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Abstract 

Drought is known to cause negative ecological impacts in grasslands, with areas prone to 

drought expected to experience increases in both severity and frequency in the coming 

years. Cimarron County, Oklahoma is located at the westernmost extent of the Oklahoma 

panhandle and has a history of intense drought events, including those of the Dust Bowl 

era. Since 2005, there have been repeated droughts in the county, including a single event 

lasting from 2011-2015. We analyzed remote sensing data to understand the spatial and 

temporal stability of grassland structure (Enhanced Vegetation Index) and function 

(Gross Primary Productivity) within Cimarron County with reference to drought. Drought 

was quantified using the Standardized Precipitation Index, derived from a remotely 

sensed precipitation dataset. Stability was quantified by applying the BFAST (Breaks for 

Additive Season and Trend) algorithm to determine structural breaks within each metric’s 

time series, and by calculating the coefficient of variation for each pixel across the 

county. Temporal data show that while these grasslands display characteristics of low 

stability at the onset of drought, they exhibit consistent positive trends in EVI and GPP 

following each drought event, recovering, and sometimes eclipsing their pre-drought 

levels. Spatial data indicate high spatial heterogeneity in EVI and GPP variability across 

the county, and a relatively low but significant correlation with drought variability. These 

analyses suggest while drought has a significant effect on grassland stability, there are 

likely many other drivers, and while the onset of drought greatly effects grassland 

structure and function, they are consistently able to rebound and regain their pre-drought 

levels. Although these grasslands are impacted by drought, their ability to recover is 
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rapid. Likely, plant composition or drought events are taking place during times of 

dormancy and mediating these responses, when plants may be less affected. 

 

Keywords:  Drought, Remote sensing, Spatial-Temporal, Grasslands, Stability
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1. Introduction 

1.1 Remote sensing and ecosystem stability 

Drought is known to cause negative ecological impacts including reduction in vegetation 

structure and function (Knapp et al., 2008; Weltzin et al., 2003; Zhang et al., 2016), with 

areas prone to drought expected to experience increases in both severity and frequency, 

including possible shifts in intra-annual precipitation (Zhou et al., 2019, Knapp et al., 

2020). Shifts in intra-annual variation in precipitation can be as impactful on ecosystems 

as annual drought events, potentially causing shifts in vegetation composition such as the 

ratio of warm (C4) to cool (C3) season graminoid dominance in grassland ecosystems. 

Due to these projected increases in intra-annual variability in precipitation, acquiring a 

deeper understanding of ecological system responses to the effects of drought may be 

imperative for future assessment and mitigation. Oscillations in vegetation biomass 

within an ecosystem can be indicators of ecological responses to perturbations and 

exploring these variations in respect to drought may give us a greater understanding of 

their influences on ecological systems (Ma, 2017).  

 

Understanding ecosystem stability to drought has been a thrust in ecological studies 

(Tillman, 2006), and more recently addressed with remote sensing products 

(Keersmacker et al., 2014). Ecological stability is generally defined as the ability of an 

ecosystem to resist and/or rapidly recover from perturbations such as drought (Rutledge, 

1976). Intense drought can heavily affect grasslands, with one study noting short-term 

decreases in grassland biomass by almost 50% during intense drought over the course of 
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one year (Tilman, 1992). However, vegetation biodiversity can contribute towards 

promoting grassland resistance and recovery to drought events (Tillman, 1994).   

Remote sensing data is valuable for studying drought across landscapes due to its 

reliability and global coverage (Goward et al., 2006). Vegetation indices, such as EVI, 

are derived from remote sensing data and are designed to be indicative of several 

biophysical parameters of vegetation. They are calculated using values derived from the 

spectral reflectance of two or more bands along the electromagnetic spectrum, and have 

been implemented as indicators of vegetation biomass, structure, and vigor (Ji, 2006). 

Satellite derived Gross Primary Productivity (GPP) datasets are commonly used to study 

vegetation function at large scales, and can give insight into changes in vegetation 

functioning over time (Kuhn, 2020) 

 

The accurate use of remote sensing data to estimate ground level productivity has been 

addressed (Tebbs, et. al, 2017) finding strong relationships between remotely sensed 

vegetation productivity and ground level estimates, allowing for the mapping of 

vegetation productivity from local to regional scales. Further, drought has shown 

measurable effects within remote sensing measurements of vegetation structure and 

function (Vicca, 2016; Zhang, 2021). With this known, analyzing the fluctuations of 

these data, both spatially and temporally, may be useful in understanding how regions are 

positively and negatively responding to drought.  

 

1.2 Grassland stability and drought 
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Studies have found the presence of long-term oscillations and decreases in aboveground 

net primary productivity of grasslands following severe drought (Haddad, 2002; Chong, 

2021).  These data indicate grassland function can be affected by disturbances such as 

drought long after an individual event has concluded. With remote sensing data, 

quantifying the ecological impact of drought on the stability of ecosystem structure and 

function could have great implications for land management (Vogel, 2012; Reinermann, 

2020). Remote sensing can allow monitoring but also forecasting of ecological responses 

to drought (Iftikhar, 2016). 

 

The utilization of remote sensing has allowed for extensive data collection and analysis, 

and with the application of high spatial-temporal resolution imagery, time series analysis 

has been key in studying ecosystem responses over time (Southworth, 2021).  

Remote sensing has been applied to study resilience of vegetation to drought and the 

stability of ecosystems across large areas over the course of known disturbances (Feng, 

2021, White, 2020), with one study finding low stability of semi-arid grasslands to 

drought worldwide (Keersmaecker et al., 2015).  

 

Shifts in seasonal precipitation can have strong impacts on grassland ecosystems and 

have been found to lead to shifts in grassland composition, such as increases in the ratio 

of C3 to C4 grasses due to the occurrence of drought predominantly during winter months 

rather than the growing season (Witwicki et al., 2016; Knapp et al., 2020). Increases in 

intra-annual variation of precipitation can be as impactful on ecosystems as annual 

events, and it has been noted that these intra-annual variations can cause shifts can occur 



 6 

in vegetation composition due to differences in phenology between vegetation types 

(Shaw et al., 2021), and intra-seasonal variability in rainfall patterns may contribute to a 

large variation in annual ANPP (Frank & Inouye 1994; Knapp & Smith 2001). 

 

Grasslands are the largest terrestrial ecosystem on Earth, ubiquitously distributed in the 

landscape across space and time (Ali, 2016), and provide numerous ecosystem services 

and economic products (Wang, 2019). Grasslands are important sources of biodiversity 

and productivity, while facilitating ecosystem functions (Munson, 2017). For instance, 

grasslands can serve as reliable carbon sinks, though drought can significantly influence 

interannual variation in terrestrial carbon dynamics and overall sequestration, with 

grasslands often shifting between carbon sources in drought years and carbon sinks in 

other years (Zhang, 2011).  

 

This study applies remote sensing approaches to assess vegetation structure and 

productivity responses to drought over a period of 16 years (2005-2020), in which four 

drought events occurred, with the last still ongoing as of December 2020. The first three 

droughts during this timeframe were each more intense than the last, and it is unknown as 

what the extent of this fourth drought will be. The objective of this study is to understand 

how the structure and function of grasslands across Cimarron County, Oklahoma have 

been affected by drought, and how they are responding over time within the context of 

stability (e.g., resistance, recovery). The grasslands of Cimarron County, Oklahoma are 

of relevance, as much of their area is used for cattle grazing, with Cimarron County being 

the third largest cattle producing county in Oklahoma (USDA, 2019). Grassland 
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senescence and possible degradation may become an issue if these grazing lands are to 

continue to be used at their current rate during times of increased drought. Specifically, 

we asked 1) How does temporal variation in drought events affect vegetation structure 

and function across time? 2) How do vegetation structure, function, and stability vary 

across space. 

 

2. Materials and methods 

2.1 Study Area 

Cimarron County, Oklahoma is located at the far western terminus of the Oklahoma 

panhandle, bordered by the U.S. states of Kansas, Colorado, New Mexico, and Texas 

(Figure 1) (Vadjunec, et al., 2021). It is situated in the High Plains and Southwestern 

Tablelands of Oklahoma, with shortgrass prairie being the dominant grassland ecosystem 

(Hoagland, 2000). The dominant grasses in the shortgrass prairie are buffalo grass 

(Buchloe dactyloides) and blue gramma (Bouteloua gracilis). These species are both 

drought tolerant perennial C4 grasses and make up approximately 70-90% of the 

shortgrass prairie composition by biomass (Lauenroth, 2008). 

 

Cimarron County has a cold semi-arid climate (Köppen BSk) with cold winters and hot, 

dry summers. The area is prone to frequent and severe drought with an average 

precipitation of approximately 38-51 centimeters per year, with most falling May-August. 

Temperatures in the county range from an average high of 93 degrees Fahrenheit in July 

to an average low of 19 degrees Fahrenheit in January (Oklahoma Climatological 
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Survey). Figure 2 shows monthly mean, minimum, and maximum precipitation and 

temperature for Boise City, Oklahoma, located in central Cimarron County. 

 

The years 2005-2020 were chosen as the time frame for this study, as four drought events 

occur during this span, including Oklahoma’s most intense and extensive drought since 

1964 (Mesonet). We were also unable to gather data prior to 2005 due to historical 

limitations in our datasets. 

 

2.2 Quantifying grassland cover 

The Cropland Data Layer (CDL) is an annual landcover-type specific map of the United 

States created by the United States Department of Agriculture (USDA). The categories 

include landcover types such as grasslands, shrublands, evergreen forests, and many 

different crop types, with an accuracy of approximately 85-90% when quantifying 

grassland/pasture landcover (Lark, et al., 2017). We applied the CDL in order to isolate 

all grasslands within the borders of Cimarron County. As the extent of each CDL 

category changes year to year (Figure 3), SPI, EVI and GPP data were cropped to their 

respective year’s CDL grassland map. Once the grassland pixels were converted from 

grasslands to other LULC types, they were never re-introduced into the dataset, so it is 

unlikely grassland conversion had any effect on the observed drought responses (Table 

1). 

 

2.3 Quantifying vegetation structure and productivity  
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The Enhanced Vegetation Index is a vegetation index calculated with the combination of 

blue, red, and near infra-red wavelengths and was developed to detect canopy greenness, 

while limiting the effects of atmospheric conditions such as clouds, aerosols, and general 

background noise (Masek, 2006). We chose EVI over other vegetation indices because of 

this ability to limit atmospheric effects, as the study area is prone to dust storms during 

times of drought. The application of EVI will likely lessen the noise created by dust 

suspended in the atmosphere. 

 

We computed EVI of Cimarron County’s grasslands from 2005-2020 using an EVI 

dataset within Google Earth Engine’s data catalog to determine vegetation structure 

responses to drought (Masek, 2006). This EVI dataset provides values every eight days at 

30-meter spatial resolution, which we then averaged seasonally into three-month time 

periods to account for vegetation response lag (Hua, et al., 2019). 

 

EVI = 2.5 * ((NIR – Red) / (NIR + 6 * Red – 7.5 * Blue + 1)) 

EVI formula 

 

To determine responses of grassland function to drought, we quantified Gross Primary 

Productivity (GPP) of Cimarron County’s grasslands from 2005-2020 using a Landsat-

derived GPP dataset provided in Google Earth Engine’s data catalog (Robinson, 2018). 

This dataset provides GPP values once every 16 days at 30-meter spatial resolution, 

which we then averaged seasonally into three-month time periods to account for 

vegetation response lag. 
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2.4 Determination of drought  

Drought indices are calculations used to determine the presence and intensity of drought 

in an area. The Standardized Precipitation Index (SPI) is a drought index that compares 

precipitation in a specified area to precipitation averages from long-term records, 

typically 30-50 years. SPI has been found to perform well when quantifying drought 

across large geographical areas in diverse natural systems, and when quantifying various 

types of drought at a range of timescales (Guenang, et al., 2014; Wang, et al., 2017). 

 

We gathered 12-month SPI data for the study area by accessing a SPI dataset through 

Google Earth Engine’s data repository (Abatzoglou, et al., 2012). We used SPI data from 

2005-2020 to quantify the presence and severity of the drought events occurring across 

this timeframe. SPI values at or below -1 indicate precipitation at least one standard 

deviation from the norm and are typically used as a threshold for the onset of drought 

(Figure 4) (Keyentash, 2018). The same method is also used to determine pluvial events 

with precipitation at or above a SPI value of one.  

 

There were four dates with missing values for SPI, which were filled using linear 

interpolation. As our SPI data had a spatial resolution of approximately 4000 meters, it 

was necessary to upscale in order to match out EVI and GPP datasets at 30 meters 

(Figure 5). 

 

2.5 Time series processing and analysis 
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When extracting time-series data from the rasters, median values were taken for each 

season to limit the effects of cropland outliers on the grassland data. These cropland EVI 

and GPP values could affect the overall grassland values, especially during times of 

drought due to the effects of irrigated and highly productive crops such as corn, 

compared to relatively low productivity grasslands. 

 

We used SPI rather than raw precipitation data because we wanted an accurate indicator 

of the beginning and end of each drought and pluvial event. This was essential so we 

could cross-reference timing of SPI values with corresponding breakpoints. SPI can be 

thought of as the number of standard deviations by which a normally distributed random 

variable deviates from its long-term mean (Guenang, et al. 2014), therefore it is mostly 

unaffected by seasonal variation. In order to accurately compare drought with vegetation 

structure and function, we needed to apply a moving average to each time series, so SPI, 

EVI, and GPP time series were in the same seasonally adjusted format. This removal of 

seasonal variation was done using the “ma” function in the “Forecast” package in R 

(Hyndman, 2021). After this was implemented, we calculated the correlation coefficients 

using the “spearman” method of the “cor.test” function in the “Stats” package in R (R 

Core Team,2013). This was performed to find overall correlations between the smoothed 

times series. 

 

2.6 Quantifying Temporal Stability 

We chose to quantify temporal stability by assessing abrupt changes within each time 

series using the “BFAST” function from the “BFAST” package in R (Verbesselt, 2010). 
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Breaks for additive season and trend, or BFAST has been successfully used to detect 

drought disturbances in time series data, as (Gao et. al, 2021) found abrupt changes, or 

“breakpoints” located along multiple vegetation index time series, where previously 

known sudden changes in the data occurred. If breakpoints in EVI and GPP time series 

happen at the same time as those in the SPI time series, it may indicate variability or 

abrupt changes in precipitation have a significant effect on the temporal stability of EVI 

and GPP. 

 

Verbesselt, 2012 identified “stable” periods as those between breakpoints, as they 

represent time periods of “normal” variation, thus breakpoints identify a specific point of 

temporal instability. These points of instability may signal vulnerability to similar climate 

events in the future. 

 

2.7 Quantifying Spatial Stability 

We created rasters using median values for each three-month season (Jan-Mar: Winter, 

Apr-Jun: Spring, Jul-Sep: Summer, Oct-Dec: Fall) for each year in order to minimize lag 

effects between SPI fluctuations and EVI/GPP responses, as well as limit the number of 

rasters, as each raster contains approximately eight million data points. The three-month 

seasons of spring and summer paired well with the growing season in Cimarron County, 

which lasts approximately 172 days (Oklahoma Climatological Survey). 

 

The BFAST algorithm was not performed on the spatial data due to variations in the 

spatial extent of grasslands from year to year. Grassland area changes every year due to 
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annual updates in the CDL and would have caused unequal values in the amount of data 

points per pixel area because grassland areas converted from or transitioned to other land 

cover types would then become N/A values. Interpolation techniques to fill these N/A 

values were not an option, as the focus of this study is grasslands specifically. Due to 

these missing values, some locations may have generated all 64 data points, whereas 

other areas may have had a few as four data points (one year), before they were converted 

or changed to land cover other than grasslands. 

 

In lieu of the BFAST algorithm, coefficient of variation (CV) was calculated for the 

entire raster stack of 64 images using the “cv” function in the R package “Raster” 

(Hijmans & van Etten, 2012), to determine areas within the county that underwent the 

largest amount of variation, and thus possessed the least amount of stability over the full 

timeframe. CV was also calculated seasonally to see which areas in each season 

grasslands showed the most variation in EVI, GPP, and SPI respectively.  

 

To understand the relationships between variations in SPI, EVI, and GPP, we extracted 

CV values from each variable’s raster stack and ran linear regressions on the CV for each 

season’s raster stack, as well as the full timeframe. 

 

3. Results 

3.1 Drought and pluvial events 

We documented turbulence within precipitation patterns from 2005-2020, 

including five distinct drought events and six pluvial events based on SPI (Figure 6). 
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There were 33 seasons with below average and 27 seasons with above average 

precipitation according to SPI. The season with the lowest average SPI values was Fall (-

0.3109211) while the season with the highest was Spring (-0.026875). The longest time 

periods of continuous below and above average precipitation are 17 and 19 seasons 

respectively. Summer and Spring had the most occurrences of drought (Table 2), though 

season with the most intense droughts and lowest average SPI was Fall (Tables 3 & 4). 

 

3.2 Relationship between SPI and EVI, GPP time series and rasters 

We found strong positive spearman correlation values between EVI, GPP, and 

SPI time series: SPI~EVI: r2= 0.73, p = < 2.2e-16; SPI~GPP: r2=0.81, p = < 2.2e-16; 

EVI~GPP: r2= 0.73, p = < 2.2e-16). These data may indicate similar trends between 

drought, vegetation structure, and vegetation function throughout the course of an 

extended timeframe containing multiple drought and pluvial periods. Linear regression 

models run between data extracted from each variables’ raster stack show relatively weak 

but significant relationships, with SPI-EVI and SPI-GPP models displaying the strongest 

correlations (Table 5). 

 

3.3 Quantification of temporal stability  

BFAST analysis shows three breakpoints for both EVI and GPP, with SPI 

exhibiting four breakpoints. Generally, the three breakpoints for EVI and GPP coincide 

with the onset of the 2008 drought, onset of the 2011 drought, and the onset of the 2016 

pluvial period (Figure 7). The SPI time series breakpoints also coincide with these events, 

with the addition of a fourth breakpoint in 2013, which appears to coincide with the 
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lowest SPI in the 2011-2015 drought period. These data indicate stable periods of EVI 

and GPP seem to last as long those of SPI, apart from the third SPI breakpoint. 

 

3.4 Quantification of spatial-temporal stability 

There was substantial seasonal variation in EVI and GPP according to coefficient 

of variation data (Figure 8); SPI values showed the highest variability (117.08), with EVI 

(40.88) and GPP (87.97) showing much lower variation across space and time. Further, 

SPI showed a relatively low range of variation across seasons (12.45) while GPP varied 

the greatest (19.05). Spring generally showed the most variation across time, followed by 

winter, summer, and fall (Table 6). 

Overall, SPI had a considerably larger CV than both EVI and GPP, which may be 

a partially product of the generally high variability within precipitation patterns for the 

region. Each metric’s CV map is shown in figure 9, highlighting areas of high and low 

variability, with those values presented in figure 10 to display their distribution. For 

better visualization, outliers were removed by calculating the inter-quartile range and 

multiplying it by 1.5. From there, we added this value to the third quartile and subtracted 

from the first quartile, excluding values outside of those ranges. There is a weak but 

significant relationship between SPIcv and both EVIcv and GPPcv. SPIcv explained less 

than 1% of the variation in EVIcv and less than 4% of GPPcv (Table 7). 

 

4. Discussion 

We documented synchronicity between drought & pluvial events (SPI), and vegetation 

structure (EVI) and function (GPP) over time. However, during the longest and most 
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intense drought events/periods, SPI exhibited a fourth breakpoint, whereas grassland EVI 

and GPP continued on a positive recovery trend after the onset of this drought event. 

There were modest but significant positive relationships between temporal variation in 

drought and variation in grassland structure and function.  

 

The lack of a fourth break within both the EVI and GPP time series may indicate 

temporal stability to drought within the grasslands, as the variation within their time 

series was not significantly altered between the second and fourth SPI breakpoint, even as 

SPI continued to decrease (increase in intensity) during this time period. Van Ruijven & 

Berendse, 2010 and Wilcox et al., 2020 noted similar patterns of rapid recovery of semi-

arid grasslands to extreme drought.  

 

While the grasslands in this study were strongly affected by drought in general as 

indicated by the steep declines of EVI and GPP with the onset of each drought period, 

they also present steady recovery responses even to large fluctuations in inter- and intra- 

annual precipitation. The similarity between the timing of each EVI and GPP break 

indicates the BFAST model and other similar analyses may be very useful in 

automatically identifying the timing of drought driven disturbances within grassland 

ecosystems (Vicca et al., 2016).  

 

Although in this study, it is unknown specifically which characteristics of this shortgrass 

prairie ecosystem drive its ability to undertake these steady positive responses, one 

mechanism may be driven by shifts in plant composition as a process which promotes 
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rapid grassland recovery from drought events (Wilcox, 2020). Another aspect is likely the 

inherent drought tolerance of C4 grasses that dominate the shortgrass prairie (Knapp, 

2020). Chong, et al., 2021 subjected semi-arid grassland plots to multiyear extreme 

droughts, finding full recovery to pre-drought within two years following the drought, 

noting mediation of negative effects by functional group composition shifts (decreases in 

forbs and increases in drought resistant grasses during extended drought treatments). 

These factors might explain why EVI and GPP did not show a breakpoint aligning with 

the third SPI breakpoint, and instead continued in a positive progression whereas SPI 

continued decreasing three more years until 2016. 

 

Shifts in drought seasonality can be another contributing factor to rapid grassland 

recovery to intra-annual precipitation variability. The strong positive responses of 

grassland structure and function could be partially explained by the fact that fall (Oct.-

Dec.) had the lowest overall SPI. If the most intense droughts occurred during periods of 

time in which the vegetation has gone dormant, there may be less of an effect on the 

vegetation versus a drought occurring through the growing season. This contrasts with 

existing literature, as past studies have found spring droughts to show the least effect on 

C4 grasslands, and cooler, late season (fall/winter) droughts to have the greatest negative 

effect on overall C4 grassland productivity (Arredondo, 2016; Churchill, 2022). Mixed 

(C3/C4) grasslands show increases in C3 productivity at times when precipitation is 

decoupled from temperature, such as cool-season drought. Knapp et al 2020 found cool-

season droughts create conditions allowing C3 grasses to proliferate and compensate for 

losses in C4 productivity, even across multi-year droughts. 
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At the start of the 2011-2015 drought, the most intense parts of the drought occurred in 

the cooler fall and winter seasons, while the grasses remained dormant. This may 

partially explain how grassland structure and productivity were able to respond positively 

throughout the rest of the period when drought was relatively less intense.  

  

It is unlikely these responses were driven by short-term physiological responses of 

grassland vegetation. What is more likely are the occurrence of shifts in vegetation 

composition within the grasslands, allowing for positive short and long-term responses to 

drought. Wilcox, 2020 found grassland productivity to have a strong decrease during 

drought, while also exhibiting quick positive responses following drought events. It was 

determined this response was due to subdominant grass species compensating for 

declines in dominant species productivity, a process supported by other grassland studies 

(Mariote et al., 2013). Overall, shifts in composition can contribute towards recovery 

either by: (1) dominant species recovering quickly especially if drought doesn’t co-occur 

with its time of activity or (2) subdominant species recovering quickly given that drought 

may not co-occur with its phenology. 

 

Due to the considerable cattle and pastureland presence within the county, it is possible 

grazing may have also impacted the spatial and temporal results. Arredondo, 2016 found 

C4 dominated grassland sites that experience a high degree of disturbance such as 

overgrazing, the dominant species was replaced by commonly subordinate C4 perennial 

grasses, annual C3 grasses, and C3 forbs, forming diverse mixed grassland communities 
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with various functional characteristics. While intense grazing can negatively impact and 

drive grassland degradation (Fang and Wu, 2022), moderate grazing may promote 

grassland stability over time, increasing resilience and diversity, even compared to un-

grazed grasslands (Souther, 2020).  

 

The spatial results agree with existing literature suggesting grasslands possess a wide 

variation of buffering responses to disturbances such as drought. Differences in factors 

including plant traits and soil fertility may mediate these drought responses, allowing for 

high spatial variation within a system (Luo et al., 2021), suggesting most native 

grasslands are likely to contain a high diversity of drought tolerance. These 

characteristics along with a high diversity of drought tolerance across the grasslands 

landscape may bring about the observed heterogeneity in spatial stability (Craine, et al., 

2012). 

 

The coefficient of variation for both EVI and GPP show noticeably more locality and 

heterogeneity across the county than SPIcv. So much so, that geographic and topographic 

features such as rivers and canyons can be made out visually, possibly due to the patterns 

of variation these features may give rise to. The weak relationship between drought and 

grassland structure and function is likely due to the fact that over the course of 16 years, 

SPI had essentially equal variation across the county, limiting the strength of the 

correlations with the much greater spatial heterogeneity of EVI and GPP variation. There 

is also certainly land management occurring throughout the grasslands, which may be 

mitigating some of the direct effects of drought on vegetation structure and function. 
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BFAST analysis appears to be useful in detecting drought-associated disturbances across 

time, pairing well with SPI values indicating drought and pluvial periods. BFAST was 

also successful in detecting EVI and GPP responses to drought, indicating the onset of 

drought has a substantial effect on vegetation structure and function within grasslands, a 

phenomenon seen in and corroborated by other studies (Hahn, 2021; Mackie, 2018) 

 

Future directions could include applying BFAST to more extended temporal datasets to 

detect more structural breaks and patterns within time series. With an increase in 

temporal data, BFAST results could potentially be integrated into predictive models for 

forecasting long-term grassland stability to drought.  

 

6. Conclusions 

The grasslands of Cimarron County, Oklahoma experienced a wide range of precipitation 

variability from 2005-2020, displaying negative effects at the onset of drought, but 

notably exhibiting steady responses in the following seasons and years. As our climate 

changes and droughts increase in quantity, intensity, and extent it may be imperative to 

understand the dynamics of grassland structure (dominant vs. subdominant species 

responses) and productivity in respect to environmental disturbances. This knowledge 

should assist in protecting grasslands from degradation, as well as determining how these 

fluctuations might affect the climate as a whole. The findings of this research may aid in 

understanding grassland responses to potential frequent and intense droughts in the 
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coming years and give insight into factors to be considered when managing grasslands to 

increase their stability under the effects of drought.  
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Table 1. Mean values of SPI, EVI, and GPP for both kept and discarded grassland pixel values. 

These values show similarity between both kept and discarded pixels, indicating LULC change 

was not likely a major factor influencing our results.  
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Table 2. Seasons with mean SPI values above one and below negative one, indicating a drought 

or pluvial event with precipitation amounts one or more standard deviations from the long-term 

mean. Out of 64 total seasons in the study timeframe, 27 (42.2%) were drought or pluvial 

periods. 

 

 Winter Spring Summer Fall 

Occurrences of SPI values above 1 2 4 4 3 

Occurrences of SPI values below 1 3 4 4 3 
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Table 3. Average intensity of each season’s drought events. Summer droughts exhibited by far 

the least intensity. Fall is shown to be the season hit by the most intense droughts, while those 

occurring during spring and winter were of approximately the same magnitude. 

 

 Winter Spring Summer Fall 

Mean SPI of each season’s droughts -1.64 -1.65 -1.14 -1.70 
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Table 4. Average intensity of each season’s SPI. Fall stands out as having by far the lowest 

average SPI from 2005-2020, approximately five times more intense than the second lowest 

average SPI. This, along with values from table three, suggest October-December are the months 

most effected by precipitation deficits from 2005-2020. 

 

 Winter Spring Summer Fall 

Average SPI for each season -0.014 -0.053 -0.029 -0.261 
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Table 5. Results from linear regression between each metric’s mean values for each pixel. The 

relationships between SPI and vegetation structure and function are moderately strong, with high 

significance. However, the relationship between vegetation structure and vegetation function is 

quite weak, albeit significant. 

 

 R2 p-value 

SPI ~ EVI 0.5879 < 2.2e-16 

SPI ~ GPP 0.5868 < 2.2e-16 

EVI ~ GPP 0.1381 < 2.2e-16 
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Table 6. Mean coefficient of variation for each season and overall timeframe. SPIcv shows much 

more variation for every season and over the entire timeframe, when compared to EVIcv and 

GPPcv. According to CV, vegetation structure presents much less variation over time than does 

vegetation function. 

 

 Winter Spring Summer Fall Overall 

SPI 123.3001 116.5121 116.381 110.8467 117.0814 

EVI 21.39526 32.88325 24.5088 18.58392 40.88374 

GPP 28.86614 47.91747 29.54114 29.35662 87.97059 
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Table 7. Results from linear regression between the coefficient of variation of vegetation 

structure (EVI), function (GPP), and drought (SPI). Very weak, but significant relationships are 

shown between each variable.  

 

 R2 p-value 

SPIcv ~ EVIcv 0.007 2.2e -16 

SPIcv ~ GPPcv 0.038 2.2e -16 

EVIcv ~ GPPcv 0.1968 2.2e -16 
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Figure 1. Location of Cimarron County, Oklahoma. The county is situated in the Southern Great 

Plains at the far western extent of the Oklahoma panhandle, bordered by Colorado and Kansas to 

the North, New Mexico to the West, and Texas to the South. 
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Figure 2.  Mean monthly minimum, maximum, and average temperatures (A) from 1995-2010 

and mean monthly precipitation (B) for Boise City from 1995-2020. The highest average 

temperatures occur in July, while the most precipitation tends to fall in August. It is not 

uncommon for the county to experience multiple consecutive months with less than one 

centimeter of precipitation. 
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Figure 3. Land cover change of the three most common LULC types in Cimarron County from 

2006-2020. There is a steady and substantial decrease in grassland area from 2006-2020, with 

slight increases in shrublands. Winter wheat shows a steady increase for the first 10 years, then 

continuously declines through 2020, though sorghum appears to be replacing winter wheat 

during this decline. 
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Figure 4. Visualization of the calculation and interpretation of the Standardized Precipitation 

Index. The bell curve is composed of precipitation values taken from a long-term dataset of the 

specified study area. The values on the Y-axis indicate the probability of a precipitation event 

along the corresponding point of the curve. The values on the bottom X-axis indicate SPI values 

and their corresponding “dryness”, denoting how many standard deviations the amount of 

precipitation is above or below the long-term mean. The percentages between the dashed lines 

indicate the probability SPI will fall within that range. An SPI of zero would indicate the mean 

precipitation for the input precipitation dataset. 
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Figure 5. Process of upscaling and clipping Cimarron County to grasslands. Plot A shows the 

original SPI image for Summer 2010 (year and season chosen at random for this example), with 

a spatial resolution of approximately 4,000 meters. Plot B shows the same image upscaled to a 

spatial resolution of 30 meters. Plot C shows the upscaled image clipped to grasslands as 

determined by the Cropland Data Layer from 2010.  
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Figure 6. Red dashed lines indicate SPI thresholds of one and negative one SPI, indicating 

values above or below these are at least one standard deviation from the long-term mean. Red 

circles generally encapsulate time periods in which SPI values reach above or below these 

thresholds. While every season (64 total) are included in the plot, only winter and summer are 

included on the X-axis due to limitations on space. 
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Figure 7. Trend and breakpoint timing for each time series (A: SPI; B: EVI; C: GPP). Solid 

black lines indicate the input temporal data for each metric. Solid blue lines show the trendlines 

drawn along the input data for each segment between breakpoints. Vertical dashed black lines 

indicate the breakpoints within each time series. Confidence intervals for each breakpoint are 

colored in red. EVI and GPP time series each have three breakpoints while SPI has four. The 

lack of a fourth breakpoint in EVI and SPI data may indicate stability under the effects of intense 

drought. All three confidence intervals for EVI and GPP overlap with those of SPI, apart from 

the third GPP breakpoint which occurred one season prior to the lower bound of the 

corresponding SPI breakpoint. The timing of the structural breaks indicate synchronicity between 

drought, vegetation structure, and vegetation function. 
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Figure 8. Coefficient of variation of each season for SPI, EVI, and GPP from 2005-2020. 

Coefficient of variation values are indicated on the Y-axis of each plot. Each plot is composed of 

CV values calculated from 16 images (one for each season across a 16-year timeframe).  
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Figure 9. Coefficient of variation for SPI, EVI, and GPP across the full 16-year timeframe (64 

seasons). Coefficient of variation values are indicated on the Y-axis of each plot. SPI shows 

markedly more variation than EVI and GPP across the entire county. While SPIcv seems to be 

generally bound to a smaller range of variation, EVIcv and GPPcv show more heterogeneity 

across the landscape. 
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Figure 10. The histograms below show the distribution of coefficient of variation values for SPI 

(drought), EVI (veg. structure), and GPP (veg. function). These results show a much higher and 

more narrow distribution of SPI variation, indicating high fluctuation, but relative uniformity 

across the county for the 16-year period. Vegetation structure indicated the lowest variation and 

widest range. 

 

 


