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Abstract

A general simulation of distributed synthetic aperture radar (DSAR) data is use-

ful to evaluate the theoretical performance of a DSAR system and its underlying

algorithms without a deployed system in place. Simulating DSAR is a computa-

tionally intensive task due to the size and complexity of the resultant data, but a

simulation must complete within a reasonable amount of time to be a useful tool in

practice. Through the use of both MATLAB and CUDA, a DSAR simulation can be

flexible and modifiable while benefiting from efficiently implemented GPU acceler-

ation. Multiple simulation programs have been developed using these programming

languages to explore techniques of parallelizing and optimizing the performance of

DSAR data simulation.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) is a radar based imaging technology that is use-

ful for many civilian and military applications. One common use case is to survey

the Earth’s surface with radars on board orbital satellites. The main innovative fea-

ture of SAR is to take advantage of the radar’s motion to synthesize a large antenna

array. This means that unlike a real aperture radar, the cross-range resolution of a

SAR is not limited by the physical size of its antenna [1].

However, despite not limiting the resolution, the physical antenna size does limit

performance. A SAR’s image quality depends on its signal to noise ratio (SNR),

which is partly influenced by the size of the antenna [2]. Low SNR results in a

noisy image in which important details may be obscured. Conversely, high SNR

results in clear, sharp images. Compared to a small antenna, a large antenna will

capture more of a signal’s energy, meaning its measurements will have a higher

SNR. Additionally, signals are attenuated as they propagate over long distances,

so targets at longer ranges will be observed with a lower SNR. Therefore, a larger

antenna is capable of capturing high quality images from longer ranges.

For practical reasons, the size and weight of any spaceborne platform is limited.

Therefore, antenna size is limited. In theory it is possible to mount a very large

antenna to a satellite for long-range imaging capabilities, but in reality the cost of
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building and deploying such a system is prohibitive. Satellites must be built to

fit on a launch vehicle, and larger, heavier payloads are more expensive to launch

and deploy in orbit. Additionally, the cost of developing any new satellite radar is

very high. A more cost efficient approach is needed for better SAR systems to be

affordable.

Distributed synthetic aperture radar (DSAR) is an innovation in SAR technol-

ogy that aims to improve the range at which scenes can be mapped without increas-

ing the physical antenna size on one platform. The main idea is to use multiple

smaller SAR satellites as one system to achieve performance equivalent to that of a

single larger SAR. This approach is beneficial as there are commercially available

SAR satellites developed by aerospace companies designed to fit within specific

payload sizes. Compared to developing a new, larger, monolithic satellite, using a

few satellites of an existing design is less expensive, as it is already a tested, proven

SAR design that fits within a tested, proven launch vehicle [3]. DSAR improves on

the performance of SAR while remaining practical.

1.1 Motivation

Before deploying any DSAR system, it is necessary to determine how it will

be configured. The formation of satellites, known as a constellation, and radar

parameters such as antenna and signal characteristics all influence performance and

thus need to be tuned to maximize image quality. A general simulation of a DSAR

is necessary to to evaluate potential configurations before applying them to a real-

world system. The goal of creating a simulation is to enable quick evaluations

of DSAR configurations and to support development of DSAR algorithms through

analysis of their theoretical performance under different scenarios.
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Specifically, the data collection of a DSAR system must be simulated, which is

very computationally intensive. The size of the simulation under typical scenarios

is too large for a CPU to execute within a reasonable amount of time in many

cases. Alternatively, a graphics processing unit (GPU) can significantly accelerate

computations via parallel processing and improve the simulation speed.

A GPU-accelerated DSAR simulation was previously implemented using MAT-

LAB’s built-in GPU support, but its speed is slower than desired. This thesis de-

scribes newer simulation implementations that were developed in attempts to im-

prove the simulation speed even further so that DSAR could be simulated in a rea-

sonable amount of time. The described implementations use a programming model

with low level control over GPU memory and individual GPU threads, allowing for

more efficient use of the GPU hardware that the previous implementation.

1.2 Thesis Outline

Chapter 2 introduces the basic theory of operation of SAR/DSAR and the signal

model used to simulate its data collection. Chapter 3 introduces the different pro-

gramming models used in the implementation of the simulation. Chapter 4 explains

how the entire simulation is implemented and all successful and unsuccessful at-

tempts of developing a faster data collection simulation routine. Chapter 5 analyzes

the performance of each implementation and compares them to one another.
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Chapter 2

Radar Background

Unlike optical systems that image a scene by measuring any light emitted or

reflected from external sources, SAR systems make observations by emitting radar

waves towards a scene and measuring the waves reflected back to the radar. This

fundamental difference reveals two initial advantages. First, SAR can see through

some objects that a camera cannot, such as clouds in the Earth’s atmosphere. This

ability is due to the relatively long wavelengths of radar waves, as longer wave-

lengths pass through matter with more ease than shorter wavelengths such as those

on the visible spectrum. Second, SAR is self-illuminating. Because the electro-

magnetic energy captured by the radar is initially emitted from the radar itself, it

does not have to rely on the presence of a light source to capture useful images.

These advantages prove very useful to surveillance satellites since they are set

on predetermined orbit paths. A satellite’s orbit is not simple to change and may

have a long period of time between repetitions. For a satellite to survey a specific

point of the Earth, it must first wait until it reaches a position in its orbit from which

the desired point is visible. When the satellite is aligned with the desired scene, if

there is no sunlight at the scene or the scene is overcast, it is a missed opportunity

for an optical imaging system, but not for SAR. The nature of a satellite’s orbit path

is also why the extended range capability of DSAR is beneficial for surveillance.
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With a longer maximum distance at which an image can be captured, more locations

along the SAR’s orbit path align properly with the desired scene, meaning there are

more opportunities within a single orbit to image a particular area.

SAR captures recognizable images similar in some ways to what one would ex-

pect from a camera, although SAR images appear different and SAR operation is

much less intuitive than a typical optical system. Many of SAR’s additional advan-

tages are due to the principles of radar technology and signal processing. To discuss

these advantages and how to simulate SAR/DSAR any further, it is important to un-

derstand how SAR collects and processes data. This chapter begins with the basic

operation of a SAR system and how its data are used to form images. Next, the

operation of DSAR and its differences are discussed. Finally, the signal models

required to simulate data collection of both SAR and DSAR are introduced.

2.1 Geometry

SAR produces images of static scenes from a moving platform – usually an

aircraft or spacecraft. SAR is commonly configured as a side-looking radar, mean-

ing its illuminating beam is aimed perpendicular to its flight path and oblique to

the ground so that the radar observes an area on the ground located to the side of

the platform. As mentioned previously, the feature that sets SAR apart from a real

aperture radar is the utilization of the platform’s motion to increase the cross-range

resolution without increasing the physical antenna size. By making observations

from different positions along the flight path over time, multiple observations can

be combined to synthesize the data of a single observation made by a larger antenna

array that has a finer cross-range resolution [1].

To describe the geometry of the radar, its beam, and its motion, some vocabulary
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must be introduced. There are a few important directions relative to the flight path

and the ground. The direction the platform moves along is known as the flight-

track or the along-track. The slant range, or more simply, range, is the distance

from the radar to a surface illuminated by the beam. Targets observed by the radar

all have their own independent range. A target’s ground-range is its slant range

projected onto the ground. The cross-range dimension is the direction perpendicular

to the slant and ground ranges, which is also parallel to the flight track. There are

also some important angles determined by characteristics of the radar’s antenna,

including how it is driven and how it is physically constructed. The beam width is

the angle of the main lobe in the antenna’s emission pattern. The depression angle is

the angle at which the center of antenna’s beam is aimed down from the horizontal.

Finally, the swath is the width of the beam on the ground in the range dimension.

Figure 2.1 illustrates SAR geometry and identifies its relevant features.

Slant range

Swath
Ground range

Flight track
Cross range Depression angle

Figure 2.1: Radar platform geometry

SAR has several different imaging modes, all of which are useful for various

situations [4]. Stripmap SAR is the most common imaging mode in which the

radar’s illuminating beam is aimed in a fixed direction relative to the platform. As
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the platform travels along its flight path, the illuminated area follows, and each

observation corresponds to a different cross-range position in the output image.

Squinted SAR is similar to stripmap imaging, except the beam is steered ahead and

to the side of the platform rather than looking out perpendicularly. This allows the

radar to form images far ahead of the platform at the sacrifice of image quality.

Spotlight SAR is an imaging mode in which the illuminating beam is steered

in the cross-range direction to illuminate a single, fixed target area as the platform

travels along its flight path. Compared to stripmap SAR, spotlight SAR captures

images of higher quality and finer resolution at the sacrifice of the imaged area’s

size. Circular SAR is an imaging mode in which the platform flies in a circular

path centered around the target scene, illuminating the same area for the entire

duration of the data collection. Similar to spotlight SAR, circular SAR captures

higher quality, finer resolution images of smaller areas. Additionally, circular SAR

can be used to create three dimensional images and track the motion of moving

targets, such as vehicles, over time [5].

This list of SAR imaging modes is not exhaustive, but does illustrate what is

possible with SAR. For the purpose of simulating satellite DSAR, this project fo-

cuses on stripmap, though the conclusions are applicable to all SAR modes.

2.2 Range Detection

SAR is a pulsed radar, meaning it periodically emits finite-length signals carried

by radio waves to detect targets and measure their ranges. The most basic type of

pulse has no modulation and takes the form

x̄ (t) = a (t) cos (2πft+ ϕ) (2.1)
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where a(t) is the amplitude function used to pulse the signal and the cosine term is

the carrier signal and global phase. The variable f represents the carrier frequency

and ϕ represents the phase offset of the carrier signal. The bandpass signal x̄(t)

represents the actual voltage transmitted or received by the antenna, but it is often

useful to consider the pulsed waveform without the carrier frequency, which in this

case is only the complex envelope

x (t) = a (t) ejϕ. (2.2)

To pulse the carrier signal, the amplitude function it is multiplied with switches

between on and off. If the amplitude function is equal to the rect function

rect (t) =

 1 −0.5 ≤ t ≤ 0.5

0 otherwise
, (2.3)

then the carrier signal will be present only for the duration of the rect function. The

resultant signal is a single pulse. If the amplitude function contains periodically

repeating rect functions, sometimes called a train of rect functions, the carrier sig-

nal is switched on and off periodically, resulting in multiple individual pulses. The

constant rate at which these pulses are transmitted is known as the pulse repeti-

tion frequency (PRF), and inversely, the time between pulses is the pulse repetition

interval (PRI).

To detect targets, the radar transmits pulses and measures their echoes. As a

pulse travels away from the radar, it will reflect off any objects it hits, potentially

directing some amount of the pulse’s energy back to the radar. When this happens,

the target may be detected. Multiple targets reflecting the same pulse each produce

their own echo and can be detected individually. A target’s range, the distance
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between the radar and the target, can be determined from the time delay of the echo

τ . The pulse travels to the target and back at the speed of light, c, so the target’s

range R is equal to

R =
τc

2
. (2.4)

As pulses are emitted, the reflection data are recorded by an analog to digital

converter (ADC) measuring the antenna voltage signal over time. The data are

arranged into a two dimensional matrix of discrete complex values. Figure 2.2

shows the axes of the matrix, labeled fast time and slow time. The fast time axis

corresponds to the time within the measurement of a single pulse’s returns, which

is the time within a single PRI, and the length of this axis is equal to the number of

samples collected within a PRI. The slow time axis corresponds to the time across

multiple pulses and its size is equal to the number of PRIs throughout the duration

of data collection.

Slow time

Fast
 time

ADC Sampling interval

Pulse Repetition Interval (PRI)
Figure 2.2: Radar data matrix

If there are multiple antennas with separate receiving channels, the data matrix

is extended into a third dimension representing the different channels, forming a

datacube, which is essentially multiple data matrices stacked on one another. Fig-

ure 2.3 shows a datacube with three receiving channels.
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Slow time
Receiving channels

Fast
 time

Figure 2.3: Radar datacube

The data are arranged into a matrix or cube because it is useful to visualize how

the data are processed. For example, in a static pulsed radar, analyzing the data over

fast time can reveal a target’s range at a specific point in time. The time an echo is

recorded at in a PRI corresponds to the range of a detected target, and the amplitude

of the echo corresponds to the brightness or reflectivity of the target. Analyzing the

data over slow time can reveal the target’s motion by showing the change in range

over multiple PRIs.

In general, pulsed radars have one glaring potential issue in range measurement.

If the time between the radar transmitting a pulse and receiving its echo is longer

than one PRI, then a second pulse will be transmitted before the echo due to the

first pulse is received. When the echo of the first pulse is received, there is no

way to differentiate whether that echo is caused by the first pulse reflecting off of a

distant target or the second pulse reflecting off of a close target. This phenomenon is

known as range ambiguity. In spaceborne SAR applications, there are several pulses

in flight at the same time, so it is assumed that all received echoes propagated over

a distance corresponding to the radar’s altitude and beam direction in relation to the

Earth’s surface.
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Another issue in range detection is signal attenuation. For an ideal radar, the

radar range equation relates the power, Pr, of a pulse returned by a target to the

transmitted pulse power, Pt, the target’s range, R, and other certain physical pa-

rameters [1].

Pr =
PtG

2λ2σ

(4π)3R4
(2.5)

The other parameters include the signal’s wavelength λ, the target’s radar cross

section σ, and the antenna gain G. The antenna gain is a measure of how concen-

trated the signal power is in the antenna’s main lobe and depends on the physical

construction of the antenna.

An important interpretation of (2.5) is that the received power of an echo is

inversely related to R4, so it drops off dramatically as the target range, R, increases.

This is problematic for practical applications, as receiver noise will be present. At

long ranges, it is common for the noise to have more power than the signal itself.

An SNR this low will produce unrecognizable images, so the signal drop off must

be mitigated.

Fortunately, filtering techniques can be used to significantly improve the SNR.

Matched filtering is a technique used to extract the times at which echoes are re-

ceived from a noisy signal. A matched filter corresponds to one specific signal

waveform. It is represented in the time domain by its impulse response h(t). For

a signal x(t), the impulse response of its matched filter is equal to the conjugated,

time reversed signal

h(t) = x∗(−t). (2.6)

The filter h(t) can be applied to the original signal x(t) by convolution of the

two, which produces the correlation between x(t) and x∗(t). The correlation be-

tween x(t) and x∗(t) is the autocorrelation of x(t), which is not useful by itself,

11



but the context in which it appears in a cross-correlation function is useful. The

cross-correlation function is the result of applying the matched filter of a pulse sig-

nal to some measured signal and is a measure of how similar the pulse signal is to

the measured signal over time. The correlation of the pulse signal and the radar’s

measurement within a PRI will contain a time-shifted copy of x(t) and x∗(t)’s cor-

relation function whenever an echo of the pulse is received. The random noise in

the measured signal is not likely to strongly resemble the pulse, so the noise in the

cross-correlation function will have nearly zero amplitude. Thus, the filtered signal

has a much higher SNR than the unfiltered signal, even when the noise has more

power than the pulse in the original measured signal. Each peak in the matched

filter output likely corresponds to an echo representing a target. The peak’s time

shift corresponds to the range of the target it represents and its amplitude is related

to how strongly the target reflected the pulse.

Since the radar data are discrete, the time domain is broken up into different

time slots. After the matched filter has been applied, each time slot in the fast time

axis of the data matrix or datacube is associated with a range bin. An echo recorded

in a certain time slot represents a target at a range that falls somewhere within the

limits of the associated range bin.

Resolution is the ability to differentiate separate targets that are close to one

another. A radar’s range resolution of a radar is the minimum difference in range

required to resolve targets. Range resolution is based on the ability to differentiate

the peaks representing different targets in the matched filter output. When a single

pulse hits multiple targets, if they are too close to each other, then their representa-

tive autocorrelation instances in the matched filter output will overlap. Their peaks

combine coherently and appear as one echo from that of a single larger or “brighter”

target. Pulse waveforms with wider autocorrelation functions will result in worse
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range resolutions since they will overlap each other at greater range differences.

The basic pulse modeled in (2.1) has a relatively wide autocorrelation function and

does not perform well. In fact, its autocorrelation function is wider than the pulse

itself.

Narrowing the width of the autocorrelation function improves the range resolu-

tion. Narrower peaks in the matched filter output allow echoes to be distinguished

from one another with less time between their occurrences. The width of a peak is

inversely related to the bandwidth of the pulse waveform, so the range resolution

can be expressed as [1]

∆R =
c

2β
(2.7)

where ∆R is range resolution, c is the speed of light, and β is the bandwidth of the

pulse. A larger bandwidth will produce a finer range resolution. It is possible to

increase the bandwidth of the simple pulse seen in (2.1) by shortening its duration,

but the signal’s energy will also decrease. Lower energy signals result in a lower

SNR in the cross correlation function, and therefore harm performance. Increasing

the transmitting power can compensate for the shorter pulse’s lower energy, but in

many cases, the amount of power needed to achieve good range resolution and im-

age quality with a simple pulse is impractically large. Instead, a more complicated

pulse waveform is typically used.

Pulse compression is a technique in which the pulse waveform is modulated

in some way to increase its bandwidth without shortening its duration. There are

multiple types of modulation that can be used in pulse compression, such as binary

phase coding, in which the phase of the signal pseudo-randomly flips between 0 and

π radians, or linear frequency modulation, where the pulse’s frequency is a linear

function of time [2]. In any type of pulse compression, the pulse’s bandwidth is not
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solely dependent on the length of the pulse. Therefore, the pulse’s autocorrelation

function can be narrowed without decreasing the signal’s energy. This allows for

the range resolution to be improved without increasing the transmitting power or

decreasing the SNR, resulting in high-quality, fine-resolution range detection.

2.3 Cross-range Detection

Similar to the range resolution, the cross-range resolution of a radar system is

the minimum distance required between two targets for them to be distinguishable

in the cross-range direction. In real aperture radars, the cross-range resolution is

based solely on the physical antenna’s beamwidth in the cross-range direction. If

two targets are within the beam simultaneously, their cross-range positions are not

distinguishable. Radars with narrower beams have smaller, better resolutions. As

mentioned previously, the beamwidth is an angle determined by the physical con-

struction of the transmitting antenna, which presents two bottlenecks. The first is

the resolution’s dependence on range. Since the beamwidth is a constant angle, the

illumination area of the beam is larger when further away from the antenna. This

means the cross-range resolution increases with distance. The second bottleneck is

the size of the antenna. Larger antennas generally have narrower beamwidths and,

therefore, better cross-range resolutions. However, due to the magnitude of the dis-

tance between a satellite and the Earth’s surface, an antenna capable of sub-meter

cross-range resolutions would be too large to be practical on a spacecraft.

SAR has an advantage over real aperture radars because it can circumvent the

previously mentioned bottlenecks by combining multiple observations collected

over time. A physical antenna array has multiple transmitting and receiving ele-

ments that all transmit and receive a pulse simultaneously to make simultaneous
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observations. A larger antenna with more elements produces a narrower beam. A

synthetic aperture radar is different, as it uses a much smaller antenna with a wider

beam and mimics the spacing of individual elements on a much larger array by cap-

turing multiple observations from different locations over slow time while moving.

Multiple observations can then be combined coherently into observations equiva-

lent to that of a larger real aperture antenna, effectively synthesizing a large aperture

with a small beamwidth.

The synthetic aperture length L is equal to

L = vTa (2.8)

where v is the platform velocity and Ta is the aperture time, the amount of time

spent collecting data. The cross-range resolution ∆CR is equal to [1]

∆CR =
λR

2L
=

λR

2vTa

. (2.9)

As discussed before, in stripmap imaging, the illumination beam is fixed rela-

tive to the platform and the platform travels along its flight path, the illumination

footprint on the observed surface follows. Since the beamwidth is defined by con-

stant angles in both the range and cross-range directions, the longer the range is,

the larger the illumination footprint is in both directions. A radar observing a scene

at a longer range will illuminate a single cross-range slice of the scene for a longer

period of time and within more pulses. Therefore, the effective aperture time is

directly related to range, which balances out the direct relation to range in (2.9). As

a result, the cross-range resolution of SAR is independent of range.

The most significant interpretation of (2.9) is that the cross-range resolution is
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inversely related to the synthetic aperture length L. Since the length of the aperture

is not limited by the practicality of construction, a SAR can achieve much finer

cross-range resolutions than any practical real aperture radar by increasing the path

length over which observations are collected.

2.4 Image Formation

The two-dimensional images produced by SAR look similar to an overhead im-

age captured by an optical sensor, although there is one important distinction. The

dimensions of a SAR image are mapped to slant-range and cross-range positions,

not the dimensions of the target scene’s ground plane. Figure 2.4 shows an example

of a SAR image captured by a radar observing a building surrounded by trees look-

ing rightward from the left side of the image. The vertical axis of the figure is the

cross-range dimension and the horizontal axis is the range dimension. The image

shown is the result of using an existing SAR image from Sandia National Labora-

tories as an input to the simulation program. The image is still recognizable, but

the slant-range mapping causes some visual abnormalities in one of the dimensions

[6].

One effect of the slant-range mapping, called foreshortening, causes slopes to

appear compressed. For example, the side of a mountain or hill facing the radar will

look shorter than the side facing away from the radar. This occurs because the dis-

tance between the base and the peak of the mountain in the slant-range direction is

smaller than the distance between the base and peak in the ground-range direction.

Another effect, known as layover, is a more extreme case of foreshortening.

If an object is tall and narrow enough and the radar’s depression angle is steep

enough, the top of the object can be closer than the bottom of the object in the slant
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Figure 2.4: An example SAR image

range. For example, a mountain peak may appear ahead of the slope leading up to

it that faces the radar. Both foreshortening and layover become more pronounced

at steeper viewing angles.

Lastly, shadowing is an effect that appears behind tall objects. If the depression

angle is shallow enough, a tall object illuminated by the radar’s beam will cast a

shadow behind itself, obscuring any objects in its shade. In the image, the shad-

owed regions appear completely dark. Shadowing becomes more pronounced at

shallower viewing angles.

The brightness of an object in the image is dependent on how pulses reflect off

of it. A mostly smooth, flat surface such as a parking lot or a calm body of water

will reflect a pulse once, like a mirror. When a pulse hits this type of target, almost

none of its energy is returned towards the radar. For this reason, smooth areas
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appear dark. A corner between flat ground and a vertical wall, commonly found

on the edges of buildings, reflect a pulse twice. When a pulse collides with such a

corner, the double bounce will cause the pulse’s new trajectory to be nearly parallel

to and opposite of its original trajectory, resulting in a strong echo with a relatively

high amount of energy. This phenomenon causes corners to appear bright. Finally,

rough surfaces like a grassy field or the foliage of a tree will diffuse a pulse’s energy,

scattering it in many directions. Some fraction of the pulse’s energy will be returned

back to the radar, resulting in a dim, but not dark appearance.

CornerSmooth Surface Rough SurfaceDouble BounceNo reflection received Diffuse
Figure 2.5: Types of reflections

Once collected, the SAR data can then be processed by an image forming al-

gorithm to produce a map of the observed scene. Regardless of which algorithm is

used, the output images are useful to check the correctness of simulated data and to

evaluate the performance of the simulated DSAR. In this project, the time domain

backprojection algorithm [4] is used to form images from the simulated data. Back-

projection has many advantages over other SAR imaging algorithms, including its

inherent compensation for any non-linear platform motion and its applicability to

multiple imaging modes. These advantages are very useful when simulating DSAR

under many different configurations.
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SAR imaging requires the radar’s geometry to be known precisely at the time of

image formation, including the radar’s location at every slow-time interval. In the

case of an aircraft platform, these locations can be measured from various sensors

such as GPS and inertial measurement units as the radar collects data. In the case

of a satellite platform, the locations can be calculated from the predetermined orbit

and the time at which the observations were made. In SAR data simulation, all

platform locations are known for every pulse simply because they are defined as

part of the simulation scenario.

The radar geometry is used to determine the location of every pixel in the output

image. Since the radar’s flight path, altitude, depression angle, and beamwidth are

all known, the location of the target scene relative to the flight path and the size

of the target scene can be calculated. A grid is superimposed onto the scene to

represent the pixels of the image. Each cell in the grid encompasses the area on

the ground represented by a single pixel and is associated with a complex value

initialized to zero. The exact topology of the scene is unknown, so it is assumed to

be flat. The ground-range coverage of the grid is based on the antenna’s beamwidth

in the elevation direction and the ground-range length of each grid cell is derived

from the radar’s range resolution. Similarly, the cross-range length of the grid is

based on the antenna’s beamwidth in the azimuth direction and the length of the

platform’s flight path while the cross-range length of each grid cell is equal to the

radar’s cross-range resolution.

After performing pulse compression on the SAR data, the brightness of each

pixel can be determined based on location. At a single point in slow time, the range

of every pixel can be determined by a simple Cartesian distance calculation from

the radar’s location to the pixel’s location and back. When a pixel’s range falls

within a range bin of the fast time axis, the complex value of the pulse compressed
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return signal in that range bin is phase-corrected and added to the pixel. A single

range bin contributes to multiple pixels at once, and the set of pixels influenced by a

single range bin is different for every point in slow time. As more pulse reflections

are processed and added to the image, the image is unrolled in the cross-range

dimension and becomes sharper. The brightness of each pixel in the output image

is equal to the amplitude of its final complex value.

2.5 DSAR

DSAR works under the same principles as SAR but has multiple radars on sep-

arate platforms collaborating to produce one image. Every radar in the system is an

independent, fully capable SAR. The only additional functionality required for an

individual SAR to be in a DSAR system is the ability to synchronize its PRI with

other platforms, so using commercially available satellite radars is possible with

some modification. All satellites within a DSAR fly in a predetermined formation,

or constellation, capturing synchronized observations.

When collecting data, not necessarily all radars emit pulses, but all radars mea-

sure all returns. In other words, there are NTX transmitters and NRX receivers

such that NTX ≤ NRX . The collected DSAR data are arranged into a datacube in

which every receiving channel corresponds to a different radar. At the start of a PRI,

each transmitter emits a unique pulse waveform. Throughout the PRI, each receiver

records measurements through its receiving channel. All NRX receiving channels

are synchronized in the fast-time domain. The echoes of all transmitters’ pulse

waveforms overlap one another in every receiver’s channel, but they are separable

from one another via matched filtering due to their unique modulations [7, 8].

Applying a pulse waveform’s matched filter to a receiving channel’s fast-time
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measurement will isolate the reflections due to the corresponding transmitter. After

a single observation has been made, all NRX receiving channels can be separated

into NTX different reflection measurements in post processing. With all of the

DSAR’s collected data, a different image can be formed for every combination

of transmitter and receiver for a total of NRX · NTR images. A transmitter and

receiver pair corresponding to a single platform composes a monostatic setup, while

the remaining pairs corresponding to two platforms compose a bistatic setup. The

quality of each image corresponds to the performance of just one of the radars in

the system if it were acting independently, assuming all radars are equivalent. The

images are not all identical due to the different positions of the platforms, but the

distances between platforms are small enough compared to the distance to the target

scene for the images to be virtually the same. To produce a single output image, all

individual images are coherently combined through addition.

Using multiple individual radars as a DSAR is comparable to using one radar

with more power and a larger antenna. As seen from (2.5), the power of a pulse

return Pr is directly related to the transmitted pulse power Pt and the square of the

antenna gain G. In a DSAR with multiple transmitters, the individual pulse signals

are not transmitted with any more power than they would be from a standalone SAR,

but there is more transmission power in total when considering multiple transmit-

ted signals. Additionally, the antenna gain G has a direct relation to the area of the

receiving antenna, and together, multiple radars have more total antenna area than

any single radar in the DSAR. However, the reflection of a single pulse waveform

is not received with any more power in the individual receiving channels. Rather,

it is the summation of all individual images where the power is increased. In an

aggregate DSAR output image, every pixel now has contributions from the ampli-

tudes of NRX · NTR signals, which raises the image’s amplitude higher above the
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noise floor. Thus, the SNR of the DSAR image is higher than the SNR of an image

produced by a single radar in the system.

One potential problem of DSAR is signal contamination. Matched filtering is

capable of removing some of the undesired signals and noise, but cannot remove

them absolutely. There will always be some remaining amount of noise and cross-

correlation from other waveforms. When applying the filter to fast time measure-

ments, the undesired pulse waveform, if received strongly enough, can cause aber-

rations in the output image. At relatively scene ranges, the R4 term in (2.5) is too

small to attenuate the signals enough to prevent cross-contamination. However, the

solution is simple. Using fewer transmitters at short ranges will result in less signal

contamination. This is an acceptable workaround since the shorter range inherently

improves SNR.

A DSAR system is more capable than any individual SAR within it. The resolu-

tion is not any different, but the SNR, and therefore the image quality, is improved.

Images of scenes at further ranges can be captured clearly, which is very useful

as explained at the beginning of this chapter. Under urgent situations, locations

need to be mapped as soon as possible and extending the maximum range at which

the radar can capture quality images increases the number of opportunities in the

system’s orbit to map a location. Overall, a DSAR composed of small radars has

comparable performance and capabilities to a larger monolithic SAR.

2.6 Signal Model

Simulation of a SAR data collection calculates its data matrix. To simulate the

data of a single PRI, the time-delayed, amplitude-scaled pulse reflected by every

point of the target scene must be calculated and summed. In theory, a single pulse’s
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total reflection is an integration of reflections across a continuous area of the Earth’s

surface, but for simulation, reflections are approximated by dividing the target scene

into discrete patches of scattering targets. These calculations are performed in the

frequency domain as described below.

The time delay of each discrete reflection is determined by its propagation dis-

tance. As explained in Section 2.2, for a monostatic radar, the range of a target can

be determined from the measured time delay of its echo as shown in (2.4). When

simulating SAR, the range R of a scattering patch is known and its time delay τ is

calculated as

τ =
2R

c
. (2.10)

Given a reflection’s base pulse waveform x(t), its time delay can be modeled in the

time domain as x (t− τ). Applying the Fourier transform produces its frequency

domain representation, where the time shift is modeled as a phasor that rotates

versus frequency according to

x (t− τ) ⇐⇒ X (F ) exp (−j2πFτ) (2.11)

The frequency representation is easier to use in discrete numerical calculations, as

there is no need for explicit interpolation in the discrete-time domain.

The real transmitted waveform x̄(t) has a constant carrier frequency F0. The

carrier signal’s phase is also dependent on τ and is represented as

exp (−j2πF0τ), (2.12)
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so the complex representation of the measured echo is

x̄ (t− τ) ⇐⇒ X (F ) exp (−j2πFτ) exp (−j2πF0τ). (2.13)

After simplification, the delayed signal is

x̄ (t− τ) ⇐⇒ X (F ) exp (−j2π (F0 + F ) τ). (2.14)

The model in (2.14) represents the time-delayed complex voltage signal of a reflec-

tion, which is needed to compute the data matrix.

The amplitude scaling of each discrete reflection is based on the patch that re-

turned it. Every scattering patch has a complex reflectivity coefficient α represent-

ing the combined strength and phase shift of the reflections from every point within

it. The reflection’s signal model with the scattering patch’s influence is simply

αX (F ) exp (−j2π (F0 + F ) τ). (2.15)

The complete reflection of a pulse is the sum of all discrete scattering patch reflec-

tions.

The frequency domain data matrix has a frequency axis in place of the time do-

main data matrix’s fast-time axis. The length of the frequency axis, Nf , dependents

on the sampling rate of the radar’s ADC and the radar’s PRI. Each vector along the

frequency axis stores the frequency spectrum of a complete reflection. The other

dimension of the frequency domain data matrix is still the slow time axis, which

has Npulse complete reflection vectors, one for each PRI, arranged along it. If the

target scene is divided into Npatch discrete scattering patches, then every element in
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the frequency domain data matrix is modeled as

Z (Fp, q) = X (Fp)

Npatch∑
i=1

αi exp (−j2π (F0 + Fp) τq,i) (2.16)

where q is the index along the slow time axis identifying the pulse and p is the

index along the frequency axis identifying the frequency component of the pulse

reflection represented by the element Z (Fp, q). It is worth noting that the echo’s

time delay τq,i for scattering patch i is different for every pulse since the platform

is moving throughout slow time.

A practical radar collects data in the time domain, but the simulated data ma-

trix modeled by (2.16) is in the frequency domain. Performing an inverse discrete

Fourier transform over the frequency axis for every pulse in the data collection is

the only step required to convert it to the time domain data matrix. After this step,

the calculation of the simulated data is complete.

Similar to SAR, a simulation of DSAR data collection calculates its datacube.

Although it is more practical to push limits of SAR performance by building DSAR

systems, it is also more complicated. Luckily, they both follow the same principles

to simulate. In fact, SAR simulation can be considered a special case of DSAR

simulation in which there is only one platform that both transmits and receives. To

simulate DSAR data, the SAR data matrix must be calculated for every combination

of transmitter and receiver. All matrices corresponding to the same receiving satel-

lite are summed to produce a single slice of the datacube taken along the receiving

channel axis. Every vector along the fast-time dimension is the sum of the discrete

reflections of every transmitter’s pulse in one PRI measured by one receiver.

The signal model for DSAR simulations follows the same principles as the SAR

model in (2.16), but has a slightly more complicated time delay for each echo. Some
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receiver and transmitter pairs will form a bistatic radar path, so the time delay of

an echo depends on both the scattering patch’s distance to the transmitting platform

dTX and the scattering patch’s distance to the receiving platform dRX ,

τ =
dTX + dRX

c
. (2.17)

Additionally, there are more discrete reflections to calculate. Instead of sum-

ming together only Npatch time-delayed, amplitude-scaled pulses for a single ele-

ment in the datacube, there are Npatch · NTX reflections, all with independent time

delays, summed together.

If there are NTX transmitters and the target scene is divided into Npatch discrete

scattering patches, then the frequency domain datacube is modeled as

Z (Fp,m, q) =

NTX∑
n=1

Xn (Fp)

Npatch∑
i=1

αi exp (−j2π (F0 + Fp) τm,n,q,i) (2.18)

where q is the index along the slow-time axis identifying the pulse, m is the index

along the receiving channel axis identifying the receiver, and p is the index along

the fast-time axis identifying the frequency component of the pulse reflection rep-

resented by the element Z (Fp,m, q). It is worth noting that the echo’s time delay

τm,n,q,i for scattering patch i is different for every pulse, transmitter, and receiver

combination since the entire constellation moves throughout slow time. As with the

SAR data, an inverse discrete Fourier transform will convert the frequency domain

DSAR datacube to the time domain DSAR datacube.

The model in (2.18) is the essence of the data simulation. The typical dimen-

sions of the output have the number of transmitters NTX and the number of re-

ceivers NRX in the single digits. The number of pulses Npulse is typically in the
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hundreds or low thousands, the size of the fast-time/frequency axis Nf is often in

the tens of thousands, and finally, if simulating a full scene, the number of scatter-

ing patches Npatch can be in the range of hundreds of thousands. In addition to the

large dimensions of the output, DSAR simulations have added complexity, making

it more computationally intensive than SAR simulation. The goal of this project

is to accelerate the simulation so that it can execute within a reasonable amount of

time.
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Chapter 3

Programming Model Background

As discussed in Chapter 1, the goal of this project is to shorten the execution

time of DSAR data collection simulations. The original implementation based en-

tirely in MATLAB does make use of GPU hardware to accelerate the computations,

but it is limited in speed by the language used to implement it. Many programming

languages and models exist, all with their own strengths and weaknesses. MATLAB

has a place in this project but is not the ideal language for all aspects of the simula-

tion as it does not provide low-level access to the hardware that would enable more

optimizations. Now that an understanding of DSAR has been established in Chap-

ter 2, the requirements of a performant DSAR data collection simulation can be

postulated. This project calls for a programming language that can take advantage

of the highly-parallel GPU hardware and is suited for high-performance comput-

ing. This chapter explains MATLAB and its strengths, then introduces the CUDA

C language and parallel programming model, and finally goes in depth about how

both languages can be used in the same program.
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3.1 MATLAB

MATLAB is a programming language designed to make complicated mathemat-

ics easy to implement. It has native support for matrix, array, and complex math

operations along with standard features of other languages such as user defined

functions and classes. Although there are tools available to generate C/C++ code or

compile a standalone executable from MATLAB code, MATLAB is frequently used

as a scripting language contained entirely within its own development environment.

Unlike other languages that programmers use to create applications or tools to be

used, programmers mainly use MATLAB to quickly create scripts for evaluating

mathematical models. Typically, it is used as a numeric computing environment for

processing or visualizing data and algorithms. This paradigm is supported through

the structure of the MATLAB language itself and its development environment.

The language’s syntax allows complicated mathematical formulas and algo-

rithms to be written quickly. A single variable can represent a scalar, vector, ma-

trix, or multidimensional array, all of which work with simple operators. Matrix

math works intuitively with vectors and matrices of all sizes, assuming the sizes

are compatible for each respective operation. Additionally, scalar operations can be

applied to every element within a variable via a single operator. Many built in func-

tions work on variables of arbitrary dimensions, too. For example, given a vector,

the fast Fourier transform (FFT) function will return the Fourier transform of that

vector. Given a matrix, the same function returns a matrix containing the Fourier

transform of each column in the input. For most transforms and operations, there

is no need for the programmer to explicitly iterate over every element of a vari-

able. These features allow formulas to be implemented with relatively few lines of

code, arguably making it easier for humans to interpret, which significantly reduces
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development time.

MATLAB’s development environment provides a lot of features to help the pro-

grammer. Plotting data is a trivial task thanks to the many built in graphing methods

for several types of coordinate spaces. 3D meshes, images, complex numbers, and

many more types of plots can all be created with relatively few commands. There

are many toolboxes (an analog to libraries in other languages) available from Math-

Works that each add more functionality for a specific area of study. For example,

the control system toolbox provides a high-level interface to create and define mod-

els for control system architectures. When using this toolbox, there is no need for

the programmer to implement all the underlying math to run their control system

simulations. Other toolboxes cover topics such as deep learning, antennas, finance,

and many more, all of which would normally require a lot of area-specific knowl-

edge and time to implement. These features make MATLAB a useful analysis tool

to scientists and engineers across many disciplines.

MATLAB is appropriate to use when rapid development is a higher priority than

performance. When developing simulations or models, experimental results may

reveal bugs within the program, which guide new code changes as they emerge.

Different algorithms may be proposed after examining initial results. In either case,

the code will be changing frequently. MATLAB allows the programmer to quickly

identify and make appropriate changes without sinking time into the low level of

implementations of mathematical operations or loops.

3.2 CUDA

CUDA is a programming model created by NVIDIA for general purpose com-

puting on GPUs. Historically, the GPU was designed and used exclusively for
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graphical computations. Filling many pixels on a screen at once for displaying

bitmap textures requires high memory bandwidth. Transforming sets of vertices for

3D graphics requires quick linear algebra operations. The CPU, which processes

data sequentially, was not well suited for these tasks, so the GPU, which processes

data in parallel, was developed to handle them [9]. Eventually, data scientists dis-

covered that the GPU hardware could also accelerate certain computationally in-

tensive tasks other than rendering graphics by using the existing graphics libraries

in ways they were not originally designed for. It was possible to perform general

computations with a GPU, but it was unintuitive and difficult for programmers with-

out knowledge of computer graphics. NVIDIA eventually took notice of the trend

among data scientists and created CUDA to give programmers access to their GPU

hardware with a more general interface for use in high-performance computing [9].

CUDA can be used through a variety of languages, libraries, and compiler direc-

tives. In the scope of this project, it is utilized through CUDA C, an extension to

the C language supported by NVIDIA’s C compiler, nvcc.

Programs accelerated by CUDA use a mix of traditional sequential program-

ming and parallel programming. The CPU, known as the host, executes standard

C code sequentially and the GPU, known as the device, executes accelerated func-

tions in parallel, both of which do so in their own independent sets of memory. An

accelerated function, known as a CUDA kernel, is a single function that many GPU

threads execute simultaneously. Each thread executes the same code, but typically

each thread will run the code on different inputs from different memory locations.

Figure 3.1 shows the typical workflow of a GPU accelerated program. The

program initially runs on the host and continues to do so until it reaches code that

is executed in parallel on the device. Here, the typical CUDA workflow starts with

transferring input data for the kernel from host memory to device memory. Next,
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the host launches the kernel, which then is executed on the device. Once the kernel

has finished executing, the output data are transferred from the device memory to

the host memory, which can then be accessed by the rest of the program. The code

executing in a kernel cannot interact with the user at all, so the sequentially executed

code is responsible for collecting inputs and providing outputs.

Program

Transfer Input

Transfer Output

Launch KernelLaunch Kernel

Sequential Code
(CPU, Host Memory)

Sequential Code
(CPU, Host Memory)

Parallel Code
(GPU, Device Memory)(Kernel Code)

Figure 3.1: Typical CUDA workflow

The parallel code follows what NVIDIA describes as a single instruction, mul-

tiple thread (SIMT) programming model [10]. Figure 3.2 shows the hierarchies of

CUDA’s corresponding hardware and thread organizations.

At the lowest level, a single thread executes on a CUDA core, also known as

a streaming processor. Each thread has its own set of registers and private local

memory that cannot be accessed by other threads. Threads are organized in groups

of 32 called warps. If there are not enough threads to fill a warp, it will be padded

out with dummy threads. In a single execution step, all threads within a warp exe-

cute the same instruction. If 32 CUDA cores are available, the warp will execute in
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Figure 3.2: CUDA thread and processor hierarchy

one clock cycle, but if not, the warp will take multiple clock cycles for all threads

to execute the instruction. Additionally, if the code branches, the threads in the

warp may not all have the same instruction to execute within the step. In this situa-

tion, known as control divergence, the warp execution must be split across multiple

clock cycles. The threads are organized into groups by their instruction such that

one group of threads execute the same instruction for each clock cycle of the step.

For example, when an if-else statement causes some threads within a warp to take

action A while the rest of the threads in that same warp take action B, the warp

will execute each branch sequentially. First, the threads/cores performing action A

execute in parallel while the threads/cores performing action B do not perform any

meaningful work. Next, the threads/cores performing action B execute in parallel

while the first group of threads wait. Overall, when thread divergence occurs within

a warp, more clock cycles are required to execute that work, so it is best to avoid

33



this phenomenon when possible.

The second level in the thread hierarchy is the thread block, which executes on

a streaming multiprocessor. A thread block is a group of threads, and a streaming

multiprocessor is a group of CUDA cores that share a small bank of memory. The

programmer can arbitrarily set the size and shape of a thread block and index the

threads in one, two, or three dimensions, but there is a limit to the total number of

threads per block. Within a single kernel launch, all blocks have the same number of

threads. A streaming multiprocessor can execute multiple blocks simultaneously,

but there are separate limits on both how many threads and how many blocks it

can execute simultaneously. Every thread within a block has access to the same

portion of the multiprocessor’s shared memory, but cannot access shared memory

used by other blocks. The shared memory can be used along with synchronization

primitives to communicate between threads. A multiprocessor’s shared memory is

faster than the GPU’s global memory, so it can additionally be used to speed up

some algorithms via caching. It is best practice to set the block size be a multiple

of the warp size (currently, 32 for every CUDA-enabled GPU) while maximizing

the number of threads concurrently on a single multiprocessor. This maximizes the

multiprocessor utilization, reducing the total execution time.

At the highest level, the grid is executed on the entire GPU. In a single kernel

launch, the grid is the organization of all thread blocks. Similar to thread blocks, the

programmer can arbitrarily set the size and shape of the grid, which can index all

the blocks within it in one, two, or three dimensions. As the kernel runs, the grid’s

thread blocks are assigned to multiprocessors with enough free cores to hold all of

a block’s threads. When a thread block has finished executing, a new block will be

assigned to the multiprocessor, taking the place of the completed block. All threads

in all thread blocks in the grid have access to the GPU’s global memory bank. The
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host can also directly access the global device memory, so it is where the kernel’s

inputs and outputs are located immediately before and after the kernel’s execution.

When writing a program accelerated by CUDA, the programmer writes the par-

allel section as a kernel to run on the GPU and writes the parallel section’s sup-

porting code to run on the CPU. The block size, grid size, and all of the kernel’s

arguments are defined in the host code. The size of the grid and its thread blocks

are typically determined by the sizes of the inputs or outputs for a particular launch.

While executing, each GPU thread is able to determine its own unique global index

by accessing both the thread’s index inside the block and the block’s index inside the

grid. Figure 3.3 shows how the global index allows each thread to access a differ-

ent input from global memory despite running the same code. A common CUDA

kernel thread layout will have each thread access just one element from multiple

large input vectors in global memory to run computations on. Every thread runs

the same computation on a different element in the inputs. With many threads run-

ning on many CUDA cores simultaneously, many computations can be executed at

once. As a result, GPU based processing can have much higher throughput than

CPU based processing for certain problems.

Certain algorithms can achieve a massive speedup when performed on a GPU

instead of a CPU. CPUs are generally designed for low latency and GPUs are de-

signed for high throughput [9]. Part of the GPU’s design is a relatively slow clock

speed, so when running only a single thread, a CPU will be faster. However, a

GPU can have thousands of threads running at once. If all threads are perform-

ing the same computations independently, large scale problems can be processed

much faster on a GPU due to the sheer number of threads simultaneously execut-

ing. However, the high throughput focused design is not useful for all situations. If

the number of threads executing at once is too small, running the problem on the

35



Global Index
Input

Output

...

...

Thread Index 1n-1...10 0 n-1... 10 n-1...
Block Index 0 ...1 N-1

n+1n-1...10 n 2n-1... (N-1
)*n+

0

(N-1
)*n+

(n-1)

...... (N-1
)*n+

1

Output = fn(Input)

Figure 3.3: Parallel thread execution on different inputs

GPU will be slower than a CPU due to the the slower clock speed and the overhead

from launching a kernel and transferring data between host and device memory.

Additionally, any algorithms that must be computed in specific sequential steps like

the Fibonacci sequence are not suitable for parallel processing. The best use case

for a GPU is a massively parallel computation where thousands of threads all per-

form relatively small, independent tasks. Most of a GPU accelerated program’s

speedup comes from the sheer number of threads executing at once, not the speed

of the threads.

3.3 MATLAB and CUDA

MathWorks’s Parallel Computing Toolbox provides a variety of options for par-

allel computing in a MATLAB program, such as general purpose GPU program-

ming. When using the toolbox to take advantage of GPU hardware, the principal

requirement is to store variables used in parallel computations in device memory.
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This is accomplished by creating gpuArray objects, which act like any other mul-

tidimensional array variable in MATLAB. They can be accessed from any point in

the code, but their actual data are not stored in the host memory. To copy data from

device memory to host memory, the gather function will take in a gpuArray object

and return an array object with a copy of the data to be stored in host memory. With

the ability to transfer data between host and device, the parallel computations can

be launched in a variety of methods.

The simplest method of running MATLAB calculations on the GPU is to use

gpuArray objects like any other MATLAB variable. There is usually no need for

the user to rewrite any functions or to overload any operators when working with

gpuArray objects, as parallelized implementations of these functions are already

built into MATLAB. As a result, an existing MATLAB program can be modified to

use GPU acceleration with very few changes. The programmer can continue using

the same standard functions and operators already present in the environment, such

as matrix multiplication, FFTs, and more. While this will produce noticeably faster

scripts in many cases, this is not the fastest way to implement GPU parallelization

in MATLAB.

A more complicated method of accessing the GPU that provides even better

results than the built in gpuArray functions is to launch user written CUDA kernels

directly from within the MATLAB script [11]. The nvcc compiler can produce

a file containing parallel thread execution (PTX) instruction set architecture (ISA)

code, which is a low level language for a general purpose GPU virtual environment.

MATLAB can load the resultant PTX file and launch individual kernels defined

in its CUDA C source code on the GPU. Scalars, vectors, and multidimensional

variables can all be passed between the two languages as inputs and outputs of the

kernel.
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Within the MATLAB code, all inputs and outputs of the kernel will be inter-

preted as gpuArray objects. For compatibility, the CUDA C kernel must be declared

so that all variables are either scalars or pointers to one-dimensional C-style arrays.

Additionally, the types of all arguments must match across the source code of both

languages. For example, if the CUDA C kernel declaration describes an input as

a float, then MATLAB must pass the kernel a scalar single from its perspective.

Similarly, if the kernel has an array of double2 values as an input, MATLAB must

pass a non-scalar variable with the type complex double. MATLAB can pass any

variable as long as the data type matches what the kernel expects. The sizes and

number of dimensions of that variable do not matter, as it will be converted from

column-major ordering to a one-dimensional array for the CUDA code to interpret

as shown in Figure 3.4.
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Figure 3.4: Interpreting a multidimensional MATLAB variable as an array in
CUDA

The combination of MATLAB and CUDA C was chosen for the DSAR simu-

lation implementations described later in Chapter 4, as both languages are appro-

priate for their respective sections of the program. Some portions of the simulation

are subject to frequent change. The placement of scattering patches, the transmitted
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pulses and their matched filters, and image formation algorithms are all examples of

what may be modified at some point to test different scenarios. Interpretability and

flexibility are necessary for the script’s users to make these changes quickly. MAT-

LAB’s collection of native parallel functions provides a useful speedup while retain-

ing all the advantages of MATLAB code, so the simpler gpuArray technique is used

for the scene setup, signal processing, and all other supporting routines. While the

speedup is reasonable for relatively small-scale calculations, higher performance is

necessary for the larger scale calculations. Computing the DSAR datacube as mod-

eled in (2.18) is the most computationally intensive portion of the simulation. With

only native MATLAB GPU acceleration used in the data collection calculations,

it is not uncommon for the simulation to take up to a week to execute. Writing

a custom CUDA kernel will likely provide an appropriate speedup, as launching

external CUDA C code is currently the fastest method of implementing GPU accel-

eration within a MATLAB script. CUDA code is not nearly as simple to understand

and write, so it is not always appropriate to use. However, kernels implemented in

CUDA C circumvent interpreted language overhead and provide lower-level con-

trol, giving it a very high potential for implementing fast simulations.
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Chapter 4

Implementation

Previously, Chapter 2 described the fundamental concepts behind DSAR data

collection and the signal model used to simulate it. Chapter 3 described the pro-

gramming models and languages used in the simulation’s implementation. Now,

the implementation of the simulation program itself can be discussed. The simu-

lation has been developed specifically for satellite DSAR and does not use a sim-

plified flat Earth model. Instead, the more accurate ellipsoidal model of the Earth,

WGS84, is used [12]. However, this is still an approximation, as the Earth’s topog-

raphy is ignored. The main sections of the program are the scene preparation, the

datacube calculation, and lastly, the image formation. This chapter describes the

implementations of the routines needed to compute simulated DSAR data. First,

the simulation’s input scenario and its preparation are introduced. Next, the sup-

porting code for the main calculation is explained. Finally, all implementations of

the datacube calculation are discussed, including both successful and unsuccessful

attempts of exceeding the speed of the native MATLAB GPU acceleration. The

performance of all implementations will be numerically analyzed later in Chapter 5

for comparison.
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4.1 Preparation

The first step in simulating DSAR is defining the scenario for data to be sim-

ulated, which serves as the input to the datacube calculation. The input scenario

includes multiple variables, namely the flight paths of the satellite platforms, the

pulse waveforms emitted by the transmitters, and the target scene on the Earth’s

surface to image. Typically, the preparation of this input is computationally light

in comparison to other tasks within the simulation program, but it is not simple. It

must be flexible enough to define various simulation scenarios. Additionally, there

is a high likelihood that new, currently unsupported scenarios will be proposed for

simulation in the future, so the code responsible for the preparation must also be

flexible. The requirements favor flexible code over high performance, so MATLAB

is the chosen language for the simulation preparation as it will make complicated

modifications easier and faster to implement than they would be for other languages.

The constellation must be defined generally enough to reflect any possible for-

mation. To accomplish this, each satellite’s flight path is independently defined

as a list of Earth-centered, Earth-fixed (ECEF) coordinates. The ECEF coordinate

system is a three-dimensional Cartesian coordinate system in which the origin is

located at the Earth’s center, the +x axis intersects with the equator and the prime

meridian, the +y axis intersects with the equator and is 90 degrees East of the prime

meridian, and the +z axis intersects with the North Pole [12]. The ECEF coordinate

system rotates with the Earth, which eliminates the need to account for its rotation

explicitly in the simulation. Each coordinate in a list represents the location of one

satellite during one PRI. All lists are arranged in chronological order and synchro-

nized, mapping to the slow-time axis of the datacube.

The independently defined flight paths allow for both static and dynamic con-
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stellations to be simulated. Even in static formations, the independence is useful, as

it allows deviations from a planned flight path to be modeled on a platform-specific

basis. All satellite paths are generated from a formula based on user defined pa-

rameters, such as velocity, altitude, and PRI. Such parameters are quick to change,

allowing the user to tune the configuration for better image quality. The formula

is specific to one type of formation, such as a “string of pearls” in which all satel-

lites move in tandem, forming a straight line parallel to their direction of travel.

MATLAB’s flexibility allows for new formulas to be added fairly quickly.

The transmitters and their unique pulse waveforms are also defined in the sim-

ulation preparation. All satellites will be receivers, but any subset of the satellites

can be configured as transmitters. Similar to the satellite flight paths, every trans-

mitter’s pulse waveform is defined independently. These signals can be created in

the time domain initially, but need to be stored in the frequency domain for use

in the datacube calculation. All signals are defined along the same frequency axis

as used to represent the pulse returns in the frequency domain datacube. Again,

similar to the satellite flight paths, all independent signals are typically generated

based on a formula with input parameters including bandwidth, pulse width, and

carrier frequency. New signal formulas are easy to implement for new simulation

scenarios.

The last major part of the simulation scenario to prepare is the target scene,

which includes the pixel grid for backprojection and the scattering patches for the

data simulation. The backprojection pixel grid for imaging is not used in the data

simulation, but it is prepared alongside the scattering patches since they both depend

on the same geometry. Since the simulation uses an ellipsoidal model of the Earth,

the illumination area is a curved surface. The location and size of the illumination

area are calculated from the midpoint of the average flight path of all satellites,

42



how the illumination beam is aimed, and the approximated surface of the Earth.

Locations for the pixel grid cells and the scattering patches are calculated very

similarly.

The pixel grid is part of the precisely known geometry required for the back-

projection algorithm described in Chapter 2 and is not used until image formation,

which takes place after the data simulation. In memory, the backprojection pixel

grid is stored as a list containing the location of the center of every cell in ECEF

coordinates. Conceptually, the grid fills the entire illumination area and is fitted the

curved surface of the Earth. To calculate the positions of the grid’s cells, a plane

that contains the points at which the maximum and minimum range of the illumina-

tion beam intersect with the Earth’ surface and is parallel to the constellation flight

path at its midpoint is calculated. Every cell is placed on this plane at a constant,

not necessarily square spacing corresponding to the ground-range and cross-range

resolutions of the radar to form a two-dimensional grid. The center of each cell

is then projected onto the Earth’s surface to make the grid match its curvature.

This placement is not mathematically perfect, but it is an acceptable approxima-

tion considering the size of the target scene in comparison to the size of the Earth.

A mathematically perfect representation would involve ellipsoidal integrals, which

are very computationally intensive since they can only be solved numerically.

The scattering patches compose the part of the target scene used in the data

collection simulation. Regardless of how they are arranged, they are all stored and

interpreted in the same way. Every scattering patch is stored as an ECEF coordi-

nate representing the location of its center and a complex number representing its

reflectivity coefficient. The position of every scattering patch is calculated in the

same as the pixel grid cells, by placing them on a two-dimensional plane and pro-

jecting them onto the Earth’s surface. Currently, scattering patches can be arranged
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to represent either individual point targets or a two dimensional grid.

Individual point targets are useful to examine how a target will be imaged at

different locations within the view of the radar. Any number of targets can be placed

at arbitrary two-dimensional offsets from the center of the illumination area plane

before fitting to the Earth. All point targets have the same normalized reflection

coefficient with no phase offset. Figure 4.1 shows an example output image from a

simulation with a single point target located at the center of the target scene.
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Figure 4.1: Simulated SAR image of a single point target

An arrangement of targets depicting a two-dimensional image is useful to exam-

ine performance at a high level. To accomplish this, scattering patches are placed

in a grid on the illumination area plane before fitting to the Earth based on a user

defined input image. The number of rows and columns in the scattering patch grid

match the dimensions of the input image so that every scattering patch corresponds

to single pixel of it. The size of the scattering patch grid is unrelated to the size

of the backprojection grid, so may not fill the illumination area entirely or may

be bigger than the illumination area. The magnitude of every scattering patch’s
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reflectivity coefficient is determined by the brightness of its corresponding pixel,

ignoring color. Completely dark pixels in the input image correspond to a reflectiv-

ity coefficient of zero. The phase of every scatterings patch’s complex coefficient is

randomly set to recreate the speckled look of real SAR images. The spacing of the

scattering patches depends on the radar’s resolution and whether or not it will be

oversampled. Without oversampling, the dimensions of each scattering patch are

equal to the ground-range and cross-range resolutions, just like the backprojection

grid. With oversampling, the dimensions of each scattering patch are divided by an

oversampling factor, making the scattering patch placement more dense.

Typically, the input image will either be a simple test pattern or an image sim-

ilar to what could be captured by a real SAR. Test patterns like a checkerboard or

concentric rings are helpful to plainly show visual aberrations such as signal con-

tamination, while a real SAR image is useful to show what the simulated parameters

may produce in practical applications. Figure 4.1 shows an example output image

from a simulation with targets arranged in a checkerboard pattern at the center of

the target scene.

All of the simulation input data are created and stored in the MATLAB envi-

ronment. Figure 4.3 shows how all parts of this input are stored across multiple

variables.

The satellite flight paths are stored in three matrices. There is one matrix of size

Npulse × NRX for each axis of the ECEF coordinates. The columns correspond to

individual receiving satellites and the rows correspond to individual pulses or PRIs.

All matrices are aligned such that a satellite’s position during one pulse is stored in

the same coordinate across all three matrices.

The transmitter information is stored in a matrix containing the pulse waveform

spectra and a column vector of frequencies. The matrix has a size of Nf × NTX
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Figure 4.2: Simulated SAR image of a checkerboard pattern of targets
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Figure 4.3: DSAR simulation input data as stored in the MATLAB environment

where each column represents a different transmitter’s pulse waveform spectrum.

Every element in the waveform spectrum is a complex value representing the am-

plitude and phase of a frequency component in the signal. The frequency vector has

a length of Nf and is aligned with the matrix to represent the frequencies associated

with the frequency components in the waveform spectra.
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Finally, the scattering patch information is stored in four separate column vec-

tors of length Npatch. Three of the vectors each store a different dimension of the

ECEF coordinate location and the fourth vector stores the complex reflection coef-

ficient. The four vectors are aligned so that every row of every vector corresponds

to the same patch.

4.2 Supporting Code for Datacube Calculations

After the input has been created, the data collection can be simulated. Specifi-

cally, the signal model in (2.18) can be used to calculate the DSAR datacube. This

section of the simulation program has different requirements than the scene prepa-

ration. The DSAR signal model itself will never change, and by accepting the

previously described input format, the implementation of it will inherently be gen-

eral enough to accept any potential simulation scenario. The code responsible for

this calculation is much less likely to change than the simulation preparation. Ad-

ditionally, the calculation is very computationally intensive. Input scenarios with a

large amount of data produce large datacubes and require many computations. To

run in reasonable time, a lot of throughput is required. Since this part of simulation

requires performant, high-throughput code but does not require it to be easily mod-

ifiable, CUDA C was chosen as the programming language to implement the data

collection simulation.

The CUDA C code is launched from the MATLAB script as explained in Chap-

ter 3. Supporting code written in MATLAB is required to load the input data onto

the GPU, offload the output data from it, and launch the kernel. However, for this

simulation, simply loading all the input data at once is not feasible.

The complicating factor of running general DSAR simulations on GPU hard-
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ware is the amount of input data required. A typical simulation is a very large scale

computation. The number of PRIs in the data collection is usually in the range of

thousands. The pulse waveforms have high bandwidths in the range of thousands

or tens of thousands of frequency components (or fast-time samples), meaning the

IFFT-length is in the thousands or tens of thousands. When the scattering patches

are arranged to form an image, the number of patches can easily be in the range of

hundreds of thousands. Together, these inputs can require hundreds of gigabytes

of memory to store. This presents a problem, as GPU threads can only interact di-

rectly with device memory, which is very limited. By today’s standards, a high-end

workstation might have enough RAM to store the data of such a simulation in host

memory, but even the best workstation graphics cards do not have enough video

RAM to hold all the data in device memory.

To work around the device memory limitation, the supporting MATLAB code

splits the inputs and outputs into subsets that fit within device memory. Instead of

computing the entire datacube within one kernel launch, it is computed in multiple

kernel launches. Each launch computes a different segment of the datacube, all of

which are later combined within host memory to form the complete output. When

necessary, the scattering patch, waveform, and/or satellite flight path variables split

across rows into subsets. The entirety of each variable is stored in host memory at

all times, but only one subset from each input will be stored in device memory at

any point throughout the simulation. The size of the subsets are modeled as follows:

For an input x, given its total number of elements Nx and the number of subsets

sx to partition it into, the number of elements in all but the last subset is

nx,s′ =

⌈
Nx

sx

⌉
∀ s′ ∈ {1, 2, . . . , sx − 1} (4.1)

48



and the number of elements in the last subset is

nx,sx = Nx −
⌈
Nx

sx

⌉
(sx − 1) (4.2)

where nx,s is the number of elements of the sth subset of x. If Nx is evenly divisible

by sx, then all subsets will be the same size. Otherwise, all subsets will be the

same size except for the last subset, which will be smaller. The maximum possible

difference in size between the last subset any other subset is sx − 1.

It is worth noting that in (4.2), not all values of Nx and sx will produce valid

results. An invalid subset configuration will result in the size of the last subset being

less than one. This never occurs when sx << Nx, which is typically true. However,

correcting invalid subset configurations algorithmically is as simple as checking if

nx,sx ≤ 0 after computing (4.2). If yes, then we subtract 1 from sx, repeating until

the subset configuration is valid. Figure 4.4 shows an example of a valid subset

configuration of a scattering patch input with Npatch = 10 and spatch = 4.

Roughly all subsets of a single input are equal size, which offers two main

benefits. First, the equal size simplifies memory allocations. In MATLAB, it is

possible to query the total amount of free device memory, but it is not possible to

query which specific areas of device memory are free. Despite the appearance of

enough free memory, a large allocation may fail due to memory fragmentation. In

this event, increasing the number of subsets is an easy way to find an appropriate

subset size so that a reasonable amount of elements from every input can be loaded

at once. Additionally, equal subset sizes will cause every kernel launch to have

roughly the same amount of thread utilization and roughly the same execution time.

This makes it possible to extrapolate the total run time more accurately after timing

just one kernel launch.
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Figure 4.4: Example scattering patch partition

The datacube computation is broken into subsets determined by the subsets of

its inputs. The datacube itself is split into segments to match the Cartesian product

of all input subsets. Each individual segment is the output of an individual ker-

nel launch. The datacube’s frequency axis is split into subsets matching those of

the transmitter waveform input. Similarly, the slow-time axis is split into subsets

matching those of the satellite flight path input. The receiving channel axis, how-

ever, is not split into subsets, as it is already small. The resulting datacube subsets

are split further into segments according to the subdivision of the scattering patch

input. All segments of the same datacube subset represent different parts of the

summation along scattering patches in the signal model. Figure 4.5 shows a dat-

acube computation split into subsets by the input subset counts sf = 2, spulse = 2,

and spatch = 2.

The final datacube is assembled in host memory from all of its segments com-
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puted in device memory. Conceptually, each completed subset of the datacube is

calculated by summing all of its segments like three-dimensional matrices. Then,

all completed subsets are arranged side by side to form the completed datacube.

Even though the entire computation does not fit in device memory, it is possible to

complete it in separate segments.

Σ
N
patch

Σ
n
patch,1

Σ
n
patch,2

+
n
pulse,1

n
pulse,2

Slow-timeFreq
uenc

ies

n
f,2

n
f,1

Receiving Channels
(a) (b)

Figure 4.5: (a) The subsets of the output datacube and (b) the scattering patch
segments of an output datacube subset

The subdivision of the output datacube is accomplished by a set of nested for

loops in the supporting MATLAB code. In host memory, a MATLAB variable with

the dimensions of the final output datacube is initially populated with zeros and acts

as a running sum. Each loop iterates over the subsets of an input and loads them

into device memory. In order from outermost to innermost, the for loops iterate over

scattering patch subsets, satellite flight path and slow-time axis subsets, and pulse

waveform and frequency axis subsets. Inside the innermost loop, the CUDA kernel

operates on the loaded subsets to calculate a segment of the datacube. Immediately

after the kernel has executed, its output is transferred from device memory to host

memory and added to the running sum in the appropriate place. Once all loops are

finished iterating, all segments have been added to the running sum, meaning the
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frequency domain datacube is complete and can be used to form an image.

4.3 Datacube Calculations

With the problem split up into manageable segments, the GPU is now capable

of performing all the signal model calculations. Following the signal model in

(2.18) directly, every element in the datacube can be computed independently in

O(NTX · Npatch) time. The entire datacube can be computed in O(Nf · NRX ·

Npulse · NTX · Npatch) time. This section of the simulation is the main focus for

improving performance.

Regardless of how it is implemented, the output will be the same. Conceptu-

ally, every complex value in the datacube represents one frequency component in

the discrete Fourier transform of a single receiver’s measurement within one PRI.

This measured signal is the sum of all pulse waveforms originating from different

transmitters, reflecting off of every scattering patch in the target scene, returning to

one receiver. In the signal model, the inner summation adds all phasors from the

discrete reflections of a single transmitter’s pulse and the outer summation adds the

sums of all transmitters together.

Every phasor within the calculation a single cell of the datacube has an inde-

pendent time delay. The time delay is directly related to propagation distance, and

for every scattering patch, each transmitter signal travels over a different distance.

As shown in Figure 4.6, three transmitting satellites labeled A, B, and C will each

have a different one-way distances, da, db, dc, respectively, from their location to

a single point on the Earth. When measuring the returns within a PRI, satellite A

receives an echo of its own waveform that traveled a distance of da+ da, an echo of

Satellite B’s waveform that traveled a distance of da + db, and an echo of Satellite
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C’s waveform that traveled a distance of da + dc. Satellites B and C similarly re-

ceive the three waveforms, all at different distances. Since each output cell contains

the value of one frequency component of one receiver’s total measurement, there

are NTX · Npatch unique time delays used in the calculation of a single cell of the

datacube.

A B CSatellites

Scattering patch

da db dc

Figure 4.6: Propagation distances between satellites and a single scattering patch

Overall, simulating DSAR data is computationally intensive. Due to the size

of the datacube and the fact that all cells within it can be calculated independently,

the simulation can easily be implemented in a highly parallel model. However, in

a typical scenario with a large number of scattering patches, the computation of an

individual cell itself is relatively intensive, too. The signal model cannot be sim-

plified any further to reduce the number of calculations, so optimizations must be

found for the simulation to execute within a reasonable amount of time. Reusing in-

termediate calculations across multiple cells can potentially improve performance,

but memory bottlenecks must be avoided for there to be a net gain in execution

speed.

In the past, a known working datacube calculation routine written purely in

MATLAB was developed. It used standard linear algebra operations to compute

the simulated data and was accelerated with the native GPU support in MATLAB.
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Multiple implementations of the datacube calculation have been created in CUDA

C in an attempt to calculate the simulated data faster. All of them accept the previ-

ously described input format and, given the same input, produce the same datacube.

The goal in creating multiple implementations is to evaluate multiple methods and

identify the one that produces the correct result the fastest. A correct result is one

that produces the correct SAR image of the input scenario, matching the output

image of the purely MATLAB-based simulation program. The remainder of this

chapter introduces and explains all implementations, each in their own subsection.

4.3.1 Separate Distance and Output Kernels

The first implementation is an attempt to minimize the amount of two-way dis-

tances calculated. The time delays τm,n,q,i within a single PRI have the highest

potential for reuse since they are not influenced by the frequency axis. All val-

ues in a single vector along the frequency axis of the output datacube represent a

single receiver’s measurement at one position, so every value in the vector can be

calculated with the same set of time delays. Reusing them significantly reduces the

total number of operations in the scope of the entire datacube calculation, as only

NTX ·Npatch two-way distances are calculated per frequency axis vector rather than

NTX ·Npatch ·Nfreq distances per vector.

There are two separate kernels at different positions in the nested subset loops

for different stages in the calculations. There is also an additional loop between the

slow-time subset loop and the frequency axis subset loop that iterates over every

individual transmitter. This added loop causes each frequency axis iteration to load

only one transmitter’s pulse waveform into memory, so the datacube subsets are

split further into segments by transmitting channel in addition to the scattering patch
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subset segments. The first kernel is executed immediately inside the transmitting

loop before the frequency axis loop. It calculates all two-way distances from the

current transmitter to the loaded scattering patches to all receivers. The second

kernel is executed immediately inside the innermost loop and uses the distances

from the first kernel to calculate a segment of the datacube, which is then added

to the running sum of the entire datacube. Within each iteration of the transmitter

loop, the two-way distance kernel, the first kernel, is executed once and the output

kernel, the second kernel, is executed NTX times with the same set of pre-calculated

two-way distances. Figure 4.7 shows a pseudocode representation of the supporting

code for both kernels.

for all scattering patch subsets do
Load a scattering patch subset into global memory
for all pulse subsets do

Load a pulse subset into global memory
for all transmitters do

Launch distance kernel
for all frequency subsets do

Load frequency axis subset into global memory
Load pulse waveform subset of transmitter into global memory
Launch output kernel
Transfer output to host memory
Add kernel output to total output

end for
end for

end for
end for

Figure 4.7: Pseudocode of the supporting code for the two-kernel approach

When the two-way distance kernel is launched, the grid and blocks are arranged

so that there is one GPU thread per combination of scattering patch, receiving satel-

lite, and slow-time interval. Each thread first loads its scattering patch location, the

location of the current transmitter at its slow-time interval, and the location of its
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receiver at its slow-time interval from global memory. Each thread then computes

the distance from the transmitter to its associated scattering patch, the distance from

its associated scattering patch to its associated receiver, and the sum of the two dis-

tances, resulting in the desired two-way propagation distance. Finally, each thread

writes its one output to an element of a three-dimensional matrix stored in global

memory. This matrix of two-way distances has dimensions corresponding to the

size the current slow-time subset, the number of receiving channels, and the size of

the current scattering patch subset. All distances calculated in this kernel are used

multiple times throughout each following launch of the output kernel.

The output kernel calculates a segment of the datacube subset corresponding to

one transmitter waveform and all currently loaded input subsets, as shown in Fig-

ure 4.8. This kernel’s grid and blocks are arranged so that there is a single thread

for each element in the datacube subset segment it is to calculate. First, the thread

loads the frequency for its element in the datacube and the phasor representing the

transmitter waveform’s sinusoid component at the same frequency. Next, the thread

has a loop that iterates once for every scattering patch in the input subset. In ev-

ery iteration, the scattering patch’s complex reflectivity coefficient and the two-way

distance for the current datacube element are loaded from global memory. The

thread then calculates one phasor in the signal model’s inner summation and adds

it to a local running sum. After every iteration of this loop is complete, the sum

of all scattering patch phasors is then multiplied by the transmitter waveform com-

ponent phasor and stored in the output datacube segment stored in global memory.

Each element in the output segment is similar to the original signal model, the only

difference being that a subset of scattering patches were summed instead of all of

them. When the MATLAB code running on the host sums all segments together,

the signal model of the final output is equivalent to the original model.
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Figure 4.8: Output kernel of the two-kernel approach

With the two-way distance kernel launch placed in a shallower level of loop

nesting than the output kernel, the number of two-way distance calculations per-

formed is minimized. The same two-way distance matrix is used for every follow-

ing iteration of the frequency axis subset loop. As a result, every unique two-way

propagation distance that appears anywhere in the entire datacube computation is

calculated only once.

This implementation produced the correct results, but was not faster than the

approach based on native MATLAB GPU acceleration. The total number of one-

way distance calculations could have been reduced even further, but the two-way

distance kernel took a negligible amount time to execute compared to the output

kernel, so the distance calculations were determined not to be the limiting factor

of performance. It is likely the global memory loads used throughout the loops in

each thread of the output kernel that degraded performance the most. When loading

data from the three-dimensional matrix of two-way distances, the global memory

access was strided, thus limited memory bandwidth. Since this approach did not

perform well, the following approach was created as the next attempt at improving

the DSAR data collection simulation performance.
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4.3.2 Monolithic Kernel

The second implementation is an attempt to minimize the amount of one-way

distances calculated without relying on global memory to store intermediate calcu-

lations. Within a single slow-time interval, there are NTX · NRX unique two-way

distances associated with each scattering patch. However, all of these two-way

distances can be calculated from just NRX unique one-way distances. Since ev-

ery transmitter is also a receiver, every transmitter and receiver pair has a two-way

propagation distance equal to the sum of two satellite’s one-way distances to the

scattering patch.

Unlike the previous two-kernel approach, there is no loop iterating over trans-

mitters and each segment contains the returns from all transmitters. In this imple-

mentation, there is only one kernel responsible for computing the datacube seg-

ments, which is launched once per iteration of the most deeply nested loop, the

frequency axis subset loop. The kernel computes all the necessary propagation dis-

tances internally. Reducing global memory usage is a higher priority than reusing

calculations, so time delay values are not shared across elements within the same

frequency axis vectors. Every time the monolithic kernel is ran, it computes a sin-

gle output datacube subset segment from the input subsets. Figure 4.9 shows the

pseudocode for the monolithic kernel’s supporting code.

When the monolithic kernel is launched, the grid and blocks are arranged so that

there is a thread for every vector in the datacube along the receiving channel axis,

which corresponds to one frequency and pulse pair in the datacube subset, as shown

in Figure 4.10. Compared to the output computation of the two-kernel approach,

every thread is responsible for significantly more work. One thread computes values

for all elements in a receiving channel vector in the datacube.
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for all scattering patch subsets do
Load a scattering patch subset into global memory
for all pulse subsets do

Load a pulse subset into global memory
for all frequency subsets do

Load frequency axis subset into global memory
Load pulse waveform subset of all transmitters into global memory
Launch output kernel
Transfer output to host memory
Add kernel output to total output

end for
end for

end for

Figure 4.9: Pseudocode of the supporting code for the monolithic kernel approach

Slow time Receiving channelsFast
 time

RX 1 RX 2 RX 3
d1 = ... d2 = ... d3 = ...

Σ
n
patch

Σ
N
TX

... Σ
n
patch

Σ
N
TX

... Σ
n
patch

Σ
N
TX

...

Figure 4.10: The monolithic kernel

Every thread loops over all scattering patches in the current output segment

while tracking a separate running summation for every receiving channel. Within

every iteration of this first loop, the thread immediately loads all NRX satellite posi-

tions at the current slow-time interval and calculates the one-way distances between

the current scattering patch and every satellite, storing them as variables in the scope

of the iteration.

Next, still inside the first loop, a second loop iterates over every possible com-

bination of transmitter and receiver. Within every iteration of this inner loop, two
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one-way distances are added to compute a time delay, which is then used to com-

pute a single phasor of the signal model’s inner summation. This phasor is then

multiplied by the transmitter waveform’s component phasor corresponding to the

thread’s position along the frequency axis. The value computed in this inner loop is

modeled as

Xn (Fp)αi exp (−j2π (F0 + Fp) τm,n,q,i). (4.3)

After calculation, this value is added to the running sum of the appropriate receiver.

Thus, each thread computes all NRX separate outputs by the model

NTX∑
n=1

npatch∑
i=1

Xn (Fp)αi exp (−j2π (F0 + Fp) τm,n,q,i). (4.4)

After all scattering patches in the loaded subset have been iterated over by the first

loop, all NRX running sums are written to the output datacube segment in global

memory. The MATLAB code running on the host then adds the segment to the full

datacube. When all kernel outputs have been added to the total output, the datacube

is complete and matches the final signal model.

All threads corresponding to datacube elements occupying the same slow-time

index calculate the same one-way distances. Computationally, this is inefficient, as

it is possible to avoid repeating any distance calculations. However, this approach

was focused on minimizing the number of one-way distance calculations without

relying on sharing distance values across multiple threads. One beneficial side ef-

fect from this is that more global memory is free to store inputs and the output, so

planning memory allocations is easier and the datacube can be computed in fewer

segments.

The monolithic kernel is a significant improvement over both the two-kernel
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approach and the native MATLAB GPU acceleration approach despite the amount

of redundant distance calculations. The increased performance is most likely due to

the difference in memory accesses and how memory is cached on the GPU. On cur-

rent Nvidia GPU architectures, data loaded from global memory is routed through

multiple caches. Each SM in the GPU has its own L1 cache with similar speed to

the shared memory and the GPU has a single L2 cache between all SM’s and global

memory. Although accessing the global memory in the L1 cache is not quite as fast

as accessing shared memory, it is still much faster than uncached global memory

[13].

In the output kernel of the two-kernel approach, a thread loads a different scat-

tering patch reflectivity coefficient and distance for every phasor it calculates. Com-

paratively, in the monolithic kernel, a thread will reuse the same scattering patch

and satellite flight path data to calculate NRX · NTX phasors before loading new

data. When the same data are accessed multiple times sequentially, there is a higher

chance of a cache hit due to its temporal locality. Additionally, since the monolithic

kernel only reads data from the scattering patch inputs, the cache is not invali-

dated throughout its execution. Overall, the monolithic kernel computes the correct

DSAR datacube more quickly than any previous implementation.

4.3.3 Shared Memory Usage

In an attempt to attain even better performance than the monolithic kernel ap-

proach, both the two-kernel and monolithic kernel implementations were rewritten

to use shared memory. In both new implementations, the shared memory is used

as a cache to pre-load portions of scattering patch data from the subset in global

memory. These attempts were motivated by the fact shared memory is faster than
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global memory. It was thought that using shared memory could have potentially

reduced the amount of time spent loading scattering patch data from its subsets.

Shared memory is used in the same way in both approaches. Only the kernels

that calculate the datacube segment, the output kernel of the two-kernel approach

and the one monolithic kernel of the other approach, pre-fetch scattering patch data.

Conceptually, the subset of scattering patches loaded from host memory into the

device’s global memory is split further into even smaller subsets to be loaded from

global memory into shared memory. These subsets within shared memory all have

the same size equal to the number of threads in a block, although the last shared

memory subset is smaller when the subset in global memory is not evenly divisible

by the number of threads. The shared memory subsets are present only within a

kernel launch, so the output is unchanged from the implementations without shared

memory.

In code, the shared memory pre-fetching is implemented by adding another loop

to the GPU threads. This new loop iterates over the subsets in shared memory and

encompasses the original loop iterating over individual scattering patches. At the

beginning of every iteration of this new loop, all threads in a block collaborate to

load a subset of scattering patch data from the scattering patch subset in global

memory. Every thread in the block loads one scattering patch based on its index.

After the shared memory subset has been loaded, the threads then independently

loop over all loaded scattering patches as before in the original implementations.

When the scattering patches loaded in shared memory have been exhausted, the

next iteration of the shared memory subset loop begins, repeating the process until

the entire datacube segment has been completed.

Neither of these implementations performed better than their original counter-

parts, although they did not perform any worse. The use of shared memory did not
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significantly change the execution time despite its advantage over global memory.

Although the ratio of global memory accesses to computations within each thread

was smaller, the increased speed of shared memory was not enough to overcome the

additional overhead introduced by pre-fetching. Extra calculations and instructions

were required to ensure the threads cooperate to load the correct subsets from global

memory and loop over them. The overhead was too large for the shared memory

speed to overcome, so the shared memory implementations were not faster than

the approaches relying on the global memory cache. Since the performance did

not change with this approach, shared memory techniques were not explored any

further.

4.3.4 Eliminating Repeated Distance Calculations

Other potential approaches were explored to further reduce the number of re-

peated propagation distance calculations without storing data to global memory, but

they all proved to be impractical. The central idea was to have threads that corre-

spond to entire frequency axis vectors in the datacube. This arrangement would

allow for all frequency components in a receiver’s measured pulse reflection to use

the same distance calculations. Theoretically, no one-way or two-way distance cal-

culations would be repeated, thoroughly reducing the total amount of operations per

kernel launch. Two approaches of implementing this idea were briefly considered,

but after further consideration, both proved to have fundamental flaws.

The first potential implementation would have had a single thread per frequency

axis vector. Each thread would compute the summation of phasors for every fre-

quency component. This is impractical for two reasons. First, there would only

be NRX · Npulse threads total. Npulse is commonly in the range of 1,000 pulses in
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typical simulation scenarios. Under these scenarios, there are not enough threads

for a powerful GPU to be at maximum utilization. Second, every thread would have

to write Nf complex values to global memory sequentially in every kernel launch.

Since global memory access is very slow relative to other operations, this would

decrease the overall speed dramatically.

The second potential implementation would have a group of multiple threads

assigned to each frequency axis vector. Each thread would work on different sub-

sets of scattering patches and all frequencies. In this case, there would likely be

enough threads to achieve maximum GPU utilization. However, the fundamental

flaw is that each thread would still must write Nf values to global memory. In ad-

dition, more overhead would be required to synchronize the threads to avoid race

conditions since all threads assigned to the same vector each write to the same set

of memory locations.

After considering these concepts, it was clear that they would not perform better

than previous approaches. The monolithic kernel approach shared memory remains

as the best implementation. More details and analysis of the performance of each

implemented approach will follow in the next chapter.
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Chapter 5

Results

The relative performance of each implementation of the DSAR data collection

simulation is determined by how fast it can complete the datacube calculation. All

implementations were introduced previously in Chapter 4. This chapter compares

the measured execution time of each implementation, identifies the most important

features related to their performance, and finally, describes potential future work to

continue this research.

5.1 Comparisons

To evaluate the implementations discussed in Chapter 4, their execution times

were measured and compared on the same machine with various input scenarios.

Specifically, the real-world time spent in the frequency domain DSAR datacube

computation and in the supporting MATLAB code was measured. The time spent

before and after the datacube calculation, which includes the time spent on prepar-

ing the input scene and signal processing, was not considered. Since all implemen-

tations produce identical outputs, the best implementation is simply determined to

be the fastest one.

To ensure all comparisons are fair, all tests were performed on the same hard-
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ware. DSAR simulations are very computationally intensive, so despite being com-

patible with theoretically any CUDA-compatible GPU, the program will typically

be executed on very powerful hardware. To mimic the typical use case, the tests

were executed on a high-end desktop computer with an AMD Ryzen Threadripper

3960X CPU, 256 GB of RAM, and an NVIDIA RTX A6000 GPU. The GPU has

48 GB of video RAM, all of which is available to the MATLAB environment since

the GPU is configured in the Tesla Compute Cluster mode. In this mode, the GPU

is not used by the operating system to drive the display. The computer has another

GPU for the display which is not involved in the simulation.

The performance tests consist of various input scenarios that are executed on

every implementation of the simulation to compare execution times. In all scenar-

ios, there are three satellites that all transmit and receive pulses, 19,582 frequency

components in each pulse waveform, and 8,192 pulse observations. The number of

scattering patches are varied across different scenarios. In all tests, the entire in-

put and output fit in device memory, so the computation was not split into subsets.

Different numbers of subsets were tested, but no significant changes in execution

times were observed, so those tests were not included. Each kernel was launched

with 512 threads per block to ensure maximum utilization of each SM in the test

computer’s GPU. Each SM can host up to 1,536 concurrent threads, so three thread

blocks will completely occupy a single SM during execution. Table 5.1 shows the

number of scattering patches and the execution times for each test.

One interesting observation drawn from Table 5.1 is that for both the mono-

lithic kernel and two-kernel approaches, the implementations using shared memory

show no improvement over the original implementations. In fact, the use of shared

memory did not make any significant difference in execution time, as shown by

Figure 5.1. For the two-kernel approach, the implementation with shared memory
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Execution Time (seconds)
Num.

Scattering
Patches

Native
MATLAB

Two-
kernel

Monolithic
Kernel

Two-
kernel

(Shared
Mem.)

Monolithic
Kernel

(Shared
Mem.)

3393 782.34 1336.84 947.74 1334.82 985.83
10000 2113.84 8365.83 1311.63 8699.01 1312.85
20301 4638.57 16926.15 2662.10 17606.13 2660.47
37500 8408.51 31521.30 4913.95 32781.60 4928.40
50000 10352.30 41817.30 6552.67 43497.03 6555.27

Table 5.1: Execution times of all implementations

took slightly longer on average to execute than the implementation without shared

memory.

Figure 5.1: Comparisons of implementations with and without shared memory
usage for both CUDA based approaches

The most significant results shown in Table 5.1 is how all the implementations

without shared memory compare. The execution times of the native MATLAB,

two-kernel, and monolithic kernel approaches are all plotted against the number of

scattering patches for each test scenario in Figure 5.2. The two-kernel approach is

the slowest implementation in all tests. Compared to the MATLAB implementation,
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the two-kernel implementation is 3.84 times as slow. For the performance test with

the fewest number of scattering patches, the native MATLAB implementation is the

fastest. However, for all other performance tests, which are more representative of

typical simulations due to the larger amount of scattering patches, the monolithic

kernel approach performs the best. In tests with 10,000 or more scattering patches,

the monolithic kernel is, on average, 1.66 times faster than the original MATLAB

implementation, making it the fastest implementation of the simulation.

Figure 5.2: Comparing the execution times of different DSAR data collection
simulation implementations

In addition to performance, the monolithic kernel has other advantages over the

original native MATLAB GPU based approach due to how it uses memory. The first

advantage is that the monolithic kernel uses a more sophisticated method of parti-

tioning the datacube calculation into subsets. The original, purely MATLAB-based

approach splits only the scattering patch input into subsets, so if any other input is

too large to fit entirely within device memory, the scenario can not be simulated.

Both CUDA based approaches can partition every simulation input parameter into

subsets if necessary, so they can run any simulation that fits within host memory
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regardless of how much device memory is available. The second advantage is that

the monolithic kernel uses less of the device’s global memory than other imple-

mentations. The purely MATLAB-based implementation uses global memory as

working memory to store intermediate calculations for all of the matrix operations

performed and the two-kernel approach uses global memory to store propagation

distance calculations. Comparatively, the monolithic kernel approach uses only the

registers and local memory of threads in the kernel to store intermediate calcula-

tions. As a result, more global memory is free for larger input and output subsets

and the entire calculation can be performed in fewer kernel launches.

5.2 Conclusions

Implementing the approaches described in Chapter 4 and testing their perfor-

mance as described here in Chapter 5 highlighted characteristics of the DSAR sim-

ulation problem. Although the problem presents a potential for a high level of

parallelism, it difficult to map to a GPU.

The performance of all current implementations of the datacube calculation is

bound by memory access speed, but making use of shared memory hardware did not

improve performance. The two-kernel implementation was an attempt to minimize

the amount of repeated computations in the signal model’s summations, but was

slower than any other implementation. The monolithic kernel implementation is

different in that it repeats many computations to reduce how often threads load from

memory and has significantly better performance. The reduced amount of global

memory access appears to be the cause of the improved speeds. However, the test

results show that loading data from global memory into shared memory does not

improve speeds further because of how individual threads access that data.
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Even in the pure MATLAB approach, which is based on linear algebra oper-

ations, shared memory is not very useful to this problem. Shared memory can

be used to improve matrix multiplication speeds by tiling, a technique in which a

subsets of the input matrices are loaded into shared memory to be computed indi-

vidually. Each thread will access the same data as it would without tiling, but will

access global memory fewer times. However, in the DSAR datacube calculation,

there are never any two matrices multiplied together. Other operations, such as

multiplying column and row vectors or multiplying vectors by matrices are used.

Unfortunately, there are not many values that can be reused across different output

elements, so shared memory is not useful here.

Overall, when computing on a GPU, a general DSAR simulation performs best

when the number of global memory access is minimized, even if it means increasing

the total number of mathematical operations performed in each thread. Typically,

shared memory can be used to reduce global memory accesses, but the DSAR dat-

acube calculation is difficult to apply shared memory techniques to.

5.3 Future Work

The obvious next step to increase the utility of this simulation is to explore

methods that improve execution time even further. One potential approach that has

not yet been implemented or tested would be to assign one or more thread blocks

to a single element of the datacube and use a tree reduction pattern [9]. First, an

individual thread would compute one phasor or the summation of a few phasors

in the signal model. Then, all threads in the block would collaborate via shared

memory to compute the summation of all threads’ values. If there are fewer threads

in a block than the number of phasors needed to calculate an element, there are
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two options. The scattering patch input could be split into subsets of the same size

as the thread blocks or multiple thread blocks could work on different segments

of the same element with the tree reduction pattern running recursively. To ensure

there are enough threads for every processor in the GPU to be utilized, multiple

datacube elements, all with independent tree reductions, can be calculated within

one kernel if there are not enough scattering patches loaded in global memory to

populate threads with alone.

Compared to the implemented and tested approaches described previously, in

this proposed approach there are fewer individual datacube cells computed simulta-

neously in every kernel launch, but the computation of each cell is done in parallel.

As a result, less time is required to compute a single cell in the output datacube,

although it is not immediately clear whether or not this approach will compute an

entire datacube faster than the monolithic kernel approach.

The main benefit of the tree reduction in this application is the efficient use of

memory. In each thread of the monolithic kernel, scattering patches and pulse loca-

tions are loaded from global memory multiple times at regular intervals throughout

the thread’s execution. This presents an issue, as arithmetic operations are relatively

fast, but the processor must wait until the required operands have been loaded from

global memory to perform the operation. Since global memory is slow, it can take

many cycles before the addition, which only takes a few cycles, to complete. Com-

paratively, in this tree reduction approach, the threads will only load data from

global memory at the beginning of the kernel launch. All the phasors in a single

datacube cell’s summation will be computed and all the required operands will be

loaded at once instead of at multiple times throughout the execution of the thread.

The operands of the addition instructions that sum all the phasors will be loaded

from the shared memory, not global memory, so there will be less time spent wait-
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ing for memory transactions to complete throughout the large summation.

The main drawback of using multiple tree reductions is the reduced overall

thread utilization. At every step in a tree reduction, the number of addition opera-

tions and the number of working threads is halved. Fewer threads perform meaning-

ful work at every iteration while the remaining threads effectively sit idly. Compar-

atively, the monolithic kernel approach has all threads performing meaningful work

throughout the entire duration of the kernel. Whether or not the reduced utilization

outweighs the benefits of this tree reduction approach is unclear. If this approach

does perform better than the monolithic kernel, it is likely that the performance is

is increased more for simulations with a large number of scattering patches than

for simulations with fewer scattering patches. There is currently uncertainty around

this tree reduction approach to the DSAR simulation, but it is worth exploring.

The utility of this simulation program can also be improved in areas outside of

execution time. Support for a wider range of hardware could be beneficial. Since

the simulation’s input scenario can be split into subsets when necessary, the size of

the simulation is not limited by the amount of device memory. However, the input

scene currently must fit entirely within host memory for the simulation to run at all.

Therefore, a large amount of RAM is required to run simulations of large scenes. A

potential improvement is to take the subset concept a step further to eliminate the

host memory limitation on simulation size. If the entire input scenario can fit on the

computer’s file system, then subsets of that input can be loaded from the file system

into RAM. Then, smaller subsets of the RAM-hosted subsets can be loaded into de-

vice memory as the current implementations do. Temporarily storing the scenario’s

data in the file system would be relatively slow, but would enable machines to com-

pute larger simulations that are currently supported. Implementing this would likely

be relatively simple with MATLAB, too. MATLAB has native functionality to work
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with out-of-memory data thanks to its Tall Array object. Although the simulation

sizes are currently limited by the practicality of execution time, as either faster GPU

hardware or faster algorithms are developed, this proposed technique prevents the

amount of host memory from becoming the next limiting factor.
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