
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DEEP LEARNING FOR WEAK TARGET DETECTION IN
RANGE-DOPPLER DATA

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

BY

Bibi M Dang
Norman, Oklahoma

2022

DEEP LEARNING FOR WEAK TARGET DETECTION IN
RANGE-DOPPLER DATA

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Dean Hougen

Dr. Justin Metcalf

Dr. Dimitrios Diochnos

© Copyright by Bibi M Dang 2022
All Rights Reserved.

Acknowledgements

I would like to thank my co-advisors Dr. Justin Metcalf and Dr. Dean Hougen

for their continuous support and for the opportunity to collaborate on an inter-

esting subject. I would also like to thank Dr. Dimitrios Diochnos for his valuable

feedback as a member of my committee. Thank you to the Army Research

Laboratories for sponsoring this work under Subcontract to Huntington Ingalls

Industries. However, the views expressed in this thesis are those of the author

and do not reflect the official policy or position of ARL, or the U.S. Government.

No official endorsement by ARL should be inferred. Lastly, I would like to thank

the friends and family whose support made this possible.

iv

Abstract

A consistent issue for detectors in radar systems is how to correctly distinguish

target signals from random noise. This is especially true for weak targets with

low signal-to-noise ratios (SNRs). Traditional target detection techniques, such

as constant false alarm rate (CFAR) detectors, apply detection thresholds that

must be set to maximize the probability of detection (PD) while minimizing the

probability of false alarm (PFA). These traditional detection techniques also

struggle with increasing levels of computational complexity in low-SNR environ-

ments. This work investigates the application of deep neural networks towards the

radar target detection problem. Two neural network architectures, NoisyLSTM

and U-Net, are tested on range-Doppler data to identify regions of interest in

which targets may be present. The U-Net model demonstrates promising results,

producing detection predictions with a PD of 0.97 and PFA of 0.01 for targets

captured by a staring radar at 10dB input SNR. This deep learning architecture

may serve as a valuable preprocessing step to reduce the search space of more

sophisticated radar detectors.

v

Contents

Acknowledgements iv

Abstract v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Research Objectives . 3
1.2 Contributions to the Research Community 4
1.3 Thesis Organization . 4

2 Background 5
2.1 Deep Learning and Neural Networks 5
2.2 Convolutional Neural Networks 7
2.3 Long Short Term Memory . 9
2.4 Related Work . 11

3 Experimental Design 14
3.1 Simulation Model . 14
3.2 Data Format and Datasets . 18

3.2.1 Generated Simulation Data 18
3.2.2 Sliding Window Approach 19
3.2.3 Labels and Segmentation Masks 20
3.2.4 Model Inputs . 22

3.3 NoisyLSTM Approach . 22
3.4 U-Net Approach . 26
3.5 Performance Metrics . 28

3.5.1 Correct Detections . 28
3.5.2 Probability of Detection and Probability of False Alarm . . 29
3.5.3 Incorrect Cell Predictions 30
3.5.4 Cross Entropy Loss . 31

vi

4 Results 33
4.1 U-Net Training . 33

4.1.1 Training and Validation Loss 36
4.1.2 Probability of Detection and False Alarm 38
4.1.3 Incorrect Cell Predictions 41

4.2 U-Net Testing . 43
4.2.1 30dB SNR Results . 43
4.2.2 10dB SNR Results . 44
4.2.3 3dB SNR Results . 45

4.3 Discussion . 46

5 Conclusions 48

6 Future Work 49

Bibliography 51

vii

List of Figures

2.1 Artificial neural network neuron 6
2.2 Example fully-connected neural network architecture 7
2.3 Convolution matrix operation . 8
2.4 Max-pooling operation . 9
2.5 Example RNN architecture . 10
2.6 LSTM Cell . 11

3.1 Example RDM with target cut-out 16
3.2 Example target signatures for staring radar class at varying SNRs 18
3.3 Example target signatures for scanning radar class at varying SNRs 18
3.4 Example RDM window sequence and corresponding masks 21
3.5 Data pipeline for NoisyLSTM model 23
3.6 NoisyLSTM architecture . 24
3.7 Convolutional LSTM overview . 24
3.8 Double convolution block for U-Net architecture 26
3.9 U-Net architecture diagram . 27
3.10 Sample of varying metric evaluations 31

4.1 Training and validation loss for staring radar over 35 epochs . . . 37
4.2 Training and validation loss for scanning radar over 35 epochs . . 38
4.3 Probability of detection and false alarm for staring radar over 35

epochs . 39
4.4 Probability of detection and false alarm for scanning radar over 35

epochs . 40
4.5 Average incorrect cell predictions for staring radar over 35 epochs 41
4.6 Average incorrect cell predictions for scanning radar over 35 epochs 42

viii

List of Tables

3.1 Constant radar simulation parameters 19
3.2 Cross-validation dataset sizes for staring radar class 22
3.3 Cross-validation dataset sizes for scanning radar class 22

4.1 Detailed architecture of implemented U-Net model 34
4.2 Modified training parameters . 35
4.3 Test results for staring radar class 43
4.4 Test results for scanning radar class 43

ix

Chapter 1

Introduction

A fundamental radar task is to correctly distinguish target signals from random

noise. This is a relatively simple problem in cases where target signals stand

out clearly among noise. However, target detection quickly becomes difficult

for weaker targets. Traditional detectors in radar signal processors attempt to

determine if a specific signal returned by a radar corresponds to a real target.

These detectors often utilize a threshold detection technique in which signals

higher than a predefined threshold are classified as targets and signals lower than

the threshold are assumed to be noise. This can further be considered as a binary

hypothesis test where H0, the null hypothesis, assumes that no target is present

among returned noise, and H1 assumes a target is present in combination with

noise (Gusland et al., 2020). For a given signal value X and threshold value T ,

the null hypothesis is accepted when X ≤ T and H1 is accepted when X > T .

However, determining the threshold for these detection techniques can become

challenging. Setting a threshold too low will often result in signals from random

noise spikes being misclassified as targets. These misclassified signals are referred

to as false alarms. Conversely, setting a threshold too high will exclude most noise

1

and interference signals, but it may also fail to identify true target signals entirely

(Gusland et al., 2020). This problem becomes even more complicated for weak

targets with low signal-to-noise ratio (SNR). Detection algorithms are constantly

seeking a balance to maximize the probability of detection, PD, while minimizing

the probability of false alarms, PFA. In many cases, a constant-false-alarm rate

(CFAR) detector is used to dynamically set and adjust the detection threshold

to maintain a constant PFA. In these cases, thresholds are set to maximize the

PD at a given SNR. However, traditional CFAR techniques cannot readily detect

low-SNR targets.

Several detection techniques have been proposed to attack the weak target

detection problem, often by attempting to improve the output target SNR. One

example of such a technique is track-before-detect. Traditionally, the threshold

value described above is applied to every measurement frame returned by the

radar. However, track-before-detect processes data across several frames before

deciding whether or not a target is present (Grossi et al., 2013). This technique

accomplishes two tasks. First, the coherent target signal is amplified by com-

bining the consistent, albeit weak, signal returned by the target across several

measurements while mitigating the effects of fluctuating noncoherent noise sig-

nals. Second, a “track” is returned at the same time as detection. This occurs as

the combined radar returns showcase the detected target’s movement over time.

In the case of low-SNR targets, a target may only appear as a point in space and

barely distinguishable from surrounding noise. However, by examining multiple

return frames, the range or Doppler walk of the target over time introduces a

unique “spatial” element to target signatures (Gusland et al., 2020). This can

make targets easier to detect, but the number of possible target trajectories to

explore explodes exponentially as the number of combined frames increases.

2

Previous work to improve target SNR, such as track-before-detect, has in-

spired the work outlined in this thesis. Recent advancements in the field of

computer vision have proven that deep neural networks are an excellent tool for

identifying spatial features in image and video data. These networks may also

prove useful in target detection by exploiting the temporal nature of radar data

to isolate unique features of targets amongst noise.

1.1 Research Objectives

The primary goal of this research is to reduce the computational complexity of

track-before-detect-algorithms by incorporating deep learning models as a pre-

processing step. These models can serve as a quick and efficient method to predict

likely regions of interest for targets and reduce the search space of complicated

signal processing techniques. This thesis outlines and analyzes two neural net-

work architectures, NoisyLSTM (Wang et al., 2021) and U-NET (Ronneberger

et al., 2015), that can be modified and applied to radar data for target detection.

The primary objectives of this thesis are as follows:

• Generate and prepare simulated radar data to be used in two deep learning

models: NoisyLSTM and U-Net

• Implement and modify NoisyLSTM and U-Net models to apply to the target

detection task

• Train viable models using representative training and validation datasets

across varying SNR values

• Test viable models on unseen data and evaluate performance based on PD

and PFA metrics

3

• Assess feasibility of models as a preprocessing step across varying SNR

values

1.2 Contributions to the Research Community

This thesis analyzes the application of deep learning towards the radar target

detection problem. More specifically, two neural network architectures, NoisyL-

STM and U-Net, were adapted and applied to range-Doppler radar data. Both

architectures, originally designed as segmentation models for computer vision

tasks, were capable of processing range-Doppler data similarly to images or video

frames in an attempt to identify unique target features over time. Results pro-

duced by the U-Net model in particular suggest that deep learning approaches to

target detection can be used to improve current signal processing approaches as

a preprocessing step used to highlight regions in which a target may be present.

This form of preprocessing can then reduce the search space and computational

complexity of traditional detection techniques.

1.3 Thesis Organization

This thesis is organized into 6 chapters. Chapter 1 outlines the target detection

problem for radar. Chapter 2 introduces relevant background information on

deep learning and neural networks. Chapter 3 details the experimental design

used to test both proposed deep learning methods. Chapter 4 presents the results

obtained from training and testing. Chapter 5 includes concluding remarks on

the overall work. Lastly, Chapter 6 details potential future work and areas for

improvement.

4

Chapter 2

Background

The application of machine learning to radar tasks is becoming an increasingly

popular area of research. In most cases, this research attempts to apply machine

learning techniques that have proven to be successful in other domains and apply

them to radar data. Deep learning and its applications have also shown to be an

especially popular focus within this area of research. For example, range-Doppler

data is a form of radar data that has shown promising results in classification and

detection tasks when processed by deep learning architectures commonly used in

computer vision (Wang et al., 2022) (Gusland et al., 2020) (Altmann et al., 2019).

This chapter outlines a brief introduction into deep learning concepts, introduces

two deep learning architectures applied in this work, and discusses related work.

2.1 Deep Learning and Neural Networks

Deep learning is an area of machine learning based heavily on artificial neural

networks. Simply put, these networks are typically composed of several functions

that are applied to some form of input data (Goodfellow et al., 2016). For ex-

5

ample, say a model is composed of three functions, f (1), f (2), and f (3), chained

together so that

f(x) = f (3)(f (2)(f (1)(x)))

The variable x refers to the original input data, each function f (n) is the nth layer

of the network, and f(x) is the output layer. Neural networks are then trained

to produce an output f(x) that most closely matches a predefined correct output

f ∗(x). The functional layers in between the input and output layers are referred

to as hidden layers. The learning algorithm must choose how to apply the hidden

layers to produce the desired result, but their expected output and behavior is

not explicitly defined in the training data (Goodfellow et al., 2016).

Figure 2.1: Artificial neural network neuron

Neural networks are also commonly organized into a series of processing units

called neurons (Kelleher, 2019). At a fundamental level, a neuron maps several

inputs to a single output, as seen in Figure 2.1. Within a neuron, the weighted

sum of inputs [x1, x2, . . . , xn] is passed to an activation function ϕ to produce an

6

output y. There are several popular activation functions used in neural networks

today, sigmoid and hyperbolic tangent functions for example, but the primary

goal of this step is to add non-linearity to the network in order to model complex

relationships (Kelleher, 2019). Figure 2.2 shows a simple fully-connected neural

network, meaning the output of all neurons in a given layer are fed as input into

every neuron in the following layer.

Figure 2.2: Example fully-connected neural network architecture

2.2 Convolutional Neural Networks

One of the most popular deep learning networks used today are convolutional

neural networks (CNNs). CNNs perform best on data structured in a grid or

matrix as they were originally designed for image recognition tasks (LeCun et al.,

1989). A CNN is designed to extract local features of the input data in early

layers and combine those features to identify higher-level features in later layers

7

(Kelleher, 2019). Face recognition in images is a common example used to explain

this process. Early layers in a CNN are tasked with identifying simple features,

such as edges or curves, that are localized within a small subsection of pixels.

The following layers combine these low-level features into more identifiable body

parts, such as eyes and ears, until a whole face can be identified in the image

(Albawi et al., 2017).

The basic building blocks of CNNs are convolutional layers. Convolutional

layers typically consist of three parts: a convolution stage, a nonlinear activation

function, and a pooling stage. The convolution stage is based on a mathematical

convolution operation, often denoted with an asterisk (*), as shown in Figure

2.3 (Goodfellow et al., 2016). During convolution, a weight matrix, or kernel,

is passed over a given input to reduce it into a smaller output referred to as a

feature map. This map is then fed into a nonlinear activation function before

moving on to the pooling stage.

Figure 2.3: Convolution matrix operation

Pooling is an important step to reduce the complexity of a feature map for

future layers and to minimize the effect of small variations among samples belong-

ing to the same class (Albawi et al., 2017). The most common pooling function

is called max-pooling. Figure 2.4 shows an example of max pooling in which

an input is reduced by taking the max value within a given subregion, say 2x2,

8

starting in top-left corner and moving by a stride of 2 across the entire image.

By design, these three stage compose a single convolutional layer with the intent

of reducing a given input into distinguishable features.

Figure 2.4: Max-pooling operation

2.3 Long Short Term Memory

Another common family of neural networks are recurrent neural networks (RNNs).

RNNs are designed to analyze sequential or temporal data using a single hidden

layer (Kelleher, 2019). Unlike CNNs, which typically process input data samples

individually, RNNs expect a sequence of inputs [x1, . . . , xn] that are unrolled and

processed one at a time through a recurrent loop. In many cases, these input

sequences are composed of data samples across multiple timesteps. In addition

to the sequential input data, RNNs also store all outputs from the hidden layer in

a memory buffer to be used later. These hidden layer outputs are referred to as

hidden states. RNNs are recurrent in the fact that each input is processed using

the hidden state value calculated at the previous timestep. Figure 2.5 demon-

strates how the output hidden state, ht, for each input sample, xt, is repeatedly

fed back into the single hidden layer at each timestep t.

9

Figure 2.5: Example RNN architecture

A popular example of RNNs are long short-term memory (LSTM) networks

(Hochreiter and Schmidhuber, 1997). Early RNNs struggled to scale over long

time sequences or to generalize well to new data formats. However, LSTMs have

proven to be effective at capturing both long-term and short-term dependencies

across several application domains (Greff et al., 2015). LSTMs are made up of

a single hidden layer called the LSTM cell. Similar to a simplified RNN, LSTM

cells process a series of sequential inputs and hidden states, but it also keeps track

of a series of cell states that retain information across all time steps (Goodfellow

et al., 2016). Figure 2.6 shows how data moves forward through a single LSTM

cell. Each input instance and corresponding hidden state pass through a series

of gates: the forget gate, the input gate, and the output gate (Kelleher, 2019).

Each gate utilizes a set of biases b, input weights U , recurrent weights W , and a

sigmoid function to generate an output (Goodfellow et al., 2016). The outputs

of the forget gate ft, input gate it, and output gate ot at a given timestep are

defined as

ft = σ(Ufht−1 +Wfxt + bf)

it = σ(Uiht−1 +Wixt + bi)

10

ot = σ(Uoht−1 +Woxt + bo)

In addition to the three gates, data may undergo various pointwise multiplica-

tion, pointwise addition, or hyperbolic tangent functions before a cell produces

an output hidden state and cell state to be used in the next timestep. These

additional operations are also shown in Figure 2.6.

Figure 2.6: LSTM Cell

2.4 Related Work

While traditional signal processing techniques are still the predominant approach

in detection literature today, there has been a recent increase in interest for using

machine learning techniques for several radar tasks - including target detection.

More specifically, deep learning methods are becoming a popular research topic

aiming to reduce the complexity of traditional radar tasks, and initial investiga-

tions into deep learning for radar data have shown promising results.

11

CNNs are a popular deep learning architecture that have recently been applied

to several target detection applications where target signals may be particularly

weak (Wang et al., 2022) (Gusland et al., 2020). These applications are often

inspired by advancements in the field of computer vision, where CNNs are a

common choice for image classification. In image classification tasks, some deep

learning model attempts to classify objects in an image into one or more cate-

gories. Target detection in radar can also be considered as a binary classification

problem in which a target is either present or not present. Furthermore, existing

computer vision architectures can easily be extended to radar data depending on

its initial format. For example, YOLO (Redmon et al., 2016) is a very popular

CNN-based network widely used in object detection and classification tasks, but

the radar community has since extended it to classify signals in spectrograms

(O’Shea et al., 2017) and synthetic aperture radar (SAR) images (Cui et al.,

2021).

Range-Doppler maps (RDMs) are another form of radar data that can often

easily be applied to deep learning models commonly used in computer vision

(Wang et al., 2022) (Gusland et al., 2020) (Altmann et al., 2019). Computer

vision models traditionally expect an input image of size (C, H, W) where C is

the number of color channels – C = 1 for grayscale images and C = 3 for colored

images – and H & W are the height and width of the image. The input image

is further composed of a series of pixel values where some integer ranging from

0 to 255 indicates how dark each pixel appears. In this case, a pixel value of 0

represents the darkest shade of black available, and a pixel value of 255 represents

the lightest shade of white available.

An RDM is a 2-D matrix containing signal data relative to distance and

velocity. This data structure is very similar to a traditional grayscale image,

12

except that each value in the 2-D matrix represents a radar signal value rather

than a pixel color value. Because of this similarity, RDMs can often be interpreted

as one-channel grayscale images in existing computer vision models. Analyzing

multiple RDMs at a time also incorporates a temporal element to a target’s

signature. Gusland et al. (2020) introduced an approach to stack multiple RDMs

to create a 3-D range-Doppler image that can be fed into a CNN classifier. This

approach condenses temporal data into a single image, but other approaches have

attempted to utilize video processing techniques to capture temporal features

over a longer period of time (Altmann et al., 2019) (Baird et al., 2020). These

approaches utilize LSTM models to analyze multiple sequential RDMs at a time

similar to analyzing several frames in a video.

13

Chapter 3

Experimental Design

To test the application of deep learning for target detection, two neural network

architectures, NoisyLSTM and U-Net, were applied to simulated range-Doppler

data. This chapter outlines how the range-Doppler data was generated and la-

beled in order to train and test the neural networks. Then, a detailed overview

of both the NoisyLSTM and U-Net architectures is provided before discussing

which metrics will be used to evaluate each model’s performance for this task.

3.1 Simulation Model

Training and testing data for the neural networks was generated using a simple

pulse-Doppler radar simulation in MATLAB. Within the simulation environment,

all targets were restricted to move directly towards or away from the radar at

randomized locations, velocities, and accelerations. Random Gaussian noise was

also added to every simulation scenario. Each simulation run produces a set of

RDMs as output. A single RDM represents the radar return at a given timestep,

and the returned set of RDMs at the end of each run represents a sequential

14

history of radar data over the total observation time. Each RDM also undergoes

an additional preprocessing step where all complex values are transformed to real

values by taking the magnitude squared of the overall RDM data. It is important

to note that this simulation focuses solely on point targets among random thermal

noise, and it does exclude several real-world complications such as the effects of

pulse compression and Doppler sidelobes. Although this simulation is relatively

simple from a radar perspective, it is a flexible framework that allows for quick

generation of large amounts of data while also showcasing the learnable features

targets exhibit in real radar data.

An example RDM generated by the MATLAB simulation tool is shown in

Figure 3.1. Each individual RDM is structured so that Doppler is measured

along the x-axis and range is measured along the y-axis. Doppler values, which

correspond to relative velocity, at the highest and lowest ends of the x-axis cor-

respond to the highest speeds going towards or away from the radar. Doppler

values at the center of the x-axis correspond to no motion relative to the radar.

The range values along the y-axis correspond to distance so that increasing val-

ues are a farther radial range away from the radar. Figure 3.1 also includes a

highlighted target cut-out to demonstrate an example target signature within the

RDM. The target appears as a distinctive horizontal streak that occupies a very

small area within the RDM as a whole. This streaking indicates the “horizontal

walk” of the target that has been captured by the radar across several Doppler

bins. In other words, this is an accelerating target, and therefore the Doppler

measurement (which measures velocity) changes across the collection of RDMs.

The simulation environment is capable of producing two classes of data, each

representing RDMs collected by two simple types of radars. The first class of data

is referred to as the staring class. This class mimics a stationary radar staring

15

Figure 3.1: Example RDM with target cut-out

16

at a particular angle, and each RDM is recorded sequentially with no time delay,

T∆ = 0, between collects. The second class is referred to as the scanning class.

This class represents targets identified by a radar scanning across a given area,

and each RDM is collected after a short time delay, T∆ = 75ms, to compensate

for the time it takes the radar to sweep across the given area. In order to add

more variety to the training and testing data, targets in each class also differ

in acceleration. Targets in the staring class are assigned constant accelerations

equal to 7% of the target’s initial velocity, and targets in the scanning class are

assigned a constant velocity with no acceleration.

Figures 3.2 and 3.3 show examples of targets included in the staring and

scanning radar classes at varying SNR levels. While target signatures within

each class may vary, the example targets shown in these figures demonstrate

some of the most distinguishable cases in order to highlight the main differences

among varying SNR levels in each class. The RDMs in these figures are shown

using a scaled colormap that maps the range of raw range-Doppler values to a

full color spectrum. Target signatures, especially in cases where targets have a

high SNR value, will traditionally correlate with higher signal values. This can

be seen in the larger or “brighter” pixel values shown in the target cutouts. At

all three SNR levels shown, the targets at 30dB SNR appear brightest and are

easily distinguishable among the noise in both the staring and scanning radar

classes. The 30dB SNR and 10dB SNR examples for the staring radar class are

also more discernible due to their horizontal streaking from acceleration. The

3dB SNR examples present a much more challenging problem. At this SNR,

targets are much less distinguishable among noise and often lack any discernible

streaking shape. In this case, the neural networks will need to rely on some

form of amplification gained by examining several RDMs in sequence in order to

17

differentiate fluctuating noise spikes from target signals that will remain relatively

consistent over time.

Figure 3.2: Example target signatures for staring radar class at varying SNRs

Figure 3.3: Example target signatures for scanning radar class at varying SNRs

3.2 Data Format and Datasets

3.2.1 Generated Simulation Data

Three datasets were created for both the staring and scanning radar classes to

simulate target returns at 30dB, 10dB, and 3dB SNR. Targets at 30dB SNR

should be easily distinguishable, and they will become increasingly difficult to

18

detect at lower SNR values. Each dataset was generated using the constant

radar parameters shown in Table 3.1. The center frequency, FC , and bandwidth,

BW , are important parameters used to govern the range of frequencies used by

the radar receiver. The pulse repetition frequency, PRF , and total number of

pulses determines how often the radar emits a pulse of energy and how many

pulses are used to make a measurement. Lastly, T∆ refers to the time delay

between measurement collections, and TObs is the total observation time spent

collecting measurements. Additionally, each simulation run produced RDMs of

size 10,000×256 each containing 100 targets. RDMs of this size would be over-

whelming for track-before-detect techniques, but serve as an ideal example of

cases in which preprocessing using neural networks may prove to be beneficial.

Table 3.1: Constant radar simulation parameters
FC PRF Pulses BW T∆ TObs

Param. 5 GHz 5 kHz 256 50 MHz [0, 75] ms 4 s

3.2.2 Sliding Window Approach

After generating the initial datasets using the MATLAB simulation environment,

an additional preprocessing step was performed using a sliding window operation

on each RDM before being passed over to the neural networks. This preprocessing

step standardizes the input size of data being fed into the models and compensates

for the possibility of variable RDM sizes. This technique adds an additional

benefit of creating square inputs for the neural networks. To accomplish this,

each RDM is divided into several smaller non-overlapping windows. For the

purposes of this experiment, a 16x16 sliding window was used for each RDM

across all generated datasets. The resulting 16x16 RDM windows served as input

19

for the neural networks.

3.2.3 Labels and Segmentation Masks

Neural networks for computer vision can be designed for a wide variety of goal

tasks. Traditionally, most computer vision tasks can be organized into three

broad categories: classification, localization, and segmentation. In classification,

the primary goal of the neural network is to analyze an image, or subregion

of an image, and classify it into one or more categories. In the context of this

target detection problem, this would be equivalent to a network analyzing a single

RDM window and predicting whether or not a target is present anywhere in the

window. This approach results in a few problems. First, this form of binary

output provides very little information about the scene as a whole. No additional

information is provided on where the target is located within a window or how

many targets are present within a window. Furthermore, a binary label assigned

to each RDM window provides very little information to the neural network

during training. While the model will be penalized for target predictions in

no-target windows, it will not be penalized if it produces a “correct” window

prediction by flawed logic (i.e. if its choice was influenced by a noise spike rather

than a target).

Localization and segmentation are similar tasks that often produce more de-

tailed outputs than simple classifiers. In localization, networks are trained to

predict bounding boxes around objects in images. In these tasks, a set bounding

box coordinates are provided as ground truth labels for each object to be detected

during training. Segmentation attempts to perform a similar task, except at the

pixel level. Therefore, instead of producing a bounding box prediction, segmen-

20

tation models produce segmentation masks that label each individual pixel in an

image. These masks can also easily be extended to artificially define bounding

boxes as a post-processing step. In the context of this target detection problem,

this is equivalent to a network producing a 16x16 prediction mask where every

cell is either labeled as having no target (0) or a target (1). This will not only

provide information on where the target is located in the window, it will also

provide information on how many cells the target is occupying.

In order to produce more detailed information, both as input and output, for

the neural networks, segmentation will be the primary goal of both deep learning

models implemented in this work. Therefore, the label associated with each RDM

window will be a 16x16 ground truth mask with binary labels of 0 or 1. Examples

of RDM windows and their corresponding labels are shown in Figure 3.4.

Figure 3.4: Example RDM window sequence and corresponding masks

21

3.2.4 Model Inputs

In order to provide sufficient training examples of both target-present and target-

free windows, the original datasets windows were further broken down into an

experimental dataset with equal target and non-target windows. This experi-

mental dataset was split into training, validation, and testing subsets to perform

cross-validation on the machine learning models. Training subsets were composed

of 70% of the experimental windows, while the validation and testing subsets each

consisted of 15% of the remaining windows. Table 3.2 shows the breakdown of

each dataset used for training and testing at each SNR level for the staring radar

class, and Table 3.3 shows the same information for the scanning radar class.

Table 3.2: Cross-validation dataset sizes for staring radar class
Dataset Total Training Total Validation Total Testing

Windows Windows Windows
30dB SNR 3270 700 700
10dB SNR 3488 747 747
3dB SNR 3414 731 731

Table 3.3: Cross-validation dataset sizes for scanning radar class
Dataset Total Training Total Validation Total Testing

Windows Windows Windows
30dB SNR 3294 705 705
10dB SNR 3254 697 697
3dB SNR 3424 733 733

3.3 NoisyLSTM Approach

The first deep learning architecture chosen for the target detection task was

the NoisyLSTM. NoisyLSTM is a convolutional LSTM originally designed to

22

perform segmentation across several frames in videos (Wang et al., 2021). This

architecture was chosen for several reasons. First, the inspiration behind the

NoisyLSTM was to maximize segmentation accuracy in low-quality video inputs.

Because of this, the model was designed to suppress low-resolution or noisy video

input to detect fine-details that can be captured in a predicted segmentation

mask. Another appealing aspect of this model is the fact that it considers several

sequential samples as a single input for the model. Originally, this behavior

mapped to processing several video frames as a single input in order to capitalize

on similarities within the frames over time. This is similar to the target detection

problem where the signal returned by a target is ideally fairly consistent across

multiple radar returns, but noise will continuously fluctuate over time. Rather

than feed several video frames as input into the NoisyLSTM, sequences of RDM

windows across multiple time steps were fed into the model instead. This behavior

is visualized in Figure 3.5.

Figure 3.5: Data pipeline for NoisyLSTM model

The overall NoisyLSTM architecture is shown in Figure 3.6. The first stage of

the NoisyLSTM is a feature extractor module based on the popular ResNet-101

architecture (He et al., 2016). ResNet-101 is a 101-layer CNN often used as a

backbone for several computer vision architectures. The second stage of the Noi-

syLSTM architecture is a convolutional LSTM module. The convolutional LSTM

23

follows the same general pattern as traditional LSTMs and other RNNs, but with

the addition of several convolutional layers before the LSTM cell. Specifically,

each sequential input and its corresponding hidden and cell states undergo a 2-D

convolutional operation before being fed into the LSTM cell. This procedure

is shown in Figure 3.7. The output of the convolutional LSTM module is then

fed into two more convolutional layers with batch normalization and a rectified

linear unit (ReLU) activation function before producing a segmentation mask

prediction.

Figure 3.6: NoisyLSTM architecture

Figure 3.7: Convolutional LSTM overview

Batch normalization is a common supplemental layer used for stability during

training. In many cases, individual samples in training data, including the input

RDMs used in this work, may cover varying ranges of values. Batch normalization

layers normalize the input data to a mean of zero and standard deviation of one

24

to provide a uniform scale and ensure all input data covers the same range of

numerical values. ReLU layers are also a common component of many neural

network architectures. ReLU is an activation function that is defined as

R(x) = max(0, x)

for each element x in the input matrix being passed to the ReLU layer. ReLU is

a computationally simple function that can significantly decrease training time

by only activating a certain number of neurons at once.

Despite initial inspirations for this architecture, the NoisyLSTM proved to not

be the best applicable model for this task. Despite multiple attempts to adapt the

NoisyLSTM for target detection, initial training and testing runs demonstrated

that the model was incapable of identifying target signatures over time. In most

cases, the NoisyLSTM quickly converged during training to only predict seg-

mentation masks with no targets present. This may imply that the initial CNN

feature extraction module failed to capture any unique feature characteristics of

the target signatures before the LSTM was tasked with tracking these features

over time. Several attempts were made to modify the original NoisyLSTM ar-

chitecture to be better-suited for the target detection problem. These attempted

modifications included testing several different feature extraction modules, sim-

plifying the architecture to its core CNN-LSTM component, and tuning various

training parameters such as sequence length, batch size, and learning rate. How-

ever, these attempts were unsuccessful, and another deep learning architecture

was tested using the knowledge gained from the failed NoisyLSTM approach.

25

3.4 U-Net Approach

Based on the results of the initial NoisyLSTM approach, a second model, U-Net

(Ronneberger et al., 2015), was implemented for the target detection task. This

model was originally created for biomedical image processing tasks where little

training data may be available and the resulting segmentation mask must capture

fine, pixel-level details in low-quality images. The high resolution of the output

feature map stands out as a beneficial connection to the radar detection problem

where target signatures may only exhibit minute differences amongst the noisy

background. The U-Net architecture is composed of several blocks, referred to

here as double convolutional blocks, as shown in Figure 3.8. Each block contains

repeated applications of two convolutional layers with a kernel size of 3x3, two

batch normalization layers, and two ReLU layers.

Figure 3.8: Double convolution block for U-Net architecture

The double convolutional blocks are further organized into two branches that

make up the overall U-Net architecture: a contracting branch and an expansive

branch. The combination of these two branches forms the overall architecture

shown in Figure 3.9. The contracting branch (left) is structured similarly to a

traditional CNN. In the contracting path, the output of each double convolutional

block is downsampled using a 2x2 max pooling operation and the number of

feature channels is doubled. The expansive path follows a similar pattern except

26

that a 2x2 convolution is applied to the output of each double convolutional block

to halve the number of feature channels.

Figure 3.9: U-Net architecture diagram

Although the U-Net architecture is not reliant on time-series data, an addi-

tional preprocessing step inspired by Gusland et al. (2020) and Wang et al. (2021)

was added to incorporate and exploit the temporal aspect of the range-Doppler

data tested. The NoisyLSTM, which was designed to be tested with and without

an LSTM layer, must be capable of accepting both sequential and non-sequential

27

input data. In order to compensate for this, the NoisyLSTM model condenses

sequential data through concatenation in order to format it into a shape accept-

able to the 2-D convolutional layers while still retaining the temporal element

of the data to be unrolled and processed at each timestep in the LSTM layer

(Wang et al., 2021). This concatenation step is very similar to the point-wise

addition of RDMs discussed earlier (Gusland et al., 2020) where RDMs across

several timesteps are condensed into a 2-D image. Therefore, the model imple-

mented for this task “stacks” multiple RDMs to create a new single input by

taking the point-wise addition of four RDMs across four timesteps to create a

new condensed map.

Initial tests with the modified U-Net architecture showed significant improve-

ments over the original NoisyLSTM model tested and was chosen as the base

model evaluated during training and testing.

3.5 Performance Metrics

3.5.1 Correct Detections

Before detailing the metrics used to analyze the performance of the U-Net model,

it is important to first define what qualifies as a target detection based on the

model output. The output of the U-Net model is a series of predicted segmenta-

tion masks for each RDM window given as input. In addition to the original input

window, a corresponding ground truth mask is provided in order to compare the

prediction to the expected output. Detections are determined by bounding boxes

drawn around groupings of target cells (i.e. mask subsections where pixel values

equal 1) with no padding. The bounding boxes drawn around target cell clusters

28

in the ground truth mask are considered ground truth detections, and bound-

ing boxes drawn around target cell clusters in the predicted mask are considered

predicted detections. For every predicted detection, it is considered a correct

detection if its bounding box overlaps with a ground truth bounding box. If not,

it is considered a false alarm.

3.5.2 Probability of Detection and Probability of False

Alarm

PD and PFA are two common metrics used for target detection in radar tasks,

and will be included in the following performance analysis of the U-Net model.

However, in traditional Neyman-Pearson-based radar detection approaches, PFA

is a predetermined value used to set a detection threshold to maximize PD (Kay,

2009). In the case of this and other machine learning approaches (Baird et al.,

2020) (Gusland et al., 2020), both metrics are based solely on the output of the

machine learning models. For this work, PD is defined as

PD =
NC

NT

where NC is the total number of correct target detections and NT is the total

number of targets present. PFA is defined as

PFA =
NFA

ND

where NFA is the total number of false alarms and ND is the total number of

predicted target detections. It is important to note that this definition of PFA

differs from traditional signal processing approaches that calculate false alarm

29

rates on a per pixel basis. For the purposes of this work, ND is the total number

of predicted targets identified by the deep learning models, i.e. the total number

of predicted target bounding boxes. Therefore, PFA in this case is representative

of detections as a whole rather than on a pixel-by-pixel basis.

3.5.3 Incorrect Cell Predictions

While PD and PFA are the primary metrics of interest from a radar perspective, it

is also important to consider how accurate the resulting U-Net segmentation mask

is when compared to the ground truth mask provided to the model as a label.

For this reason, the number of incorrect cells per RDM window is considered in

tandem with PD and PFA. This metric is calculated by comparing a predicted

RDM window and its ground-truth label to determine how many cells they differ

by. This will include both cells that have been incorrectly labeled as targets (false

alarm cells) and cells that have been incorrectly labeled to have no target when

a target is actually present.

Figure 3.10 demonstrates three examples of why it is important to consider

PD, PFA, and the number of incorrect cells collectively - especially under circum-

stances where the target occupies a very small region of the RDM window. In

the leftmost example, the predicted mask includes a single cluster of predicted

target cells that overlaps with the ground truth target, resulting in a PD = 1 and

PFA = 0. However, the large target area also results in 46 incorrect cells when

the predicted mask is compared to the ground truth label. The center example

demonstrates the inverse problem. In this case, only 4 cells are incorrect, but the

proposed target region shares no overlap with the ground truth target so that

PD = 0 and PFA = 1. The rightmost example showcases the ideal prediction

30

scenario, an output mask that highlights the correct target location within a

reasonable localized region.

Figure 3.10: Sample of varying metric evaluations

3.5.4 Cross Entropy Loss

The loss function in this application will calculate the error for predictions made

during the training stage by comparing them to their expected output. The U-Net

model utilizes a combination cross-entropy and softmax loss function that places

higher weights on labels distinguishing the edge between background and objects

(Ronneberger et al., 2015). The softmax function for this binary classification

31

problem is defined as

pk(x) =
eak(x)∑2

k′=1 e
ak′ (x)

where ak(x) is the activation in each feature channel k at each pixel position

x ∈ Ω, and pk(x) is the approximated softmax value. The value of pk(x) should

be closer to 1 for the class with the highest predicted probability. The cross

entropy loss function is then utilized to penalize the predicted class at each pixel

value using

E =
∑
x∈Ω

w(x)log(p∗(x))

where w(x) is the current weight map and p∗(x) is the expected label at pixel

x ∈ Ω. A low loss value indicates little variability between the predicted and

expected output, while a high low value implies the opposite.

32

Chapter 4

Results

In order to test the U-Net architecture on the RDM windows, the original ar-

chitecture codebase provided by (Ronneberger et al., 2015) was modified and

adapted to the staring and scanning radar datasets described in Section 3. A

majority of these changes were made using PyTorch, an open source framework

for designing and testing machine learning models. Using PyTorch, the input

data, training parameters, and evaluation metrics could be updated to fit this

target detection application while keeping the core U-Net architecture the same.

A detailed overview of the U-Net architecture created with PyTorch is included

in Table 4.1 Evaluation of the applied U-Net model was then divided into two

stages: training and testing.

4.1 U-Net Training

Training sessions were conducted on the training and validation datasets for both

staring and scanning radar classes at 30dB, 10dB, and 3dB SNR. During train-

ing, the model iterates through each sample in the training dataset and feeds that

33

Table 4.1: Detailed architecture of implemented U-Net model
Operation Layer Filters Filter Size Stride

Conv Layer Conv2D 64 (3x3) (1x1)
(repeated twice) BatchNorm - - -

ReLU - - -
Pooling Layer MaxPool 1 (2x2) (2x2)
Conv Layer Conv2D 128 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Pooling Layer MaxPool 1 (2x2) (2x2)
Conv Layer Conv2D 256 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Pooling Layer MaxPool 1 (2x2) (2x2)
Conv Layer Conv2D 512 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Pooling Layer MaxPool 1 (2x2) (2x2)
Conv Layer Conv2D 1024 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Up-Conv Layer ConvTranspose2D 512 (2x2) (2x2)
Conv Layer Conv2D 512 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Up-Conv Layer ConvTranspose2D 256 (2x2) (2x2)
Conv Layer Conv2D 256 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Up-Conv Layer ConvTranspose2D 128 (2x2) (2x2)
Conv Layer Conv2D 128 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Up-Conv Layer ConvTranspose2D 64 (2x2) (2x2)
Conv Layer Conv2D 64 (3x3) (1x1)

(repeated twice) BatchNorm - - -
ReLU - - -

Conv Layer Conv2D 2 (3x3) (1x1)

34

sample as input into the network. It is also important to note that this is a form

of supervised learning in which the model has access to both the training sam-

ples and corresponding labels (in this case, the expected segmentation masks) for

use during the entire training stage. After the model makes a prediction on the

training sample, the loss function is applied to compute the difference between

the predicted and expected output, and the model’s weights are updated based

on the calculated loss value. Another important step in the training process is

the validation step. After the model has iterated through all samples provided in

the training dataset, it then continues to iterate through the validation dataset as

well. The same loss-calculation procedure is followed for the validation step; how-

ever, the calculated loss value is not used to update the model weights. Instead,

the validation step is used to monitor how well the model is able to generalize.

The results of the validation step provide the best insight on whether or not over-

fitting has occurred. In the case where the model produces a low training loss

and a high validation loss, it is possible overfitting has occurred and the model

is no longer capable of generalizing to new or unseen data.

Table 4.2 lists a few key training parameters that were tuned for training the

original U-Net architecture on the RDM window datasets.

Table 4.2: Modified training parameters

Parameter Value Definition
Epochs 35 Number of full iterations over the training and

validation datasets
Batch Size 64 Number of training samples given to the model at once

Learning Rate 0.001 Rate at which model weights are updated

35

4.1.1 Training and Validation Loss

Figure 4.1 shows the loss calculated at each epoch on both the training and vali-

dation datasets across all SNR classes for the staring radar data. All three SNR

classes followed a very similar loss pattern over 35 epochs. The 30dB SNR class

achieved the lowest training and validation losses, both achieving loss values as

low as 0.01. This is to be expected as targets within this class are the easiest to

identify among noise. The 10dB SNR class achieved the second lowest training

and validation losses at 0.19 and 0.22 respectively. Lastly, the 3dB SNR class

produced the highest training and validation loss values at 0.49 and 0.50. There

are two important behaviors to note within these results. First, all three classes

experienced a sharp drop in loss during early epochs, and eventually stabilized

over time. This indicates that the model was actively learning from poor pre-

dictions made early on in training. The 30dB and 3dB SNR classes show very

little decrease after the initial drop in loss. In the case of the 30dB SNR class,

this is most likely because the model quickly converges and is capable of easily

identifying targets within each RDM window. The 3dB SNR class most likely

exhibits this behavior for the opposite reason, it is struggling to learn identifiable

target features and make accurate predictions. Further evidence for both of these

behaviors is discussed in subsequent sections. The second important behavior to

note across all three classes is that the training and validation losses are very sim-

ilar throughout training. This is an early indicator that the model was capable

of generalizing well and was not overfitting to the training data.

Figure 4.2 shows the training and validation loss calculated at each epoch for

the scanning radar class. While there are similarities among the loss patterns

for this training class as well, it is clear that the U-Net model did not perform

36

Figure 4.1: Training and validation loss for staring radar over 35 epochs

37

as well on the scanning radar data at lower SNR values when compared to the

staring radar results. The loss values for the 30dB SNR class were very similar

to the staring radar class, again achieving training and validation loss values as

low as 0.01. Conversely, the training and validation loss for the 10dB and 3dB

SNR classes were noticeably higher for the staring radar class. The 10dB SNR

class reached a training loss of 0.45 and a validation loss of 0.49, and the 3dB

SNR class reached a training loss of 0.56 and a validation loss of 0.59.

Figure 4.2: Training and validation loss for scanning radar over 35 epochs

4.1.2 Probability of Detection and False Alarm

In addition to monitoring loss, PD and PFA metrics were calculated on the results

of the training dataset to monitor the performance of the model throughout the

38

training stage. The PD and PFA results for the staring radar class are shown in

Figure 4.3. Each model’s results fall in-line with what is to be expected based on

the training losses shown in Figure 4.1. The 30dB SNR class quickly converged

to an optimal result, achieving a PD of 1 and PFA of 0. The 10dB SNR class

also performed well and showed steady improvements throughout training. The

best PD and PFA achieved for this class were 0.97 and 0.11 respectively. The 3dB

SNR class again produced the worst results with a PD that only reached 0.29

while the PFA remained high at 0.71.

Figure 4.3: Probability of detection and false alarm for staring radar over 35
epochs

Figure 4.4 shows the PD and PFA metrics calculated during training for the

scanning radar class. Again, these results fall in-line with what is to be ex-

39

pected based on the training losses shown in Figure 4.2. The 30dB SNR class

quickly converged to an optimal result and achieved a PD of 0.99 and PFA of

0.01. Furthermore, both of the lower SNR classes struggled to make consistent

and accurate predictions throughout the training process. The best PD and PFA

metrics achieved for the 10dB SNR class were 0.39 and 0.60 respectively. The

3dB SNR class also produced poor results with a PD that only reached 0.26 with

a correspondingly high PFA of 0.79.

Figure 4.4: Probability of detection and false alarm for scanning radar over 35
epochs

40

4.1.3 Incorrect Cell Predictions

The last metric measured during training was the average number of incorrectly

predicted cells per 16x16 RDM window. Figure 4.5 shows the results of this metric

on the staring radar class. The results across all three classes were positive, where

the 30dB, 10dB, and 3dB classes all averaged 0.05, 0.98, and 1.87 incorrect cells

respectively. This is positive in the fact that the predicted segmentation masks

for the 30dB SNR class rarely differed by even a pixel when compared to the

ground truth mask. Similarly, the predicted masks for the 10dB and 3dB SNR

classes often only differed by 1-2 incorrect cells per window.

Figure 4.5: Average incorrect cell predictions for staring radar over 35 epochs

Figure 4.6 shows the average number of incorrectly predicted cells per window

41

in the scanning radar class. Unsurprisingly, these results also show a noticeable

difference in performance between the 30dB SNR results and the lower 10dB and

3dB SNR results. Similar to the staring radar results, the 30dB SNR class rarely

misclassified pixels in the predicted segmentation masks, resulting in an average

0.19 incorrect cells per window. Unfortunately, the scanning radar class did differ

from the staring results for the 10dB and 3dB SNR windows. The 10dB SNR class

averaged 3.30 incorrect cells per RDM window, and the 3dB SNR class averaged

5.10 incorrect cells per RDM window. While 3-5 cells still only represents only

a small portion of each 16x16 segmentation mask, it is important to note the

difference in performance of the U-Net model on the staring and scanning radar

data.

Figure 4.6: Average incorrect cell predictions for scanning radar over 35 epochs

42

4.2 U-Net Testing

After training was completed, the weights from the model with the best validation

performance were used for testing. The testing stage operates very similarly to the

validation step implemented during training. The trained model with pre-loaded

weights iterates through all data samples in the test dataset. Unlike training,

the model is not given the expected output labels during testing, but the labels

are used afterwards to calculate the performance metrics shown in Table 4.3 and

Table 4.4 for the staring and scanning radar classes.

Table 4.3: Test results for staring radar class
SNR Class PD PFA Avg. Incorrect Cells

30dB 1.00 0.00 0.68
10dB 0.95 0.01 1.71
3dB 0.36 0.60 1.69

Table 4.4: Test results for scanning radar class
SNR Class PD PFA Avg. Incorrect Cells

30dB 0.99 0.01 0.21
10dB 0.36 0.64 5.29
3dB 0.17 0.78 4.95

4.2.1 30dB SNR Results

As expected, the U-Net model trained to detect targets at 30dB SNR performed

the best, with a PD = 1 and PFA = 0 for the staring radar and a PD = 0.99

and PFA = 0.01 for the scanning radar. In this case, the model had no problem

correctly identifying targets present in both test datasets. In the case of the

staring radar class, the model never produced a target detection in a window

43

region where a target was not present. In the case of the scanning radar class,

missed detections and false alarms were also a very rare occurrence. Additionally,

the average number of incorrect cells was very low for both classes, only 0.68 for

the staring class and 0.21 for the scanning class, implying that not only was

the model capable of identifying the presence of a target, but it was capable of

localizing on its precise location within the RDM window with a high degree of

accuracy.

4.2.2 10dB SNR Results

The trained U-Net models for targets at 10dB SNR showed the largest difference

in performance between the staring and scanning radar classes. The U-Net model

trained on the staring radar data produced promising results, with PD = 0.95,

PFA = 0.01, and an average 1.71 incorrect cells per window mask. Although 0.01

is a relatively high PFA for traditional target detectors using signal processing

techniques, these results indicate using neural networks as a preprocessing step

for more sophisticated target detectors may be a promising area of research.

Once a model, U-Net for example, is trained on representative training data, the

overhead for applying the model to new data drops significantly. Therefore, U-Net

may serve as a valuable tool to identify regions where computationally complex

signal processing techniques should be applied. Furthermore, the low incorrect

cell average also indicates that the region highlighted as a possible target will be

localized to a small subregion of the RDM window, further reducing the search

space of traditional detection techniques.

Results on the scanning radar data were comparatively worse for the 10dB

SNR targets, with PD = 0.36, PFA = 0.64, and an average 5.29 incorrect cells

44

per window mask. Further research is necessary to understand the reasoning

behind this performance drop. It is clear based on these initial results that dif-

ferences in range-Doppler data and collection methods may require adjustments

in the deep learning models before being used as a preprocessing step. These

adjustments may include tuning training parameters, modifying layers within

the neural network architecture, or applying additional preprocessing strategies

to different forms of input data. This highlights the importance of testing deep

learning methods on a variety of range-Doppler data. In many cases, neural net-

works will need to be tailored to the specific radar system and application, or

additional testing after tuning may show improved results for new forms of data

so that the models can generalize.

4.2.3 3dB SNR Results

While the performance of the U-Net models on 10dB SNR targets differed sig-

nificantly between the staring and scanning radars, both radar classes struggled

to make accurate predictions for targets at 3dB SNR. For the staring radar, the

trained model produced poor detection and false alarm rates with PD = 0.36 and

PFA = 0.60. The scanning radar model also produced poor detection and false

alarm rates with PD = 0.17 and PFA = 0.78. Targets in this category often only

occupy a single cell within the RDM. Although the average number of incorrect

cell predictions is still low, the poor PD and PFA rates indicate that the model

struggled to localize on the target’s location within the RDM window. These

results indicate that the target signatures within this SNR class did not exhibit

enough unique spatial characteristics to make them distinguishable among noise.

To apply this machine learning technique for targets at this SNR level, additional

45

preprocessing steps must be examined to either further increase the SNR of these

targets or increase the number of unique features that can be detected by neural

networks.

4.3 Discussion

The training and testing results for the U-Net model showcased the benefits and

limitations of this deep learning architecture. The results of the 30dB SNR class

served as a proof-of-concept that the U-Net architecture could successfully be

adapted to process range-Doppler radar data in order to perform target detection.

The 10dB SNR class served as a more challenging example of weak target signals.

For the staring radar class, the U-Net model was still capable of achieving a

high PD of 0.95 while maintaining a PFA as low as 0.01. However, the U-Net

model could not easily produce the same results on the scanning radar class,

ultimately achieving a PD of 0.36 and a PFA 0f 0.64. Unsurprisingly, the lowest

SNR class tested, 3dB, produced the worst results for both radar classes. It is

clear additional preprocessing and data augmentation would be required to apply

this architecture to increasingly small SNR values.

Other applications of machine learning to target detection in radar have also

achieved high detection rates, but often at the expense of correspondingly high

false alarm rates as well. For example, Wang et al. (2022) also proposed a CNN-

based approach to detecting targets in range-Doppler maps that produced a per-

fect PD = 1 on targets at 8dB and 12dB SNR, but a PFA as high as 0.75 as well.

Gusland et al. (2020) also proposed a CNN-based target detection approach that

achieved a much lower PFA = 0.001, but only reached a PD = 0.8. While dif-

ferences in input data, performance metrics, and training environments make it

46

difficult to directly compare these approaches, the differences in recorded results

do demonstrate the difficulty of the original problem and the trade-offs that are

often made when balancing PD and PFA.

47

Chapter 5

Conclusions

In this work, two deep learning neural networks were applied towards target

detection in radar systems. Both models were tested on simulated range-Doppler

data in hopes of identifying targets in increasingly-low SNR scenarios. The first

model tested, NoisyLSTM, was chosen in the hopes of exploiting the sequential

nature of the input range-Doppler data using an RNN. Although this idea seemed

promising at first, the NoisyLSTM was unable to distinguish target signatures

from noisy signals. The second model tested, U-Net, proved to be much more

successful. This modified CNN architecture was still capable of incorporating

temporal information within the input data by stacking, or taking the point-wise

summation, of several sequential RDMs to amplify targets’ consecutive signals

over time and create a higher target return, often with unique spatial features

such as streaking, within a single input sample. While the results produced

by the U-Net model are not capable of replacing traditional signal processing

techniques entirely, the results do indicate that the U-Net architecture may serve

as a beneficial preprocessing step to reduce the search space for detectors and

reserve resources.

48

Chapter 6

Future Work

There are multiple areas of interest to be further explored within the work pre-

sented in this thesis. The most obvious step for future work would be incorporate

other existing SNR-enhancing techniques in an attempt to improve the model’s

performance on SNRs as low as 3dB. Additional work must also be done to ana-

lyze the difference in performance between the staring and scanning radar classes

at 10dB SNR. Understanding the underlying factors behind this imbalance will

provide insight on how to improve either the U-Net model or preprocessing steps

to hopefully generalize the architecture to perform well on a wider variety of data.

Future work should also consider incorporating more realism into the radar

simulation used to generate the training, validation, and test datasets, or to create

training datasets using real range-Doppler data as well. Adding more realism into

the training data will most likely affect the prediction quality of the network.

On one hand, clutter or equipment interference may add additional noise to the

range-Doppler data, resulting in more noise spikes and further masking the target

signal. However, more realistic training data may actually help the U-Net model

make more accurate predictions if the model can capitalize on repeating feature

49

patterns in targets that are not currently modeled in the simulation described in

Section 3.1. One possible example of this would be testing if sidelobe patterns

produced by targets may actually help localize on the original target’s location

itself. Another interesting area for future work would be to extend the U-Net

model to include multi-class detection problems. In this case, the model would be

capable of not only identifying targets within RDMs, but classifying all detected

targets into various categories.

The work presented in this thesis highlights several interesting areas of re-

search centered around target detection, and it is clear there are still several

areas of research that have yet to be explored. Existing applications of machine

learning for radar tasks have shown exciting and promising results, but continued

work must be done to analyze the potential for these applications in real-world

scenarios.

50

Bibliography

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a
convolutional neural network. In 2017 International Conference on Engineering
and Technology (ICET), pages 1–6, 2017. doi: 10.1109/ICEngTechnol.2017.
8308186.

Marco Altmann, Peter Ott, Nicolaj C. Stache, and Christian Waldschmidt.
Learning dynamic processes from a range-doppler map time series with LSTM
networks. In 2019 16th European Radar Conference (EuRAD), pages 13–16,
2019.

Zachary Baird, Michael K. Mcdonald, Sreeraman Rajan, and Simon J. Lee. A
CNN-LSTM network for augmenting target detection in real maritime wide
area surveillance radar data. IEEE Access, 8:179281–179294, 2020. doi: 10.
1109/ACCESS.2020.3025144.

Zongyong Cui, Xiaoya Wang, Nengyuan Liu, Zongjie Cao, and Jianyu Yang. Ship
detection in large-scale sar images via spatial shuffle-group enhance attention.
IEEE Transactions on Geoscience and Remote Sensing, 59(1):379–391, 2021.
doi: 10.1109/TGRS.2020.2997200.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Cambridge, MA, USA, 2016.

Klaus Greff, Rupesh Srivastava, Jan Koutńık, Bas Steunebrink, and Jürgen
Schmidhuber. LSTM: A search space odyssey. IEEE transactions on neural net-
works and learning systems, 28, 03 2015. doi: 10.1109/TNNLS.2016.2582924.

Emanuele Grossi, Marco Lops, and Luca Venturino. A novel dynamic program-
ming algorithm for track-before-detect in radar systems. IEEE Transactions
on Signal Processing, 61(10):2608–2619, 2013. doi: 10.1109/TSP.2013.2251338.

Daniel Gusland, Sigmund Rolfsjord, and Børge Torvik. Deep temporal detection
- A machine learning approach to multiple-dwell target detection. In 2020
IEEE International Radar Conference (RADAR), pages 203–207, 2020. doi:
10.1109/RADAR42522.2020.9114828.

51

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.
90.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Steven M. Kay. Fundamentals Of Statistical Processing, Volume II: Detection
Theory. Prentice-Hall signal processing series. Pearson Education, 2009. ISBN
9788131729007.

J.D. Kelleher. Deep Learning. MIT Press essential knowledge series. MIT Press,
2019. ISBN 9780262354899.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541.

Tim O’Shea, Tamohgna Roy, and T. Charles Clancy. Learning robust general
radio signal detection using computer vision methods. In 2017 51st Asilomar
Conference on Signals, Systems, and Computers, pages 829–832, 2017. doi:
10.1109/ACSSC.2017.8335463.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016. doi:
10.1109/CVPR.2016.91.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional net-
works for biomedical image segmentation. In Nassir Navab, Joachim Hornegger,
William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing
and Computer-Assisted Intervention (MICCAI) 2015, pages 234–241, Cham,
2015. Springer International Publishing. ISBN 978-3-319-24574-4.

Bowen Wang, Liangzhi Li, Yuta Nakashima, Ryo Kawasaki, Hajime Nagahara,
and Yasushi Yagi. Noisy-lstm: Improving temporal awareness for video seman-
tic segmentation. IEEE Access, 9:46810–46820, 2021. doi: 10.1109/ACCESS.
2021.3067928.

Chenxing Wang, Jiangmin Tian, Jiuwen Cao, and Xiaohong Wang. Deep
learning-based uav detection in pulse-doppler radar. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–12, 2022. doi: 10.1109/TGRS.2021.
3104907.

52

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Research Objectives
	Contributions to the Research Community
	Thesis Organization

	Background
	Deep Learning and Neural Networks
	Convolutional Neural Networks
	Long Short Term Memory
	Related Work

	Experimental Design
	Simulation Model
	Data Format and Datasets
	Generated Simulation Data
	Sliding Window Approach
	Labels and Segmentation Masks
	Model Inputs

	NoisyLSTM Approach
	U-Net Approach
	Performance Metrics
	Correct Detections
	Probability of Detection and Probability of False Alarm
	Incorrect Cell Predictions
	Cross Entropy Loss

	Results
	U-Net Training
	Training and Validation Loss
	Probability of Detection and False Alarm
	Incorrect Cell Predictions

	U-Net Testing
	30dB SNR Results
	10dB SNR Results
	3dB SNR Results

	Discussion

	Conclusions
	Future Work
	Bibliography

