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Abstract 

One challenge associated with ensemble-based data assimilation (DA) is the quantitative 

estimation of the background error covariances.  In the current global operational DA system, a 

reduced resolution background ensemble is adopted, which restricts the ensemble background 

error covariance from resolving a wide range of scales. A recent study developed a multi-resolution 

ensemble four-dimensional ensemble-variational (4DEnVar) method and determined that this 

approach can provide a nearly comparable analysis and forecast to a single high-resolution 

ensemble approach with the same ensemble size, while substantially lowering the computational 

cost.  This study further develops the multi-resolution ensemble 4DEnVar approach to allow for a 

flexible number of low- and high-resolution ensemble members as well as different localization 

length scales between the high- and low-resolution ensembles. The goal of such development is to 

determine a more effective way of sampling large and small scales to formulate a method aimed 

at achieving an effective multiscale DA system.  

Utilizing the Finite-Volume Cubed Sphere Global Forecast System (FV3GFS), three 

4DEnVar experiments with the same computational costs are compared. The first has an 80-

member high-resolution background ensemble with single-scale localization. The second and third 

utilize the multi-resolution ensemble developments. One has a 170-member multi-resolution 

background ensemble, including 130 low-resolution and 40 high-resolution members. The other 

has a 204-member multi-resolution background ensemble with 180 low-resolution and 24 high-

resolution members.  Both multi-resolution ensemble experiments also utilize scale-aware 

localization radii. Despite having the same costs, the multi-resolution ensemble method decreases 

tropical cyclone track errors and improves global forecasts for up to five days in lead time.  

Diagnostics suggest that the multi-resolution ensemble method demonstrates improvement in 
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analyzing large-scale features.  At early lead times, improvements are most apparent in the upper 

levels in the tropics, while at later lead times, the Southern Hemisphere extratropics demonstrates 

greater improvement. The reduction of forecast errors in the extratropics at later lead times is 

partially due to improved analyses of large-scale features in the tropics that shift poleward. With 

regard to tropical cyclone track errors, the multi-resolution ensemble method can more properly 

correct the large-scale steering flow, leading to more accurate subsequent track forecasts.  

Additionally, the multi-resolution ensemble with a greater number of high-resolution members 

performs better than the multi-resolution ensemble with a greater number of low-resolution 

members in most metrics, demonstrating the value of both increasing sampling at large scales and 

retaining substantial information at small scales. 
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1.  Introduction  

 There has been steady improvement in global numerical weather prediction (NWP) from 

the latter half of the 20th century through the present (e.g., Hamill 2010; Magnussen and Källén 

2013; Bauer et al. 2015; Benjamin et al. 2019).  These improvements have stemmed from 

advancements in computing resources, model dynamics, model physics, observing systems, and 

data assimilation. Specifically, greater efficiency in computing resources have allowed for higher 

resolution and greater complexity in forecasts (e.g., Bauer et al. 2015).  Improved model dynamics 

and physics have led to more accurate numerical representations of atmospheric processes (e.g., 

Magnussen and Källén 2013; Benjamin et al. 2019).   Effective utilization of existing and new 

observations through the advancements in data assimilation (DA) have led to more accurate initial 

conditions (ICs) for numerical models and therefore more accurate subsequent numerical forecasts 

(e.g., Magnussen and Källén 2013; Magnusson et al. 2019; Chen et al. 2019).   

Recent studies demonstrate the advancements of model dynamics and physics in the US 

Global Forecast System (GFS).  In June of 2019, the dynamical core of the operational GFS was 

updated from the Global Spectral Model (GSM) to the Finite-Volume Cubed Sphere (FV3; Lin 

and Rood 1997; Lin 2004; Putman and Lin 2007).  FV3 uses a semi-Lagrangian flux form of the 

momentum equations defined over near-cubical volume grids, while the GSM used a wave form 

of the momentum equations defined using spherical harmonic basis functions (Lin and Rood 1996; 

Lin 1997; Putman and Lin 2007; Harris et al. 2021).  Testing of the pre-operational FV3-based 

GFS (or FV3GFS) has shown that the updated dynamical core can match or improve global 

forecasts (Ji 2016; Magnusson et al. 2019) and improve tropical cyclone forecasts relative to the 

GSM (Chen et al. 2019). The new GFS also utilizes a new physics package developed by the 

Geophysical Fluid Dynamics Laboratory (GFDL). The package includes an updated single-
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moment 6-category cloud microphysics (Chen and Lin 2011, 2013), which aims to improve upon 

the forecast of moist processes that could not be effectively parameterized in the previous Zhao-

Carr microphysics scheme (Zhao and Carr 1997).  Zhou et al. (2019) demonstrated that this 

updated microphysics scheme improved the global forecast due to its ability to parameterize moist 

processes more accurately at increased resolution. 

Additionally, recent studies have shown the need to improve the GFS ICs (Magnusson et 

al. 2019; Chen et al. 2019).  Magnusson et al. (2019) compared forecasts for the FV3GFS, legacy 

GFS, and ECMWF using ECMWF and GFS ICs.  They found that 500-hPa height forecasts 

produced by the FV3GFS with ECMWF ICs had lower root square mean errors (RMSEs) than that 

produced by using GFS ICs on average. They also demonstrated that the difference in ICs played 

a larger role than model formulation in determining these forecast RMSEs up to eight days in lead 

time. Chen et al. (2019) used a similar methodology to Magnusson et al. (2019) but with a focus 

on tropical cyclone forecasting. They determined that the FV3GFS can have more skillful tropical 

cyclones forecasts relative to the ECMWF model when the same ICs are used.  These studies 

demonstrate the importance of developing and utilizing advance DA techniques to improve the 

ICs for global numerical weather prediction. 

Operational numerical prediction centers utilize various advanced DA techniques. One 

popular category includes the ensemble-based DA approaches, such as various forms of ensemble 

Kalman filter (EnKF; e.g., Evensen 1994; Houtekamer and Mitchell 2001; Bishop et al. 2001; 

Anderson 2001; Whitaker and Hamill 2002; Wang and Bishop 2003; Wang et al 2004; Hunt et al. 

2007) and hybrid ensemble-variational (EnVar; e.g., Hamill and Snyder 2000; Wang et al. 2007b; 

Wang 2010; Wang et al. 2013; Wang and Lei 2014) methods.  These approaches use a finite 

number of ensemble members to sample the background error covariance (BEC) of the short-term 
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forecast.  These BECs derived from the ensemble are flow-dependent, which is particularly 

advantageous when compared to other common DA methods, such as pure variational methods, 

which use static BECs based on climatology (e.g., Fischer et al. 1998; Buehner et al. 2013; Wang 

et al. 2013; Wang and Lei 2014; Kleist and Ide 2015; Buehner et al. 2015). 

Among the ensemble-based DA methods, both the legacy GFS and the FV3GFS use the 

hybrid 4DEnVar method implemented in the gridpoint statistical interpolation (GSI) system 

(Wang and Lei 2014; Kleist and Ide 2015).  4DEnVar is a 4D-extension of hybrid 3DEnVar (Wang 

et al. 2013) and has the benefit of not having to code a tangent linear model compared to 4DVar.  

4DEnVar has been shown to improve upon both global- (Buehner et al. 2013; Wang and Lei 2014) 

and convective-scale (Lu et al. 2017; Gao et al. 2021) forecasts when compared to 3DEnVar due 

to the 4DEnVar’s ability to account for the temporal change of the ensemble BECs within the DA 

window.  Past studies also demonstrate that hybridizing a well-constructed static covariance in 

EnVar can improve upon a pure EnVar or pure EnKF for both global and convective-scale 

applications given the ability of the static covariance to alleviate the sampling error and to account 

for model errors (e.g., Lorenc 2003; Wang et al. 2007a; Wang et al. 2009; Wang and Wang 2021).  

The current global 4DEnVar operational system at the National Centers for Environmental 

Prediction (NCEP) uses a single control member at high-resolution and 80 ensemble members all 

at the same reduced resolution (JCSDA 2018). Given the limited computational resources, the 

optimal balance between model resolution and ensemble size in the context of ensemble-based 

DA, therefore, needs to be examined. On one hand, the use of a high-resolution ensemble may be 

important in resolving smaller-scale background errors (e.g., Hamill and Whitaker 2005). On the 

other hand, increasing the ensemble size will reduce the sampling error of the ensemble-estimated 

BECs. Specifically, the typical ensemble size of ~O(100) is much smaller than the degrees of 
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freedom of the model (Houtekamer and Zhang 2016).  This discrepancy is often characterized by 

spurious distant correlations (e.g., Hamill 2006).  Various studies have shown that increasing the 

ensemble size lowers the sampling error and creates a more accurate representation of the BECs 

(e.g., Miyoshi et al. 2014; Huang and Wang 2018). 

  Lei and Whitaker (2017) used a given computational cost to examine either increasing 

ensemble size or ensemble resolution, utilizing 4DEnVar in the legacy GFS.  They found that 

though both provide some benefit, increasing ensemble resolution was more advantageous than 

increasing ensemble size due to the further reduction of errors at small scales.  When computational 

cost was not constrained, Houtekamer et al. (2014) and Hamrud et al. (2015) found benefit in 

increasing both ensemble size and ensemble resolution when using EnKF methods in global 

numerical prediction. There is an even greater body of literatures examining the tradeoff between 

ensemble size and model resolution in the ensemble forecast context (Mullen and Buizza 2002; 

Reynolds et al. 2011; Ma et al. 2012; Raynaud and Bouttier 2017).  These studies found that at a 

given computational cost the impact of increasing the ensemble resolution versus increasing the 

ensemble size of a low-resolution ensemble depended on the features and forecast lead time being 

examined.   Despite their focus on ensemble forecasts, these results further motivate the need to 

study the model resolution and ensemble size tradeoff in the ensemble DA context. 

In addition to universally increasing resolution of all background ensemble members or 

directly increasing the size of the entire background ensemble members, studies have also explored 

the optimal ensemble size and resolution for the ensemble-based DA using a multi-resolution 

background ensemble approach (MR-ENS, hereafter). In this approach, some background 

ensemble members are at a low resolution and others are at a high resolution.  Rainwater and Hunt 

(2013) examined the MR-ENS approach in the local ensemble transform Kalman filter (LETKF) 
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using an idealized Lorenz model (Lorenz 1996).  Their study compared experiments using a MR-

ENS LETKF and a single-resolution ensemble LETKF at a similar computational cost for the 

forecast.  They found that the MR-ENS LETKF outperforms the single-resolution ensemble 

LETKF.  However, there were limitations to this study.  For example, the study provided 

comparisons with a constraint only on the forecast computational time, neglecting the 

computational cost for the DA steps.  Additionally, since the tests were conducted in a Lorenz 

model framework, little insights were given into the mechanisms driving the improvements in the 

MR-ENS LETKF over its single-resolution counterpart. 

Kay and Wang (2020) introduced a MR-ENS approach in GSI 4DEnVar with applications 

to NCEP GFS.  Using the same number of ensemble members, they determined that the MR-ENS 

4DEnVar with 40 high-resolution members and 40 low-resolution members improved upon the 

analysis and forecast of a single-resolution ensemble 4DEnVar with 80 low-resolution members 

with a 181% cost increase.  Additionally, they found that forecast errors of the MR-ENS approach 

were much more comparable to a single-resolution ensemble 4DEnVar with 80 high-resolution 

members while MR-ENS reduced the computational cost by 40%.  Overall, the study demonstrated 

the potential for utilizing the MR-ENS in 4DEnVar to improve global forecasts.  However, there 

are several limitations in the study of Kay and Wang (2020).  First, their comparison did not 

constrain the computation cost.  Second, their study utilized the same number of low- and high-

resolution members in the MR-ENS background ensemble, which limited the ability to explore the 

effect of greater sampling at different scales of interest on the analysis and subsequent forecast. 

Third, they used the same covariance localization distance, or radius at which an observation can 

impact analysis error correlations, for the low- and high-resolution ensemble in the MR-ENS 

configuration, which limits the impact of estimating error covariances at multiple scales. 



   6 

This study aims to further develop and explore the MR-ENS approach in 4DEnVar.   First, 

this study will further develop the MR-ENS methodology of Kay and Wang (2020) to allow the 

use of different ensemble sizes for differing resolution in the background ensemble.  For example, 

a larger ensemble size can be assigned for the low-resolution ensemble members than the high-

resolution members and vice versa. Therefore, the new capability will allow for flexible sampling 

of the scales of interest.  Second, the MR-ENS approach is further developed to allow the high- 

and low-resolution members to use different covariance localization radii.  For example, the high-

resolution members use a tighter localization than the low-resolution members (e.g., Rainwater 

and Hunt 2013).  This capability would allow the high-resolution members to focus on estimating 

the small-scale error covariance and the low-resolution members on the large-scale error 

covariance. Third, the MR-ENS experiments are configured to ensure the same computational cost, 

including both DA and forecast computational times, as the 4DEnVar experiment with an 

ensemble solely composed of high-resolution members (SR-High, hereafter).  In this experiment 

design, the total number of ensemble members in MR-ENS that can resolve large-scale 

background errors is increased compared with SR-High.  Correspondingly, the total number of 

ensemble members in MR-ENS that can resolve small scales is decreased relative to SR-High.  

This experiment setup allows to address the following questions:  how does the use of more low-

resolution background ensemble members and fewer high-resolution background ensemble 

members impact the global analysis and subsequent global forecast?  In which regions and 

associated with which meteorological features are the greatest impacts occurring?  How does the 

impact on the analysis and forecast change for large, medium, and small scales?  Addressing these 

questions using the further developed MR-ENS 4DEnVar is one step toward achieving the ultimate 

effective multiscale data assimilation for the next-generation global NWP (e.g. Wang et al. 2021).  
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The rest of this thesis is organized as follows.  Section 2 describes the formulation of the 

single-resolution hybrid 4DEnVar and the newly extended multi-resolution ensemble hybrid 

4DEnVar.  Section 3 describes configurations of the single- and multi-resolution ensemble 

experiments, including DA and model parameters.  Results comparing the multi-resolution 

ensemble 4DEnVar and single high-resolution ensemble 4DEnVar are discussed in section 4.  The 

main conclusions are summarized and potential areas for future work are given in section 5. 
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2.  Formulation of single- and multi-resolution ensemble hybrid 4DEnVar 

 The following describes the 4DEnVar formulations using the notations of Wang (2010), 

Wang and Lei (2014), and Kay and Wang (2020). 

a.  Single-resolution ensemble hybrid 4DEnVar 

The hybrid 4DEnVar method described in Wang and Lei (2014) and used in operational 

systems creates an analysis increment 𝐱t
′, or the difference between the analysis and the 

background forecast, for the control member at times 𝑡 = 1, … , 𝐿.  The analysis increments are 

defined as 

(1) 

𝐱t
′ = 𝐮{(𝐱1

′ )𝑡 + ∑[

𝐾

𝑘=1

𝜶𝑘 + (𝒙𝑘
𝑒 )𝑡]} 

where 𝐮 interpolates low-resolution grids to high-resolution.  If all components are at the same 

resolution, 𝐮 is an identity matrix.  (𝐱1
′ )𝑡 is the analysis increment associated with the static error 

covariance.  𝜶𝑘 is the 𝑘th augmented control vector (Wang 2010), where 𝑘 is a member of an 

ensemble with size 𝐾. (𝒙𝑘
𝑒 )𝑡 is the 𝑘th background ensemble perturbation normalized by √𝐾 − 1 

at time 𝑡. 

The analysis increments are found by the minimization of a cost function 𝐽 with respect to 

augmented control vectors representing the static and ensemble BECs as follows: 

(2) 

    𝐽[(𝐱1
′ )𝑡, 𝜶] = 𝛽1𝐽1 + 𝛽𝑒𝐽𝑒 + 𝐽𝑜

=
1

2
𝛽1(𝐱1

′ )𝑡
T𝐁1

−1(𝐱1
′ )𝑡 +

1

2
𝛽𝑒(𝜶)T𝐀−1(𝜶) +

1

2
∑(𝐇𝐱𝑡

′ − 𝐲𝑡
𝑜)T

𝐿

𝑡=1

𝐑−1(𝐇𝐱𝑡
′ − 𝐲𝑡

𝑜)   

The static BEC 𝐁1, as traditionally used in GSI 3DVar, is associated with the analysis increment 

(𝐱1
′ )𝑡.  𝜶 is a concatenation of augmented control vectors over all ensemble members and is 
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constrained by the block-diagonal matrix 𝐀, which is used to localize the covariance of the 

ensemble. 𝐀 consists of two parts: 𝐀𝐡 and 𝐀𝐯.  𝐀𝐡 represents the horizontal covariance 

localization, which is a Gaspari and Cohn (1999) function with a set e-folding distance that varies 

with the vertical level of the model as in the operational configuration (e.g., Wang and Lei 2014; 

Kleist and Ide 2015; Lei and Whitaker 2017; Huang and Wang 2018; Kay and Wang 2020). The 

vertical covariance localization 𝐀𝐯 is applied through a recursive filter transform (Hayden and 

Purser 1995) and is given as a fixed level-invariant length scale. β1 and β𝑒 are the weights given 

to the static and ensemble BECs respectively, such that 1/β1 + 1/β𝑒 = 1 (Wang et al. 2013). 𝐇 

is the linearized observation operator, which maps the analysis increment from model space to 

observation space. 𝐲𝑡
𝑜 is the innovation vector, which is the difference between the observation 

and background forecast, at time 𝑡. 𝐑 is the observation error covariance matrix. 

b.  Multi-resolution ensemble (MR-ENS) hybrid 4DEnVar 

The multi-resolution ensemble (MR-ENS) 4DEnVar method as described in Kay and 

Wang (2020) extends the hybrid 4DEnVar formulation to incorporate BECs from a multi-

resolution ensemble, rather than the single-resolution formulation used in Wang and Lei (2014).  

The variables representing the low- and high-resolution ensembles will be represented by 𝐿 and 𝐻 

respectively.  For this formulation, the analysis increments are defined by 

(3) 

𝐱t
′ = (𝐱1

′ )𝑡 + 𝐮 ∑[

𝐾𝐿

𝑘=1

𝜶𝑘
𝐿 + (𝒙𝑘

𝑒𝐿)𝑡] + ∑[

𝐾𝐻

𝑘=1

𝜶𝑘
𝐻 + (𝒙𝑘

𝑒𝐻)𝑡] 

𝜶𝑘
𝐿  and 𝜶𝑘

𝐻 are the 𝑘th augmented control vectors for the low- and high-resolution ensembles 

respectively. (𝒙𝑘
𝑒𝐿)𝑡 and (𝒙𝑘

𝑒𝐻)𝑡 are the 𝑘th background ensemble perturbations normalized by 

√𝐾𝐿 − 1 and √𝐾𝐻 − 1, where 𝐾𝐿 and 𝐾𝐻 are the sizes of the low- and high-resolution ensembles. 
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𝐾𝐿 and 𝐾𝐻 may have the same or different values.  However, in Kay and Wang (2020), 𝐾𝐿 and 𝐾𝐻 

were both 40.   

 As with the single-resolution ensemble, the analysis increments are found by minimizing 

the hybrid cost function as follows: 

(4) 

𝐽[(𝐱1
′ )𝑡, 𝜶𝐿 , 𝜶𝐻] = 𝛽1𝐽1 + 𝛽𝐿𝐽𝑒

𝐿 + 𝛽𝐻𝐽𝑒
𝐻 + 𝐽𝑜

=
1

2
𝛽1(𝐱1

′ )𝑡
T𝐁1

−1(𝐱1
′ )𝑡 +

1

2
𝛽𝐿(𝜶𝐿)T𝐀𝐿

−1(𝜶𝐿) +
1

2
𝛽𝐻(𝜶𝐻)T𝐀𝐻

−1(𝜶𝐻)

+
1

2
∑(𝐇𝐱𝑡

′ − 𝐲𝑡
𝑜)T

𝐿

𝑡=1

𝐑−1(𝐇𝐱𝑡
′ − 𝐲𝑡

𝑜) 

𝜶𝑳 and 𝜶𝐻 are the concatenation of augmented control vectors for the low- and high-resolution 

ensembles with 𝐾𝐿 and 𝐾𝐻 members respectively.  𝐀𝐿 and 𝐀𝐻 are used to determine the covariance 

localization in the horizontal and vertical for the low- and high-resolution ensembles respectively. 

As with the number of ensemble members, the covariance localization may also vary between the 

low- and high-resolution ensembles, but in Kay and Wang (2020), the localization was kept the 

same.  𝛽𝐿 and 𝛽𝐻 are the weights given to the low- and high-resolution ensemble BECs and are 

constrained by 1/𝛽1 + 1/𝛽𝐿 + 1/𝛽𝐻 = 1. 
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3.  Experimental design 

The GSI-based 4DEnVar DA system and FV3GFS forecasts were cycled every six hours 

for a five-week period—from 25 August 2017 at 1800 UTC to 29 September 2017 at 1200 UTC.  

This period was chosen, in part, so that a portion of the diagnostics could focus on the substantial 

number of tropical cyclones that occurred during this month, including multiple high-intensity 

storms in the Atlantic basin. In all diagnostics, the first week of this period was removed to account 

for spin-up time, as in Kay and Wang (2020), so that the results were not biased by the choice of 

the initial ensemble.  The system assimilates the NCEP operational global conventional and 

satellite observations1 over a six-hour DA window. 

a.  Single high-resolution (SR-High) experiment 

One 4DEnVar experiment was run at a single resolution, where the background control 

member and the BECs of the static and single-resolution ensemble were all at the same high-

resolution (T766 or ~25 km).  These static and ensemble BECs were used to update the control 

member as in section 2a.   As in the current operational 4DEnVar system, 80 ensemble members 

were used.  The static and ensemble BECs were given weights of 12.5% and 87.5% respectively 

(Lei and Whitaker 2017; Huang and Wang 2018; Kay and Wang 2020; Huang et al. 2021).  Level-

dependent horizontal covariance localization was utilized by applying a Gaspari and Cohn (1999) 

localization function with the same localization distances as applied in Kleist and Ide (2015) and 

Lei and Whitaker (2017).  The horizontal e-folding distance was set to 350 km from the surface to 

~300 hPa (hl1), 1000 km between 56 and 14 hPa (hl2), and 1300 km from 5 hPa to the model top 

(hl3) with a linear transition between these levels, as shown in the blue line in Fig. 1.  In the vertical 

direction, a constant localization e-folding distance of 0.5 scale heights was applied. 

 
1 https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm and 

https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_18.htm 
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Before updating the ensemble, the high-resolution ensemble was interpolated to low 

resolution (T382 or ~50 km) due to computational constraints of the ensemble update and for 

consistency with the MR-ENS experiments, as in Kay and Wang (2020).  The ensemble was 

updated using 4D LETKF (Bishop et al. 2001; Wang and Bishop 2003; Wang et al. 2004; Hunt et 

al. 2007) in GSI.   Covariance localization, given as a level-dependent cutoff distance, was equal 

to 677.835 km for hl1, 2577.320 km for hl2, and 3350.515 km for hl3, with a constant vertical 

localization cutoff distance of ~0.773 scale heights. Multiplicative inflation (Whitaker and Hamill 

2012) was used as a measure to increase ensemble spread by relaxing the spread of the ensemble 

after DA (i.e., the posterior ensemble) to 85% of the spread of the background ensemble (i.e., the 

prior ensemble).   

The background forecasts for the single control member as well as the 80-member 

ensemble were completed at high-resolution (C384, or ~25 km) on a cubed-sphere grid with 64 

vertical model levels by the June 2020 operational version of the FV3GFSv15. The configuration 

of the model-specific parameters is detailed in Zhou et al. (2019).  To improve balance conditions 

in the forecast, a four-dimensional incremental analysis update (4DIAU; Bloom et al. 1996, Lorenc 

et al. 2015) was used in both the control and ensemble forecasts.  A flowchart of the general steps 

in the experiment is given in Fig. 2a. 

b.  Multi-resolution (MR) Ensemble Experiments 

The multi-resolution (MR) ensemble 4DEnVar experiments were run utilizing the 

extended MR-ENS methodology as shown in section 2b, where the high-resolution control 

member was updated using a high-resolution static BEC and contributions to ensemble BECs from 

a low-resolution (T382 or ~50 km) and high-resolution (T766 or ~25 km) ensemble.  Further 

development from Kay and Wang (2020) allowed for varying ensemble sizes. Two such 
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configurations, which had near equal computational costs compared with SR-High (Table 1), were 

examined to test the sensitivity of the ensemble size of the low- and high-resolution ensembles. 

The first MR configuration used 130 low-resolution members and 40 high-resolution members for 

a total ensemble size of 170 members and will thus be denoted as MR170.  The second MR 

configuration utilized a larger number of low-resolution members, at 180 members, but a smaller 

number of high-resolution members, at 24 members, for a total of 204 members and, therefore, 

will be denoted as MR204. Similar computational costs between all experiments allowed for a 

direct examination of analysis and forecast errors. The MR configuration that led to the smallest 

forecast errors was used in additional comparisons to the SR-High experiment to determine what 

mechanisms were driving the differences between the experiments. 

For the 4DEnVar step, as in Kay and Wang (2020), the static BEC was given a weight of 

12.5% and the remaining weight was split evenly between the low- and high-resolution ensemble 

BECs at 43.75% each.  The vertical localization was applied, as in the SR-High experiment, with 

a constant localization e-folding distance of 0.5 scale heights. 

Additional developments to Kay and Wang (2020) made it possible to vary the horizontal 

localization distance between the low- and high-resolution ensembles.  Previous studies have 

indicated that for a larger ensemble size, the optimal localization radius is larger than for a smaller 

ensemble size, leading to greater dynamical balance and for additional distant non-spurious 

correlations to be made (e.g., Houtekamer and Mitchell 2001; Hamill et al. 2001; Ying et al. 2018). 

For these MR experiments, for the high-resolution ensemble, the level-dependent localization 

distances (hl1, hl2, and hl3) were set as equal to those described above in the SR-High experiment 

(blue line in Fig. 1).  For the low-resolution ensemble, which has a much larger ensemble size, hl1 
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was set to an e-folding distance of 700 km (red line in Fig. 1).  This change allows for correlations 

to be present at wider spatial scales.    

LETKF updates to the ensemble were all made at low-resolution, as in the SR-High 

experiment.  All LETKF covariance localization and inflation parameters were the same as 

described in section 3a. 

The FV3GFS background forecasts were completed at high-resolution (C384 or ~25 km) 

for the control member and high-resolution ensemble and at low-resolution (C192 or ~50 km) for 

the low-resolution ensemble.  The flowchart for the MR experiments is shown in Fig. 2b. 
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4.  Results 

a.  Multiscale analysis 

One way to determine the multiscale impact of the extended MR-ENS and single-

resolution ensemble 4DEnVar techniques on the analysis is to decompose analysis increments into 

spectral space (e.g., Kay and Wang 2020; Huang et al. 2021).  This decomposition will show how 

much of an adjustment the DA method made to the background forecast at each scale when 

calculating the analysis.  For each experiment at each analysis time, the analysis increments were 

calculated by subtracting the background forecast from the analysis at a given level.  The analysis 

increments were then decomposed into spectral space using spherical harmonics and averaged over 

all cycles. The 500-hPa analysis increment power spectrums for temperature and zonal wind are 

shown in Fig. 3.  For both temperature and zonal wind, the MR170 experiment has larger 

increments for larger atmospheric scales (wavenumbers less than ~150 or wavelengths greater than 

~200 km) when compared with the SR-High experiment. For smaller scales (wavenumbers greater 

than ~150 or wavelengths less than ~200 km), the MR170 experiment has similar or slightly 

smaller analysis increments.   

These results are consistent with the MR and SR-High methodologies.  The MR170 

experiment has a broader localization scale with an e-folding distance of 700 km applied to its 

low-resolution ensemble BECs, while SR-High has an e-folding localization distance of 350 km 

for its single-resolution ensemble BECs.  This difference implies that using the extended MR-ENS 

technique allows for larger adjustments to be made to the background ensemble at a further 

distance from the observation point, thereby indicating larger analysis increments at large scales.  

Huang et al. (2021, their Fig. 6) shows a very similar result where two of their experiments at the 

same ensemble size and resolution have vertically invariant horizontal localization radii with e-
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folding distances of 300 and 1000 km.  Comparing these experiments, the 1000-km experiment 

had larger analysis increments at all scales.  

For smaller scales, even though SR-High and MR170 have the same high-resolution 

localization distance, SR-High has a greater number of high-resolution ensemble members (80 

members) when compared to MR170 (40 members). SR-High also has 87.5% of the weight on the 

ensemble portion of the cost function, whereas MR170 has a weight of 43.75% applied to the high-

resolution ensemble portion of the cost function.  These differences in methodology create a lower 

effective resolution as described in Kay and Wang (2020) and lead to smaller adjustments at 

smaller scales in accordance with the lesser weight on the high-resolution ensemble BECs in the 

MR170 experiment. The smaller adjustments are reflected in the lower power in analysis 

increments at larger wavenumbers. 

Another way of examining the multiscale impact of the different DA methods on the 

analysis is to complete a wavelet diagnostic on the analysis increments for the experiments 

(Torrence and Compo 1998).  A wavelet analysis, in this case, can partially diagnose both the 

location and spatial scale of decomposed analysis increments.  The kinetic energy analysis 

increments for each analysis time were broken up into Morlet wavelets (Domingues et al. 2005) 

for each latitude and vertical level.  The wavelets were averaged over all vertical levels, all cycles, 

and all latitudes in four regions: globally (GB; all latitudes), the Northern Hemisphere extratropics 

(NH; northward of 20°N), the Southern Hemisphere extratropics (SH; southward of 20°S), and the 

tropics (TR; between 20°N and 20°S).  The difference in these averages for the MR170 and SR-

High experiments are shown in Fig. 4.  The scales chosen for the analysis were from 2 to 2(𝑛/4) 

grid points, where 𝑛 is the total number of scales, or 39 in this case. In Fig. 4, the y-axes have been 
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converted to wavenumber and wavelength—analogous to the x-axes in the above Fourier spectral 

analyses—for aid in interpreting what scales are being affected.  

For the largest scales, there is a general increase in kinetic energy analysis increments 

globally for the MR170 experiment (Fig. 4a).  This increase is mainly driven by features in the SH 

region (Fig. 4c), indicating that at the largest scales, the extended MR-ENS technique has a greater 

impact on the analysis in this region.  At the smallest scales, globally, the SR-High experiment has 

substantially greater analysis increment power at some longitudes—namely between 15°W and 

90°W. At other longitudes, there is little difference between the two experiments. The largest and 

smallest scales display consistency with the results discussed above in the spectral decomposition 

of analysis increments at 500 hPa.  

At medium scales, the experiments produced mixed results with regards to their effect on 

the kinetic energy analysis increments. For most longitudes, the MR170 experiment still has 

greater analysis increment power.  However, between about 120°W and 0°, the analysis increment 

power for the SR-High experiment is substantially increased.  As shown in Fig. 4b,d, this increase 

is primarily driven by the NH and TR in the areas associated with the Atlantic Ocean, the 

Caribbean Sea, the Gulf of Mexico, and the United States East Coast.  Contrarily, in the SH, 

MR170 has the greater analysis increment power between the two experiments in the Atlantic 

region.   

As with the large and small scales, the SH results at all longitudes as well as the NH and 

TR results outside of the Atlantic region for medium scales are not unexpected as they are 

consistent with Fig. 3 in that the larger localization distance is leading to larger analysis increments 

at large and medium scales.  However, the larger kinetic energy analysis increment power for SR-

High in medium scales in the Atlantic is antithetical to this notion.  To determine what physical 
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processes are associated with this result, instead of averaging the wavelets over latitude, as in Fig. 

4, the wavelets were instead averaged over all levels, all cycles, and small- (wavelet scales 1-15 

or wavelengths less than approximately 350 km) and medium-scales (wavelet scales 16-30 or 

approximately wavelengths between 350 and 5000 km).  Then, the difference between MR170 and 

SR-High was taken and plotted in Fig. 5.   

Medium scales display a minimum in the difference in analysis increment power in the   

subtropical and northern tropical Atlantic (Fig. 5a). Tropical easterly wave tracks that were 

observed at 850 hPa during September 2017 as calculated by Hollis (2021) are also overlaid in 

Fig. 5a. Tropical easterly waves, of which the most well-known subset is African easterly waves, 

are westward propagating synoptic-scale waves in the tropics, often associated with areas of 

convection (e.g., Carlson 1969). These waves are frequently precursors to tropical cyclones (TCs), 

especially in the Atlantic basin (e.g., Landsea and Gray 1992).  Though the waves themselves have 

typical wavelengths of 2000 to 4000 km (e.g., Carlson 1969), the most active region of moist 

convection spans a shorter distance.  Hollis (2021) found that a 500-km radius was sufficient to 

capture the area of intense precipitation associated with tropical easterly waves, which is an area 

consistent with the medium scale defined above. Comparing the wavelet power to the wave 

locations, the greater analysis increment power of the SR-High analysis at medium scales is 

substantially collocated with the high density of tropical easterly waves in the Atlantic.  

To further confirm that these types of high-intensity cyclonic features are dominating the 

increase in kinetic energy analysis increments for SR-High, the small-scale analysis increments 

were also plotted in Fig. 5b, which generally shows an area of high-magnitude negative values in 

the northern tropical Atlantic and near the United States’ East Coast. Comparing these differences 

to the Atlantic hurricanes during that month, three hurricane tracks fall within that area.  These are 
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Hurricanes Irma, Jose, and Maria, which were the three strongest hurricanes during the 2017 

season, peaking at a Category 4 for Jose and Category 5 for Irma and Maria.  It would be reasonable 

that these storms—with very strong winds over small scales in their powerful inner-core and 

rainband regions—would have larger analysis increments at small scales for a DA method more 

apt to resolve small-scale features.  

In features for which the most intense impacts are dominated by the mesoscale, such as in 

TCs and tropical easterly waves, SR-High has the advantage of making larger adjustments in these 

scales.  These adjustments are due to the greater number of high-resolution ensemble members 

and larger weight on the tighter localization scale, which has been shown to be beneficial for 

smaller-scale features (e.g., Zhang et al. 2009).  In more synoptically forced regions, however, as 

is the case in the SH in the austral late winter/early spring during which this study occurs, MR170 

still makes larger corrections in the medium to large scales, as would be expected with a larger 

number of low-resolution members and a broader localization scale applied to these members. 

Large analysis increments do not necessarily indicate a better analysis or subsequent 

forecast a priori; they instead indicate that the observations adjusted the analysis further away from 

the background forecast.  Subsequent sections will examine the impact of these corrections on the 

global and regional analysis and forecast errors. 

b.  Short-term forecast errors and ensemble spread 

There are several methods that, when employed, can determine if the greater analysis 

increments, as examined in the previous section, translate into a better forecast.  One method is to 

compare the forecast to the observations.  For this study, the difference between the 6-h forecast 

in observation space and the rawinsonde observations of temperature and wind speed were 

calculated for each cycle.  The root square mean fit (RMSF) of the forecast to the observations for 
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all cycles was then calculated and averaged over vertical levels in increments of 100 hPa.  The 

RMSF was broken down into the same four regions as described in section 4a: GB, NH, SH, and 

TR.  In Fig. 6, the difference in RMSF between the two experiments as well as the statistical 

significance, which was calculated using a paired t-test with a 95% confidence interval, were 

plotted.  For both the temperature and wind speed, MR170 has a better fit to the observations when 

compared with SR-High for all vertical levels (Fig. 6).  The improvement is most apparent in the 

upper levels of the TR region for both the temperature and wind speed.  

Another aspect that it is important to examine when using an ensemble-based DA method 

is the relationship between the error and the spread of the ensemble.  Ideally, the spread of the 

ensemble, which is a measure of the uncertainty of the forecast, would be representative of the 

ensemble forecast errors.  However, ensemble-based DA systems often have ensemble spread that 

is relatively too small.  This deficiency can lead to an issue called ‘filter divergence,’ where over 

several cycles, the observations become underweighted due to overconfidence in the ensemble 

forecast (e.g., Houtekamer and Mitchell 1998; Whitaker and Hamill 2002).  In general, the total 

RMSF of the 6-h forecast to temperature and wind observations in Fig. 7 shows that the 

temperature errors are largest at the surface and upper levels for all regions, while wind speed 

errors tend to increase with decreasing pressure. Consistent with Fig. 6, the MR170 experiment 

slightly outperforms the SR-High experiment for all regions and levels. When comparing the 

RMSF to the total spread, the ensemble is shown to be underdispersive for both the temperature 

and the wind speed. However, this difference between the RMSF and spread is smaller for the 

MR170 experiment than for the SR-High experiment.  

Fig. 8 further demonstrates how the ensemble spread is increased in the MR170 experiment 

for most vertical levels.  This increase is most apparent in the SH, especially in levels that are 
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typically associated with substantial temporal and spatial variance in temperature (i.e., near the 

surface) and wind speed (i.e., near jet-level).  The reason behind this increase may not be apparent, 

at first, since DA methods using higher resolution, as is used by all ensemble members in the SR-

High experiment in this study, typically lead to increased ensemble spread (e.g., Pellerin et al. 

2003; Hamrud et al. 2015).  However, other factors are likely greater contributors to the increased 

spread for the MR170 experiment.  The increase in spread, in part, might be due to the increase in 

the total number of ensemble members in the MR170 experiment.  Increased ensemble size 

typically leads to a decrease in sampling error, which could lead to a spread more representative 

of the system—corresponding to a larger ensemble spread in an underdispersive ensemble.  The 

difference in spread is also more prevalent in dynamically or thermodynamically active regions 

with sharp gradients, or greater uncertainty (e.g., frontal regions at the surface or jet boundaries). 

This notion can be demonstrated by examining the 200-hPa wind speed and increased wind speed 

ensemble spread in the SH. Over the experiment period, the regions associated with the greatest 

increase in spread consistently corresponds with the strongest jet regions (not shown). 

c.  Forecast errors at longer lead times  

Further analysis of forecast errors was conducted by running a 120-h FV3GFS 

deterministic forecast for each experiment initialized at each analysis time throughout the 

experiment period.  The root mean square error (RMSE) of the forecasts was calculated by taking 

the root mean square of the difference of the experiment forecast at each forecast lead time and the 

ECMWF Reanalysis-Interim (ERA-Interim; Berrisford et al. 2011) one-degree data for the same 

time.  The temporally averaged difference in the RMSE for temperature and wind speed between 

the MR170 and the SR-High experiments for lead times in 6-h increments and 16 vertical pressure 

levels is shown for the GB, NH, SH, and TR regions in Fig. 9 with statistical significance 
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determined by a paired t-test with a 95% confidence interval.  Globally, MR170 demonstrates 

improvement for nearly all vertical levels and lead times for both temperature and wind speed (Fig. 

9a,b). The magnitude of this improvement generally grows for later lead times with the greatest 

improvement predominately near jet level. The differences in the RMSE for the NH and SH 

regions mainly resemble the global pattern (Fig. 9c-f). The magnitude of the improvement in the 

SH, however, is much larger than in the NH for the same lead time and level.  The TR region also 

shows general improvement for the MR170 experiment with the exception of the temperature at 

the lowest levels for most lead times (Fig. 9g,h). In contrast to the other regions, the largest 

improvement is at the analysis and early lead times with the forecast errors becoming more similar 

between the two experiments at later lead times. 

To determine the multiscale impact of the DA methodologies on the forecast errors, the 

temperature and wind errors for each vertical level and lead time shown in Fig. 9 were decomposed 

using spherical harmonics. The total energy norm (e.g., Wang and Bishop 2003) was then 

calculated through the following formula: 

(5) 
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where 𝑢′, 𝑣′, and 𝑇′ are the zonal and meridional wind and temperature errors respectively relative 

to ERA-Interim.  𝑐𝑝 is the specific heat at constant pressure and 𝑇𝑟 is the reference temperature at 

1.0057 J kg-1 K-1 and 270 K respectively (Ehrendorfer et al. 1999).   

The difference between the spectrally decomposed errors for the two experiments averaged 

over the duration of the experiment is shown in Fig. 10.  At analysis time, the MR170 experiment, 

on average, shows improvement in energy errors at nearly all wavenumbers.  These improvements 

reach a first maximum at around 24 hours between wavenumbers 5 and 25 (wavelengths of 
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approximately 8000-1600 km).  This peak disperses into larger and smaller wavenumbers, and a 

second maximum occurs at similar wavenumbers starting right before 72 hours.  From 72 to 120 

hours, these differences in errors continue to grow as well as disperse into surrounding 

wavenumbers.  

To diagnose the physical features that led to the differences in the errors between the two 

experiments, one case, which was representative of the errors shown in Figs. 9,10, was chosen.  

The case had an analysis time of 0000 UTC on 12 September 2017, and the 250-hPa level was 

chosen to be analyzed since pressure levels between 200 hPa and 300 hPa typically demonstrated 

the greatest improvement in Fig. 9.   To determine specifically what was occurring at the peaks in 

energy errors in Fig. 10, the total energy error was calculated at each grid point for each experiment 

and lead time.  Then, a filter was applied to this result to filter for wavenumbers between 5 and 25 

since these wavenumbers displayed the greatest improvement in Fig. 10.  In Fig. 11, these results 

were averaged over all longitudes, and the difference between MR170 and SR-High was taken.  

Fig. 12 shows the locations of the 5% greatest improvement for the MR170 experiment, filtered 

for the same wavenumbers in 24-h increments.  The figure also displays the associated 250-hPa 

wind speed map at the same times.  

At analysis time, there is peak in the tropics, especially near the equator, of the difference 

in energy errors, indicating improvement for MR170 in this region (Fig. 11).  The largest area of 

improvement is collocated with a region of high wind speeds near parallel to the western coast of 

Africa that connects with the subtropical jet at around 20°S (Fig. 12a). The northern portion of this 

high-wind speed feature is consistent with the location of the western portion of the Tropical 

Easterly Jet (TEJ; Koteswaram 1958).  The MR170 analysis displays substantial improvement 

both within the TEJ and in the area where it connects with the subtropical jet. By 24 hours, some 
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of the initial improvement in the tropics continues to interact with the SH subtropical jet, expanding 

and intensifying the areas of improvement in the tropics and SH subtropics (Figs. 11,12b).  

Between 24 and 72 hours, locally generated errors in the NH and SH extratropics begin to become 

evident (Fig. 12b-d).  These errors are largely collocated with regions of the polar jet in both 

hemispheres. Additionally, during this time period, areas of interaction between the polar and 

subtropical jets in the SH tend to exhibit more substantial growth of the differences in errors. After 

72 hours, the error differences continue to grow in both hemispheres but more so in the SH than 

the NH.  This growth is especially apparent in the highly baroclinic region of the polar jet in the 

SH, especially in the areas to the southwest of Australia, south of Africa, and to the southeast of 

South America (Fig. 12e,f). 

The 12 September case study confirms several details of Figs. 9,10. For Fig. 9, it confirms 

that the largest differences in upper-level temperatures and wind speeds between the two 

experiments are in the tropics at the analysis time and early lead times.  The case study also 

confirms that as the difference in the errors become less centered in the tropics at later lead times, 

error differences are simultaneously shifting to the extratropics, most notably in the SH.  Since the 

case study focused on wavenumbers 5 through 25, it emphasizes the impact and importance of 

these wavenumbers on the forecast as shown in Fig. 10.      

The case study also elucidates a few aspects not immediately evident in Figs. 9,10.  It 

demonstrates what sort of features in the tropics are originally analyzed better in the MR170 

experiment.  In this case, the most notable feature is the TEJ and its connection with the subtropical 

jet.  The case also highlights the importance of the interaction between the tropics, subtropics, and 

extratropics in terms of error growth.  In the NH, the jet streams are mainly weaker and isolated 

from the tropical region as would be expected in the late summer/early spring.  Therefore, error 
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growth in this region depends mainly on errors that were generated locally.  In contrast, the SH 

subtropical jet directly interacts with regions with large differences in errors in the tropics, which 

leads to subsequent error growth along the subtropical jet.  In areas where the subtropical and polar 

jet meet, the locally generated errors in the SH extratropics, which are already larger than in the 

NH due to the strength of the jet in the SH late winter/early spring, are further compounded by the 

errors at analysis and early lead times in the tropics and subtropics.  It should be noted, however, 

that this study only reviews a single case in depth.  A deeper examination of several cases over 

multiple seasons, would yield more fruitful insights into the origination, propagation, and 

seasonality of forecast error growth.   

Figs. 9,10 demonstrate that MR170 improves the analysis for nearly all scales and pressure 

levels on average during the experiment period.  This initial improvement leads to a better 

subsequent forecast, with the largest improvements in the large-scale upper-levels tropics at early 

lead times and the large-scale upper-level extratropics at later lead times (Figs. 9,11,12).  The 

improvements in the analyses and forecasts, as they are most apparent at large scales, can be 

attributed to two interconnected factors: (1) the larger ensemble size in the MR170 experiment due 

to the large number of low-resolution members; (2) the larger localization radius for the low-

resolution ensemble.  The larger ensemble size leads to a more accurate sampling of the 

background error correlations at all scales with wavelengths larger than ~100 km, (i.e., twice the 

approximate grid spacing of the low-resolution ensemble). The increased sampling for the low-

resolution ensemble also motivates the necessity of using a larger localization distance. The use of 

a larger localization radius for the low-resolution ensemble in the MR170 experiment allows the 

observations to make corrections at longer distances (i.e., those more relevant to the synoptic scale) 

to a greater degree than in the SR-High experiment, which uses single-scale localization.  Both the 
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greater sampling and larger localization distance augment the ability to create an analysis with 

greater emphasis on correcting larger scales. The improvements in both the analysis and forecast 

provide further evidence, in addition to that provided by previous studies (e.g., Zhang et al. 2009; 

Miyoshi and Kondo 2013; Huang et al. 2021; Wang et al. 2021), that DA methods focused on 

further correcting the most relevant scales are necessary to improve upon corresponding DA 

techniques that are scale unaware. 

d. Tropical cyclone track errors 

In addition to examining global forecasts, the impact of the extended MR-ENS 

methodology on tropical cyclone (TC) track forecast errors was also investigated. For each 5-day 

forecast, a tracking algorithm, as described in Marchok (2002), was used to determine the 

forecasted location of 15 TC storms that occurred during the experiment period.  These storms 

include Irma, Jose, Katia, Lee, and Maria in the Atlantic basin; Lidia, Max, Norma, Otis, and Pilar 

in the East Pacific basin; and Sanvu, Mawar, Guchol, Talim, and Doksuri in the West Pacific basin.  

TC track errors were calculated by taking the difference of the forecasted track and the “best track” 

data as determined by the National Hurricane Center2 for the Atlantic and East Pacific basins and 

the Joint Typhoon Warning Center3 for the West Pacific basin. Track errors were averaged over 

all 15 storms for each experiment and lead time.  Statistical significance for differences between 

MR and SR-High track errors was calculated by using a paired t-test with a 95% confidence 

interval. 

In Fig. 13a, the percent difference in temporally averaged track errors for MR experiments 

with SR-High used as the reference is shown.  For all forecast hours after the analysis time and up 

to 120 hours, the MR170 experiment shows a statistically significant decrease in TC track errors.  

 
2 https://www.nhc.noaa.gov/data/#hurdat 
3 https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks 

https://www.nhc.noaa.gov/data/#hurdat
https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks
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The largest improvements occur between 12 and 54 hours where the errors decrease by ~20%; 

however, MR170 has an improvement in track errors exceeding 10% for all lead times between 6 

and 114 hours.  The percentage of track errors that are decreased compared with SR-High are 

shown in Fig. 13b, where a 100% track error decrease would be indicating that the MR experiment 

has smaller track errors at a certain lead time for all tracks in all 6-h cycles, while 50% would 

signify an equal likelihood of MR or SR-High having smaller track errors, if a track at a given lead 

time were randomly selected.  For MR170, the percentage of track errors that are decreased 

compared with SR-High exceeds 50% for lead times between 12 and 120 hours.   

The combination of results from Fig. 13a,b demonstrates that in the 0-6-h timeframe, there 

are fewer total tracks that are improved both at and immediately after analysis time for the MR170 

experiment; however, the tracks that do have smaller errors are improved by a larger margin on 

average.  This result can also explain why the percentage differences between track errors are 

larger at 12–54-h lead times when compared to 0-6-h lead times.  As discussed in section 4a, the 

SR-High experiment has larger kinetic energy analysis increment power, especially at mid- to 

smaller-scales in the Atlantic (Fig. 4).  Though the track forecast of a TC is mainly dominated by 

larger-scale flow, smaller-scale features may still affect the analysis position of the storm and 

thereby subsequent short-term forecasts. The larger corrections at small scales for the SR-High 

experiment may help to explain the relative degradation of the MR170 track forecasts in the 0-6-

h timeframe as well as why SR-High has more tracks that are improved during this time.  At very 

short lead times, both the necessity of resolving and correcting smaller-scale features—as may be 

accomplished with SR-High—as well as correcting larger-scale features with greater accuracy—

for which MR170 is better suited—have some importance.  At later lead times, it is reasonable that 
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the large-scale correction associated with MR170 dominates the improvement in the track 

forecasts.   

To determine the cause of the differences in track errors, a single track, which showed 

substantial improvement (improvements exceeding 50%) in the 0-120-h track forecast for the 

MR170 experiment, was selected for further examination.  This track was associated with 

Hurricane Lee with an analysis time of 1800 UTC on 24 September 2017. This time occurred soon 

after the re-intensification of Lee into hurricane strength and was also a period of substantial track 

uncertainty in 2017 operational models (Blake 2018).   

The track of a tropical cyclone is largely determined by the steering flow, which can be 

estimated by the environmental wind field averaged vertically over several pressure levels (e.g., 

George and Gray 1976; Chan and Gray 1982). In this study, the large-scale deep-layer 

environmental flow in the basin surrounding Lee was determined by first calculating a pressure-

weighted average of the zonal and meridional winds at each grid point from 850-300 hPa (e.g., 

Wu and Chen 2016).  Then, the effects of the storm itself were removed by filtering the winds to 

include only large scales (approximately wavenumbers 0-10).  These large-scale steering flow 

winds as well as the difference in the magnitude of the error of the large-scale zonal winds between 

the MR170 and SR-High experiments relative to ERA-Interim are plotted along with the track 

positions in Fig. 14.   

At the analysis time, in the area south of and immediately surrounding the center of the 

storm, there is improvement for the MR170 experiment in the large-scale zonal winds associated 

with the northern portion of a large-scale anticyclonic region (Fig. 14a).  As time progresses, this 

large-scale anticyclone propagates northwestward toward Lee, shifting the large-scale direction of 

the winds in the vicinity of the storm center from westerly to easterly in the first 36 hours (Fig. 
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14b-d). The large-scale zonal wind errors associated with the anticyclonic region also remain 

smaller for the MR170 experiment up to 36 hours. Given that the track of Lee during the first 36 

hours is largely zonal (an eastward track in the first 12 hours and a westward track from 18 to 36 

hours) and given that this corresponds well with the position of the anticyclone, it is reasonable 

that the differences in Lee’s track for the first 36 hours for the two experiments can be attributed 

to the improvements in the analysis of the large-scale zonal wind speed.  These improvements can 

be connected to the ability of the extended MR-ENS technique to better correct large-scale wind 

patterns due to the increased number of low-resolution ensemble members and the larger 

localization radius associated with the low-resolution ensemble. 

e. Sensitivity testing  

The MR170 experiment demonstrated the potential for the extended MR-ENS 

methodology to improve upon the analysis and forecast when compared to the SR-High 

methodology.  In order to further test the sensitivity of the ensemble size and composition, a second 

MR experiment with 180 low-resolution members and 24 high-resolution members (MR204) was 

compared with SR-High and MR170. 

1) ANALYSIS INCREMENTS 

The MR204 500-hPa analysis increments decomposed into spectral space show a very 

similar pattern to that of the MR170 experiment for both the temperature and the zonal wind (Fig. 

3).  Both MR experiments show a substantial increase in the analysis increments over SR-High at 

larger spatial scales as well as similar or slightly smaller analysis increments at smaller scales. 

Since the two MR experiments both use the same localization distances and only vary the ensemble 

size and composition, this further confirms that the differences in the analysis increments of the 

SR-High and MR experiments at large scales is resultant of the differences in the larger localization 
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radius associated with the low-resolution ensemble in the MR experiments.  At smaller scales, the 

localization associated with the high-resolution ensemble and the weights of the high-resolution 

ensemble BECs do not vary between MR experiments.  Therefore, it is reasonable that the small-

scale analysis increments are also very similar between the MR experiments. 

2) FORECAST ERRORS 

There is a notable improvement in the RMSF of the 6-h global forecast to the rawinsonde 

observations for MR204 when compared to SR-High for both the temperature and wind speed at 

all vertical levels (Fig. 15a,b).  However, the MR204 experiment slightly degrades the accuracy of 

the 6-h forecast when compared with the MR170 experiment (Fig. 15c,d). Similarly, at longer lead 

times, MR204 improves the RMSE compared to SR-High, demonstrating that the improvement in 

the global analysis leads to a better forecast (Fig. 16).  If the same comparison is conducted 

between MR170 and MR204, it is found that the MR170 experiment improves the global forecast 

over MR204 at most vertical levels and lead times (Fig. 17). It should be noted, though, that there 

are a few levels and lead times with significant degradation for the MR170 experiment, such as 

for temperature at lower levels in the SH prior to 48 hours (Fig. 17e). For TC track forecasts, 

MR204 has smaller track errors compared with SR-High up to 120 hours with statistically 

significant differences up to 36 hours (Fig. 13a). Also, between 24 and 108 hours MR204 improves 

the track forecast more than 50% of the time when compared with SR-High (Fig. 13b). For nearly 

all lead times, however, there is a degradation in the track forecast for MR204 when compared to 

MR170, which is consistent with the global forecast result. 

In section 4c, it was conjectured that the MR170 forecast was improved over SR-High, at 

least in part, due to the increase in the ensemble size from the addition of several low-resolution 

members. Following this logic, it would be reasonable to assume that adding an even larger number 
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of low-resolution members, as in the MR204 experiment, would result in further forecast 

improvements over MR170, but this is not the case. Instead, the lack of additional high-resolution 

members leads to a loss of information at smaller spatial scales and an overall degradation of the 

forecast.  The necessity of high-resolution ensemble members is a result that is more consistent 

with Lei and Whitaker (2017), which determined that a high-resolution ensemble with smaller size 

provided a better forecast than a low-resolution ensemble with larger size at the same 

computational cost.   

Overall, both MR experiments improve upon SR-High. However, MR170 shows greater 

improvement than MR204, which demonstrates that there may be some optimal value for the low- 

and high-resolution ensemble sizes in a multi-resolution ensemble.  In other words, forecast errors 

can be minimized using an MR-ENS approach by finding a balance between ensemble size and 

ensemble resolution. 
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5.  Conclusions 

a. Summary 

This study utilized a multi-resolution ensemble hybrid 4DEnVar that expands upon and 

further develops the work of Kay and Wang (2020).  The extended MR-ENS method allows for a 

varying number of members of the low- and high-resolution ensemble members as well as different 

localization length scales for the low- and high-resolution ensembles.  One of the goals in further 

developing the technique is so that this method may be used as one component of an effective 

multiscale data assimilation system for next-generation global NWP. 

In this study, the extended MR-ENS technique was applied in GSI with 6-h cycling with 

the FV3GFS for a five-week period.  Two MR experiments were examined.  The first, MR170, 

had 130 low-resolution members and 40 high-resolution members; and the second, MR204, had 

180 low-resolution members and 24 high-resolution members.  Both experiments had varying 

horizontal localization length scales with ensemble resolution to allow for the localization distance 

to be reflective of larger and smaller scales.  The high-resolution ensemble had a 350-km horizontal 

localization e-folding distance, while the low-resolution ensemble had a 700-km horizontal 

localization e-folding distance. The impact on the analysis and forecast errors of these experiments 

were compared to a single-resolution hybrid 4DEnVar experiment, SR-High, at the same 

computational cost.  SR-High had 80 high-resolution ensemble members and single-scale 

localization with a 350-km horizontal e-folding distance.  

The extended MR-ENS technique generally corrected a wider range of meteorological 

scales in the analysis increments.  Globally, larger analysis increment power was present for MR 

experiments at large scales.  At the smallest scales, MR experiments exhibited slightly smaller 

increment power.  Based on the differences between the MR and SR-High experiments in 
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horizontal localization and weight on the high-resolution ensemble, this result is consistent with 

previous literature (e.g., Huang et al. 2021). In medium scales, the extended MR-ENS technique 

more substantially corrected the background forecast in most regions, most notably the SH, where 

large-scale forcing, such as that associated with the extratropical cyclones and jet streams, had the 

largest impact on the region during the experiment period. There was an exception to this notion 

in the tropical and NH Atlantic, which were dominated by high-intensity convective activity during 

this period with contributions from five hurricanes (four of which were categorized as major 

hurricanes) and a substantial number of tropical easterly waves.   

Larger analysis increment power at most scales for the MR experiments tended to lead to 

an overall improvement in the analysis and forecast for up to five days in lead time when compared 

to SR-High, despite the experiments having the same computational cost.  This improvement was 

most apparent in large scales for all regions, which demonstrates the importance of having a DA 

method that is able to correct these scales.  Improvements were especially evident in the upper 

levels in the tropics at early lead times (prior to 48 hours) and the SH at later lead times.  The SH 

improvements had contributions both from improved analyses at large scales in the SH and from 

improvements sourced in the tropics. The greatest improvement occurred after the interaction of 

large-scale features, such as the interaction of the TEJ with the subtropical jet or the interaction of 

the subtropical and polar jets.  This result demonstrates that it is important to create an analysis 

that can both correct the large-scale features themselves as well as allow for the more multiscale 

interaction between these features.  Yang et al. (2017) had a similar conclusion in their study, 

which utilized multiscale covariance localization to examine the impact on forecasting a heavy 

rainfall event.  
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As with global forecasts, tropical cyclone track forecasts were generally improved for the 

MR experiments, with improvements exceeding 10% on average for most lead times.  The 

improvements were mainly attributed to the ability of the extended MR-ENS technique to further 

correct the large-scale environmental flow due to the greater sampling at large scales and broader 

localization radius for the low-resolution ensemble.  At very early lead times (0-6 h), there was 

less notable average improvement in track forecasts when compared with later lead times, and a 

greater number of total tracks were improved by the SR-High experiments over MR.  The slight 

degradation in MR from 0-6 hours compared to other lead times shows correspondence with the 

larger analysis increments for SR-High in TC basins during the experiment period. The 

correspondence may indicate that there are still applications for which having greater information 

at high-resolution via more high-resolution ensemble members with smaller localization length 

scales is preferable to having greater sampling at low-resolution with longer localization length 

scales. Notably, this result is most applicable for very short lead times in features with high 

intensity over small scales. However, at longer lead times, more substantial corrections in the 

larger scales still seem to provide better forecasts for the propagation of these same systems. 

Two MR configurations were compared to determine the sensitivity of the analysis and 

forecast to varied ensemble compositions.  Both MR configurations improved upon the SR-High 

analysis and subsequent forecast.  This improvement further demonstrates the importance of 

correcting the large scale in a global NWP forecast through reducing sampling error at these scales 

by using additional low-resolution ensemble members and increasing the horizontal localization 

radius.  Though it could be speculated that adding additional low-resolution members would 

further improve this result, the MR configuration with a smaller (larger) number of low-(high-) 

resolution ensemble members, MR170, outperformed its counterpart, MR204, in most metrics.  
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This result shows that it is not enough to rely solely on the corrections at large scales. There is still 

evident forecast value in retaining more accurate information about the state and error correlations 

at small scales by having a sufficient sample of high-resolution ensemble members.   

b. Future work 

 This study examined the impact of using multi-resolution capabilities with variable 

ensemble size to put different emphasis on large or small scales.  This method is only one aspect 

of building an effective multiscale DA system.  Additional aspects include using scale-aware 

covariance localization in both the horizontal and vertical directions.  Scale-dependent localization 

(SDL) is a horizontal covariance localization method that was developed for EnVar applications 

(Buehner and Shlyaeva 2015).  SDL decomposes ensemble perturbations into overlapping 

wavebands/scales and simultaneously updates these scales using localization radii appropriate for 

each scale. Huang et al. (2021) further developed and implemented SDL in a GSI-based 4DEnVar 

framework. Their work found that the use of SDL leads to improvements in global forecasts when 

compared with scale-unaware covariance localization methods.  In the vertical direction, the 

current operational system at NCEP still uses scale- and level-invariant covariance localization, 

even as vertical resolution continues to increase (Yang 2020).  Significant work is still needed in 

order to develop effective scale-aware vertical covariance localization.  However, once developed, 

scale-aware vertical localization may be combined with the SDL capabilities, described in Huang 

et al. (2021), as well as the methodologies of the multi-resolution ensemble DA with variable 

ensemble size described in this study.  Additional developments will be needed to ensure that all 

three capabilities are compatible with each other. 

Also, the current operational version of the GFS (i.e., version 16) is the final major version 

that will use the GSI framework (Thomas 2022).  The transition to the usage of the Joint Effort for 
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Data Assimilation Integration (JEDI) as the operational DA framework is currently scheduled to 

be concurrent with the release of the GFSv17 in 2024. Therefore, additional efforts are needed to 

make the methodologies described in this study as well as other studies addressing multiscale DA 

compatible with JEDI to aid in effective research-to-operations transitions. 
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Tables 

Table 1.  The computational cost for the SR-High, MR170, and MR204 experiments for each DA 

and forecast step. Ratios are calculated in reference to the SR-High experiment. Costs of all 

experiments were estimated using the vjet partition on NOAA’s Research and Development 

High-Performance Computing System Jet machine. I/O cost is ignored in the estimation. 

 

 Experiment SR-High MR170 MR204 
4

D
En

V
ar

 
# of Cores 1260 1260 1260 

Time (h) 0.92 0.91 0.91 

Core Hours 1159.20 1146.60 1146.60 

LE
TK

F # of Cores 1260 1260 1260 

Time (h) 0.21 0.67 0.90 

Core Hours 264.60 844.20 1134.00 

C
o

n
tr

o
l 

M
em

b
er

 
Fo

re
ca

st
 

# of Cores 396 396 396 

Time (h) 0.079 0.079 0.079 

Core Hours 31.28 31.28 31.28 

H
ig

h
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En
se

m
b

le
 

Fo
re

ca
st

 # of Cores 396 396 396 

Time (h) 0.079 0.079 0.079 

Ensemble Size 80 40 24 

Core Hours 2502.72 1251.36 750.82 

Lo
w

-R
es

 

En
se

m
b
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Fo
re

ca
st

 # of Cores   108 108 

Time (h)   0.047 0.047 

Ensemble Size   130 180 

Core Hours 0.00 659.88 913.68 

 

Total Core 
Hours 3957.80 3933.32 3976.38 

 Ratio 1.000 0.994 1.005 
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Figures 

 
Fig. 1. Level-dependent localization length scales in e-folding distance (km) for 4DEnVar for the 

SR-High experiment and high-resolution ensemble for the MR experiments (blue) and for the 

low-resolution ensemble for the MR experiments (red). 
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Fig. 2. Flow charts for a cycle of the (a) SR-High and (b) MR experiments.  
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Fig. 3. Averaged analysis increment power at 500 hPa over all DA cycles as a function of 

wavenumber and wavelength for (a) temperature (K2) and (b) zonal wind speed (m2 s-2) for the 

SR-High (blue), MR170 (red), and MR204 (purple) experiments. 
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Fig. 4. Difference in kinetic energy wavelet analysis between MR170 and SR-High averaged 

over all DA cycles and over the (a) global, (b) Northern Hemisphere extratropical, (c) Southern 

Hemisphere extratropical, and (d) tropical latitudes.  The x-axis represents the longitude.  The 

left y-axis represents the wavenumber and the right y-axis represents the corresponding 

wavelength.  The cutoffs between small, medium, and large scales are denoted by dashed black 

lines. 
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Fig. 5. Difference in the wavelet kinetic energy analysis increment power (m2 s-2) between 

MR170 and SR-High averaged over all cycles and over (a) medium scales (wavelet scales 16-30) 

and (b) small scales (wavelet scales 1-15).  The tracks of (a) the tropical easterly waves that 

occurred at 850 hPa or (b) the Atlantic hurricanes that occurred during September 2017 are 

plotted in cyan. 
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Fig. 6.  Difference in the root mean square fit (RMSF) of the 6-h forecast of (a) temperature (K) 

and (b) wind speed (m s-1) to the rawinsonde observations between the MR170 and SR-High 

experiments as a function of pressure, averaged over all cycles every 100 hPa over global (red), 

Northern Hemisphere extratropical (green), Southern Hemisphere extratropical (gold), and 

tropical (blue) latitudes.  Dots indicate levels where the RMSF difference is statistically 

significant using a paired-t test and a 95% confidence interval. 
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Fig. 7. The root mean square fit (RMSF) of the 6-h forecast to the rawinsonde observations (solid 

lines) and square root of the observation error variance plus the 6-h background ensemble 

variance (dotted lines) for the temperature (left; K) and wind speed (right; m s-1) for the MR170 

(red) and SR-High (blue) experiments as a function of pressure averaged over all cycles every 

100 hPa over global (a,b), Northern Hemisphere extratropical (c,d), Southern Hemisphere 

extratropical (e,f), and tropical (g,h) latitudes. 
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Fig. 8. As in Fig. 6 except of difference of the square root of the 6-h forecast ensemble variance 

(i.e., the ensemble spread) at locations of the rawinsonde observations. 
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Fig. 9. Difference in root mean square error (RMSE) of the MR170 and SR-High forecasts 

verified against ERA-Interim temperatures (left; K) and wind speeds (right; m s-1) averaged over 

all cycles for global (a,b), Northern Hemisphere extratropical (c,d), Southern Hemisphere 

extratropical (e,f), and tropical (g,h) latitudes for 5-days in lead time.  Purple dots indicate levels 

where the RMSE difference is statistically significant using a paired-t test and a 95% confidence 

interval. 
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Fig. 10. Difference in total power error (m2 s-3) between the MR170 and SR-High experiments 

verified against ERA-Interim, averaged over all DA cycles and pressure levels selected in Fig. 9 

and decomposed into wavenumber (left y-axis) and corresponding wavelength (right y-axis) for 

up to 5 days in lead time. Purple dots indicate levels where the difference is statistically 

significant using a paired-t test and a 95% confidence interval. 



   60 

 
Fig. 11. Difference in total energy error (m s-2) at 250 hPa filtered to include wavenumbers 5 to 

25 for the 0000 UTC on 12 September 2017 cycle between the MR170 and SR-High 

experiments verified against ERA-Interim and averaged over all longitudes at a given latitude 

and up to 5 days in lead time. 
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Fig. 12. ERA-Interim wind speed at 250 hPa for the 12 September 2017 at 0000 UTC cycle for 

the analysis time and every 24-h forecast up to 5 days. The 5% minimum difference in total 

energy error at 250 hPa relative to ERA-Interim between the MR170 and SR-High experiments 

filtered to include wavenumbers 5 to 25 is contoured in cyan.  
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Fig. 13. (a) Percentage of track forecast error differences of MR170 (red) and MR204 (purple) 

relative to SR-High for lead times up to 5 days. Dots indicate levels where the difference is 

statistically significant using a paired-t test and a 95% confidence interval. (b) Percentage of 

track forecasts that are more accurate than SR-High with the same colors and lead times as in (a).  

The numbers above the x-axes indicate the sample size of tracks at the corresponding lead time. 
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Fig. 14. Forecasted tracks of tropical cyclone Lee for MR170 (red solid), SR-High (blue solid) 

for lead times of (a) 0 h, (b) 12 h, (c) 24 h, and (d) 36 h with an initialization time of 1800 UTC 

on 24 September 2017, along with the best track of the storm (black solid).  Dots are in 6-h 

increments for the tracks.  Stars indicate the central position of the storm at the indicated lead 

times for the MR170 (gold), SR-High (cyan), and best (green) tracks. Mean sea level pressure is 

plotted every 4 hPa for the MR170 (red dashed) and SR-High (blue dashed) experiments. Wind 

barbs, indicating the large-scale (wavenumbers 0-10) pressure-weighted 850-300 hPa wind speed 

(kts) and direction, at are plotted for MR170 (red), SR-High (blue), and ERA-Interim (green) at 

each lead time. Shading indicates the difference in the magnitude of the pressure-weighted 850-

300 hPa zonal wind error filtered to include wavenumbers 0-10 between MR170 and SR-High 

relative to ERA-Interim. 
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Fig. 15. As in Fig. 6 but (a,b) between the MR204 and SR-High experiments or (c,d) between the 

MR170 and MR204 experiments.   
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Fig. 16. As in Fig. 9 but for the MR204 and SR-High experiments. 
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Fig. 17. As in Fig. 9 but for the MR170 and MR204 experiments. 

 


