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Abstract 

Individuals with high affect variability—fluctuations in emotions—tend to react with greater 

intensity to emotional events and have a more difficult time adjusting to change (Beal & 

Ghandour, 2011). Although high affect variability has been linked to heightened reactivity to 

emotionally charged events and poor adjustment, limited research has examined its relationship 

with skilled performance. Therefore, the purpose of this lab study was to replicate Richels et al. 

(2020), which was the first empirical study to show how affect variability, specifically affect spin 

and pulse, undermines complex task performance, and extend Richels et al. (2020) by (1) 

examining off-task attention as a key explanatory mechanism and (2) including dimensions of 

affect flux in a relative importance analysis of affect variability scores. Specifically, using a lab 

sample of 253 undergraduate students (65% male) learning how to play a complex video game, I 

examined and compared how spin, pulse, and flux in positive activating, positive deactivating, 

negative activating, and negative deactivating emotions explained variance in skill acquisition 

and adaptive performance via self-report scores of off-task attention. Spin refers to within-person 

variability in pleasantness and arousal. Pulse refers to within-person fluctuations in intensity. 

Flux refers to within-person fluctuations in a particular emotion dimension. Per Nathans et al. 

(2012), I first examined the relative importance of the different affect variability scores. Then, 

discontinuous growth modeling was used to disentangle adaptation from acquisition when 

examining the effects of affect variability on performance. Results indicated the importance of 

flux indices and suggest that affect variability research has overlooked these indices. In addition, 

harmful, incremental effects beyond Big Five personality scores for affect variability were found 

through two mechanisms: primarily (1) via off-task attention (with respect to negative 

deactivating flux in particular), as well as (2) through moderating the off-task attention-adaptive 

performance relationship in the case of spin. More simply put, affect variability was found to be 
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detrimental towards complex task learning. Results are further discussed in comparison to 

Richels et al. (2020), and in terms of the need for adaptability in today’s increasingly uncertain, 

dynamic world. 
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Relating Affect Variability to Complex Skill Acquisition and Adaptive Performance:      

The Role of Off-Task Attention 

 

A constant of the human experience is that change will occur within the spheres of our 

professional and personal lives (Elrod & Tippett, 2002). Success in a dynamic world depends on 

adaptability, which generally refers to an individual’s capacity to effectively learn complex tasks 

and adjust to any changes in the environment (Bell et al., 2017). When change or complication 

occurs, it is critical that individuals have the capacity to adjust and respond to change (Baird & 

Griffin, 2006; Ployhart & Bliese, 2006; Pulakos et al., 2000). As adaptability has increasingly 

become recognized as necessary for workplace success and life in general, it is important to 

consider what individual differences make individuals more or less adaptable. Although different 

conceptualizations of adaptability exist, when viewed as “a relatively stable, higher-order 

individual difference construct” (Ployhart & Bliese, 2006, p.25), research suggests that there is 

more to the capacity to learn and adjust to change beyond cognitive abilities and previously 

learned skills, such as non-cognitive traits like personality. In general, the extant literature shows 

relatively weak relationships between personality variables and complex task learning, both in 

acquisition and adaptive performance (Huang et al., 2014; Ackerman et al., 1995; LePine et al., 

2000). However, it is likely that the extant empirical research has underestimated the role of 

personality as a component of adaptability due to a failure to take into account the fundamentally 

dynamic nature of acquisition and adaptive performance, and human phenomena more generally 

(Baard et al., 2014; Jundt et al., 2015; Huang et al., 2014). Given the emotional nature inherent in 

complex task learning and adaptive performance, the present study focused on affect variability 

as a key to understanding personality-skilled performance relationships.  
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Although a range of emotions are felt daily (Barford et al., 2020), the experience of a 

range of emotions is particularly true when learning new and complex tasks and adapting to 

changes in the task environment (Kiefer, 2002). New tasks and changes in task demands can 

incite intense emotions as individuals both succeed and struggle in making progress while being 

forced to challenge their prior assumptions and face the potential degradation of their capabilities 

and normative position (Elrod & Tippett, 2002; Huy, 1999). Although personality is an important 

factor when trying to explain the emotional experiences that accompany dealing with change, 

common measures of personality, the Big Five and even emotional stability (i.e., neuroticism) in 

particular, are quite limited in how well they capture actual change in emotions (Huang et al., 

2014). Consistent with Whole Trait Theory, the present research was based on the premise that 

fluctuations in the expressions of traits are crucial to understanding human phenomena and the 

individual expression of personality is dynamic despite stable between-person differences 

(Beckmann & Wood, 2017; Fleeson & Jayawickreme, 2015). In this respect, affect variability 

scores hold promise for reflecting personality constructs that are meaningfully distinct from 

common conceptualizations and operationalizations of personality (Moskowitz & Zuroff, 2004). 

Although the burgeoning literature on affect variability shows its importance to strain and coping 

(Beal et al., 2013; Shapiro, 2015), with the exception of Richels et al. (2020), there is a 

conspicuous lack of theory and empirical research addressing how affect variability is linked to 

task performance.  

Therefore, the purpose of the current study was to replicate and extend Richels et al.’s 

(2020) lab study, which demonstrated how affect variability may be detrimental to task 

performance. Specifically, Richels et al. (2020) showed that over the course of skill acquisition 

and adaptation to changes in task demands on a complex first-person shooter computer game, 
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affect variability was negatively related to both effort and performance, and affect variability 

also moderated effort-performance relationships such that the effort put forth by those higher in 

affect variability was less beneficial to performance compared to the effort of those lower in 

affect variability. In terms of replication, the present study examined the incremental 

relationships beyond the Big Five between two aspects of affect variability—spin and pulse—

and task performance. The present study extended Richels et al. (2020) in two respects. First, it 

answered Richels et al.’s (2020) call to examine attention, off-task attention specifically, as a key 

explanatory mechanism. Second, it added dimensions of affect flux to the empirical investigation 

and per Nathans et al. (2012) examined the relative importance of spin, pulse, and flux in 

positive activating, positive deactivating, negative activating, and negative deactivating 

emotions. It was expected that indices of affect variability would differ in their relative 

importance but in general would yield harmful, incremental effects beyond the Big Five. Similar 

to Richels et al. (2020), two mechanisms for these harmful effects were examined: (1) positive 

relationships with off-task attention and (2) intensifying the off-task attention-performance 

relationship. 

Skill Acquisition and Adaptive Performance 

Skill acquisition commonly refers to the process whereby individuals learn the required 

skills to perform a certain task and achieve a desired result. Adaptive performance is commonly 

thought of as reactive in nature, referring to the relearning individuals engage in when faced with 

changes in the task environment (Jundt et al., 2015; Niessen & Jimmieson, 2016). However, 

adaptation can also be proactive in nature when individuals choose to make their own changes, 

for example in their performance strategies, despite an absence of change in task demands. Such 

proactive adaptation is relevant to individuals striving for performance gains after already 

reaching high levels of performance (Ployhart & Bliese, 2006) versus performing and even 
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making gains with little or no attentional effort (i.e., autonomous phase of skill acquisition; 

Kanfer & Ackerman, 1989). As workplaces and the everyday world continually evolve and 

become more complex, it is necessary to understand both reactive and proactive forms of 

adaptive performance in relation to each other by conceptualizing both as part of the broader 

learning process (Ployhart & Bliese, 2006; Huang et al., 2014). Accordingly, to fully understand 

adaptive performance and its determinants, it is important to empirically examine and 

disentangle initial performance and gains in performance prior to changes in task demands (i.e., 

skill acquisition), the initial difficulties they experience with task changes (i.e., transition 

adaptation), and the process of relearning or again making gains in performance after changes in 

task demands (i.e., reacquisition adaptation; Lang & Bliese, 2009). 

As adaptive performance becomes recognized as critical for the workplace and everyday 

living, it is theoretically and practically important to consider the constellation of individual 

differences underlying adaptive performance, namely adaptability. Adaptability, distinguished 

from adaptive performance per se, is a broad individual difference that can be activated in any 

complex performance environment, and the more dynamic the environment, the stronger the 

effect of adaptability (Ployhart & Bliese, 2006). Although cognitive abilities have garnered a lot 

of attention in the scholarly literature on adaptive performance, better understanding the specific 

non-cognitive individual differences comprising the broader construct of adaptability, personality 

especially, is key to better understanding performance in increasingly dynamic environments 

(Baard et al., 2014; Huang et al., 2014; Jundt et al., 2015; Ployhart & Bliese, 2006).  

The ability to commit attentional resources to performance demands is central to 

adaptability. Learning and relearning after task changes is facilitated when employees are able to 

avoid distractions and focus their attentional resources on the task at hand (Kanfer & Ackerman, 
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1989; Jundt et al., 2015; Niessen & Jimmieson, 2016; Randall et al., 2014), but in new and 

dynamic performance environments emotions can play a strong role in the effective allocation of 

attentional resources (Jorgensen et al., 2020). Those whose emotions typically run wild would 

not be expected to be among the top performers. With respect to personality, it would thus seem 

that emotional stability should be an important determinant of adaptive performance. Although 

meta-analyses consistently demonstrate positive relationships between emotional stability and 

adaptive performance (Huang et al., 2014) and task performance in general (Hurtz & Donovan, 

2000; Barrick et al., 2005), the magnitude of such relationships are modest at best and warrant 

pause to any conclusions about emotional stability as an important component of adaptability. 

Affect Variability 

In response to the modest effects observed by personality scores, affect variability holds 

considerable potential as a meaningfully distinct aspect of personality that better captures 

differences in the emotional side to how people react across a range of situations, performance 

contexts, and life events (Eid & Diener, 1999; Kuppens et al., 2007; Beal et al., 2013; Richels et 

al., 2020). Although personality constructs have long been conceptualized as relatively stable, 

research spawning affect variability conceptualizes personality constructs as fluctuating traits 

that nevertheless reflect relatively stable between-person differences (Fleeson, 2001). Affect 

variability speaks to how emotions fluctuate differently across individuals despite these 

individuals experiencing a common environment or situation. In this way, affect variability 

scores directly capture the dynamic nature to the experience of emotions, and thus are able to 

explain behavior and outcomes, which are also inherently dynamic, beyond what is explained by 

traditional personality scores (Richels et al., 2020). However, the potential in affect variability as 

an important component to personality likely lies in its different conceptualizations and 

operationalizations. While the literature on affect is replete with different theories, 
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conceptualizations, and measures, the same is true with respect to how to best think about and 

measure between-person differences in affect fluctuations. The empirical literature on affect 

variability is relatively new, arguably still in its infancy, and thus the literature is limited in terms 

of how different aspects of affect variability compare in how well they explain behavior and 

outcomes, especially task performance. 

An individual tends to have a general emotional state within which they are predisposed 

to reside, but it is important to recognize that affect is not static as it varies and fluctuates across 

time (Polk et al., 2005). Although mood changes and emotions fluctuate over time and events, 

affective states are not random and tend to follow a pattern that can be predicted within an 

individual (Larsen, 1987). Affective events, or emotional incidents, may cause disruptions in the 

pattern, but affect tends to return to its predictive state relatively quickly (Beal & Ghandour, 

2011). Affect variability—between-person differences in affect fluctuations—is a reliable 

multidimensional construct, separate from other personality traits, that is predictive of future 

states and behaviors (Eid & Diener, 1999; Kuppens et al., 2010; Moskowitz & Zuroff, 2004, 

2005; Richels et al., 2020). Neuroticism, which generally refers to a lack of emotional stability 

(Judge et al., 1999), is ostensibly similar to affect variability due to similar elements in their 

definitions. However, although affect variability scores are correlated with neuroticism as well as 

other Big Five personality traits, the correlations are moderate in magnitude, and affect 

variability incrementally explains variance in other variables of interest (Kuppens et al., 2007; 

Richels et al., 2020). Accordingly, affect variability is meaningfully distinct from neuroticism as 

well as the Big Five personality traits in general and holds considerable promise for extending 

theory on how personality plays a role in behavioral phenomena.  
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With respect to complex task learning, the role of affective variability may be best 

understood in terms of explaining differences in stress-attention-performance relationships and 

by undermining task enjoyment. Attention is often distracted or erratically focused when 

individuals feel stress. Those high in affect variability are more likely to view complex, dynamic 

task environments as overwhelming if not threatening, which creates hindrance stress (Beal & 

Ghandour, 2011). Hindrance stress (i.e., distress) is associated with self-doubt, worry, and mind 

wandering, all of which are aspects of off-task attention and undermine performance (Gopher et 

al., 2000; Randall et al., 2014). An individual’s affective reaction to a task—enjoyment—can 

have a strong influence over affective outcomes such as motivation and self-efficacy, which in 

turn can spur future task engagement and learning outcomes (Sitzmann et al., 2008). Task 

enjoyment is typically associated with continued interest and informal learning (Brown, 2005; 

Tews & Noe, 2019). The stress and erratic attention individuals with greater affect variability 

feel when viewing a complex task may prevent them from enjoying the task and thus undermine 

long-term engagement with the task, impacting overall learning and performance. More 

generally, those high in affect variability have more complex mental lives due to the inherent 

unpredictability in their emotions and consequently greater need to focus their attentional 

resources on managing their emotions (Beal et al., 2013). In this way, high affect variability puts 

individuals at greater risk of distraction and slower reaction times, which ultimately undermines 

task performance (Smallwood, 2011).  

Indices of Affect Variability: Spin, Pulse, and Flux 

When conceptualizing and operationalizing affect variability, it is important to consider 

first the nuances to conceptualizing and operationalizing affective states. In particular, emotions 

are commonly conceptualized as residing on a circumplex involving two dimensions: valence 

(pleasure-displeasure or pleasant-unpleasant) and arousal (activation-deactivation potential) (cf. 
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Scherer, 1984; Smith & Ellsworth, 1985; Roseman, 1984). Emotions described as high in 

pleasure and high in arousal (e.g., excited, happy) are defined as positive activating, whereas 

emotions described as high in pleasure but low in arousal (e.g., calm, relaxed) are defined as 

positive deactivating. Emotions high in displeasure and high in arousal (e.g., angry, anxious) are 

defined as negative activating, whereas negative deactivating emotions are high in displeasure 

but low in arousal (e.g., bored, disappointed). Within this circumplex, an individual has a core 

affect space that falls within those dimensions, but those with greater affect variability 

experience more fluctuations across and within the dimensions (Kuppens et al., 2007). Those 

with greater affect variability have mood changes that occur more often and more rapidly, and 

such mood swings are associated with poor psychological outcomes (Hardy & Segerstrom, 

2017). In general, affect variability has been largely viewed as maladaptive due to its association 

with lower well-being, life satisfaction, daily satisfaction, happiness, and greater depression and 

anxiety (Gruber et al., 2013; cf. Klein, 2020; Kuppens et al., 2010; Shapiro, 2015). Likewise, 

affect variability is associated with physical health concerns, such that greater affect variability is 

toxic for individuals due to its connection with systemic inflammation (Jones et al., 2020). 

However, the extent to which affect variability scores explain variance in various outcomes 

depends on how affect variability is indexed (calculated) from the same set of emotion scores 

from repeated measurements.  

The scholarly literature points to several different but related aspects of affective 

variability, namely spin, pulse, and flux, with spin being the most commonly examined (e.g., 

Beal & Ghandour, 2011; Beal et al., 2013; Jung et al., 2015; Park, 2015). Along dimensions of 

valence and arousal, every individual has a core affect space in which the direction and intensity 

of their emotion fluctuations generally reside. This combination of direction and intensity is 
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sometimes referred to as the core affect trajectory (Kuppens et al., 2007). In terms of direction, 

affect spin refers to an individual’s variability in affect pleasantness and activation potential, 

reflecting how an individual’s emotions fluctuate across the broader affect circumplex over time 

and events (Kuppens et al., 2007; Moskowitz & Zuroff, 2004). Affect pulse refers to fluctuations 

in the intensity of emotions felt, regardless of pleasantness or activation potential, such that 

higher pulse reflects a greater mix of low and high intensity in emotions over time and events 

(Kuppens et al., 2007; Moskowitz & Zuroff, 2004). Flux refers to fluctuations along a particular 

dimension (i.e., poles/axes) of the affect circumplex (Kuppens et al., 2007). As such, and in 

contrast to how affect spin covers the circumplex via a single index, multiple flux indices (e.g., 

positive activating, positive deactivating, negative activating, and negative deactivating) could be 

used together to cover the circumplex. 

Early research on affect variability focused on spin and pulse with researchers concluding 

that spin is more stable and better captures affect variability as a personality variable related to 

well-being (Kuppens et al., 2007, Moskowitz & Zuroff, 2004). Subsequent research showed how 

high-spin individuals typically react more strongly to emotional events (Moskowitz & Zuroff, 

2005; Beal & Ghandour, 2011; Clegg et al., 2020) regardless of whether they are distressing or 

not (Beal & Ghandour, 2011), which is problematic as more reactivity is related to less well-

being (Grosse Rueschkamp et al., 2020). For example, research showed higher spin was related 

to poor goal progress (Uy et al., 2017); more emotional exhaustion, fatigue, and strain (Niven et 

al., 2012; Beal et al., 2013); less positive moods and relationship closeness (Niven et al., 2012; 

Côté et al., 2012); less citizenship behaviors at work (Clark et al., 2018); more career anxiety and 

indecision (Jung et al., 2015; Park, 2015); and greater work-life imbalance from poor child 

adjustment via parental spin (Yang & Dahm, 2020).  
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As the empirical literature on spin grew and pulse waned, interest in affect flux emerged 

similarly showing adverse effects (Chandler, 2012; Chester et al., 2012; Timmermans et al., 

2010). While some researchers still maintained that spin is better suited than pulse and flux for 

explaining variance in behavioral outcomes (e.g., Chandler, 2012), others asserted that spin, 

pulse, and flux are all worthwhile to examine (e.g., Chester et al., 2020). I agree with this 

assertion for two reasons, both of which reflect how nascent the empirical literature on affect 

variability is. One, it seems renewed attention to pulse is warranted given Richels et al.’s (2020) 

recent findings showing how both spin and pulse undermined effort and complex skill learning 

and not necessarily through similar causal mechanisms. Second, the extant empirical literature is 

limited in terms of empirical studies that have comparatively examined spin, pulse, and flux. In 

my search of the literature, I only found two studies that examined all three indices (i.e., 

Chandler, 2012; Russell et al., 2007), and with respect to flux these studies only examined 

positive and negative valence dimensions without distinguishing high versus low activation 

potential. Thus, the present study makes an important contribution to the literature by 

comparatively examining spin, pulse, and four dimensions of flux that disentangle the valence 

and activation dimensions (i.e., positive activating, positive deactivating, negative activating, and 

negative deactivating flux). In particular, by disentangling the valence and activation dimensions 

in flux scores, compared to previous research the present study more carefully examined the 

validity of spin and pulse as single indices of affective variability versus the validity of a 

combination of flux indices.  

Relative Importance of Different Aspect of Affect Variability 

The relative importance of different predictor variables is important to consider when 

several or more predictors covary and there is little theoretical guidance as to how uniquely and 

together the predictors explain variance in outcomes of interest. Although linear multiple 
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regression is the most commonly used statistical technique for examining how a set of predictors 

explains variance in outcomes, the regression weights for each predictor variable do not lend 

themselves to understanding how their common associations as a whole or as subsets contribute 

to the variance explained in an outcome. As such, the regression weights themselves do not 

adequately reflect how large a role any predictor plays. This is especially problematic in the case 

of suppression, which occurs when the association of one predictor (X1) with an outcome is 

masked or underestimated when another predictor (X2) is not included in the model. In such 

cases, the later variable (X2), the suppressor, does not itself directly explain variance in the 

outcome but rather it purges the shared construct irrelevance from the first predictor (X1) 

allowing its association to be better estimated. This suppression effect often leads to stronger 

estimates for the first predictor as well as for the total set of predictors. 

Covariation among different indices of affect variability should be expected because they 

all (a) conceptually speak to fluctuations in emotions and (b) operationally are calculated using 

the same set of scores. Without properly accounting for the covariation, it is not only difficult to 

determine which index and subset of indices best explains variance in outcomes, but it also 

makes it difficult to understand the potential suppression one or more indices might have. 

Accordingly, relative importance analysis involving a combination of relative importance 

metrics (Nathans et al. 2012) is needed to inform theory on how affective variability contributes 

to outcomes of interest. There may be some aspects of emotion fluctuations that are not directly 

related to an outcome, but accounting for their covariance leads to better estimates for other 

aspects of emotion fluctuations. Relative importance analysis can also shed light on whether any 

index is dominant in their contribution—always explaining more unique variance in an outcome 

regardless of which other predictors are included in a regression model (Azen & Budescu, 2003). 
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Conceptually, by disentangling valence and activation in flux indices, relative importance 

analysis provides a more targeted examination of the contributions played by fluctuations in 

different dimensions of the affect circumplex in relation to fluctuations more broadly. 

Accordingly, following the recommendations of Nathans et al. (2012) and Nimon and Oswald 

(2013), I conducted a relative importance analysis of spin, pulse, positive activating flux, 

positive deactivating flux, negative activating flux, and negative deactivating flux in explaining 

variance in off-task attention and task performance during periods of skill acquisition adaptation. 

In particular, I examined the following research questions.  

Research Question 1: Does any index of affect variability show complete dominance 

over the others in explaining variance in (a) off-task attention, (b) task enjoyment, or (c) 

performance? 

Research Question 2: Are there any indices of affect variability that act as a suppressor 

for other indices in explaining variance in (a) off-task attention, (b) task enjoyment, or (c) 

performance?  

 

I used average off-task attention and performance scores in pre-change (acquisition) and post-

change (adaptation) sessions to answer these research questions. Then, the results of the relative 

importance analysis subsequently informed the choice of indices to examine in the discontinuous 

growth analysis used to test the hypothesized mechanisms by which affective variability 

undermines complex task learning. 

Mechanisms by which Affect Variability Undermines Complex Task Learning 

Not only is it likely that different indices of affect variability vary in their contributions to 

explaining variance in outcomes of interest, but it is also possible that they differ in terms of 

causal mechanisms—direct, mediating, and moderating effects (Richels et al, 2020). With 

respect to complex task learning, affect variability likely plays a role as a distal contributor to 

skill acquisition and adaptation via more proximal predictors, as is the case with mediation. In 

fact, Richels et al. (2020) found support for the distal role played by both spin and pulse, 
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showing negative direct effects on self-reported learning effort, especially the sustainment of 

effort across acquisition and adaptation trials. Effort in turn was positively related to 

performance. In terms of moderation, affect variability may inhibit or exacerbate the effects of a 

more proximal predictor. In this respect, Richels et al. (2020) found support for an inhibiting role 

for spin but not pulse, such that effort helped adaptive performance (i.e., post-change 

performance) for those lower in spin but not for those higher in spin. Although not hypothesized, 

Richels et al. (2020) also found negative direct effects for pulse but not spin on performance that 

were stronger in adaptation compared to acquisition. 

Although Richels et al. (2020) found support for both the mediation and moderation 

mechanisms, the differing effects for spin and pulse paint a fairly nuanced picture of affect 

variability’s role in complex task learning. Given the nuanced results and that Richels et al. 

(2020) was the first empirical investigation of affect variability and task performance, replication 

is warranted. Moreover, Richels et al. (2020) conceded that a limitation of their study was that 

they did not directly test the underlying processes by which effort and performance may have 

been undermined by affect variability, and in this respect they emphasized that future research 

should examine task attention as a key underlying process. Richels et al.’s (2020) measure of 

learning effort focused on self-reports of effort toward exploring and exploiting new and existing 

task strategies and not attention per se. In fact, Richels et al. (2020) suggested that the observed 

direct effects of pulse on performance may be explained by task attention more so than effort put 

forth toward different learning strategies. Therefore, the present study examined off-task 

attention in lieu of learning effort. Figure 1 provides a model of the mechanisms tested. 

Affect Variability → Off-Task Attention and Enjoyment 

The overall greater reactivity to events and specifically distress from the demands of new 

and complex tasks translates into more off-task attention and less enjoyment for individuals with 
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greater affect variability. Those with greater affect variability face the distractions of regulating 

their emotions compounded by greater self-doubt and worry, which in turn creates more mental 

fatigue, disengagement, and mind wandering over the course of skill acquisition and adapting to 

unanticipated changes in task demands (Grillon et al., 2015; Hopstaken et al., 2015; Richards & 

Gross, 2000). Although increases in off-task attention should generally be expected over the 

course of learning as autonomous processing replaces controlled processing, greater increases 

should be expected with higher affect variability from greater cumulative emotion reactivity and 

mental fatigue from devoting attentional resources to both regulating emotions and developing 

effective learning strategies. Accordingly, I tested the following hypotheses. 

Hypothesis 1: Affect variability will be positively related to off-task attention.  

 

Hypothesis 2: Affect variability will be positively related to increases in off-task  
 attention. 

 

Hypothesis 3: Affect variability will be negatively related to end-of-training task 

enjoyment. 

 

Affect Variability Moderating the Off-Task Attention → Performance Relationship 

In addition to the direct effects on overall and changes in off-task attention, there is 

reason to examine the potential of affect variability moderating the relationship between off-task 

attention and performance. Specifically, affect variability might exacerbate the detrimental 

effects of off-task attention inasmuch as affect variability inhibits implicit learning. Although 

attention is crucial for learning and improved performance, research also suggests that it may be 

possible for learning to occur implicitly without attention to learning strategies (Shanks, 2003; 

Stadler, 1995). General awareness and attention to stimuli may be required for learning, but full 

attention to decisions about the learning process may not be. Implicit learning is learning that 

occurs without individuals being consciously aware that learning is taking place. In this vein, 

learning can occur through efficient associative processing just by engaging task stimuli (Stadler, 
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1995)—incidental processing rather than intentional processing—even when the information is 

complex in nature (Lewicki et al., 1992) and especially fast-paced tasks with strong perceptual-

motor demands (Lewicki et al., 1992; DeShon and Alexander, 1996) such as the one involved in 

Richels et al. (2020) and the present study. This may be particularly true if the individual enjoys 

the task, as enjoyment has been shown to improve implicit learning (Tews et al., 2019). 

However, similar to secondary-task interference, implicit learning can be impeded by emotion 

reactivity and perceptions of threat, producing slower response times as individuals generally 

become less aware of the task environment while attending to their emotions (Estes & Verges, 

2008; Ochs & Frasson, 2004; Richards & Milkwood, 1989; Yiend & Mathews, 2001). Thus, 

individuals can be overwhelmed by emotions as elicited emotional responses take precedence 

and draw resources away from general task awareness and incidental processing (Chaffar & 

Frasson, 2004; McVay & Kane, 2010; Vuilleumier, 2005). More simply put, those with greater 

affect variability are more likely to give up in difficult situations. In this way, performance 

suffers more from off-task attention for individuals with greater affect variability than for those 

who engage in general mind wandering but are still able to incidentally process the stimuli 

effectively. Accordingly, I tested the following hypothesis. 

Hypothesis 4: Affect variability will moderate the effects of off-task attention on  
 performance such that the negative effects of off-task attention will be stronger for 

 individuals with greater affect variability. 
 

Affect Variability in Adaptation versus Acquisition 

Although previous research has shown a link between affect variability, spin in particular, 

and maladjustment to emotionally charged events and change (e.g., Beal & Ghandour, 2011), 

with the exception of Richels et al. (2020) there is no empirical research addressing how affect 

variability plays a role in adapting task performance to changes. When task demands change 

unexpectedly and become more difficult, poor adjustment is more likely for those with greater 
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affect variability as greater emotion reactivity and need to regulate emotions distract from the 

process of discovering and understanding the new task demands and refining previously learned 

strategies (Richels et al., 2020). Handling sudden and unexpected changes is especially taxing 

and fatiguing cognitively for those with greater affect variability. Cognitive resources are more 

likely to be depleted by emotion regulation, and implicit learning is also hindered as those with 

greater affect variability are more likely and quicker to give up on trying to meet the changes in 

task demands. Accordingly, I tested the following hypotheses. 

Hypothesis 5: The positive relationship between affect variability and off-task attention 

 will be stronger in adaptation versus acquisition. 

 

Hypothesis 6: The positive relationship between affect variability and increases in off-

 task attention will be stronger in adaptation versus acquisition. 

 

Hypothesis 7: The moderation of affective variability on the off-task attention- 

 performance relationship will be stronger in adaptation versus acquisition. 

 

In addition to testing the specific hypotheses regarding how affective variability undermines 

skilled performance vis-à-vis off-task attention, the analyses speak to whether there might be any 

negative direct effects of affective variability on performance, and whether the magnitude of 

such direct effects differs in adaptation versus acquisition. 

Method 

Participants 

Data from Huck (2018) was used to examine this study’s research questions and 

hypotheses. Data were collected from 288 undergraduate students in the Department of 

Psychology participant pool at the University of Oklahoma. Participants were told that they 

would be playing a computer-based first-person-shooter video game in exchange for research 

credit in a psychology course and entry into a gift card drawing. No restrictions were placed on 

participants beyond being 18 or older (or obtaining parental permission if under 18) and being 
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proficient in English. Data were excluded for 12 participants who experienced technical 

difficulties and 6 who failed to follow instructions. An additional 17 participants were removed 

for careless responding, which was detected via long string analysis (Meade & Craig, 2012). The 

final sample consisted of 253 students, 85 of which identified as female. Participants ranged in 

age from 18 to 30 years (M = 19, SD = 1.55). One hundred sixty-nine participants reported their 

ethnicity as Caucasian (66.8%), 25 as Asian (9.9%), 16 as Hispanic/Latino (6.3%), 14 as African 

American (5.5%), 11 as Multiple (two or more ethnicities) (4.4%), 8 as Native American (3.2%), 

4 as Middle Eastern (1.6%), and 6 as other (2.4%). 

Performance Task 

The performance task used in this study was Unreal Tournament 2004 (UT2004; Epic 

Games, 2004), which is a commercially available first-person shooter computer game used in 

previous research on complex skill acquisition and adaptive performance (e.g., Hardy et al., 

2014; Hughes et al., 2013). UT2004 was selected as the performance task because it reflects the 

demands of a complex and fast-paced environment. It is also relatively easy to learn yet difficult 

to master, which allows a skill acquisition curve to be observed. 

The objective of UT2004 is to destroy computer-controlled opponents (i.e., bots), while 

minimizing the damage to one’s own character. While completing this objective each game, 

participants also have the opportunity to collect new weapons or resources (i.e., power-ups) to 

increase their character’s health or offensive or defensive capabilities. When a participant’s 

character is destroyed, the character reappears in a random location with the default weapons and 

capabilities. The game is designed as “every character for them self,” which means that the 

computer-controlled bots were competing against each other, as well as the participant’s 

character. Performance on UT2004 involves strong cognitive and perceptual-motor demands. 

Participants used a keyboard and mouse simultaneously to control their character, while also 
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learning the strengths and weaknesses of different strategies and weapons, and quickly deciding 

which to use in different circumstances. 

Procedure 
Upon entry to the lab, participants were told that the purpose of the study was to 

investigate how people learn to play a dynamic and complex video game. Participants completed 

the study at individual computer stations and no more than six individuals participated at the 

same time. Participants completed an informed consent form, followed by a battery of self-report 

individual difference measures to serve as control variables. Participants were told they would be 

entered into a performance-based lottery to win one of five, $25 gift cards for each trial in which 

their score was in the top 50% of all study participants for that specific trial. Participants next 

watched a 15-minute training presentation on UT2004 which explained the game's basic 

controls, rules, and power-ups. This was followed by a 1-minute practice trial that was free of 

competing bots so that participants could become familiar with the controls, display, and game 

environment without having to face any opponents. 

Participants completed 14 training sessions, each consisting of two 4-minute trials (i.e., 

28 trials total). The length of the trials was chosen based on previous research using UT2004 

(Hardy et al., 2014, 2019). Performance across the trials was collapsed into 14 measurement 

sessions (i.e., an average of the performance across each pair of two trials), as is consistent with 

previous studies using discontinuous growth curve modeling (e.g., Lang & Bliese, 2009; Niessen 

& Jimmieson, 2016). 

To track fluctuations across time, participants completed self-report measures of state-

based affect (PANAS) and attention following each session. Since the same self-report measures 

were used throughout the study, the breaks between sessions were similar in length at 

approximately 2 minutes. There were two additional 4-minute breaks before Sessions 4 and 11. 
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For the first seven sessions, participants competed against two bots which were set to a difficulty 

level of 5 on a 1-to-8 scale. After the 7th session (i.e., the halfway point), several task demands 

changed without any warning, designed to prompt reactive adaptation due to an increasing task 

complexity (Hughes et al., 2013). Participants had to compete against nine bots at a difficulty 

setting of 6. In addition, the game environment (i.e., the game map) was much larger, with more 

open spaces, multiple levels of platforms, and edges that could lead to player character 

destruction if they were to fall. Task characteristics for the pre- and post-change trials were 

similar to those used by Hardy et al. (2014). Participants were debriefed following the 14th 

session. 

Measures 

Control Variables 

Self-reported ACT scores (M = 26.91, SD = 4.25) were used as a measure of general 

mental ability (GMA). Gender was measured using a self-report. I chose to control for gender 

and video game experience as previous research (Hopp & Fisher, 2017) has demonstrated that 

first-person shooter games yield gender differences regarding performance, enjoyment levels, 

and history of playing these types of games. Prior video game experience was measured using a 

4-item scale to gather information about participants pre-training video game knowledge. 

Utilizing a 5-point Likert scale (1 = not at all, 2 = rarely, just a few times, 3 = monthly, 4 = 

weekly, 5 = daily) for the first two items, participants responded to: (a) “Over the last 12 months, 

how frequently have you typically played video/computer games?” (M = 2.97, SD = 1.40) and 

“Over the last 12 months, how frequently have you typically played first-person shooter 

video/computer games (e.g., Call of Duty, Half-Life, Halo, Unreal Tournament, etc.)?” (M = 

2.26, SD = 1.25). The following two items asked participants how many hours per week they 
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play (a) video/computer games (M = 4.37, SD = 6.89, min. = 0.00, max. = 50) and (b) 

specifically first-person shooter video/computer games (M = 1.74, SD = 3.76, min. = 0.00, max. 

= 30). The scores for these items were standardized and averaged into a prior videogame 

experience score. 

Additional control variables used in this study were the Big Five personality dimensions 

to examine the independent effects of affect variability. The Big Five personality dimensions 

were measured using Goldberg’s 100 Unipolar Markers (Goldberg, 1992). Participants rated a 

list of 100 common human traits as to how accurately they describe the participant using a 9-

point Likert scale, with anchors at (1) Extremely inaccurate and (9) Extremely accurate. Twenty 

items were used for each of the five factors, with a scale score consisting of the average of their 

corresponding item scores. 

Affect Variability 

To calculate spin, pulse, and flux, I used a 16-item version of the Positive and Negative 

Affect Schedule which was adapted for this study (PANAS; Watson et al., 1988). After each 

session of gameplay, participants were asked to respond in regard to how they felt during the 

previous two trials. Using 16 different emotions that varied in valence and arousal/activation, the 

scale measured four different areas of affect. Positive activating (PA) emotions were described 

with the words enthusiastic, excited, and happy. Positive deactivating (PD) emotions were 

assessed with the words ease, calm, and relaxed. Adjectives angry, anxious, frustrated, irritated, 

tense, and uneasy were used to assess negative activating (NA) emotions. Negative deactivating 

(ND) emotions were assessed with the adjectives bored, disappointed, discouraged, and fatigued. 

Participants responded to each word on a 9-point Likert scale (1 = very slight/not at all, 3 = a 

little, 5 = moderately, 7 = quite a bit, 9 = extremely). 
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Before calculating spin, pulse, and flux, valence and activation scores must be calculated 

for each participant across the 14 sessions. Following the procedures of Kuppens et al. (2007), 

valence was calculated as (PA + PD) − (NA + ND), and activation was calculated as (PA + NA) 

− (PD + ND). Next, the mean scores for valence and activation were calculated, in addition to 

their standard deviations. Standard deviations of the repeated scores were used to calculate 

valence variability (i.e., the standard deviation of pleasure-displeasure that occurs within person) 

and activation variability (i.e., the standard deviation of activation-deactivation that occurs 

within person). Although valence variability and activation variability can describe emotions 

over time, this description is uni-dimensional (Park, 2015). In comparison, affect spin and pulse 

are more reflective of affective changes and the measure captures both valence and activation 

(Beal et al., 2013). 

Affect Spin. To calculate affect spin, I followed the framework provided by Moskowitz 

and Zuroff (2004) and the procedures by Kuppens et al. (2007). Spin describes how affect moves 

within the core affect space (Kuppens et al., 2007). First, the unit vector must be calculated for 

each session. 

 
Next, the vector of all observations for one given participant, R, was calculated as 

follows. 

 
The length of R was then calculated as 
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The length of R can range from 0 to 1. If there is no variability in the angles, then 

 will equal 1. If the angles are dispersed widely enough to cancel each other out, then  

approaches 0 (Kuppens et al., 2007). The final calculation of spin involves the standard deviation 

of the angles of the unit vectors, which is calculated as 

 
This final calculation of affect spin may range from 0 to infinity (Kuppens et al., 2007). 

Affect Pulse. Again, following the framework by Moskowitz and Zuroff (2004) and 

procedures of Kuppens et al. (2007), affect pulse was calculated. Pulse, which examines the 

severity or intensity between reports of emotion (Kuppens et al., 2007), was calculated as 

 
Affect Flux. Like Moskowitz and Zuroff (2004), flux was assessed for each emotion 

dimension (positive activating, positive deactivating, negative activating, negative deactivating) 

for each individual. This was done by calculating the standard deviation across all events for 

each of the emotion dimensions. 

Off-Task Attention 

Off-task attention was measured using a measure adapted from Kanfer et al. (1994). 

Example items that participants responded to include: “I lost interest in Unreal Tournament for 

short periods” and “I took ‘mental breaks’ during Unreal Tournament.” Answers were made on a 

7-point Likert scale, with anchors at (1) Never and (7) Constantly. Across the 14 sessions, the 

mean alpha reliability was 0.90 (min. = 0.85, max. = 0.94). 

Task Enjoyment 

Task enjoyment was measured after participants completed the 14th and final training 

session. Utilizing the same measure as Hardy et al. (2014) participants responded to 11 items 
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such as “I had fun learning UT2004”, “I enjoyed playing Unreal Tournament”, and “If I could, I 

would play Unreal Tournament at home” on a 5-point Likert scale (1 = strongly disagree, 2 = 

agree, 3 = neither agree nor disagree, 4 = agree, 5 = strongly agree). 

Task Performance 

Following the formula as described by Hardy et al. (2014) and Hardy et al. (2019), task 

performance scores were calculated by taking the number of kills (i.e., number of times a 

participant destroyed a bot), divided by the quantity of kills plus deaths (i.e., the number of times 

a participant themselves is destroyed), plus player rank (i.e., the participant’s rank relative to the 

bots within the trial). These scores were then multiplied by 100 to increase the ease of 

interpretability. A single performance score for each session was calculated by taking the 

average score for both trials in that session. 

Results 

Figures 2 and 3 show the trends in off-task attention and performance scores, 

respectively, across sessions. Descriptive statistics, including internal consistency reliabilities, 

correlations for study variables, and average performance and off-task attentions scores across 

sessions can be found in Table 4. Affect spin was not significantly correlated with off-task 

attention (r = 0.07, ns), but affect pulse was significantly correlated with off-task attention (r = 

0.21, p < 0.01). Affect spin was not significantly correlated with performance (r = −0.07, ns) or 

enjoyment (r = −0.06, ns), but affect pulse was significantly, negatively correlated with 

performance (r = −.18, p < 0.01) and enjoyment (r = −.19, p < 0.01). Off-task attention was 

significantly, negatively correlated with performance (r = −.47, p < 0.01) and enjoyment (r = 

−.40, p < 0.01). Performance and enjoyment were significantly, positively correlated with each 

other (r = .23, p < 0.01). Affect pulse was not significantly correlated with emotional stability (r 
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= −0.05, ns). Divergent from Richels et al. (2020), affect spin was not significantly correlated 

with emotional stability (r = −0.05, ns). Each of the flux variables was significantly, positively 

correlated with affect spin, and affect pulse (mean r = .48; min r = .38, p < 0.001; max r = .62, p 

< 0.01). Neither positive activating nor positive deactivating flux were significantly correlated 

with off-task attention (r = 0.02 and 0.10, respectively, ns), performance (r = −0.04 and 0.00, 

respectively, ns), or enjoyment (r = −0.04 and 0.06, respectively, ns). However, negative 

activating and negative deactivating flux were significantly, positively correlated with off-task 

attention (r = 0.28 and 0.40, respectively, p < 0.01) and significantly, negatively correlated with 

performance (r = −0.28 and −0.24, respectively, p < 0.01) and enjoyment (r = −0.22 and −0.35, 

respectively, p < 0.01). None of the affect variability indices had a significant relationship with 

emotional stability except for negative activating flux (r = −.17, p < 0.01). 

Relative Importance Analysis 

To determine whether any of the affect variability indices was most dominant, or if one 

acted as a suppressor when explaining variance in off-task attention, enjoyment, and 

performance, I conducted a relative importance analysis by adapting publicly available code 

from Nimon and Oswald (2013). All indices of affect variability were compared for off-task 

attention, enjoyment, and performance. In addition to providing the full range of relative 

importance metrics reviewed by Nathans et al. (2012), relative weights, squared structure 

coefficients, and product measures for example, the relative importance analysis also examined 

measures of dominance and measures to identify suppressors. Specifically, dominance was 

determined by taking each pair of predictors and comparing their contributions across all models 

containing all possible combinations of all predictor variables (Azen & Budescu, 2003; 

Luchman, 2015). Although dominance can be established across three levels (complete, 
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conditional, and general), I only focused on complete dominance, which denotes that a certain 

predictor contributed the highest amount of variance across all subsets of predictors (Azen & 

Budescu, 2003). By examining the dominance statistics, it was also possible to identify 

suppressors by seeing how unique variance contributions changed given the model’s size. 

Typically, as a model’s size increases (with added predictors) the unique variance contribution of 

a single predictor will decrease as the variance is shared among more predictors (Nathans et al., 

2012; Azen & Budescu, 2003). However, a suppressor will work in the opposite way by 

contributing little variance on its own but contributing more variance overall as the number of 

predictors increases by suppressing variance in the other predictors. 

Off-Task Attention 

Prior to examining dominance, Hypothesis 1 predicted that affect variability would be 

positively related to off-task attention. As shown in Table 5, in support of Hypothesis 1, the 

structure coefficients and zero-order correlations (rs and r, respectively) for all affect variability 

indices were positive for off-task attention. 

A comparison across all statistics for off-task attention (Table 5) showed that negative 

deactivating flux (ND) was the strongest direct predictor across all the relative importance 

metrics. ND flux obtained the largest beta weight (β = .53, p < .001), demonstrating that it made 

the largest contribution to the regression equation, while holding all other predictor variables 

constant. The zero-order correlation of ND flux with off-task attention (r = .40), when squared, 

showed that ND flux shared the largest amount (16%) of its variance with off-task attention. The 

squared structure coefficient (rs
2= .73) demonstrated that ND flux explained the largest amount 

(73%) of the variance in y, the predicted values of off-task attention. Product measure results 

demonstrated that ND flux accounted for the largest partition of variance in off-task attention 
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(.213, 96.8% of the regression effect) when multiplying the beta weight (.53) by the zero-order 

correlation (.40). The results of the relative weights analysis demonstrated that ND flux 

explained a large portion of the overall regression effects, accounting for 12.8% of the variance 

in off-task attention which is 58% of the 22% variance in off-task attention accounted for by all 

the affect variability indices together. Negative activating (NA) flux emerged as the second 

strongest predictor of off-task attention. Its zero-order correlation (r = .28) was the second largest 

in the model and demonstrated that NA flux shared the second largest amount (7.8%) of its 

variance with off-task attention. The relative weights analysis showed that NA flux explained the 

second largest portion of the overall regression effects, accounting for 3.8% of the variance in 

off-task attention, which is 17.3% of the 22% variance in off-task attention accounted for by all 

the affect variability indices together. 

With respect to Research Question 1a, dominance analysis (Table 6) showed complete 

dominance for ND flux over the other affect variability indices, as it contributed more unique 

variance in the regression results than all the other indices across all the multiple regression sub-

models that included that variable. Table 7 shows the average incremental variance for each 

predictor’s contributed variance to off-task attention. With respect to Research Question 2a, 

positive activating (PA) flux contributed more variance as the number of predictors increased, 

indicating that it acts as a suppressor. The average variance contributed with one other predictor 

was 1.4%, but this increased to 3.8% when all other predictors were included. Overall, these 

findings support ND flux as the dominant contributor to off-task attention and PA flux as an 

important suppressor. Consistent with mediation, the indirect effect of ND flux on performance 

via off-task attention, controlling for PA flux, was statistically significant (ab unstandardized = –

3.54, [bootstrapped bias corrected CI99 = –6.72, –1.21], p < .001, R2 = .27). 
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Enjoyment 

Hypothesis 3 predicted that affect variability would be negatively related to end-of-

training task enjoyment. As shown in Table 5, and in partial support of Hypothesis 3, the 

structure coefficients and zero-order correlations (rs and r, respectively) for all affect variability 

indices except for positive deactivating (PD) flux were negative for enjoyment. Thus, with the 

exception of PD flux, Hypothesis 3 was supported. 

Similar to off-task attention, a comparison across all statistics for enjoyment (Table 5) 

showed that negative deactivating (ND) flux was the strongest direct predictor across all the 

relative importance metrics. ND flux obtained the largest beta weight (β = −.40, p < .001), 

demonstrating that it made the largest contribution to the regression equation, while holding all 

other predictor variables constant. The zero-order correlation of ND flux with performance (r = 

−.35), when squared, showed that ND flux shared the largest amount (12.3%) of its variance with 

performance. The squared structure coefficient (rs
2= .71) demonstrated that ND flux explained 

the largest amount (71%) of the variance in y, the predicted values of performance. Product 

measure results demonstrated that ND flux accounted for the largest partition of variance in 

performance (.14, 79.5% of the regression effect) when multiplying the beta weight (−.40) by the 

zero-order correlation (−.35). Results of the relative weights analysis demonstrated that ND flux 

explained a large portion of the overall regression effects, accounting for 9.2% of the variance in 

task enjoyment which is 52% of the 17.6% variance in enjoyment accounted for by all the affect 

variability indices together. In a similar fashion to off-task attention, negative activating (NA) 

flux emerged as the second strongest predictor of enjoyment. Its zero-order correlation (r = −.22) 

was the second largest in the model and demonstrated that NA flux shared the second largest 

amount (4.8%) of its variance with enjoyment. The relative weights analysis showed that NA 
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flux explained the second largest portion of the overall regression effects, accounting for 3% of 

the variance in enjoyment, which is 17.1% of the 17.6% variance in enjoyment accounted for by 

all the affect variability indices together. 

With respect to Research Question 1b, like for off-task attention, dominance analysis for 

enjoyment (Table 6) showed complete dominance for ND flux over the other affect variability 

indices, as it contributed more unique variance in the regression effect than the other indices 

across all multiple regression sub-models that included that variable. Table 7 shows the average 

incremental variance for each predictor’s contributed variance to enjoyment. With respect to 

Research Question 2b, none of the indices contributed more variance as the number of predictors 

increased, indicating no suppression effects for task enjoyment. 

Performance 

Relative importance comparisons across all statistics for performance (Table 5) showed 

that negative activating (NA) flux was the strongest direct predictor of performance. NA flux 

obtained the largest beta weight (β = −.34, p < .001), demonstrating that it made the largest 

contribution to the regression equation, while holding all other predictor variables constant. The 

zero-order correlation of NA flux with performance (r = −.28), when squared, showed that NA 

flux shared the largest amount (7.8%) of its variance with performance. The squared structure 

coefficient (rs
2= .65) demonstrated that NA flux explained the largest amount (65%) of the 

variance in y, the predicted values of performance. Product measure results demonstrated that 

NA flux accounted for the largest partition of variance in performance (.096, 76.8% of the 

regression effect) when multiplying the beta weight (−.34) by the zero-order correlation (−.28). 

Results of the relative weights analysis demonstrated that NA flux explained a large portion of 

the overall regression effects, accounting for 5.9% of the variance in performance which is 48% 
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of the 12.4% variance in performance accounted for by all the affect variability indices together. 

There was only one metric in which NA flux was not reported as the strongest direct predictor of 

performance. For the common metric, negative deactivating (ND) flux was found to be the 

strongest predictor (0.053, in comparison to NA flux’s 0.033). ND flux was the second strongest 

predictor of performance. Its zero-order correlation (r = −.24) was the second largest in the 

model and demonstrated that ND flux shared the second largest amount (5.8%) of its variance 

with performance. The relative weights analysis showed that ND flux explained the second 

largest portion of the overall regression effects, accounting for 2.9% of the variance in 

performance, or 23.4% of the 12.4% variance in performance accounted for by all the affect 

variability indices together. 

With respect to Research Question 1c, dominance analysis (Table 6) showed complete 

dominance of NA flux over the other affect variability indices. With respect to Research 

Question 2c, Table 7 shows that positive deactivating (PD) flux contributed more variance as the 

number of predictors increased, indicating that it acts as a suppressor. The variance contributed 

with one other predictor was 0.9% but increased to 1.6% when all other predictors were 

included. Overall, these findings support NA flux as the dominant direct contributor to 

performance and PD flux as an important suppressor. 

Growth Trends 

Discontinuous growth curve modeling was used to model off-task attention and 

performance scores across skill acquisition (SA), transition adaptation (TA), and reacquisition 

adaptation (RA). This technique allowed for a comparison between scores prior to the task 

change to scores following the task change (i.e., post-change period; reacquisition) (Bliese & 

Lang, 2016). Following the recommendation of Bliese and Lang (2016) and taking similar steps 



  
 

  
 

30 

 

as Richels et al. (2020), I examined a series of growth models. The first step was to test a basic 

growth model with each time variable included in the equation below: 

Yij = γ00 + γ10SA + γ20TA + γ30RA + γ40SA2 + γ50RA2 + εij 

Defining the terms in the equation, SA refers to the linear growth trend across sessions. 

TA, or transition adaptation, is the change in scores following the change in task demands, which 

occurred between Session 7 and 8. RA refers to reacquisition adaptation, which is the difference 

in the linear growth trend post-change in comparison to the linear growth trend pre-change. SA2 

and RA2 account for any curvilinear growth trends. Prior to building the models as described in 

Table 2, the random intercept model was tested to estimate the intraclass correlation coefficient 

(ICC), which indicates the proportion of variance that resides within- and between-persons. The 

ICC for off-task attention indicated that differences existed within participants. 

Off-Task Attention 

The ICC for off-task attention indicated that differences existed within participants 

(37%). When testing the basic growth model from Step 1, I built the model by including each 

time variable (SA, TA, RA, etc.) one by one and examined the AIC to determine the best model 

fit. The final growth model only included SA (see Model 1 of Table 8), and showed that off-task 

attention scores increased at a linear rate across sessions (t[3288] = 9.11, B = 0.07, p < 0.01) 

without any curvilinear or discontinuous effects.  

I included the covariates in the next model (see Model 2 of Table 8). There was a 

significant gender effect (t[244] = 3.41, B = 0.54, p < 0.01), which showed that females had more 

off-task attention. General mental ability (t[244] = −2.37, B = −0.04, p < 0.05) and agreeableness 

(t[244] = −2.34, B = −0.19, p < 0.05) both showed significant negative effects. Higher levels of 
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general mental ability and agreeableness were associated with lower levels of off-task attention. 

No other covariate yielded a statistically significant effect. 

Effects of Dominant and Suppressor Affect Variability Indices. In Step 3, the main 

effects of the dominant and suppressor variables (i.e., ND flux and PA flux, respectively) were 

included (see Model 3 of Table 8). Hypothesis 1 predicted that affect variability would be 

positively related to off-task attention. Consistent with the findings from the relative importance 

analysis, and in support of Hypothesis 1, ND flux (t[242] = 5.77, B = 0.72, p < 0.01) yielded a 

positive, significant effect. PA flux as a suppressor yielded a smaller negative effect (t[242] = 

−2.99, B = −0.33, p < 0.01).  

In Step 4, I added the interaction between the dominant variable, ND flux, with the linear 

trend (SA) for off-task attention (see Model 4 of Table 8). Hypothesis 2 proposed that affect 

variability would be positively related to increases in off-task attention. In support of Hypothesis 

2, there was a statistically significant, positive interaction between ND flux and the SA off-task 

attention trend (t[3287] = 4.46, B = 0.06, p < 0.01), which indicated a greater increase in off-task 

attention for individuals higher in ND flux. Results of the AIC values showed better fit for this 

model relative to previous models. Since this step did not include TA or RA interactions with 

ND flux, this increasing off-task attention occurred for those higher in ND flux regardless of the 

changes in task demand. Figure 4 illustrates the trend for ND flux, showing substantial growth in 

off-task attention for those higher in ND flux versus virtually no growth for those lower in ND 

flux.  

Hypotheses 5 and 6 proposed stronger positive relationships overall and with respect to 

growth, respectively, between affect variability and off-task attention in adaptation versus 

acquisition. Although I planned an additional step (as shown in Model 5 of Table 2) that 
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examined the interactions involving ND flux with TA and RA, the aforementioned lack of TA 

and RA effects for off-task attention indicated such a step was not appropriate. Thus, the results 

did not support Hypotheses 5 and 6, and instead showed similar relationships between affect 

variability and off-task attention in adaptation and acquisition.  

Performance 

Prior to building the models as described in Table 3, the random intercept model was 

tested to estimate the intraclass correlation coefficient (ICC). The ICC for performance indicated 

that differences existed within participants (29%). Similar to off-task attention, I began building 

the models for performance by including each time variable (SA, TA, RA, etc.) individually and 

examining the AIC to determine the best model fit. This indicated that all time variables should 

be included when building the growth models. As shown in Model 1 of Table 9, there was a 

statistically significant positive SA effect (t[3284] = 14.19, B = 5.28, p < 0.01), a statistically 

significant, negative TA effect (t[3284] = −21.79, B = −18.45, p < 0.01), and a statistically 

significant, negative RA effect (t[3284] = −8.09, B = −4.18, p < 0.01). These effects indicated 

that performance levels increased across pre-change sessions, but then dropped after the task 

change. After the change, performance began to increase, but at a slower rate than the pre-change 

rate. SA2 was significant (t[3284] = −9.14, B = −0.54, p < 0.01) which indicated that increases in 

performance decelerated across sessions. RA2 was not significant and was removed from further 

model tests. 

I included the covariates in the next model (see Model 2 of Table 9). There was a 

significant gender effect (t[244] = −7.85, B = −12.45, p < 0.01), which indicated that females had 

lower performance levels than males. General mental ability (t[244] = 3.43, B = 0.53, p < 0.01) 

and video game experience (t[244] = 9.61, B = 7.04, p < 0.01) were both positive and statistically 
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significant, which meant that higher ACT scores and prior video game experience were 

associated with higher performance scores. No other covariate yielded a statistically significant 

effect. The results from Models 1 and 2 align well with the findings from Richels et al. (2020). A 

divergent finding was that extraversion was not found to be significant in my model (t[244] = 

−1.64, B = −0.99, ns). 

Effects of Affect Variability Indices. In Step 3, the main effects of each affect 

variability index and the suppressor variable (PD flux) were included (following the steps 

displayed in Table 3). Each affect variability index was examined independently of each other in 

separate models. A statistically significant, negative effect was found for NA flux (the dominant 

variable; t[242] = −3.07, B = −3.81, p < 0.01), ND flux (t[242] = −2.30, B = −2.68, p < 0.05), PA 

flux (t[242] = −2.04, B = −2.39, p < 0.05), and spin (t[242] = −2.40, B = −4.10, p < 0.05). This 

indicated that those with higher NA flux, ND flux, PA flux, and spin had lower performance 

scores. Although the results for spin align with what was found by Richels et al. (2020), my 

findings differ in that pulse was not a significant predictor. 

Next, I included the main effect of off-task attention in Step 4 (Model 4 of Tables 10-15), 

which showed an improvement in model fit for all indices. As expected, off-task attention was 

negatively related to performance (NA flux, t[241] = −5.40, B = −2.88, p < 0.01; PD flux, t[242] 

= −5.80, B = −3.08, p < 0.01; ND flux, t[241] = −5.21, B = −2.96, p < 0.01; PA flux, t[241] = 

−5.84, B = −3.08, p < 0.01; spin, t[241] = −5.73, B = −3.02, p < 0.01; pulse, t[241] = −5.70, B = 

−3.06, p < 0.01). After adding off-task attention, the model examining ND flux indicated that 

ND flux no longer had a statistically significant effect on performance (see Table 12). Consistent 

with the mediation analysis in the relative importance analysis, ND flux is a distal predictor of 

off-task attention, which may be why its effect disappears when adding off-task attention. Based 



  
 

  
 

34 

 

on the AIC, Model 4 was the best fit for PD flux (Table 11), PA flux (Table 13), and pulse 

(Table 15). 

In Step 5, all two-way interactions were included. This step was used to test Hypothesis 

4, which proposed that affect variability would moderate the effects of off-task attention on 

performance such that the negative effects of off-task attention would be stronger for individuals 

with greater affect variability. As shown in Model 5 of Tables 10-15, the interaction between off-

task attention and the affect variability indices were not statistically significant. Thus, the results 

did not support Hypothesis 4. Model 5 also included two-way interactions between each affect 

variability index and off-task attention with SA, TA, and RA. For off-task attention, there was a 

statistically significant, negative interaction with SA in the models that examined NA flux (Table 

10; t[3279] = −2.27, B = −1.24, p < 0.05), ND flux (Table 12; t[3279] = −2.09, B = −0.23, p < 

0.05), and spin (Table 14; t[3279] = −2.86, B = −0.29, p < 0.01). Excluding spin, this finding 

indicated that the negative effect of off-task attention was stronger across later sessions. 

There was a statistically significant, positive interaction between off-task attention and 

TA (t[3279] = 2.58, B = 1.68, p < 0.05) in the model that examined spin (Table 14), which 

indicated that the drop in performance was less severe for individuals with increased off-task 

attention, which may be due to these individuals having less to lose (i.e., performance scores 

were already lowered in comparison to those with decreased off-task attention). For NA flux 

(dominant variable), there was also a statistically significant, positive TA interaction (t[3279] = 

2.28, B = 3.01, p < 0.05), which indicated that the drop in performance was less severe for 

individuals with increased NA flux, which again, may be due to these individuals having less to 

lose (i.e., performance scores were already lowered in comparison to those with decreased NA 

flux). Figure 5 shows this interaction involving NA flux and TA. It is important to acknowledge 
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that the results of the AIC values showed improved fit for certain indices, with this model found 

to be the best fit for NA flux (Table 10) and ND flux (Table 12). 

In the final step, I included three-way interactions between (1) the affect variability 

index, (2) off-task attention, and (3) SA, TA, and RA. This model tested Hypothesis 7, which 

proposed that the moderation effect of affect variability on the off-task attention-performance 

relationship would be stronger in adaptation versus acquisition. None of the interactions were 

found to be significant except with spin. A statistically significant, negative interaction (Model 6 

of Table 14) was found between spin, off-task attention, and TA (t[3276] = −2.53, B = −4.49, p < 

0.05) such that affect spin accentuated the negative effect of off-task attention in adaptation (i.e., 

post-change sessions) but not in acquisition (i.e., pre-change sessions). As shown in Figure 6, 

after the task changes, there was a negative effect of off-task attention for individuals high in 

affect spin, but there was not a negative effect of off-task attention for individuals low in affect 

spin. In other words, off-task attention was particularly detrimental to performance in individuals 

high in affect spin after a change in task demands. The results of the AIC values showed 

improved fit for this model relative to previous models for affect spin but not for any other affect 

variability indices. Thus, the results partially supported Hypothesis 7. Hypothesis 7 was 

supported with respect to spin but not for any other indices of affect variability. 

Discussion 

The broad aim of this lab study was to replicate Richels et al. (2020), which was the first 

empirical study to show how affect variability, specifically affect spin and pulse, undermines 

complex task performance, and extend Richels et al. (2020) by (1) examining off-task attention 

as a key explanatory mechanism and (2) including dimensions of affect flux in a relative 

importance analysis of affect variability scores. Using a repeated measures design, the present 

study examined affect variability—spin, pulse, negative activating (NA) flux, negative 
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deactivating (ND) flux, positive activating (PA) flux, positive deactivating (PD) flux—in the 

context of complex task learning with the aim of better understanding the non-cognitive traits 

that impact an individual’s capacity to be successful when learning new tasks and adapting to 

changes in task demands. 

Several hypotheses regarding affect variability were supported. Indices of affect 

variability were found to be harmful towards attention, and even exacerbated off-task attention 

over time. Nearly all indices of affect variability were also found to be detrimental towards task 

enjoyment. Although affect variability indices in general did not moderate the effects of off-task 

attention on performance, affect spin was found to negatively moderate the off-task attention-

performance relationship after the task change such that off-task attention was especially harmful 

for individuals higher in affect spin. All these relationships were observed after controlling for 

the Big Five personality variables, including emotional stability, demonstrating that affect 

variability indices represent distinct aspects of personality that can provide additional insight to 

behavioral outcomes. 

Relative Importance of Affect Variability Indices 

When examining the relative importance of affect variability—spin, pulse, NA flux, ND 

flux, PA flux, PD flux—in relation to off-task attention, task enjoyment, and performance, two 

research questions were asked. First, it was queried whether any index of affect variability 

showed complete dominance over the others in explaining variance in off-task attention, task 

enjoyment, and performance. Results indicate that negative flux variables were dominant 

contributors. Specifically, ND flux was the dominant contributor for both off-task attention and 

enjoyment. NA flux was the dominant predictor for performance. The second research question 

sought to determine whether any indices of affect variability acted as a suppressor for other 
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indices in explaining variance in off-task attention, task enjoyment, and performance. Although 

there was no suppressor found for task enjoyment, PA flux and PD flux were found to be 

important suppressors for off-task attention and performance, respectively. Of note, the dominant 

and suppressor flux variables for off-task attention and performance were in opposite quadrants 

or opposing ends of the same pole in the circumplex (Kuppens et al., 2007). 

The majority of research on affect variability has focused on spin and pulse. Although 

flux is not new to dynamic theories of personality (e.g., Moskowitz & Zuroff, 2004), my search 

of the literature revealed only two studies that examined affect spin, pulse, and flux together (i.e., 

Chandler, 2012; Russell et al., 2007), with flux scores capturing valence without activation 

distinguished. The relative importance of flux variables over the traditionally used spin and pulse 

variables is an important finding. Neither spin nor pulse were found to be dominant or even 

modest contributors, as might have been expected, especially for spin. Thus, the findings from 

the present study suggest that flux should be given more empirical attention in research on affect 

variability, and that flux variables that disentangle valence and activation dimensions have 

potential to better explain behavioral outcomes compared to single indices like spin and pulse. 

Put another way, a combination of flux variables likely better covers the core affect space than 

indices like spin and pulse. For example, a close look at the formula for calculating spin shows 

that two individuals can receive the same spin scores despite having different patterns across the 

circumplex (e.g., one varying across PA and ND and the other varying across PD and NA). 

Altogether, our findings point to the need for future research to include spin, pulse, and flux 

variables to expand theory on how affect variability contributes to behavioral phenomena. 
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Direct Effect on Off-Task Attention and Enjoyment 

When examining the effects of affect variability, two theoretical mechanisms were tested. 

First, it was proposed that affect variability would strengthen off-task attention, with those higher 

in affect variability reporting more off-task attention and increases in off-task attention over 

time. Results showed that the dominant variable, ND flux, had a positive effect on off-task 

attention and increases in off-task attention. These results provide support for the first theoretical 

mechanism proposed, indicating that those high in ND flux are more likely to direct their 

attention elsewhere, rather than towards the task at hand. Taking into consideration previous 

research on affect variability, there are several potential explanations for these results. Although 

research on affect flux is limited, research on affect variability generally indicates that 

individuals with increased affect variability face greater distress, self-doubt, worry, and emotion 

reactivity when faced with new and complex demands. These characteristics can cause 

distraction as the individual works to regulate their emotions, further leading to fatigue, 

disengagement, and mind wandering, all which may contribute towards heightened off-task 

attention over the course of skill acquisition and adaptation (Grillon et al., 2015; Hopstaken et 

al., 2015; Richards & Gross, 2000). 

The finding that ND flux yielded a positive interaction with the linear growth term (i.e., 

SA) with respect to off-task attention suggests that individuals with high affect variability 

struggled to maintain the necessary levels of attention needed to improve performance, 

regardless of any changes in task demands. This speaks to proactive adaptation or one’s capacity 

to take initiative to improve performance regardless of changes in task demands (Ployhart & 

Bliese, 2006). This interaction involving ND flux and greater linear growth in off-task attention 

suggests that those high in affect variability are less likely to focus their attention to recognize 
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the subtle differences in various performance strategies, find more effective strategies, and make 

the adjustments needed to reach higher levels of performance even in stable performance 

environments. ND flux also had a negative relationship with enjoyment, which can strongly 

influence task engagement, sustained interest, informal learning, and long-term progress 

(Sitzmann et al., 2008; Tews et al., 2017). Beyond finding that individuals with greater affect 

variability may struggle to devote attention to a task, it may also be difficult to engage due to 

impeded enjoyment from heightened distress, self-doubt, worry, and emotion reactivity resulting 

from complex or changing demands. Put another way, affect variability is detrimental to task 

learning. 

Moderation of the Off-Task Attention-Performance Relationship 

The second theoretical mechanism proposed that affect variability would moderate the 

off-task attention performance relationship. Support for this mechanism was only found for 

affect spin and with respect to transition adaptation. Specifically, after the task change, off-task 

attention was particularly detrimental for individuals high in affect spin. Experiencing shifting 

emotions, which would be particularly heightened after a change in task demands, likely makes 

adjusting to change difficult as the individual has less cognitive resources to dedicate towards 

discovering or altering performance strategies. It is important to mention that although the 

aforementioned results emphasize the importance of flux, these findings exhibit that spin is still 

distinctly important and affirm the value of prior literature studying spin. Ultimately this 

suggests that different indices may be more relevant depending on the outcome of interest. 

Combined with the previously mentioned negative impact of off-task attention levels 

(regardless of task change), and alongside findings from Richels et al. (2020), these results 

indicate that high affect variability is a hindrance to learning in fast-paced, complex performance 



  
 

  
 

40 

 

contexts, in terms of both acquisition and adaptation. Low levels of affect variability are 

important aspects of adaptability and are particularly important for occupation and performance 

environments that are fast-paced, emphasize continuous learning, or involve unpredictable 

changes. Environments that require a lot of autonomous and informal learning may not be 

suitable for those high in affect variability because these environments require the individual to 

control their emotions and sustain attention (Kanfer & Ackerman, 1989). 

Distinctiveness of Affect Variability 

Like Richels et al. (2020), the present study advances theory in terms of how affect 

variability indices act as important non-cognitive traits that help comprise the construct of 

adaptability (Baard et al., 2014). Affect variability indices uniquely address aspects of 

personality that are not captured by traditional measures of the Big Five—specifically that 

fluctuations in the expressions of traits should be expected across time (Fleeson and 

Jayawickreme, 2015). Although personality is an important factor when considering the 

emotional experiences that accompany change, common measures of personality like the Big 

Five can be limited in how well they capture the dynamic experience of emotions. My findings 

support Whole Trait Theory and dynamic approaches to measuring personality (Beckmann & 

Wood, 2017; Fleeson & Jayawickreme, 2015) and reinforce how affect variability better captures 

between-person differences in emotion fluctuations and thus are better suited to explaining 

behavioral phenomena than traditional Big Five measures, even emotional stability 

(neuroticism).  

The repeated-measured structure used to measure affect variability captures individual 

differences in within-person fluctuations in affect expression, leading to a more comprehensive 

understanding of emotion reactivity and personality more generally. Affect variability scores are 
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suited for understanding complex or inherently emotional contexts. In this respect, while prior 

research has found weak relationships between personality variables and task performance, the 

present study advances theory by demonstrating how affect variability indices capture important 

non-cognitive traits predictive of off-task attention and performance. With the exception of 

Richels et al. (2020), there has been a lack of theory and empirical research addressing the 

relationship between affect variability and complex task learning, and together with Richels et al. 

(2020), the present study contributes to theory regarding how personality plays a role in complex 

task learning via the lens of stress-attention-performance relationships and advances our 

understanding of affect variability indices as important contributors to skill acquisition and 

adaptation. 

Limitations and Future Research 

There are several limitations that should be considered when interpreting and 

generalizing the results found here. First, it is critical to scrutinize the performance task. The 

nature of the task may differentially impact individuals high in affect variability and findings 

may be most applicable to specific contexts that rely on complex, fast-paced performance. 

Considering that individuals with increased affect variability are likely to have a greater reaction 

to stressful or emotionally charged events (Beal & Ghandour, 2011), the task in this study may 

have elicited a stronger effect. There also may have been added pressure due to the chance for 

monetary reward in exchange for high performance that could have exacerbated the effects of 

greater affect variability. This study repeats the limitation given by Richels et al (2020) in that 

the performance context was not a proceduralized learning environment, meaning that the results 

may not be generalizable to proceduralized training contexts. Individuals did not have time to 

reflect on or explore different strategies to improve performance, resembling a more active 



  
 

  
 

42 

 

learning environment. Thus, future research should examine different learning environments as 

these different environments may alter the effects of an individual’s affect variability. Similar to 

Richels et al. (2020), my results showed a performance difference between males and females. 

Although these differences might be expected as males typically report engaging more in video 

games and a higher degree of interest than females (Ogletree & Drake, 2007), it may be possible 

that gender is an additional factor that must be considered when trying to determine the effect of 

affect variability in particular performance contexts. Future research should seek replicate the 

current findings under various performance contexts, keeping in mind that there may be gender-

based differences. 

It should also be noted the self-report nature of the study which may fail to fully 

encompass all aspects of off-task attention. Participants may have struggled to fully monitor how 

much attention they directed to the task and may thus over- or underestimate the true amount of 

attention directed towards the task. Some participants may also be hesitant to report that they 

were not paying attention to the task. Future research could utilize physiological measures such 

as eye-tracker technology, which has been used in the past to measure on-task attention or 

attentional shifts (Maclin et al., 2011), under the assumption that participants are focused on 

what they fixate upon visually (Duchowksi, 2002; Moran et al., 2016). Prior complex skill 

research has found it possible to utilize other technology, such as electroencephalogram (EEG; 

Bakaoukas et al., 2016; Maclin et al., 2011) and functional magnetic resonance imaging (fMRI; 

Prakash et al., 2012), to monitor brain states that reflect attention. As individuals acquire skills, 

there will be a reduction in the amount of attentional resources devoted to task performance as 

the execution of performance strategies become automated (Kanfer & Ackerman, 1989; Kanfer 

et al., 1994; Prakash et al., 2012). As such, neuroimaging and EEG could be better leveraged to 
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capture changes and differences in attention, rather than relying on self-reports, to indicate if (1) 

participants are actually putting resources towards on-task attention and (2) they are activating 

attentional control areas but failing to succeed in acquiring the skills necessary to perform the 

task. This may enable a more nuanced examination of the mechanisms tested in the present 

study. Another strategy that may be effective in gauging attention is to utilize think aloud 

protocols (Ericsson & Simon, 1980). Think aloud protocols refer to the process whereby a 

participant verbalizes all their thoughts as they engage with a task (Ericsson & Fox, 2011). With 

proper standardized procedures, valid measurement of attention control and specific cognitive 

process can be attained without unduly disrupting performance (Kircher & Ahlstrom, 2018; 

Oliver et al., 2021). Indeed, think aloud protocols have been shown to yield verbalizations that 

are consistent with behavioral performance (Ericsson & Simon, 1980). 

Although this research answers a call by Richels et al. (2020) to explain the underlying 

mechanisms of affect variability that may undermine performance (i.e., via off-task attention), 

there are other mechanisms that should be examined, emotion regulation and strain for instance. 

Understanding these underlying processes could lead to the development of interventions that 

could foster learning and adaptive performance for those higher in affect variability and help 

mitigate the detrimental effects of affect variability. This may be particularly relevant as there is 

currently no single intervention that has been found to be effective for managing personality 

traits that are viewed as maladaptive (Livesley, 2005). Research in this area is lacking (Bateman 

et al., 2015), but it is likely that individually tailored approaches that comprehensively target 

thoughts, emotions, and behaviors are the best solution (Livesley, 2005; Gibbon et al., 2020). 

One weakness that many individuals with maladaptive personality traits face is the use of 

ineffective emotion regulation strategies for handling negative affect (Daros & Williams, 2019). 
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Recent research has found that targeting or eliciting specific emotions, specifically positive 

deactivating emotions, while engaging with a complex task may help performance (Jorgensen, 

2020). This is a preliminary line of research that should be pursued further. 

A common limitation to studies of affect variability repeated here was that the 

measurement of emotions occurred concurrently with the measurement of the outcome variables. 

Predictive designs that measure affect variability prior to the measurement of outcomes (e.g., 

task performance) are needed to provide stronger evidence that affect variability scores reflect 

personality broadly rather than as situationally-specific predictors. Additionally, given the 

practical constraints to measuring affect variability via repeated measures, I believe future 

research should examine the extent to which one-time measures of emotion reactivity (e.g., 

Becerra et al., 2019) might be viable substitutes for capturing affect variability. Emotion 

reactivity is similar to affect variability in that it seeks to uncover the intensity with which an 

individual experiences emotion. It differs in that it also takes into consideration the individual’s 

sensitivity to various stimuli and the duration or period of time it takes to return to baseline 

(Nock et al., 2008). Becerra et al. (2019) Perth Emotional Reactivity Scale (PERS) looks at these 

aspects of emotion reactivity (intensity, sensitivity, duration) while also accounting for the 

valence of the emotion (positive or negative). This measure may be a more feasible option to use 

as it may be taken just once and is less cognitively taxing. However, it may fail to uncover the 

nuances of emotional arousal or activation (activated or deactivated), which may be a weakness 

as the results of the present study showed the importance of disentangling activation and valence 

when examining flux.  

Divergent from foundational research suggesting that affect spin is the central contributor 

to psychological well-being (Kuppens et al., 2007), the results of the current study highlight 
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other indices of affect variability as meaningful contributors to behavioral outcomes, specifically 

performance in fast-paced, complex performance environments. It would be beneficial for future 

empirical research on affect variability to include all indices of affect variability in relation to 

behavioral outcomes to better understand how personality contributes to adjustment and 

psychological well-being. 

Conclusion 

In summary, the current study furthers our understanding of the non-cognitive aspects of 

adaptability by demonstrating that affect variability indices are related, yet meaningfully distinct 

aspects of personality that differentially predict off-task attention and performance. In this way, 

my results indicate that consistency in emotion is important for limiting off-task attention, 

spurring task enjoyment and learning, and enabling adapting to unexpected changes. Further, 

measurement approaches that account for the dynamic nature of personality not captured by 

traditional measures are crucial for understanding human performance, especially when the task 

setting is fast-paced and complex. In accordance with Richels et al. (2020), future research 

should involve different tasks and learning contexts to further examine the mechanisms by which 

affect variability indices together and distinctly explain variance in learning and performance 

outcomes. Pursuing this research may provide recommendations to mitigate the detrimental 

effects of higher affect variability on behavioral outcomes. 
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Table 1 

 

Coding scheme of change variables in discontinuous mixed-effects growth models. 

 
  

Variable 

 

Pre-change period 

  

Post-change period 

 

Measurement occasion 

(Session) 

1 2 3 4 5 6 7  8 9 10 11 12 13 14 

 

Skill acquisition (SA) 

 

0 1 2 3 4 5 6  7 8 9 10 11 12 13 

 

Transition adaptation (TA) 

 

0 0 0 0 0 0 0  1 1 1 1 1 1 1 

 

Reacquisition adaptation 

(RA) 

0 0 0 0 0 0 0  0 1 2 3 4 5 6 

 

Quadratic skill acquisition 

(SA2) 

0 1 4 9 16 25 36  36 36 36 36 36 36 36 

 

Quadratic reacquisition 

adaptation (RA2) 

 

0 0 0 0 0 0 0  0 1 4 9 16 25 36 
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Table 2 

 

Discontinuous growth model building of off-task attention as a function of affect variability. 

 
  

Variable 

 

Model 1 

 

Model 2 

 

Model 3 

 

Model 4 

 

Model 5 

 

Intercept 

 

X 

 

X 

 

X 

 

X 

 

X 

Skill acquisition (SA) X X X X X 

Transition adaptation (TA) X X X X X 

Reacquisition adaptation (RA) X X X X X 

Quadratic skill acquisition (SA2) X X X X X 

Quadratic skill reacquisition (RA2) X X X X X 

Gender  X X X X 

GMA  X X X X 

Video game experience (VGE)  X X X X 

Openness  X X X X 

Conscientiousness  X X X X 

Extraversion  X X X X 

Agreeableness  X X X X 

Emotional Stability  X X X X 

Spin/Pulse/Flux Index   X X X 

SA × Spin/Pulse/Flux Index    X X 

TA × Spin/Pulse/Flux Index     X 

RA × Spin/Pulse/Flux Index     X 
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Table 3 

 

Discontinuous growth model building of performance as a function of affect variability. 

 
  

Variable 

 

Model 1 

 

Model 2 

 

Model 3 

 

Model 4 

 

Model 5 

 

Model 6 

 

Intercept 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

Skill acquisition (SA) X X X X X X 

Transition adaptation (TA) X X X X X X 

Reacquisition adaptation (RA) X X X X X X 

Quadratic skill acquisition (SA2) X X X X X X 

Quadratic skill reacquisition (RA2) X X X X X X 

Gender  X X X X X 

GMA  X X X X X 

Video game experience (VGE)  X X X X X 

Openness  X X X X X 

Conscientiousness  X X X X X 

Extraversion  X X X X X 

Agreeableness  X X X X X 

Emotional Stability  X X X X X 

Spin/Pulse/Flux Index   X X X X 

Off-Task Attention (OTA)    X X X 

Spin/Pulse/Flux Index × OTA     X X 

SA × Spin/Pulse/Flux Index     X X 

SA × OTA     X X 

TA × Spin/Pulse/Flux Index     X X 

TA × OTA     X X 

RA × Spin/Pulse/Flux Index     X X 

RA × OTA     X X 

SA × Spin/Pulse/Flux Index x OTA      X 

TA × Spin/Pulse/Flux Index x OTA      X 

RA × Spin/Pulse/Flux Index x OTA      X 
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Table 4 

Means, Standard Deviations, and Correlations  

 

Variable 

 

M 

 

SD 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

1.Gender − −           

2.ACT 26.91 4.25 −.21**          

3.Vid. game exp.  0.08 1.02 −.54**   .20**  (.68)        

4.Openness  6.39 0.89 −.02   .04     .12  (.83)       

5.Conscientiousness  6.29 0.89   .08   −.05 −.06   .37**  (.84)      

6.Extraversion  5.56 1.06 −.02     −.13* −.08   .23**   .12*  (.87)     

7.Agreeableness  6.82 0.86   .05  −.17**   .03   .28**   .29**   .15*  (.88)    

8.Emotional stability  5.10 0.98 −.22**   .13*   .12* −.07   .18**   .10   .25**  (.81)   

9.Spin  1.25 0.40 −.12 −.11 −.03   .06   .02   .11 −.11 −.05   

10.Pulse  2.22 0.97   .15*  −.15* −.14*   .10   .12   .11   .07 −.05    .13*   

11.PA flux  1.28 0.62 −.10 −.03   .00   .14*   .11   .15*   .05   .02    .46**   .48** 

12.PD flux  1.25 0.61 −.03 −.12*   .06   .17**   .14*   .16*   .04   .03    .38**   .46** 

13.NA flux  1.08 0.62   .21** −.19** −.11   .12*   .13*   .18** −.06 −.17**   .47**   .59** 

14.ND flux  1.13 0.56   .12   −.16** −.11   .13*   .04   .15* −.01 −.12   .41**   .62** 

15.Off-task attention 2.40 1.20   .33** −.21** −.22** −.10 −.08   .11 −.12 −.15*   .07    .21** 

16.Enjoyment 2.03 0.81 −.15*    .07   .09 −.06   .06   .04   .06   .07 −.06 −.19** 

17.Performance 33.83  16.86   −.66**   .31**   .69**   .08 −.01 −.11   .01   .18** −.07 −.18** 

 

 

Variable 11 

 

12 

 

13 

 

14 

 

15 

 

16 

12.PD flux    .53**      

13.NA flux    .47**   .53**     

14.ND flux    .51**   .31**   .65**    

15.Off-task attention    .02   .10   .28**   .40**  (.90)a   

16. Enjoyment  −.04   .06 −.22** −.35** −.40**  (.90) 

17.Performance  −.04   .00 −.28** −.24** −.47**   .23** 

       

Note. Diagonal values are coefficient alpha reliabilities. Gender is a dichotomous variable: 0 = male, 1 = female. Video game 

experience was a standardized composite. Mean alpha across 14 sessions for off-task attention and performance. aMean alpha across 

14 sessions. N = 253. *p < .05, **p < .01, two-tailed 
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Table 5 

 Summary of Statistics Determining Independent Variable Contributions to Regression Effects  

 

 

Variable β rs rs
2 r   Pratt Unique Common GenDom RWI RWI % 

 

 

Off-Task Attention 

  Spin −0.101     0.154 0.024     0.072 −0.007 0.006 −0.001 0.006 0.007     3.18 

  Pulse −0.086    0.452 0.205   0.212 −0.018 0.003   0.042 0.018 0.020     9.09 

  PA Flux −0.265    0.047 0.002   0.022 −0.006 0.038 −0.037 0.024 0.021     9.54 

  PD Flux   0.101    0.216 0.046   0.101   0.010 0.006   0.005 0.005 0.006     2.72 

  NA Flux    0.101    0.589 0.347   0.276   0.028 0.004   0.072 0.034 0.038   17.27 

  ND Flux   0.534    0.851 0.725   0.399   0.213 0.117   0.042 0.133 0.128   58.18 

  Total   N/A   N/A 1.349   N/A   0.220 0.174   0.123 0.220 0.220     100 

 

 

Enjoyment 

  Spin   0.050   −0.131 0.017  −0.055 −0.003 0.001   0.002 0.003 0.005    2.84 

  Pulse −0.017  −0.463 0.214  −0.194   0.003 0.000   0.038 0.017 0.021  11.93 

  PA Flux   0.109 −0.095 0.009  −0.040 −0.004 0.006 −0.005 0.008 0.009    5.11 

  PD Flux   0.185    0.153 0.023 0.064   0.012 0.019 −0.015 0.023 0.019  10.80 

  NA Flux  −0.128  −0.522 0.273  −0.219   0.028 0.007    0.041  0.026 0.030  17.05 

  ND Flux  −0.395  −0.844 0.713  −0.354   0.140 0.064    0.061 0.098 0.092  52.27 

  Total   N/A   N/A 1.249 N/A   0.176 0.097    0.122 0.175 0.176    100 
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Performance 

  Spin   0.038   −0.188 0.035  −0.066 −0.002 0.001   0.004 0.003 0.004     3.22 

  Pulse −0.039  −0.514 0.264 −0.181   0.007 0.001   0.032 0.013 0.016   12.90 

  PA Flux   0.091 −0.108 0.012 −0.038 −0.003 0.004 −0.003 0.006 0.005     4.03 

  PD Flux   0.169  −0.003 0.000 −0.001   0.000 0.016 −0.016 0.012 0.011     8.87 

  NA Flux  −0.338  −0.804 0.646 −0.283   0.096 0.048   0.033 0.062 0.059   47.58 

  ND Flux  −0.113  −0.685 0.469 −0.241   0.027 0.005   0.053 0.028 0.029   23.39 

  Total N/A N/A 1.426 N/A   0.125 0.075   0.103 0.124 0.124     100 

           

 

Note. PA = positive activating. PD = positive deactivating. NA = negative activating. ND = negative deactivating. RWI = relative 

weight importance; percentage of the total variance explained in y by the given index. RWI% = percentage of the total variance 

explained in y by all the indices attributed to the given index. 
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Table 6 

 Paired Dominance Metrics  

 

  

Off-Task Attention 

  

Enjoyment 

  

Complete 

 

Conditional  

 

General 

  

Complete 

 

Conditional 

 

General 

 

Spin>Pulse 

 

0.5 

 

0.5 

 

0.0 

  

0.5 

 

0.5 

 

0.0 

Spin>PA Flux 0.5 0.5 0.0  0.5 0.5 0.0 

Spin>PD Flux 0.5 0.5 1.0  0.0 0.0 0.0 

Spin>NA Flux 0.5 0.5 0.0  0.5 0.0 0.0 

Spin>ND Flux 0.0 0.0 0.0  0.0 0.0 0.0 

Pulse>PA Flux 0.5 0.5 0.0  0.5 0.5 1.0 

Pulse>PD Flux 0.5 0.5 1.0  0.5 0.5 0.0 

Pulse>NA Flux 0.5 0.0 0.0  0.5 0.0 0.0 

Pulse>ND Flux 0.0 0.0 0.0  0.0 0.0 0.0 

PA Flux>PD Flux 0.5 0.5 1.0  0.0 0.0 0.0 

PA Flux>NA Flux 0.5 0.5 0.0  0.5 0.0 0.0 

PA Flux>ND Flux 0.0 0.0 0.0  0.0 0.0 0.0 

PD Flux>NA Flux 0.5 0.5 0.0  0.5 0.5 0.0 

PD Flux>ND Flux 0.0 0.0 0.0  0.0 0.0 0.0 

NA Flux>ND Flux 0.0 0.0 0.0  0.0 0.0 0.0 
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 Performance  

  

Complete 

 

Conditional  

 

General 

 

 

Spin>Pulse 

 

0.5 

 

0.5 

 

0.0 

 

Spin>PA Flux 0.5 0.5 0.0  

Spin>PD Flux 0.5 0.5 0.0  

Spin>NA Flux 0.0 0.0 0.0  

Spin>ND Flux 0.0 0.0 0.0  

Pulse>PA Flux 0.5 0.5 1.0  

Pulse>PD Flux 0.5 0.5 1.0  

Pulse>NA Flux 0.0 0.0 0.0  

Pulse>ND Flux 0.0 0.0 0.0  

PA Flux>PD Flux 0.5 0.5 0.0  

PA Flux>NA Flux 0.0 0.0 0.0  

PA Flux>ND Flux 0.5 0.0 0.0  

PD Flux>NA Flux 0.0 0.0 0.0  

PD Flux>ND Flux 0.5 0.5 0.0  

NA Flux>ND Flux 1.0 1.0 1.0  

Note. PA = positive activating. PD = positive deactivating. NA = negative activating. ND = negative deactivating.  1.0 = first listed 

variable is dominant, 0.0 = second listed variable is dominant, 0.5 = dominance cannot be determined. 
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Table 7 

 Average Contributed Variance of Predictor  

  

Off-Task Attention 

  

Enjoyment 

 

Subset 

Size Spin Pulse PA Flux PD Flux NA Flux ND Flux  Spin Pulse PA Flux PD Flux NA Flux ND Flux 

              

1 0.0044 0.0281 0.0138 0.0042 0.0542 0.1436  0.0046 0.0294 0.0088 0.0127 0.0412 0.1210 

2 0.0059 0.0166 0.0255 0.0027 0.0374 0.1327  0.0047 0.0202 0.0105 0.0330 0.0305 0.1089 

3 0.0062 0.0091 0.0326 0.0026 0.0230 0.1244  0.0037 0.0113 0.0098 0.0321 0.0199 0.0932 

4 0.0060 0.0024 0.0362 0.0036 0.0116 0.1190  0.0022 0.0042 0.0080 0.0262 0.0114 0.0774 

5 0.0060 0.0030 0.0380 0.0060 0.0040 0.1170  0.0010 0.0000 0.0060 0.0190 0.0070 0.0640 

              

Note. Values are averages across subsets. Increasing values for a given predictor as subset size increases reflects the predictor is acting as a 

suppressor.PA = positive activating. PD = positive deactivating. NA = negative activating. ND = negative deactivating.  

  

Performance 

 

 

Subset 

Size Spin Pulse PA Flux PD Flux NA Flux ND Flux  

        

1 0.0034 0.0214 0.0054 0.0096 0.0718 0.0438  

2 0.0035 0.0137 0.0077 0.0151 0.0641 0.0311  

3 0.0027 0.0073 0.0080 0.0170 0.0571 0.0200  

4 0.0016 0.0026 0.0066 0.0168 0.0510 0.0112  

5 0.0010 0.0010 0.0040 0.0160 0.0480 0.0050  

        

Note. Values are averages across subsets. Increasing values for a given predictor as subset size increases reflects the predictor is acting 

as a suppressor.PA = positive activating. PD = positive deactivating. NA = negative activating. ND = negative deactivating. 
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Table 8 

Discontinuous growth models of off-task attention as a function of affect variability. 

 Model 1  Model 2  Model 3  Model 4 

Variable B SE  B SE  B SE  B SE 

Intercept, γ00 1.96** 0.06   1.78** 0.08    1.81** 0.08    1.81** 0.08 

Skill acquisition (SA), γ10 0.07** 0.01   0.07** 0.01    0.07** 0.01    0.07** 0.01 

Gender, γ01     0.54** 0.16    0.45** 0.15    0.45** 0.15 

ACT/SAT, γ02    −0.04** 0.02  −0.03 0.01  −0.03† 0.01 

Video game experience 

(VGE), γ03 

   −0.08 0.07  −0.07 0.07  −0.07 0.07 

Openness, γ04    −0.09 0.08  −0.13 0.08  −0.13† 0.08 

Conscientiousness, γ05    −0.06 0.08  −0.04 0.07  −0.04 0.07 

Extraversion, γ06      0.11† 0.06    0.10 0.06    0.10† 0.06 

Agreeableness, γ07    −0.19* 0.08  −0.16 0.08  −0.16 0.08 

Emotional Stability, γ08    −0.06 0.07  −0.03 0.07  −0.03 0.07 

ND Flux, γ09         0.72** 0.12    0.55 0.13 

PA Flux, γ010       −1.33** 0.11  −0.33** 0.11 

SA × ND Flux, γ111            0.06** 0.01 

            

AIC 8685.35  8680.62  8659.78  8649.46 

Note. Results of the best fitting model per the AIC are bolded. SA = skill acquisition. ND = negative deactivating. PA = positive 

activating. Across Models 3–4, effects for the growth terms and covariates were substantively unchanged from Model 2. N = 253. †p 

<0.10 *p < .05, **p < .01, two-tailed. 
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Table 9 

Discontinuous growth models of performance as a function of affect variability. 

 Model 1  Model 2 

Variable B SE  B SE 

Intercept, γ00   28.69** 1.11    32.88** 0.92 

Skill acquisition (SA), γ10   5.28** 0.37    5.26** 0.37 

Transition adaptation (TA), γ20 −18.45** 0.85  −18.05** 0.80 

Reacquisition adaptation (RA), γ30 −4.18** 0.52  −4.67** 0.39 

Quadratic skill acquisition (SA2), γ40 −0.54** 0.06  −0.53** 0.06 

Quadratic skill reacquisition (RA2), γ50 −0.08 0.06    

      

Gender, γ01    −12.45** 1.59 

ACT/SAT, γ02      0.53** 0.15 

Video game experience (VGE), γ03      7.04** 0.73 

Openness, γ04      0.05 0.81 

Conscientiousness, γ05      0.69 0.78 

Extraversion, γ06    −0.99† 0.61 

Agreeableness, γ07    −0.48 0.80 

Emotional stability, γ08      0.50 0.70 

      

AIC 26432.26  26210.77 

Note. N = 253. †p <0.10 *p < .05, **p < .01, two-tailed. 
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Table 10 

Discontinuous growth models of performance as a function of NA flux. 

 

 Model 3  Model 4  Model 5  Model 6 

Variable B SE  B SE  B SE  B SE 

NA Flux, γ0 09 −3.81** 1.24  −2.84* 1.19  −3.42** 1.38  −3.54** 1.39 

PD Flux, γ0 10   1.81 1.21    1.87† 1.15    1.90† 1.15    1.90† 1.15 

Off-task attention, γ0 11    −2.88** 0.53  −2.54** 0.65  −2.68** 0.65 

NA Flux × OTA, γ0 12         0.92 0.80    2.13* 0.97 

SA × NA Flux, γ1 11       −0.33 0.21  −0.30 0.21 

SA × OTA, γ1 12       −1.24* 0.11  −0.21* 0.11 

TA × NA Flux, γ2 11         3.01* 1.32    2.97* 1.32 

TA × OTA, γ2 12         1.20† 0.67    1.16† 0.69 

RA × NA Flux, γ3 11         0.19 0.30    0.16 0.30 

RA × OTA, γ3 12       −0.01 0.16  −0.04 0.16 

SA × NA Flux × OTA, γ1 13          −0.30† 0.16 

TA × NA Flux × OTA, γ2 13            0.35 1.04 

RA × NA Flux × OTA, γ3 13            0.27 0.24 

            

AIC 26201.49  26176.38  26173.53  26176.11 

Note. Results of the best fitting model per the AIC are bolded. SA = skill acquisition. TA = transition adaptation. RA = reacquisition 

adaptation. NA = negative activating. PD = positive deactivating. OTA = off-task attention. PD flux acts as a suppressor. Across 

Models 3–6, effects for the growth terms and covariates were substantively unchanged from Model 2 in Table 9. N = 253. †p <0.10 *p 

< .05, **p < .01, two-tailed. 
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Table 11 

Discontinuous growth models of performance as a function of PD flux. 

 Model 3  Model 4  Model 5  Model 6 

Variable B SE  B SE  B SE  B SE 

PD Flux, γ0 09 −0.12 1.04    0.46 0.99    0.52 1.20    0.45 1.20 

Off-task attention, γ0 10    −3.08** 0.53  −2.66** 0.63  −2.70** 0.63 

PD Flux × OTA, γ0 11       −0.21 0.81    0.77 0.99 

SA × PD Flux, γ1 11       −0.08 0.20  −0.07 0.21 

SA × OTA, γ1 12       −0.28** 0.10  −0.28* 0.10 

TA × PD Flux, γ2 11         0.55 1.30    0.58 1.30 

TA × OTA, γ2 12         1.61** 0.66    1.62* 0.66 

RA × PD Flux, γ3 11         0.03 0.30    0.00 0.30 

RA × OTA, γ3 12         0.01 0.15    0.00 0.15 

SA × PD Flux × OTA, γ1 13          −0.15 0.17 

TA × PD Flux × OTA, γ2 13          −0.48 1.09 

RA × PD Flux × OTA, γ3 13            0.32 0.25 

            

AIC 26210.83  26182.16  26185.56  26190.47 

Note. Results of the best fitting model per the AIC are bolded. SA = skill acquisition. TA = transition adaptation. RA = reacquisition 

adaptation. PD = positive deactivating. OTA = off-task attention. Across Models 3–6, effects for the growth terms and covariates were 

substantively unchanged from Model 2 in Table 9. N = 253. †p <0.10 *p < .05, **p < .01, two-tailed. 
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Table 12 

Discontinuous growth models of performance as a function of ND flux. 

 Model 3  Model 4  Model 5  Model 6 

Variable B SE  B SE  B SE  B SE 

ND Flux, γ0 09 −2.68* 1.16  −0.65 1.19  −0.55 1.44  −0.66 1.44 

PD Flux, γ0 10   0.57 1.08    0.61 1.03    0.83 1.04    0.84 1.04 

Off-task attention, γ0 11    −2.96** 0.57  −2.80** 0.69  −2.89** 0.69 

ND Flux × OTA, γ0 12         1.16 0.81    1.79† 0.97 

SA × ND Flux, γ1 11       −0.29 0.24  −0.26 0.24 

SA × OTA, γ1 12       −0.23* 0.11  −0.21† 0.11 

TA × ND Flux, γ2 11         1.68 1.51    1.61 1.53 

TA × OTA, γ2 12         1.31† 0.71    1.26† 0.72 

RA × ND Flux, γ3 11       −0.06 0.35  −0.10 0.35 

RA × OTA, γ3 12         0.03 0.16    0.00 0.17 

SA × ND Flux × OTA, γ1 13          −0.20 0.16 

TA × ND Flux × OTA, γ2 13            0.43 1.03 

RA × ND Flux × OTA, γ3 13            0.23 0.24 

            

AIC 26205.65  26181.68  26178.45  26185.10 

Note. Results of the best fitting model per the AIC are bolded. SA = skill acquisition. TA = transition adaptation. RA = reacquisition 

adaptation. ND = negative deactivating. PD = positive deactivating. OTA = off-task attention. PD flux acts as a suppressor. Across 

Models 3–6, effects for the growth terms and covariates were substantively unchanged from Model 2 in Table 9. N = 253. †p <0.10 *p 

< .05, **p < .01, two-tailed. 
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Table 13 

Discontinuous growth models of performance as a function of PA flux. 

 Model 3  Model 4  Model 5  Model 6 

Variable B SE  B SE  B SE  B SE 

PA Flux, γ0 09 −2.39* 1.17  −2.47* 1.10  −1.86 1.28  −1.88 1.28 

PD Flux, γ0 10   1.18 1.22    1.80 1.15    1.80 1.15    1.80 1.15 

Off-task attention, γ0 11    −3.08** 0.53  −2.69** 0.63  −2.63** 0.63 

PA Flux × OTA, γ0 12         0.60 0.83    1.99* 1.00 

SA × PA Flux, γ1 11       −0.07 0.20  −0.07 0.20 

SA × OTA, γ1 12       −0.29** 0.10  −0.30** 0.10 

TA × PA Flux, γ2 11       −0.30 1.26  −0.30 1.25 

TA × OTA, γ2 12         1.63** 0.65    1.64** 0.65 

RA × PA Flux, γ3 11         0.00 0.29    0.00 0.29 

RA × OTA, γ3 12         0.02 0.15    0.03 0.15 

SA × PA Flux × OTA, γ1 13          −0.29† 0.17 

TA × PA Flux × OTA, γ2 13          −0.02 1.09 

RA × PA Flux × OTA, γ3 13            0.33 0.25 

            

AIC 26206.53  26177.17  26179.23  26181.36 

Note. Results of the best fitting model per the AIC are bolded. SA = skill acquisition. TA = transition adaptation. RA = reacquisition 

adaptation. PA = positive activating. PD = positive deactivating. OTA = off-task attention. PD flux acts as a suppressor. Across 

Models 3–6, effects for the growth terms and covariates were substantively unchanged from Model 2 in Table 9. N = 253. †p <0.10 *p 

< .05, **p < .01, two-tailed. 
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Table 14 

Discontinuous growth models of performance as a function of spin. 

 Model 3  Model 4  Model 5  Model 6 

Variable B SE  B SE  B SE  B SE 

Spin, γ0 09 −4.10* 1.71  −3.74* 1.61  −3.24† 1.91  −3.28† 1.91 

PD Flux, γ0 10   0.86 1.11    1.35 1.0    1.40 1.05    1.40 1.05 

Off-task attention, γ0 11    −3.02** 0.53  −2.61** 0.63  −2.49** 0.63 

Spin × OTA, γ0 12         1.27 1.40    3.10† 1.68 

SA × Spin, γ1 11         0.19 0.31    0.18 0.31 

SA × OTA, γ1 12       −0.29** 0.10  −0.28** 0.10 

TA × Spin, γ2 11       −2.08 1.98  −1.98 1.96 

TA × OTA, γ2 12         1.68** 0.65    1.40* 0.65 

RA × Spin, γ3 11       −0.09 0.45  −0.09 0.46 

RA × OTA, γ3 12         0.02  0.15    0.02 0.15 

SA × Spin × OTA, γ1 13            0.23 0.28 

TA × Spin × OTA, γ2 13          −4.49** 1.77 

RA × Spin × OTA, γ3 13            0.03 0.41 

            

AIC 26204.25  26176.05  26174.18  26171.01 

Note. Results of the best fitting model per the AIC are bolded. SA = skill acquisition. TA = transition adaptation. RA = reacquisition 

adaptation. PD = positive deactivating. OTA = off-task attention. PD flux acts as a suppressor. Across Models 3–6, effects for the 

growth terms and covariates were substantively unchanged from Model 2 in Table 9. N = 253. †p <0.10 *p < .05, **p < .01, two-

tailed. 
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Table 15 

Discontinuous growth models of performance as a function of pulse. 

 Model 3  Model 4  Model 5  Model 6 

Variable B SE  B SE  B SE  B SE 

Pulse, γ0 09 −0.66 0.73  −0.14 0.69  −0.37 0.83  −0.50 0.84 

PD Flux, γ0 10   0.36 1.17    0.56 1.11    0.67 1.11    0.66 1.11 

Off-task attention, γ0 11    −3.06** 0.54  −2.74** 0.65  −2.83** 0.65 

Pulse × OTA, γ0 12         0.37 0.46    0.86 0.55 

SA × Pulse, γ1 11       −0.20 0.13  −0.15 0.13 

SA × OTA, γ1 12       −0.25* 0.10  −0.21* 0.11 

TA × Pulse, γ2 11         1.54† 0.82    1.33 0.84 

TA × OTA, γ2 12         1.37* 0.66    1.23† 0.67 

RA × Pulse, γ3 11         0.22 0.19    0.17 0.19 

RA × OTA, γ3 12       −0.02 0.15  −0.06 0.15 

SA × Pulse × OTA, γ1 13          −0.21* 0.09 

TA × Pulse × OTA, γ2 13            0.74 0.59 

RA × Pulse × OTA, γ3 13            0.18 0.14 

            

AIC 26210.81  26183.00  26186.16  26192.38 

Note. Results of the best fitting model per the AIC are bolded. SA = skill acquisition. TA = transition adaptation. RA = reacquisition 

adaptation. PD = positive deactivating. OTA = off-task attention. PD flux acts as a suppressor. Across Models 3–6, effects for the 

growth terms and covariates were substantively unchanged from Model 2 in Table 9. N = 253. †p <0.10 *p < .05, **p < .01, two-

tailed. 
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Figure 1. Proposed model of relationship between off-task attention, enjoyment, and task performance, moderated by affect 

variability. 
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Figure 2. Off-task attention trends across sessions by Session 1 tertiles. Sessions 1-7 = pre-change. Sessions 8-14 = post-change. Off-

task attention scores could range from 1.00 to 7.00.  
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Figure 3. Performance trends across sessions by Session 1 tertiles. Sessions 1-7 = pre-change. Sessions 8-14 = post-change. 

Performance scores could range from 0.00 to 1.00. 
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Figure 4. Effect of ND Flux on off-task attention across sessions. Values are predicted scores from model estimates. High/low affect 

pulse = ±1 standard deviation. Off-task attention scores could range from 1.00 to 7.00. ND = negative deactivating. 
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Figure 5. Effect of NA Flux on performance across sessions. Values are predicted scores from model estimates. High/low affect pulse 

= ±1 standard deviation. NA = negative activating. 
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Figure 6. Effect of affect spin on performance across sessions. Values are predicted scores from model estimates. High/low affect 

pulse = ±1 standard deviation. OTA = off-task attention. 

 

 


	List of Tables
	List of Figures
	Abstract
	Relating Affect Variability to Complex Skill Acquisition and Adaptive Performance:      The Role of Off-Task Attention
	Skill Acquisition and Adaptive Performance
	Affect Variability
	Indices of Affect Variability: Spin, Pulse, and Flux
	Relative Importance of Different Aspect of Affect Variability
	Mechanisms by which Affect Variability Undermines Complex Task Learning
	Affect Variability → Off-Task Attention and Enjoyment
	Affect Variability Moderating the Off-Task Attention → Performance Relationship
	Affect Variability in Adaptation versus Acquisition

	Method
	Participants
	Performance Task
	Procedure
	Measures
	Control Variables
	Affect Variability
	Off-Task Attention
	Task Enjoyment
	Task Performance


	Results
	Relative Importance Analysis
	Off-Task Attention
	Enjoyment
	Performance

	Growth Trends
	Off-Task Attention
	Performance


	Discussion
	Relative Importance of Affect Variability Indices
	Direct Effect on Off-Task Attention and Enjoyment
	Moderation of the Off-Task Attention-Performance Relationship
	Distinctiveness of Affect Variability
	Limitations and Future Research

	Conclusion
	References

