
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SCALING UP LABELING, MINING, AND INFERENCING ON EVENT EXTRACTION

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR of PHILOSOPHY

By

Yan Liang

Norman, Oklahoma

2022

SCALING UP LABELING, MINING, AND INFERENCING ON EVENT EXTRACTION

A DISSERTATION APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Christan Grant, Chair

Dr. Andrew Fagg

Dr. Kun Lu

Dr. Dean Hougen

Dr. Qi Cheng

© Copyright by Yan Liang 2022

All Rights Reserved.

Acknowledgements

I would like to express my deepest gratitude to my advisor, Dr. Christan Grant, who offered

me his mentorship, patience, and care. This work would not have been done without his

excellent guidance and unconditional support. Under his guidance, I overcame a lot of

difficulties and learned a lot from him and my awesome labmates. I am grateful to have the

opportunity working with him.

I would like to specially thank Dr. Jill Irvine, who opens the door for me to conduct

research in event extraction, for all her support and guidance. I would like to thank Dr.

Andy Halterman for his cooperation and feedback in my work. I would like to extend my

thanks to my dissertation committee Dr. Andrew Fagg, Dr. Kun Lu, Dr. Dean Hougen, and

Dr. Qi Cheng for their valuable time to guide me, and invaluable feedback.

The School of Computer Science at OU has provided me with great learning experiences.

I would like to thank Department Chair Dr. Sridhar Radhakrishnan, all the faculty and

wonderful staff, specially Philip Johnson and Virginie Perez, for their guidance and help

during all these years of graduate work.

I would wholeheartedly like to acknowledge the people who mean a lot to me, especially

my parents, parents-in-law, uncles, aunts, and cousins, for showing faith in me and giving

me freedom to choose what I desired. I salute you all for selfless love, care and sacrifice you

did to support me.

Finally, and most importantly, I owe thanks to a very special person, my husband Shaohui

Wang for his continued and unfailing love, support and understanding during my pursuit of

Ph.D. degree which made the completion of this dissertation possible.

iv

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Contribution . 5

2 Literature Review 8

2.1 Concepts . 8

2.1.1 Open-Domain Event Extraction . 9

2.1.2 Closed-Domain Event Extraction . 11

2.2 Terminology . 12

2.3 Sub-tasks . 13

2.4 Event Extraction Corpora . 14

2.4.1 ACE: The Automatic Content Extraction 15

2.4.2 TAC KBP: Text Analysis Conference Knowledge Based Filling 16

2.4.3 MAVEN: A Massive General Domain Event Detection Dataset 17

2.4.4 RAMS: Roles Across Multiple Sentences 21

2.4.5 Other Domain-Specific Corpora . 22

2.5 Formulating Event Extraction Sub-tasks as Different Machine Learning Tasks 22

2.5.1 Formulating EE as a Classification Based Task 22

2.5.2 Formulating EE as a Sequence Labelling Based Task 23

2.5.3 Formulating EE as a Question Answering Based Task 26

v

2.5.4 Formulating EE as a Sequence-to-Structure Generation Based Task . 26

2.6 Event Extraction Paradigms . 28

2.6.1 Pipeline-based Versus Joint-based Event Extraction 28

2.6.2 Sentence-Level Versus Document-Level Event Extraction 29

2.7 Event Extraction Models . 30

2.7.1 Event Extraction Based on Pattern Matching 30

2.7.2 Event Extraction Based on Traditional Machine Learning Models . . 33

2.7.3 Event Extraction Based on Deep Learning Models 35

2.8 Event Extraction Evaluation and Metrics . 46

2.9 Research Trends . 49

2.9.1 Challenges from Event Extraction Corpora 50

2.9.2 Challenges from Event Extraction Models 51

3 New Techniques for Scaling up Political Events Coding across Languages 53

3.1 Introduction . 53

3.2 Related Work . 54

3.3 Our Contribution . 55

3.4 Coding Approaches and Interfaces . 56

3.4.1 Main Coding Interface With Keywords Search, LDA Topic Filtering,

and Synonyms Facilitator . 56

3.4.2 Wikipedia Facilitated Translating Existing English Actor Dictionary . 60

3.4.3 Frequency Ranked NER Based Coding Interface 60

3.4.4 Wikipedia Based Coding Interface . 63

3.4.5 Peer Review Interface for Unsure Records 65

3.5 Coding Teams . 66

3.6 Evaluation . 67

3.7 Summary . 70

3.8 Discussion and Future Work . 71

vi

4 Scaling up Event Detection by Utilizing Document Topic Information 73

4.1 Introduction . 73

4.2 Related Work . 74

4.3 Motivation and Our Contribution . 75

4.4 Event Detection Definition . 79

4.5 Methodology . 80

4.5.1 Architecture Overview . 80

4.5.2 Sentence Encoder . 83

4.5.3 Topic Encoder . 84

4.5.4 Topic-Aware Sentence Representation 84

4.5.5 Event Detection CRF Decoder . 85

4.5.6 Event Detection Training . 87

4.5.7 Topic Classification Training . 87

4.5.8 Multi-Task Training . 88

4.6 Experiments and Evaluation . 88

4.6.1 Performance . 89

4.6.2 Ablation Study . 91

4.7 Result Analysis . 95

4.8 Reproducibility . 97

4.9 Summary . 97

5 Adaptive Scalable Pipelines for Event Data Extraction 100

5.1 Introduction . 101

5.2 Background . 102

5.3 Methodology . 103

5.3.1 System Overview . 103

5.3.2 Optimize System Parameters with Kalman Filter 104

5.4 Experiments . 105

vii

5.5 Evaluation . 107

5.5.1 Adaptive Batch Size By Using Kalman Filter 108

5.5.2 Performance of The Pipeline on Laptop Configuration 109

5.6 Summary . 110

6 Conclusions and Future Work 112

6.1 Conclusions . 112

6.2 Future Work . 113

viii

List of Tables

2.1 Examples of predefined event type to arguments schema in ACE05. 9

2.2 Event extraction examples with their event types and argument roles. 10

2.3 Event types and sub-types of the ACE05 dataset. 15

2.4 Data sources with their statistics in the ACE05 dataset. 17

2.5 Statistics of documents, tokens, sentences, event types, events, and event men-

tions in the MAVEN dataset, compared to other widely-used event detection

datasets. 18

2.6 Document counts and percentages of the top five EventWiki topics in MAVEN. 21

2.7 RAMS statistics of documents, examples, event types, roles, and arguments. 21

2.8 Comparison of advantages and disadvantages for pattern matching, traditional

machine learning, and deep learning methods. 31

2.9 Thirteen linguistic patterns with examples. 32

2.10 Definitions of True Positive (TP), False Positive (FP), True Negative (TN),

and False Negative (FN) . 47

3.1 Description of each interface used by coders from Team 1 and Team 2. . . . 67

3.2 Performance of coders with different coding approaches. 68

4.1 An example of the top five event type distributions for each of the topics:

earthquake, horse race, terrorist attack and civilian attack. 77

4.2 An example of the tag sequence for event type Process Start annotated with

the BIOE scheme. 86

ix

4.3 Test dataset performance on different settings. 89

4.4 Event type groups based on its occurrence frequency in training data. 90

4.5 Macro precision, recall, and F1 based on event type occurrence groups. . . . 90

4.6 Two-tailed paired t-test results on F1 score from Table 4.5. 91

4.7 Paired t-test results on non-overlapping test dataset. 92

4.8 TAED performance with different topic-classification weights, performance of

general event words kept/removed and performance of extra topic keywords

added on for a specific topic. 93

4.9 Performance of using different ways to generate and utilize topic name em-

bedding. 93

4.10 Sample of ten topic vocabulary terms and their top five representative keywords. 94

4.11 Performance of BERT-CRF and BERT-CRF-TOPIC only on trigger identifi-

cation. 95

4.12 Pseudo topic labels generated by LDA for RAMS dataset. 98

5.1 Performance Gain of Kalman Filter approach over 150,000 documents. . . . 109

5.2 Statistical significance test results for different Kalman filter based batchsize

compared to static batchsize performance with two-tailed paired t-test. . . . 111

5.3 Paired t-test results on non-overlapping test dataset pipeline. 111

x

List of Figures

1.1 Scaling up event extraction from three dimensions. 5

1.2 The event extraction workflow. 7

2.1 Data distribution of the ACE05 dataset. 16

2.2 Distribution of MAVEN event types by their corresponding instance num-

bers. [Wang et al., 2020] . 19

2.3 The hierarchical event types used in MAVEN, rooted from the coarse-grained

event type change. 20

2.4 Classification based task. 23

2.5 Graphical structure of the general CRF. 24

2.6 Graphical structure of the linear-chain CRF. 25

2.7 Sequence labelling based task. 25

2.8 Question answering based task. 27

2.9 Sequence-to-structure generation based task. 28

2.10 A simplified architecture of CNN-based event extraction. 36

2.11 An illustration example of using CNN kernels. 37

2.12 A simplified architecture of RNN based event extraction. 39

2.13 Attention architecture. 41

2.14 Transformer architecture. 42

2.15 Illustration of the BERT training framework. 43

2.16 Illustration of the PLMEE architecture. 45

xi

2.17 BERT input representation. 46

3.1 The Regular coding interface. 57

3.2 The Fast coding interface. 61

3.3 The Wiki-bio coding interface. 63

3.4 Peer review interface. 66

3.5 Total number of actors coded for each approach. 68

3.6 Performance of wiki-based approach of five coders. 70

3.7 Variance of time spent on each actor of different coders versus the number of

actors coded by each coder. 71

3.8 The Prodigy interface used for training a customized named entity recognition

model for Arabic. 72

4.1 An example of event triggers and event detection. 74

4.2 P-Value from Kolmogorov–Smirnov test on distribution of event types across

topics (partial version). 77

4.3 P-Value from Kolmogorov–Smirnov test on distribution of event types across

topics (full version). 78

4.4 TAED architecture. 80

4.5 Topic-aware/non-topic-aware model macro precision, recall, and F1 perfor-

mance. 92

4.6 F1 performance versus γ. 95

5.1 The Biryani system architecture. 104

5.2 Average timing information for 1,000 Documents. 108

5.3 Average timing information for 25,000 Documents. 108

5.4 Kalman filter approaches over 12,484 sets of random documents with mean

and standard deviation of three executions on each setting. 110

xii

Abstract

Numerous important events happen every day and are reported in different media sources

with varying narrative styles across different knowledge domains and languages. Detecting

the real-world events that have been reported from online articles and posts is one of the

main tasks in event extraction. Other tasks include identifying event triggers and trigger

types, identifying event arguments and argument types, clustering and tracking similar events

from different texts, event prediction, and event evolution. As one of the most important

research themes in natural language processing and understanding, event extraction has wide

applications in diverse domains and has been intensively researched for decades.

This work targets a scaling-up of End-to-End event extraction task through three ways.

First, scaling up the event labeling process to different languages and domains. We designed

and implemented four approaches to accurately and efficiently produce multi-lingual labels

for events. Using the approaches we developed, we were able to complete Arabic actor and

verb dictionaries with coverage equivalent to English in less than two years of work, compared

to two decades for English dictionary development. Second, scaling up event extraction

by using the document topics information in a topic-aware deep learning framework. We

propose a domain-aware event extraction method by using the topic name embeddings to

enrich the sentences’ contextual representations and multi-task setup of event extraction and

topic classification task. With the topic-aware model we developed, we were able to improve

F1 by 1.8% on all event types, and F1 by 13.34% on few-shot event types. Third, scaling

up event extraction by designing containerized and efficient pipelines, which researchers

can comfortably adopt. The pipeline has a container-based architecture that adapts to

the available systems and load to process text. With the Kalman filter based batch size

optimization, we were able to achieve 20.33% improvement on processing time compared to

xiii

static batch size. Using the pipeline we developed, we were able to publish largest machine-

coded political event dataset covering 1979 to 2016 (2TB, 300 million documents).

xiv

Chapter 1

Introduction

1.1 Overview

Numerous important events happen every day but are reported in different media sources

with different narrative styles across different knowledge domains. Detecting whether real-

world events have been reported from online articles and posts is one of the main tasks in

event extraction. Other tasks include identifying event triggers and trigger types, identifying

event arguments and argument types, clustering and tracking similar events from different

texts, and event prediction and event evolution. As one of the most important research

themes in natural language processing and understanding, event extraction has wide appli-

cations in diverse domains and has been intensively researched for decades. For example,

structured events can be directly used in constructing or expanding the knowledge base [Wu

et al., 2019; Bosselut et al., 2021], a centralized repository where information is stored, orga-

nized, and then shared, upon which further logical reasoning and inference can be made [Liu

et al., 2018; Rospocher et al., 2016]. Event Detection and monitoring have long been the

focus of public affair management for governments, as timely knowing the outbursts and evo-

lution of popular social events helps the authorities to respond promptly [Conlon et al., 2015;

Atkinson et al., 2009]. In the business and financial domain, event extraction can also help

1

companies quickly discover market responses to their products and influential signals for risks

analysis and suggestions [Nuij et al., 2013; Capet et al., 2008]. In the biomedical domain,

event extraction can be used to identify the alterations in the state of a biomolecule (e.g., a

gene or a protein) or interactions between two or more biomolecues, which is explained in

the literature on understanding physiological and pathogenesis mechanisms [Vanegas et al.,

2015]. To sum up, many domains can benefit from the advancements in event extraction

techniques and systems.

1.2 Motivation

In the machine learning domain, specifically in supervised methods, large amounts of anno-

tated data are needed to build a robust model and improve the model’s prediction accuracy.

Researchers have gathered datasets containing labelled data from various domains, such as

ImageNet [Deng et al., 2009], the Lung Image Database Consortium and the Image Database

Resource Initiative (LIDC-IDRI) [Armato III et al., 2011], and the Modified National In-

stitute of Standards and Technology dataset (MNIST) [LeCun et al., 1998]. Previous work

has obtained fascinating results by implementing machine learning techniques with labelled

datasets [You et al., 2018; He et al., 2019; Kussul and Baidyk, 2004; Tabik et al., 2017;

Schott et al., 2019; Pedamonti, 2018]. It is well known that the majority of the time spent

conducting experiments in machine learning is spent on data preparation [Munson, 2012].

This includes data label collecting, cleaning, analyzing, visualizing, and feature engineering.

While all of these steps are time consuming, data label collection has recently become a

challenge for the following reasons.

First, as machine learning is used in new applications, it is usually the case that there

is not enough training data. Traditional applications like machine translation or object

detection enjoy massive amounts of training data that have been accumulated for decades.

Similarly, in the political event coding domain, Dr. Philip Schrodt and colleagues at the

2

University of Kansas spent two decades creating the original English language event coding

dictionaries: Texual analysis by augmented replacement instructions (TABARI).1 On the

other hand, more recent applications have little or no training data. As an illustration, smart

factories are increasingly becoming automated where product quality control is performed

with machine learning. There is little or no training data to start with whenever there is a

new product or a new defect to detect. The näıve approach of manual labelling may not be

feasible because it is expensive and requires domain expertise. This problem applies to any

novel application that benefits from machine learning.

Moreover, as deep learning becomes popular, there is even more need for training data.

In traditional machine learning, feature engineering is one of the most challenging steps

because the user needs to understand the application and provide features used for training

models. On the other hand, deep learning can automatically generate features, which saves

us time on feature engineering, and is a significant part of data preparation. However, deep

learning may require much more training data to perform well [Bach et al., 2017].

Data produced from news stories is one of the most important new sources of information

for quantitative political science research. Machine-coded data of geo-referenced political and

social activity has opened up new political phenomena ranging from social movements to

violent conflict, unrest, and government responses, with news reporting in English. However,

one limitation of event data is its restriction to English language sources only. To study the

political event extraction in other language sources, we need to scale up the event labelling

process from English to other languages. Several issues make automated event labelling in

multiple languages an unsolved and challenging task, including the unwieldy size of text data

which can reach terabytes, extracting the relevant actors to the events being studied, and

guaranteeing the accuracy and abundance of the coded results.

Further, event extraction is not only limited to the political science domain [Nuij et al.,

2013; Capet et al., 2008; Vanegas et al., 2015]. Identifying events across event type domains

1https://parusanalytics.com/eventdata/software.dir/tabari.html

3

https://parusanalytics.com/eventdata/software.dir/tabari.html

is also an essential task to work on. A domain-adaptive event extraction system, where

an extraction model with domain specific knowledge is needed to improve extraction per-

formance. The topic/domain information of the document where the events are extracted

from are rarely explored. Examples of the topics of the documents can be military conflict,

earthquake, concert tour, or wrestling. Topic information is vital for event extraction, since

semantically similar topics share similar event types, while event types are quite different

between distinguishable topics. In addition, the event types we try to detect might have

data imbalance issues: some of the event types frequently seen in the training data are go-

ing to have higher performance, while the event types rarely seen in the training data have

lower performance. Using the extra knowledge from the topic or domain could bring in extra

“bridge” knowledge to make the information transfer from “high resource” to “low resource”

event types. A “high resource” event type is one that has been seen quite a few times in

the training data, while a “low resource” event type is one that has been rarely seen in the

training data. This further boosts the performance of the event types with a limited number

of training labels.

Moreover, the availability of large corpora of online news documents has made it possible

for computer and social scientists to study human political behavior at previously impossible

scales. One of the primary bottlenecks in deriving meaning from text documents is the

resource demands of the natural language processing and information extraction that need

to be performed. Current document processing pipelines suffer from a range of limitations

when processing hundreds of millions of news articles for social science applications, either in

terms of poor performance or ease of use. Document processing pipelines written by social

scientists are easily installed and customized, but tend to be single-threaded and slow for

corpora larger than a few hundred thousand documents. Frameworks for distributed pipelines

that are fully flexible (Apache Nifi, Kubernetes, Spark) require sophisticated infrastructure

and significant technical expertise both to set up and to customize for document processing

tasks, which creates a high hurdle for applied use. The need to develop a simple, adaptive

4

pipeline for extracting political events from many news documents is urgent.

1.3 Contribution

Figure 1.1: Scaling up event extraction from three dimensions.

We are targeting the scaling up of event extraction task end-to-end from three dimensions:

• Scaling up event labelling process that can be adapted to different languages and

domains.

• Scaling up event extraction by using the document topics information in a topic-aware

learning framework.

• Scaling up event extraction by designing containerized and efficient pipeline which

researchers can easily adopt.

5

The general machine learning pipeline involves three components: data, model, and

model deployment [DeHart et al., 2021]. Event extraction follows a similar workflow. We

summarize the event extraction process in Figure 1.2 and highlight the components that we

contributed to.

• We designed and implemented four different approaches to producing labels for events

more accurately and efficiently, which can be generalized to different languages and

different event domains. Using the above approaches for developing dictionaries, we

were able to complete Arabic actor and verb dictionaries with coverage equivalent to

the English language dictionaries in less than two years of work, compared to the two

decades that the English language dictionaries took to produce (Chapter 3).

• We proposed a domain-aware event extraction method by utilizing the topic name em-

beddings to enrich the sentences’ contextual representations and multi-task set-up of

event extraction and topic classification task, TAED. In detail: (1) We performed de-

tailed analyses explaining why topic information helps the event detection task. (2) We

introduce topic name enhanced sentence representation for event detection and explore

different ways to embed the topic name information, including using attention-based

versus concatenation-based interaction, [CLS] versus token average based attribute

embedding, and topic keywords to generate topic embedding versus using topic names.

(3) We introduce topic classification and event detection as a multi-task learning set-

up, which further improves the performance and conducted experiments with two event

detection datasets with various event types. We achieved up to +1.8% on the F1 score

compared to the baseline. (4) Furthermore, we show that the topic-aware model we

propose can improve the few-shot event types scenario with a large margin of +13.34%

on the F1 score and provide heuristic explanations in the case study (Chapter 4).

• We designed and implemented a pipeline for efficiently extracting event data from web

documents. The pipeline has a container based architecture that adapts to the available

6

Figure 1.2: The event extraction workflow. Our contributions are highlighted.

systems and load to process text. This architecture allows researchers to use whatever

resources they have to process a large data set. Furthermore, with the adaptive batch

size learned from Kalman filter [Kalman, 1960], we see up to 20.33% improvement on

processing time compared to static batch size (Chapter 5).

7

Chapter 2

Literature Review

2.1 Concepts

An event indicates the occurrence of an action or state change, often driven by verbs or

gerunds. Event extraction technology extracts events that users are interested in from un-

structured information and presents to users in a structured form [Chen et al., 2015]. An

event is consisted of the primary components involved in the action, such as the time, the

place, and the character. Event extraction needs to detect not only the event type but also

the corresponding words/phrases to fill in the predefined event schema as defined in ACE051

shown in Table 2.1, in order to output a structured format event. This is also known as

closed-domain event extraction, since the event schemas vary for different event domains.

There is also another type of event extraction task: open-domain event extraction, in which

the predefined event schema is not required. Open-domain event extraction focuses on de-

tecting the existence of an event and further targets to cluster the events based on their

semantic meaning.

As an example, given the sentence

At daybreak on the 9th, the terrorists set off a truck bomb attack in Nazareth.

1https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.

4.3.pdf

8

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf

Event Type: Conflict-Attack Event Type: Justice-Execute

Argument Role

Attacker

Argument Role

Person
Target Agent
Instrument Crime
Time Time
Place Place

Event Type: Transfer-Money Event Type: Life-Die

Argument Role

Giver

Argument Role

Agent
Recipient Victim
Beneficiary Instrument
Money Time
Time Place
Place

Table 2.1: Examples of predefined event type to arguments schema in ACE05 for four event
types: Conflict-Attack, Justice-Execute, Transfer-Money, and Life-Die.

we want to identify the event components as follows:

• Type: Conflict/Attack

• Trigger: attack

• Arg-Attacker: the terrorists

• Arg-Target: [NULL]

• Arg-Instrument: bomb

• Arg-Time: At daybreak on the 9th

• Arg-place: Nazareth

2.1.1 Open-Domain Event Extraction

Unlike closed-domain event extraction, open-domain event extraction does not need prede-

fined event schemas. Open-domain event extraction aims at detecting events and, in some

cases, clustering the detected events based on extracted event keywords. The event keywords

refer to the words/phrases mostly describing the event.

9

Sentence Event Components Values

At daybreak on the 9th, the
terrorists set off a truck bomb
attack in Nazareth.

Event Type Conflict-Attack
Trigger attack
Arg-Attacker the terrorists
Arg-Target NULL
Arg-Instrument bomb
Arg-Time at daybreak on the 9th

Arg-Place Nazareth

Baghdad, a cameraman died
when an American tank fired
on the Palestine Hotel.

Event Type Life-Die
Trigger die
Arg-Victim cameraman
Arg-Instrument American tank
Arg-Place Baghdad

Event Type Conflict-Attack
Trigger fired
Arg-Target Palestine hotel, cameraman
Arg-Instrument American tank
Arg-Place Baghdad

Table 2.2: Event extraction examples with their event types and argument roles.

The Topic Detection and Tracking (TDT) [Allan, 2012] public evaluation program aims at

automatically detecting unreported events or tracking the progress of the previously detected

events from the news texts. Besides events, the TDT also defines the story as some segment

of the news article that describes specific events. Furthermore, it defines a topic as a set

of events in articles that are strongly related to some real-world topic. Based on the above

definition, it defines the following tasks:

• Story Segmentation: Detecting the boundaries of a story from news articles.

• First Story Detection: Detecting the story that discusses a new topic in the stream

of news.

• Topic Detection: Grouping the stories based on the topics they discuss.

• Topic Tracking: Detecting stories that discuss a previously detected topic.

• Story Link Detection: Deciding whether a pair of stories discuss the same topic.

10

The first two tasks mainly focus on event detection, while the remaining three focus on

event clustering. The relations between the five tasks are clear. Each of them needs a specific

evaluation process and each task needs a specific method to address.

Linguistic Data Consortium (LDC)2 provides a series of corpora to support the research

in open-domain event extraction for the above TDT tasks, including TDT-1 to TDT-5.

These datasets include text and speech in English and Chinese [Allan et al., 1998; Allan,

2012]. Each TDT corpus contains millions of news stories with annotated topics collected

from various news sources like newswire and broadcast articles. The datasets present the

story-topic labels in a way that, if the story is exclusively discussing the topic, then it is

assigned an YES for the given topic. If the discussion of the given topic in the story is less

than 10%, then a BRIEF label is assigned. Otherwise, the default value NO is assigned for

the story for the given topic.

Besides using the TDT data provided and also TDT tasks defined above, many other

types of research have been conducted for detecting and clustering open-domain events from

news articles [Tanev et al., 2008; Piskorski et al., 2011; Ribeiro et al., 2017; Yu and Wu, 2018;

Liu et al., 2008]. For example, for global crisis monitoring by using online news articles,

the Joint Research Centre of the European Commission conducted research on extracting

violent events with violence-related keywords such as killed or kidnapped, with their designed

monitoring pipeline system [Tanev et al., 2008; Piskorski et al., 2011]. Liu et al. [2008]

conducted research to extract key entities on a specific day and track their trends within a

specific time window. Further, the news articles are clustered to generate significant daily

events about various topics such as entertainment, societies, sports, economics, and politics.

2.1.2 Closed-Domain Event Extraction

Closed-domain event extraction uses predefined event schemas in ACE05, such as exemplified

in Table 2.1, to discover and extract events of a particular type from texts. An event schema

2https://www.ldc.upenn.edu/

11

https://www.ldc.upenn.edu/

contains several event types and their corresponding event structures, i.e., event type to

arguments templates.

For the remaining discussion, we will focus on the closed-domain event extraction task.

2.2 Terminology

Many frontier technologies have been applied to the event extraction task such as: machine

learning, pattern matching, NLP techniques, and deep learning disciplines. Furthermore,

event extraction can help identify/extract structure information from massive text data,

which improves word/research timeliness and provides a way for quantitative analysis in

different domains. Hence, event extraction has broad applications in a variety of domains.

An event is a specific occurrence involving participants. When performing closed-domain

event extraction we follow the terminology defined in ACE (Automatic Content Extraction)

English Annotation Guidelines for Events.3

• Entity: The entity is an object or group of objects in a semantic category. Entities

mainly include people, organizations, places, times, and things. In Table 2.2, the words

the terrorists, bomb, Nazareth, Baghdad, cameraman, American tank, and Palestine Hotel,

are entities.

• Event mentions: The phrases or sentences describing the event contains a trigger

and corresponding arguments.

• Event Type: The event type describes the nature of the event and refers to the

category to which the event corresponds, usually represented by the type of the event

trigger. For example, in Table 2.2, attack triggers a Conflict-Attack event, die triggers

a Life-Die event, and fired triggers a Conflict-Attack event.

3https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.

4.3.pdf

12

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf

• Event Trigger: Event trigger refers to the core unit in event extraction, a verb or a

noun. Trigger identification is a key step in event extraction.

• Event Arguments: Event argument is the main attribute of events. The arguments

always belong to the corresponding event type. For example, in Table 2.2, the terrorists,

bomb, at daybreak on the 9th, and Nazareth are the event arguments belonging to the

event type Conflict-Attack.

• Argument Role: An argument role is a role played by an argument in an event, that

is, the relationship between the event arguments and the event triggers. Moreover,

the argument role that an event type can have is predefined in closed-domain event

extraction. For example, in Table 2.1, the event type Conflict-Attack has argument

roles like Attacker, Target, Instrument, Time, and Place. In a concrete example in

Table 2.2, Palestine hotel and cameraman serve as the targets, American tank serves as

the instrument, and Baghdad serves as the place for the Conflict-Attack event type.

2.3 Sub-tasks

Generally, the event extraction task includes four sub-tasks: trigger identification, trigger

classification, argument identification, and argument role classification. Trigger identification

and trigger classification combined can be classified as the event detection task [Liao et al.,

2021; Li et al., 2020b; Cao et al., 2021; Lin et al., 2019].

• Trigger Identification: Generally, the trigger is considered the core component in

event extraction that can represent an event’s occurrence. The trigger identification

sub-task is to identify the trigger words from the texts. For example, for the first

sentence in Table 2.2, attack is identified as the trigger for the first sentence. For the

second sentence, there are two event occurrences: die is identified as the first trigger,

and fired is identified as the second trigger.

13

• Trigger Classification: Trigger classification first needs to determine if an event

occurs according to the identified triggers. Moreover, if the sentence has events, we

must classify the event triggers to their corresponding event types. For example, in

Table 2.2, the sub-task targets to identify that attack and fired trigger a Conflict-Attack

event and that die triggers a Life-Die event. Thus, the trigger classification sub-task

can be modeled as a multi-class classification task.

• Argument Identification: Argument identification is to identify all the arguments

contained in the event text. Argument identification usually depends on the output

of the trigger identification and trigger classification tasks since the arguments are at-

tached to an event type identified by the previous two tasks. For example, in Table 2.2,

for Life-Die event, we want to identify the arguments cameraman, American Tank and

Baghdad.

• Argument Role Classification: Argument role classification is based on the argu-

ment categories in the predefined schema for a specific event type, and the category of

each argument is classified for each argument identified in the argument identification

step. For the extracted arguments in Table 2.2, this sub-task is to classify camera-

man as the victim, American tank as the instrument, and Baghdad as the place for the

Life-Die event type.

2.4 Event Extraction Corpora

The availability of labelled datasets for event extraction has become the driving force behind

the advancement of new technologies developed. In this section, we summarize the datasets

generated for event extraction tasks.

14

2.4.1 ACE: The Automatic Content Extraction

The ACE (Automatic Content Extraction) Multilingual Training Corpus4 provides anno-

tated data for different extraction tasks, including event, entity, time, value, and relation

extractions. Two individual annotators labelled every text sample, and a senior annotator

monitored their process and adjusted the discrepancies between them.

Events in the ACE dataset have complex event types and argument structures. The

ACE05 event corpus defined eight event types and thirty-three sub-types. Each event sub-

type corresponds to a set of predefined argument roles. There are thirty-six argument roles

for all event sub-types. Most of the research based on the ACE dataset only targets on

extracting the event sub-type independently, without considering extracting the event type

and sub-type in a hierarchical way. Table 2.10 provides all the eight event types along

with their corresponding sub-types. The ACE05 corpus provides a total of 599 annotated

documents and about 6000 labelled events across different languages, including English,

Arabic and Chinese, from different media sources such as newswire articles, broadcast news,

and broadcast conversation. Table 2.4 provides their source statistics.

Event
type
index

Event
types

Sub-type
index

Sub-types

1 Life 1-5 Be-Born, Marry, Divorce, Injury, Die
2 Movement 6 Transport
3 Contact 7-8 Meet, Phone-write
4 Conflict 9-10 Attack, Demonstrate
5 Business 11-14 Merge-org, Declare-bankruptcy, Start-org, End-org
6 Transaction 15-16 Transfer-money, Transfer-ownership
7 Personnel 17-20 Elect, Start-position, End-position, Nominate
8 Justice 21-33 Arrest-jail, Execute, Pardon, Release-parole, Fine, Con-

vict, Charge-indict, Trial-hearing, Acquit, Sentence,
Sue, Extradite, Appeal

Table 2.3: Event types and sub-types of the ACE05 dataset.

4https://catalog.ldc.upenn.edu/LDC2006T06

15

https://catalog.ldc.upenn.edu/LDC2006T06

Attack:1543

34.6%

Transport:721

16.2%

Die:598

13.4%

Meet:280

6.3%

End-Position:212

4.8%

Transfer-Money:198

4.4% Elect:183

4.1%
Injure:142

3.2%

Transfer-Ownership:1272.8%

Phone-Write:123

2.8%

Start-Position:118

2.6%

Trial-Hearing:109

2.4%

Charge-Indict:106

2.4%

Figure 2.1: Data distribution of the ACE05 dataset. It contains 33 event types, 13 of which
with an instance count (event mentions) more than 100, and are shown in the pie chart. The
other 20 event types, not shown in the pie chart, have less than 100 instances.

2.4.2 TAC KBP: Text Analysis Conference Knowledge Based Fill-

ing

Text Analysis Conference Knowledge Based Filling is known as TAC KBP. The goal of the

TAC KBP event tracking from 2015 to 2017 is to extract related information about an event

and fill it into a knowledge base. TAC KBP 20155 defines nine different event types and

thirty-eight event sub-types in English. TAC KBP 20166 and TAC KBP 20177 have the

annotation data in three different languages: English, Chinese, and Spanish. It contains

eight event types and eighteen event sub-types.

5https://tac.nist.gov/2015/KBP/data.html
6https://tac.nist.gov/2016/KBP/data.html
7https://tac.nist.gov/2017/KBP/data.html

16

https://tac.nist.gov/2015/KBP/data.html
https://tac.nist.gov/2016/KBP/data.html
https://tac.nist.gov/2017/KBP/data.html

Data Source
Language

English Chinese Arabic
Newswire (NW) 20% 40% 40%
Broadcast News (BN) 20% 40% 40%
Broadcast Conversation (BC) 15% 0% 0%
Weblog (WL) 15% 20% 20%
Usenet Newsgroups (UN) 15% 0% 0%
Conversational Telephone Speech (CTS) 15% 0% 0%

Table 2.4: Data sources with their statistics in the ACE05 dataset.

2.4.3 MAVEN: A Massive General Domain Event Detection Data-

set

The MAVEN dataset [Wang et al., 2020] is designed to solve two problems of the existing

event extraction datasets.

• Data Scarcity: Existing small-sized datasets are insufficient for training and stably

bench-marking increasingly sophisticated deep neural networks.

• Low Coverage of Event Types: Limited event types in the existing datasets hinder

the development of event extraction techniques for general domains.

Event detection (ED), which includes trigger identification and trigger classification de-

fined in Section 2.3, is an essential information extraction task. Its goal is to identify event

triggers (the words or phrases that evoke events) and classify the triggers into event types.

The MAVEN dataset focuses on the data used for event detection, and it does not include

the arguments or argument role labels.

An event is a specific occurrence involving participants. In MAVEN each event will

be labelled with an event type. An event mention is a phrase or sentence describing the

event containing a trigger and its corresponding arguments. Since the same event may be

mentioned several times in the same sentence, there are generally more event mentions than

events. An event trigger is the key word or phrase in an event mention that most clearly

explains the event occurrence. MAVEN contains 111,611 events and 118,732 event mentions

17

Dataset #Docu-
ments

#Tokens #Sen-
tences

#Event
Types

#Events #Event
Mentions

ACE05 599 303K 15,789 33 4,090 5,349
TAC KBP
2015

360 238K 11,535 38 7,460 12,976

TAC KBP
2016

169 109K 5,295 18 3,191 4,155

TAC KBP
2017

167 99K 4,839 18 2,963 4,375

Total
TAC KBP

696 446K 21,669 38 13,614 21,506

MAVEN 4,480 1,276K 49,873 168 111,611 118,732

Table 2.5: Statistics of documents, tokens, sentences, event types, events, and event mentions
in the MAVEN dataset, compared to other widely-used event detection datasets. The number
of event types shows the most fine-grained event types, i.e., the sub-types used in the ACE05
and TAC KBP datasets. For the multi-lingual datasets like TAC KBP 2016 and TAC KBP
2017, we only report the statistics of the English subset for direct comparisons with MAVEN.

compared to the widely used ACE05 dataset, which has 4090 events and 5349 event mentions.

MAVEN is 20 times larger than ACE05 in this sense. Furthermore, MAVEN covers 168 event

types, five times larger than ACE05’s 33 event types. The details of the data size comparison

between MAVEN and other datasets is in Table 2.5.

MAVEN has a large amount of event types, i.e., 168. MAVEN has 41% and 82% event

types having more than 500 and 100 instances, respectively, as seen in Figure 2.2. The

ACE05 dataset, in comparison, only has 39% of the event types with more than 100 in-

stances, as shown in Figure 2.1. MAVEN significantly alleviates the data scarcity problem,

which will help develop more robust event detection models. The event types mainly use

FrameNet [Baker et al., 1998], primarily a linguistic resource constructed by linguistic ex-

perts, as an event type source. FrameNet prioritizes lexicographic and linguistic completeness

over the easiness of annotation [Aguilar et al., 2014]. A frame in FrameNet is defined as a

composition of frame name, a set of Frame Elements (FEs) and a list of Lexical Units (LUs).

A LU is a word or phrase that evokes the corresponding frame. FEs indicate the set of se-

mantic roles associated with the frame. In order to facilitate a large number of annotators in

18

the crowd-sourcing environment, MAVEN ends up getting the 168 event types by perform-

ing the following steps. First, it recursively selects the frames having inheritance, subframe

or using relations with the event frame as in Li et al. [2019]. Secondly, a manual step is

conducted to further filter out abstracted frames like process resume. Furthermore, a merge

of similar frames and assemble too fine-grained frames into more generalized frames step is

conducted. As an example, choosing and adopt selection can be merged, and visitor arrival

and drop in on can be assembled into a more general one as arriving. Based on the FrameNet

inheritance relation, the final 168 event types can be organized into a tree-structured event

type hierarchy. During the annotations, the annotator are asked to label with the most fine-

grained event types like theft and robbery. The coarse-grained types like committing crime are

only used if the events have no fine-grained event types. In Figure 2.3, a hierarchical event

type tree rooted from the coarse-grained change is shown. The extensive coverage of event

types and complicated structured information from the event types tree can be leveraged by

advanced event detection method development.

Figure 2.2: Distribution of MAVEN event types by their corresponding instance num-
bers. [Wang et al., 2020]

MAVEN follows a simple intuition that the articles describing grand “topic events” may

contain much more basic events than the articles about specific entity definitions. MAVEN

adopts EventWiki [Ge et al., 2018], a knowledge base for major events, where each major

event is described in a Wikipedia article. MAVEN uses the EventWiki articles as the base

19

Figure 2.3: The hierarchical event types used in MAVEN, rooted from the coarse-grained
event type change.

and manually selects some articles to be labelled with the 168 event types described above.

To choose the high quality articles, MAVEN performs pre-processing, such as (1) filtering

out the articles with fewer than five sentences, and (2) only using the introductory sections

to be annotated, following the same settings used in Yao et al. [2019]. EventWiki comes

with the topic information of the documents, so the MAVEN dataset also comes with the

document topics. Table 2.6 shows the statistics of MAVEN documents for top EventWiki

topics. In this way, MAVEN can facilitate the advances in developing methods for event

detection in a more general domain by leveraging external information like topics of the

20

documents where the events reside. For example, we use the topic information to conduct

research in topic-aware event detection in Chapter 4, where we use the topic information as

prior knowledge to enrich sentences with contextual representations in a multi-task set-up

of deep neural network.

Topic #Documents Percentage
Military conflict 1,458 32.5%
Hurricane 480 10.7%
Civilian attack 287 6.4%
Concert tour 255 5.7%
Music festival 170 3.8%
Total 2,650 59.2%

Table 2.6: Document counts and percentages of the top five EventWiki topics in MAVEN.

2.4.4 RAMS: Roles Across Multiple Sentences

The argument linking task is defined as linking all the argument role mentions to the ar-

gument role. The Roles Across Multiple Sentences (RAMS) dataset [Ebner et al., 2020] is

mainly created for the argument linking task since the existing datasets for cross-sentence

role argument linking are small and cannot support developing complicated neural models.

Argument linking aims at identifying event arguments of a given event type across multi-

ple sentences. RAMS contains 3,194 documents, 9,124 annotated events across 139 event

types and 65 argument roles, shown in Table 2.7. The broad coverage and diversity of the

event types is the reason we choose RAMS as our experiment dataset in topic-aware event

detection in Chapter 4.

Train Dev Test Total
Documents 3,194 399 400 3,993
Event Instances 7,329 924 871 9,124
Event Types 139 131 – 139
Roles 65 62 – 65
Arguments 17,026 2,188 2,023 21,237

Table 2.7: RAMS statistics of documents, examples, event types, roles, and arguments.

21

2.4.5 Other Domain-Specific Corpora

In addition to the aforementioned well-known corpora, some domain-specific event corpora

are also released. The BioNLP Shared Task8 is an initiative that aims at extracting fine-

grained biomolecular event from biomedical related scientific documents [Bossy et al., 2013].

Teams participating in the BioNLP Shared Task initiative compiled various manually anno-

tated biological corpora, including the GENIA event corpus, the BioInfer event corpus, the

Gene regulation event corpus, and the GeneReg event corpus [Nédellec et al., 2013; Vanegas

et al., 2015]. GNBusiness [Liu et al., 2019] collects news reports from Google Business News

describing each event type from different sources. The GNBusiness dataset contains 55,618

articles collected from Oct 2018 to Jan 2019. Time and Event Recognition for Question

Answering Systems (TERQAS) workshop9 built a corpus called TimeBANK. TimeBANK

is annotated with events, times, and temporal relations from various of media sources for

breaking news event extraction. The Chinese Event Corpus (CEC) also annotates breaking

news events in Chinese [Meng, 2015]. The MUC series of corpora contain the domain-specific

events in military intelligence, terrorist attack, chip technology, and finance [Sundheim and

Chinchor, 1993; Hirschman, 1998]. There are also event extraction data for the music do-

main, introduced in Ding et al. [2011].

2.5 Formulating Event Extraction Sub-tasks as Differ-

ent Machine Learning Tasks

2.5.1 Formulating EE as a Classification Based Task

The event extraction task can be modeled as a token-level classification task that directly

maps a token to an event type or argument role corresponding to the detected event types as

shown in Figure 2.4. Given n predefined event types ei, i ∈ {1, . . . , n}, and an event mention

8https://sites.google.com/site/bionlpst/
9https://slideplayer.com/slide/6426164/

22

https://sites.google.com/site/bionlpst/
https://slideplayer.com/slide/6426164/

m, the model needs to output a result vector T , where Ti represents the probability that m

belongs to event type i. After obtaining the final event type ek of m, the model outputs a

matrix R, where Rij is the probability that the token ai belongs to the jth argument role

for event type ek.

Figure 2.4: Classification based task.

2.5.2 Formulating EE as a Sequence Labelling Based Task

The simple classifier layer from hidden representations to tags sequence doesn’t consider

the sequence nature of the tags. As a result, only using a linear layer to output the tags

does not consider the coherency of tags during prediction. The BIOE schema is adopted for

sequence labeling based event extraction solutions. Here, the tags “B” or “E” indicate the

corresponding word is the beginning or ending of an entity, respectively; “I” indicates the

word is inside an entity, and “O” indicates the word is outside any entities. For example,

given the tags B, I,O,E, the model may predict a mis-aligned tag sequence like BOIE,

leading to an incoherently extracted entity. In order to alleviate this problem, we use the

Conditional Random Fields (CRF) to consider the sequence nature of the tags and capture

the dependency between the output tags.

The CRF is described as the following. Given an input sequence x = x1, x2, . . . , xn and

its corresponding label sequence y = y1, y2, . . . , yn, the conditional probability of y given x

23

for general CRF can be written as

Pr(y|x; Φ) ∝ exp

(
K∑
k=1

ϕkfk(y, x)

)
, (2.1)

where fk(y, x) is the feature function, ϕk is the corresponding weights to be learned, and K is

the number of features. The graphical structure of Equation (2.1) is shown in Figure 2.5. In

our sequence tagging task, a linear-chain CRF is usually adopted, which means the feature

functions only depend on the neighboring tags yt, yt−1, xt at time step t, as shown in

Figure 2.6. In this way, we can re-write the above equation as:

Pr(y|x; Φ) ∝
T∑
t=1

exp

(
K∑
k=1

ϕkfk(yt−1, yt, xt)

)
, (2.2)

where T is the length of the tag sequence. The graphical structure of Equation (2.2) is shown

in Figure 2.6.

Figure 2.5: Graphical structure of the general CRF.

Event extraction sub-tasks trigger classification and argument role classification can be

modeled as token-level multi-classification task [Chen et al., 2020a; Gui et al., 2020; Ramponi

et al., 2020] using BIOE or BIE schema as its output. Using the output tag like BIOE is

different from directly predicting each token on the event types, since, generally, the decoder

process of generating BIOE uses the benefit of CRF [Lafferty et al., 2001]. CRF takes

24

Figure 2.6: Graphical structure of the linear-chain CRF.

advantage of the label dependencies. For example, the probability of I following B will

be larger than the probability of I following E. In this way, the sequence labelling method

marks out the target value from the texts, which is suitable for event extraction. As shown

in Figure 2.7, for the die event, given a sequence of tokens in the text (x1, x2, . . . , xn), the

tags output (y1, y2, . . . , yn) of the sequence labelling model tag all the tokens in the text. As

shown in Figure 2.7, from the tags output “B-Place O O B-Victim O O O B-Instrument E-

Instrument,” we can decode that, the place for the event is Baghdad, the victim is cameraman,

and the instrument is American tank for the die event. The example is shown for argument

role classification with a given event trigger. For the event trigger classification task, a

similar sequence labelling method can be applied.

Figure 2.7: Sequence labelling based task.

25

2.5.3 Formulating EE as a Question Answering Based Task

The machine reading comprehension model [Guo et al., 2020; Chen et al., 2021] can under-

stand text in natural language and answer questions about it [Yuan et al., 2021; Du and

Cardie, 2020]. For the trigger detection and classification task, we can use the question tem-

plates like what is the trigger, trigger, action, and verb. After obtaining the trigger phrases, we

embed the information in the argument roles detection and classification tasks corresponding

to the event trigger by using the trigger information in the argument role question. This

can leverage the dependencies information between event types and argument roles. The

argument roles question is defined by considering the predefined event type and its argu-

ment roles templates. For example, the Declare-Bankruptcy event has two argument roles:

Org and Place. For the Org role, the question can be like “ What declare bankruptcy?” For

the Place role, the question can be like “Where the event takes place?” To summarize, we

have a fixed set of questions Qe for the triggers, and for each event type, we have a set of

questions defined for its role arguments like Qer. The designed questions are applied to the

QA model [Du and Cardie, 2020]. Figure 2.8 shows an example of extracting argument roles

for a die event using question answering model. In Du and Cardie [2020], the output layers

of event trigger and argument role classification defers. For trigger classification, the output

layer predicts the event type for each token in the sentence (or None if there is no event

trigger). For argument role classification, the output layer predicts the start and end offsets

for the argument span.

2.5.4 Formulating EE as a Sequence-to-Structure Generation Based

Task

The sequence-to-structure generation based event extraction method [Lu et al., 2021] extracts

triggers and arguments in an end-to-end fashion in Figure 2.9. It uniformly models all trigger

detection, trigger classification, argument detection, and argument classification in a single

26

Figure 2.8: Question answering based task.

model by adopting encoder-decoder models [Vaswani et al., 2017]. The encoder-decoder

structure is an easy way to convert text to a structured form. The encoder maps an input

sequence of symbol representation (x1, . . . , xn) to a sequence of continuous representations

z = (z1, . . . , zn). Given z, the decoder then generates an output sequence (y1, . . . , ym)

of symbols one element at a time. At each step, the model is auto-regressive, where it

consumes previously generated symbols as additional input when generating the next one.

The straight-forward solution is to use greedy decoding, which selects the token with the

highest probability at the decoding step. Nevertheless, greedy decoding can not guarantee

the generation of valid event structures. On the other hand, greedy decoding ignores the

useful event schema knowledge. To leverage the event schema knowledge, Lu et al. [2021]

propose a trie-based constrained decoding algorithm for event extraction [Chen et al., 2020b;

De Cao et al., 2021].

27

Figure 2.9: Sequence-to-structure generation based task.

2.6 Event Extraction Paradigms

2.6.1 Pipeline-based Versus Joint-based Event Extraction

Pipeline-based Event Extraction Paradigm

The pipeline-based method treats all sub-tasks as independent classification problems. The

pipeline-based approach is widely used since it simplifies the entire event extraction task.

The pipeline-based method converts event extraction into a multi-stage classification process.

Two classifiers are required for the process: the trigger classifier and the the argument role

classifier. The trigger classifier identifies the event trigger and classifies its event type. The

argument role classifier identifies the argument for a specific event type and classifies the

argument into a specific argument role.

The pipeline-based method will first perform trigger classification, and then use the

detected triggers as features for the argument role classification. The most significant defect

of the pipeline-based method is error propagation through trigger classification to argument

role classification. The pipeline-based method uses the trigger classification output as the

input for argument role classification. Thus, if there is an error in trigger classification in the

28

first step, the accuracy of argument role classification will be lowered. Therefore, the pipeline-

based event extraction method considers trigger classification as its core task. Furthermore,

the trigger classification task always precedes the argument role classification task in the

pipeline-based setting. The information learned from the argument role classification can’t

effectively help the trigger classification task. Thus, there is a missing mutual interaction

between trigger classification and argument role classification in the pipeline-based methods.

Joint-based Event Extraction Paradigm

In order to overcome the shortcomings of the pipeline-based method, the joint extraction of

triggers and arguments role method has been explored. With the joint-based event extraction

method, event triggers and arguments can be extracted simultaneously, compared to the

pipeline-based method where trigger classification must be conducted before the argument

role classification. In this way, the trigger classification and argument role classification

can mutually promote each other’s extraction effect. Some of the joint extraction researches

have proven that the joint learning method can be better than the pipeline-based method. A

classic example is joint event extraction via recurrent neural networks [Nguyen et al., 2016].

2.6.2 Sentence-Level Versus Document-Level Event Extraction

Sentence-Level Event Extraction

Sentence-level event extraction aims at extracting events and their corresponding arguments

within single sentences. Most of the research work are sentence-level event extraction based.

Document-Level Event Extraction

Document-level event extraction aims at extracting events across multiple sentences in an

article. Compared to sentence-level event extraction, two extra challenges are present. The

first challenge is arguments scattering, where arguments of one event might be scattered into

different sentences in the document, which means an single event cannot be extracted within

29

one sentence. Thus, document global information needs to be learned. Furthermore, at

the document level, the locations of event triggers and their corresponding event arguments

tend to be further apart, which increases the difficulty in modeling their dependencies. The

second challenge involves multiple events, where the chance of one document simultaneously

containing multiple events is bigger than that of the one-sentence scenario. This requires

holistic modeling of the inter-dependencies among multiple events.

2.7 Event Extraction Models

The development of event extraction methods went through three revolutions: (1) event

extraction based on pattern matching; (2) event extraction based on traditional machine

learning methods; and (3) event extraction based on deep learning methods. Pattern match-

ing methods need acquisition of extraction patterns for different domains. high performance

can be achieved in a specific field with pattern matching methods. With traditional machine

learning methods, using the labelled corpus in specific domains, the model can be portable

and domain agnostic, compared to the pattern matching methods. For pattern matching,

specific event patterns need to be constructed for each new domain. However, it still requires

us to manually select features and design the classifiers. With deep learning models, it can

automatically extract useful features from the texts without the need for in-depth features

design required by complex semantic relations in event extraction tasks like traditional ma-

chine learning methods do. We summarize the advantages and disadvantages of each type

of methods in Table 2.8.

2.7.1 Event Extraction Based on Pattern Matching

The earlier approaches for event extraction are pattern matching techniques. These ap-

proaches first need to construct event pattern templates, and then perform pattern match-

ing to extract events and arguments. Event pattern templates can be generated from lin-

30

Pattern Matching Traditional Ma-
chine Learning

Deep Learning

Concept Based on a certain pat-
tern, the text to be ex-
tracted needs to match the
event patterns

The event extrac-
tion problem is
transferred to a
classification task

The event extraction
problem is transferred to
a classification task

Advantage High performance can be
achieved in a specific do-
main by using event pat-
terns

Domain-agnostic,
portable

Automatic feature selec-
tion, domain-agnostic,
portable, can leverage the
knowledge in large scale
pre-trained model

Disadvantage Poor portability and flexi-
bility, new event patterns
need to be designed for
new domain

Needs labelled
corpus

Needs labelled corpus on a
larger scale

Main Idea Acquisition of event pat-
terns and matched by the
text that events are ex-
tracted from

Select features and
design classifier

Automatic feature selec-
tions from the neural net-
works with corresponding
classifier on top

Table 2.8: Comparison of advantages and disadvantages for pattern matching, traditional
machine learning, and deep learning methods.

guistic patterns compiled by the linguistic/domain experts along with manually annotated

events [Riloff, 1993].

The first pattern-based extraction system dates back to AutoSlog [Riloff, 1993], a domain-

specific event extraction system for terrorist events. AutoSlog exploited a small set of linguis-

tic patterns, shown in Table 2.9, and manually labelled the corpora to obtain event patterns.

The linguistic patterns and event patterns are different concepts in AutoSlog. Linguistic

patterns, along with the annotated events, are used to generate event patterns. Event pat-

terns are used to perform pattern matching/event extraction. By the design of AutoSlog, it

can only extract one argument for one event, so the event corpus is also annotated in that

way.

Event Pattern Construction

The event pattern is constructed by using linguistic patterns and annotated event. As an

example, given the following sentence:

31

Index Linguistic Pattern Event Pattern Example
1 〈subject〉 passive-verb 〈victim〉 was murdered
2 〈subject〉 active-verb 〈perpetrator〉 was bombed
3 〈subject〉 verb infinitive 〈perpetrator〉 attempted to kill
4 〈subject〉 auxiliary noun 〈victim〉 was victim
5 passive-verb 〈dobj〉 killed 〈victim〉
6 active-verb 〈dobj〉 bombed 〈target〉
7 infinitive 〈dobj〉 to kill 〈victim〉
8 verb infinitive 〈dobj〉 threatened to attack 〈target〉
9 gerund 〈dobj〉 killing 〈victim〉
10 noun auxiliary 〈dobj〉 fatality was 〈victim〉
11 noun prep 〈np〉 bomb against 〈target〉
12 active-verb 〈np〉 killed with 〈instrument〉
13 passive-verb 〈np〉 was aimed at 〈target〉

Table 2.9: Thirteen linguistic patterns with examples.

In La Oroya, Junin department, in the central Peruvian mountain range, public

buildings were bombed and a car-bomb was detonated.

AutoSlog first employs a syntactic analyzer to identify the part of speech (POS) (such as

what tokens in the sentence are subjects, predicates, objects, prepositions) of each sentence

in the manually labelled corpora. In the sentence, the phrase public buildings is identified

as the subject, and bombed is identified as the passive verb, a case that matches Linguistic

Pattern 1 in Table 2.9. As a result, AutoSlog will add bombed into the trigger word dictionary

and generate a pattern “〈target〉 was bombed” with bombing being the event type and public

buildings being its target.

Event Pattern Matching

In the process of pattern matching for event extraction, AutoSlog first uses the trigger word

dictionary to locate candidate event sentences, and then performs POS tagging on the candi-

date event sentence. Further, AutoSlog associates the POS tagging features surrounding the

detected trigger from the vocabulary to extract the argument and the role of the argument.

As an example, given the sentence:

32

They took 2-year-old Gilberto Molasco, son of Patricio Rodriguez.

The pre-constructed pattern, “took 〈victim〉” with the kidnapping event type, locates the

trigger word took in the above candidate sentence. From the POS tagging, AutoSlog identifies

that Gilberto Molasco is a dobj (direct object). By combining the predefined event pattern

and the POS tagging results, AutoSlog can extract an event of the kidnapping event type

with its trigger word being took and its victim argument being Gilberto Molasco.

It could be pretty expensive for event patterns learned from annotated data to label all

the patterns with expert knowledge. In an extension to AutoSlog, Riloff and Shoen [1995]

proposed to obtain new event patterns from un-annotated corpora along with the thirteen

linguistic patterns.

2.7.2 Event Extraction Based on Traditional Machine Learning

Models

Event extraction can be modeled as a classification task and traditional classification methods

like Support Vector Machines (SVM) and Näıve Bayes can be used [Saha et al., 2011; Wu

et al., 2013]. The basic ideas behind machine learning approaches are mostly the same, that

is to learn a classifier model from the training data and apply the learned classifiers to event

extraction tasks on the new text. The difference between traditional machine learning models

or neural network models (so-called deep learning) is that deep learning can automatically

learn the features, while traditional machine learning algorithms need feature engineering.

Feature engineering includes extracting features from texts as input and choosing what

features are important for specific tasks. The widely used text features can be generally

divided into three types: lexical features, syntactic features, and semantic features. All of

those features can be obtained by applying some open-source NLP tools.

• Lexical features refer to information about the words, meaning and structure. Com-

monly used lexical features include: (1) upper case, lower case, or capitalization of

33

words; (2) lemmatized words, for which their root forms are used (e.g., the word desks

is an inflected form of desk); and (3) POS tags: categorizing words in a text in corre-

spondence with a particular part of speech, depending on the word’s definition and its

context, such as nouns, verbs, adjectives, or adverbs.

• Syntactic features refer to the structure of the text and the syntactic rules such as

how words make up phrases and how phrases make up sentences.

The syntactic features are usually obtained from dependency parsing, which analyzes

the grammatical structure of a sentence based on the dependencies between the words

in a sentence. Dependency parsing creates edges between words representing different

types of relations and organizes them as a tree structure. Commonly used syntactic

features include: (1) the label of the dependency path; (2) the dependency word and

its lexical features; and (3) the depth of the word in the dependency parsing tree.

• Semantic features refer to the meaning of the text, as it is constructed from the

meaning of the words and their compositions.

Some commonly used semantic features for event extraction include: (1) synonyms of

the word; and (2) event type and event trigger features that can be used in argument

classification task.

After the features have been extracted from the text, feature engineering needs to be

applied in order to choose the most important features. Further, the feature engineering

needs to figure out how to combine the selected features in a high dimensional vector space

to represent each word in the sentence. Finally, the chosen text features along with the event

related labels will be used to train a traditional machine learning models.

34

2.7.3 Event Extraction Based on Deep Learning Models

CNN-based Models

We will use one of the CNN based event extraction works, DMCNN [Chen et al., 2015], as

a representative example. Traditional approaches for ACE event extraction tasks primary

rely on manually designed elaborated natural language processing (NLP) features and com-

plicated NLP tools to extract the features. However, these traditional approaches lack the

generalization ability, need much human effort to design the features, and are not robust

against data sparsity problems. DMCNN aims at automatically extracting lexical-level and

sentence-level features without using manually defined NLP features or complicated NLP

rules. DMCNN introduces a word representation model to capture semantic similarities be-

tween words. In order to capture sentence-level features, DMCNN adopts a framework based

on Convolutional Neural Networks (CNN).

In most NLP tasks, deep learning models operate on a word embedding, which is a term

used for the representation of words for text analysis, typically in the form of a real-valued

vector that encodes the meaning of the word such that the words that are closer in the

vector space are expected to be similar in meaning. Convolutions of kernel size n on word

embeddings will learn to emphasize or disregard n-grams in the input. The CNN, with max-

pooling layers, is an excellent way to capture the semantics between long-distance words in

a sentence [Collobert et al., 2011].

The highlights of DMCNN are twofold:

• DMCNN automatically induces lexical-level features by using a word embedding repre-

sentation learning, and sentence-level features by using a CNN based feature extractor

without using human manually defined NLP features and complicated NLP tools to

extract those features.

• However, the CNN can only capture sentence-level clues. DMCNN uses a dynamic

multi-pooling layer determined by the triggers and arguments in order to store more

35

critical information for triggers and arguments.

Figure 2.10: A simplified architecture of CNN-based event extraction. The process of feature
extraction with event trigger fired and the corresponding argument cameraman is illustrated.

Figure 2.10 shows a simplified version of using word embedding representations and a

dynamic multi-pooling CNN as a feature extractor for event extraction. The word representa-

tion layers can be obtained using a pre-trained embedding from the Skip-gram model [Tomas

et al., 2013]. The convolutional layer convolves semantic relationships between h-grams by

using a kernel of size h×d where d is the embedding dimension for the word, and compresses

this valuable semantic information into feature maps. A kernel filter is a vector w ∈ Rh×d

that can be applied to a sequence of words with window size h to generate a new feature ci

as:

ci = φ(w · xi:i+h−1 + b), (2.3)

where b ∈ R is a bias term, φ is a non-linear function, and the notion xi:i+h refers to

the concatenation of words xi, xi+1, . . . , xi+h. This kernel filter is applied to each possible

window of words in the sentence x1:h, x2:h+1, . . . , xn−h+1:n, producing a feature map ci where

36

i ranges from 1 to n−h+ 1. This feature map calculation for one feature can be generalized

to multiple features by using multiple kernel filters. Assuming we have m kernel filters,

W = (w1, w2, .., wm), then the convolutional operations can be applied for each kernel filter

wj, where j ranges from 1 to m. Formally, the equation for computing the feature map for

feature cji is:

cji = φ(wj · xi:i+h−1 + bj). (2.4)

The result of the convolutional computations is a matrix C ∈ Rm×(n−h+1).

Taking Figure 2.10 as an example for illustration purposes, the size of the embedding

is three. The feature map calculation uses 3 kernels with kernel size 3 × 3 to convolve (an

illustration of the process is shown in Figure 2.11), which can gather the 3-grams information

(taking h = 3 in the Skip-gram model [Tomas et al., 2013]) from the text input. Then the

dynamic multi-pooling layer is applied based on the separation boundary of the event trigger

and its corresponding argument. The feature extracted from each kernel is then concatenated

to form the last hidden features presented to the classification layer.

Figure 2.11: An illustration example of using CNN kernels to convolve n-grams (n = 3).

37

RNN-based Models

We will use one of the Recurrent Neural Networks (RNNs) based event extraction works

joint event extraction via recurrent neural networks [Nguyen et al., 2016] as a representative

example. Deep Neural Networks (DNNs) have revolutionized different tasks in Natural

Language Processing. CNNs and RNNs, the most used two main types of DNNs, are widely

explored to tackle different NLP tasks. RNNs are good at modeling units in sequence, while

CNNs are good at extracting position-invariant features. The state-of-the-art solutions for

many NLP tasks often switch between CNNs and RNNs [Yin et al., 2017]. The state-

of-the-art models for the event extraction problem either followed the joint architecture via

structured predictions with rich global and local features [Li et al., 2013], or used a CNN in a

pipeline paradigm to extract event triggers first, then argument roles for each detected event

trigger. The former can mitigate the error propagation problem that comes along with the

pipeline-based approach and explore the inter-dependencies of event trigger and argument

roles via joint training paradigm. The latter, on the other hand, can automatically extract

lexical-level and sentence-level features through word representation layers along with the

CNN feature extractor.

Unlike the above work, JRNN proposes a way to jointly extract event triggers and argu-

ment roles with automatically extracted features, benefiting from the advantages of the two

models introduced above.

The highlights of JRNN are twofold:

• JRNN proposes a joint model to do event extraction based on bidirectional RNN to

overcome the limitation of previous work.

• JRNN introduces the memory matrix that can effectively help capture the dependency

between event triggers and arguments roles.

Figure 2.12 shows a simplified version of using word representations and a bidirectional

RNN architecture to do event trigger and event argument role classification jointly. Let

38

Figure 2.12: A simplified architecture of RNN based event extraction for the input sentence
A cameraman died when an American tank fired on the Palestine Hotel.

X = (x1, x2, . . . , xn) be the input sequence. At each time step i, we compute the hidden

vector yi based on the input vector xi and the previous time step (i−1)’s hidden vector, using

a non-linear transformation function φ: yi = φ(xi, yi−1). The above recurrent computation

is done for each time step i in the input X. A sequence of hidden vectors (y1, y2, . . . , yn)

is generated as the output. From the above explanation, we can see that RNN inductively

accumulates the context information of the input text from time step 1 to time step i into the

hidden vector yi. This makes yi a rich representation carrying all information till time step i.

However, yi might not be rich enough to do trigger and argument role classification for a token

at time step i, since such predictions might also rely on information from the future (time

step (i+ 1) to time step n). In order to solve this issue, a bidirectional RNN is introduced.

We can run another sequence of recurrent computation in a reverse direction from xn to x1 to

generate a second sequence of hidden vectors as: (y′1, y
′
2, . . . , y

′
n). Eventually, we can obtain

a complete sequence of hidden representations as (h1, h2, . . . , hn), where hi = [yi, y
′
i], and

39

the [a, b] notation here means the concatenation of a and b. In this way, hi encapsulates the

context information from token 1 to token n over the whole sentence with a focus on time

step i. As shown in Figure 2.12, the hidden representation of token i is fed into the classifier

layer to do trigger classification. A concatenation of token i’s representation and event

trigger’s representation is fed into a classifier layer for argument role classification. Since the

argument role classification has a dependency on event trigger classification results.

Introduction to Transformer

A Transformer is a deep learning model architecture introduced in attention is all you

need [Vaswani et al., 2017]. The Transformer is the first model relying entirely on self-

attention to compute representations of its input and output without using sequence aligned

RNN or convolution.

An attention can be viewed as function that maps a query and a set of key-value pairs to

an output, where the query, keys, values and output are all vectors. The output is calculated

as a weighted sum of the values, where the weight assigned to each value is computed by a

function operated on query with the corresponding key.

A particular attention type “Scaled Dot-Product Attention”, is shown in Figure 2.13.

The input consists of queries and keys of dimension dv, and values of dimension dv. A dot

products of the query with all keys, divided by
√
dv, followed by softmax operation is applied

to obtain the weights for the values.

In practice, a set of queries can be packed together into a matrix Q with dimension

w × dv, where w is the number of the words in the sequence and dv is the dimension of the

hidden vector for each word. In this way, we can compute the attention function on a set of

queries simultaneously. The keys and values are also packed together into matrices K with

dimension w× dv and V with dimension w× dv. The output with dimension w× dv can be

computed as,

Attention(Q,K, V) = softmax(
QKT

√
dv

)V, (2.5)

40

where QKT has dimension w × w, and softmax is applied on each row of QKT .

Figure 2.13: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel [Vaswani et al., 2017]

Instead of performing a single function with keys, values and queries. It is found ben-

eficial to linearly project the queries, keys and values h times with different learned linear

projections. Each linear projection might represent a particular feature. For example, one

projection can learn longer-distance tokens dependencies while another projection can learn

shorter-distance tokens dependencies. On each of these projected versions of queries, keys

and values, the attention can be applied in parallel, yielding a w × dv dimensional output

value. These output values are concatenated yielding a w×dv×h dimensional output value,

where h is the number of heads. The concatenated output value is once again projected,

resulting in the final values, again yielding a w× dv dimensional output value as depicted in

Figure 2.13.

The encoder is composed of a stack of six identical layers as shown in 2.14. Each layer

has two sub-layers. the first is a multi-head self-attention layer, and the second is a fully

connected feed-forward network. A residual connection [He et al., 2016] is employed on each

of the two sub-layers, followed by a layer normalization [Ba et al., 2016].

The decoder is composed of a stack of six identical layers as shown in 2.14. In addition to

the two sub-layers in each encoder layer, the encoder introduces a third sub-layer. The third

41

Figure 2.14: The Transformer model architecture [Vaswani et al., 2017].

sub-layer performs multi-head attention over the output of the encoder stack. Similar to the

encoder, residual connections are applied on each sub-layer, followed by a layer normalization.

The masked self-attention sub-layer in the decoder stack is modified to prevent positions from

attending to the subsequent positions.

Introduction to BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers, is de-

signed to pre-train deep bidirectional representations from unlabelled text by jointly condi-

tioning on both left and right context in all layers [Devlin et al., 2019]. There are two steps

in the BERT framework, pre-training and fine-tuning, as shown in Figure 2.15. During the

process of pre-training, the model is being trained in an unsupervised way with different pre-

42

training tasks. During fine-tuning, the BERT model is first initialized with the pre-trained

parameters, and all of the parameters are tuned with the labelled data for the targeted tasks.

Figure 2.15: Illustration of the BERT training framework which includes two steps: pre-
training and fine-tuning [Devlin et al., 2019].

BERT’s model architecture is a multi-layer bidirectional transformer encoder based on

the original implementation in Vaswani et al. [2017]. Using L to denote the number of layers

(i.e., transformer block), H to denote the size of the layers, A to denote the number of self-

attention heads. For the BERT base model we used in our work, L = 12, H = 768, A = 12

and the number of total parameters is 110M.

BERT is pre-trained on two different tasks. The first pre-trained task is a Masked

Language Model (MLM). It is different from the standard conditional language models, which

can only be trained from left-to-right or right-to-left. In order to train a deep bidirectional

representation, the model simply mask some percentage of the input token at random and

then predicts the masked tokens. The final hidden presentation of the masked token is fed

into an output softmax over the vocab, which is the same as the standard language model.

The second pre-trained task is Next Sentence Prediction (NSP). This pre-training task

is needed since the idea of BERT is to use the pre-trained language model to be fine-tuned

on all kinds of different downstream tasks. Furthermore, several very critical downstream

43

tasks like Question Answering (QA) and Natural Language Inference (NLI) are based on un-

derstanding the relationship of two sentences. This relationship information is not directly

captured by the language model. The pre-trained task is given two sentences A and B, we

need to determine if B is the following sentence of A. In the pre-training dataset, 50% of

the time, B is actually the next sentence of A. A special token [CLS] is introduced. The

first token of every sequence is always a special classification token [CLS]. And the final

hidden state corresponding to the token is used as the aggregate sequence representation for

the classification task. The Next Sentence Prediction task fed the [CLS] hidden state to a

classification layer. In this way, the [CLS] token is pre-traiend in a way that hidden repre-

sentation of [CLS] token can capture the semantics of the entire sequence. As in our work,

we used the [CLS] token representation of the topic sequence as our topic representation.

Transformer-based Models

We will use one of the transformer-based event extraction work, PLMEE (Pre-trained Lan-

guage Models for Event Extraction) [Yang et al., 2019], as a representative example. PLMEE

uses BERT [Devlin et al., 2019] as the features encoder. Starting from BERT, in the NLP

domain, the pre-trained model on large scale dataset then fine-tuned on smaller downstream

task dataset with extra layer is widely adopted. While the pre-training process is capable of

capturing the meaning of words in consideration of their context, the fine-tuning process with

extra layers can further adapt the network to the specific downstream tasks requirement.

The highlights of PLMEE on event extraction are twofold:

• PLMEE used pre-trained language model BERT as the text encoder that captures the

contextual information of the tokens.

• PLMEE fine-tuned the pre-trained BERT on two downstream tasks: trigger classifica-

tion and argument role classification, with special consideration of the role overlapping

problem.

44

Figure 2.16: Illustration of the PLMEE architecture, including trigger classification and
argument role extraction. The trigger classification and argument role extraction tasks are
trained separately with the trigger tokens as the input to the argument classification [Yang
et al., 2019].

PLMEE models the trigger classification and argument role classification separately. For

trigger classification, the input texts are embedded by BERT [Devlin et al., 2019]. The output

embeddings are constructed from WordPiece token embeddings, segment emebddings and

position embeddings as in Figure 2.17. Then a classifier layer is applied onto the hidden

representation of texts.

For the argument role classification, PLMEE also uses the BERT as the encoder with

the special segment embeddings on the trigger tokens to represent the dependencies between

trigger and argument. Multiple sets of binary classifiers are applied on top of BERT for each

argument role to tackle the roles overlapping problem for argument role classification. The

roles overlapping problem means that the same token can serve as different argument roles

for the same event. For example, in sentence:

The explosion killed the bomber and three shoppers.

The word killed triggers an attack event, while the phrase the bomber plays both the attacker

and the victim argument roles for the attack event. As illustrated in Figure 2.16, a token t is

45

Figure 2.17: BERT input representation. The input embeddings are the sum of the token
embeddings, segment embeddings, and the position embeddings for trigger classification.

predicted as the start of an argument that plays role r with probability prs(t) = softmax(W r
s ·

B(t)), while as the end of an argument that plays role r with probability pre(t) = softmax(W r
e ·

B(t)). Here, the subscript s represents “start,” while e represents “end.” W r
s is the weight

of the binary classifier detects starts of arguments playing role r, while W r
e is the weight

of another binary classifier that detects ends of arguments playing role r. B is the BERT

embedding. For each role r, we obtain two sequences P r
s and P r

e . And based on the two

sequences, we can determine if the detected tokens belong to the role. Furthermore, PLMEE

uses weighted loss in the argument role classification by following the intuition that some

argument roles are more important in certain event types, and should be penalized more.

2.8 Event Extraction Evaluation and Metrics

The four sub-tasks defined in Section 2.3 include trigger identification, trigger classification,

argument identification, and argument role classification. Three metrics, precision, recall,

and F1, are used to measure the performance.

Precision can be seen as a measure of quality, and recall as a measure of quantity. Higher

46

precision means that the algorithm returns higher number of correct results than incorrect

ones. Higher recall means an algorithm returns more correct results (it does not care if more

incorrect results are also returned). F1 is the harmonic mean of precision and recall, which

can be used as a measure that considers both precision and recall. Precision, recall and F1

can be defined as:

precision =
TP

(TP + FP)
, (2.6)

recall =
TP

(TP + FN)
, and (2.7)

F1 =
2 · precision · recall

precision + recall
. (2.8)

Total Population = P + N Positive Prediction Negative Prediction
Actual Positive (P) True Positive (TP) False Negative (FN)
Actual Negative (N) False Positive (FP) True Negative (TN)

Table 2.10: Definitions of True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN)

Using the notation of indicator function I(boolean), where I(True) = 1 and I(False) =

0, we can tailor the definitions of the precision, recall and F1 metrics to the event extraction

tasks defined in Section 2.3: trigger identification, trigger classification, argument identifica-

tion and argument classification tasks.

• Trigger Identification: a trigger is correctly identified, if its span offsets exactly

match the gold/labeled trigger. The corresponding metrics include:

PTI =

∑
I(TDL = TL ∧ TDR = TR)

NTD

, (2.9)

RTI =

∑
I(TDL = TL ∧ TDR = TR)

NT

, and (2.10)

F1TI =
2 · PTI ·RTI

PTI +RTI

. (2.11)

where TD is the detected trigger, and T is the gold trigger. TDL, TDR are the left

47

and right offset of the detected trigger, and TL, TR are the left and right offset of the

gold trigger.

• Trigger Classification: a trigger is correctly classified, if its span offsets and detected

event type both exactly match the gold trigger and its event type. The corresponding

metrics include:

PTC =

∑
I(TDL = TL ∧ TDR = TR ∧ TDt = Tt)

NTD

, (2.12)

RTC =

∑
I(TDL = TL ∧ TDR = TR ∧ TDt = Tt)

NT

, and (2.13)

F1TC =
2 · PTC ·RTC

PTC +RTC

. (2.14)

where TDt is the detected event type of the trigger, and Tt is the event type of the

gold trigger.

• Argument Identification: an argument is correctly identified if its offset span and

corresponding event type exactly match the gold argument. The corresponding metrics

include:

PAI =

∑
I(ADL = AL ∧ ADR = AR ∧ TDt = Tt)

NAD

, (2.15)

RAI =

∑
I(ADL = AL ∧ ADR = AR ∧ TDt = Tt)

NA

, and (2.16)

F1AI =
2 · PAI ·RAI

PAI +RAI

. (2.17)

where AD is the detected argument, and A is the gold argument. ADL is the left offset

of the detected argument and ADR is the right offset of the detected argument. AL is

the left offset of the gold argument and AR is the right offset of the gold argument.

• Argument Classification: an argument is correctly classified if its offset span, cor-

responding event type, and argument role all exactly matches the gold argument. The

48

corresponding metrics include:

PAC =

∑
I(ADL = AL ∧ ADR = AR ∧ TDt = Tt ∧ ADr = Ar)

NAD

, (2.18)

RAC =

∑
I(ADL = AL ∧ ADR = AR ∧ TDt = Tt ∧ ADr = Ar)

NA

, and (2.19)

F1AC =
2 · PAC ·RAC

PAC +RAC

. (2.20)

where ADr is the detected argument role and Ar is the gold argument role.

2.9 Research Trends

Event extraction is a critical and challenging task in information extraction, which focuses

on extracting the structured representation of events from the text that describes the events.

Event extraction can be categorized into two tasks: event detection and argument extrac-

tion. The essence of the event extraction task is to identify the event-related words, and

then recognize their event type or argument role of an event type. The traditional machine

learning models need to extract lexical, syntactic and semantic features by using NLP tools

and carefully design the features used in event extraction. The deep learning models intro-

duced for event extraction can avoid the tedious work of choosing the specific features. The

deep learning models use the word embeddings with rich language features as input, which

further reduces the errors propagated by the NLP tools when designing features manually.

However, we are still facing a lot of challenges from both the dataset corpora level and the

extraction model level to tackle event extraction from different domains. We summarize the

challenges that the event extraction task faces in the two categories below, from the data

and model perspectives.

49

2.9.1 Challenges from Event Extraction Corpora

Event Extraction Dataset Construction

The event extraction task is complicated and has its characteristics. In the NLP domain, the

pre-trained language model is used widely [Devlin et al., 2019; Dai and Le, 2015; Radford

et al., 2018] to capture the contextual information embedded in the text and learn general

language features. The existing pre-trained language models lack specific designs for event

extraction tasks. In order to efficiently use pre-trained language model, new specific pre-

training tasks need to be defined, along with some dataset suitable for language pre-training

for event extraction tasks. Deep learning methods require a lot of training data to be

effectively trained. The current existing event extraction dataset has a limitation on both the

data size and diversity of covered domains. This hinders the high performance deep learning

model of event extraction being developed. Furthermore, manual annotations of event data

is quite expensive and the task could be hard, thus introducing annotation errors if we blindly

work with crowd-sourcing annotators who are lack of domain knowledge. Thus, it becomes

an urgent task to construct a large-scale event extraction dataset or design automatic/semi-

automatic methods to facilitate the creation of large-scale event extraction dataset that can

cover a fair amount of domains and different languages.

Event Extraction Schema Construction

Closed-domain event extraction tasks require a predefined event trigger to argument role

template/schema. For different domains, the event types could be very different along with

their argument role schema. Without the schema, it will be hard to evaluate the event

extraction task performance. Furthermore, without the event schema, the development

of the event extraction labelling dataset is hindered. Therefore, designing a general event

extraction schema based on event characteristics, or automatically constructing event schema

within different domains, become a future trend of developing advances in technologies for

50

event extraction.

2.9.2 Challenges from Event Extraction Models

Event Extraction Across Domains

Different domains have different event types, and also the training data is not evenly dis-

tributed across all domains. How to effectively use the domain knowledge explicitly/implicitly

presented in the domain texts or documents becomes an important task. This will lever-

age the external knowledge from the domain, which can further boost the performance of

cross-domain event extraction. At the same time, to alleviate the data scarcity issues exist-

ing in some domains, information from the domain itself or knowledge learned from similar

domains with a large amount of training data can be leveraged.

Dependency Learning

Using BERT [Devlin et al., 2019] to encode the textual information gain an ever-increasing

popularity in event extraction tasks. However, the pre-training task of BERT includes

Masked Language Model (MLM) and Next Sentence Prediction (NSP), neither of which

is designed for event extraction. In the MLM task, 15% of the tokens from each sequence are

randomly masked (replaced with the token [MASK]). The model is trained to predict these

tokens using all the other tokens of the sequence. The NSP task is a binary classification

task to determine if the second sentence actually succeeds the first sentence in the corpus.

For the NSP task, 50% of the time, the next sentence is indeed used as the next sentence

in the training data, and 50% of the time, a random sentence is taken from the corpus for

training. We can see that the two pre-training tasks in BERT is not specifically designed for

event extraction. For example, the argument extraction task needs to learn the relationship

between event triggers and other argument roles. This requires the pre-trained embedding

to learn the syntactic dependencies of the text. Therefore designing the pre-trained task

for event extraction to specifically consider the dependency learning is a direction worth

51

exploring.

Multi-event Extraction

Based on the different granularity of event extraction, the event extraction task can be

divided into sentence-level event extraction and document-level event extraction. There has

been a lot of research conducted on sentence-level event extractions. However, the document-

level event extraction techniques are mainly in the exploring stage. Document-level event

extraction is closer to our practical daily usage of the event extraction system. There are

several characteristics that make document-level event extraction different from sentence-

level extraction. In a document-level event extraction task, the argument role of an event

trigger can spread across different sentences. Further, in a document-level event extraction

task, the event type triggers might have correlations across different sentences within the

same document. How to efficiently leverage the cross-sentence multi-event correlations and

their argument correlations becomes a critical path to the success of document-level multi-

event extraction.

52

Chapter 3

New Techniques for Scaling up

Political Events Coding across

Languages

3.1 Introduction

Data produced from news stories is one of the most important new sources of information

for quantitative political science research. Drawn from English language news reporting

worldwide, machine coded data of geo-referenced political and social activity has opened up

new possibilities for the study of numerous political phenomena ranging from social move-

ments to violent conflict and unrest and government responses. Data is automatically coded

from the text by comparing phrases in the text to hand-coded dictionaries to identify ac-

tors and events. However, one limitation of event data is its restriction to English language

sources only. We aim to build a new machine-coded event data set of Arabic news cor-

pora and detect events such as protest or attack from the news corpus using the event coder

UniversalPetrarch.1 While UniversalPetrarch’s code only requires minor changes to accom-

1https://github.com/openeventdata/UniversalPetrarch

53

https://github.com/openeventdata/UniversalPetrarch

modate new languages, the dictionaries used to map phrases to codes need to be completely

re-written for each new language. Each dictionary encodes several specific cases used to

translate sentences to events. Several issues make automated event coding in multiple lan-

guages a difficult and unsolved task, including the unwieldy size of text data that can reach

terabytes, extracting the relevant actors to the events being studied, and guaranteeing both

the accuracy and abundance of the coded results.

3.2 Related Work

Philip Schrodt and colleagues at the University of Kansas created the original English lan-

guage event coding dictionaries. To develop the dictionaries, TABARI,2 Schrodt’s coding

program, displayed sentences to coders if the system recognized an event in a sentence,

but the actor was not in the dictionary. Coders were then responsible for adding these

new phrases to the dictionaries. Our process improves TABARI’s approach in several ways.

First, it is a web-based system, allowing many coders to work together without interfering

with each others’ work. Second, we provide a useful structure to the task by suggesting the

CAMEO [Schrodt, 2012] ontology in a dropdown list instead of asking coders to either mem-

orize or refer to the codebook for the list of possible codes. We used other technologies to

facilitate our process, for example, using word2vec [Tomas et al., 2013] to suggest synonyms

of relevant actors to be added to the dictionary. We also developed a validation system

based on peer review allowing coders to flag the dictionary entries about which they are not

confident. All of these tools improve our speed and accuracy in generating dictionaries.

Javier Osorio and colleagues worked on dictionary development for Spanish [Osorio and

Reyes, 2017], but because their text was drawn from politically relevant sources, they did

not need to develop mechanics to filter out less useful text from a large text corpus as we

needed to do. Because we used a large corpus of data, a challenge for our coders was the

number of stories they received that had no relevance to coding political events. In order

2https://parusanalytics.com/eventdata/software.dir/tabari.html

54

https://parusanalytics.com/eventdata/software.dir/tabari.html

to address this problem, we developed a way to filter out stories of no apparent relevance,

delivering stories to coders most likely to contain political events. Another aspect of coding

we considered in Arabic dictionary development is an actor’s role during different periods

since each actor might serve different roles at different times. Different actor’s role during

different time periods information is essential when detecting new political events, and we

built a system to facilitate recording that piece of information. We developed an additional

innovation to automatically find Arabic transliterations for existing actors in the English

dictionary using Wikipedia. Our “wiki-bio” coding approach pre-populates all the possible

roles an actor might occupy in different time ranges with a Wikipedia link attached and is

much more convenient for coders to use.

Martin Atkinson worked on extracting security-related events from a multilingual corpus

but did not build a system for a specific language like our system does for Arabic [Atkinson

et al., 2017]. The way the authors cluster events is SVM-based [Ben-Hur et al., 2001], while

we use a dictionary-based system. UniversalPetrarch uses dictionary entries to a specific

CAMEO code. This dictionary-based system should be able to capture more specific events of

relevance than a machine-learning system and achieve higher accuracy, but it requires much

work to build a language-specific dictionary. Therefore, rapid development of dictionaries is

needed to make dictionary-based event coding feasible for new languages and domains.

3.3 Our Contribution

We summarize our contributions for rapid development of dictionaries across different lan-

guages as the following:

• We designed four different approaches to speed up the dictionary development. The

four approaches include: CoreNLP based approach, NER based approach, wiki-bio

based approach and directed translation based approach.

• For the approaches we developed, we designed and implemented four different interfaces

55

to produce labels more accurately and efficiently.

• Using the approaches and interfaces we developed, we were able to complete Arabic

actor and verb dictionaries with coverage equivalent to English in less than two years

of work, compared to two decades for English dictionary development.

3.4 Coding Approaches and Interfaces

Arabic-language actor dictionary development is crucial for the event detection step per-

formed by UniversalPetrarch. We used different techniques ranging from manual to fully

automatic to help our team of human annotators create the Arabic-language actor dictio-

naries. This section outlines each approach, discusses their advantages and limitations, and

describe the interface we built for each technique. Finally, we make recommendations to

other researchers creating non-English language actor dictionaries or researchers developing

dictionaries using new ontologies in new domains.

3.4.1 Main Coding Interface With Keywords Search, LDA Topic

Filtering, and Synonyms Facilitator

Interface Walk Through

We are going to walk through this interface, shown in Figure 3.1, from left to right. On the

left hand side, the Arabic sentence along with the parsed nouns and verbs are presented.

Each of the nouns and verbs is a link that coders can click on in the interface. Clicking

on the link will populate the noun or the verb to the right hand side which is the coding

area. On the bottom left, the coders can either choose to select a random sentence to code

next or provide some keywords for the sentence searching process. The motivation behind

is: coders can always search the sentence that contains bomb as an example. The sentences

contain bomb have a bigger chance to have more correlated actors and verbs presented. In

56

Figure 3.1: The Regular coding interface. Nouns and verbs in the sentence are presented
on the left hand side. A search keyword feature is presented in the bottom left. The actor
and verb coding area is on the right hand size. Given an actor, the interface supports the
corresponding country, primary role, secondary role, from time period and to time period
coding. The interface also supports adding a different role from different time period. This
feature can be triggered by clicking “add another role period” button on the top right. The
interface supports Word2Vec based synonyms for an actor word. The verb coding area is on
the bottom right. If the actor to be coded is Angela Merkel, the country should be coded
as DEU and primary role should be coded as GOV, while both DEU and GOV come from
CAMEO taxonomy. If the verb to be coded is demonstrated or rallied in the streets, it should
be coded as 145: Protest violently, riot, not specified below based on CAMEO taxonomy.

this way, keywords query feature can speed up the coding process. However, we might also

face the biased selection issue for certain types of actors and coders. Once the coder click on

the noun, the noun will populate in the right hand side “Actor Text” text box. Then, the

coder can click on the synonyms button, which will trigger the generation of the Word2Vec

based synonyms of the current actor. If the candidate synonyms are correct, the coder will

add that directly into dictionary with the same codes. This can improve the yield of the

dictionaries. People might serve different roles across different time period. As an example,

Donald Trump’s primary role is GOV (“Government: the executive, governing parties”)

57

from 2017 to 2021. And before 2017, his primary role is BUS (“Business: businesspeople,

companies, and enterprises, not including MNCs”). This interface supports adding another

role period for an actor by clicking the “Add another role period” button on the top right.

Then there are five required coding features. Including country, primary role, secondary role,

from time period and end time period. For each of the country, primary role and secondary

role features, a drop down list is provided. The elements of the drop down are from the

CAMEO taxonomy. For the from and to time period features, when the text box is clicked,

a calendar will populate to support quicker entry. There is also a toggle box provided in the

middle of right hand side. The toggle box is used to flag the coded actors that the coder has

lower confidence in. With the commit button, the coder can post their coded results for the

actor to database. Verbs are coded in a similar way as actors from the bottom right area.

Interface Features

The first approach we developed was to sample the data from our Arabic Gigaword text

corpus and use CoreNLP [Manning et al., 2014] to parse the data into a grammatical format

with nouns and verbs and feed the parsed results to UniversalPetrarch. The next step was

for our coders to code an entry for each extracted actor produced by UniversalPetrarch. To

do so, we developed our main coding interface named Regular coding interface, as shown

in Figure 3.1, where we used several new techniques for this step to improve accuracy and

coding speed.

First, we exposed a search option for the coders with a “text” index on our data in

MongoDB,3 so that coders can work on related topics by querying similar keywords. It also

allowed them to focus on coding similar topics, speeding up the process.

Second, when an actor entry is already coded, and the same word appears in the current

sentence, its coded record from the database will pop up on the interface. Other coders

can then confirm the previous coder’s work, rather than entering a new entry. This set-up

3https://en.wikipedia.org/wiki/MongoDB

58

https://en.wikipedia.org/wiki/MongoDB

ensures that the most common entries are reviewed most frequently.

Third, the interface will also suggest alternative spellings of the names with its “synonym”

based on word2vec. This greatly increases the system’s yield, since many versions of the same

name can be added once to the dictionary. Finally, the interface also includes an “unsure”

button which flags the entry for peer review or review by the supervisor of the coding process.

Using these techniques and the interface built for it, the coders added 6,387 actor entries

and 1,628 verb entries.

Interface Advantages and Disadvantages Discussion

The advantage of this interface and its techniques is it allows for broad coverage of the text

by pulling out all the possible actors in the text and ensures that the dictionaries will have

entries for them.

The disadvantage is clear. First, we are randomly sampling sentences out of a corpus

of millions of sentences, with the result that the coders might code actors who are not,

in fact, a high priority for adding. In order to address this problem, we applied a topic

modeling strategy, Latent Dirichlet Allocation (LDA) [Blei et al., 2003], to our sentences so

we could choose the politically relevant topics to code. We clustered the sentences into a

different number of topics (N ∈ {5, 10, 20, 40}). We sampled sentences from each cluster to

show different native Arabic-speaking coders and asked them to summarize which topic each

clustering is mainly about. We then used their assessment to conclude that clustering the

corpus into 20 groups gives us the best results. Finally, we filtered out unrelated topics like

sports from the corpus, only showing the sentences from more political related topics.

Second, CoreNLP parsing only considers grammar structure, so a lot of nouns and verbs

extracted might not be political event related. In order to address this issue, we proposed

the NER based approach and interface in Section 3.4.3.

Third, each actor might serve different roles at different time periods. The information is

important for new political event detection. Coders spend a lot of time on finding different

59

roles and putting entries for an actor. In order to address this issue, we proposed the

Wikipedia based approach and interface in Section 3.4.4.

3.4.2 Wikipedia Facilitated Translating Existing English Actor

Dictionary

The second approach we used in actor coding was to directly translate the existing English

actor dictionary to Arabic using Wikipedia. Because each record is costly to add, being able

to translate existing English dictionary entries into Arabic would significantly increase our

efficiency. For each actor in the English dictionaries, we attempted to find its Wikipedia

page by an exact name match. Once we located an English article, we checked to see if

a corresponding Arabic article existed. If it did, we took the Arabic name for this actor

and the current role information in the English language dictionary and added them to the

Arabic dictionaries.

The major advantage of this approach is its efficiency and speed, as no human effort is

needed. The limitation of this approach is that we can only add actors that are already in the

existing English dictionaries. Additionally, entries may not include each role of the relevant

actors in Arabic language news sources. With this approach, we were able to achieve 5,696

actor entries. We did not develop a special interface for this approach.

3.4.3 Frequency Ranked NER Based Coding Interface

Interface Walk Through

Figure 3.2 shows the NER based coding interface. When a coder clicks the “start” button, a

frequency and NER filtered entity will populate. And the timing starts to track how long it

takes the coder to label the entity. The coder then needs to decide if the entity is a political

related entity. If not, the coder will click on the “skip” button on the top right to skip the

annotations for the entity. If the entity is indeed a political related entity, the coder will

60

Figure 3.2: The Fast coding interface. Frequency and NER based PERSON or ORGANIZA-
TION entity is presented to coders. In addition, five sentences which contain the entity are
presented to the coders on the bottom to provide contextual information of the entity.

code the features including: country, primary role, secondary role, from time period and end

time period, similarly as the Regular coding interface introduced in Section 3.4.1. Instead

of finding the entity information by searching the web, at the bottom of the interface, five

sentences which contain the entity are also presented. The sentences can provide extra con-

textual information to speed up the coding process. When the coder click on the “commit”

button on the top right. The time tracking ends.

Interface Features

The third approach we used in actor coding was to automatically find high-frequency actors

in the corpus and have coders create entries for them. We first use LDA to filter out unrelated

topics, and then pass the remaining documents through CoreNLP to parse the sentences into

noun and verb phrases. We then used a MapReduce [Dean and Ghemawat, 2008] strategy

61

to count the frequency of each actor in the corpus and rank the count in decreasing order.

Next, we filtered out all nouns that are not named entities using a multilingual named entity

recognition (NER) model from the spaCy tool.4 We then supply the actors to the coders

ranked by decreasing order of appearance. Along with the PERSON or ORGANIZATION

entity showing on the interface, we also presented five sentences in the corpus where the

noun appears as background content to our coders, so that the coders could have more

content-related information when they made a coding decision. A screenshot of the interface

is shown in Figure 3.2.

Interface Advantages and Disadvantages Discussion

The advantage of this method is that it recommends the most important actors (measured

by frequency) in the corpus and directs the coders to work on them.

Unfortunately, several off-the-shelf programs exhibited poor performance when perform-

ing Arabic NER extraction. The NER model trained with insufficient data in spaCy, so

its performance is inadequate in recognizing PERSON and ORGANIZATION names. It also

cannot distinguish between politically relevant and irrelevant people. Out of the most fre-

quent 7,180 people or organizations recognized by the spaCy multilingual model, only 204

were political actors that could be added to the dictionary. This low yield is attributable

to the system returning text that is not a named entity, is politically irrelevant, or names

that are too vague (i.e., common first or last names). The disadvantage of this approach

is substantial: coders spend a significant amount of time skipping irrelevant actors in order

to find one to add to the dictionary, which is frustrating and time-consuming. In order to

enhance the performance of this approach, we need to build a customized Arabic-specific

NER model.

4https://spacy.io

62

https://spacy.io

3.4.4 Wikipedia Based Coding Interface

Interface Walk Through

Figure 3.3 shows the Wiki-bio coding interface. When a coder clicks the “start” button, a

Figure 3.3: The Wiki-bio coding interface. The candidates to code with this interface are
scraped from Wikipedia. A list of Wikipedia links such as government ministers and promi-
nent politicians in the 22 Arab states are compiled. And the corresponding Wikipedia data
is extracted. The actor roles across different time periods are pre-filled in the interface. And
a Wikipedia link of the related role is also presented to the coders for validation purpose.

Wikipedia scraped actor will populate. Along with the actor name, the role and time period

of the role are pre-filled. Based on the role information, the coder needs to find corresponding

features, country, primary role and secondary role for the actor. And the timing starts to

track how long it takes the coder to label the entity for all actors. When the coder finishes

63

all the role codings for the actor, they will need to click on the “commit all” button on the

top right. The time tracking ends. The time taken and number of roles are recorded by the

interface. In this way, we can calculate how long it takes to code on both actor and role

levels.

Interface Features

The fourth approach we used was to leverage the information available on Wikipedia. Our

target Wikipedia data was the data in the info box of politically relevant actors. To scrape

the data, we compiled a list of links of Wikipedia categories, such as categories of government

ministers and prominent politicians in the 22 Arab states, and wrote a specialized scraper

to extract this Wikipedia data. The data contained the name of the actor, any roles he/she

occupied, and any dates associated with these roles. Once we scraped the data, we developed

our third web-based interface, “Wiki-Interface” (Figure 3.3), in which the actors’ data was

repopulated into the interface, and presented to the coders. The coders ensured the data’s

consistency by removing any extra title information from the actor’s name and translating

names and roles from English to Arabic for actors with no Arabic Wikipedia pages. Coders

also discarded actor entries that had no role data associated with them. Each actor role

was presented to the coders as a card that they could commit or discard. A link to the

Wikipedia page that the current actor data was scraped from was also provided to help

coders disambiguate any uncertainties they had.

Using this interface, we generated entries for 2,327 actors, totaling 4,286 role period

ranges.

Interface Advantages and Disadvantages Discussion

The advantage of this approach is that coders are only working on the actors that are

politically relevant since we only scraped entries from politically relevant Wikipedia category

pages. Coding is also extremely fast, as the highly structured information is presented to

64

the coders with the date ranges pre-populated.

The disadvantage is that not all politically relevant actors have Wikipedia pages, nor do

these pages always have biographical sidebars. Organizations also do not have biographical

sidebars as people do, making this interface useful only for coding people.

3.4.5 Peer Review Interface for Unsure Records

Interface Walk Through

On the peer review interface, shown in Figure 3.4, the coder can acquire unsure records

by searching coder name. On the top, there are two buttons “Show Flagged Nouns” and

“Show Flagged Verbs”. The coders can click either of them to choose the type of the records

they want to work on. The results are paginated on the interface. For each unsure record,

the coded results along with the coder name, added time, and updated time are shown. If

the coders want to fix an unsure record, they need to click on the “Edit” button towards

the end of each record row. When they finish the editing, the “EditBy” and “EditTime”

columns will be updated along with the updated coding results. The coder can also click the

“sentenceId” button at the beginning of each record row. This will trigger the population of

the sentence which the record is coded from to the sentence text box in top left.

Interface Features

With these aforementioned interfaces, and to get more accurate records, we implemented an

unsure strategy, allowing coders to flag a record as unsure if coders were not confident about

what they coded. We then implemented a peer review interface (Figure 3.4) for the coders

to check each others’ unsure records and make corrections, and had a supervisor track each

coder’s performance. During the development of all our approaches, we kept our coders in

the loop by taking their feedback as an input to our design process.

65

Figure 3.4: Peer review interface. The interface tracks the unsure records and allow multiple
people to review and verify. The sentence id is also provided for the unsure records to provide
context.

3.5 Coding Teams

In order to assist with our dictionary development, we hired 8-10 Arabic coders. The coders

were primarily undergraduate students and native Arabic speakers with direct experience

teaching the language. We split the coders into two teams: Team 1 and Team 2. Within each

team, coders were paired into groups of two to perform the task and to verify it, with one

performing and the second verifying. If both coders in the pair were unsure, the interfaces

allowed the coders to flag the task. Other coders may then contribute to completing the

task. Having such a team structure helped the coders get accustomed to the task faster and

develop shared norms for approaching coding issues.

This team set-up, as well as our interfaces, has many advantages. First, the division of

the tasks and the verification mechanism ensured better results and higher accuracy. Second,

our web-based interfaces allowed for much greater work flexibility for our coders, especially

those who were abroad or working remotely. The ease, clarity, and segmentation of tasks

allowed for very cheap training costs and fast adaptation of tasks by the coders. Third,

having various interfaces allowed much more feedback and tweaking on the developmental

side, making it easier to accommodate coders’ needs.

The main disadvantage of our set-up is decentralization. Having various interfaces for

66

related tasks can lead to unorganized and sparse results. To avoid that, we had a strict

timeline for how we used those interfaces, which team used it, and when to transition to

another interface, which seemed to help greatly in this regard.

Interface Teams Description
Regular Interface (Figure 3.1) Team1 Extracted nouns and verbs from raw sen-

tence with auto complete and synonym-
aided feature.

NER based (Figure 3.2) Team1 Frequency ordered and NER based PER
and ORG coding.

Wiki-Bio (Figure 3.3) Team1,
Team 2

Provided pre-filled information from
Wikipedia name cards.

NER Annotation with Prodigy
(Figure 3.8)

Team1 Interactive NER model updating inter-
face provided by Prodigy.

Table 3.1: Description of each interface used by coders from Team 1 and Team 2.

Aside from using the interfaces to code, the coders attend weekly meetings with the

interface development team to provide feedback about the interfaces and discuss questions

about the coding process. Holding these meetings is a vital aspect of eliciting feedback,

understanding the language requirements, and assessing the coders’ needs, which is a driving

factor in developing the most effective interfaces.

3.6 Evaluation

We conduct the analysis to answer the following two research questions:

1. For the interface we developed, which one works better for a given time budget?

2. Will the coding speed improve if the coder has coded more actors?

To answer the first question, we track how much time each coder takes when working on

the Wiki-Bio based interface and the NER based interface with the intention of understanding

which interface works better for a given time budget. Our assumption is that the Wiki-Bio

based interface should be more efficient. The efficiency is measured by how long it takes an

coder to code an actor.

67

coding approach

of

 a
ct

or
s

co
de

d

0

2000

4000

6000

8000

regular
interface

wiki translation ner based wiki bio

skipped

coded

of actors coded by different coding approaches

Figure 3.5: Total number of actors coded for each approach.

The coders’ performance is presented in Table 3.2 and Figure 3.5. We did not track time

per task in the original interface because we bundled many tasks into one: coders added

between 0 and a half-dozen dictionary entries per sentence, with several roles for each actor,

and identifying the source and target actors in the sentence. We therefore cannot unbundle

the task timing to identify how long each discrete task took. Also note that there is no outlier

time taken (extremely large time produced in the scenario like the coder might take lunch

during one actor coding. The interface simply will timeout.) during the labelling process.

Approach Actors
Coded

Actors
Skipped

Total Time
(seconds)

Seconds
per Actor

Seconds
per Role

Regular Interface 6,387 - - - -
NER based 204 7,180 11,343 55.6 55.6
Wiki-Bio 2,459 - 926,289 377 202
Wiki Translations
(no interface)

5,696 - - - -

Table 3.2: Performance of coders with different coding approaches.

First, we were surprised at how poor the performance was for the multilingual trained

Arabic NER model. within 7,384 records extracted from the NER model, we were only able

68

to code 204 politically relevant ones. The poor performance of the NER model is caused by

training on poor multilingual data.

Once we find a politically relevant entity with this interface, coding it only requires an

average of one minute. One possible explanation for this relative high coding speed per

actor (Data is shown in seconds per actor column in Table 3.2) is that we present five

related sentences in which the actor appears so that the coders get a richer understanding

of the actor and they can create the entry faster. This suggests that if we can get a better

working version of Arabic-specific NER model, it will significantly enhance our yield and

overall performance.

We found the performance of the Wiki-bio approach to be unexpectedly slow. As our

assumption, we expected Wiki-bio interface to be faster than the NER based interface since

we had already pre-populated the time range for each entity and provided the URL to link

the actor back to the Wikipedia page. For each actor entity, it still took six minutes to code

on average, and each role took roughly three minutes compared to 1 min for NER based

interface. A possible reason for the slow speed is that we do not provide the same background

content in Wiki-bio based interface as the NER based interface does. Thus, the coder still

needs to go to the related Wikipedia pages to verify. Validating at Wikipedia pages takes

time.

Note that we only have 204 NER based actors coded. The sample size is small, and our

time estimates may therefore be imprecise.

To answer the second research question: Will the coding speed improve if the coder has

coded more actors? Our assumption is the coding speed will be faster for an coder who has

coded more actors. The assumption is based on the more experienced coder will understand

CAMEO taxonomy better. The better memorization and understanding of the CAMEO

taxonomy will lead to higher coding speed.

We gather the statistics of number of actors each coder worked on along with average

time taken of each actor for each coder in Figure 3.6.

69

Figure 3.6: Performance of wiki-based approach of five coders.

We find a result related to coder efficiency that is different from our assumption. The

more actors a coder has been coding over time, and presumably the more experienced a

coder becomes, it takes the coder more time on average to code an actor, not less.

This may be because the more actors a coder encounters, the higher the probability that

the coder will encounter ones that are more difficult to decide how to code. It could also be

that as coders become more experienced, they are more likely to consider various possible

roles or more complicated coding issues. From Figure 3.7 we can see that the variance of

time per task increases along with the number of actors coded, which appears to support

our explanation.

3.7 Summary

Using the above approaches for developing dictionaries, we were able to complete Arabic

actor and verb dictionaries with coverage equivalent to the English language dictionaries

in less than two years of work, compared to the two decades that the English language

dictionaries took to produce.

70

Figure 3.7: Variance of time spent on each actor of different coders versus the number of
actors coded by each coder.

We have used UniversalPetrach to generate events from our corpus of millions of Arabic

sources using the dictionary we developed, and we expect to make comparisons between it

and the English corpus after final debugging and quality checking.

It is difficult to determine how many actor dictionary entries are sufficient to generate

accurate event data. Within our budget on hiring coders, we aim to generate as many

politically relevant actor and verb dictionary entries as possible, so we need the fastest

possible coding framework to achieve this.

3.8 Discussion and Future Work

We could potentially do better than one minute on NER coding and three minutes on Wiki-

bio coding by applying crowd sourcing strategies, e.g., we could make recommendations to

our coders and simply ask them to verify the recommendations. In that way they would

just need to choose yes or no instead of entering detailed information. Prodigy is a promis-

71

ing framework that can provide us with that functionality [Honnibal and Montani, 2017],

Figure 3.8.

Figure 3.8: The Prodigy interface used for training a customized named entity recognition
model for Arabic.

72

Chapter 4

Scaling up Event Detection by

Utilizing Document Topic Information

4.1 Introduction

Event detection is an essential task of information retrieval in natural language processing,

which has lots of applications in different domains. For example, event detection and mon-

itoring have long been the focus of public affairs management for governments, as timely

knowing the outbursts and evolution of popular social events helps the authorities respond

promptly [Conlon et al., 2015; Atkinson et al., 2009]. Structured events can be directly used

in constructing or expanding knowledge bases [Rospocher et al., 2016; Li et al., 2018]. In the

business and financial domain, event detection can also help companies quickly discover mar-

ket responses to their products and influential signals for risks analysis and suggestions [Nuij

et al., 2013; Capet et al., 2008]. Despite its promising applications, event detection is still a

rather challenging task. As events come with different structures and components. Further,

natural languages are often with semantic ambiguities and discourse styles.

Event detection aims at finding the event triggers—the main word that most clearly

expresses an event occurrence, typically a verb or a noun. Event detection techniques then

73

Figure 4.1: An example of event triggers and event detection. Specifically, this sentence
contains multiple event-trigger words belonging to different event types.

use the triggers to classify the event type into a predefined set. For example, in the sentence

in Figure 4.1,

In 1995, three of the police officers involved stood trial for Gardner’s manslaugh-

ter, but were acquitted.

involved triggers a cause to be included event, trial triggers a criminal investigation event,

manslaughter triggers a killing event, and acquitted triggers a judgment communication event.

4.2 Related Work

Early approaches for event detection use pattern matching techniques [Riloff, 1993]. Later on,

people used traditional machine learning algorithms other than neural networks to address

the event detection problem. Techniques include using support vector machine (SVM) [Li

et al., 2012]. More recently, deep learning has been successfully applied to different NLP tasks

including event detection. The general process to build a neural network is to take word em-

beddings [Tomas et al., 2013] as input and output a classification result for each word. Con-

volutional Neural Networks (CNN) [Kim, 2014], Recurrent Neural Networks (RNN) [Nguyen

et al., 2016; Ghaeini et al., 2016], and Graph Neural Networks (GNN) [Liu et al., 2018] have

been all explored and applied to the event detection problem.

74

Ji and Grishman [2008] employs an approach to propagate consistent event arguments

across sentences and documents. By combining global evidence from related documents and

local decisions, a cross-document method is created to improve event detection. Li et al.

[2013] proposes a joint framework that extracts triggers and arguments together to alleviate

the problem of error propagation caused by event triggers and arguments are predicted in

isolation. Chen et al. [2015] proposes a dynamic multi-pooling convolutional neural network

according to event triggers and arguments to reserve more crucial information for event de-

tection. Zhao et al. [2018] first learns event detection oriented document embedding through

a hierarchical and supervised attention based RNN, then further uses the learned document

embedding to identify event triggers. Yan et al. [2019] uses a dependency tree based on a

graph convolutional network with aggregative attention to explicitly model and aggregate

multi-order syntactic representations in sentences. Du and Cardie [2020] formulates the event

extraction task as a question answering task that extracts the event arguments end-to-end.

Li et al. [2020a] casts the event extraction task into a series of reading comprehension prob-

lems, by which it extracts triggers and arguments successively from a given sentence. Luan

et al. [2019] introduces a general framework for several event extraction tasks that share

span representations using a dynamically constructed span graph. The dynamic span graph

refines the span representations by allowing the co-reference and relation type confidences to

propagate through the graph. Unlike their work, we used the topic information to enhance

the sentence representation and further utilized the topic classification task as a facilitator

for event detection by having a multitask set-up.

4.3 Motivation and Our Contribution

None of the previous efforts [Kim, 2014; Nguyen et al., 2016; Ghaeini et al., 2016; Liu et al.,

2018] consider event topic information for the event detection task. Examples of topics

that the documents belong to include a terrorist attack, a horse race, and an earthquake, as

75

shown in Figure 4.1. Topic information is vital for event detection tasks, since, intuitively,

documents belonging to different topics have different event type distributions. There are

several existing event detection datasets, for example, ACE05 [Walker et al., 2006], ERE

series [Ellis et al., 2014, 2015], and TERRIER [Liang et al., 2018]. In order to validate

our assumption, we analyzed the MAVEN dataset [Wang et al., 2020]. We chose MAVEN

because:

• MAVEN has an extensive range of event types compared to others. For example, Maven

has 168 event types, while ACE05 contains 8 event types and 33 specific subtypes.

• MAVEN comes with human-annotated document topics, which is needed in the TAED

model. However, the other datasets do not have the topic annotations.

We gather all the 168 event types in MAVEN. Then, for each topic, we normalized the event

type occurrence count to a 168 dimension vector, of which all the 168 elements in the vector

summarize to 1. We use this vector to represent the event distribution of the current topic.

For each pair of the topics, we performed a two sample Kolmogorov–Smirnov test and report

the P-Value as a heat map in Figure 4.2. When the P-Value is larger than 0.05, we cannot

reject the null hypothesis that the two topics follow the same event type distribution. When

the P-Value is less than or equal to 0.05, we can reject the null hypothesis.

Based on Figure 4.2 we can see that when talking about event type distribution, the

topic terrorist attack is most similar to the military conflict and civil conflict topics with large

corresponding P-Values of 0.61 and 0.52, respectively. The topic horse race is most similar

to the international ice hockey competition and individual golf tournament topics with corre-

sponding P-Values of 0.43 and 0.29, respectively. In Table 4.1, we show the top five event

types for the three topics earthquake, horse race and terrorist attack, from which we can see

that event type distributions are affected by different topics.

Semantically similar topics share similar event type distributions, while semantically

different topics have heterogeneous distributions of event types. This inspires us to explore

76

Figure 4.2: P-Value from Kolmogorov–Smirnov test on distribution of event types across
topics. The P-value is calculated based on two topics’ event type distributions. The null
hypothesis is the two topics’ event types follow the same distribution. (Partial version. Full
version in Figure 4.3.)

earthquake event types catastrophe causation damaging coming to be destroying
event types distribution 0.255 0.076 0.072 0.043 0.033

horse race event types competition process start process end causation hold
event types distribution 0.201 0.104 0.058 0.047 0.036

terrorist attack event types attack killing terrorism bodily harm causation
event types distribution 0.145 0.074 0.058 0.049 0.035

civilian attack event types killing attack statement causation bodily harm
event types distribution 0.094 0.068 0.041 0.035 0.032

Table 4.1: An example of the top five event type distributions for each of the topics: earth-
quake, horse race, terrorist attack and civilian attack.

effective ways of using topic information in event detection tasks to improve performance.

We summarize our contributions as the following:

• We perform a detailed analysis explaining why topic information helps on event detec-

tion task.

• We introduce topic name enhanced sentence representation for event detection and ex-

plore different ways to embed the topic name information including: using attention-

based versus concatenation-based interaction, [CLS] versus token average based at-

tribute embedding and using topic keywords to generate topic embedding versus using

topic names.

77

Figure 4.3: P-Value from Kolmogorov–Smirnov test on distribution of event types across
topics. The smaller the P-Value in the cell is, the bigger the difference of event type distri-
butions between the two topics. (Full version)

78

• We introduce topic classification and event detection as a multi-task learning set-up,

which further improves the performance and conducted experiments with two event

detection datasets with various event types. We achieved up to +1.8% improvement

on the F1 score compared to the BERT based non-topic aware baseline.

• Furthermore, we show that the topic-aware model we propose can improve the few-shot

event types scenario with +13.34% improvement on the F1 score and provide heuristic

explanations in the case study.

4.4 Event Detection Definition

An event is a specific occurrence of something that happens at a particular time and place,

which can frequently be described as a change of state. An event structure is defined as

follows in ACE05 terminology:

• Event Mention: a phrase or sentence describing an event, including a trigger and several

arguments.

• Event Trigger: the main word that most clearly expresses an event occurrence, typically

a verb or a noun.

The event detection tasks are defined as follows:

• Trigger Identification: aims at identifying the most important word that characterizes

an event.

• Trigger Classification: aims at classifying the event trigger into predefined, fine-grained

categories.

Recent neural network methods typically formulate event detection task as a token-level

multi-class classification task [Chen et al., 2015; Nguyen et al., 2016] or a sequence labelling

task [Chen et al., 2018], and only report the trigger classification results [Wang et al., 2020;

79

Zeng et al., 2018]. An additional type N/A is introduced and classified at the same time to

indicate that the candidate is not a trigger. We adopt the above settings and evaluate the

performance with precision, recall and F1 on a micro level.

4.5 Methodology

TAED leverages document topics for event detection. The underlying intuition is that event

type distributions are different across the topics. Our model uses a topic name embedding to

enhance the sentence representation. Furthermore, we have modeled topic classification and

event detection as a multi-task learning set-up, which means topic classification and event

detection are jointly trained.

4.5.1 Architecture Overview

In this section, we present a holistic description of the topic-aware event detection model we

proposed as presented in Figure 4.4.

Figure 4.4: TAED architecture. TAED uses the topic name embedding and the sentence
tokens embedding as the enhanced representation of the sentence. Multi-task learning of
event detection and topic classification is utilized to further improve the performance.

The architecture workflow can be read from the bottom to top. The inputs of the model

80

are: (1) text tokens (x1, x2, . . . , xT) of the sentence, and (2) the text tokens (topicword1,

topicword2, . . . , topicwordN) of the topics that the sentence belongs to. The length of the

sentence tokens is denoted by T . The length of the topic tokens is denoted by N . The

sentence tokens are fed into a sentence encoder, which maps each token to a d-dimensional

vector. The output of the sentence layer is a sequence of hidden vectors that captures the

semantic information of the each token along with dependencies between the tokens. The

output from the encoder can be denoted as (h1, h2, . . . , hT), where hi is a d-dimensional

vector. Similar to the sentence tokens, the topic tokens are also fed into a topic encoder.

Different from the sentence encoder that generates a sequence of hidden vectors, one for each

token, we want to obtain a single d-dimensional vector that summarizes the information of

all topic name tokens. In order to generate the summarizing vector for the topic name

tokens, two approaches are proposed. The first approach is to adopt the special [CLS] token

introduced in BERT in the next sentence prediction pre-training step, which is described

in detail in Section 2.7.3. The special [CLS] token is pre-trained in a way that the hidden

vector out of the encoder is a representative hidden vector of the entire sentence. Thus, it

is appropriate to use the [CLS] token’s hidden vector as a representation of the topic. The

second approach is to generate hidden vectors for each token in the topic name, and then to

take the average of all hidden vectors as one representative hidden vector for all topic name

tokens. In either of the two cases, the output of topic encoder is a single hidden vector htopic

in the d-dimensional space. At the same time, we also obtain a summarizing vector for the

entire sentence tokens denoted as hsentence. It is the hidden vector for the sentence [CLS]

token which is highlighted in purple in Figure 4.4.

In the next step, we focus on how to generate topic-aware sentence representation vec-

tors. So far, we have obtained a sequence of hidden vectors (h1, h2, . . . , hT) in d-dimensional

space representing the sentence and a single vector htopic representing the topic name. We

proposed two approaches for the topic and sentence interaction. The first approach is to

concatenate the topic vector htopic to each of the sentence tokens hi, where i ranges from 1

81

to T . The output from the concatenation operation is a sequence of 2d-dimensional vector

(h1;htopic, h2;htopic, . . . , hT ;htopic), where the “a; b” notation here represents the concatena-

tion of two vectors a and b. This sequence of 2d-dimensional vectors are topic-aware, since

each of the hidden vector h̃i = (hi;htopic) carries the topic information. However, with this

approach, the topic representation interacts with each sentence token evenly. In order to

address this issue, we propose the second approach: attention based interaction. Before we

start to describe the attention based interaction approach, note that the concepts of query,

key and value used in the attention calculation are described in Section 2.7.3. In the atten-

tion based interaction approach, we use the (htopic1 , htopic2 , . . . , htopicT) as the queries for the

attention calculation. htopici is defined as the average of htopic and hi. We use the average

operation instead of the concatenation operation because we need to maintain the vectors in

the queries as d-dimensional for the subsequent attention calculations. The keys and values

are both the sequence of sentence vectors (h1, h2, . . . , hT). For each query htopici , we obtain

a sequence of similarity scores (αi1, αi2, . . . , αiT) by conducting dot product with each key

αij = htopici · hj and followed by softmax to normalize. The similarity scores are used as the

weights to highlight which tokens in the sequence is more important to the topic. A bigger

α score indicates a relative higher similarity. The details can be found in Section 4.5.4. In

this way, for each query htopici , we obtain a topic-weighted comprehensive representation

h̃i, which is a d-dimensional vector. To summarize the output from the topic and sentence

interaction, we obtain a sequence of hidden vectors (h̃1, h̃2, . . . , h̃T). For the concatenation

approach, h̃i is a 2d-dimensional vector. For the interaction approach, h̃i is a d-dimensional

vector.

With the output from the previous encoding and topic-sentence interaction layers, we can

proceed with the event detection and topic classification process. We train event detection

and topic classification jointly. The idea is to use the topic classification to further help

embed the topic information in the sentence representation implicitly, instead of explicitly

embedding the topic information as the interaction layers do. We utilize hsentence as the input

82

to the topic classification. We choose to not use the topic comprehensive hidden vectors as

the input because if the hidden vector already has the topic information, it will be trivial

for the classifier to predict the topic of the sentence. We adopt the softmax layer for the

topic classification, since it is a multi-class classification problem. The details are described

in Section 4.5.7. The output of the softmax layer is a C-dimensional vector (p1, p2, . . . , pC),

where C is the number of topics in the dataset, and all elements in (p1, p2, . . . , pC) sum to

1. Each pi represents the probability that the sentence belongs to topici. With the output

for the topic classifier model and the topic label of the sentence in the training dataset, we

were able to calculate the negative log likelihood loss defined in Equation (4.12). The input

for the event detection is the topic comprehensive vectors from the interaction layers. In

order to enforce the dependency between BIOE tagging schema, we adopt a CRF layer. The

details of CRF layer can be found in Section 2.5.2, and the training details as well as the loss

function definition (Equation (4.10)) can be found in Section 4.5.6. The idea behind the loss

function design is to minimize the loss on the labelled tag sequences in order to find the best

transition and emission metrics that fit the training data well. We further train the model

by combining the loss of topic classification and event detection in a weighted fashion.

4.5.2 Sentence Encoder

The sentence encoder represents the text tokens (x1, x2, . . . , xT) of the sentence as low-

dimensional, real-valued vectors. To effectively capture the long-range dependencies between

the input tokens, we use BERT [Devlin et al., 2019], whose underlying layers use the self-

attention mechanism to mitigate the long-range dependencies issue. The input and output

relations for a sentence encoder is represented as:

h1, h2, . . . , hT = SentenceEncoder(x1, x2, . . . , xT), (4.1)

83

where hi ∈ Rd. Equation (4.1) means that, for each input text token xi in a sentence, the

sentence encoder will output a d-dimensional real-valued vector as its representation.

4.5.3 Topic Encoder

Our topic encoder encodes the topic information by using the topic name or topic represen-

tative vocabulary that is mined by using the ranked TF-IDF features from each topic. For

example, the top five representative vocabularies for the civilian attack topic are: massacre,

attack, kill, police, and people. Similarly, we use BERT to encode the topic information.

Unlike the sentence encoder where each token is encoded as a vector, we use a hidden vector

htopic (red, solid-border token in Figure 4.4) returned from the BERT encoder for the [CLS]

token to represent the entire information carried by the topic keywords. This is represented

as:

htopic = TopicEncoder(topicword1, . . . , topicwordN), (4.2)

where htopic ∈ Rd.

4.5.4 Topic-Aware Sentence Representation

To associate the sentence representation with its document’s topic, we append the topic

vector representation htopic to each token vector representation h = (h1, h2, . . . , hT) in the

sentence, shown in Figure 4.4. Then we obtain the topic-aware contextualized vector repre-

sentation of the sentence tokens as:

h̃ = (h̃1, . . . , h̃T) = (h1;htopic, .., hT ;htopic), (4.3)

where h̃i is a 2d-dimensional vector. The drawback of using concatenation is the topic

information contributes to each token in the sentence evenly. In order to address this issue,

we proposed an attention based interaction method to obtain a topic-aware comprehensive

84

sentence representation. The idea of attention was first used in Neural Machine Translation

(NMT) [Bahdanau et al., 2015]. Instead of paying attention to everything, the attention

mechanism is designed to highlight the important information in a sequence. In order to

calculate the attention we first need to define query, key, value used in our scenario. For the

query, we obtain a d-dimensional vector htopici by taking average of htopic and hi. We use

(h1, h2, . . . , hT) for both key and value. Given index i, a dot product operation is applied on

htopici and hj, where j ranges from 1 to T . Each of the dot product operation generates a

weight αij, calculated as:

α̃ij = htopici · hj, and (4.4)

(αi1, αi2, . . . , αiT) = softmax(α̃i1, α̃i2, . . . , α̃iT). (4.5)

In this way, given a query vector htopici , we obtain a sequence of weights (αi1, αi2, . . . , αiT).

The weights are used to measure the importance of tokens in the sentence when talking

about the topics. A higher weight indicates a higher importance. Afterwards, a topic-

comprehensive representation for the query htopici can be obtained by calculating:

h̃i =
T∑

j=1

αij · hj. (4.6)

Similarly, we can obtain h̃i for each query vector htopici , where i ranges from 1 to T . Eventu-

ally, a sequence of topic weighted topic-aware hidden vectors (h̃1, h̃2, . . . , h̃T) are obtained.

Each h̃i is a d-dimensional vector.

4.5.5 Event Detection CRF Decoder

Table 4.2 shows an example of identifying took place as a trigger of event type process start.

We feed the topic-aware contextualized token representations (h̃1, h̃2, . . . , h̃T) to CRFs [Laf-

85

the Total Nonestop Action Wresting (TNA) promotion that took place on October 23

O O O O O O O O O O B E O O O

Table 4.2: An example of the tag sequence for event type Process Start annotated with the
BIOE scheme.

ferty et al., 2001] to obtain the sequence of BIOE tags with the highest probability:

(y1, y2, . . . , yT) = CRF(h̃1, h̃2, . . . , h̃T). (4.7)

The CRF decoder [Huang et al., 2015] can enforce the tagging consistency that captures

dependency between the output tags. For example, if we already know the starting boundary

of an attribute (B), this increases the likelihood of the next token to be an intermediate (I)

or end of boundary (E), rather than being outside of the boundary (O). CRF contains a

linear layer and a transition matrix, which are used to calculate the emission and transition

scores for the tag predictions, respectively. The score for an input text sequence X that

belongs to a specific topic to be assigned with a tag sequence Y can be calculated as:

score(X, topic, Y) =
T−1∑
i=1

Tyi,yi+1
+

T∑
i=1

Ei,yi , (4.8)

where T ∈ Rm×m is the transition matrix, Tij is the transition score of i-th tag to the j-th

tag. E ∈ RT×m, Eij represents the i-th token is assigned j-th tag in the tag set. m is the

number of tags in the tag set which includes different B, I, E tags for each event type and a

shared O tag. For example, given two event types, killing and cause to be included, there will

be 7 tags including “B-Killing”, “I-Killing”, “E-Killing”, “B-Cause to be included”, “I-Cause

to be included”, “E-Cause to be included”, and an O tag. Let a be the number of event

types, then m = 3a+ 1.

86

4.5.6 Event Detection Training

The event detection task is trained to maximize the log likelihood of (X, topic, Y) triplets

in the training set, the score of given tokens, and topic that has predicted tags Y is given in

Equation (4.8), and the log likelihood to maximize is defined as:

log p(Y |X, topic) = log
score(X, topic, Y)∑

Y ′∈tagsetT score(X, topic, Y ′)
. (4.9)

Assuming we have N samples in the training set, then the loss to minimize for the event

detection task is defined as:

Lossevent detection = −
N∑
i=1

logp((Ŷi|Xi, topici), (4.10)

where Ŷi is the ground truth label for sentence i.

4.5.7 Topic Classification Training

Our topic classifier classifies each sentence into its corresponding topic. In order to avoid

information leakage, instead of using the topic-aware contextualized token embeddings h̃ from

equation (4.3) to classify the topics, we directly use the [CLS] token representation denoted

as hsentence from the sentence encoder (the purple, dashed-border token in Figure 4.4) to

classify the topic. The loss function for the topic classification task can be defined as

(p1, . . . , pC) = softmax(Wt · hsentence + bt), and (4.11)

Losstopic = −
N∑
j=1

C∑
i=1

yij log(pij), (4.12)

where Wt ∈ RC×d, bt ∈ RC and C is the number of the topics in the training dataset.

87

4.5.8 Multi-Task Training

We jointly train TAED for event detection and topic classification in a multi-task learn-

ing [Caruana, 1997; Mart́ınez Alonso and Plank, 2017; Yang et al., 2017] setting, by com-

bining the loss of the two tasks:

Loss = Lossevent detection + γ·Losstopic, (4.13)

where γ is a non-negative tunable hyper-parameter. By training the model in a multi-

tasking setting, both the event detection and topic classification tasks will contribute to the

contextualized vector representation learning for the sentence and topic tokens.

4.6 Experiments and Evaluation

In order to test our hypothesis that the event topic information can help event detection,

we used the MAVEN dataset [Wang et al., 2020], which has a wide range of event types

(168) and also comes with the topic labels that humans annotated. Furthermore, we test

our model with the RAMS dataset [Ebner et al., 2020], which also comes with many event

types (139). Though the RAMS dataset does not come with topic labels for each document,

we use LDA [Blei et al., 2003] to generate pseudo topic labels. We first tested our work on

the full MAVEN dataset. The MAVEN dataset only releases the gold labels for the training

and validation datasets and not for the test dataset. In order to speed up our experiments

with the data that has gold labels, we combined the training and validation dataset, then

separated the merged dataset further into a 70%/15%/15% distribution. Additionally, the

topic occurrence in the original dataset is extremely skewed, with the highest topic occurrence

as 984 and the lowest topic occurrence as 1. We further sampled several topic-balanced

datasets to test the effectiveness of our proposed method in a topic-balanced scenario.

Furthermore, to validate that an event topic can be used as a “bridge” to transfer knowl-

88

edge from high resource event types to low resource event types, we grouped event types

based on their occurrences in the training dataset defined in Table 4.4. Examples of low

resource event types can be from the Rare group, with the occurrence of the event type

less than 20 times. While high resource event types can be from the High group, with the

occurrence of the event type more than 500 times. We generated the Macro average group

precision, recall and F1 score accordingly.

4.6.1 Performance

Altogether, we tested our topic-aware event detection framework on five settings of MAVEN

which include the following: the full MAVEN dataset, two new splits of the train and

validation dataset which has the gold labels, and two new splits of the train and validation

datasets sampled in a topic-balanced way. In each of the settings, we included three random

seeds as model parameters and report the means and standard deviations of each metric

along with the P-value from a paired t-test in Table 4.3.

Model Type Dataset P(%) R(%) F1(%) P-Value
BERT-CRF Full MAVEN Data 66.15± 0.24 69.64± 0.43 67.85± 0.07 0.001∗

BERT-CRF-TOPIC Full MAVEN Data 66.28± 0.38 70.39± 0.40 68.27 ± 0.06
BERT-CRF Generated Data 1 65.18± 1.14 70.32± 2.96 67.63± 0.05 0.041∗

BERT-CRF-TOPIC Generated Data 1 66.21± 0.16 70.23± 0.16 68.16 ± 0.03
BERT-CRF Generated Data 2 65.65± 0.30 69.74± 0.38 67.63± 0.08 0.017∗

BERT-CRF-TOPIC Generated Data 2 66.35± 0.12 70.14± 0.34 68.19 ± 0.10
BERT-CRF Generated Data topic-balanced 1 64.09± 1.67 62.68± 1.72 63.33± 0.05 0.001∗

BERT-CRF-TOPIC Generated Data topic-balanced 1 63.9± 0.3 65.17± 0.18 64.52 ± 0.09
BERT-CRF Generated Data topic-balanced 2 63.93± 1.51 63.21± 1.28 63.53± 0.11 0.003∗

BERT-CRF-TOPIC Generated Data topic-balanced 2 64.41± 0.28 66.50± 0.24 65.44 ± 0.02
BERT-CRF RAMS 34.05± 0.14 33.83± 0.03 33.94± 0.05 0.004∗

BERT-CRF-TOPIC RAMS 36.67± 0.12 32.69± 0.04 34.56 ± 0.04

Table 4.3: Test dataset performance on different settings. Mean and standard deviation of
precision (P column), recall (R column) and F1 score (F1 column) based on three executions
(with different random seeds) of each setting are presented. To show the improvement of
topic-aware model is significant among different settings (with the null hypothesis that the
BERT-CRF-TOPIC model has the same performance as BERT-CRF model), P-Values from
two-tailed paired t-test on the F1 are included. * means the improvement is statistically
significant. Note that since the test dataset of each setting that we tested on has overlapping,
the t-test result might have high Type I error.

89

Groups Occurrence Event Type Count Event Type Examples
Rare (0, 20] 38 besieging, ratification
Low (20, 50] 35 warning, rescuing
Medium (50, 100] 35 assistance, escaping
Sub-high (100, 500] 53 damaging, destroying
High (500,∞) 7 catastrophe, causation

Table 4.4: Event type groups based on its occurrence frequency in training data.

Groups
Macro P(%) Macro R(%) Macro F1(%)

topic non-topic topic non-topic topic non-topic
Rare 26.12± 0.49 11.29± 1.09 19.63± 1.03 6.76± 0.42 21.49 ± 0.54 8.15± 0.36
Low 56.39± 1.17 50.25± 1.50 49.99± 1.71 35.35± 4.25 50.66 ± 1.46 38.25± 3.82
Medium 59.12± 0.42 61.16± 1.54 56.78± 0.89 51.72± 1.44 56.51 ± 0.47 54.07± 0.57
Sub-high 64.06± 0.67 62.60± 0.23 70.00± 0.38 69.26± 0.51 66.03 ± 0.31 64.61± 0.38
High 63.13± 0.75 61.93± 0.38 70.08± 0.60 71.78± 0.22 66.34± 0.38 66.39 ± 0.16

Table 4.5: Macro precision, recall, and F1 based on event type occurrence groups.

For the generation of the topic-balanced dataset, we first removed the tail topics whose

topic occurrence is less than a threshold (15), and then down-sampling the head topics to the

median occurrence of the topics. BERT-CRF is using BERT as the encoder and CRF as the

decoder. BERT-CRF-TOPIC is our TAED architecture as shown in Figure 4.4. The topic

classification weight is the weight set on the topic classification task when setting the event

detection task weight as 1. The performance of the topic-aware and non-topic-aware models

are shown in Table 4.3. We see that on the full MAVEN and the two generated dataset

settings from splits of training and validation dataset, the topic-aware model improves the

baseline by around 0.5% on the entity level micro F1 score, a commonly adopted metric

for event detection tasks [Wang et al., 2020]. For the two topic-balanced datasets, the

improvement on the F1 score is around 1.8%. We also saw improvement on the F1 score

around 0.6% on the RAMS dataset. Using the paired t-test [Walpole et al., 2012, Chapter 10]

along with three executions (with different random seeds as model parameters) of BERT-

CRF and BERT-CRF-TOPIC models on each dataset setting in Table 4.3, we concluded that

the improvement on each dataset setting is statistically significant. We observed that the

performance of event detection model on RAMS is relatively low. By further investigation

90

Groups P-Value
Rare 0.001∗

Low 0.028∗

Medium 0.039∗

Sub-high 0.026∗

High 0.872

Table 4.6: Two-tailed paired t-test results on F1 score from Table 4.5, based on topic and
non-topic models. Since we have five groups, we will have five null hypothesis. As an
example, the first null hypothesis is topic aware and non-topic aware model have the same
performance on Rare event type group. And the last hypothesis is topic aware and non-topic
aware model have the same performance on High event type group. * means the improvement
is statistically significant. Note that samples of the tests are generated by running the model
with three random seeds as the model parameter. And the trained model is tested on the
same test dataset, thus the t-test result might have high Type I error.

of the training data, 25% of event types have less than 27 labelled instances, which explains

this.

The performance based on high and low resources event types classification is shown in

Figure 4.5. We observed that topic-aware model is doing much better on the low resource

event types like Rare and Low group, with up to 13.34% improvement on F1 score compared

to non-topic-aware model. The statistical significance test results are presented in Table 4.6.

We observed that topic-aware model has statistically significant improvement on the Rare,

Low, Medium and Sub-high event type groups.

In order to have more reliable t-test results for the performance comparison, we also

conducted two-tailed paired t-test with the null hypothesis that the BERT-CRF-TOPIC

model has the same performance as the BERT-CRF model on non-overlapping test datasets.

The results are show in Table 4.7.

4.6.2 Ablation Study

In the ablation study, we first evaluate different ways to generate the topic embeddings.

Further, we conduct experiments to show the effectiveness of different ways the topic infor-

mation interacts with the main contextual sentence. Lastly, we conduct experiments to show

91

Figure 4.5: Topic-aware/non-topic-aware model macro precision, recall, and F1 performance
based on Table 4.5 with error bars on different event type occurrence groups defined in
Table 4.4.

Dataset P-Value
Full MAVEN, Generated Data 1, RAMS 0.012∗

Full MAVEN, Generated Data 2, RAMS 0.012∗

Rare, Low groups 0.011∗

Rare, Low, Medium groups 0.115

Table 4.7: Two-tailed paired t-test results on F1 score for non-overlapping test datasets
with the null hypothesis that the BERT-CRF-TOPIC model has the same performance as
the BERT-CRF. * means the improvement is statistically significant.

that auxiliary topic-classification task is effective.

Topic Name Encoding Ablation Study

As shown in Table 4.8, we observed that using the topic information to generate the context

embedding without using multi-task learning (set weight = 0) is effective. We obtained

improvement on the F1 by 1.07% from 63.66% to 64.73%.

We further tried different ways to generate the topic name embeddings. Instead of using

the [CLS] token hidden representation, we tried to use the averaged topic name tokens

92

embeddings. Furthermore, aside from concatenating the topic name embedding on top of

the context token embedding, we experimented with using topic name attending to the

context sentence tokens. We see similar F1 performance for the above variations as shown

in Table 4.9.

Model Type Topic-
classification
weight

General event
word removed

P(%) R(%) F1(%)

BERT-CRF NA NA 66.91 60.71 63.66
BERT-CRF-TOPIC 1 True 64.44 66.52 65.46
BERT-CRF-TOPIC 0 True 63.52 66.04 64.73
BERT-CRF-TOPIC 0.1 True 62.37 66.66 64.44
BERT-CRF-TOPIC 0.5 True 64.17 64.92 64.53
BERT-CRF-TOPIC 2 True 63.76 65.33 64.51
BERT-CRF-TOPIC 10 True 64.26 58.73 61.38
BERT-CRF-TOPIC 25 True 63.8 47.34 54.33
BERT-CRF-TOPIC 50 True 60.36 33.06 42.65
BERT-CRF-TOPIC 75 True 55.98 25.69 34.99
BERT-CRF-TOPIC 100 True 49.58 19.38 27.79
BERT-CRF-TOPIC 1 False 65.59 64.29 64.93
BERT-CRF-TOPIC
(with vocab)

1 True 64.97 65.08 65.02

Table 4.8: TAED performance with different topic-classification weights, performance of
general event words kept/removed and performance of extra topic keywords added on for a
specific topic.

Model Type Topic Embedding Type P(%) R(%) F1(%)
BERT-CRF-TOPIC [CLS] 67 63.78 65.35
BERT-CRF-TOPIC Average Token Embedding 64.53 66.44 65.47
BERT-CRF-TOPIC [CLS] freeze 64.57 66.57 65.56
BERT-CRF-TOPIC Average Token Embedding freeze 65 65.64 65.32
BERT-CRF-TOPIC [CLS] (topic as attention) 63.93 67.02 65.44

Table 4.9: Performance of using different ways to generate and utilize topic name embedding.

Topic Name Variations Ablation Study

The column “general event word removed” shown in Table 4.8 indicates whether or not we

remove the very general word event from the topic names. Topic names with the general word

93

event, such as recurring event, historical event, and wrestling event, become recurring, historical,

and wrestling, after removing the word event. This will help make our topic embedding more

discriminatory to each other, as the word event, carrying less information to differentiate the

topic phrases from one another, is removed. By adding this pre-processing step for the topic

name, we can see that the performance gets enhanced, as shown in Table 4.8. We further

explored adding the most important keywords of the topic along with the topic name to

enrich the topic contextual embedding. We aggregated the documents that belong to one

topic, and ranked the words in each topic by their tf-idf features. We used the top five

keywords as the representatives and appended them to the topic name. Examples of added

keywords are shown in Table 4.10.

Topic Topic Vocabulary
earthquake magnitude, occurred, quake, intensity, damage

winter storm snow, blizzard, snowfall, new, winds
tennis event open, doubles, slam, singles, djokovic
rugby match chiefs, brumbies, sharks, final, crusaders

university boat race oxford, cambridge, lengths, crews, goldie
war paulo, vargas, 1930, presets, garais

military operation bomb, manchester, ira, bombing, embassy
swimming event golds, medals, bronze, silver, freestyle pool

cricket series ashes, england, australia, test, wickets
civilian attack massacre, attack, kill, police, people

Table 4.10: Sample of ten topic vocabulary terms and their top five representative keywords.

However, after adding the keywords to the topic names, the performance got a little bit

worse, which could be caused by the noise brought in by the keywords. For example, the

keyword new was added for the winter storm topic, and 1930 was added for the war topic.

Multi-Task Learning Ablation Study

We have conducted experiments using different weights on topic classification tasks, where

γ in Equation (4.13) ranges from 0 to 100, where 0 means we ignore the topic classification

loss during backpropagation. We saw that the sweet spot to achieve the best performance

is to set the classification weight as 1 shown in Figure 4.6.

94

Figure 4.6: F1 performance vs γ. Each γ on X-axis has been run 5 times with different ran-
dom seeds represented by points with different colors. The curve is the average performance
of the 5 runs for each γ.

By setting equal loss weight on event detection and topic classification tasks, we further

improved the F1 score by another 0.73% on top of the topic name embedding contribution.

4.7 Result Analysis

The performance shown in Table 4.8 combines both the performance of trigger identification

and trigger classification. We further obtain the performance only for trigger identification

shown in Table 4.11.

Model Type P(%) R(%) F1(%)
BERT-CRF 77.3 77.9 77.6
BERT-CRF-TOPIC 77.93 78.59 78.26

Table 4.11: Performance of BERT-CRF and BERT-CRF-TOPIC only on trigger identifica-
tion.

We can see that the topic-aware event detection model achieves better performance on

both trigger identification and trigger classification. The error cases for event identification

could come from two sources. First, the triggers are not correctly identified. Second, the

95

triggers are correctly identified, but the classification of the identified triggers is wrong. We

conducted case studies for both of the error sources.

For one example:

Flight 821 is the deadliest accident involving a Boeing 737-500, surpassing the

1993 crash of Asiana Airlines Flight 733, and was the second-deadliest aviation

incident in 2008, behind Spanair Flight 5022.

The topic of the sentence is aircraft accident and the top event types for this topic are

catastrophe, causation, and motions. The gold labels for the triggers, accident and incident,

are both “B-catastrophe.” The non-topic-aware model failed to identify the triggers in the

first place, while the topic-aware model identifies the triggers and classifies them correctly

into a catastrophe event.

For another example:

This was the first southern stadium rock show since ZZ TOP played to 80,000

people at UT Austin on September 1, 1974 and tore up the field.

Both methods identified played as the event trigger. However, the topic-aware model pre-

dicted played as “B-competition” while the non-topic-aware model predicted it as “B-participation.”

The gold label for played is “B-competition.” The topic of the sentence is music festival, and

the top event types for this topic are social event, process start, arranging, and competition.

We can see that in both examples of the error cases, topic information plays an important

role for the event detection task.

In addition, we performed case studies to understand the “bridge” behavior of document

topics on transferring knowledge from high resource event types to low resource event types.

For example, besieging is a rare event type. The most frequent topic that the event type

belongs to is military conflict. The military conflict topic further has frequent event types

including hostile encounter and attack, which are semantically related to the low resource

event type besieging. Using the topic name as prior knowledge along with the introduction

96

of the topic classification task, we reinforce the topic information in the hidden layer sent to

the decoder. The hidden layer thus carries the information of high resource event types that

belong to the given topic. This further leads to information transformation to low resource

event types that are semantically related to high resource event types.

4.8 Reproducibility

We implemented the Topic Aware Event Detection framework using the functionality pro-

vided in the PyTorch and Transformers packages. We adopted bert-base-cased version1 of

the BERT model and used the default AdamW optimizer with the Learning rate as 5×10−5

and Adam Epsilon as 10−8. A dropout layer was introduced after the BERT encoder layer

with a dropout rate 0.3. And the training batch size for the model was 16.

For the RAMS dataset topic generation, we applied the LDA algorithms on RAMS

dataset for pseudo topic label generation. We chose the number of topics from the range of

[10, 15, 25, 30, 35] and manually judged the quality of the topics returned and ended up

using of 25 as the best fit of number of topics for the RAMS dataset. The pseudo topic name

is from the outputs of the LDA, which is the combination of the top 5 important words for

the specific topic. The pseudo topic names are listed below in Table 4.12.

4.9 Summary

This study proposed a topic-aware event detection method by using the topic name embed-

ding to enrich the contextual representations of the sentences. It also adopts the multi-task

set-up to combine the event detection and topic classification tasks. We showed the effec-

tiveness of this method by testing on different datasets and conducting ablation studies.

We explored different ways to generate topic embedding and different interaction methods

between topic and sentence embeddings. Further analysis showed the topic-aware model

1https://huggingface.co/bert-base-cased

97

https://huggingface.co/bert-base-cased

Topic Index Pseudo Topic Labels
0 photo, caption, image, hide, force
1 oil, sanction, export, year, price
2 inform, secure, intelligence, government, email
3 police, attack, shoot, fan, man
4 email, investigate, fbi, hack, department
5 attack, bomb, build, kill, force
6 world, war, think, agreement
7 president, state, country, nato, unit
8 nuclear, bank, missile, system, weapons
9 attack, report, investigate, news, told
10 force, rebel, group, military, air
11 women, attack, share, right, day
12 isra, aid, human, intern, right
13 support, crimea, muslim, use
14 campaign, republican, president, donald, democrat
15 president, support, campaign, former, bush
16 million, tax, percent, wall, pay
17 foundation, million, report, government, department
18 vote, voter, elect, party, poll
19 women, sexual, rape, extradite, year
20 senate, gop, bill, seek, ryan
21 white, house, democrat, party, polite
22 question, ask, debate, cnn, death
23 polite, think, president, attempt, thing
24 state, unit, war, foreign, world

Table 4.12: Pseudo topic labels generated by LDA for RAMS dataset.

architecture beats the non-topic-aware model by a large margin in a few-shot event type

scenario. Furthermore, we analyzed the event type distribution based on topics which fun-

damentally explains why the sentence topic information can help the event detection task.

There are limitations of the experimental design in Table 4.3 and Table 4.6. We are

training the models whose parameters are initialized by three random seeds on the same

train/validation dataset. And the trained models are tested on the same test datasets which

leads to the consequences that the test performances are not independent. This violates the

assumptions made by the t-test. Thus, our statistical test results have high type I error.

The results in Table 4.3 and Table 4.6 can only validate the topic-aware model improves the

98

performance of event detection on MAVEN and RAMS datasets.

99

Chapter 5

Adaptive Scalable Pipelines for Event

Data Extraction

Political event data has been increasingly important for researchers to study and predict

global events. Until recently, the majority of political events were hand-coded from text,

limiting the timeliness and coverage of event data sets. Recent systems have successfully

employed big data systems for extracting events from text. These automated event systems

have been limited by either slow performance or high infrastructure demands. In this work,

we present a new approach to big data systems that allow for faster extractions when com-

pared to existing systems. We describe a modular system, Biryani, that adaptively extracts

events from batches of documents. We use distributed containers to process streams of in-

coming documents. The number of containers processing documents can be increased or

reduced depending on available resources and load. The optimal configuration for event ex-

traction is learned, and the system adapts to maximize the throughput of coded documents.

We show the adaptability through experiments running on laptops and multiple commodity

machines. We use this system to extract a new political event data set from several terabytes

of text data.

100

5.1 Introduction

The availability of a large corpora of online news documents has made it possible for computer

and social scientists to study human political behavior at previously impossible scales. One

of the primary bottlenecks in deriving meaning from text documents is the resource demands

of the natural language processing and information extraction that need to be performed.

Current document processing pipelines suffer from a range of limitations when processing

hundreds of millions of news articles for social science applications, either in terms of poor

performance or ease of use. Document processing pipelines written by social scientists are

easily installed and customized but tend to be single-threaded and slow for corpora larger

than a few hundred thousand documents. Frameworks for distributed pipelines that are fully

flexible (Apache Nifi, Kubernetes, Spark) require sophisticated infrastructure and significant

technical expertise both to set up and to customize for document processing tasks, which

creates a high hurdle for applied use.

In this paper, we present a simple, adaptive pipeline named Biryani for extracting po-

litical events from many news documents. The performance benef are derived from a low-

overhead distributed architecture that adaptively tweaks processing parameters to optimize

throughput on the processing machines using a Kalman filter. The modular, containerized

architecture allows the pipeline to be executed on laptops and large clusters with minimal

dependencies. The pipeline can be installed in a more straight forwad way compared to

other distributed pipelines, which is a high priority for social scientists.

We begin by discussing social scientists’ use of event data extracted from text. We then

provide a system overview and describe the components of the system. We next present

the experiment design and the evaluation of the experiment. We conclude by discussing the

impact of the experiment results and giving future directions.

101

5.2 Background

News articles published on the web give social scientists in academia and government the

ability to measure and understand political events worldwide [O’Brien, 2010; Wang et al.,

2016]. In order to extract meaning from this text, social scientists have developed stan-

dardized event ontologies that define political actors and political events in a consistent

form [Schrodt, 2012]. These ontologies represent political events in a framework of “who did

what to whom,” with standardized codes for different actors (e.g., government, military, or

rebel) and the type of action (e.g., make statement, protest for leadership change, or fight with

small arms). According to the ontologies, social scientists use specialized dictionary-based

coders to extract events from text to transform raw text into event data.

Early systems used simple dictionary matching techniques to extract events [Schrodt,

2009]. Modern approaches use syntactic information provided by statistical parsers such

as Stanford’s CoreNLP [Manning et al., 2014] to better match noun and verb phrases with

dictionaries [Norris et al., 2017]. Processing stories through CoreNLP and the event data

extraction pipeline1 can be very slow, both in “batch” mode and when run on stories stream-

ing in from scrapers downloading news stories from web RSS feeds.2 In the existing pipeline,

as stories are scraped from the web, they are stored in a MongoDB and processed through

a pipeline to perform CoreNLP annotations, and then run through a pipeline for event

extraction, geoparsing, and other annotation tasks [Schrodt et al., 2014].

The document processing pipelines in the open-source event data research community

are simple single-threaded pipelines that struggle to rapidly process large corpora in the

hundreds of millions of documents. One approach to improving the processing pipeline is

described in Solaimani et al. [2016]. This process uses a Spark architecture for distributed

CoreNLP processing and event extraction.3 We describe a system that can be executed

1https://github.com/openeventdata/phoenix_pipeline
2E.g., https://github.com/johnb30/atlas
3This approach and ours both take existing, specialized tools and reformulate them as distributed, scalable

tools. An alternative approach would be to use an existing general distributed architecture like Kubernetes
or Apache Nifi and modify it to perform the document processing task or to use general tools like [Rak et al.,

102

https://github.com/openeventdata/phoenix_pipeline
https://github.com/johnb30/atlas

either as a single machine or a multi-machine distributed system. The pipeline needs lower

set-up costs and without the need to set up a Spark cluster. This allows researchers to use

the same tool for widely varying task sizes.

5.3 Methodology

5.3.1 System Overview

The architecture is built on Docker containers, which allow dependencies and software to

be self-contained [Merkel, 2014]. The processing occurs within distributed containerized

CoreNLP instances [Manning et al., 2014]. Each container pulls documents from a central

RabbitMQ queue, processes them, and stores them in an SQLite database. This architecture

allows the pipeline to run locally on one machine or it may be distributed across a hetero-

geneous cluster. The completed system is launched using a container orchestration system

such as Docker Compose or Kubernetes.4

Containerizing and distributing the processing step has several advantages in addition to

the ability to distribute across machines: the per-container threads, batchsize, and memory

can be adapted to increase processing speed, containers can be automatically restarted on

failure, and the architecture becomes generalizable to processes that are not natively multi-

threaded (e.g., Python).

Figure 5.1 displays the components of the system. Raw data is uploaded from web pages

into MongoDB. This is a common interface for storing data but it is not essential to the

Biryani system. Data is transferred from MongoDB or an API to RabbitMQ. This queue is

a persistent storage and the entry point to Biryani. Containers are spun up as consumers

of the data queue. The containers execute the Stanford CoreNLP process with multiple

threads. The data in each container is written to a local SQLite database. Finally, an

2012; Perovšek et al., 2016; Kano et al., 2011].
4https://github.com/kubernetes/kubernetes

103

https://github.com/kubernetes/kubernetes

Figure 5.1: The Biryani system architecture.

existing specialized event extraction system [Norris et al., 2017] can be executed over the

CoreNLP processed text.

5.3.2 Optimize System Parameters with Kalman Filter

To optimize parameters like batch and thread size automatically we employ a Kalman fil-

ter [Kalman, 1960]. The time taken to process documents can be viewed as a random vari-

able; even with the batch size and thread number fixed, the processing time will differ each

time the process runs. Randomized noise includes factors such as how many other processes

are running on the system while it runs the pipeline, and exceptions that some documents

could cause while being parsed. Therefore, we select the discrete Kalman filter algorithm, a

Bayesian time series inference model. The Kalman filter uses a series of measurements with

an estimated distribution of statistical noise and other inaccuracies, and infers a number of

execution parameters of the pipeline. In our case, the parameter learned from the Kalman

filter is batch size.

The Kalman filter estimates the current state variables (batch processing time) and their

uncertainties. Once the outcome of the next measurement is observed, though with noise

and measurement error, these measurement estimates are updated using a weighted average,

with more weight being given to estimates with higher certainty.

104

The external parameters to the Kalman Filter are P , the a posteriori error estimate, R,

the estimate of measurement variance, and a noise parameter Q. Because we executed the

data pipeline on a machine that was not running many other processes, our noise parameter

will be relatively small. We therefore set our Q, representing the stability of the system, to

be small. The value Z is the observation running time of a batch by using the batch size

proposed by Kalman filter. The current a posteriori estimation of the state is represented as

X, and K is a relative weight given to the measurements. Based on the system configuration,

the user may choose different hyper parameters for the Kalman filter to tune the performance

better.

Kalman 0.75 filter is defined in the following way. A fixed value for Q as 0.10.75 is used

to model the stability of the system. The pseudo code for Kalman 0.75 filter is presented

in Algorithm 1. We first initialize parameters P , Q, K, R, X and batch. For each batch

in the data stream, we do the following updates. Using the estimated batch size, we obtain

the observation value defined as the actual processing time of the batch. We update the

weight value K, a bigger value of K indicates the estimated time taken X is less reliable.

(If the estimate error P get bigger, then K will be bigger.) Next, we update the next step

time taken for a batch as a combination of the actual time taken and current step time

estimation weighted by K. When P is bigger, which indicates the estimation error is large,

we distribute a lower weight 1 − K to the estimation and a larger weight K to the actual

time taken. At last, based on the estimated time taken for the next step, the updated batch

size can be calculated.

5.4 Experiments

In this section, we describe the experiments we conducted to demonstrate the performance

of Biryani. We develop a set of experiments to examine the system’s effectiveness and the

efficacy of the system optimizations. The data in this system was stored on an Intel®

105

Algorithm 1 Pseudo code for Kalman 0.75 filter based optimization.
P = 1
Q = 10−1

K = 0.0
R = 0.10.75

X = 0
batch = batch0

while eachBatch in stream do
P = P +Q
Z = observation(batch)
K = P+Q

P+Q+R

X = K ∗ Z + (1−K) ∗X
P = (1−K) ∗ P
batch = X ∗ batch

Z

end while

Xeon® CPU X5687 @ 3.60GHz with 16 total cores and 96 GBs of RAM. These experiments’

processing was performed on an Intel® Core™ i7-6950X CPU @ 3.00GHz CPU with 20 total

cores and 126 GBs of RAM. The processing machine contains two 6 TB disks and has stated

transfer speeds of up to 6 GB/s. For all the experiments we used only 8 cores of the machine

and we limited the memory where specified.

We performed all experiments using the English Gigaword corpus [Parker et al., 2011].

This corpus contains a collection of news wire text data in English that has been acquired

over several years by the Linguistic Data Consortium. The corpus contains 4 million docu-

ments (12 GB uncompressed) from The New York Times Newswire Service, Agence France

Presse English Service, Associated Press’ Worldstream English Service, and The Xinhua

News Agency English Service. This data set mirrors web collection tasks performed by so-

cial scientists but is large enough to allow us to test scalability. The data set is preprocessed

and added to a MongoDB database offline.

Our architecture already has several advantages over the current state-of-the-art. Our

system runs without needing a “Big Data” cluster, which most social scientists do not have

access to. Instead, Biryani can be quickly and easily deployed on any modern hardware. The

distributed processing approach also allows us to add or remove machines from the pool of

106

workers dynamically. To further increase our processing speed, we can dynamically change

each container’s size and number of threads.

Given a particular machine configuration, the first experiment aims at discovering the

optimal batch and thread size for the pipeline. We performed experiments varying the batch

sizes and threads, using a randomized subset of documents of sizes 1Kand 25K, respectively.

This experiment also logs the total contribution taken by each component in the pipeline,

including the Stanford CoreNLP annotators. We note that skew is frequently a cause of

performance problems for batch processing systems [Kwon et al., 2011]. A skew in document

sizes can leave some batches waiting on a few large documents to complete processing.

Additionally, the order of incoming documents can significantly impact the performance of

the pipeline. To show the best practical results, we randomized the order of documents

before each run of the experiments.

In the next set of experiments, we test the optimizations defined in Section 5.3.2. We

compare the various parameters of the optimized pipeline with a static set pipeline configu-

ration.

5.5 Evaluation

This section describes the results of the experiments described in Section 5.4. We first give

timing numbers for different batch sizes. Next, we look at the breakdown of the propor-

tion of time used for each component. We then examine the Kalman filter performance

optimizations.

We first experiment to discover the optimal batch size. We ran each configuration three

times and plotted the average time taken for each combination of the batch size and thread.

Figures 5.2 and 5.3 show darker squares where the values are greater. From the graphs, we

can approximate that 200 is the optimal batch size for randomized documents of different

sizes from Gigaword. This confirms the need to optimize batch size decisions.

107

Figure 5.3 shows no significant improvement across all thread pool sizes. This suggests

that Biryani will not see significant gains from optimizing thread pool sizes.

Figure 5.2: Average timing information for 1,000 Documents.

Figure 5.3: Average timing information for 25,000 Documents.

5.5.1 Adaptive Batch Size By Using Kalman Filter

From the experiments performed above we found that batch size was the most important

feature to optimize. In order to effectively choose how much data should be processed per

batch, we use a Kalman filter described below.

Table 5.1 shows performance gain of Kalman filter approach over static batch pipeline

when performed on 150,000 documents. “Kalman 0.75” represents a pipeline with the

108

Pipeline Docs Run 1 (s) Run 2 (s) Avg (s) % Gain P-Value

Static 150K 13,555 13,619 13,587 - 0.044∗

Kalman 0.75 150K 13,051 13,180 13,115 3.47%

Table 5.1: Performance Gain of Kalman Filter approach over 150,000 documents. The null
hypothesis is Kalman filter adapted system has the same performance as non Kalman filter
adapted system. * means the improvement is statically significant using the two-tailed paired
t-test. Note that since the test dataset of each setting that we tested on has overlapping,
the t-test result might have high Type I error.

Kalman filter parameter R = 0.10.75 while other parameters P , K and Q remain unchanged.

Note that the test data subset was reshuffled before each run of the pipeline.

5.5.2 Performance of The Pipeline on Laptop Configuration

We used Google Compute Engine (GKE) to spin up a VM that is similar to a current

day laptop configuration. The configuration of the VM used was an Intel® Xeon® CPU

@ 2.30GHz, 4 cores, and 16GB of RAM. We performed experiments on different pipeline

approaches three times each on 12,484 random documents for each run and calculated the

average.

Figure 5.4 shows the performance of the Kalman filter approach and the standard error

bars of each experiment. We use the static algorithm as a baseline in the laptop configu-

ration experiments. Kalman filter with a parameter of 0.75 sees the best speed up with a

mean increase of 20.33% followed by the 1.0 Pipeline with an 16.41% mean increase. Kalman

filter configurations of 0.5 and 0.25 achieved lower speedups of 14.86% and 14.04%, respec-

tively. The lowest performing configurations still had speedups of 9.41% (Kalman 2.0) and

12.52% (Kalman 1.5). We presented the paired t-test results in Table 5.2. The performance

improvements of Kalman filter 1.5, Kalman filter 1.0, Kalman filter 0.75 and Kalman filter

0.5 are significant. We concluded that Kalman filter optimization of the event data creation

pipeline can also provide speedups to low resource environments.

In order to have more reliable t-test results for the performance comparison, we also

109

Figure 5.4: Kalman filter approaches over 12,484 sets of random documents with mean and
standard deviation of three executions on each setting. The statistical significance tests for
each settings are presented in Table 5.2.

conducted two-tailed paired t-test with the null hypothesis that Kalman filter based batchsize

has the same performance as static batchsize on non-overlapping test datasets. The results

are show in Table 5.3.

5.6 Summary

In this paper we describe a pipeline, Biryani, for extracting event data from web documents.

Biryani has a container based architecture that adapts to the available systems and available

load to process text. This architecture allows researchers to use whatever resources that they

have to process a large data set. We were able to easily deploy into the Azure cloud in addi-

tion to the Google Compute Engine for extra processing bandwidth. We were able to publish

largest machine-coded political event dataset covering 1979 to 2016 (2TB and 300 million

110

Kalman filter settings P-Value
Kalman 2.0 0.169
Kalman 1.5 0.031∗

Kalman 1.0 0.046∗

Kalman 0.75 0.05∗

Kalman 0.5 0.036∗

Kalman 0.25 0.125

Table 5.2: Statistical significance test results for different Kalman filter based batchsize
compared to static batchsize performance with two-tailed paired t-test. The null hypothesis
is Kalman filter adapted system has the same performance as non Kalman filter adapted
system. * means the improvement is statistically significant. The mean and standard devi-
ations of three executions on each setting is presented in Figure 5.4. The test dataset was
reshuffled three times to support three executions on each setting. Note that since the test
dataset of each setting that we tested on has overlapping, the t-test result might have high
Type I error.

Dataset P-Value
150,000 documents, 12,484 documents 0.04∗

Table 5.3: Two-tailed paired t-test results for non-overlapping test datasets with the null
hypothesis that Kalman filter based batchsize has the same performance as static batchsize.
* means the improvement is statistically significant.

documents have been processed) under the name TERRIER5 (Temporally Extended Regu-

larly Reproducible International Event Records). It is publicly shared with all researchers to

study events. For future work we plan to optimize based on more system state variables. We

will also integrate this processing system with a larger analytic pipeline that is used to query

and study the extracted events. The code for the conducting the experiments mentioned in

this chapter is open-sourced and available at https://github.com/oudalab/biryani.

5https://terrierdata.org/

111

https://github.com/oudalab/biryani
https://terrierdata.org/

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Event extraction is quite an essential and challenging task in the natural language processing

domain. As shown in Figure 1.2, there are mainly three components in an event extraction

workflow. Our work aims at scaling up the process of event extraction for all of the com-

ponents: data, model, model deployment and inference. We have made the following efforts

and contributions on the journey to make event extraction tasks more scalable and flexible.

On the data dimension, with the New Techniques for Coding Political Events across

Language [Liang et al., 2018], we designed and implemented four different approaches to

generate labelled events more accurately and efficiently. It can be generalized to different

languages and different domains when the domain event taxonomy is given. Using the

proposed approaches along with the website we developed, we were able to complete Arabic

actor and verb dictionaries with coverage equivalent to the English language dictionaries in

less than two years of work, compared to the two decades that the English dictionaries took

to produce.

On the model dimension, with the TAED: Topic-Aware Event Extraction, we proposed a

domain-aware event extraction method by utilizing the topic name embeddings to enrich the

112

sentences’ contextual representations and the multi-task set-up of event extraction and topic

classification tasks. With the proposed method, we conducted experiments with two event

detection datasets MAVEN and RAMS, various event types. We achieved up to +1.8% on

the F1 score compared to the baseline. Furthermore, we show that the topic-aware model

we proposed can improve the few-shot event types scenario with a large margin of +13.34%

on the F1 score and provide heuristic explanations in our case study.

On the model deployment and inference dimension, with the Adaptive Scalable Pipe-

lines for Political Event Data Generation [Liang et al., 2017], we designed and implemented

a pipeline, Biryani, for efficiently extracting event data from large amount of documents.

Baryani has a container based architecture that adapts to the available systems and load

to process text. This architecture allows researchers to use whatever resources they have to

process a large data set.

6.2 Future Work

The best-performed Deep Learning method requires a large amount of training data, but

using human effort to label more accurate data is a high cost. Nowadays, there is a trend

to use weak-supervised data to train deep learning models. Weak-supervised data means

the training data is large but the data might be noisy or obtained from an imprecise source.

Since the data is noisy, the model needs to be aware of the noise and also needs a special

design to deal with the noise [Song et al., 2022]. The noise-aware event extraction models are

a way to explore on par performance with the model trained with accurate human labelled

data.

For the closed-domain event extraction, when a new domain evolves, in order to do

all four subtasks: trigger identification, trigger classification, argument identification, and

argument role classification, we need a specific event-argument schema pre-defined. It will

be worth the effort to explore ways on automatic schema/taxonomy generation for event

113

extraction on different domains. This will speed up moving the event extraction techniques

into different domains.

Furthermore, the newly generated event extraction dataset like MAVEN comes with

hierarchical event types as shown in Figure 2.3. The hierarchical structure of the event

types is not being explored in the literature to bring in extra knowledge for event detection.

As an example, because of the semantic similarity between the sibling event types, the model

might be confused more to mis-classify the event into its sibling event types than more far

away event types. It will be worth the effort to explore methods along this dimension to

improve the performance of the event extraction.

114

Bibliography

Aguilar, J., Beller, C., McNamee, P., Van Durme, B., Strassel, S., Song, Z., and Ellis, J.
(2014). A comparison of the events and relations across ACE, ERE, TAC-KBP, and
FrameNet annotation standards. In Proceedings of the Second Workshop on EVENTS:
Definition, Detection, Coreference, and Representation, pages 45–53, Baltimore, Mary-
land, USA. Association for Computational Linguistics.

Allan, J. (2012). Topic detection and tracking: event-based information organization, vol-
ume 12. Springer Science & Business Media.

Allan, J., Carbonell, J. G., Doddington, G., Yamron, J., and Yang, Y. (1998). Topic detection
and tracking pilot study final report. In Proceedings of the DARPA Broadcast News
Transcriptionand Understanding Workshop.

Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves,
A. P., Zhao, B., Aberle, D. R., Henschke, C. I., and Hoffman, E. A. (2011). The lung image
database consortium (LIDC) and image database resource initiative (IDRI): a completed
reference database of lung nodules on ct scans. Medical physics, 38(2):915–931.

Atkinson, M., Piskorski, J., Tanev, H., van der Goot, E., Yangarber, R., and Zavarella, V.
(2009). Automated event extraction in the domain of border security. In International
Conference on User Centric Media, pages 321–326. Springer.

Atkinson, M., Piskorski, J., Tanev, H., and Zavarella, V. (2017). On the creation of a
security-related event corpus. In Events and Stories in the News Workshop Vancouver,
Canada, pages 59–65.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bach, S. H., He, B., Ratner, A., and Ré, C. (2017). Learning the structure of generative
models without labeled data. In International Conference on Machine Learning, pages
273–282. PMLR.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In Bengio, Y. and LeCun, Y., editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

115

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet Project.
In Proceedings of the 36th Annual Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computational Linguistics - Volume 1, ACL
’98/COLING ’98, page 86–90, USA. Association for Computational Linguistics.

Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V. (2001). Support vector clustering.
Journal of machine learning research, 2:125–137.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022.

Bosselut, A., Le Bras, R., and Choi, Y. (2021). Dynamic neuro-symbolic knowledge graph
construction for zero-shot commonsense question answering. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI), pages 4923–4931.

Bossy, R., Bessières, P., and Nédellec, C. (2013). BioNLP shared task 2013–an overview
of the genic regulation network task. In Proceedings of the BioNLP Shared Task 2013
Workshop, pages 153–160.

Cao, Y., Peng, H., Wu, J., Dou, Y., Li, J., and Yu, P. S. (2021). Knowledge-preserving
incremental social event detection via heterogeneous gnns. In Proceedings of the Web
Conference 2021, pages 3383–3395.

Capet, P., Delavallade, T., Nakamura, T., Sandor, A., Tarsitano, C., and Voyatzi, S. (2008).
A risk assessment system with automatic extraction of event types. In International
Conference on Intelligent Information Processing, pages 220–229. Springer.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Chen, L., Ruan, W., Liu, X., and Lu, J. (2020a). Seqvat: Virtual adversarial training
for semi-supervised sequence labeling. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 8801–8811.

Chen, P., Bogoychev, N., Heafield, K., and Kirefu, F. (2020b). Parallel sentence mining by
constrained decoding. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1672–1678.

Chen, S., Wang, Y., Liu, J., and Wang, Y. (2021). Bidirectional machine reading compre-
hension for aspect sentiment triplet extraction. Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI), pages 12666–12674.

Chen, Y., Xu, L., Liu, K., Zeng, D., and Zhao, J. (2015). Event extraction via dynamic
multi-pooling convolutional neural networks. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 167–176, Beijing, China.
Association for Computational Linguistics.

116

Chen, Y., Yang, H., Liu, K., Zhao, J., and Jia, Y. (2018). Collective event detection via a
hierarchical and bias tagging networks with gated multi-level attention mechanisms. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 1267–1276, Brussels, Belgium. Association for Computational Linguistics.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).
Natural language processing (almost) from scratch. Journal of machine learning research,
12:2493–2537.

Conlon, S. J., Abrahams, A. S., and Simmons, L. L. (2015). Terrorism information extraction
from online reports. Journal of Computer Information Systems, 55(3):20–28.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. Advances in neural
information processing systems, 28.

De Cao, N., Izacard, G., Riedel, S., and Petroni, F. (2021). Autoregressive entity retrieval.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113.

DeHart, J., Xu, C., Grant, C., and Egede, L. (2021). Proposing an interactive audit pipeline
for visual privacy research. In 2021 IEEE International Conference on Big Data (Big
Data), pages 1249–1255. IEEE.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. IEEE.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), Volume 1 (Long and Short Papers), pages
4171–4186.

Ding, X., Song, F., Qin, B., and Liu, T. (2011). Research on typical event extraction method
in the field of music. Journal of Chinese Information Processing, 25(2):15–21.

Du, X. and Cardie, C. (2020). Event extraction by answering (almost) natural questions. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 671–683, Online. Association for Computational Linguistics.

Ebner, S., Xia, P., Culkin, R., Rawlins, K., and Van Durme, B. (2020). Multi-sentence ar-
gument linking. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8057–8077, Online. Association for Computational Linguistics.

117

Ellis, J., Getman, J., Fore, D., Kuster, N., Song, Z., Bies, A., and Strassel, S. M. (2015).
Overview of linguistic resources for the TAC KBP 2015 evaluations: Methodologies and
results. In Proceedings of the 2015 Text Analysis Conference, TAC 2015, Gaithersburg,
Maryland, USA, November 16-17, 2015. NIST.

Ellis, J., Getman, J., and Strassel, S. M. (2014). Overview of linguistic resources for the
TAC KBP 2014 evaluations: Planning, execution, and results. In Proceedings of TAC
KBP 2014 Workshop, National Institute of Standards and Technology, pages 17–18.

Ge, T., Cui, L., Chang, B., Sui, Z., Wei, F., and Zhou, M. (2018). EventWiki: a knowledge
base of major events. In Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Ghaeini, R., Fern, X., Huang, L., and Tadepalli, P. (2016). Event nugget detection with
forward-backward recurrent neural networks. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages 369–
373.

Gui, T., Ye, J., Zhang, Q., Li, Z., Fei, Z., Gong, Y., and Huang, X. (2020). Uncertainty-
aware label refinement for sequence labeling. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, pages 2316–2326.

Guo, S., Li, R., Tan, H., Li, X., Guan, Y., Zhao, H., and Zhang, Y. (2020). A frame-based
sentence representation for machine reading comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 891–896.

He, K., Girshick, R., and Dollár, P. (2019). Rethinking ImageNet pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4918–4927.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778.

Hirschman, L. (1998). The evolution of evaluation: Lessons from the message understanding
conferences. Computer Speech & Language, 12(4):281–305.

Honnibal, M. and Montani, I. (2017). Prodigy: A new tool for radically ef-
ficient machine teaching. Online Article. URL: https://explosion.ai/blog/

prodigy-annotation-tool-active-learning. Last accessed: April 14, 2022.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional LSTM-CRF models for sequence
tagging. Computing Research Repository, abs/1508.01991.

Ji, H. and Grishman, R. (2008). Refining event extraction through cross-document infer-
ence. In Proceedings of ACL-08: HLT, pages 254–262, Columbus, Ohio. Association for
Computational Linguistics.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal
of Basic Engineering, 82(1):35–45.

118

https://explosion.ai/blog/prodigy-annotation-tool-active-learning
https://explosion.ai/blog/prodigy-annotation-tool-active-learning

Kano, Y., Miwa, M., Cohen, K. B., Hunter, L. E., Ananiadou, S., and Tsujii, J. (2011).
U-compare: A modular NLP workflow construction and evaluation system. IBM Journal
of Research and Development, 55(3):11:1–11:10.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1746–1751, Doha, Qatar. Association for Computational Linguistics.

Kussul, E. and Baidyk, T. (2004). Improved method of handwritten digit recognition tested
on MNIST database. Image and Vision Computing, 22(12):971–981.

Kwon, Y., Balazinska, M., Howe, B., and Rolia, J. (2011). A study of skew in MapReduce
applications. In The 5th Open Cirrus Summit. Moskow.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML ’01, page 282–289, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, F., Peng, W., Chen, Y., Wang, Q., Pan, L., Lyu, Y., and Zhu, Y. (2020a). Event
extraction as multi-turn question answering. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Findings, pages 829–838.

Li, P., Zhou, G., Zhu, Q., and Hou, L. (2012). Employing compositional semantics and
discourse consistency in chinese event extraction. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1006–1016.

Li, Q., Ji, H., and Huang, L. (2013). Joint event extraction via structured prediction with
global features. In Proceedings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 73–82.

Li, W., Cheng, D., He, L., Wang, Y., and Jin, X. (2019). Joint event extraction based on
hierarchical event schemas from framenet. IEEE Access, 7:25001–25015.

Li, Z., Chang, X., Yao, L., Pan, S., Zongyuan, G., and Zhang, H. (2020b). Grounding visual
concepts for zero-shot event detection and event captioning. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
297–305.

Li, Z., Ding, X., and Liu, T. (2018). Constructing narrative event evolutionary graph for
script event prediction. In Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence (IJCAI-18), pages 4201–4207.

119

Liang, Y., Halterman, A., Irvine, J., Landis, M., Jalla, P., Grant, C., and Solaimani, M.
(2017). Adaptive scalable pipelines for political event data generation. In Big Data (Big
Data), 2017 IEEE International Conference, pages 2879–2883. IEEE.

Liang, Y., Jabr, K., Grant, C., Irvine, J., and Halterman, A. (2018). New techniques
for coding political events across languages. In 2018 IEEE International Conference on
Information Reuse and Integration (IRI), pages 88–93. IEEE.

Liao, J., Zhao, X., Li, X., Zhang, L., and Tang, J. (2021). Learning Discriminative Neural
Representations for Event Detection, page 644–653. Association for Computing Machinery,
New York, NY, USA.

Lin, H., Lu, Y., Han, X., and Sun, L. (2019). Cost-sensitive regularization for label confusion-
aware event detection. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5278–5283, Florence, Italy. Association for Computa-
tional Linguistics.

Liu, M., Liu, Y., Xiang, L., Chen, X., and Yang, Q. (2008). Extracting key entities and
significant events from online daily news. In International Conference on Intelligent Data
Engineering and Automated Learning, pages 201–209. Springer.

Liu, X., Huang, H., and Zhang, Y. (2019). Open domain event extraction using neural latent
variable models. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2860–2871, Florence, Italy. Association for Computational
Linguistics.

Liu, X., Luo, Z., and Huang, H. (2018). Jointly multiple events extraction via attention-
based graph information aggregation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 1247–1256, Brussels, Belgium. Association
for Computational Linguistics.

Lu, Y., Lin, H., Xu, J., Han, X., Tang, J., Li, A., Sun, L., Liao, M., and Chen, S. (2021).
Text2Event: Controllable sequence-to-structure generation for end-to-end event extrac-
tion. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 2795–2806, Online. Association for Computational
Linguistics.

Luan, Y., Wadden, D., He, L., Shah, A., Ostendorf, M., and Hajishirzi, H. (2019). A general
framework for information extraction using dynamic span graphs. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
3036–3046, Minneapolis, Minnesota. Association for Computational Linguistics.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. (2014).
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations, pages
55–60.

120

Mart́ınez Alonso, H. and Plank, B. (2017). When is multitask learning effective? Semantic
sequence prediction under varying data conditions. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, pages 44–53, Valencia, Spain. Association for Computational Linguistics.

Meng, H. (2015). Research on event extraction technology in the field of unexpected events.
Master’s Thesis, School of Computer Science, Shanghai University. Shanghai, China.

Merkel, D. (2014). Docker: lightweight Linux containers for consistent development and
deployment. Linux Journal, 2014(239):2.

Munson, M. A. (2012). A study on the importance of and time spent on different modeling
steps. ACM SIGKDD Explorations Newsletter, 13(2):65–71.

Nédellec, C., Bossy, R., Kim, J.-D., Kim, J.-J., Ohta, T., Pyysalo, S., and Zweigenbaum, P.
(2013). Overview of bionlp shared task 2013. In Proceedings of the BioNLP shared task
2013 workshop, pages 1–7.

Nguyen, T. H., Cho, K., and Grishman, R. (2016). Joint event extraction via recurrent
neural networks. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
300–309, San Diego, California. Association for Computational Linguistics.

Norris, C., Schrodt, P., and Beieler, J. (2017). PETRARCH2: Another event coding pro-
gram. The Journal of Open Source Software, 2(9):133.

Nuij, W., Milea, V., Hogenboom, F., Frasincar, F., and Kaymak, U. (2013). An automated
framework for incorporating news into stock trading strategies. IEEE transactions on
knowledge and data engineering, 26(4):823–835.

Osorio, J. and Reyes, A. (2017). Supervised event coding from text written in Spanish:
Introducing eventus id. Social Science Computer Review, 35(3):406–416.

O’Brien, S. P. (2010). Crisis early warning and decision support: Contemporary approaches
and thoughts on future research. International Studies Review, 12(1):87–104.

Parker, R., Graff, D., Kong, J., Chen, K., and Maeda, K. (2011). English Gigaword Fifth
Edition LDC2011T07. Web Download. Linguistic Data Consortium, Philadelphia. https:
//catalog.ldc.upenn.edu/LDC2011T07.

Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural net-
works on MNIST classification task. Computing Research Repository, abs/1804.02763.

Perovšek, M., Kranjc, J., Erjavec, T., Cestnik, B., and Lavrač, N. (2016). TextFlows: A
visual programming platform for text mining and natural language processing. Science of
Computer Programming, 121:128–152.

Piskorski, J., Tanev, H., Atkinson, M., Goot, E. v. d., and Zavarella, V. (2011). Online news
event extraction for global crisis surveillance. In Transactions on computational collective
intelligence V, pages 182–212. Springer.

121

https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2011T07

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improv-
ing language understanding by generative pre-training. Technical report, Ope-
nAI. Preprint. https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf.

Rak, R., Rowley, A., Black, W., and Ananiadou, S. (2012). Argo: an integrative, interactive,
text mining-based workbench supporting curation. Database: the journal of biological
databases and curation, volume: 2012.

Ramponi, A., van der Goot, R., Lombardo, R., and Plank, B. (2020). Biomedical event
extraction as sequence labeling. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5357–5367.

Ribeiro, S., Ferret, O., and Tannier, X. (2017). Unsupervised event clustering and aggre-
gation from newswire and web articles. In Proceedings of the 2017 EMNLP Workshop:
Natural Language Processing meets Journalism, pages 62–67.

Riloff, E. (1993). Automatically constructing a dictionary for information extraction tasks.
In Proceedings of the Eleventh National Conference on Artificial Intelligence, AAAI’93,
page 811–816. AAAI Press.

Riloff, E. and Shoen, J. (1995). Automatically acquiring conceptual patterns without an
annotated corpus. In Third Workshop on Very Large Corpora, pages 148–161.

Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa, A.,
Ploeger, T., and Bogaard, T. (2016). Building event-centric knowledge graphs from news.
Journal of Web Semantics, 37:132–151.

Saha, S., Majumder, A., Hasanuzzaman, M., and Ekbal, A. (2011). Bio-molecular event
extraction using support vector machine. In 2011 Third International Conference on
Advanced Computing, pages 298–303. IEEE.

Schott, L., Rauber, J., Bethge, M., and Brendel, W. (2019). Towards the first adversar-
ially robust neural network model on MNIST. In Proceedings of the 7th International
Conference on Learning Representations (ICLR ’19).

Schrodt, P. A. (2009). Tabari: Textual analysis by augmented replacement instructions.
Dept. of Political Science, University of Kansas, Version 0.7. 3B3, pages 1–137.

Schrodt, P. A. (2012). CAMEO: Conflict and mediation event observations event and actor
codebook. Department of Political Science, Pennsylvania State University, University Park,
Pennsylvania. http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.
pdf.

Schrodt, P. A., Beieler, J., and Idris, M. (2014). Three’s a charm?: Open event data
coding with EL:DIABLO, PETRARCH, and the open event data alliance. Paper pre-
sented at the International Studies Association meetings, Toronto, March 2014. https:
//parusanalytics.com/eventdata/papers.dir/Schrodt-Beieler-Idris-ISA14.pdf.

122

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf
http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf
https://parusanalytics.com/eventdata/papers.dir/Schrodt-Beieler-Idris-ISA14.pdf
https://parusanalytics.com/eventdata/papers.dir/Schrodt-Beieler-Idris-ISA14.pdf

Solaimani, M., Gopalan, R., Khan, L., Brandt, P. T., and Thuraisingham, B. (2016).
Spark-based political event coding. In Big Data Computing Service and Applications
(BigDataService), 2016 IEEE Second International Conference on, pages 14–23. IEEE.

Song, H., Kim, M., Park, D., Shin, Y., and Lee, J.-G. (2022). Learning from noisy labels with
deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems. Accepted. Preprint: https://doi.org/10.48550/arXiv.2007.08199.

Sundheim, B. M. and Chinchor, N. A. (1993). Survey of the message understanding confer-
ences. In Proceedings of the Workshop on Human Language Technology, HLT ’93, page
56–60, Princeton, New Jersey, USA. Association for Computational Linguistics.

Tabik, S., Peralta, D., Herrera-Poyatos, A., and Herrera Triguero, F. (2017). A snapshot of
image pre-processing for convolutional neural networks: case study of MNIST. Interna-
tional Journal of Computational Intelligence Systems, 10(1):555–568.

Tanev, H., Piskorski, J., and Atkinson, M. (2008). Real-time news event extraction for
global crisis monitoring. In International Conference on Application of Natural Language
to Information Systems, pages 207–218. Springer.

Tomas, M., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed represen-
taions of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems, pages 3111–3119.

Vanegas, J. A., Matos, S., González, F., and Oliveira, J. L. (2015). An overview of biomolec-
ular event extraction from scientific documents. Computational and mathematical methods
in medicine, 2015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st Conference
on Neural Information Processing Systems (NIPS 2017), pages 6000–6010.

Walker, C., Strassel, S., Medero, J., and Maeda, K. (2006). ACE 2005 multilingual training
corpus. Web Download. Linguistic Data Consortium, Philadelphia. https://catalog.
ldc.upenn.edu/LDC2006T06.

Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2012). Probability & Statistics for
Engineers & Scientists. Prentice Hall, 9th edition.

Wang, W., Kennedy, R., Lazer, D., and Ramakrishnan, N. (2016). Growing pains for global
monitoring of societal events. Science, 353(6307):1502–1503.

Wang, X., Wang, Z., Han, X., Jiang, W., Han, R., Liu, Z., Li, J., Li, P., Lin, Y., and Zhou,
J. (2020). MAVEN: A Massive General Domain Event Detection Dataset. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1652–1671, Online. Association for Computational Linguistics.

123

https://doi.org/10.48550/arXiv.2007.08199
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06

Wu, J., Cai, Z., and Zhu, X. (2013). Self-adaptive probability estimation for näıve bayes
classification. In The 2013 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE.

Wu, X., Wu, J., Fu, X., Li, J., Zhou, P., and Jiang, X. (2019). Automatic knowledge
graph construction: a report on the 2019 ICDM/ICBK contest. In Proceedings of 19th
IEEE International Conference on Data Mining, ICDM 2019, pages 1540–1545. Institute
of Electrical and Electronics Engineers (IEEE).

Yan, H., Jin, X., Meng, X., Guo, J., and Cheng, X. (2019). Event detection with multi-
order graph convolution and aggregated attention. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5766–5770, Hong
Kong, China. Association for Computational Linguistics.

Yang, S., Feng, D., Qiao, L., Kan, Z., and Li, D. (2019). Exploring pre-trained language
models for event extraction and generation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 5284–5294.

Yang, Z., Salakhutdinov, R., and Cohen, W. W. (2017). Transfer learning for sequence
tagging with hierarchical recurrent networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Yao, Y., Ye, D., Li, P., Han, X., Lin, Y., Liu, Z., Liu, Z., Huang, L., Zhou, J., and Sun, M.
(2019). DocRED: A large-scale document-level relation extraction dataset. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages 764–
777, Florence, Italy. Association for Computational Linguistics.

Yin, W., Kann, K., Yu, M., and Schütze, H. (2017). Comparative study of CNN and RNN
for natural language processing. Computing Research Repository, abs/1702.01923.

You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., and Keutzer, K. (2018). ImageNet training
in minutes. In Proceedings of the 47th International Conference on Parallel Processing,
pages 1–10.

Yu, S. and Wu, B. (2018). Exploiting structured news information to improve event detection
via dual-level clustering. In 2018 IEEE Third International Conference on Data Science
in Cyberspace (DSC), pages 873–880. IEEE.

Yuan, W., He, T., and Dai, X. (2021). Improving neural question generation using deep
linguistic representation. In Proceedings of the Web Conference 2021, pages 3489–3500.

Zeng, Y., Feng, Y., Ma, R., Wang, Z., Yan, R., Shi, C., and Zhao, D. (2018). Scale up
event extraction learning via automatic training data generation. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, pages 6045–6052.

124

Zhao, Y., Jin, X., Wang, Y., and Cheng, X. (2018). Document embedding enhanced event
detection with hierarchical and supervised attention. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
414–419, Melbourne, Australia. Association for Computational Linguistics.

125

	Introduction
	Overview
	Motivation
	Contribution

	Literature Review
	Concepts
	Open-Domain Event Extraction
	Closed-Domain Event Extraction

	Terminology
	Sub-tasks
	Event Extraction Corpora
	ACE: The Automatic Content Extraction
	TAC KBP: Text Analysis Conference Knowledge Based Filling
	MAVEN: A Massive General Domain Event Detection Dataset
	RAMS: Roles Across Multiple Sentences
	Other Domain-Specific Corpora

	Formulating Event Extraction Sub-tasks as Different Machine Learning Tasks
	Formulating EE as a Classification Based Task
	Formulating EE as a Sequence Labelling Based Task
	Formulating EE as a Question Answering Based Task
	Formulating EE as a Sequence-to-Structure Generation Based Task

	Event Extraction Paradigms
	Pipeline-based Versus Joint-based Event Extraction
	Sentence-Level Versus Document-Level Event Extraction

	Event Extraction Models
	Event Extraction Based on Pattern Matching
	Event Extraction Based on Traditional Machine Learning Models
	Event Extraction Based on Deep Learning Models

	Event Extraction Evaluation and Metrics
	Research Trends
	Challenges from Event Extraction Corpora
	Challenges from Event Extraction Models

	New Techniques for Scaling up Political Events Coding across Languages
	Introduction
	Related Work
	Our Contribution
	Coding Approaches and Interfaces
	Main Coding Interface With Keywords Search, LDA Topic Filtering, and Synonyms Facilitator
	Wikipedia Facilitated Translating Existing English Actor Dictionary
	Frequency Ranked NER Based Coding Interface
	Wikipedia Based Coding Interface
	Peer Review Interface for Unsure Records

	Coding Teams
	Evaluation
	Summary
	Discussion and Future Work

	Scaling up Event Detection by Utilizing Document Topic Information
	Introduction
	Related Work
	Motivation and Our Contribution
	Event Detection Definition
	Methodology
	Architecture Overview
	Sentence Encoder
	Topic Encoder
	Topic-Aware Sentence Representation
	Event Detection CRF Decoder
	Event Detection Training
	Topic Classification Training
	Multi-Task Training

	Experiments and Evaluation
	Performance
	Ablation Study

	Result Analysis
	Reproducibility
	Summary

	Adaptive Scalable Pipelines for Event Data Extraction
	Introduction
	Background
	Methodology
	System Overview
	Optimize System Parameters with Kalman Filter

	Experiments
	Evaluation
	Adaptive Batch Size By Using Kalman Filter
	Performance of The Pipeline on Laptop Configuration

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

