation: 

. . f aJ U =TS+ µ(X) 81dX (2-71) 

where U is the internal energy, T is the temperature, S is the entropy and µ(X) is a 

chemical potential in configuration space. 

The equation of continuity can be written as follows: 

<J\lf = -~·(XJ) at ax (2-72) 

Substitution off from equation (2-71) into equation (2-72), and integration by parts yields 

0= Ts-f µ a:·(JX)dX = TS+ f.1 :;-XdX= TS+ f JF(X)·XdX (2-73) 
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where F(X) = !~ is called a thermodynamic force. 

The internal energy can also be related to the external forces and rate variables by the 

following equation. 

(2-74) 

where, Qis a heat flux, I is the stress tensor and Lis the velocity gradient tensor. If I is 

treated as the average of a microscopic force dipole -c, then, 

(2-75) 

For a rigid dumbbell, the matrix formulation result is as follows. 

1 -(P!{r. L 

(j = 
-(J}uuuu: 2 ----

(2-76) aµ 2 
Pu: ~2· au 

where u is a unit vector in the direction of the dumbbell, 

f=l-:y:y, 

L is the velocity gradient tensor and 

µ= kTlnf 

The details of the Lagrangian representation are given in the papers by Jongschaap 

et al. (1997) and by Szeri and Leal (1992). The essential steps include mapping the flux 

velocity X from time t = 0 to time t = t using a mapping function. This can be interpreted 

as a coordinate map between the initial configuration of the system and the "deformed" 

configuration of the system. The Jacobian of the mapping is determined from its gradient 

and the probability distribution function is rewritten in terms of the Jacobian. Ensemble 
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averages can then be determined in terms of a summation over a finite set of initial points 

in configuration space using weight factors. The weight factors will depend on the 

distribution function and the discretization step size. Then, the thermodynamic force 

terms can be evaluated for a given trajectory X = :x(Xo, t) in configuration space without a 

priori knowledge of the distribution function \Jf(X, t). 

Thus, the advantage of Jongschaap's technique is that an explicit solution of the 

configurational distribution function is not required for calculating the average quantities 

required for determination of rheological and/or thermodynamic quantities and numerical 

solution techniques can be directly applied to the "Lagrangian-matrix" formulation. This 

technique is a potentially useful tool that could be combined with the model in this thesis 

to yield a generalized solution for modeling crystal structure formation. 

In the model presented in this thesis, kinetic theory as applied to polymer 

molecules, was combined with the well known Lennard-Jones potential function to 

describe the kinetics of flow-induced crystallization. Use of the Lennard-Jones potential is 

common in the literature (Allinger, 1977, 1989, Bok.is et al., 1994, ), but the utilization of 

this function within a polymer kinetic theory framework to model flow-induced structure 

formation is unique. This approach allows the prediction of the equilibrium and non­

equilibrium molecular orientation behavior using probability distributions, from which the 

crystallization kinetics can be readily obtained. 

Studies of orientation distributions for molecular orientations have previously been 

reported in the literature. These distributions were typically obtained using experimental 

birefringence data which were correlated with a Hermann's orientation distribution 

function. For example, the expected orientation distribution (OD) for crystallization from 
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slightly oriented precursors has been analyzed by Desai, Abhiraman and coworkers (1983, 

1985, 1986, 1990) for fiber spinning processes. A schematic representation of the OD 

profiles obtained by Abhiraman ( 1983) is shown in Figure. 2-7. In Figure 2-7, 8 = 0, 

corresponds to orientation in the direction of the flow i.e. the formation of ECC. Also, P 

corresponds to segments prior to crystallization, C corresponds to crystallized segments, 

A correspond to uncrystallized segments and O is the weighted combination of C and A 

for all segments following crystallization. From the profile for O in Figure 2-7, one can 

deduce that as the crystallization process proceeds there is a preferred orientation in the 8 

= O direction. This orientation preference was also one of the characteristic predictions of 

the model in this thesis. 

In this thesis, the configurational probability distribution in space and time was 

determined using fundamental polymer kinetic theory so that both the extent and rate of 

crystallization can be characterized. Since the primary interest lied in the orientability of 

the molecules, it was decided to use a bead-rod model since it captured the essential 

physics of the problem. 

Also, since the process was not at equilibrium, mathematical tractability was a 

consideration and hence, the number of beads was initially restricted to that of a dumbbell 

configuration. The resulting model was thus, simple, general, and accounted 

simultaneously for the effects of flow, temperature, intermolecular attractions, molecular 

weight, and polymer type and could be easily incorporated into optimization routines 

(Tsai, 1997). A more general bead-rod chain model was later developed to predict the 

formation of FCC and ECC structures. 
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2.4 Solution Techniques and Partial Differential Equations 

2.4.1 PDE Trinities 

PDEs may be characterized m terms of various "trinities"(Gustaffson, 1987). 

These "trinities" are described below. 

There are roughly three physical techniques used to generate PDEs. 

a) Conservation Principles 

The conserved quantity may be mass, momentum, energy or any other quantity. 

b) Linearization Assumptions 

Examples of this technique include dropping of higher order terms and quantization of 

a field. 

c) Perturbation Methods 

These can be singular or regular, linear or nonlinear and could be restricted to simpler 

terms or applied to the whole domain. 

In this thesis, the PDE is generated as a result of conservation of configurational 

probability. Such a PDE is sometimes referred to as a stochastic differential equation. 

There are typically three physical settings in which PD Es are generated. 

a) Continuum and Classical Mechanics 

Examples include the heat equation, and PDEs for vibrating strings, irrotational 

incompressible flow, electrostatic potential and the Navier-Stokes equations. 

b) Statistical Mechanics 

These include the linear Boltzmann equation, the nonlinear Debye-Huckel equation, 

the Carlemann system, etc. 
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c) Quantum Mechanics 

The Schrodinger equation, the Klein-Gordon equation and the Dirac equation are 

examples of PD Es in the field of quantum mechanics. 

In this thesis, the PDE for the configurational probability distribution function is 

derived from a combination of continuum and statistical mechanics. This approach will be 

explained in detail in Chapter 3. 

2.4.2 Mathematical Definition and Classification of PD Es 

In general, a PDE can be represented as(Gustafson, 1987) 

[ au a; J Fu, ax , ... , s r ,xl,···,Xn,t,otherparameters = 0 
1 axk ... ax1 

(2-77) 

where u = u( x 1 ••• , xn , t, other parameters) is the unknown function or relation of interest. 

There are three types of problems depending on what prescriptions govern the function u. 

a) Boundary Value Problem (BVP) 

In this type of problem, the solution is constrained to exist within boundaries specified 

on one or more of variables. 

b) Initial Value Problem (IVP) 

As the name suggests, in this type of problem, the value of the function at time t = 0 is 

known and the objective is to determine the evolution of the function with time. 

c) Eigen Value Problem (EVP) 

In this type of problem the function possesses an inherent characteristic. Examples 

include sine, cosine and logarithmic functions. 
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The model in this thesis is based on the solution of an initial value problem with 

sine functions arising as a result of coordinate transformations. 

The general classification of an nth order PDE is a beyond the scope of this thesis. 

However, for a general second-order PDE in two variables, the discriminant rule is 

commonly used for classification. This rule can be explained as follows. Consider a 

second-order PDE represented in the following manner. 

a2u au a2u au au 
A-+B--+C-+D-+E-+Fu+G= O ax2 axay ax 2 ax ay (2-78) 

According to the discriminant rule, if d= AC-B2, then depending on the actual value of d, 

three classes of PDEs can be defined as shown below in Table 2-l(Gustafson, 1987). 

Classification Type Value of d Math Operator Operator Name Physical Name 

Elliptic d>O 11n Laplacian Potential 

Operator 

Parabolic d=O a 
at - L'.1n-1 

(Heat) Diffusion 

Operator 

Hyperbolic d<O a2 D' Alembert Wave 
-2 -L1n-1 
at 

Operator 

Table 2-1. Classification of General Second-Order PDEs (Gustaffson, 1987.) 

where, (2-79) 

In Table 2-1, the common names of the mathematical operators associated with 

each type of PDE viz. elliptic, parabolic and hyperbolic are also shown along with their 
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common names. The operators are often referred to by their physical names shown in the 

last column of Table 2-1 due to their frequent appearance in applications bearing these 

names. The working equation for the model in this thesis was called "the diffusion 

equation" for probability, but was elliptic according to the above classification. 

2.4.3 Boundary Conditions 

There are three types of boundary conditions normally specified for PDEs. 

Examples of these boundary conditions will be described with reference to the Poisson 

equation shown in equation (2-80). The domain for this PDE is specified by n. 

L\u =Finn 

a) Dirichlet Boundary Condition 

Here, the value of the function u in equation (2-80) is specified on the boundary. 

These problems generally have a fixed boundary. 

e.g. u = a on domain an 

b) Neumann Boundary Condition · 

(2-80) 

In this case, the first derivative of the function u is specified on the boundary. These 

problems generally have free boundaries. 

e.g. oo/8x1 = b, 8u/8x2 = C etc. on domain an 

c) Mixed Boundary Conditions 

In this case, both of the above types are specified on the boundary. A fourth type of 

boundary condition called the Robin boundary condition may be specified in some 

cases. This type of problem corresponds to an elastically supported boundary. 
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e.g. 00/ox.1 + ku = d on domain d.Q, k > 0 

The "diffusion equation" in this thesis had Neumann-type boundary conditions 

since only the change in probability could be specified at the boundaries and "no-flux" type 

conditions were imposed at the boundaries. 

2.4.4 Analytical Solutions 

Explicit analytical solutions using separation of variables (also called the Fourier 

method or solution by eigenfunction expansion), Green's function (also called the method 

of fundamental singularities or solution by integral equations) and variational formulation 

(also called the energy method or solution by the calculus of variations) for PDEs are 

available only for the simplest cases (linear equations). An approximate analytical solution 

for non-linear PDEs can be obtained by using the method of spherical harmonics and 

Legendre polynomials (Bird et al., 1987b ). However, this procedure is limited by the 

number of terms involved and can be used only for steady state cases. 

Bird et al. (1987b) have solved flow problems using spherical harmonics and 

polynomial approximations for steady shearing flows and steady elongational flows. Tsai 

(1997) extended Bird's method for steady shearing flows and found that the number of 

terms considered in the polynomial series expansion seriously affects the accuracy of the 

solution. 

The. analytical approach does not in effect, provide an exact solution (because of 

the use of a series expansion) and since it is very cumbersome to implement, numerical 

methods are preferred even for relatively simple PDEs. This trend is also related to the 

improvement in hardware performance and efficiency of numerical techniques used m 

software programming routines and the corresponding reduction in computer costs. 
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2.4.5 Numerical Solutions 

Since it is very difficult to generalize partial differential equations, there are very 

few generic programming routines available for the solution of PDEs. Commercial 

simulators like FIDAP are useful for solving flow problems, but are limited by the order 

and degree of non-linearity' of the PDE. Other so-called "general PDE routines" like 

PDESOL, PDECOL and the IMSL library routines are geared toward solving specific 

problems i.e. PD Es with Laplacian, Poisson, Helmholtz formulations etc. In any case, the 

solution of PD Es is still a developing field and techniques must be chosen according to the 

nature of the problem. 

The solution technique for PD Es depends on the type of problem, the class of PDE 

and method of computation used. There are three traditional types of computational 

methods usually used to solve PDEs numerically: the finite difference method (FDM), the 

finite element method (FEM), and the finite spectral method (FSM). Recently, due to the 

advances made in computer design and efficiency, Monte Carlo and Molecular Dynamics 

simulations and techniques based on artificial intelligence and wavelets are becoming 

increasing popular for solving polymer dynamics problems. 

All of the methods mentioned above, are capable of solving a large variety of 

problems and will be briefly described below. The FDM technique was used to solve the 

model equations in this thesis. 

2.4.5.1 Finite Difference Methods 

FDM methods were the. first techniques developed for solving ODEs and PDEs. 

They are based on discretization of the PDE using forward difference, backward 

difference or central difference grid methods and then solving the resultant system of 
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discrete equations using explicit predictor-corrector methods (Euler, Runge-Kutta, etc.) or 

implicit methods like the Crank-Nicolson method, and the method of lines (MOL) (Riggs, 

1988). 

FDM can be used to solve a wide variety of problems and are especially useful for 

solution of PDEs with regular boundaries. The accuracy of the solution depends on the 

mesh size and for IVPs, also on the time step· used. If L\X and L\ Y are the mesh step sizes 

for a 2-dimensional PDE in X and Y, and if L\t is the time step, then the stability and 

accuracy of the solution will, both depend in general, on the ratio L\tl L\XL\ Y or some 

polynomial expression involving this ratio. A discussion of each FDM method will not be 

provided here, but there are several excellent references available for FDM methods used 

to solve PDEs for polymer processing operations (Tucker, 1987). 

In this thesis, PDETWO, a program written by Melgaard and Sincovec (1981) was 

used to solve the model equations. This program was based on the MOL technique. The 

advantage of using the PDETWO package was that it is sufficiently general to handle 

varying degrees of stiffness and non-linearity. Another appealing feature of the PDE TWO 

program is that the mesh generation, boundary conditions, and non-linear diffusion 

coefficients are handled in an FEM format (i.e. they are input in separate subroutines and 

then passed on to the main integrator routine). Hence, this program can be used for 

different problems with minimal modifications. 

2.4.5.1.1 Method ofLines (MOL) 

The MOL converts an IV PDE into a set of coupled IV ODEs. The following 

procedure is given by Riggs (1988) for implementing the MOL technique. 
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1) The spatial domain is first discretized, i.e., the nodal points are defined. 

2) The IV-PDE is then discretized at each interior node point, i.e., the spatial derivatives 

are written in terms of finite difference approximations using forward, backward or 

central difference expressions. The partial spatial derivatives are thus converted into 

total derivatives with respect to time at each node point. 

3) The boundary conditions are then incorporated. The ODEs for the nodes adjacent to 

the boundary nodes are modified to satisfy the boundary conditions of the problem. 

4) The initial condition of the IV-PDE provides the initial condition for the set of coupled 

IV-ODEs. 

5) The nodal equations are finally integrated forward in time using a suitable integrator. 

The above procedure was used in PDETWO to convert one or more PDEs into sets of 

ODEs. A detailed description of PDETWO is given in Appendix A 

2.4.5.2 Finite Element Methods 

The FEM technique was originally developed for structural analysis in the 1960s. 

Since then, it has been used successfully to solve a variety of differential equations in 

nearly every branch of science and engineering. The fundamentals of FEM are based on 

variational calculus and functional analysis. 

Figure 2-8 show a schematic representation of the FEM technique applied to a 

simple PDE. The temperature (T) distribution over a one-dimensional domain defined by 

a < x< b is desired by solution of the PDE given by the equation 1-(T) = 0 where 1, is some 

differential operator. The domain is divided into sub-domains or elements (not necessarily 

of equal size) without gaps or overlapping regions. The elements are represented by 

numbers in parentheses. The junctions between elements are called nodes. Values of the 
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approximate solution (T) at these nodes are called nodal values. The approximate solution 

within an element is then written in terms of nodal values associated with that element 

using interpolation. The interpolation results in "shape functions" that are associated with 

each node. After, determining the shape functions, the unknown nodal values are found 

using various techniques. The most widely-used technique is the Galerkin method 

(Tucker, 1987) which converts the original set of equations into FEM equations using the 

method of weighted residuals. The resulting system of equations has the following form. 

[SJ [XJ = [IJ (2-81) 

where [SJ, the coefficient matrix is called the stiffness matrix, [XJ is the variable matrix 

and [IJ is called the load vector. This formulation is applied to each element and then 

using suitable assembly techniques and integration routines, the solution is determined at 

all nodes. 

The most significant advantage of FEM techniques over FDM methods is that it is 

possible to obtain solutions on irregularly-shaped domains. Also, the resolution can be 

varied within the solution domain to concentrate computing effort in areas where it most 

required. The other unique feature of FEM analysis is that is it has three distinct 

components which operate independently. The first component is the pre-processing step 

where boundary conditions are input and the mesh is generated. The next step is the 

actual solution of the PDE described a.hove, and the final component is the post­

processing step where the output is manipulated according to user specifications. Thus, a 

program may be applied without modification, to a large number of problems. In addition, 

the FEM technique can handle all types of boundary conditions and can be used to handle 

PDEs with very stiff coefficient matrices using elements of different shapes and orders. 
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2.4.5.3 Finite Spectral Methods 

These techniques are preferred for very regular geometries and for smooth 

functions. They have been shown to converge faster than FDM methods, but are limited 

by the nature of the problem. The term "spectral" actually refers to a number of methods 

that employ Fourier and other transforms to obtain numerical solutions to PDEs. Their 

popularity is a direct consequence of the speed with which a fast Fourier transform (FFT) 

can be performed. Gustaffson and Polet (1987) provide a detailed description of spectral 

methods. 

2.4.6 Other Methods 

Monte Carlo (MC) and Molecular Dynamics simulations are increasingly being 

used to simulate polymer processes (Fetsko and Cummings, 1994, Andrews et al., 1998). 

These techniques are not in essence PDE solution methods, but are novel approaches used 

to represent the physics of a given problem. The resultant equations are then solved 

according to series of well defined steps. 

2.4.6.1 Monte Carlo Simulations 

Monte Carlo (MC) simulation is based on the theory of Markov chains. An 

ensemble of correctly distributed configurations is created using Monte Carlo steps where 

the transition probability in going from one configuration to the next only involves the 

ratio of the probabilities of the two configurations. The quantity of interest is then 

determined from the configurations weighted in proportion to their probabilities. This 

method however, can only be applied to equilibrium systems and hence cannot be used for 

transient simulations. 
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2.4.6.2 Molecular Dynamics (MD) Simulations 

The MD technique involves solving the equations of motion for all points in the 

ensemble considered and then computing properties from time averages of the molecular 

mechanical properties. When used to solve stochastic differential equations, this technique 

is often referred to as Brownian Dynamics (BD) simulation. Complex flows can then be 

characterized by simulating a large ensemble of molecules in each cell of a mesh used in a 

FEM or FDM calculation. Ottinger and coworkers ( 1994, 1995, 1996, 1997) have 

recently developed a computer program called CONNFFESSIT (Calculation Of Non­

Newtonian .Flow: Finite Elements & Stochastic Simulation Techniques) which uses 

standard FEM techniques to solve the momentum and continuity equations, but replaces 

the conventional integral/differential constitutive equation with stochastic Brownian 

dynamics simulations in order to compute polymer stresses. 

Kroger (1997) described a BD simulation using a multibead anharmonic spring 

model to study elongational flow-induced alignment of polymer melts. Figure 2-9 is a 

schematic representation of the molecular model in which the orientation vectors are 

shown for different values of the contour length, d. The alignment of polymer segments 

was described by a tensor ~ called the segment alignment tensor which is obtained from 

the second moment of the orientation distribution function of a specific segment i on the 

chain backbone. The mathematical expression for g is shown in equation 2-82. 

(2-82) 

where u is the segment vector shown in Figure 2-8 and l is the unit tensor. 

88 



.. --~ 
0 

ld=ll ~ 
~i __ t --~ 7 

- -L ~--· o---
a , , 

----.. 
___ ... 

\ 

a 
I ~-----o 

0 
•--o--e' 

0 bead# i 

•--• lli 
segment # i (where k=i+ 1) 
and segment vector :Iii 

Figure 2-9. Kroger's Model for Brownian Dynamics Simulation ofF!ow­
Induced Orientation (Kroger, 1997) 

89 



The number of possible orientations is an inverse function of the contour length 

considered. Thus if d = 1, there are many more configurations possible (corresponding to 

each segment orientation vector), than if d = 3. The advantage of using a BD simulation is 

that it is powerful enough to determine a large number of configurations corresponding to 

smaller contour lengths. Kroger used repulsive L-J potentials between all beads and 

attractive FENE potentials between "nearest-neighbor beads". The simulations were 

performed using an NV! ensemble in a cubic cell with periodic boundary conditions. The 

degree of orientation was analyzed on different length scales i.e. contour distances using 

an alignment tensor f( d) which characterizes a single chain with N beads on a contour 

distanced E 0, ... N-1. This alignment tensor f is defined as follows. 

with 

N-d-1 

1 L d d F(d) = L.\ R .L.\ R. 
= N-d-l -I -I 

i=l 

i+d 
L.\dR.=~u. 

-l ~-} 

J=l 

(2-83) 

(2-84) 

The vector L.\d Ri, in equation (2-84) is a vector pointing from bead i to bead i+d 

of the chain. The flow-induced alignment was measured via the components of the above 

two tensors and results indicate that the relaxation time of intramolecular alignment 

increases with increasing values of d. In addition, for a given strain, the degree of 

segmental orientation was shown to decrease with decreasing rates of strain. The most 

recent developments in the field of polymer computational fluid dynamics are the 

application of artificial intelligence techniques and the theory of wavelets in the solution of 
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complex thermodynamic and flow problems. These techniques have a lot of potential and 

along with MC/MD simulations, are expected to replace the more conventional 

approaches in the near future (Bird et al., 1996). 

To recapitulate, the following points can be made from the discussion in this 

chapter: 

1. Empirical evidence shows that it is possible to generate an ECC polymer morphology 

using extensional and shearing flows. However, the interpretation of the data and the 

trends observed requires a theory which combines rheological and thermodynamic 

variables in a unified manner and which is capable of not only correlating data, but also 

predicting the effect of the variables on the FIC process. 

2. The models available in the literature are mostly correlative and those that are 

predictive are either thermodynamic or rheological and cannot model transient 

crystallization behavior. Other models are mathematically too cumbersome to 

implement in optimization routines for general polymer processing operations. 

3. Recently, the combination of advances in computational techniques and the 

development of polymer kinetic theory has made it possible to simulate molecular 

behavior in various polymer processes. However, the recent developments in polymer 

kinetic theory have not yet been fully exploited in. the area of flow-induced 

crystallization, and it is hoped that this work will be a step in that direction. Tsai 

(1997) has used ideas from this thesis to show how optimization routines for polymer 

equipment can be developed by incorporating molecular models based on polymer 

kinetic theory. 
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CHAPTER3 

MODEL DEVELOPMENT 

In this chapter, a qualitative description of the dumbbell model for prediction of 

ECC formation due to extensional FIC is presented and the major assumptions involved in 

the development of the model are outlined. Subsequently, the working equations for this 

model are derived and the boundary conditions and solution techniques for the resultant 

partial differential equations along with the input parameters to the computer code are 

described. In the last section of this chapter, the derivation of the working equations for 

simultaneous prediction of ECC and FCC structure formation using a multibead-rod 

model is presented along with the concepts associated with configurational quantities 

characteristic of bead-rod chain models. 

The steps involved in the development and application of models based on polymer 

kinetic theory are shown in Figure 3-1. The solid lines represent the traditional approach 

used in the application of kinetic theory while the dashed lines represent the approach 

taken in this thesis. According to the conventional framework (solid lines in Figure 3-1), a 

molecular model is first proposed based on some combination of bead-rod-spring 

mechanics. An equation for the configurational probability distribution function is then 

derived (the diffusion equation) using the equation of continuity and the equation of 

motion. The constitutive equation for the stress tensor and rheological properties are 

determined using the probability distribution function (PDF). Experimental data on 
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material functions are used to determine constants in the constitutive equation. The 

constitutive equation is used to solve fluid dynamics problems and these solutions are used 

to determine molecular orientation. 

The model in this thesis is based on the premise that molecular stretching and 

orientation can be determined directly from the configurational probability distribution 

function. The corresponding path of development is shown by the dotted lines in Figure 

3-1. This eliminates the need for an explicit constitutive equation though it could be easily 

obtained, if required, by following the normal path. 

3.1 Description of the ECC Dumbbell Model 

The key model ideas are illustrated by Figure 3-2, which shows a growmg 

extended chain crystal. The molecules are represented by modified Kramers chains in 

which the mass and volume are concentrated in beads that are connected by massless, rigid 

rods of length L. The beads are considered to be freely jointed and may occupy any 

volume not excluded by the presence of another bead. Representing polymer molecules as 

modified Kramers chains has been successfully used in other applications (Bird, 1996, 

Ottinger, 196, Andrews et al., 1997) and allows the essential physics (i.e. the orientation, 

flow and intermolecular interaction required for crystallization) of the system to be 

captured. Features of the molecule such as torsional mobility, rotation, and quantum 

vibrations that would make the mathematics intractable and which have been shown to be 

of less rheological significance (Bird et al, 1987b) were neglected. 

In Figure 3-2, two molecules have already joined the extended chain crystal. The 

third molecule is partially in the crystal and partially in the amorphous, flowing melt. The 
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portion of the molecule in the amorphous melt (segment OA which is hereafter referred to 

as the amorphous molecule segment for the sake of brevity) can move so as to allow the 

"free" bead (labeled A) to exist at any point on a hemisphere of radius L above the crystal 

surface. The free bead of the amorphous segment is subject to forces that result from the 

flow field, random Brownian motions, and van der Waals attractions to the crystal. 

In order for the crystal to grow, the free bead must occupy the next available 

lattice position in the crystal. The model was developed by writing a force balance on the 

amorphous molecule segment and calculating the probability that the free bead will occupy 

the next available lattice site. If there is a high probability of finding the free bead at or 

near the lattice site, crystallization is said to have occurred. 

Figure 3-2 also defines two coordinate systems, a Cartesian and a spherical system, 

and two model parameters of importance. The label "O" denotes the origin of the 

coordinate systems. The results of the model are independent of the placement of the 

origin. However, placing the origin as shown in Figure 3-2 simplifies the mathematics. 

The Cartesian coordinate system is defined such that the positive z-axis passes through the 

next available lattice site and the y-axis is perpendicular to the surface of the crystal. The 

spherical coordinate system is defined such that the next available lattice site is along the 

line 8 = 0, and the line <I> = n/2 is perpendicular to the crystal surface. Figure 3-2 also 

shows that positions of the free bead corresponding to low values of 8 are indicative of 

crystallization. 

The additional model parameters defined by Figure 3-2 are !! and Le. The length 

Le is the b-axis lattice constant for the crystal. The vector !! is a unit vector that points 

from the origin to the free bead. 
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3.2 Model Assumptions 

The dilute solution theory described by Bird et al. (1987b) was used as the basis of 

the model development even though this theory does not include certain features of 

polymer melts like anisotropic drag and anisotropic Brownian motion. The effect of 

neglecting the anisotropy on the model predictions is discussed in Chapter 4. 

Bird et al. have shown that when the mild curvature approximation is used along 

with the assumption of isotropic behavior, the expression for the time-dependent singlet 

distribution function for polymer melts reduces to the dilute solution, rigid bead-rod 

diffusion equation with an adjusted time constant. Thus, essentially the same form of the 

equation can be used for polymer melts and solutions as long as the right time constant is 

used. 

The main assumptions associated with the derivation of the working equations for 

the model are described below. 

1) Nucleation processes were not considered in the development of this model since the 

focus was on crystal growth. This assumption is also based on experimental 

observations ofKakani (1996) who deduced that extensional flow did not significantly 

affect the nucleation process. 

2) Brownian motions were assumed to be isotropic. Also, the distribution of Brownian 

motions were assumed to follow a Maxwellian distribution. The Maxwellian 

distribution assumption is widely used in the polymer kinetic theory literature and it 

implies that the velocity distribution in a flow system is the same as that of a system at 

equilibrium. Hence the idea of "equilibration in momentum space." The resulting 

mathematical expression for the Brownian motion is considerably simpler and has the 
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form of a divergence of a momentum flux. A detailed derivation of this equation is 

given by Bird et al. (1987b) and also by Tsai (1997). 

3) The acceleration of any bead was assumed to be negligible. This assumption is a direct 

consequence of the small mass of each bead and sluggish motion associated with the 

flow of polymer melts and solutions. As a result it is possible to sum the forces acting 

on the beads and equate the sum to zero. 

4) The flow field was assumed to be homogeneous. This means that the rate of strain 

tensor is the same at all locations in the flow field. The validity of this assumption is in 

question only when the velocity gradient changes substantially over a distance on the 

order of magnitude of the size of the polymer molecule. 

5) The polymer fluid was assumed to be incompressible. This is a reasonable assumption 

since most polymer melts and solutions can be classified as incompressible. The 

mathematical implication of this assumption is that the trace of the transpose of the 

velocity gradient tensor is zero. 

6) There are no intramolecular hydrodynamic interactions. This means that the beads 

move through the solution/melt without disturbing the velocity field i.e. the movement 

of one bead does not affect the velocity field at the other bead. This assumption is 

also know as the "free-draining" assumption. 

7) The friction coefficient tensor, c;, is isotropic, i.e., c; = c; §, where c; is the coefficient 

of friction and §, is the identity tensor. As a result of this, and Assumption 6, the 

hydrodynamic drag force has a Stokes' Law formulation in which the drag force is 
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directly proportional to the difference between the average bead velocity and the mass 

average velocity of the flowing solution/melt. 

In the development of the model, only Brownian motions were assumed to have a 

Maxwellian distribution. All other momentum-space averages were assumed to be 

evaluated using a non-equilibrium expression for the momentum-space distribution 

function. However, as seen below, the momentum average terms can be eliminated from 

the derivation and need not be explicitly evaluated which further justifies the use of 

Assumption 2. 

3.3 Derivation of the Working Equations for the ECC Dumbbell Model 

The working equations for the model were derived in the following manner. First, 

the forces acting on the molecular segment of interest (i.e. the free bead) were identified 

and expressed in terms of the unit vectors associated with the spherical cylindrical 

coordinate system i.e. ~ Q.0 and Q.c\l These unit vectors will also be used interchangeably 

with!!, §. and t. respectively, to refer to unit vectors in the r, 8, and <I> directions since, in 

some instances, it was more convenient to use one notation over the other. Then, the 

equation of motion is written from a force balance using the assumptions described earlier. 

An expression is determined for the velocity of the free bead from the equation of motion 

and is substituted into the equation of continuity for configurational probability 

distributions. This equation is rewritten in terms of dimensionless parameters to give the 

final working equations for the model. 
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3. 3 .1 Forces Acting on the Free Bead 

The three forces acting on the free bead are represented in Figure 3-3 and include: 

hydrodynamic drag (Figure 3-3a), Brownian (Figure 3-3b ), and intermolecular attraction 

(Figure 3-3c). The hydrodynamic drag force will resist the movement of the free bead 

under quiescent conditions or orient the free bead under flow conditions. The 

hydrodynamic drag force may promote or inhibit crystal development, depending on the 

exact nature of the flow. The Brownian forces result from the random motions of small 

particles and always tend to destroy orientation. The intermolecular attraction is between 

the free bead, "A" and the bead labeled "C" and tends to promote crystal development. 

The following mathematical development of the model draws heavily from the 

work of Bird et al. (1987b ). The model is developed by writing expressions for each of 

the forces acting on the free bead. 

3.3.1.1 Hydrodynamic Drag Force 

The hydrodynamic drag force acting on any bead, Fa.<h)' can be represented by 

pCh) = _r · [n~ D-(v -v' )] -a '::. -a -a -a (3-1) 

where a identifies the bead of interest, ~ is the coefficient of drag or friction tensor, 

Uran is the momentum-average bead velocity, Ya is the fluid velocity at the location of 

bead a, and y_~ is the local perturbation in the fluid velocity field. Examination of 

Equation (3-1) reveals that the hydrodynamic drag force is expressed as the difference of 

the bead and fluid velocities multiplied by a drag coefficient. For a homogeneous flow 
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(Assumption 4), the fluid velocity can be represented by 

(3-2) 

where (3-3) 

and y 0 is the fluid velocity at the origin, and !.a is the position vector that gives the 

location of bead a. The tensor ~ is the transpose of the velocity gradient tensor and is 

independent of position in a homogeneous flow although it may be time dependent. For 

bead A in Figure 3-2, a = A and 

(3-4) ' 

By substituting Equations (3-2) and (3-4) into Equation (3-1), setting the perturbation 

velocity equal to zero (Assumption 4) and invoking Assumption 7, the expression for the 

hydrodynamic drag force on bead A becomes 

(3-5) 

3.3.1.2 Brownian Force 

From Assumption 2, the force acting on the free bead due to Brownian motion is 

given by (Tsai, 1997, Bird et al., 1987b) 

(b) kT a 
F =---Inf 
-A Lau 

(3-6) 

where k is Boltzmann's constant, T is absolute temperature, f is the configurational 

a 
probability distribution function and au is the gradient operator on the surface of a unit 

sphere and has the functional form 
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__£_ = r[(o - uu) · v] = s __!}__ + t-. I _ _!}_ a!! - = -- - - 00 - sm 8 B<p (3-7) 

where~ and 1 are the unit vectors associated with the 8 and Q) coordinates, respectively. 

Equation (3-6) allows temperature dependence to be explicitly stated and 

introduces the probability distribution function (PDF) or f The PDF is the key variable in 

the development of the model since the PDF gives the probability density for finding the 

bead at a given location on the surface of the hemisphere. Once f is determined as a 

function of position, finding the volume fraction of crystal and the crystallization rate is 

relatively simple. 

3 .3 .1.3 Intermolecular Force 

The force acting on bead A due to the intermolecular attraction between beads A 

and C is given by 

1 ar 
L Bu 

(3-8) 

where r is the intermolecular potential energy function. Examination of Equation 3-8 

reveals that the expression for the potential energy function needs to have continuous 

derivatives. Consequently, the Lennard-Jones 6-12 potential function was chosen. An 

other potential could be used provided it has continuous derivatives. Mathematically, the 

Lennard-Jones 6-12 potential function is represented as follows: 

[( ] 12 ( ]6] (5 (5 

r-4E - - -
rsep rsep 

(3-9) 

where E is the depth of the energy well, rsep is the separation distance from bead A to bead 

C, and cr is the separation distance at which the potential energy is zero (see Figure 3-3c). 
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An expression for a in terms of the model parameters can be determined since r must be 

equal to-Eat rsep = Le. The resulting expression is 

a= 0.891 Le. (3-10) 

An expression for rsep can also be derived in terms of the model parameters by 

examination of Figure 3-2 and noting that bead A is located at the point (x, y, z) and bead 

C is located at the point (0, -Le, L). Via a double application of the Pythagorean 

Theorem, the separation distance between beads A and C is given by 

Furthermore, Cartesian and spherical coordinates can be related by 

x = L sine cos<!>, y = L sine sin<!>, z = L cose. 

When Equation (3-12) is substituted into Equation (3-11), rearrangement gives 

or 

where 

and 

rs:p = 2L2 (1- cosB) + 2LLC sine sin¢+ L! 

For convenience, Equation 3-13 can be non-dimensionalized to yield 

r· = 2L*\l-cosB) + 2L* sinBsin¢ + 1 ( )
l/2 

r+ = 2L*2 (1- cose) + 2C sinesin<J> + 1 

• rsep 
r =­

L' 
C 
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(3-11) 

(3-12) 

(3-13) 

(3-14) 

(3-15) 

(3-16) 



t = (r*)2 (3-17) 

The parameter L• is the dimensionless segment length. Equation (3-9) can be rewritten in 

terms of the model parameters and dimensionless separation distance resulting in 

(3-18) 

3.4 Development of the Diffusion Equation 

Equations (3-5), (3-6) and (3-8) represent a system of three equations in five 

unknowns (F(h) ,FCh) ,!'.:Ch) ,[JtiJ],andf). A completely defined system of equations can 

be written by including the. momentum equation and the continuity equation. The 

momentum equation is developed by writing a force balance on beads O and A, and 

invoking Assumption 3 to obtain 

'°' (FC~) - FC~)) = 0 L...i -A -0 
~=h,b,[ 

and then projecting out the 8 and <I> components 

where the superscripts h, b and r represent the hydrodynamic drag, Brownian and 

intermolecular forces, respectively. In writing Equation (3-20), one must recall that 

Therefore, 

and 
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(3-19) 

(3-20) 

(3-21) 

(3-22) 



[(Q -!!.!!)·E] =:~:Fe+ [F,t, (3-23) 

Equation (3-20) can be simplified by examining the individual terms. The force 

Eo (b) is equal to zero since bead O is assumed to be embedded in a crystal that is 

sufficiently large to be unaffected by Brownian forces. The force term Eo er) is set equal to 

zero since bead O is already in the crystal lattice, and therefore, at the bottom of an energy 

well where intermolecular attractions are equal to zero. Since bead O is at the origin 

F(h) = _rv 
-0 '=>-o (3-24) 

When Equations (3-5), (3-6), (3-8) and (3-24) are substituted into Equation 

(3-20), the resulting expression can be solved for the momentum average velocity of the 

free bead 

. [ ] 1 8 1 8r 
[[!!]] = !S. !! - !S:!!!!!! - 12.-l 8!! lnf - 12kTA 8!! (3-25) 

where 

11,= c;J}/12kT (3-25a) 

The parameter A has units of time and characterizes the specific system being considered. 

If A is large, hydrodynamic drag dominates. Whereas, if A is small, Brownian motions and 

intermolecular interactions are more significant. 

The continuity equation states that probability is conserved and is analogous to the 

equation used to express the conservation of mass in continuum mechanics. The 

mathematical expression for the continuity equation is 

8 ( 8 . ) at f = - 8!! · [[!!]]/ · (3-26) 
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The derivation of equation (3-26) is shown in Appendix D. Substitution of Equation (3-

25) into Equation (3-26) results in the diffusion equation 

a 1 a {([ ] ) 1 ( a ) } - --- A --. K•u-K·uuu - -r a1 1 - 12/\, { f} a!! = - =·--- 1 12kn a!! 1 (3-27) 

where 

(3-28) 

Equation (3-27) gives the change with time of the probability distribution function 

as a result of the free bead being acted upon by the Brownian (first term on right hand 

side), hydrodynamic (second term on right hand side), and intermolecular (third term on 

right hand side) forces. 

Examination of Equation (3-27) also shows that the probability distribution 

depends on parameters typically used to characterize a polymer processing operation: 

temperature, flow kinematics, molecular weight, and polymer type. Temperature appears 

explicitly on the right hand side and implicitly as part of A. The flow kinematics are 

represented by ~ . Each polymer type has unique values of E and Le resulting in a unique 

expression for r. An increase in molecular weight of a polymer molecule would 

correspond to an increase in the length which is represented in this model by the variable L 

which appears implicitly in Equation (3-27) as part of A. Therefore, Equation (3-27) is 

readily applicable to typical polymer processing operations. The correlation of the 

parameters of this model with experimental evidence will be described in Chapter 4 along 

with the justification for the numerical values chosen to simulate the FIC process. 
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3.5 Multi-Bead-Rod Model Development 

Fig 3-4 shows a schematic representation of the multi-bead rod model. As in the 

ECC dumbbell model, the crystal is assumed to be nucleated and the amorphous segments 

available for crystallization are represented by N bead-rod segments. The discussion and 

development in this section follows very closely the presentation by Bird et al. ( 1987b ). 

The derivation of the multi-bead-rod model equations will be presented in this 

section. Some new concepts will be introduced along with the nomenclature used to 

describe these concepts. The concept of a generalized coordinate framework will be 

introduced which will be useful in understanding the mathematical and physical quantities 

associated with the multi-bead rod model. Expressions for the kinetic energy will be 

presented in terms of the generalized coordinates. The base vectors and metric matrix 

components will then be defined. The Hamiltonian for the system will be defined in terms 

of the generalized momenta. Finally, expressions will be written for the generalized forces 

associated with the model which will be combined with the metric matrix components to 

determine an expression for the configurational probability distribution function used to . 

describe the configurations of the bead-rod segments. 

3. 5. 1 Generalized Coordinates 

In theories based on classical mechanics and classical statistical mechanics, it is 

customary to specify the minimum number _of coordinates required to determine the 

location of all particles in a given system. This minimum will depend on the number of 

degrees of freedom dr or constraints specified for each system (Bird et al., 1987b ). For 

example, in a system consisting ofN beads corutected by springs at no particular angle to 

each other ( i.e. no constraints), 3N-3 internal coordinates are required to determine the 
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Figure 3-4. Multi-Bead-Rod Model 
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location of all the beads. For systems with constraints, the number of internal coordinates 

required will be less than 3N-3 since the number of degrees of freedom decreases as the 

number of constraints increases. In general, the internal coordinates are represented by 

Q1, Q2 , ... Qd1 where d1 s 3N-3. The time rate of change of the s1h generalized 

coordinate, called the "generalized velocity" is given by 

(3-29) 

For the case of the freely jointed, bead-rod chain (Kramers chain) considered in 

this thesis, the internal configuration can be determined by 2N - 2 internal coordinates. 

The degrees of freedom have been reduced by N-1 since the rods are rigid and each bead 

is constrained to be at a distance L from its nearest neighbor. Thus, the configuration can 

be specified by the polar angles of each link i.e. Qi= 81, Q2 = cp1, Q3 = 82, Q4 = cp2, etc. As 

an alternative, the configuration can be represented by "generalized coordinates", which in 

the case of Kramers chains, would be the unit vectors in the directions of the rod, !!i and 

The following convention is used to specify the indices: 

a, f3, Y, ... for designating beads 1, 2, ... , N 

s, t, u, ... for designating generalized coordinates 1,2, ... ,dfs3N-3 

i, j, k, ... for designating links i.e. rods 1, 2, ... , N - 1 

3. 5 .2 Kinetic Energy, Base Vectors and Metric Matrices 

Consider a macromolecular bead-rod model with N beads each of mass ma ( a = 1, 

2, ... , N). The total mass of the polymer molecule is 
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(3-30) 

The position vector for each bead, with respect to an arbitrary origin, can be represented 

ar 
by !a and the velocity vector for each bead is denoted by ta· = a; . The kinetic energy 

associated with each macromolecule is given by 

K=_!_L m ;-2 
2 a-a a . 

(3-31) 

.where t! = tr,. ·tr,.· 

Equation (3-31) can be rewritten in terms of the position and velocity of the center of 

mass of the molecule as follows. 

1 2 1 L ·2 K=-m r +- m R 2 P-c 2 a-a (3-32) 
a 

where the center of mass !c and its velocity tc are defined as f~llows. · 

(3-33) 

and Ra ="!:.a-re and Ra = ta -tc are vectors which define the position and velocity 

of bead a with respect to the center of mass. Equation (3-32) can be rewritten in terms of 

the generalized coordinates by using the chain rule of partial differentiation (Bird et al., 

1987b). Thus, 
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(3-34) 
a 

where, 

(3-35) 

and 

(3-36) 
a 

The quantities '!!.as and gst are called the base vectors and the components of the metric 

matrix, respectively, and are terms that naturally arise when the kinetic energy of a 

macromolecular model is written in terms of the generalized coordinates. These quantities 

are related to the geometry of the macromolecular model which in turn depends on the 

number of beads/rods considered. Also, the base vectors satisfy the following 

relationship. 

(3-37) 
a 

because (3-38) 

The components of the inverse of the metric matrix are designated by Gst: 

(3-39) 
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The determinant of the metric matrix is called g and is represented as 

g = <let (gs1). (3-40) 

3.5.3 Connector Vectors and Kramers Matrices 

The connector vector Q between adjacent beads is very often used to specify the 

configuration of a chain. This vector, which was introduced earlier in the development of 

the dumbbell model, is defined as follows. 

(3-41) 

The notation for this vector must be not confused with the notation for the set of 

generalized coordinates which is represented by Q without an underline and boldface. The 

relationship between the bead position vectors, !a, and the connector vector !b can be 

expressed as 

The matrix elements Bka and Bak, in equations (3-42) and (3-43) are defined by 

Bka = 8 k+l,a - 8 ka 

(k <a) 

(k :2: a) 

Two useful, symmetric, non-singular matrices, Cij and Aij, can be defined as follows: 
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if is j 

if j s i 

(3-42) 

(3-43) 

(3-44) 

(3-45) 

(3-46) 



if i = j 

ifi=j±l 

otherwise 

(3-47) 

The matrices Aij and Cj are of order (N-1) X (N-1) where (N-1) is the number of 

connectors. Aij is called the Rouse matrix and Cij is called the Kramers matrix. These 

quantities will be useful in determining an expression for the PDF for steady potential 

flows. 

3. 5. 4 Hamiltonian and Generalized Momenta 

The Hamiltonian of a system, in general, is given by the sum of the kinetic and potential 

energies of that system, written in terms of momenta and not velocities. The momentum 

of bead a is given by 

P =m r -a U-a. 
(3-48) 

The momentum of the center of mass is defined by 

a 
p =-. K=m r. 
-c ar p-c 

-c 

(3-49) 

The generalized momenta for the internal degrees of freedom of the system are defined as 

follows: 

(3-50) 

Equation (3-50) can be inverted so that 

(3-51) 

Substituting equation (3-51) in equation (3-34) we get 
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I 2 ILL K=--p +- GstPJ1 
2m -c 2 

p s t 

(3-52) 

Now, since the Hamiltonian, H, of the system is the sum of the kinetic and potential 

energies of the system, 

H=K+<J>+r (3-53) 

where, Kis the kinetic energy, <I> is the intramolecular potential and r is the intermolecular 

potential. Substituting equation (3-52) in equation (3-53) and noting that ·<I> = 0 for a 

bead-rod system, 

I 2 ILL H =--p +- Gsipspt +r 
2m -c 2 

p s I 

(3-54) 

3.5.5 Equilibrium Configurational Probability Distribution Function 

The equilibrium phase-space probability distribution (for quiescent crystallization), 

F eq, is given by the product of the number of polymer molecules in the system, n, and the 

probability density. According to equilibrium statistical mechanics (Bird et al., I 987b ), the 

probability density is proportional to exp(-H/kT). Thus, 

( ) 
nVe-HlkT 

Feq rc,Q,Pc,P = ff ff -HlkT 
e drc,dQ,dpc,dP 

- -

(3-55) 

where Q is an abbreviation for the collection of coordinates Q1, Q2, ... , Qd and d is the 

number of degrees of freedom for the internal coordinates of the model 

The overall configurational probability distribution function '¥ eq is obtained by 

integrating F eq over all the momenta: 
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'I'eq(rc,Q) = J J ~FeqdpcdP 

nV J J e-HlkT d PcdP 
=~~~~~~~~~~~ 

J J J J e -HI kT d re , dQ, d pc , dP 
(3-56) 

=nfeq 

Hence, the equilibrium configurational probability distribution function feq is given.by 

(3-57) 

The integration over !c in the denominator of equation (3-57) is the total volume V and 

cancels with the V in the numerator. Also, if His substituted from equation (3-54) into 

equation (3-57), then the integral over .lli cancels in the numerator and denominator and 

we obtain: 

(3-58) 

The integration over the P can be performed by using the following mathematical relation 

(Bird et al., 1987) 

J ( J TCd/2 

exp - I~:>.,x,x, dx= ~ ( ) 
s t det µst 

(3-59) 

where J. .. dx implies a d-fold integral over x1, x2, ... , xd. Hence, the integration over the P 

in equation (3-58) results in the following expression: 

( J (2rckTt2 f exp -II G.,P,P, /2kT di'= J ( 
s r det Gst) 

(3-60) 
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Also, 

(3-61) 

Using equations (3-60) and (3-61) in equation (3-58): 

(3-62) 

3.5.6 Non-Equilibrium Configurational PDF (Flow Conditions) 

3. 5. 6. I Generalized Forces 

In modeling complex systems it is customary to define generalized forces _z/ ) , 

one associated with each internal degree of freedom t of the molecular model. The 

superscripted quantity in parentheses corresponds to the types of forces considered. 

Three types of forces were considered: h - hydrodynamic, b- Brownian and r -molecular 

interaction. The last force is called a molecular interaction force instead of an 

intermolecular interaction force because the multi-bead rod has both intermolecular and 

intramolecular interactions. The same functionality is used to characterize both these 

interactions and pairwise additivity (simple summation) is assumed to obtained the total · 

potential. Each force term is written in terms of the generalized coordinates Qs. 

3.5.6.1.1 Generalized Brownian Force 

The expression for the Brownian force is similar to that for the dumbbell model 

except that it involves the metric matrix (Tsai, 1997, Bird et al., 1987b) to account for the 

additional configurational quantities introduced by the other beads and rods. 
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a ( \VJ ,7(b) = -kT-ln -
-I 8Qt .fi (3-63) 

3.5.6.1.2 Generalized Intermolecular Force 

The intermolecular force is represented by the gradient of the potential. Hence, 

a qcn =--r 
....:!..c aQc . 

3.5.6.1.3 Generalized Hydrodynamic Force 

(3-64) 

The hydrodynamic force was written in terms of the Brownian and intermolecular 

force using a generalized force balance instead of explicitly expressing it in terms of the 

deformation tensor. The reason for this is that the expression for the momentum-average 

velocity in the equation of continuity will already account for the deformation tensor and 

hence will be written in terms of the generalized hydrodynamic force. A generalized force 

balance can be written as follows 

(3-65) 

Rearranging (3-65) and substituting equations (3-63) and (3-64), the generalized 

hydrodynamic force is then given by 

(3-66) 

3.5.6.2 Generalized Equation of Continuity 

The expression for the generalized equation of continuity in configuration space 

has been derived by Bird et al. (1987b) and is given by 

(3-67) 
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where the momentum-space averaged generalized velocity [ (!s II is given by the following 

equation (Bird et al., 1987b). 

(3-68) 

Two new terms are introduced in equation (3-68). These are the modified contravariant 

metric matrix components, G st , and the coupling tensors, Mt . These quantities are 

mobility and diffusion parameters which depend on the geometry of the model considered, 

the nature of the hydrodynamic interaction, and the friction tensor. For no hydrodynamic 

interaction (i.e. when the flow field at the location of each bead is unaffected by the 

presence of the other beads) and identical beads, these quantities are defined as follows: 

- m 
Gst = ~Gst (3-69)' 

where Gst are the components of the inverse metric matrix described earlier in equation (3-

39). The coupling tensors are defined as 

M =~"Rb 
=t J;i ~-a-at 

Substituting equations (3-66), (3-68), (3-69) and (3-70) into equation (3-67), 

~\V = -LL ~{ost[(Mt=~)\lf-kTfi~(__.!_J-(~)\V]} at s I aQS aQ1 fi aQt 
Hydrodynamic Brownian Intermolecular 

(3-70) 

(3-71) 

Equation (3-71) is the general form of the diffusion equation for a multi-bead-rod 

model. This equation can be applied to any number of bead-rod segments and for any 

type of flow. The parameters G st, M , g, and r will change depending on the number 
=t 

of bead-rod segments considered, while the parameter, ~ will depend on the flow field 
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considered. For example, in Figure 3-4, if all the bead-rod segments except segment OA 

are neglected, then the model equation can be reduced to represent the simulation of the 

effect of flow on the orientation of polymer molecules above the melting point. There is 

no crystallization in this case, since the bead-rod segments in the crystal were neglected 

and hence the stipulation that the temperature be above the melting point of the polymer. 

3.6 ECC/FCC 3-Bead-2-Rod Model 

As an example of the use of equation (3-71 ), consider the case of two free beads 

as depicted in Figure 3-5. This configuration allows the prediction of a fold or the 

continued growth of an extended chain crystal. The dumbbell OA is similar to the ECC 

case where bead O is anchored in the crystal and bead A is free. In addition, bead B is 

also free and there is one more degree of freedom in this model than in the ECC case. 

Figure 3-5 shows that there are four possible crystal lattice positions available for the two 

free beads. 

When Bead A occupies ECC Lattice Site 1 and Bead B occupies ECC Lattice Site 

2, extended chain crystal growth has occurred. When Bead A occupies FCC Lattice Site 

1 and Bead B occupies FCC Lattice Site 2, a fold has formed. In the development of this 

model, folding kinetics will be ignored and the probability of obtaining an FCC fold will 

depend only on the probability that Bead B occupies FCC Lattice Site 2. Any 

configuration other than the two positions relating to ECC and FCC crystal growth 

corresponds to a crystal defect. 

The polar angles 8 1 and <1> 1 determine the configuration of link OA and the polar 

120 



D 

p 

Dumbbells in Crystal 

EC Lattice Site 

EC Lattice Site 
rsep ( ··: A .... 

/ 

B 
t 

f = ('\? y) 

Kxx = -1/2 i: 

Kyy = -1/2 i 

1'zz = E 

Flow Direction 

Amorphous Melt 
J---=-~~-.----+--~~~~~.~ 

Y2 

FCC Lattice Site 1 
,-_..:==-~~-'--~~~-•( ... ::~~~---> 

,-• ... . 

~l 

E ..... 
FCC Lattice Site 2 

Figure 3-5. ECC/FCC 3-Bead-2-Rod Model 
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angles 82 and <p2 determine the configuration of the link AB. 

Type of Crystal Structure 81, degrees <!>1, degrees 82, degrees <p2, degrees 

Ideal ECC 0 0 0 0 

ModelECC O+A1 O+A2 O+A1 O+A2 

Ideal FCC 90 0 180 0 

Model FCC 90+A1 O+A2 l80+A1 O+A2 

Table 3-1. Polar Angles Corresponding to FCC and ECC Crystal Structures 

Ideally, the ECC structure is obtained when all the polar angles are zero degrees 

and the FCC fold is obtained when <p = 0, 81 = 90 and 82 = 180. In Table 3-1, A1 and A2 

are the number of degrees/radians to which 8 and <p approach the ideal 8 and <p values. 

These approximations were used to avoid singularities in the numerical method. Hence if 

f(81, <p1, 82, <!>2) is the configurational probability distribution function, and if the 

probability of obtaining ECC and FCC structures are fEcc and fpcc respectively, then 

f ECC = f ( 8 1 = 0 + A 1 , <p 1 = 0 + A 2 , 8 2 = 0 + A 1 , <p 2 = 0 + A 2) 

f fold = f { 8 1 = 0 + A 1 , <p 1 = 0 + A 2 , 8 2 = TC + A I , <p 2 = 0 + A 2 ) 

3.6.1 Base Vectors and Metric Matrix Components for the 3-bead-2-rod Model 

(3-72) 

(3-73) 

Bird et al. (1987b, pp. 35-36) have expressed the base vectors for the 3-bead-2-rod model, 

in terms of the mass of the beads m and the length of the connector Las follows. 
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2 2 1 1 
--s - 3t 1sin81 --s --t sin8 2 3 -1 3-2 3 -2 

-------------- ·-------·-··· ················-----

(;;;) 1 1 1 1 
= -s 3t1 sin81 --s - 3t 2 sin82 (3-74) 3-l 3-2 

------------ ---------------------- ---···---··-· -·····-········------

1 1 . 2 2 
-s 3!1 sm81 -s -t sin8 2 3-1 3-2 3-2 

In the matrix of equation (3-74), the rows correspond to the beads 0, A and Bora= 1, 

2, 3 and the columns correspond to the four generalized coordinates 81, <f>1, 82, q>2, 

respectively. !i and !i refer to the unit vectors associated with link i in the 8 and qi 

directions, respectively. The metric matrix components gst, in terms of m and L, are 

obtained by applying equation (3-36) to the components in equation (3-74). 

2 

3 
0 

------··································· ·················· ·············· 

0 

. . 
2 2 -s 3 1 

• • •••••• • • • ••• • • • • • • • • ~ • • • • • • • • • • • • • • • • • • • L • • • • •• • • • • • • •••• • • • • • • • . . 

. . 

2 

3 

I 
-SSC 3 1 2 

0 

-··-······--------------··············-····-·-·······-·-·--···----· -------·-····· ------·---···· 

0 

The following abbreviations were used in Equation (3-75) 

S1 = sin81 

S2 = sin82 

cl= cosel 

C2 =cos82 

s1 = sin <Pi 

s2 = sin <A1 

c1 = cos,/Ji 

c2 = cos<A 

s= sin(¢1 -¢2 ) 

c = cos( ¢1 - ¢2 ) 
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From the matrix defined by equation (3-75), the determinant g is obtained as follows. 

g = det(g st ) = 2~ m 4 L 8 S; Si [ 1 - i ( C 1 C 2 + S 1 S 2 c )2 ] (3-77) 

The term ( C 1 C2 + S 1 S2c) is equal to the dot product of (!!1 · !!2) where !!1 and !!2 are 

the unit vectors in the direction of OA and AB respectively. 

In this case, since N = 2, d = 4. Hence, there are 4 corresponding generalized coordinates 

The equilibrium expression for the configuration PDF for the 3-bead-2-rod model 

can be obtained by substituting the expression for g, given by equation (3-77), in equation 

(3-62) to yield: 

In equation (3-78), J is the normalization constant. In the absence of an intermolecular 

potential the resultant expression would be 

{( 
l 2 ) 1/2 } 

f. (e ,J.. e ,J.. ) = {Sin8 1Sin8 2 } l- 4 cos ~2 
eq 1 , 'I' 1 , 2 , 'I' 1 2 1 r;; 1 

2n --v3+-n 4 6 

(3-79) 

where (3-80) 

3.6.2 Intermolecular Potential Terms for the 3-Bead-2-Rod Model 

The equations describing the intermolecular potential are based on the model 

depicted in Figure 3-4. There are three intermolecular potential terms r 1, r 2 and r 3. r I is 

the potential between bead A and bead C, r 2 is the potential between bead B and bead D, 
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and r 3 is the potential between bead B and bead E. All other interactions are neglected. 

The exact functionality of these potentials is arbitrary and could be a Lennard Jones 6-12, 

a 4-8 or any other potential with continuous derivatives. Also, the total intermolecular 

potential, r, associated with the crystallizing polymer molecule is assumed to be the sum 

of all the potentials since each potential is in effect a pair potential between two beads. 

Hence, 

(3-81) 

The separation distances which characterize each potential are defined in a manner 

similar to the definitions described for the ECC dumbbell model. The following additional 

geometrical parameters are considered: 

If the origin is at bead O then the Cartesian coordinates of the various beads with 

respect to O as the origin as follows: 

0 = (0, 0, O); A= (x,, y,, z,); B = (x2, Y2, z2) 

C = (0, -Le, L); D = (0, -Le, 2L); E = (0, 0, -L) 

Also, if the coordinates ofB with respect to A as the origin are (x', y', z'), then 

(3-82) 

Equation (3-12) can be used to relate the Cartesian coordinates of beads A and B to the 

corresponding spherical coordinates. Thus: 

x, = L sine, coscj>,, Y1 = L sin81 sinc!>1, z1 = L cos81 

x' = L sin82 cosq>2, y' = L sin82 sinc!>2, z' = L cos82 
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The separation distance between bead A and bead C, rAc, is given by equation (3-13) using 

subscript 1 to denote the polar angles associated with link OA and replacing rsep with rAc-

Thus 

(3-85) 

In terms of dimensionless quantities, Equation (3-85) can be rewritten using the 3-bead-2-

rod notation to yield a modified form ofEquation (3-15). Thus Equation (3-15) becomes 

(3-86) 

Similarly, via a double application of the Pythagorean theorem, the separation distances 

between bead Band bead D, rBo, and the distance between bead B and bead E, rBE can be 

obtained as follows: 

r;D =(o-xi}2 +{-Le -yi}2 +{2L-z2 )2 
=(O-x1 -x')2 +{-Lc-y1 -y')2 +{2L-z1 -z')2 

(3-87) 

Substituting equations (3-83) and (3-84) in equation (3-87) and using the abbreviations 

defined by equation (3-76) yields: 

(3-88) 

where L' = t, L' =UJ (3-89) 

In an analogous manner, the distance in three dimensional space between beads B and E is 

obtained as follows: 

rJE =(O-x2 )2 +(o-y2 )2 +(-L-z2)2 
=(O-x1 -x')2 +(o-y1 -y')2 +(-L-z1 -z')2 

(3-90) 
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Again, substituting equations (3-83) and (3..:84) into equation (3-90) and usmg the · 

abbreviations defined by equations (3-76) and (3-89) yields: 

(3-91) 

where ( )

2 
+ rBE 

rBE= L 
C 

(3-92) 

If a 6-12 potential is used to describe each of the interactions then equation (3-9) can be 

rewritten for each interaction as follows 

r, =4E[c:r {:r] 
r, =4E[c:r {:r] 
r, = 4£[ c:r {:r] 

where cr is given by equation (3-10) 

er= 0.891 Le 

(3-93) 

(3-94) 

(3-95) 

(3-10) 

Using equation (3-10) and the dimensionless distances described by equations (3-86), (3-

88) and (3-91), the potential functions can be rewritten in a manner similar to that 

described by equation (3-18). Thus, 

r2 = E[(rBD + r6 -2(rBD + r3
] 

r3 = E[(rBE + r6 -2(rBE + r3
] 
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3.6.3 3-Bead-2-Rod Model for Quiescent Crystallization 

Equation (3-79) is the working equation for the multi-bead-rod quiescent crystallization 

model. 

The exponent term involving the intermolecular potential was evaluated as follows. 

Equations (3-93), (3-94) and (3-95) are substituted in equation (3-81) to yield 

Equation (3-99) was expanded using the individual expressions for the dimensionless 

separation distances given by equations (3-86), (3-88) and (3-91). Again, the 

dimensionless group E/kT appears in the expression for feq and equation (3-79) can be 

solved for various values of E/kT. The probability of obtaining FCC and ECC 

configurations can be determined by substituting values of 8 and <I> as shown earlier in 

Table 3-1. In Equation (3-79), J is a normalization constant and does not affect the 

behavior of the probability distribution function. 

3.6.4 3-Bead-2-Rod Model for FIC Due to Steady Uniaxial Elongational Flow 

The working equation for the multi-bead-rod model is equation (3-71). 

(3-71) 

For no hydrodynamic interaction, the coupling tensor is related to its transpose as follows 

(Bird et al., 1987b). 
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M +Mt= __£_K 
=s =s ao = -s 

where K is the structure tensor defined by equation (3-101) 

(3-100) 

(3-101) 

For potential flows like uniaxial elongational flow, the tensor K is symmetric, as mentioned 

earlier in the development of the dumbbell model equations. Hence, the double dot 

product in equation (3-71) can be written as 

(3-102) 

Substituting equation (3-102) in equation (3-71) and noting that for steady flows, the time 

dependent term (LHS) is zero we get 

(3-103) 

where g is given by equation (3-77). 

The double dot product in equation (4-34) for uniaxial elongational flow is given by 

(~: LRaRaJ = L2 ~LCy·[cicj -tsisAsisj +cicj)].Yi a I ] 

(3-104) 

In equation (3-104), Cij is the Kramers matrix defined earlier in equations (3-46) 

The terms in the metric matrix g and in the Kramers matrix Cij involving the mass 

of the bead, m, and the length of the connector, L, cancel out, since they occur in the 

denominator as part of the normalization constant J. Equation (3-103) can be solved for 
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different extensional rates in accordance with the criteria described in Table 3-1 to yield 

the probability of obtaining a fold or the growth of an ECC. 

In summary, the following were the main ideas presented in this chapter 

1. The formation of ECC structures due to FIC was modeled using a rigid dumbbell 

model. The model assumptions were listed along with justification for their use. A 

diffusion equation to describe the configurational probability distribution function was 

derived using principles of continuum and statistical mechanics. Crystal growth was 

said to occur when the dumbbell assumed a predetermined configuration. 

2. The dumbbell model was extended to include addition bead-rod segments and this 

multi-bead-rod model was used to predict the crystal morphology that developed 

(FCC or ECC) in an FIC process. The basic concepts of polymer kinetic theory were 

outlined and used in conjunction with the principles of continuum and statistical 

mechanics to develop a diffusion equation for the multi-bead-rod. The formation of 

FCC and ECC morphologies was schematically delineated using the simplest 3-bead-2-

rod model configuration. Each morphology was assumed to develop corresponding to 

predetermined values of the orientation angles of the bead-rod segments. 
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CHAPTER4 

RESULTS AND DISCUSSION 

This chapter is divided into three sections. The first section describes the 

parameters used in the dumbbell model and the justification for the choice of the model 

parameters. The next section describes the simulations, results and interpretations for the 

dumbbell model: including generation of probability surfaces as a function of time, and a 

description of the relation between the probability of obtaining a particular molecular 

orientation and the probability of ECC crystallization. Subsequently, predictions of crystal 

growth variation with rheological parameters like strain and strain rate, thermodynamic 

parameters like degree of undercooling and depth of the intermolecular potential well and 

molecular parameters like the time constant are presented. The last section of this chapter 

shows how the general diffusion equation for the multi-bead-rod model can be used to 

predict FCC and ECC crystallinity for steady elongational flow. 

4.1 Dumbbell Model Parameters 

The input parameters which are required to simulate crystal growth using the 

dumbbell model are the time constant A, the lattice parameter, L*, the dimensionless 

energy parameter or inverse dimensionless temperature, E/kT, the strain rate, and the 

duration of deformation. 
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4 .1.1 Time Constant, 'A. 

The time constant 'A. is defined by equation (3-25a). 

'A.= t;I}/l2kT (3-25a) 

The terms involved in the definition of "J... are the friction coefficient ~' the Boltzmann 

constant k, the length of the amorphous segment L and the temperature T. There is no 

well defined method to determine the value of the friction coefficient associated with the 

dumbbell model and hence the value of 'A. has to be determined indirectly from viscosity 

data (Bird et al., 1987b). Bird et al. (1987b) have found, based on the data of Laun 

(1980), that the value of "J... for polyethylene melts lies in the range 15 - 100 s. Bushman 

and McHugh also experimentally determined the value of the relaxation time for 

polyethylene to be 50 seconds. These values are significantly greater (3-5 orders of 

magnitude) than those for dilute solutions and are attributed to the higher friction 

coefficient associated with polymer melts. 

4.1.2 The Lattice Parameter, L* 

The lattice parameter L* is defined by equation (3-16). 

* L L =-
Le 

(3-16) 

in which L is the length of the amorphous segment of the molecule under consideration 

and Le is the lattice constant for the polymer crystal. Figure ( 4-1) shows the unit cell for 

polyethylene (PE) (Callister, 1985). The PE unit cell is orthorhombic in nature. The same 

unit cell can be used to characterize both FCC and ECC morphologies because if the ends 
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Figure 4-1. Unit Cell for Polyethylene (Callister, 1985) 

133 



of a FCC are neglected, the structure of ECC and FCC are identical. Thus for PE, Fig ( 4-

1) shows that the a-lattice constant is O .494 nm, the b-lattice constant is O. 7 41 nm and the 

c-lattice constant is 0.255 nm. The choice of lattice constant to represent Le in the 

dumbbell model is guided by the assumption that the molecules orient and crystallize only 

in the direction of the flow (c-direction). Consequently, c would not be a good choice. Le 

was chosen, somewhat arbitrarily, to be equal to the a lattice constant. Alternatively, Le 

could have been set equal to one half the b lattice constant. 

The amorphous segment length L is a variable parameter. Figure 4-1 shows that 

the length corresponding to one mer in the unit cell is on the order of the 0.255 nm (i.e. 

magnitude of the c-lattice constant), which is approximately twice Le i.e. twice the a -

lattice constant. Hence the lower limit for L would be 0.255 nm and hence, the lower 

limit for L * would then be approximately equal to O. 5. 

The upper limit corresponds to the entire molecule crystallizing simultaneously -

this is not reasonable and hence, the practical upper limit must be considerably lower than 

the "ultimate upper limit". The ultimate upper limit could be determined from the 

molecular weight of the polymer considered and then, the practical upper limit would have 

to be determined based on factors that prohibit the entire molecule from crystallizing all at 

once. The inhibiting factors would include the presence of branching, side groups, 

impurities and other species. 

For example, for a polyethylene resin of molecular weight 10,000, the number of 

methylene groups would be equal to 625. The total extended length of the polymer would 

then be approximately equal to 159. Thus the "ultimate upper limit" for L would then be 

159. However, since an assumption was made that crystallization had already begun, the 
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total extended length available would be less than 159. If 10 units had already joined the 

crystal, then the total extended length would be (159 - 9 x 0.255) =38.25. Hence, L could 

be bracketed in the range 0.255 < L < 38.25. The value ofL* would then be bracketed in 

the range 0.5 < L* < 77. Thus, the molecular weight of the polymer can be used to 

bracket the range ofL*. The exact value however will be a function of the number of units 

initially present in the crystal and the factors that inhibit simultaneous crystallization 9f the 

entire molecule. 

For most of the simulations in this thesis, L was taken to be 10 times the value of 

Le so that L* = 10. This value of L* then corresponds to approximately 15-20 mers. A 

parametric analysis was also performed to determine the effect of varying L * on the 

probability of obtaining ECC growth. 

4 .1. 3 The Inverse Dimensionless Temperature, E/kT 

In statistical mechanics, the factor Elk is typically obtained by adjusting the 

parameters to provide a best fit between theory and empirical data. For polymers in the 

melt and solution state however, there has not been a significant amount of research 

devoted to estimating Lennard-Jones parameters. Also, certain approximations are made 

whenever the Lennard-Jones functionality is correlated with thermodynamic parameters 

like Virial coefficients. The polymer molecule can be treated as a long chain alkane, and 

values for Elk have been determined by extrapolating the short chain values using 

molecular weight, functional groups and steric hindrance as proportioning parameters (Lii 

et al., 1989). For the dumbbell model, since the mass is essentially concentrated in the 
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beads, it is sometimes assumed that the interaction parameters would be similar to that of 

a shorter chain . 

Potential well parameters traditionally been determined by Virial coefficient 

techniques and using gas viscosity data also show large variations and hence it is very 

difficult to assign absolute values to these parameters (Bokis et al., 1994). Also, because 

the parameters are "effective" parameters and are determined from experiments using 

different properties and conditions, the values determined from one set of experiments 

( while adequate for related models) might perform poorly when applied to a different 

model. Hence, intermolecular potential parameters for chain molecules must be 

determined according to the needs of individual models. In many cases, the parameter 

E/kT is treated as a generalized temperature ( or reciprocal generalized temperature) and 

absolute values of E are not required to determine temperature dependence. Typical 

values used are between O and 1 (Allinger, 1977, 1989). 

The following approach was used in this thesis to determine the value of E/kT. An 

assumption was made that once a molecular segment attains a certain energy level it is 

"entrapped" in the well and forms part of the crystal. Hence, a good initial guess for the 

depth of the potential well could be obtained by first determining the enthalpy of 

crystallization or fusion per repeat unit and then multiplying the resultant number by the 

number of repeat units. Also, since in the literature, most of the enthalpy data for 

polyethylene is based on CH2 units, subsequent calculations were performed using the CH2 

unit as a basis. 

The enthalpy of fusion for polyethylene reported in the literature is between 100 

and 150 Jig (Flory, 1964, Mandelkem, 1971). These enthalpies were converted to a molar 
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basis usmg the molecular weight and subsequently to a per molecule basis usmg 

Avogadro's number. Boltzmann's constant k = 1.3806 X 10 -23 J/mol K. A ~H/kT value 

of approximately 0.04 was calculated per CH2 unit. The molecular weight does not affect 

the calculation of E/kT per repeat unit. Since the number of CH2 units corresponding to a 

typical simulation was already set by the value ofL* at 15-20, the ~kT value for 15 CH2 

units would be 15 x 0.04 = 0.6. The next step was to set E/kT = 0.6 in the simulation to 

verify whether it produced meaningful results. 

The following rationale was used for verification ofE/kT values. In the absence of 

flow, the value ofE/kT which produced the first signs of crystallization was considered to 

be the minimum value required for simulating crystal growth. This value of E/kT was 

assumed to correspond to the highest temperature below the melting point ( or the smallest 

degree of undercooling) which would promote the formation of crystals. The first sign of 

crystallization in the simulation is manifested in the appearance of a preferential orientation 

or a peak in the 8 = O direction. 

When E/kT = 0.6 was used in the quiescent simulation (with L* = 10) a very large 

peak in the 8 = 0 direction was observed almost instantaneously. Progressively lower 

values of E/kT were then used until at E/kT = 0.05 the first signs of a preferential 

orientation were observed. According to the melting point hypothesis proposed above 

then, the correct value of E/kT to use in the simulation would be somewhere in the range 

between 0.05 and 0.6 since 0.6 was too high and 0.05 was the minimum value predicted. 

The value of 0.6 calculated from thermodynamic considerations would thus be too high to 

provide any meaningful simulation results. A possible explanation for using a value of 

E/kT lower than that predicted by the enthalpy of fusion is that the enthalpy of fusion 
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values reported in the literature were based on the formation of single crystals of 

polyethylene and hence might be too high. However, this might not necessarily be true 

since, the verification procedure using the melting point hypothesis is at best a qualitative 

check. Nevertheless, for purposes of qualitative prediction, the value of E/kT can be 

bracketed in the range 0.05-0.6 and the effect of using different values can and will be 

shown.by performing different simulations. 

There are some other methods by which the value of E/kT maybe determined. In 

the above analysis, it was assumed that the enthalpy of fusion was equal to the potential 

energy E and a value of 0.6 was determined. However, E is, in fact, the sum of the 

enthalpy of crystallization and the enthalpy of vaporization. For alkanes and their polymer 

homo logs, the enthalpy of vaporization, LlHvap, divided by the number of carbon atoms is a 

constant and hence LlRvap data for short chain alkanes can be extrapolated to determine 

values of polyethylene. The values of LlRvap, thus obtained, can be combined with the 

experimentally (DSC )determined value of the enthalpy of fusion to determine the value of 

E. Alternatively, LlHvap can be determined from data of the solubility parameter, using the 

following equation 

l MfvapRT 
03 =----

v (4-A) 

where, o is the solubility parameter, R is the gas constant, T is the temperature and V is 

the volume. Thus, the range of E/kT could be experimentally determined. If the 

experimental value of E/kT is found to be greater than 0.5, then the computational 

technique will have to be changed since the simulation could not generate meaningful 
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results for values ofE/kT greater than 0.5. In every case, the potential function was never 

integrated past a distance corresponding to the bottom of the attractive well. 

4.2 Dumbbell Model Results 

4.2.1 Description of Simulations 

In order to demonstrate the use of Equation (3-27), a polymer processmg 

operation was considered in which a crystallizable polymer was cooled to a temperature 

just below the melting point, subjected to an extensional deformation for a brief period of 

time and then held at constant deformation for an extended period of time. In practice, 

this process may be a fiber spinning or a film production operation in which a polymer 

melt is extruded to a desired geometry, allowed to cool, stretched, and then wound for 

storage. In both cases, extended chain crystal development is well known to occur during 

and long after the deformation. 

The raw data obtained from the model simulation were values of the 

configurational probability distribution function, J, at different points in time. As 

mentioned in Chapter 3, crystal growth is obtained when the PDF is large at small values 

of 8. Hence, the probability of obtaining continued crystal growth was determined by 

integrating the PDF over small values of 8 and all values of q>. 

According to the hypothesis in this model, the probability of obtaining orientations 

with 8 = 0 is directly proportional to the volume fraction of crystal at any given time. 

Hence, values of~= q>(t)/cp(oo) could be obtained, where q> refers to the volume fraction 

of crystal at a given time. Infinite time was approximated using the value of the time when 
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the probability surface plots reached a steady state profile. The ~ values were then plotted 

as a function of time and compared with the experimental relative retardance data. Rates 

of crystallization could be determined from the slopes of the curves at different points. 

Thus, two major quantities could be estimated from the simulations. The first is an 

indication or a measure of the absolute volume fraction of crystallinity. This could be 

gauged from the value off( oo) and the nature of the probability surface plots. The second 

is an estimate of the rate of crystallization which is related to the slope of the ~ vs. time 

curves or the time it takes to reach f( oo ), ~ = 1 or ~ = 0. 5. 

Once it was verified that the model could indeed generate estimates of crystallinity 

and rates of crystallization that were at least qualitatively consistent with experimental 

data, a parametric analysis was performed by running simulations using different process 

variables. A priori predictions of the effects of different variables on the crystallization 

process could thus be obtained. These predictions not only provide some insights into the 

rheological and thermodynamic behavior of the polymer, but could also give some 

direction to the experimental characterization of flow-induced crystallization. 

The process was simulated in two steps. In the first step, Equation (3-27) was 

integrated from t = 0 to t = t' for an extensional flow with the initial condition that all 

orientations were equally probable. This initial condition corresponds to a completely 

amorphous melt. In the second step of the simulation, Equation (3-27) was integrated 

from t = t' to t = too under conditions of constant strain and with an initial condition of 

whatever orientation had developed in the first step at t = t'. 
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4.2.2 Reduction of Working Equations for Uniaxial Extensional Flow 

For a uniaxial extensional flow, the velocity vector components are as follows: 

(4-1) 

where r. is the rate-of-strain, which results in the following non-zero components of is: 

1 
K xx = K Y.Y = - 2 c, K zz = c . (4-2) 

When Equation ( 4-2) is substituted into Equation (3-27) and expanded, the result is 

aJ a2 f a2 f aJ aJ 
(4-3) -=A-+B-+C-+D-+Ef a, ce2 ap2 ce aJ> 

where 

A=-1-
121.' 

(4-4) 

B= 
1 

(4-5) 
12A sin 2 e' 

3. 1 1 ar 
C = 2csin8cos8 + 12A cot8 + 12kTh cB, (4-6) 

1 ar 
D= 

12kThsin28 aJ>' 
(4-7) 

and 

3 . ( 2 2 ) 1 ( a'r ar 1 a'r J E=-c 2cos 8-sin 8 + --+cot8-+----
2 l2kTh ce2 ctl sin2 8 ap2 (4-8) 

Under no flow conditions, only C and E are affected: 
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1 1 ar 
Ci = 1211. cote+ 12kTh 00 ' (4-9) 

1 (a2r ar 1 a2r) 
E1 = kTh -2 +cote 00 +-_-2 ___ 2 . 

12 00 sm e aj> 
(4-10) 

The partial derivatives off' with respect to e and <I> are 

! = 6E([Pr+ Jre·]) (4-11) 

a2r ( 2) 
00 2 = 6E [Pr+ ][re .. ] +[Qr+ Ire·] (4-12) 

~ = 6E([ Pr+ ][r$· ]) (4-13) 

a2r ( 2) 
8<1> 2 = 6E [ Pr+ ][rr] + [ Qr+ ][r$'] (4-14) 

where 

re. = ! (r+) = 2L*2 sine+ 2L* sin~ cose (4-15) 

a2 ( +) .2 • • • re .. = 002 r = 2L cose-2L sm~sme (4-16) 

r1f = ~ (r+) = 2L* sine cos~ (4-17) 

'+" = !,(r•)=-2Lsin0sin+ (4-18) 

Pr+ =(r+r4 -(r+r1 (4-19) 

Qr+ = 7(r+ r8 -4(r+ rs (4-20) 
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When Equations ( 4-11) to ( 4-20) are substituted into Equations ( 4-6) to ( 4-8) a 

naturally occurring dimensionless group, E/kT, appears in each equation. The group E/kT 

can be thought of as dimensionless energy or dimensionless reciprocal temperature. 

4.2.3 Initial Condition 

If the polymer is assumed initially to be amorphous, the initial condition can be 

stated as ajlae = O and ajla~ = O or f is constant at t = 0. Since normalization of the 

probability over the hemisphere requires that 

7C 7C 

ff f sin8d8d~ = 1, 
0 0 

1C f =- at t =O. 
2 

( 4-21) 

The probability distribution function f is sometimes replaced by \jl which is defined as 

\Jf=Jsin8 (4-22) 

so that the normalization indicated by equation (4-21) becomes 

( 4-22a) 

4.2.4 Boundary Conditions 

The boundary conditions can be represented as a set of "no-flux" conditions which 

can also be arrived at using symmetry arguments. 

At e = o, ajlae = o 
Ate= n, ajlae = o 
At~= o, ajla~ = o 
At~= n/2, ajla~ = 0 

(4-23) 

(4-24) 

(4-25) 

(4-26) 

Equation ( 4-3) is a nonlinear partial differential for which no analytical solution is 

known. Solutions were obtained numerically by using by using PDETWO, a partial 
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differential equation solver developed by Melgaard and Sincovec (1981) which uses the 

method of lines described in Chapter 3. 

4.2.5 Probability Distribution Surfaces 

The simulation results in Figures 4-2 and 4-3 show the value of the PDF over the 

surface of the hemisphere upon which bead A must exist. This problem has natural 

symmetry about the line <I>= rc/2. Consequently, only half of the hemisphere is represented 

in Figures 4-2 and 4-3. Care must be taken in examining Figures 4-2 and 4-3 since a three 

dimensional surface has been represented with a two dimensional cartographic projection. 

Each surface plot represents a different value of time and showsf as a function of 8 and <p. 

As a check of the numerical solution technique, the PDF's shown in Figure 4-2 and 4-3 

were integrated over the hemisphere and in each case the probability of finding the bead 

on the hemisphere surface was found to be 1. 

The input parameters for the simulation were the rate-of-strain ( e ), the time of 

elongation (t'), the time constant (11.), the dimensionless rod length (L* ) and the 

dimensionless temperature (E/kT). For the simulation in Figure 4-2, the rate of strain was 

0.3 sec-1 during step one of the simulation and zero during step two. The duration of the 

strain was 2.0 seconds which resulted in a total strain of 0.6. The time constant, A, was 

144 



~ 
V, 

t=Osec 

6 

lo,. 

8 

Model Parameters 

A= 30 s, L* = 10, E/kT = 0.2 

E = 0.3 s- 1, t' = 2.0 S 

<I> 

(a) 

lo,. 

90 

6 

t = 0.5 sec 

6 

lo,. 

90 

8 

t = t' = 2.0 sec 

90 

(c) 

8 
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taken as 30 sec. based on the work of Bird et al. (1971) The dimensionless energy, E/kT 

was set to 0.3. Figure 4-2a shows that at t = 0 the probability surface is flat, in 

accordance with the initial condition that all configurations are equally probable. This is 

due to the predominance of Brownian motion in the liquid melt phase. 

However, at t = 0.5 sec (Figure 4-2b) orientations with low values of 8 are 

preferred. This indicates that crystallization is beginning to occur at the "north pole." 

Figure 4-2c indicates that the preference for orientations with a low value of 8 increases 

throughout the deformation period. When the material is stretched, the probability at the 

"north pole" or at 8 = 0, immediately increases. This corresponds to the orientation of the 

polymer caused by the extensional flow field. At this time, the molecules in the melt are 

under the influence of all three forces: Brownian, drag and intermolecular. The 

orientations are dictated by the relative magnitudes of the three forces. The Brownian 

force tends to randomize the motion of the bead, the hydrodynamic force tends to orient 

the bead along the z axis and the effect of the intermolecular force is to orient the 

amorphous segment in the +z direction. The existence of an extensional flow field serves 

to enhance orientation in the z direction and favors the formation of extended chain 

crystals. 

Figure 4-3 (note the change inf-axis scale from Figure 4-2) shows the evolution of 

the f probability contours at t > t'. During this time there was no additional deformation 

and the system was reacting to the flow-induced orientation and the two remaining forces: 

Brownian and intermolecular. The increase in the value of the PDF for orientations with 

low values of 8 was initially very rapid as is seen in a comparison of Figures 4-3 a and 4-

3b. The growth rate in low 8 value orientation eventually slowed (compare Figure 4-3b to 
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Figure 4-3c) and stopped completely (compare Figure 4-3c to 4-3d) at large values of 

time. This behavior is qualitatively consistent with the experimental birefringence data 

obtained after cessation of flow (Kakani, 1996). 

Figure 4-2 also shows that a small preference develops for orientations at the 

"south pole" where 8 = 180°. A possible explanation is that at the south pole the 

intermolecular attraction is at a minimum due to the largest possible separation of beads A 

and C and is, therefore, not a factor. During flow, orientation directly into the flow is 

metastable and would be expected to have a somewhat higher probability than nearby 

orientations. The existence of a metastable condition is akin to a pendulum standing 

straight up. When the bead-rod segment is moving "into the wind", so to speak, it adopts 

a stable position. 

Another plausible explanation is related to the nature of the extensional flow. 

When the fluid is stretched, some molecules align in the +z direction and others in the -z 

direction. The intermolecular potential, however, favors the +z direction and so, after the 

extension, and finally at steady state, the north pole appears to be the only preferred 

configuration. After the flow, the Brownian motion creates a flux in all directions. 

However, the no flux boundary prevents diffusion past 8 = 180° which, under some 

combinations of conditions, allows for an increase of the probability distribution function 

at the south pole. 

In summary, the probability distribution surface plots suggest the existence of three 

distinct regions, an orientation region, where the probability of crystallization increases in 

a short time period, a rapid crystal growth phase after cessation of flow and finally an 

invariant phase at large times. This characterization of the crystallization process is 
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consistent with experimental observations (Kakani, 1996). Thus, the PDF plots though 

not directly indicative of the quantitative nature of crystallization, do however, offer some 

qualitative feel for the process. 

4.2.6 Reduced Crystalline Volume Fraction,~ 

A more tangible representation of the crystal growth process can be obtained when 

the PDF is integrated over the region of crystalline orientation, i.e. small values of 8. In 

examining Figures 4-2 and 4-3, one must remember that f is a probability distribution 

function not a probability. In order to obtain the probability of finding bead A within a 

given area, f must be integrated over the area of interest. · 

The integral under the 8 = 0 peak, which will henceforth be referred to as Jc( t) ( or 

\j/c(t)) represents the probability of obtaining crystal growth and can be related directly to 

the volume fraction of crystal cp(t). The Jc ( or \Jlc) at each time step were then normalized 

using the steady state value i.e.fc(oo) (or \Jfc(oo)) and values offc(t)ifc(oo) (or \Jfc(t)/\Jfc(oo)) 

were obtained. Since Jc was assumed to be proportional to the volume fraction of crystal, 

we can define ~' a relative or reduced crystalline volume fraction as follows. 

f c (f) \jJ c (f) cp(f) 
--- ----~ f C ( OO) - \jJ c ( 00) - cp( 00) -

(4-27) 

where ~ is the reduced or relative volume fraction of crystal. 

Figure 4-4 shows a graph of the crystalline volume fraction ~' versus time for the 

data in Figure 4-3. As expected, ~ starts at a nonzero value, increases rapidly at first and 

then approaches 1 at large values of time. This behavior results in the sigmoidal curve 
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shown in Figure 4-4. The derivative of the data in Figure 4-4 with respect to time gives 

the crystallization rate. 

4.2.7 Comparison of Model Predictions with Experiment 

Figure 4-5, shows the evolution of the probability distribution function \jJ plotted 

as a function of 8 and cp. The parameters used for this simulation were 'A= 30s, L• = 10, 

E/kT = 0.35, E = 0.29 s-1 and t' = 10 s. The evolution trend of \JI is the same as that for f 

except that at the initial condition the probability surface has a sine functionality m 

accordance with equation (4-21a). Also when \JI is used instead off, the scale of 

representation remains the same order of magnitude during and after the deformation and 

hence it is more convenient to plot the probability surfaces. Figure 4-5 shows that there is 

a preference for orientation at the 8 = 0 end which is again indicative of crystal growth. 

The continued crystal growth after the deformation is shown in 4-6 where the peak at the 

8 = 0 end initially increases rapidly and finally flattens out at some equilibrium value. 

Figure 4-7 shows a comparison between model predictions and experiments (Kakani 

1996) for relative crystallinity vs. time using the same strain rate (E = 0.29 s-1) and 

deformation time (t' = 10 s). The plot indicates that for the most part, the model 

predictions match the experimental results reasonably well. 

The data in Figure 4-7 are plotted on a smaller time scale in Figure 4-8. Figure 4-8 

shows that the model predictions deviate from experimental values in the time interval 

between 100 and 1500 seconds. This error can be attributed to the some of the 

assumptions made in the model like the absence of segment-to-segment and hydrodynamic 

interactions, and anisotropic friction coefficients which would have otherwise slowed 
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down the crystallization process. Also, experimental error might have contributed to the 

differences observed. 

In any case, the model predictions agree well with the experiment for the time 

scales which are considered to be industrially significant. The justification for this is based 

on the fact that in industry, deformation and annealing cycles are on the order of 1-10 

seconds and less and hence an estimate of the crystallinity developed within that time 

frame is considered to be more valuable than predictions for larger times. 

On the other hand, for processes like web-handling operations, polymer films are 

wound on rolls and may ·be kept at elevated temperatures for several hours before they can 

be brought to room temperature. Hence, in this case, estimates of the crystallinity at times 

greater than 1 hour (3600 seconds) would be valuable. Again, the model predictions for 

times greater than one hour are in excellent agreement with the experiment. 

A comparison of the model predictions was also made to the experimental data of 

Bushman and McHugh. The experimental data were based on an extension rate of 0.03 

sec-1 which was applied for 50 seconds and a temperature of 129.2 °C. A time constant of 

50 seconds was used for the model simulation. 

Bushman and McHugh's data were reported in the form of pixel values vs. time as 

shown in Figure 4-9. The following method (Kakani, 1996) was used to convert the pixel 

value data of Bushman and McHugh to reduced retardance data. The total retardance of 

the crystallizing system, o (t), can be related to the intensity of light I (t) by the following 

equation. 
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1 2I(t) 2 
O(t)~ N7t±2sin- ( ---;;;-J l l 1 (4-28) 

where b (t) = total retardance, 

I (t) = intensity of the transmitted light, 

I O = intensity of the incident light beam, 

N = fringe order to which transmittance is closest. 

The minimum value of the light intensity in Figure 4-9 was taken to be Io. Since 

the actual intensity values that Bushman and McHugh reported were not known (i.e. since 

only a graph was available), the values of intensity were manually extracted from Figure 4-

9. These values were converted to retardance values using equation (4-28). · The value of 

I at infinite time, Ln, was used to calculate the retardance at infinite time, boo and all the 

other retardance values were normalized using boo, to yield reduced retardance values. The 

reduced retardance values were plotted versus time and are shown in Figure 4-10. The 

model predictions, for the most part, show reasonable qualitative agreement with 

Bushman and McHugh' s data. However, the model again predicts a faster initial rate of 

crystallization. 

4.2.8 Evidence of Flow-Induced Crystallization 

When the flow terms are excluded from equation (3-27), the molecules are under 

the influence of only random Brownian forces and intermolecular interactions. In this 

case, if the same simulation were to be performed as before, any preferred orientation in 
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the 8 direction is exclusively due to quiescent crystallization. Using the same parameters 

as in Figures 4-5 to 4-8, the probability of obtaining crystal growth was determined and 

the results were plotted as shown in Figure 4-11 and 4-12. From Figure 4-11, one can see 

that crystal growth is indeed obtained even when there is no flow. However, the absolute 

values of the probability of crystal growth are lower than those obtained when the flow 

field was considered. This is a definite indication that the flow field does in fact promote 

molecular orientation in the direction of the flow . and consequently enhances crystal 

growth. . In other words, the simulation predicts that flow-induced crystallization does 

occur. Also, the increased slope of the reduced crystallinity versus time plot in Figure 4-

12 indicates that the rate of crystallization. is also faster under the influence of extensional 

flow. 

4.2.9 Parametric Analysis 

The effect of varying the thermodynamic (E/kT) and rheological ( E, E, t ' ) 

parameters on the crystal growth process is described below. The rheological variables 

are assumed to be related by the following equation. 

t' 

E = f ~ dt (4-29) 
0 

In the above equation, E represents the total elongation, e represents the elongation rate 

and t' is the time of elongation. Thus, only two of the rheological parameters in equation 

( 4-29) can be independently varied for any given simulation. 
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4.2.9.1 Effect of Extension Rate 

Figure 4-13 shows the effect of extension rate on the crystal growth process for 

constant E/kT and or strain. The data in Figure 4-13 indicate that the initial rate of 

crystallization increases with an increase in the extension rate. 

A hypothesis was proposed that the orientation and the crystal growth process will 

be affected by the rate of strain (extension) only up to a certain value, beyond which, no 

effect is observed because the molecules cannot be aligned any further. This represents 

the theoretical limit for a given set of conditions. In practice, the range and combination 

of possible operating conditions is limited by the available equipment and instrumentation. 

Figure 4-13 shows that the difference in the slopes bet\l\'.een strain rates of 0.01 and 0.2 f 1 

is greater than the difference in slopes between 0.2 s-1 and 1.0 f 1. This observation 

supports the hypothesis that the increase in crystal growth rate with elongation rate occurs 

only upto a certain value, beyond which, the enhancement in crystal growth rate due to 

flow is not significant. 

The absolute value of the 8 = 0 probability peak is plotted as a function of strain 

rate in Figure 4-14. The plot suggests that the peak value increases with increasing strain 

rate. Thus the model predicts that an extensional flow field effects a dual improvement in 

the crystallization process: it increases the crystalline volume fraction and also speeds up 

the process. Intuitively, one would expect that the rate at which the equilibrium value of 

the enhanced degree of orientation is achieved will be directly related to the rate of 

deformation. This behavior has also been reported by Bushman and McHugh (1996, 

1997), and has been observed in some experiments at OSU (Kakani, 1996), though 
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quantitative characterization is still underway. 

For values greater than 1 sec-1, the simulation cannot accurately predict the 

probability distribution. This is because the range of extension rates that can be used by 

the simulation is governed by the numerical method and is also limited by the efficiency 

and robustness of the time-integration routine and the availability of computing resources. 

4.2.9.2 Effect ofE/kT 

The effect of varying E/kT, which is a measure of the degree of undercooling or 

depth of the energy well, at a constant elongation rate, is shown in Figures 4-15 and 4-16. 

The other model parameters used were extension rate= 0.33 f1, L * = 10, A= 30 s, t' = 2 

s. The model predicts that the absolute volume fraction of crystal increases as E/kT 

increases. This is manifested as an increase in the value of the final peak at 8 = 0 (Figure 

4-15). This behavior is expected, because at low values of E/kT (i.e. closer to the melting 

point), the Brownian forces would be more dominant and hence the crystal volume 

fraction would be lower. At higher values of E/kT, the interbead potential would 

dominate and more crystalline material is obtained. 

Figure 4-16 shows a plot of the reduced crystalline volume fraction versus time for 

different values ofE/kT. From the slopes of the curves in Figure 4-16, it can be seen that 

the rate of crystallization increases as E/kT increases i.e. the equilibrium value J is 

approached much faster . This behavior is more or less consistent with time-temperature 

transformation (TTT) curves reported in the literature for isothermal crystallization 

processes (Long et al., 1995). However, no decrease in the crystallization rate is seen at 

larger values of E/kT, as reported in the literature. This suggests than the range of values 
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of E/kT used for model predictions correspond to temperatures not far below the melting 

point. 

The simulation cannot accurately predict probability distributions for values of 

E/kT greater than O. 6 since the equilibrium value is almost instantaneously arrived at after 

the flow ceases. Theoretically, at large values of E/kT (0.6 and above) the potential 

would be so strong that perfect alignment or 100% crystallinity would be obtained since 

all the molecules would be "drawn" into the crystal lattice by the strong interbead 

potential. Since this is not practically possible, it seems reasonable to expect that there is a 

range ofE/kT values within which the crystallization process can be modeled. In addition, 

for values of E/kT greater than 0.6, the numerical method starts to become unstable and 

truncation error also becomes a factor. 

Since this study was intended to model FIC on a qualitative basis and since this is 

the first model to use an integrated approach to developing a diffusion equation for 

characterizing molecular orientation in FIC, the results obtained thus far, seem to be 

reasonably consistent with experimental observations despite the simple model concept. 

4.2.9.3 Effect of the Time Constant, 'A 

The range oftime constants reported from experiment was between 15 and 90 seconds 

(Bird et al., 1987b ). Simulations were performed to determine the dynamic behavior of~ 

for 'A = 30, 60 and 90 s. Figure 4-17 shows the results of these simulations for a strain 

rate of0.29, E/kT = 0.35 and L* = 10. Figure 4-17 shows that as the value of'A increases 

the rate of crystallization also increases. This would seem to be intuitively correct since 

the molecules would be expected to have enough time to reach their equilibrium 
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configurations for a larger value of the time constant. McHugh and Bushman (1996, 

1997) also report a similar increase in crystal growth rate for their experiments and model 

predictions. The numerical simulations also were observed to be more stable at high 

values of time constant for strain rates greater than 0.1 s-1 and E/kT values greater than 

0.2. Since the effect of 'A does not seem to be as pronounced as the effect of other 

parameters like E/kT, it seems reasonable to conclude that the crystallization process is 

not very sensitive to the time constant. 

4.2.9.4 Effect of Total Strain 

The effect of total strain is shown in Figures 4-18 ,and Figure 4-19 . These simulations 

were performed for a strain rate of O. 3 3, E/kT = 0. 3, 'A = 3 0 s and L * = 10. The time of 

elongation was varied to maintain the same total strain according to equation ( 4-28) 

Figure 4-18 shows a plot of ~ vs. time for different strains and it can be seen that the 

slopes of the curves are not significantly different for different total strains i.e. the eventual 

value of crystallinity is reached at a rate that is not highly dependent on the extent to 

which material is deformed. However, Figure 4-19 shows that the absolute value of the 

probability peak corresponding to orientation in the 8 = 0 direction, marginally increases 

with increasing total strain. However, no definite conclusion can be drawn from the 

model predictions pending more work in this area. 

Effect ofL* 

The effect of varying the value of L * is shown in Figure 4-20 where the reduced 

crystallinity versus time is shown for L * values of 1, 10, 20 and 50. The other parameters, 

which were kept constant were e= 0.2 sec -1, E/kT = 0.3, 'A= 30 sec, and t' = 2 secs. 
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Figure 4-20 shows that for smaller values of L*, i.e. when the length of the amorphous 

segment, L, is not much greater than the lattice spacing, Le, the equilibrium value of 

crystallinity is approached faster. This behavior should be expected since the separation 

distance between the free bead and the bead in the crystal is much less and hence, it is 

easier for the intermolecular potential to draw the free bead into the crystal lattice. 

4.3 Multi-Bead-Rod Model Results 

4.3 .1 Model Predictions for Quiescent Crystallization 

Equation (3-79) is the working equation for the multi-bead-rod quiescent crystallization 

model. Figure 4-21 shows the probability of obtaining ECC and FCC morphologies for 

different values ofE/kT under quiescent conditions. From Figure 4-21, one can infer that 

as the value of E/kT increases, the probability of obtaining an FCC fold and ECC growth 

both increase. Since all the potential wells were assumed to be of equal magnitude and 

since the total potential was assumed to be the sum of the three individual potentials, it 

would be reasonable to assume that the morphology corresponding to the greater total 

intermolecular potential (in this case ECC) would be preferred. This might seem 

counterintuitive since one would expect the formation of an FCC fold to be favored in the 

absence of a flow field. However, upon further examination, Figure 4-21 shows both, the 

probability of obtaining a fold, and the probability of continued ECC growth. At low 

E/kT or high temperatures, the probabilities are almost equal, which means that the most 

probable microstructure is a very thin FCC. As E/kT increases, an FCC fold is still 

predicted 
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but within a thicker crystal. This predicted increase in lamellar thickness with degree of 

undercooling has also been experimentally observed by Zhou and Wilkes (1997). 

Although for the quiescent case, the probabilities corresponding to the two 

morphologies are on the same order of magnitude, when a flow field is introduced (in the 

next section), the probability of obtaining an ECC configuration increases substantially. 

Hence the model does work within the parameters specified by the geometric and 

intermolecular considerations. The emphasis lies in being able to show that the probability 

of obtaining an ECC configuration is enhanced by the use of a flow field. 

4.3.2 Model Predictions for FIC Due to Steady Uniaxial Elongational Flow 

Equation (3-103) was used to determine the effect of E/kT on the crystal 

morphology and the results are shown in Figure 4-22. For the same values of E/kT used 

in the quiescent case and for an extension rate of 0.3 s-1, higher values ofECC probability 

are observed in Figure 4-22 as compared to Figure 4-21. This observation proves that a 

flow field does in fact favor the growth of extended chain crystals over folded chain 

crystals. 

Figure 4-23 shows the probability of obtaining FCC and ECC morphologies for an 

E/kT of 0.3 and an extension rates of 0.01, 0.2, 0.3 and 1 s-1. The results indicate that at 

lower extension rates (0.01 f1), the probability of obtaining an FCC fold is of the same 

order of magnitude as that of obtaining ECC growth. However, as the extension rate 

increases the probability of obtaining ECC growth becomes much greater than the 
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probability of obtaining an FCC crystal. 

Another interpretation of the predictions shown in Figure 4-23 can be made in 

terms of a crystal lamellar thickness hypothesis. For example at an extension rate of 0.2, 

the difference between FCC and ECC probabilities is more than twice the difference 

between the corresponding probabilities at an extension rate of 0.01 s-1. This trend can be 

interpreted as a twofold increase in the thickness of the FCC lamella as the strain rate 

increases from 0.01 to 0.2 s-1. This predicted increase oflamella thickness with extension 

rate has not been reported in the literature for extensional flow. Eder and Janeschitz­

Kriegl (1990) do show however that the morphology of the crystal structure does change 

with increasing strain rate for shearing flows. Other researchers (Gaylord, 1978) have 

shown for low strains, that the ECC structure is preferred at the onset of crystallization 

but the morphology changes to an FCC structure as the crystallization front grows. 

Other flows can also be simulated by evaluating the corresponding dot product in 

equation ( 4-34). Bird et al. provide guidelines to solve the unsteady flow problem. A 

solution for the multi-bead-rod problem for transient conditions, however, is beyond the 

scope of this thesis. If the current model is refined by the inclusion of additional segment 

to segment interaction potentials, a more accurate representation of the FCC physics for 

the quiescent case might be obtained. In any case, this would require additional 

computational resources and necessitate different solution techniques. These extensions 

of the model, a summary of the results obtained in this chapter and other related ideas for 

future work are described in Chapter 5. 
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CHAPTERS 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary 

By considering the forces acting on a crystallizing polymer molecule that is under 

the influence of an extensional flow field, a model was developed that can predict flow­

induced crystallization rates. Unlike previous models, this model simultaneously accounts 

for the effects of flow-induced orientation, intermolecular forces, and Brownian motion. 

The model was expressed in the form of a nonlinear differential equation that was solved 

with existing numerical techniques. The model input parameters have a direct 

correspondence to parameters that are commonly used to characterize polymer processing 

operations. Therefore, the model can predict the flow-induced crystallization rate and 

could be used for the design and optimization of polymer processing operations (Tsai, 

1997) as well as for fundamental studies of polymer physics. A multi-bead rod model was 

also developed to simultaneously predict the formation of folded chain and extended chain 

crystals. The working equations for the multi-bead-rod model were solved for quiescent 

conditions and uniaxial extensional flow. 

5.2 Conclusions 

1) The model was compared with extensional flow experiments performed concurrently 

in the lab and a qualitative agreement was observed. 

181 



2) Classic sigmoidal crystallization curves were predicted using the ECC model. One of 

the main predictions made was that the degree of crystallization increased slowly at 

first, then more rapidly and finally plateaued out at high values of time. 

3) The rate of strain was shown to be a correlating parameter for the extent and the rate 

of crystallinity. As the rate of strain increased, the model predicted that the extent and 

degree of crystallinity also increased. 

4) The total strain or extension was observed to marginally influence the extent of 

crystallinity but not the rate of crystallization. 

5) Higher values of overall crystallinity were observed for greater degrees of 

undercooling although no discernible trend was observed for the rate of crystallization. 

6) A multi-bead rod model was also successfully developed to predict simultaneous 

formation of FCC and ECC crystal structures 

7) The FCC_ ECC model was tested for quiescent crystallization and steady uniaxial 

extensional flow by varying the extension rates and the potentials associated with each 

designated lattice site. The model predicted that the tendency to form extended chain 

crystals increased as the extension rate and the value ofE/kT increased 

5.3 Recommendations 

The following recommendations are made for future work. 

1) A more robust PDE solver needs to be used for solving both the dumbbell and multi­

bead-rod model equations. Molecular Dynamics simulations like CONFESSIT can be 

used to generated results for a large number of beads and rods. Also the data 

generation procedure needs to be streamlined and selective sampling can be used to 
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reduce computational resources and time. Thus, the solver will focus only on areas of 

the domain which are statistically significant and avoid unnecessary effort in 

computing solutions for portions of the domain which do not have a significant bearing 

on the results. For example, for the dumbbell model, the variation in the cp direction is 

almost negligible on the overall probability scale and hence attention could be focused 

on the 8 direction exclusively. This technique however, will not work for the multi­

bead-rod model. Also computational resources will have to be made available to 

handle multivariable simulations. Since the simulation could not produce meaningful 

results for extension rates greater than 1 sec -I and for E/kT values greater than 0.5, an 

investigation must be conducted to determine. which terms in the equations caused the 

numerical method to become unstable. This would help in extending the capability of 

the model equations to account for a wider range of variables. 

2) The multi-bead-rod model needs to be further developed to include multiple beads and 

chains using Brownian dynamics simulations. 

3) Different potentials should be tested for the crystal lattice interactions. 

4) An integrated model should be developed to predict not only crystallinity but also 

rheological parameters like shear stresses etc. This is a natural extension of the model 

presented in this study since the Kramers rheological equation of state can be 

combined with crystallinity model to predict several properties of rheological and 

thermodynamic interest. Having obtained an expression for the probability distribution 

function for a crystallizing system, the corresponding rheological equation of state can 

be obtained using the techniques described by Bird et al. (1987b ). 
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5) Segment to segment potentials should be incorporated into the model to correctly 

account for the effect of folding in quiescent crystallization. The multi-bead-rod 

model, in its current form does not predict FCC growth; rather it predicts the 

formation of a fold. Also, a nucleation theory must be developed that can be 

combined with the crystal growth model to describe the entire crystallization process. 

One possible way of mechanistically modeling the formation of nuclei is to determine 

the probability that an amorphous segment will be attracted to another segment of the 

same molecule using appropriate intramolecular terms. A finitely extensible spring 

connector could also · be used instead of a rigid rod along with bending potentials and 

the probability of obtaining entanglements based on intermolecular and intramolecular 

interactions could then be determined. An alternative way of mechanistically 

representing a nucleation site is by using Flory's theory, wherein a nucleation site is 

said to have formed when a segment adopts an orientation perpendicular to the 

direction of flow and/or extended chain crystal growth. 

6) Finally, the input parameters used in the model need to be properly defined in terms of 

precise physical phenomena. The values of the input parameters used in the ECC 

dumbbell model were adequate for qualitative prediction but to obtain a precise 

quantitative understanding of the crystallization process the values of A, E/kT and L * 

must be determined using a suitable physical theory or from experiments. For 

example, although the values of E/kT and L * were identified as being coupled, the 

effect of each was demonstrated independent of each other because the E/kT value of 

0.6 which was obtained from thermodynamic considerations, and which corresponded 

to an L * value of 10, was found to be too large to produce meaningful results. Hence 
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an alternative hypothesis was proposed to determine the value of E/kT, using melting 

point arguments. This hypothesis did not account explicitly for the coupling between 

L• and E/kT. 
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APPENDIX A 

DESCRIPTION OF PDETWO AND LIST OF SUBROUTINES 

PDETWO 

This program was developed by Sincovec and Melgaard ( 1981) as a software 

interface to solve time-dependent coupled systems of non-linear PDEs which are defined 

over a rectangular region. It uses central differencing techniques to discretize the PDE 

and incorporates the DRIVEP routine which is a modified version of the GEARB time­

integration algorithm developed by Hindmarsh. The program requires the use of six user­

provided subroutines. These sub-routines called MAIN, DIFFH, DIFFV, BNDRYH, 

BNDR YV and F are meant to provide information regarding initialization, diffusion 

coefficients, boundary conditions and nature of the partial differential equation. 

The problem structure allowed by the PDETWO interface is defined m the 

. following manner. 

If NPDE denotes the number of PDEs over the domain R for which a solution 

u1(t, x, y) (l = 1, 2, ... , NPDE) is required and ifR is defined as R = {(x, y) I a1 ~ x ~b1, 

a2 ~ y ~ b2}, then the system ofPDEs can be defined as 
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(Al-1) 

a1 < x < b1, a2 < y < b2, t > to, l = 1, 2, ... , NPDE, 

with horizontal boundary conditions, 

(Al-2) 

at y = a2 or y = b2, a1 ::C:: x :s;b1, l = 1, 2, ... , NPDE, t > to 

vertical boundary conditions, 

(Al-3) 

at x = a1 or x = b1, a2 :s; y :s;b2, l = 1, 2, ... , NPDE, t > to 

and initial conditions 

u1(to, x, y) = <l>z(x, y), for (x, y) ER, 1 = 1, 2, ... , NPDE. (Al-4) 

DH1,k and DVz,k are the diffusion coefficients in the horizontal and vertical 

directions respectively and may be functions ofx, y, t and u., where u = (u1, u2, ... , UNPoE) 

is a matrix representing the set of PDEs. A V1, BV1, CV1, AHz, BHz and CH1 are boundary 

coefficients which may be functions ofx, y, t, and u. All the coefficients and the functions 

fz and <l>z are at least piecewise continuous functions of their respective variables. The 

three major types of boundary conditions can be defined in terms of the PDETWO 

variables in the following manner. 

208 



1) Dirichlet Boundary Conditions: BH1 or BV1 = 0 

2) Neumann Boundary Conditions: AH1 or A Vi =O 

3) Mixed Boundary Conditions: AH1 :;t:O, BH1 :;t: 0 or A Vi :;t: 0, BV1 :;t: 0 

ciu 
It should be noted that PDETWO cannot solve prnblems which have a 8.xcy term. Also 

for the model considered in this thesis, NPDE =l, and hence the indices l (above) and k 

(next section) can be dropped from all the terms. 

Figure Al-1 shows a schematic representation of the combination and structure of 

programs that comprise PDETWO. The MAIN_ program is responsible for initialization 

and also for data input, integrator subroutine call functions and for displaying the output 

or results. The ODE Integrator includes the time integration routine DRIVEP along with 

other routines which add robustness to the ODE integration process. These sub-routines 

need not all be used but the user has the option of selecting which one is appropriate for 

the problem at hand. These subroutines will be described in the next section. PDETWO 

is the actual discretization routine which uses the method of lines to simplify the PDE into 

ODES. A detailed description of this subroutine will be provided later in this chapter. 

Finally, Figure Al-1 shows the user subroutines DIFFH and DIFFV which define the 

diffusion coefficients described earlier, the boundary subroutines BNDR YH and 

BNDRYV which define the boundary parameters in equations (Al-2) and (Al-3) and the 

subroutine F which describes the PDE to be solved. 

The following is a list of the subroutines provided with PDETWO which form a 

part of the ODE integrator package. 
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DIFFH 

Defines DH1,k 
in Eqn. (Al-1) 

MAIN 

Initialization 
Calls Integrator 
Outputs Results 

I 
DRIVEP & PSETM 

DIFFV 

ODE Integrator 

PDETWO 

Discretizes the 
Spatial Variables 

BNDRYH 

Defines DV1,k 
in Eqn. (Al-1) 

Defines AHi, BH1, 
CH1 in Eqn. (Al-2) 

!: 
Defines Ji 

in Eqn. (Al-1) 

BNDRYV 

Defines A V1, BV1, 
CV1 in Eqn. (Al-3) 

Figure Al-1. Relationship Among Subroutines Used with PDETWO 
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1) SUBROUTINE DRIVEP 

This subroutine is a modified version of the GEARB subroutine originally developed 

by Hindmarsh. It has the capability of handling Jacobian matrices which are banded or 

nearly banded. DRIVEP is called once for each output value of time and in turn it 

makes repeated calls to the core integrator STIFFP which makes calls to PSETM. 

There are three integration options available in DRIVEP. These are the Adams 

method, the backward differentiation method and the stiff method of GEAR. Also 

other options are available for types of calls and iterative techniques. These are 

described in the code documentation (Melgaard and Sincovec, 1981 ). 

2) SUBROUTINE STIFFP 

This subroutine is the core integrator which performs the actual integration according 

to the initialization set by DRIVEP. It makes calls to other subroutines depending on 

the user-specified options. 

3) SUBROUTINE PSETM 

This subroutine is designed in order to minimize the number of computations required 

to generate the Jacobian matrix and is called by STIFFP whenever a Jacobian matrix is 

required. 

4) SUBROUTINE STRSET 

This subroutine extracts and verifies integer input parameters in the arrays defined in 

DRIVEP and STIFFP. It also provides dynamic dimensioning for the arrays in 

PDE TWO and DRIVEP. Finally, it also sets the lower and upper bandwidths for the 

Jacobian matrix. 
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5) SUBROUTINE INTERP 

In the time integration process, the value of the function or the dependent variable 

calculated by STIFFP is not at exactly the user-specified time intervals. The solution 

corresponds to a time period ahead of the user-specified time and hence the 

interpolation routine INTERP is required to evaluate the function at the required time. 

6) SUBROUTINE COSET 

This subroutine is called by STIFFP and sets the coefficients corresponding to the 

different methods of integration, iteration and Jacobian representation. This becomes 

important only when the user changes the calls to the subroutine without resetting the 

initialization parameters in MAIN and DRIVEP. 

7) SUBROUTINE DECBR 

This subroutine constructs the LU decomposition of a band matrix A in the form 

L*U =P*A (Al-5) 

where P is a permutation matrix, L is a unit lower triangular matrix and U is an upper 

triangular matrix. 

8) SUBROUTINE SOLBR 

This subroutine computes the solution of the banded linear system A *X = C, once the 

LU decomposition from DECBR is obtained. 

Finally, if the user wishes to provide his own subroutine for the Jacobian matrix instead of 

using PSETM to determine the Jacobian, an additional user-subroutine called PDB must 

be provided in a format that uses call parameters described in PSETM. 
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Spatial Variable Discretization in PDETWO 

Figure Al-2 shows the mesh definition used in PDETWO. This mesh consists of the 

intersection of a sequence of NX lines drawn parallel to the vertical axis with a sequence 

of (NY) lines drawn parallel to the horizontal axes. The mesh spacings are defined as 

(Al-6) 

(Al-7) 

PDETWO uses a five-point "computational molecule" to solve the diffusion equation. 

The "computational molecule" is represented by the five points, P, Q, R, S and T 

connected by dotted lines in Fig Al-2. This means that the solution at any given interior 

point is related to four points around it. A larger number of points can be used in the 

computational molecule if a higher order PDE needs to be solved. The differencing used 

for discretization will depend on the location of the mesh point. The following three cases 

are considered. 

Case 1 : Interior Mesh Points 

For this case, each point (xi, yj) lies in the intervals 1 < i < NX and 1 < j < NY. 

Point P, Q, R, S an T in Figure Al-2 are examples of interior points. The difference 

approximations for the first order partial derivatives are given by:. 

(Al-8) 

(Al-9) 

213 



NY 

NY-1 

NY-2 

NY-3 

NY-4 

Y INY-5 

4 

3 

2 

I 
I 
I 
I 

I 

I 
I I 

I 

I I 
I 
' 

Computational Molecule 

I I 

I I 

t 
I I 

i 
' --i 

2 3 4 5 6 NX-4 NX-3 NX-2 NX-1 NX 

) 

X 

Figure Al-2. Spatial Mesh Definition for PDETWO 
(Melgaard and Sincovec, 1981) 
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The difference approximations for the second order partial derivative are: 

a ( au(t, xi ,Y.1 )] 1 
- DH ~----
ax ax Xi+l/2 - Xi-112 

where, 

( DH .(ui+l,J -ui,JJ-DH .(ui,J -ui-1,1JJ 
X 1+112,1 L1x 1-112,1 L1x 

I 1-I 

( (ui 1+1 -ui;·J . (uiJ -ui;-1JJ X DV ' ' -DV ' ' 
i,J+112 AyJ i,J-112 Ay1_1 

xi±I +xi Y1±1+Y1 
Xi±112 = 2 Y1±112 = 2 

DHi±ll2,1 = DH( t, xi±v2 , y 1 , ui±ii2,1 ) 

DVi,J±v2 = DV(t, xi, Y;±v2 , ui,J±ii2 ) 

ui,J±l + ui,f 
U1,;±112 = 2 

Case 2: Boundaty Mesh Points 

(Al-10) 

(Al-11) 

(Al-12) 

(Al-13) 

(Al-14) 

In this case, each point (xi, yj) lies on a horizontal (j = 1, j = NY, 1 < i < NX) or 

vertical (i = 1 or i = NX, 1 < j < NY) boundary. The approximations for the lower 

horizontal boundary (j = 1) will be described below. The finite difference representations 

for the other three boundaries are analogous. 

For Dirichlet boundary conditions, BH = 0 and u i,I can be determined directly 

form equation (Al-2) so that for the lower horizontal boundary, 
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(Al-15) 

For Neumann or mixed boundary conditions (BH ":/c 0), the FD approximations for 

: and ! ( Dv( :) ) are the same as those for Case I. The other expressions for the 

lower horizontal boundary are obtained as follows. 

(Al-16) 

where Yi+uz and D~ 1+112 are defined by equations (Al-11) and (Al-12) with}= 1 

Case 3: Comer Mesh Points 

In this case, each point (xi, yj) lies on a mesh comer where i = 1 or i = NX, and j = 

1 and j =NY. The approximations will be shown only for one comer i.e. x = x1 and y = y1 

since the other comer approximations can be analogously obtained. The comer point is 

affected by both horizontal and vertical boundary conditions and hence three possibilities 

must be considered. i) Both BCs are Dirichlet, ii) Only one BC is Dirichlet, iii) Neither BC 

is Dirichlet 

For the first possibility i.e. when both BCs are Dirichlet, BH = BV = 0 and an 

average solution is obtained from the two boundary conditions given by equations (Al-2) 

and (Al-3) as follows: 

(Al-18) 
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When one boundary condition is Dirichlet, and the other is Neumann or mixed, the 

Dirichlet BC is more likely to dominate the solution and hence the solution u (t, x1, y1) is 

approximated as the Dirichlet BC as follows: 

CH 
u(t,x1,Y1)~ AH' 

CV 

AV' 

whenBH = 0, BV-:f:. 0 
(Al-19) 

when BH -:f:. 0, BV =0 

Equations (Al-18) and (Al-19) do not require an ODE since the solution is directly in 

terms of the boundary conditions. 

Finally, when neither boundary condition is Dirichlet, i.e. BH -:f:. 0, BV-:f:. 0, for the 

. ( . au a( au) fi corner pomt x1, y1), the approxtmations for ox and OJI DV OJI are de ned by 

equations (2-34) and (2-35) with i = 1. The remaining approximations are as follows: 

(Al-20) 

(Al-21) 

where x1+112 and DH1+112,1 are defined by equations (Al-12) and (Al-13) with i =I and j 

=I 

The spatial variable discretization results in a system of semi-discrete ODEs which 

are integrated using the time integration routines. The ODEs for the interior mesh points 

have the following form: 
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dui,J _ ( ) 
dt = f.J t, ui,J, U1+1,J, ui-I,J, ui,J+1, ui,J-I (Al-22) 

In equation (Al-22), Ji,J represents the functional form of the original equation with the 

finite difference approximations ( defined above) substituted as arguments at x = Xi and y = 

yj. The boundary points have a similar ODE representation. When the time-integrator 

STIFFP calls PDETWO, the discretization of the spatial variables is interpreted as the 

evaluation of the right-hand side of the system of OD Es represented by equation (Al-22) 

and hence a all to PDETWO is referred to as a functional evaluation. 

The following is the FORTRAN code for the user subroutines that must be used along 

with PDETWO to solve the diffusion equation for extended chain crystal growth. 

C ALGORITHM 565 
C PDETWO/PSTEM/GEARB: SOLUTION OF SYSTEMS OF TWO DIMENSIONAL 
C NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 
C 
C BY D.K. MELGAARD AND R.F. SINCOVEC 
C 
C MODIFIED BY LINDSAY J. MENDES TO INCLUDE THE DIFFUSION 
C EQUATION FOR CONFIGURATIONAL PDF OF RIGID DUMBBELLS(l996) 
C 
CREF:ACMTRANSACTIONS ON MATHEMATICAL SOFTWARE 7,1 (MARCH 1981) 
C 
C 
C MAIN PROGRAM 
C 
C DECLARATION OF VARIABLES AND PARAMETERS 
C 

REAL H,X,DX,Y,TOUT,DY,HUSED, 
* TO,EPSDOT,WORK,DL,DLI, 
* UN4,UNORM4,FV AL,ALAMDA,EKT,ALSTAR, 
* DTOUT,TINIT 

REAL DELX,DELY,SUMU4EVN,SUMU40DD, 
* SUMEVN,SUMODD, TOTINT,SIMPINT 
INTEGER IX,NPDE,NSTEP,NX,NFE,NODE,MF,NY,NT, 
* NJE,NQUSED,IY,INDEX,I,IWORK,KODE 
COMMON /GEAR3/ HUSED,NQUSED,NSTEP,NFE,NJE 
COMMON /PROB/ DL,DLI,KODE 
COMMON /RIGPAR/ ALAMDA,EKT,ALSTAR,EPSDOT 
DIMENSIONUN4(101,101),UNORM4(101,101),FVAL(l01,101) 
DIMENSION WORK(3203837),IWORK(l0201),X(l01),Y(l01) 
DIMENSION SIMPINT(lOl) 
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C 
C INPUT REQUIRED PARAMETERS 
C 

WRITE (6, *)'ENTER THE VALUE OF LAMBDA' 
READ (5, *) ALAMDA 
WRITE (6, *)'ENTER THE VALUE OF LST AR' 
READ (5, *) ALST AR 
WRITE (6, *) 'ENTER THE VALUE OF E/KT' 
READ (5,*) EKT 

WRITE (6, *) 'ENTER THE VALUE OF EPSILONDOT' 
READ (5, *) EPSDOT 
WRITE (6, *) 'ENTER THE FIRST VALUE OF TIME FOR RECORDING RESULTS' 
READ(5, *) TINIT 
WRITE (6, *) 'ENTER THE TIME INTERVAL FOR SUBSEQUENT RESULTS' 
READ (5,*) DTOUT 
WRITE (6, *) 'ENTER THE NUMBER OF OUTPUT TIME INTERVALS' 
READ (5,*) NT 
WRITE (6, 709) 

709 FORMAT(1Hl,3X,38HPROGRAM RUNNING-DON'T MESS WITH THE PC//) 
WRITE (6,710) 

710 FORMAT(1Hl,3X,24HO/P WILL BE IN FILE UV AL//) 
C 
C DEFINE OTHER PARAMETERS REQUIRED FOR NUMERICAL METHOD 
C 

NX=lOI 
NY=lOI 
NPDE=l 
NODE=NPDE*NX*NY 
MF=22 
INDEX=l 
TO=O.O 
H=O.IE-04 
EPS=O.IE-01 
DX= 1.5707963/(FLOAT(NX)-l.O) 
DY= 3.1415926/(FLOAT(NY)-l.O) 
Y(l)=0.001 
X(l)=0.001 
DO 720 IX=2,NX 

Y(IX) = FLOAT(IX)*DY-DY 
720 X(IX) = FLOAT(IX)*DX-DX 

IWORK(l) = NPDE 
IWORK(2) = NX 
IWORK(3) = NY 
IWORK(4) == 5 
IWORK(5) = 3203837 
IWORK(6) = 10201 

C 
C DEFINE THE INITIAL CONDITION 
C 

DO 733 IY=l,NY 
DO 732 IX=l,NX 

UN4(1X,IY)=l.0/(2*3.1415926) 
732 CONTINUE 
733 CONTINUE 
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C 
C OPEN 0/P FILE AND WRITE VALUES OF PARAMETERS USED 
C 

OPEN(l3,FILE='UVAL',STATUS='UNKNOWN') 
WRITE(l3, 775) ALST AR,ALAMDA,EPSDOT,EKT 

775 FORMAT (ll9H ALSTAR=,F7.2,8H ALAMDA=,F9.4, 
* 8H EPSDOT=,F7.4,5H EKT=,F8.5) 
WRITE(l3,778) NODE,TO,H,EPS,MF,UN4 

778 FORMAT (117H NODE= ,13,5H TO= ,F9.2,4H H= ,E8.l, 
* 6H EPS= ,E8. l,5H MF= ,12 1118H INITIAL F VALUES I 
* 101(13H ,101El0.3)) 

C WRITE(13,778) NODE,TO,H,EPS,MF 
C 778 FORMAT (117H NODE= ,13,5H TO= ,F9.2,4H H= ,E8.l, 
C * 6H EPS= ,E8. l,5H MF= ,12 II) 
C 
C SET UP LOOP FOR CALLING INTEGRATOR 
C 

TOUT=TINIT 
DO 860 I=l,NT 
WRITE(13,800) TOUT 

800 FORMAT (II 6H TOUT=,Fl0.5) 
C 
C CALL THE INTEGRATOR 
C 

CALL DRIVEP (NODE,TO,H,UN4,TOUT,EPS,MF,INDEX,WORK,IWORK,X,Y) 
C 
C NORMALIZE THE PDF USING SIMPSON'S RULE 
C 
C DEFINITION OF TERMS IN SIMPSON'S APPROXIMATION 

DELX=ABS(X(lOl)-X(l))/REAL(NX-1) 
DELX3=DELX/3 
DELY=ABS(Y(lOl)-Y(l))/REAL(NY-1) 
DEL Y3=DELYl3 
Nl=(NX-1)12 
N2=(NY-l)/2 

C 
C ST ART LOOP OUTSIDE (FOR EACH Y VALUE) 

DO 803 M= l,NY 
C 
C ST ART LOOP INSIDE (FOR EACH X VALUE) 
C DO LOOP FOR SIMPSON EVEN PTS(ODD IN PDETWO SIMULATION) 

SUMU4EVN=O.O 
DO 80113=2,N2 

IT=2*13-l 
SUMU4EVN=SUMU4EVN+UN4(M,IT)*SIN(Y(IT)) 

801 CONTINUE 
C 
C DO LOOP FOR SIMPSON ODD PTS(EVEN IN PDETWO SIMULATION) 

SUMU40DD=O.O 
DO 802 J=2,N2 

JT=2*J 

802 CONTINUE 
C 

SUMU40DD=SUMU40DD+UN4(M,JT)*SIN(Y(JT)) 
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C EV ALU ATE INTEGRAL AND WRITE VALUES OF EACH 

* 
803 

C 

SIMPINT(M)=DELY3*(UN4(M,l)*SIN(Y(l))+4*SUMU40DD+ 
2*SUMU4EVN+UN4(M,10l)*SIN(Y(l01))) 

CONTINUE 

C SUM VARIOUS SIMPINT CONTRIBUTIONS TO OBTAIN FINAL INTEGRAL 
C 
C ODD SUMMATION OR EVEN VALUES OF SIMPINT 

SUMODD=O.O 
DO 804 L=l,N2 

804 CONTINUE 
C 

LT=2*L 
SUMODD=SUMODD+SIMPINT(L T) 

C EVEN SUMMATION OR ODD VALUES OF GX 
SUMEVN=O.O 
DO 805 MS=2,N2 

MT=2*MS-l 
SUMEVN=SUMEVN+SIMPINT(MT) 

805 CONTINUE 
C 
C FIND THE TOT AL INTEGRAL 

TOTINT = DELX3*(SIMPINT(l)+SIMPINT(l01)+4*SUMODD+2*SUMEVN) 
DO 807 IY=l,NY 

DO 806 IX=l,NX 
UNORM4(IX,IY)=UN4(IX,IY)/TOTINT 
FV AL(IX,IY)=UNORM4(1X,IY)/2.0 

806 CONTINUE 
807 CONTINUE 

C 
C WRITE GEAR3 QTYS & RESULTS I.E. UN4 VALUES TO OUTPUT FILE 
C 

WRITE (13,820) HUSED,NQUSED,NSTEP,NFE,NJE,TOTINT 
820 FORMAT (/8H HUSED= ,El0.4,8H ORDER= ,13, 

* 8H NSTEP= ,16,6H NFE= ,15,6H NJE= ,15,9H TOTINT= ,Fl0.5) 
WRITE (13,830) ((FVAL(IX,IY),IX=l,NX),IY=l,NY) 

830 FORMAT ( /9H F VALUES // (3H ,101El0.3)) 
C 

TOUT= TOUT+DTOUT 
860 CONTINUE 

C 

C 

STOP 
END 

C***********************END OF MAIN***************************** 
C 

SUBROUTINE BNDRYV (T,X,Y,U,A V,BV,CV,NPDE) 
C 
C DEFINE THE VERTICAL BOUNDARY CONDITIONS 
C 

REAL T,U,X,Y,BV,A V,CV 
INTEGER NPDE 
COMMON /PROB/ DL,DLI,KODE 
DIMENSION U(NPDE),A V(NPDE),BV(NPDE), CV(NPDE) 
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C 

AV(l)= 0.0 
BV(l)= 1.0 
CV(l)= 0.0 
RETURN 
END 

C***********************ENDOFBNDRYV***************************** 
C 

SUBROUTINE BNDRYH (T,X,Y,U,AH,BH,CH,NPDE) 
C 

BNDRYH 

C DEFINE THE HORIZONTAL BOUNDARY CONDITIONS 
C 

C 

REAL T,U,X,Y,BH,AH,CH 
INTEGER NPDE 
COMMON /PROB/ DL,DLI,KODE 
DIMENSION U(NPDE),AH(NPDE),BH(NPDE),CH(NPDE) 
AH(l)= 0.0 
BH(l)= 1.0 
CH(l)= 0.0 
RETURN 
END 

C***********************ENDOFBNDRYH***************************** 
C 

SUBROUTINE DIFFH (T,X,Y,U,DH,NPDE) 
C 
C DEFINE THE HORlZONT AL DIFFUSION COEFFICIENTS 
C 

C 

REAL T,U,X,Y,DH 
INTEGER NPDE 
COMMON /PROB/ DL,DLI,KODE 
DIMENSION U(NPDE),DH(NPDE,NPDE) 
DH(l,1)=1.0 
RETURN 
END 

DIFFH 

C***********************ENDOFDIFFH***************************** 
C 

SUBROUTINE DIFFV (T,X,Y,U,DV,NPDE) 
C 
C DEFINE THE VERTICAL DIFFUSION COEFFICIENTS 
C 

REAL T,U,X,Y,DV 
INTEGER NPDE 
COMMON /PROB/ DL,DLI,KODE 
DIMENSION U(NPDE),DV(NPDE,NPDE) 
DV(l,1)=1.0 
RETURN 
END 

DIFFV 

C 
C***********************ENDOFDIFFV***************************** 
C 

SUBROUTINE F(T,X,Y,U,UX,UY,DUXX,DUYY,DUDT,NPDE) 
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C 
C DEFINE THE PDE 
C Q REFERS TO THETA AND F TO PHI IN THE DERIVATIVE TERMS 
C SO DPDQ IS THE PARTIAL DERIVATIVE OF THE POTENTIAL W.R.T TO THETA 
C IT SHOULD ALSO BE NOTED THAT THE MAX. DEPTH OF THE POTENTIAL WELLE 
C IS LUMPED WITH THE I/KT TERM TO YIELD E/KT WHICH IS INPUT BY THE USER 
C SO ALL THE DERIVATIVES OF THE POTENTIAL DEFINED BELOW WILL NOT CONTAIN 
C THE WELL DEPTH TERM BECAUSE THAT TERM IS rusT MULTIPLIED BY THE 
C THE PRECEDING I/KT IN EACH COEFFICIENT TO YIELD E/KT 
C 

C 
C 

REAL U,X,Y,UX,UY,DUXX,DUYY,DUDT, 
*RPLUS,QRPLUS,RQD,RQDD,RFD,RFDD,DPDQ,DDPDDQ, 
*DPDF,DDPDDF,Al,Bl,Cl,Dl,El 
INTEGER NPDE 
COMMON /PROB/ DL,DLI,KODE 
COMMON /RIGP ARI ALAMDA,EKT,ALST AR,EPSDOT 
DIMENSION U(NPDE),UX(NPDE),UY(NPDE),DUXX(NPDE,NPDE), 
* DUYY(NPDE,NPDE),DUDT(NPDE) 
RPLUS=2*ALSTAR*ALSTAR*(l-COS(Y))+2*ALSTAR*SIN(Y)*SIN(X) 
* +1.0 
RQD=2*ALSTAR*ALSTAR*SIN(Y)+2*ALSTAR*COS(Y)*SIN(X) 
RQDD=2* ALST AR* ALST AR *COS(Y)-2 * ALST AR *SIN(X)*SIN(Y) 
RFD=2 * ALST AR *SIN(Y)*COS(X) 
RFDD=-2*ALSTAR*SIN(Y)*SIN(X) 
PRPLUS=(RPLUS**(-4))-(RPLUS**(-7)) 
QRPLUS=7*(RPLUS**(-8))-4*(RPLUS**(-5)) 
DPDQ=6*PRPLUS*RQD 
DDPDDQ=6*(PRPLUS*RQDD+QRPLUS*(RQD*RQD)) 
DPDF=6*PRPLUS*RFD 
DDPDDF=6*(PRPLUS*RFDD+QRPLUS*(RFD*RFD)) 
Al=l/(12*ALAMDA) 
Bl =(1/(SIN(Y)*SIN(Y)))* Al 
Cl =(Al *(COS(Y)/SIN(Y))+ l .5*EPSDOT*SIN(Y)*COS(Y)+ 

* (EKT*Al)*DPDQ) 
DI =(EKT* Al)*( 1/(SIN(Y)*SIN(Y)))*DPDF 
El= l .5*EPSDOT*( (2 *COS(Y)*COS(Y))-(SIN(Y)*SIN(Y)))+ 
* (EKT* Al )*(DDPDDQ+(COS(Y)/SIN(Y))*DPDQ+ 
* (1/(SIN(Y)*SIN(Y)))*DDPDDF) 
DUDT(l)=Al *DUYY(l,l)+Bl *DUXX(l,l)+Cl *UY(l)+Dl *UX(l)+El *U(l) 
RETURN 
END 

C***********************ENDOFF*************************************** 
C 
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APPENDIXB 

MODEL INPUT PARAMETERS FOR SIMULATION OF FIC 

The input parameters to the computer code are shown below in Table A2-1 

Parameter Units Code Name Definition 

E s·J 
EPSDOT The Elongational Rate 

* L Dimensionless Length Equal to L =- ALSTAR LC the Ratio of the Length of the 
Dumbbell to the Lattice Constant 

E 

kT 
EKT Energy Parameter 

;L2 s ALAMDA The Time Constant J=--
12kT 

tinit s TINIT Time at which First Result is 
Recorded 

dt s DTOUT Time Interval for Recording 
Subsequent Results 

N1 NT Number of Time Steps for 
Recording Results 

Table A2-l. Input Parameters for Transient FIC Model 
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APPENDIXC 

PROGRAM TO NORMALIZE PDF USING SIMPSON'S RULE 

This Program is in FOR TRAN90 
Program to numerically integrate(normalize) the pdf 
using Simpson's rule 
Program Simpson 

Declaration Statements 
Real delx,dely,sumu4evn,sumu4odd,x,y,xa,xb,& 

ya,yb, sumevn, sum odd, totint, simpint, u4 
Dimension simpint(5 l ),u4(5 l,5 l ),x(5 l ),y(5 l) 
Integer nx,ny 

Ask for Input 
Print*,'Enter the number of panels for x,nx' 
Read*,nx 
Print*,'Enter the number of panels for y,ny' 
Read*,ny 
Print*,'Enter the value of the lower limit of integration & 

for x,xa' 
Read*,xa 
Print*,'Enter the value of the upper limit ofintegration,xb' 
Read*,xb 
Print*,'Enter the value of the lower limit of integration & 

for y,ya' 
Read*,ya 
Print*,'Enter the value of the upper limit ofintegration,yb' 
Read*,yb 

Definition of terms in Simpson's approximation 
delx=abs(xb-xa)/real(nx) 
delx3 =delx/3 
dely=abs(yb-ya )/real(ny) 
dely3=dely/3 
Nl=nx/2 
N2=ny/2 
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Define values of x and y 
x(l)=xa 

y(l)=ya 
Do 5 ix=2,nx+ 1 

y(ix) = ya+float(ix)*delx-delx 
5 x(ix) = xa+float(ix)*dely-dely 

Read u4(f) values from input file LJTlIC 
Open( 14,File='LJT lIC', Status='Old') 

Do 7 iy=l,ny+ I 
7 Read(l4,8) (u4(ix,iy),ix=l,nx+l) 
8 Format(3x,51El0.3) 

Start loop outside (for each y value) 
Do 100 m=l,ny+ 1 

Start loop inside (for each x value) 
Do loop for Simpson even pts( odd in PDETWO simulation) 
Sumu4evn=O. 0 
Do 10 i=2,N2 

it=2*i-l 
Sumu4evn=Sumu4evn+u4(m,it )* sin(y(it)) 

10 Continue 

Do loop for Simpson odd pts(even in PDETWO simulation) 
Sumu4odd=O.O 
Do 20j=2,N2 

20 Continue 

jt=2*j 
Sumu4odd=Sumu4odd+u4(m,jt)*sin(yGt)) 

. ! Evaluate integral and write values of each 
simpint(m )=dely3 *( u4( m, I)* sin(y( I) )+4 * sumu4odd+& 

2*sumu4evn+u4(m,5 l)*sin(y(5 l))) 
Print* ,simpint(m) 

100 Continue 

Sum various simpint contributions to obtain final integral 

Odd summation or even values of simpint 
sumodd=O.O 
Do 110 l=l,N2 

lt=2*1 
sumodd=sumodd+simpint(lt) 

110 Continue 
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Even summation or odd values of gx 
sumevn=O.O 
Do 120 m=2,N2 

mt=2*m-1 
Sumevn=sumevn+simpint(mt) 

120 Continue 

Find the total integral 
totint = delx3 *( simpint( 1 )+simpint( 51 )+4 * Sumodd+2 * Sumevn) 
print*, to tint 
stop 
End Program Simpson 
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APPENDIXD 

SIMPLIFICATION OF EQUATIONS 

AD-1 Substitution of Equation (3-25) into equation (3-26) to yield (3-27) and (4-3) 

. [ ] 1 a 1 ar 
[[!!]] = ~. !! - ~:!!!!!! - 12,1, au Inf - 12kTh au (3-25) 

- -
Hydrodynamic Drag Brownian Intermolecular 

a ( a . ) 
at 1 = - a!! · [[!!JJ/ (3-26) 

Equation (3-25) is made up of drag, Brownian and intermolecular terms as shown above. 

The drag and intermolecular terms are substituted as is, but the Brownian term has to 

simplified as follows: 

- 1 {_£_·[(_£_(Inf ))1:} 
12A au au - -

~ l~A { ;: t (!)! ]} 
- l~A {!. :} 

1 
=-Af 

12A 

(AD-1) 

Using equation (AD-l)and substituting the other terms from equation (3-25) directly into 

equation (3-26) yields equation (3-27) 
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where (3-28) 

Equation (3-27) can be divided into drag, Brownian and intermolecular terms as follows: 

Brownian Term 

l~A{AJ} 

Drag Term 

Intermolecular Term 

Accordingly, Equation (3-27) can be restated as 

Brownian Term - Drag Term + Intermolecular Term 

Each of the above terms will now be solved individually. 

Brownian Term 

1 1 { 1 a ( aJ) 1 a2 J} 
12A {A/}= 12A sine ae sine ae + sin2 e ae 2 

=-1-{_l_[sine a2 f +case a/]+ 1 a2 /} 
12A sine ae 2 ae sin2 e ae 2 

(AD-2) 

=-1-{a2 f + cote aJ + 1 a2 /} 
12A 882 ae sin 2 e 88 2 
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Drag Term 

The tensor ~ in the drag term will be expressed in terms of its components for uniaxial 

elongational flow. First the velocity vector components, Vx, vy and v2 will have to be 

· specified. Thus, 

1 . 
V =--EX 

X 2 

1 . 
V = --ey 

y 2 (AD-3) 

Now, the unit vector !!, ! and ! are the same as the vectors Qr, Qe, Q+ in the (r, 8, <!>) 

spherical coordinate system with the r component assuming a value equal to one. Table 

AD-1 shows the components and the derivatives of the unit vectors, Qr, Qe, Q+ ( or !!, !, fl. 

Cartesian Components of Unit Vectors Derivatives of Unit Vectors 

Unit X y I 
z a;ae I a1a<1> I I 

Vector I I 
I I 
I I 
I I 

Qr sin8coscj> sin8sin<!> 
I 

0 Qe 
I 

Q41sin8 I I 
I I 
I I 

Qe 
I I 

cos8coscj> cos8sincj> I -sine -Qr I Q4,COS8 
I I 
I I 

Q+ -sin<!> cos<!> 
I 

0 0 
I 

-Qi.sine- Qecos8 I I 
I I 
I I 

Table AD-1. Components and Derivatives ofUnit Vectors in Spherical Coordinates 

The derivatives of the unit vectors shown in Table AD-1 will be later used in evaluating 

terms in the drag and intermolecular expressions. 
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In general, the velocity vector components in the spherical coordinate system are given by 

Yr= (r sin8 Cos<J>)vx +(r sin8 sin<J>)vy +(r cos8)v2 

ve = (r cos8 cos<J>)vx +(r cos8 sin<J>)vy +(-r sin8)v z 

Substituting equation (AD-3) in equations (AD-4), (AD-5) and (AD-5), 

V r = rt~(-t sin 2 8 + cos2 8) 

= rs(± + 1 cos 2 e) 

ve =ra(--!-cos8cos2 <J>sin<J>--!-cos8sin8sin 2 <l>-sin8cose) 

= ra(-± cos8 sin 8- sin 8 cos8) 

= ra(-Jcos8 sine) 

v $ = re(-1 sine cos<!> sin <l>-1 sine sin<!> cos<!>) 

=0 

The tensor K is defined as the transpose of the velocity gradient. Hence, 

I I avr 1 1 avr Ve 1 1 avr V$ 
-- I ----- I ----

ar : r 00 r : r sin 8 8q> r 
----T----------,---------------------
av8 : 1 ave Yr 1 1 ave v$ cote 

- -- ---+- I ------'---

Bf : r 00 r : r sin 8 8q> r 
----+----------~---------------------
av$ : 1 av$ : 1 av$ Yr Ve cot8 
-- I --- I --+-+ 

8r ! r 00 ! r sin 8 8q> r r 

(AD-4) 

(AD-5) 

(AD-6) 

(AD-7) 

(AD-8) 

(AD-9) 

(AD-10) 

Substituting r = 1 and equations (AD-7), (AD-8) and (AD-9) in equation (AD-10), 

1 3 2 I 3 • I 
-2+2COS 8 : - 2 sm8cos8 : 0 
-----------T-----------,---

~ = a -J cos 8 sin 8 : -f + t sin 2 8 : o 
- -----------~-----------~---

(AD-11) 
1 I 1 0 I O 1--
1 I 2 
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Having obtained the components of~' there are two ways in which the drag term can be 

evaluated. The first method simplifies the drag expression in general terms without 

considering any specific flow field. In the second method, the components of the velocity 

vectors and tensors are determined and the vector operations are subsequently performed. 

Both methods yield the same result. 

Method 1: General Expression for Drag Term 

The single dot product in the drag expression can be written as 

~-!! = LLt§.1K1/ ·§.1 
i j 

="O.K·1 L.,_, I 

The double dot product in the drag expression can be written as 

~: uuu =LL to.1K!i: §_1 §.1 §.1 
i j 

= "" 0 ·10 ·1K .. () L.,L., I J !J-1 

The difference between equations (AD-12) and (AD-13) is then given by 

[~·_!!-~:!!!!!!] = Q_2K21 +Q..3K31 

=Q..9K21 +Q.~K31 

=~21 +!K31 

where K 21 = [~ · !!]8 

K31 =b·!!]~ 

a 
The differential operator au is defined as 
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a a 1 a 
-=8 -+8 --­au -S ct) -$ sine 8<J> 

(AD-15) 

The differential operator defined by equation (AD-15) can be applied to equation (AD-14) 

Using the product rule for differentiation, equation (AD-16) can be rewritten as 

:u ·[~·!!-~=!!!!!!]=oe ·(! 8e)(x21)+oe ·oe(! K21) 

+8e {! 8$ )(x31)+oe ·0$(! K31) 

+o, (! Oo )(::~) +o, ·Oo si~e (! K21J 

+0$ ·(! 0$ J(;~~) +0$ ·b$ si~e (! K31J 

(AD-16) 

(AD-17) 

Using the relations between unit vectors given in Table AD-1, equation (AD-17) can be 

written as 

:u . [ ~ . !! - ~: !! U U] = Q_ 8 . (- Q_ r )( K 21 ) + Q_ 8 . Q_8 ( JK~ I) 

+§_e ·(!§_$)(x31)+§_e ·Q_$(8K~1) 

+~1 -(o1 cos el(::~) +61 -60 C~e)( ilKa:1J 

(AD-18) 

+8$ ·(-or sine-§_8 case)(:~~)+§_$ ·Q_$(si~e)(8K~1J 
The following relations apply to dot product operations between unit vectors. 

o. ·o. = 1 
-l -l 

(AD-19) 
8.o.=o -1-1 
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Using the relations given by equation (AD-19), equation (AD-18) simplifies to 

(AD-20) 

Multiplying by f and rearranging yields, 

(AD-21) 

Equation (AD-21) is the general form of the drag expression. For uniaxial elongational 

flow, the components of K given by equation (AD,.11) can be substituted to yield 

(AD-22) 

Method 2: Expansion of Vectors and Tensors in terms of Components and Coefficients 

For uni axial elongational flow, the tensor K has components given by Equation ( AD-11 ). 

Also, the components of the unit vector!! has the following coefficient matrix 

u = o = [:] - -r 

0 

(AD-23) 

The components of the tensor dyadic product !!!! then has the following coefficient matrix 

The single dot product can then be performed to obtain 

_1.+ 2 cos2 8 
2 2 

K · U = t -!cos8 sin8 

0 
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The double dot product is obtained as follows 

lC: UU = E(--1+ 2 cos2 8) 
= -- 2 2 (AD-26) 

Hence, 

(A- D27) 

The difference between the single dot product and the double dot product terms is then 

(AD-28) 

The differential operation can now be performed on Equation (AD-28) to obtain 

(AD-29) 

The product rule for differentiation can be applied again to yield 

{§_8 ·§_e)(! sin8cos8/) +§_8 · ! {§_ 8 sin8cosef) · 

~ ·[(~ · !!-~=!!!!!!)!] = -!g +(§_~ ·§_8 )Ci~e) ! (sin 8 cos8/) 

+§_~ · ! (§0 )Ci~ 8)(sin8cos8J) 

(AD-30) 

Using the relations between the components and derivatives of the unit vectors given in 

Table AD-1, equation (AD-30) can be simplified to obtain Equation (AD-31) 

(AD-31) 

The derivative term in equation (AD-31) can be evaluated as follows 
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a ( . 2 ) a [ ( sin 28 ) ] ae sm 8 cos8/ = ae f -2-sin8 

= ~ sin 28 sin 8 : + f ! [ ~ sin 28 sin 8 J 
(AD-32) 

= sin 2 8 COS8: + f[sin8 COS 2 8 + sin8(cos2 8- sin 2 8 )] 

= sin 2 8 COS8: + /[2 sin8 COS 2 8- sin 3 8] 

In obtaining equation (AD-32), the following identities were used: 

sin 28 = 2 sine cos8 

cos28 = (cos2 8- sin 2 8) 

Substituting equation (AD-32) in equation (AD-31) yields 

Intermolecular Term 

. . 1 a {( a ) } The mtermolecular term 1s · - r f 
l2kTA. au au - -

(AD-33) 

(AD-34) 

The derivative in the intermolecular term (without the coefficient) can be evaluated as 

follows 

(AD-35) 

= Terml + Term2 + Term3 + Term4 

Each of the 4 terms in equation (AD-35) will be evaluated below 
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Term 1 

Term2 

( ! !) · ( ef ~) = ! · ! ! (1 ~) + ! · ! !(I ~) 

= !·! ! (1 ~) +!·(-~)(! ~) 

= (1) ! (1 ~) +(0{1 ~) 
!(1~) 

( a ) ( 1 ar) a ( I ar) a ( I ar) ~ ct) . t sine 8<I> - (~. t) ct) sine 8<I> + ~. ct) t sine 8<I> 

a ( I ar) ( I ar) =(O)- -.-- +(o) -.--
ctl sm e 8<I> sm e 8<I> 

=0 

Term 3 

Term4 

1 a ( J ar) ------
- sine 8<I> sine 8<I> 
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(AD-37) 

(AD-38) 

(AD-39) 



Combining equations (AD-36), (AD-37), (AD-38) and (AD-39) and substituting in the 

intermolecular term yields, 

(a2r ar 1 a2 rJ -+cote-+ - f 
88 2 ae sin 2 8 aj> 2 

+(ar) aJ +( 1 ar) w 
ae ae sin 2 8 ap ap 

(AD-40) 

Substitution of equations (AD-2), (AD-34) and (AD-40) into equation (3-27), yields 
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APPENDIXE 

REDUCTION OF MULTI-BEAD-ROD EQUATIONS 

The multi-bead-rod working equation i.e. Equation (3-97), can be reduced to the ECC 

dumbbell equation (3-27) in the following manner. Equation (3-97) is reproduced below. 

(3-97) 

For the ECC rigid dumbbell model, there is only one generalized coordinate i.e., the unit 

vector in the direction of the connector, !!, and two internal coordinates i.e. 8 and <J>. 

Hence, for the rigid dumbbell model, in terms of generalized coordinates, the summation 

sign can be dropped in equation (3-97). Thus, 

(AE-1) 

The following simplifications can be made for the terms in equation (AE-1 ). 

The double dot product can be written as 

(K:M) = 1_~(1e:K) 
== 2 8u == 

where, K = L (;Rv 
(AE-2) 

V 

Hence, 

(AE-3) 
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and 

(AE-4) 

For no hydrodynamic interaction, and for identical beads, the contravariant metric matrix, 

(AE-5) 

Note that the subscripts s and t have been dropped since the ECC model is a rigid 

dumbbell. 

Also, 

Therefore, 

G=g-1 

where g = L!!v · !!v 
V 

. r,;;: a andb = m -R 
-V V au-V 

Bird et al. (1987b, p. 189) have shown that for a multi-bead-rod model, 

12 ( 1 0 J 
Gst = mL2 N(N2 -1) O ___ 1 _ 

sm 2 9 

and 
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(AE-6) 

(AE-7) 

(AE-8) 

(AE-9) 



Substituting N = 2 in the above equations, for the rigid dumbbell model, yields 

2 (1 0 J 
Gst = mL2 0 -.-1 _ 

sm2 8 

( 1 24 2)· g = 4m L sin 8 

Substituting equations (AE-4), (AE-10) and (AE-11) in equation (AE-1) yields 

17\jf a( ) 1 a( . ) at = - cB !!~: ~ \jf - sin2 8 aJ> !!! sm S: ~ \jf 

1 { a [ a ( \\f )] 1 a2 } +- -sin8 - -- +---\\f 
61c cB cB sin 8 sin2 8 aj>2 

1 { a ( a ) 1 a ( ar)} 
+ 6kTA . cB \\f cB r + sin2 8 aJ> \\f aJ> 

where 
CJ,2 

1c=-­
l2kT 

In vectorial form, equation (AE-12) is equivalent to 

( a [ 1 ( a ) ]( \\f )J - -. K·U-K'UUU- -r --
8!! = - =·-- 6kTA1 a!! sin 8 

(AE-10) 

(AE-11) 

(AE-12) 

(AE-13) 

(AE-14) 

Since equation (AE-14) was derived for an arbitrary origin, if the origin is now placed at 

bead O of dumbbell OA in Figure 3-2, and if beads O and A are represented by v = 1 and 

v = 2 respectively, then 
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!.1 = 0 

R 1 = 0 

. !.2 = L!! 

Lu 
R2 =-=-
- 2 

(AE-15) 

Using equations (AE-15), equation (AE-14), and noting that the term (si!e) is, by 

definition, equal to the configurational probability distribution function, f, equation (AE-

13) can be reduced to 

(3-27) 

where 

(3-28) 

Tsai (1997) shows how equation (3-27) can be modified to model orientation of rigid 

dumbbells in shearing flow above the melting point. 
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APPENDIXF 

CONTINUITY EQUATION FOR PDF OF RIGID DUMBBELLS 

Tsai (1997) showed how the continuity equation for the rigid dumbbell model can 

be derived form first principles 

z 

Figure AF-1. Surface Element sin8~8~<p on a Hemisphere 

The coordinate system for the rigid dumbbell model shown in Figure 3-2 is redrawn in 

Figure AD-1 where the amorphous dumbbell portion is now represented by an infinitesmal 

element that corresponds to the orientation vector of the dumbbell. The bead on the end 
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of the rod can only be found on the surface of a hemisphere with radius L as shown in 

Figure AD-1. A hemisphere was considered instead of a unit sphere because the other half 

of the sphere was assumed to be occupied by the crystal. The rate of change of 

probability for finding a bead on the surface element A is 

! \j/(8, <I>, t)L\8 sin 8L\<I> (AF-I) 

Notice that the "sin8" in Eq. AF-1 is the scale factor for the azimuthal(i.e. in the <I> 

direction) unit vector, 1, in the spherical coordinate system. The rate at which beads enter 

the surface element A is 

where 

. d8 

([8]\Jf )1 8 sin 8L\<I>- ([8]\Jf )le+t1e sin 8L\<I> 

+ ([ <i> ]\JI )I~ L\8 - ([ <i> ]\JI )l~+M L\8 

[8] = [-d ] = average time rate of change of the coordinate 8 
t . 

. d<I> 
[<I>] = [ dt ] = average time rate of change of the coordinate <I> 

(AF-2) 

Equating Equations. AF-I and AF-2 and dividing by L\Osin OL\¢; when L\O andL\¢ are 

allowed to approach zero, the following expression can be obtained. 

O\Jf = -(-1- me]sin8\jf +-1- a[<i>]\JIJ 
at sine ae sine 8<I> 

(AF-3) 

Equation AF-3 can be represented in term of the average unit vector [u] as: 

a\Jf ( a ) -=- --[u]\Jf at au - (AF-4) 
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APPENDIXG 

INSTRUCTIONS FOR SIMULATION 

The method of solving the working equations for the ECC dumbbell model usmg 

PDETWO involves the following steps. 

i) Compile the program tlOla. f in a UNIX environment using the command f77 

tlOla. f. Run the program using the a.out command. This step corresponds to the 

deformation of the polymer film. An example of the input commands along with the 

corresponding values is shown below. 

$ a.out 
ENTER THE VALUE OF LAMBDA 
30.0 
ENTER THE VALUE OF LST AR 
10.0 
ENTER THE VALUE OF E/KT 
0.3 
ENTER THE VALUE OF EPSILONDOT 
0.1 
ENTER THE FIRST VALUE OF TIME FOR RECORDING RESULTS 
1.0 
ENTER THE TIME INTERVAL FOR SUBSEQUENT RESULTS 
1.0 
ENTER THE NUMBER OF OUTPUT TIME INTERVALS 
2 
PROGRAM RUNNING-DON'T MESS WITH THE PC 
0/P WILL BE IN FILE UV AL 

In the above example, a strain rate of 0.3 sec ·1 was applied for 2 seconds. The values off 

as a function of 8 and q> will be displayed for t = 0, t = 1 and t =2. To normalize the 
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output, the integral of the entire output must be obtained for each time interval using 

Simpson's rule (See Appendix C). Then, in a spreadsheet, each original value off must be 

divided by the integral. 

n. Rename the output file UV AL to some other file name. Typically a trailing lower case 

a is added to the filename to indicate that the data were from part a or tlOla i.e. 

during the deformation. 

111. Copy thefvs. 8 and <I> data for the final time step into a new file and name it LJTIIC. 

This will be the initial condition for the next step i.e. after cessation of deformation. 

1v. Compile and run the program t 1 o lb . f. This corresponds to the time after the 

deformation and hence, the input will not indude EPSILONDOT. The same values of 

LST AR and EKT must be used. An example is shown below. 

$ a.out 
ENTER THE VALUE OF LAMBDA 

30.0 
ENTER THE VALUE OF LST AR 
10.0 
ENTER THE VALUE OF E/KT 
0.3 
ENTER THE FIRST VALUE OF TIME FOR RECORDING RESULTS 
1.0 
ENTER THE TIME INTERVAL FOR SUBSEQUENT RESULTS 
10.0 
ENTER THE NUMBER OF OUTPUT TIME INTERVALS 

25 
1 PROGRAM RUNNING-DON'T MESS WITH THE PC 

1 0/P WILL BE IN FILE UV AL 

In the above example,fvs. 8 and <I> data will be obtained fort= t'+l, t"+ll, ... t'+251 

seconds. 
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v. Rename the new output file UV AL to some other file name and add a lower case bat 

the end to indicate that the data were from tlOlb or after the cessation of deformation. 

Normalize the data using the procedure mentioned in (i). 

v1. Import the data files from the output of the two steps into MS Excel. Plot the <lat 

using the 3-d plot function in Excel to yield the surface plots. Use the double 

integration program in Appendix C to integrate the pdf from the smallest value of 8 

and <I> to the value that corresponds to the end of the peak. This will yield the area 

under the peak or the crystalline volume fraction. Each crystalline volume fraction or 

integral must be divided by the crystalline volume fraction or integral at the final time 

step. This will yield the reduced crystalline volume fraction. Plot the reduced 

crystalline volume fraction as a function of time. 

vii. To obtain data of\j/, instead off, multiply the normalized! data at each value of (8, <I>) 

by the corresponding value of sin8. 
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