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Electrophysiological Correlates of Memory 

Statement of the Problem 

Recognition memory is an organism's ability to identify a stimulus as previously 

known or experienced. It is measured as differential responding to novel and familiar 

stimuli (Fagan, 1973). Researchers have found that infants as young as two months of age 

will decrease their attention (habituate) when the same visual pattern is repeatedly 

presented and will attend longer to a novel pattern than to a familiar pattern (Fantz, 1964; 

Friedman, 1972, Rose, Gottfried, Melloy-Carminer, & Bridger, 1982). Research on infant 

recognition memory has generally involved behavioral studies utilizing habituation or 

novelty-preference paradigms. The most well-established area of research of infant 

memory has been in the visual modality. 

More recently, there has been an interest in examining the relationship between 

brain and cognitive behavior by recording measures of infant brain activity while the 

subject is performing some task (Nelson & deRegnier, 1992). Much of the 

electrophysiological work records event-related potentials (ERPs) to examine infant 

recognition memory. This approach has been very useful for observing ongoing brain 

function and to explain the neural mechanisms involved in cognitive behavior. Studies in 

our lab have found evidence for long-term recognition memory using ERPs evoked by 

familiar and novel auditory stimuli (Thomas & Lykins, 1995, Lykins, 1996). 

Much of the research with infant recognition memory has established a pattern of 

novelty preference (Fantz, 1964; Friedman, 1972; Creighton, 1984) with subjects ranging 

from four to eight months of age. However, other studies have found that infants younger 

than two and one-half months indicate a preference for the familiar rather than the novel 

stimulus (Weizman, Cohen, & Pratt, 1971; Wetherford & Cohen, 1973). 

Several hypotheses have been promoted to explain these preferential differences. 

Hunt (1970) proposed a psychological developmental theory. Dannemiller and Banks 

(1983) proposed a selective receptor adaptation model to explain early infant habituation. 

Sokolov ( cited in Lewis & Goldberg, 1969) suggested that response differences were 
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Electrophysiological Correlates of Memory 

mediated by a central process such as memory or neuronal model formation. Rose et al. 

(1982) explained the age shift in preference as a change in the speed ofinformation 

processing that changes across ages. Rose et al. suggest that younger infants require a 

longer period of stimulus exposure to encode the information. 

Previous research in our lab has found that older infants show robust 

stimulus-specific results (Thomas & Lykins, 1995); however, younger subjects display 

some degree of generalization to similar stimuli (Lykins, 1996). The present research 

examined the Rose et al. (1982) hypothesis via ERP measures oflong-term infant 

recognition memory with younger (3,.month-old) infants. This project used the identical 

paradigm from the two previous studies in our laboratory. The only difference was that 

the subjects received an extra day of exposure to the stimuli. If younger infants do indeed 

require more experience for stimulus encoding, the results would produce ERP measures 

that are similar to older ( 5-month-old) infants. 
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Electrophysiological Correlates of Memory 

Summary of Relevant Work Conducted in Our Laboratory 

The auditory ERP is recorded from the scalp and is represented as a complex 

waveform that reflects changes in electrical activity over time (Molfese, 1990). These 

waveforms are thought to reflect changes in brain activity as indicated by changes in the 

amplitude or latency of the waveform characteristics at different points in its time course 

(Callaway, Tueting, & Koslow, 1978). There is a general assumption that a neuronal 

ensemble becomes synchronously activated when called upon to perform some task 

(Nelson & deRegneir, 1992). The electrical activity generated by this group of neurons 

propagates to the scalp via volume conduction and is recorded by metal electrodes, which 

are placed over a variety of scalp locations. This method permits the researcher to 

examine the amplitude and latency of the ERP component. Many researchers also 

examine the scalp topography of the ERP and try to assess neural generator conduction. 

There has been no general consensus over the results of the latter research because of the 

way electrical activity conducts throughout the brain. Another major problem is the 

possible summation at a particular scalp area of activity from more than one underlying 

brain structure. However, investigators have been able to suggest the sources of a number 

ofERP components (Andreassi, 1995). 

The ERP is differentiated from the more traditional EEG measure because the ERP 

is time-locked to the onset of some event in the subject's environment (Molfese & Wetzel, 

1992). The EEG measures a wide range of neural activity that is involved with the neural 

and somatic self-regulating systems and the ongoing sensory and cognitive functions in the 

brain. The time-locked ERP reflects both general and specific aspects of the evoking 

stimulus and the subject's perceptual response to that stimulus (Molfese, 1983~ Nelson & 

Salapatek, 1986). 

Several studies have used ERP measures to study aspects of early infant memory. 

These studies indicate that infants at different stages of development are sensitive to 
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Electrophysiological Correlates of Memory 

familiar versus novel events (Courchesne, Ganz, & Norcia, 1981; Hoffinan & Salapatek, 

1981; Nelson & Salapatek, 1986; Molfese, 1989; Thomas & Lykins, 1995). Studies of 

infants ranging in age from 6 weeks to 18 months of age have generally found that reliable 

differences can be identified in ERPs that indicate novel/familiar differentiation. 

One of the earliest auditory ERP studies of memory recorded from frontal, 

temporal, and parietal scalp locations over the left and right hemispheres of the subjects 

(Molfese, 1989). Ten infants (14 months of age) were presented with a series ofrepeated 

consonant-vowel-consonant-vowel (CVCV) syllables over a period of two days. On the 

third day, they were tested with 60 presentations of both the familiar stimulus and a novel 

CVCV. Molfese found differences in the ERPs over the left and right frontal electrode 

sites at 360 ms following stimulus onset; a large positive peak was noted for only the 

familiar stimulus. 

The studies which our research team has conducted have provided additional 

knowledge on the neural mechanisms underlying information storage processes in infant 

memory. The initial study (Thomas, Shucard, Shucard, & Campos, 1989) tested 5- to 

6-month old infants over a two-day period to determine the effects of repeated laboratory 

experience on ERP recordings. One group of infants was given 80 presentations of a 

single tone on Day 1 of the study; the subjects returned 24 hours later and were given an 

additional 80 tones. The control group underwent the identical procedure (i.e., electrodes 

placed on infant) except that no actual tone presentations were heard on the first day. 

Results showed an increase in amplitude from Day 1 to Day 2 for the experimental group 

(i.e., received tones on both days). This effect was found for a measurement of amplitude 

from the second negative peak (N2) to the third positive peak (P3) of the ERP waveform. 

The amplitude measures for the control group on Day 2 of the study were the same as 

those found for Day 1 of the experimental group. The results suggest that the increase of 

amplitude found for the experimental group was the result of the additional experience 

with the stimulus on Day 1. 
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Electrophysiological Correlates of Memory 

A second study using 5-month-old subjects (Thomas & Lykins, 1995, Experiment 

I) presented auditory stimuli which differed multidimensionally. Infants heard either I 00 

presentations of a click or a tone on the first day and 50 random presentations of both on 

the second day. ERPs were recorded from frontal (Fz), central (Cz), and left temporal 

(T3) electrodes. The primary measures were of the P2, N2, and P3 peaks which had 

shown amplitude changes in previous studies. The results were similar to those found in 

the original study. A significant amplitude increase was found from Day I to Day 2 for 

the familiar stimulus at N2. The data also showed significantly larger ERP amplitudes for 

the familiar stimulus in comparison to the novel stimulus on the second day of the study. 

These results support a stimulus specific interpretation, i.e., the memory trace was specific 

to the stimulus (tone or click) that the infant had experienced on the first day of the study. 

A third experiment with 5-month-old infants (Thomas & Lykins, 1995, Experiment 

2), was designed identically to the previous study. However, the stimuli consisted of two 

tones differing only in frequency (400 and 700 Hz). The primary purpose of this study 

was to determine if the results would still be specific for the familiar stimulus or generalize 

since the stimuli would be so similar. The subjects were given I 00 presentations of a 

s1ngle tone (either 400 or 700 Hz) on Day I and a randomly-ordered presentation of both 

tones on Day 2. The results showed·increased amplitudes for the previously-experienced 

stimulus, indicating a stimulus-specific interpretation. 

There are two possible mechanisms underlying an increase in the average 

amplitude from the Day I to Day 2: (a) a true increase in amplitude; and (b) a decrease in 

variability. The average ERP waveform consists of the mean of many single-trial 

waveforms. The amplitude of the average ERP is influenced, of course, by the amplitude 

of the single-trial waveforms, but also by the trial-to-trial consistency in the waveform 

components: The greater the trial-to-trial latency variability of a peak, the smaller the 

amplitude of that peak in the average ERP. Analyses of adult ERP data have shown that 

virtually all of the variance in the amplitude of a given peak in the average ERP can be 
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accounted for by the two single-trial measures oflatency variability and peak amplitude 

(Thomas, Neer, & Price, 1989). 

Further analysis of the data from this third experiment (Thomas & Lykins, 1995) 

found both significant single-trial increases in amplitude for Day 2-Familiar in comparison 

to both Day I-Familiar and Day 2-Novel (Peak P2, electrode Fz) and decreases in 

variability for Day 2-Familiar in comparison to Day I-Familiar and Day 2-Novel (Peaks P2 

and N2, electrode Fz). From these results, it can be concluded that increases in the 

amplitude of average ERPs to familiar stimuli are due to both actual amplitude increases, 

and to decreases in response variability. The increase in amplitude (as found by the 

single-trial analyses) suggests that more neural elements (e.g., synapses, neurons, or 

groups of neurons) are recruited into the neural ensemble as a result of familiarization. 

Furthermore, the decrease in variability suggests that the familiarization phase on the first 

day of stimulus. experience stabilizes the neural ensemble which responds to the familiar 

stimulus resulting in a more "experienced," less variable response. 

A fourth experiment (Lykins et al., 1996) was done with 3-month-olds to examine 

possible developmental differences of infant memory. These infants were tested under the 

same conditions as the 5-month-olds in Experiment 3 except that the temporal electrode 

was replaced by one over the prefrontal area (Fpz). The results showed average ERP 

amplitude increases from Day 1 to Day 2 for both novel and familiar stimuli at peak P2 at 

all three electrodes (Cz, Fz, and Fpz). For N2, Day 2-Familiar average amplitudes were 

larger compared to Day 2-Novel at Cz but not significantly larger than Day I-Familiar. In 

addition, the single trial analyses found a significant amplitude increase for both Day 

2-Familiar and Novel over Day I-Familiar at Peak P2 (all electrodes). Examination of the 

latency variability also found significant decreases from Day 1 to Day 2 for both Familiar 

and Novel at P2 (all electrodes). For N2, however, variability decreased only for Day 

2-Familiar as was found for 5-month-olds (Thomas & Lykins, 1995). 
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The results of this study suggested that there are developmental differences 

between 3- and 5-month-olds. The data for 3-month-olds (P2 amplitude increases for both 

novel and familiar stimuli on Day 2) indicated generalization to similar stimuli. However, 

the 5-month-old data suggested stimulus specificity by the amplitude increase found only 

to the familiar stimulus. Even though the average amplitude for N2 did not show a Day I 

to Day 2 increase, differences found in the single-trial analysis (trial-to-trial variability) 

suggest that infants as young as 3-months-old show stimulus specificity in ERP response 

measures but only later in the ERP waveform. The measures for latency variability 

showed that the younger infants were similar to the 5-month-olds in that there was a 

decrease in latency variability for Day 2-Familiar compared to both the Day I-Familiar and 

Day 2-Novel stimuli. These results were found at all three electrodes for Peak N2. 

Much of the previous research in novelty preference has explained age differences 

(familiarity preference of younger infants vs. novelty preference of older subjects) as 

developmental change of a qualitative nature. Rose et. al (1982) suggests that these 

changes are quantitative in that the developmental differences found in infant recognition 

memory can be accounted for by the amount of exposure to a given stimulus. Based on 

this theoretical position, we tested the hypothesis that, if the amount of familiarization ( or 

experience with a stimulus) is substantially increased over previous studies, ERP measures 

of recognition memory for 3-month-olds would be similar to those for 5-month-olds. The 

following literature review examines the evidence in support of the quantitative change 

theory of Rose et al. 
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REVIEW OF THE LITERATURE 

The ERP studies done in our laboratory have all been designed using a simple 

novelty preference paradigm that originated in behavioral studies with visual stimuli. 

Thomas and Lykins (1995) found that familiarization with one auditory stimulus and the 

subsequent exposure to both the familiar and a novel stimulus resulted in differential 

responding (similar to the findings in the extensive behavioral research). We have 

examined the effects found in our research in infant recognition memory in relation to the 

well-established literature base of behavioral studies of novelty preference. 

A Brief History of Infant Recognition Memory 

Recognition memory is an organism's ability to identify a stimulus as previously 

known or experienced and is operationally defined as differential responding to two stimuli 

given previous experience with one of those stimuli (Thomas & Lykins, 1995). Interest in 

infant memory has been documented as far back as Darwin, in 1877 (Cohen, 1973). He 

described in his infant biography the kinds of stimuli his subject looked at and at what age 

the child would visually track a moving object. In 1914, Valentine was one of the first to 

measure infant preference (Cohen, 1973). He used balls of colored thread and assumed 

that if an infant looked longer at one than the other, the infant could discriminate between 

them. 

Cohen ( 1973) maintained that research on infant memory remained relatively 

dormant until 1958. That time Berlyne(1958) and Fantz (1958; both cited in Karmel & 

Maisel, 1975) independently published their studies on visual discrimination; both studies 

used a paired-comparison technique to measure visual fixation. Berlyne presented two 

different visual stimuli to an infant simultaneously and recorded which pattern the infant 

first fixated. Differential response patterns (i.e., longer fixation times of one stimulus over 

another), were taken to indicate discrimination and preference for a stimulus. Berlyne and 

Fantz found that infants fixate longer (prefer) certain visual stimuli over others (Karmel & 

Maisel, 197 5), that infants preferred patterns over nonpatterned stimuli, and that some 
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patterns were preferred over other patterns. Later research found that infants as young as 

two months of age decreased their attention (habituated) when the same visual pattern was 

repeatedly presented and attended longer to a novel pattern than to a familiar pattern 

(Fantz, 1964). 

Infant Memory Paradigms 

Studies of infant recognition memory have generally utilized habituation and 

novelty-preference paradigms. Infants' preference for looking at novel stimuli can be used 

to determine what information about a stimulus has been encoded and stored in memory 

(Schacter & Moscovitch, 1984). A pattern of habituation to a familiar stimulus and 

dishabituation to a novel stimulus is taken as evidence of memory for the original stimulus. 

This habituation-dishabituation pattern indicates that the infant has noticed a change in the 

environment because he/she has stored information about the repeatedly presented 

stimulus (Fagan, 1973). After the infant has habituated to the original stimulus and 

dishabituated to a novel stimulus, the familiar stimulus is presented again. Delayed 

recognition is indicated by an immediate decline in response rate. 

Another procedure for demonstrating delayed recognition is the 

paired-comparison approach. The infant is exposed to a stimulus for a certain length of 

time. The infant is then exposed to the original stimulus and a novel stimulus 

simultaneously. Delayed recognition is measured by the amount of the infant's visual 

fixation to either the novel or familiar stimulus. 

Fagan(l973) reported that the paired-comparison method has been the more 

successful method for demonstrating delayed recognition memory. Infants, when tested 

with this method, typically spend the greater part of their visual fixation to the novel 

target. To test delayed recognition memory, the researcher need only vary the time that 

elapses between the end of the familiarization period and the testing trials. Fagan (1970, 

1971, 1973) found that 5-month-old infants demonstrated novel/familiar differentiation 

with one, four, and seven minute delays. He also found both immediate and two-hour 
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delayed novelty preferences (1970, Experiment I) and some support for retention over 

days (1970, Experiment II) with infants ranging from 13 to 18 weeks of age. 

The paired-comparison approach has generally been used with stimuli that vary 

multidimensionally. Research utilizing the habituation-dishabituation paradigm generally 

compared stimuli that differed only on one or two dimensions. Because of the differences 

noted in stimulus dimensions the salience of the stimulus may have biased the 

paired-comparison results. The increased salience of multi-dimensional stimuli has been 

found to have more pronounced novel/familiar differentiation with infants (Saayman, 

Ames, & Mofett, 1964). Saayman et al. found that infants showed a preference for novel 

stimuli of high attention value, but there was no differential response to novel stimuli of 

low attention value over familiar stimuli. 

Research on infant memory using the habituation paradigm (Zelazo, Weiss, 

Randolph, Swain, & Moore, 1987), and conditioning studies (Clifton, Meyers, & 

Solomon, 1972; Hillier, Hewitt, & Morrongiello, 1992) all provided support for memory 

retention in infants. Researchers examined short-term memory retention ( one hour or 

less) (Friedman & Carpenter, 1971; Zelazo, Brody, & Chaika, 1984), long-term memory 

retention (24-hours to 13 days) (Ungerer, Brody, & Zelazo, 1978; Rovee-Collier, 1993) 

and even recognition memory across the prenatal-postnatal boundary (Moon, Cooper, & 

Fifer, 1993). 

Most of the research on infant memory has focused primarily on visual recognition 

(Ashmead & Perlmutter, 1980). The results from this area of research have been so 

pronounced and consistent that the visual novelty preference paradigm has become the 

basic design for research on infant memory (Rose et al., 1982). Investigation of memory 

using other sensory modalities (i.e., audition) has not been as well established. Research 

on memory for auditory stimuli has for the most part adapted the visual paradigm 

(Columbo & Bundy, 1981; 1983; Mehler, Jusczky, Lambertz, Halstead, Bertoncini, & 

Amiel-Tison, 1988). 
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Age Differences (explanations and models) 

Much of the behavioral literature reports that younger infants (2 months of age or 

less) show a preference (longer fixation time, increase in measured behavior) for familiar 

stimuli; however, older infants show a strong novelty preference (Columbo & Bundy, 

1983; Dannemiller & Banks, 1983; Rose et al., 1982). Several models have been 

proposed to explain this age difference in novelty or familiarity preference. 

Dannemiller and Banks (1983) explained the differences found between younger 

and older infants through a selective receptor adaptation model. This model states that 

habituation reflects decreasing excitability among the neurons that respond to the 

particular stimulus being presented repeatedly to the subject. Repeated excitation, over 

time, causes fatigue among this set of neurons and this decreases neural responsiveness. 

Any overt behavior corresponding to the excitation of the particular set of neurons would 

also show a decrease over trials. If a sufficiently novel stimulus is presented, a different, 

unfatigued set of neurons would respond and any overt behavior should return to higher 

levels. Dannemiller and Banks utilized the sensory adaptation model to explain visual 

habituation but stated that the model was applicable to other modalities as well. There are 

three requirements to extend this model to other modalities: a) there must be 

feature-selective neurons involved, b) those neurons must be fatigable, and c) the infant's 

behavior or response must depend on the degree of excitation among those neurons. The 

model could also be applied to paradigms using successive or simultaneous stimulus 

presentation and with response measures other than fixation time. 

The information-processing or schema-comparison model differs from the 

selective receptor adaptation model in that it requires memory processes to account for 

early infant habituation (Tarquion, Zelazo, & Weiss, 1990). Dannemiller and Banks 

(1983) argued that a cognitive-schema model may be more appropriate for infants over 4 

months of age. For younger infants they suggested that a sensory adaptation model was 

more appropriate for explaining habituation because of the neural limitations of the 
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younger, cortically-immature infant. These authors argue that the cognitive models 

require a more complex neurophysiology than do the sensory adaptation models. 

Dannemiller and Banks suggest that both types of mechanisms, sensory adaptation and 

cognitive schema formation, are involved in infant habituation. However, they also 

suggestthat early in development, automatic, peripheral mechanisms may be involved in 

habituation; as the infant matures, more sophisticated mechanisms may be implicated for 

more complex or abstract stimuli. 

Several researchers (Slater & Morrison, 1985; Ackles and Karrer, 1991} disagree 

with the Dannemiller and Banks two-mechanism model. These authors argue that reviews 

of studies with young infants (less than 4 months old) were not compatible with the 

neuronal fatigue model and cannot account for infant habituation. They also cite studies 

that found long-term habituation effects which cannot be accounted for by neural fatigue. 

Sokolov (1968)(cited in Lewis & Goldberg, 1969) proposed that response decrement and 

recovery were mediated by some central process such as memory or neuronal model 

formation. 

Sokolov (1968) defined the orienting reflex as a "complex functional system that 

integrates activities of different brain areas. Its distinguishing characteristic is that it arises 

in response to novelty (p. 576)." Novelty is defined as the lack of match between the 

experimental external event and the neuronal model (Lewis, Goldberg, & Rausch, 1967). 

This novelty (or mismatch) results in attentive behavior. When there is not a match 

between the external event and the internal (neuronal) model, excitation occurs resulting in 

orienting responses. When there is a match, inhibition occurs and the result is a decrease 

in orienting responses (Lewis & Goldberg, 1969). 

Lewis et al. (1967) suggested that novelty and familiarity preferences could be 

defined operationally by the same experimental manipulation as the orienting reflex. Some 

support for this theory comes from the data on cardiac response from the Lewis and 

Goldberg (1969} study. Their results found an initial response to a new stimulus was 
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cardiac deceleration that decreased with successive repetitions of the stimulus and 

recovered when the stimulus was either altered or replaced by a novel one. Other 

researchers in the field (Sokolov, 1963; Graham & Clifton, 1966) conclude that heart rate 

deceleration satisfies the criteria usually associated with an orienting response, namely the 

indication of autonomic components. Lewis et al. based novel/familiar differential 

responding on Sokolov's orienting response theory; however, this model does not explain 

age response differences. 

Hunt's (1970) explanation of response differences suggested that infants take 

pleasure in learning to recognize objects and this explained the younger infants' preference 

for the familiar stimulus rather than the novel stimulus. As the infant develops, the act of 

recognition becomes more commonplace and the novel stimulus becomes more attractive 

to the older infant. Thus, the preference for novel stimuli in the older infant is the result of 

a developmental stage or change (Hunt, 1970). Hunt's developmental stage model gives a 

description of age response differentiation but his circular explanation for these differences 

seems inadequate. 

Rose et al. (1982) questioned this explanation based on qualitative developmental 

change. The authors tested infants at different ages (3 1/2, 4 1/2, and 6 1/2 months of 

age) for visual recognition memory of shapes using the paired comparison method. In the 

first experiment the subjects were familiarized with a stimulus and then tested with both 

the familiar and a novel stimulus. The 3 1/2 months-olds showed a preference for the 

familiar stimulus; however, the 4 1/2 and 6 1/2 month-olds indicated a preference for the 

novel stimulus. In a second study, the 3 1/2 month olds were allowed either 5, 10, 15, 20, 

or 30 seconds of familiarization time; the 6 1/2 month-olds were allowed either 5, 10, or 

15 seconds of time. 

Rose et al. (1982) found that both older and younger infants showed a preference 

for the familiar stimulus after a short period of exposure to the stimulus ( 5 and 10 sec. 

respectively). When infants of either age group were exposed to the familiar stimulus for 
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longer periods of time (15 and 30 sec.), both groups indicated a preference for the novel 

stimulus. 

Rose et al. (1982) proposed that as infants begin to process a stimulus, they prefer 

to attend to that which is familiar; once information is sufficiently encoded, processing 

becomes more advanced and their preference shifts to the novel stimulus. These authors 

suggested that the increase in novelty preference found with both an increase in age and 

increasing familiarization time indicated that novelty preference represented a more 

advanced phase of information processing than simply a preference for the novel. The 

shift from familiarity to novelty is not a developmental shift (i.e., it is neither age specific 

nor a qualitative development). Infants of all ages prefer familiar initially; however, with 

additional exposure, these same infants prefer novel stimuli. Younger infants are simply 

slower at information processing than are older infants. These shifts in preference reflect a 

change in the speed of information processing that changes across ages (Rose et al., 

1982). Rose et al. postulate that the increase in novelty scores found with an increase 

both in age and familiarization time represents a more advanced phase of processing than 

do familiarity scores. These findings would support the idea that the presence of reliable 

novelty responses can be used as an unambiguous index in memory. 
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Auditory Paradigms 

Investigation of memory using sensory modalities other than vision has not been as 

well established. However, auditory recognition memory studies have found that even 

newborn infants show a novelty preference over a 24-hour period (Swain et al., 1993). 

Some auditory preference research has been done using the non-nutritive sucking 

paradigm (Mehler, Jusczky, Larbertz, Halstead, Bertoncini, & Amiel-Tison, 1988). Using 

this paradigm, Mehler et al. found that infants as young as four days of age displayed 

higher levels of arousal indicated by increased bursts of sucking activity to their parents' 

native language than to a foreign language. 

Spence (1996) applied this paradigm to 1- to 2-month old infants to examine 

auditory novel/familiar preferences. Each infant heard a nursery rhyme read by his/her 

mother during two daily time periods. The subjects were then tested at either 1-, 2-, or 

3-day intervals following familiarization. Spence found that infants displ~yed a consistent 

novelty preference 1 day after familiarization, no consistent preference after a 2-day 

interval, and found a familiarity preference with a test delay of 3 days. The author 

suggested that these findings reflect changes in the accessibility of the representation of 

the stimulus in long-term memory. Infants prefer and attend to novel stimuli ifthere is 

little discrepancy between the memory of the previously experienced and the external 

stimulus. If the subject indicates a preference for the familiar stimulus, a discrepancy 

exists between the mental representation and the external stimulus (Hunter, Ames, & 

Coopman, 1983). 

Other investigators have adapted the visual novelty preference paradigm 

commonly used in vision research (Colombo & Bundy, 1981; 1983). Columbo and Bundy 

measured novelty preference by presenting two identical visual targets for the subject to 

look at. While subjects were involved with the familiarization phase, the visual targets 

were not lit; during the test phase, the targets were illuminated. During the familiarization 
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phase, the infants (2-5 months of age) received either six presentations or 20 presentations 

of one auditory stimulus. For the test phase, the infants ''worked" for the preferred sound. 

The infant received the familiar sound or a novel one, depending upon which visual target 

the subject fixated. The results indicated that there was a novelty preference for both 

conditions of either six or 20 familiarization trials. 

Head-turning responses have also been used to measure recognition in newborn 

infants (Swain, Zelazo, & Clifton, 1993). Swain et al. (1993) presented two words as 

auditory stimuli (''beagle" and "tinder"). The sounds were presented laterally from either 

the left or right; the subjects were familiarized with one or the other sound on day one. 

On day two the subjects received both the familiar sound and a new sound. Head-turning 

responses were measured by use of a protractor above the infant's head and only head 

turns of at least 45 degrees were counted. The results indicated that infants habituated 

head-turning to familiar auditory stimuli and renewed responding to novel stimuli. 

These methods for measuring infant memory have been used with some success 

but they are limited. The non-nutritive sucking paradigm is limited to subjects who use · 

pacifiers. The visual fixation model is problematic in that conditioning effects can 

confound the measure of habituation; i.e., the intensity and duration of auditory stimuli can 

affect head-turning response measures (Muir & Field, 1979). Infants often become 

disinterested during a behavioral task and can be uncooperative in an experimental 

situation. Infants become tired, fussy, hungry, or bored despite careful plans and controls. 

Although there is no trouble-free objective method of measurement that is suitable for all 

infant subjects for measuring infant memory, some of the problems associated with 

behavioral measurement can be overcome by the use of electrophysiological measures 

such as event-related potentials (ERPs). ERP procedures are especially useful with 

subjects who are unable to respond to stimuli behaviorally, e.g., brain-damaged 

individuals, or infants. 
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Results from previous research with infants conducted in our laboratory addressed 

both the psychological phenomenon of memory (ERP responses that indicate recognition 

memory) and the neural processes which underlie it (a decrease in the variability of the 

neural response to a familiar stimulus, as well as an increase in the magnitude of that 

response). The present project measured neural aspects of recognition memory in 

3-month-old infants using ERPs to auditory stimuli. The study addressed the issue of 

increased experience with the stimuli and its role in infant recognition memory. Previous 

work in our lab found that 5-month-old infants indicated a robust differential response to 

novel and familiar stimuli. Studies with 3-month-olds, using the identical paradigm, found 

that the younger infants' neural responses produced more indications of stimulus 

generalization rather than differentiation. The primary purpose of the present study was to 

determine if increased experience with an auditory stimulus with 3-month-olds would 

produce the robust novel/familiar differentiation of the previous 5-month-old study. The 

first objective was to replicate previous work from our laboratory. 

HYPOTHESIS 1: 

Day 2 of the study would produce results of stimulus generalization. There would 

be a general increase in amplitude and a general decrease in latency variability to 

both familiar and novel stimuli on the second day of the study. 

To address the first hypothesis, three sets of planned comparisons were designed. The 

predicted outcomes of these comparisons are also presented. 

1) Day I-Familiar< Day 2-Familiar 

2) Day 2-Familiar = Day 2-Novel 

3) Day I-Familiar< Day 2-Novel 

The second inquiry asks whether increased experience with a stimulus produces neural 

responses in 3-month-old subjects similar to those of 5-month-old subjects? 
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HYPOTHESIS 2: 

After the 3 days of stimuli experience, the Day 3-Familiar ERPs would indicate 

stimulus specificity similar to that found on Day 2 for the 5-month-olds. 

To address this hypothesis, three additional sets of planned comparisons were performed: 

1) Day I-Familiar< Day 3-Familiar 

2) Day I-Familiar= Day 3-New Novel 

3) Day 3-Familiar > Day 3 New Novel 

The last question addresses the effects of the increased stimulus experience. If the 

increase in stimulus experience results in more mature neural responses in 3-month-old 

subjects, which is more important, the number of trials or the time period between 

sessions? 

HYPOTHESIS 3: The data ofRoseet al. (1982) suggests that the amount of stimuli is of 

primary importance in infant memory. Therefore Hypothesis 3 states that conditions 

representing the greatest amount of stimulus experience will show longer memory effects. 

The following comparisons were designed to address this question: 

1) Day 2-Novel = Day 3-New Novel 

2) Day 2-Familiar > Day 3-0ld Novel 

3) Day 2-Familiar < Day 3-Familiar 
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Method 

Participants 

All participants were recruited from birth announcements published in a local 

newspaper. The final sample consisted of24 full term, healthy 3-month-old infants (14 

males, 10 females) with no known history of neurological or auditory problems. Data 

from an additional nine infants were discarded for the following reasons: one due to 

equipment problems, three because of state differences across days, and five unable to 

complete all three days because of fussiness. The infants were randomly assigned to three 

groups, eight received only low tones on Day 1, eight received only medium tones on Day 

1, and eight received only high tones on Day 1. 

On Day 2 and Day 3 (24 hours and 48 hours, respectively, after the Day 1 session) 

the parent was asked to maintain the same schedule as the previous day. The infant 

returned to the laboratory at the same time of day for the second and third stage of stimuli 

presentation. The procedure was identical to thatofDay 1 with the exception of the type 

of stimuli presented. Each participant received $10. 00 per day as compensation for their 

time spent in the laboratory. 

Participants received 100 auditory presentations of either low tones ( 400 Hz, 100 

ms, 70 dB), medium tones (700 Hz, 100 ms, 70 dB) or high tones (1000 Hz, 100 ms, 70 

dB) on Day 1. On Day 2 all three groups received 50 tones identical to those received on 

Day 1, and 50 presentations of one of the other two tones. On Day 3 all three groups 

received 50 presentations of all three stimuli for a total of 150 presentations. The order of 

stimulus presentation was random on Day 2 and Day 3 with the constraint that no more 

than four tones of the same frequency could occur consecutively. The minimum 

interstimulus interval was 4 ms. 

Apparatus 

The stimuli were presented binaurally using headphones attached to an elastic strip 

which fit snugly over the electrode cap and the infant's head. The electroencephalogram 
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(EEG) electrodes were placed over midline center and frontal scalp (Cz, Fz, and Fpz, 

respectively, of the International 10-20 System, Jasper, 1958), and over the left lateral 

temporal area (T3). Tin electrodes that were sewn into an elastic cap (Electrocap 

International) especially designed for infants were used. These scalp electrodes were 

referenced to linked earlobes with the ground located over the right lateral temporal area 

(T4). Eye movements (EOG) were monitored by electrodes placed above and to the left 

of the left eye. Impedances for all electrodes were kept below 10 kOhms. 

The EEG was amplified by Grass Model 7p511. amplifiers with bandpasses of 

1-100 Hz. EEG and EOG data were collected for 390 ms prior to stimulus onset and for 

1200 ms following stimulus onset. The EEG was digitized and stored on computer disk at 

a rate of one sample every 6 ms. 

Procedure 

Parents were contacted and asked to bring their child to the laboratory at a time 

when the infant was most likely to be alert and nurse or take a bottle. Upon arrival, the 

parent was given detailed information concerning the study and informed consent was 

obtained. The parent was seated in a comfortable chair and the infant was seated in the 

parent's lap while the cap, electrodes, and headphones were placed. This process 

generally took about 15 minutes. The infants were then encouraged to nurse or bottle 

feed. A motorized mobile (for infant observation) was turned on and the experimenter 

retired to the control room. Continuous monitoring otthe participant's state was done via 

EEG and EOG recording and visual monitoring over a video camera. The experimenter 

presented stimuli only when the participant was judged to be awake and not moving. An 

assistant observed the infant on a video monitor and recorded changes in the infant's state 

using the following classifications: 

1--asleep 

2--drowsy/eyes closed 

3--drowsy/eyes open 
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4--quiet alert/eyes closed 

5--quiet alert/eyes open 

6--active alert 

7--drovvsyagitated 

8--crying 

Electrophysiological Correlates of Memory 

Stimuli vvere presented only vvhen the participant's state vvas rated betvveen 2 and 

7. The state classifications vvere used to determine the infant's state across the three days 

sessions (i.e., the percentage of trials spent in the modal state must be vvithin 20% across 

all three sessions). The experimenter and the assistant independently charted the infant's 

behavior and state condition both during preparation and stimulus presentation. At the 

end of each day's session, the parent was asked questions concerning the baby's state of 

alertness during stimulus presentation. These factors vvere all taken into consideration in 

the final analysis of behavior .state over the three day period. 

Data Processing 

The ravv data set consisted of 100 single-trial ERPs from Day 1 (Day I-Familiar or 

DIF), 100 single-trial ERPs from Day 2, and 150 single-trial ERPs from Day 3. The Day 

2 ravv data consisted of 50 ERPs recorded to the familiar stimulus (Day 2-Familiar or 

D2F), and 50 to the novel stimulus (Day 2-Novel or D2N). The Day 3 ravv data consisted 

of50 ERPs recorded to the Day 1 familiar stimulus (Day 3-Familiar or D3F), 50 to the 

Day 2 novel stimulus (Day 3-0ld Novel or D30N), and 50 to the Day 3 nevv novel 

stimulus (Day 3-Nevv Novel or N3NN). If any trials vvere judged to have occurred during 

an agitated or non-avvake state (based on EEG criteria and experimenter report), they 

vvere discarded. 

Trials that vvere contaminated by EEG artifact vvere also discarded. A trial vvas 

rejected if the voltage value of any channel exceeded 100 microvolts. In addition, any trial 

vvas discarded if, in any 216 ms windovv, any EEG channel exceeded 60 microvolts and 

the EOG channel exceeded 60 microvolts. The number of trials for each of the six 
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conditions was then equated within each subject based on the condition with the smallest 

number of artifact-free trials. The trial sets for the other conditions were then reduced by 

randomly discarding the needed number based on a random number table. A criterion of 

25 artifact-free trials was set as the minimum number needed in each condition for 

inclusion of a given participant's data. These single-trial waveforms were averaged and 

digitally low-pass filtered at 50 Hz. Each participant's data consisted of average ERPs 

from four electrode locations (Fz, Cz, Fpz, and T3) for each of six conditions (DlF, D2F, 

D2N, D3F, D30N, D3NN). 

Average ERP Peak Amplitude 

The peak amplitudes of P2, N2, and P3 were each measured baseline-to-peak, with 

the baseline being the mean EEG amplitude for the 390 ms preceding stimulus onset. The 

peaks was identified in the following way based on the criteria of Ohlrich and Barnet 

(1972). P2 was designated as the largest positive peak between 150 and 350 ms. N2 was 

the largest negative peak following P2 within the time window 200-600 ms. P3 was the 

largest positive peak following N2 within the time window 300-1200 ms. 

Single-trial Analyses 

Because an amplitude increase was found in the average ERPs, single-trial analyses 

were carried out to assess whether the increase was due primarily to a decrease in 

variability from one session to the next (i.e., from Day 1 to Day 2, Day 1 to Day 3, or Day 

2 to Day 3), or to a true increase in response amplitude. The method used was based on a 

cross-correlational technique described by Michaelewski, Frasher, and Starr (1986) and 

Thomas, Neer, and Price (1989). A template was created for the component of interest in 

the average ERP (e.g., N2). This template consisted of a 41-data point (246 ms) segment 

of the average ERP with the peak of the component at the midpoint of the segment. The 

template was moved across a 300-ms time window in each single-trial waveform, and a 

Pearson correlation coefficient was calculated between the voltage values of the 41-point 

template and each successive set of 41 points in the search window (i.e., points 1-41, 
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2-42, 3-43, etc.). This search window consisted of the 150 ms preceding and following 

the latency of the peak in the average ERP. The point in the search window at which the 

maximum correlation was found between the template and the single-trial ERP was 

identified as the component within that single trial. The amplitude and the latency was 

then measured. The standard deviation of the latency value was used as the estimate of 

latency variability, and the mean of the amplitudes was used to estimate single-trial 

amplitude (Thomas, et al., 1989). Latency variability and single-trial amplitude was 

calculated for each condition. 

Results 

Primary analyses were planned comparisons using one-tailed Bonferroni tests. An 

adjusted alpha-level of .032, based on a modified Bonferroni test (Keppel, 1991) was used 

for all comparisons to maintain an acceptable familywise error' rate. This strategy keeps 

the familywise error rate near the ''natural" limit set by the number of available degrees of 

freedom and permits the investigation of important questions for this project. Because the 

present study was complex, certain non-orthogonal questions were necessary to examine 

the three hypotheses fully. Analyses were performed for peaks P2, N2, and P3 at each 

electrode (Cz, Fz, Fpz, and T3). The following comparisons were done between Day 

I-Familiar (DlF) and Day 2-Familiar (D2F), D2F and Day 2-Novel (D2N), and DlF and 

D2N to examine the first hypothesis concerning research replication of3-month-olds' 

data. Comparisons between DlF and Day 3-Familiar (D3F), DlF and Day 3-New Novel 

(D3NN) and D3F and D3NN were performed to address the second hypothesis that an 

increase in stimulus experience results in younger subjects' ERP data resembling those of 

older subjects (from previous studies). Finally, comparisons were done between D2N and 

D3NN, D2F and Day 3-0ld Novel (D30N) and D2F and D3F to examine the effects of 

increased experience. If stimulus experience does. make a change in ERP data, which is 

more influential, the number of trials, or the 24 hour consolidation period between 
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sessions? Post hoc analyses were performed on the data to examine any effects beyond 

those covered by the planned comparisons. 

Average Peak Amplitude 

The three tone groups were combined and analyses were performed separately for 

the peaks P2, N2, and P3 at each electrode (Cz, Fz, Fpz, and T3). The means, standard 

deviations, and Jl values for these data are found in Table 1 (P2 peak), Table 2 (N2 peak) 

and Table 3 (P3 peak). Significant differences for the average peak amplitude were found 

between DlF and D2N for the P2 peak at the Fz electrode site, (1[23]=-2.05, Jl=.025) and 

the Fpz electrode site (1[23]=-2.01, p.=.028) (see Figure 1). No significant differences 

were found between between DlF and D2F for any peak; however, there was a trend for 

an increase in amplitudes for D2F for all peaks, with electrode Fpz at the P2 peak (see 

Figure 2) approaching statistical significance (1[23]=-1.36, ti=.093). There were no 

significant differences found between D2F and D2N but there was a nonsignificant trend 

for larger amplitudes for D2N all at electrodes (except Fpz at P3) for peaks P2 and P3 

(see Figures 3 and 4). The N2 peak indicated the opposite nonsignificant trend with larger 

amplitudes for D2F (see Figure 5). This trend for increased amplitude for D2F 

approached conventional statistical significance at peak N2 at electrodes Fz and Fpz 

(t[23]=-l.89, p.=.035, and t[23]=-l.85, ti=.039, respectively). 

Support for Hypothesis 2, that an increase of stimulus experience would result in 

a significant amplitude increase by the third session, is illustrated by Figure 6. A trend for 

increased amplitude at peak N2 was found at all electrode sites for D3F over DlF. The 

comparisons between Day 1 and Day 3 show D3F to be significantly larger than DlF for 

N2 at the Cz electrode site (1[23]=2.34, ti=.015). A significant amplitude increase for 

D3F over D3NN was found at peak N2 at the Fz electrode site as well (1[23]=-2.09, 

p.=.024). This trend for increased amplitude on D3F can be seen in Figure 7 for all 

electrode sites). 

24 



Electrophysiological Correlates of Memory 

For peak P3, a significant amplitude increase was found for D30N over D2F at the 

Cz electrode site (1[23]=-3.59, p_=.001) (see Figure 8). Differences were also found 

between DlF and D3F (with D3F being larger) at site T3, (1[23]=-2.87, p_=.005) and at 

the Cz site between DlF and D3NN (D3NN showing larger amplitudes) (1[23]=-2.39, 

p_=.013) (see Figures 9 and 10, respectively). These findings address the point that 

increased experience does cause the ERP data of younger subjects to resemble findings 

with older subjects. 

Group(low, medium, or high tones as the familiar stimulus), x Condition (DlF, 

D2F, D2N, D3F, D3NN, D30N) with repeated measures x Electrode (Cz, Fz, Fpz, T3) 

analyses of variance (ANOV A) was also performed separately on the P2, N2, and P3 

baseline-to-peak amplitude data. A significant main effect for Electrode, E(3,63)= 3.46, 

J;t=.021 at peak P2 was found and at peak P3, E(3,60)=3.68, J;t=.017. Additionally a 

significant interaction between Group and Condition was found, E(lO, 105)= 2.05, p_=.035 

at peakN2 and for peakP2, E(l0,105)=2.29, p_=.018. The patterns of responding for all 

groups (low, medium, and high tones as the familiar stimulus) were similar across groups 

for those paired comparisons that were found to be significantly different as seen in Figure 

11 and Figure 12. However, other conditions were dissimilar enough to result in the 

interaction. 

Latency Variability 

Planned comparisons found no significant differences for latency variability for 

peak P2. Means, standard deviations, and p_ values for latency variability measures for 

peaks P2 and N2 can be found in Tables 4 and 5, respectively. For the N2 peak, all of the 

comparisons for D2F and D2N found increased latency variability measures for D2N ( see 

Figure 13); however, significant differences were found between D2F and D2N only at 

the Fpz electrode, (1[23]=-2.19, p_=.02). This supports previous fmdings with same-age 

subjects and for 5-month-olds. 

25 



Electrophysiological Correlates of Memory 

Differences were also found between DlF and D3F at electrodes Cz, (1[23]=4.25, 

p.=.000), Fz (1[23]=2.43, p.=.012, and T3 (1[23]=2.82, p.=.005) (see Figure 14). These 

indicated that increased experience with the stimuli did result in a significant decrease in 

latency variability. All measures of latency variability found a decrease on Day 3 with the 

familiar stimulus over the new stimulus presented on the third day; however, significant 

differences, as illustrated in Figure 15, were only found between D3F and D3NN at 

electrode Fz, (1[23]=-2.21, p.=.019). Additionally, significant differences were found 

between D2F and D3F at electrode Cz, (1[23]=2.52, p.=.009) (see Figure 16) which 

indicated a decrease in latency variability with stimulus experience. 

Post-hoc analyses were performed to examine additional effects. A 3 x 4 x 6 

analysis of variance with repeated measures over Condition and Electrode was performed 

on the P2 and N2 latency variability data with Group (low, medium, or high tones as the 

familiar stimulus), Condition (DlF, D2F, D2N, D3F, D30N, D3NN), and Electrode (Cz, 

Fz~ Fpz, and T3) as factors. As would be expected from the planned comparisons, a 

significant main effect for Condition was found at the N2 peak, E(5,105)=3.31, p.=.008. A 

significant interaction for Condition by Electrode at peak N2, E(l5, 315)=2.69, p.=.001 

was found. Additionally a significant interaction for Group by Condition E(I0,105)=2.03, 

p.=.037, was found for peak P2 (see Figure 17). 

Single-trial Amplitude 

Planned comparisons found a significant difference in amplitude between DlF and 

D2N at peak P2 at electrode Cz (1[23]=-2.33, p_=.015)) (see Figure 18) with increases for 

D2N which supports previous findings with 3 month-old subjects There were also 

differences found between DIF and D3F (1[23]=1.96, p.=.031) and between DlF and 

D3NN for peak N2 (1[23]=2.73, p.=.006 at electrode site T3 (see Figures 19 and 20, 

respectively). DlF showed lower single-trial amplitude measures than either D3F or 

D3NN. These findings indicate that increased experience with a stimulus does influence 
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younger subjects' neural responses and effect a more mature response. The means, 

standard deviations, and p_ values for these data are found in Tables 6 and 7 (peaks P2 and 

N2, respectively). A post-hoc 3 x 4 x 6 analysis of variance with repeated measures over 

Condition and Electrode was performed on the P2 and N2 single-trial amplitude data with 

Group (low, medium, or high tones as the familiar stimulus), Condition (DIF, D2F, D2N, 

D3F, D30N, D3NN), and Electrode (Cz, Fz, Fpz, and T3) as factors was performed to 

examine any additional effects. A significant main effect for Electrode was found for peak 

P2, E(3,63)=4.21, p_=.009 and for peak N2, E(3,63)=5.72, p=.002. For peak P2, a 

significant Group by Condition effect was found, E(l0,105)=3.55, p=.000. Figure 21 

shows an increase from the first day of experience to the final session for all groups, the 

exception is a decrease in single-trial amplitude on D3F from DIF with the high tone 

group. A significant interaction for Condition by Electrode was found for the N2 peak, 

E(l5,315)=1.72, p=.047. However, Figure 22 indicates that there is a consistent increase 

from D2F over DIF at all sites, and for D3F over D2F at all sites except for Fpz. There is 

an overall increase for D3F over D IF at all electrode sites. 

Average ERP Latency 

Post-hoc analyses (ANOV A) were performed to evaluate the average latency ( or 

time of response from stimulus onset) for peaks P2, N2, and P3, at each electrode site 

(Cz, Fz, Fpz, and T3). The means and standard deviations for these data are found in 

Tables 8, 9, and 10). The ANOVA for Condition (DIF, D2F, D2N, D3F, D30N, 

D3NN), Electrode (Cz, Fz, Fpz, T3), and Group (low, medium, high tones) (repeated 

measures) indicated a significant Condition main effect, E(S, 105), p=.043 for the N2 peak 

(see Figure 23). A Tukey HSD was performed based on the significant differences for the 

Condition main effect. Tukey HSD pairwise differences between the six means revealed 

significant differences between the D3F condition and both the D2N and D30N 

conditions. The D3F group mean indicated significantly smaller latency measures than 

27 



Electrophysiological Correlates of Memory 

either of the other two conditions (see Table 11). This decrease in latency over the three 

sessions gives further evidence of the effects of increased experience with a stimulus. 
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Discussion 

The first objective of this study was to replicate previous work from our 

laboratory. The first hypothesis was drawn from this objective, that is, Day 2 of the study 

would produce results of stimulus generalization and that there would be a general 

increase in amplitude and a general decrease in latency variability on the second day of the 

study. Three sets of planned comparisons were conducted to test this hypothesis: a) Day 

I-Familiar vs. Day 2-Familiar, b) Day 2-Familiar vs. Day 2-Novel, and c) Day I-Familiar 

vs. Day 2-Novel. 

The results of the study indicated that the amplitude of the average ERP increased 

from Day 1 to Day 2 for both the familiar and novel stimulus. However, these differences 

were significant only for the novel stimulus at the Fz and Fpz electrode sites for peak P2. 

These findings partially support previous research using this paradigm (Lykins, 1996). 

This earlier work by Lykins (1996) found much more robust results at all electrode sites 

for peak P2. Lykins' (1996) study found larger responses for D2F over DIF and larger 

amplitude measures for D2N over D IF at peak P2. There were no differences between 

D2F and D2N, indicating a stimulus generalization pattern of neural responses. The 

Thomas and Lykins (1995) study with 5-month-old subjects indicated larger amplitude 

responses for D2F over DIF and larger responses for D2F over D2N; however, D2N and 

D IF responses were equal for peak P2. These results indicate a stimulus specific response 

pattern in average amplitude measures at peak P2. 

For the N2 peak, Lykins' (1996) results showed that 3-month-old subjects 

responded with larger amplitudes for D2F over D2N and there were no differences 

between the D2F and DlF responses (stimulus discrimination pattern). However, 

5-month-old subjects (Thomas & Lykins, 1995) showed larger responses for D2F over 

D IF and no differences between D IF and D2N, indicating a stimulus specific response. 

The present study was unable to replicate previous findings of novel/familiar 

differentiation at the N2 peak on Day 2 of the study. One possible explanation for the 
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failure to replicate could be due to a random sampling error; chance alone may have 

resulted in the measure of a non-representative sample. However, this trend was found 

for the N2 peak, with all electrode sites exhibiting a larger response (nonsignificant) for 

the familiar stimulus over the novel and was similar to that found by Lykins ( 1996) for 

3-month-olds. 

The second objective of the present study was to examine the results of increased 

stimulus experience with the neural responses of3-month-olds. A set of planned 

comparisons was designed to test the second hypothesis that after 3 days of stimulus 

experience, the Day 3-Familiar ERPs would indicate stimulus specificity similar to that 

found on Day 2 for the 5-month-olds. The set of planned comparisons were: a) Day 

I-Familiar vs. Day 3-Familiar, b) Day I-Familiar vs. Day 3-New Novel, and c) Day 

3-Familiar vs. Day 3-New Novel. This hypothesis was partially supported by the larger 

amplitude measures for D3F over D IF for all peaks with significant differences found for 

N2 at the Cz site. However, the means for the D3NN group indicated a larger amplitude 

trend over the D IF group with a significant finding at the Cz electrode for peak N2. This 

trend was found for both peaks P2 and P3 as well, however, there were no significant 

findings. These findings suggest a pattern of stimulus generalization (larger amplitudes for 

both novel and familiar stimuli) over the 3-day period. However, the overall trend for 

larger responses for D3F over D3NN at peak N2 (significant differences found at 

electrode Fz) provide further support for the hypothesis that increased stimulus experience 

engenders more mature neural responses in younger subjects. 

A third set of planned comparisons was conducted to further examine the effect of 

increased stimulus experience: a) Day 2-Novel vs. Day 3-New Novel, b) Day 2-Familiar 

vs. Day 3-0ld Novel, and c) Day 2-Familiar vs. Day 3-Familiar. There were no significant 

differences for peaks P2 and N2; however, P3 found larger responses for D30N over D2F 

indicating that the extra trials (150 tones vs. 100 tones) did not add to the amplitude 

response measures. The subject had two days of experience with both stimuli; the 
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measurement ofD2F involved 150 tones and D30N measured the results of experience 

with 100 tones. 

The ANOV A conducted with Group, Condition, and Electrode as factors found a 

significant main effect for Electrode at both P2 and N2 peaks. A Group x Condition x 

Electrode interaction was also found at both peaks P2 and N2. The data were collapsed 

across electrodes and the means were plotted to examine the data for possible stimulus 

specific responses. The results showed that even though the medium level tone group's 

average amplitude was lower that either the low or high tone group, the trend or pattern 

ofresponding from Day I-Familiar to Day 2-Familiar to Day 3-Familiar was the same, that 

is, increasing over time. 

Previous work with 3-month-olds (Lykins, 1996) found greater latency variability 

for D lF over both D2F and D2N at peak P2. Those results also showed no differences 

between D2F and D2N, indicating a stimulus general response pattern at the P2 peak. 

However peak N2 indicated a specific response pattern with more variable responses for 

both DlF and D2N compared to D2F. There were no differences between DlF and D2N. 

Previous research with 5-month-olds (Thomas & Lykins, 1995) found even more robust 

indications of stimulus specificity for both peaks P2 and N2. 

Latency variability measures in the present study proved to be the strongest 

support for the three hypotheses. All of the latency variability measures between D2F and 

D2N at peak N2 showed greater variability for the novel stimulus with a significant 

difference at the Fpz electrode site. These findings support previous research from our 

laboratory (Lykins, 1995; Letterman, 1996). The greater latency variability measures for 

D3NN over D3F supports the hypothesis stating that increased experience with a stimulus 

will result in younger subjects responses being similar to the older (5-month-old) subjects 

response measures. 

The final objective examines the importance of the number of trials (or amount of 

experience with a stimulus) versus the 24-hour period between sessions. Which is more 
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important in effecting change in neural response measures? The present results seem to 

support the consolidation period as having more influence on change in neural response 

measures. We find a decrease between D2F and D3F latency variability measures which 

indicates that with more experience with a stimulus, the more consolidated and efficient 

becomes the response. However, there were no differences found between D2F and 

D30N; the subjects had an unequal amount of experience (150 trials vs. 100 trials). 

There were also no differences between D2N and D3NN ( same number of trials over 2 

days). The differences found between D1F and D3F might be most heavily influenced by 

the length of time over the three sessions, since the total number of trials does not support 

the °'amount of experience" hypothesis. 

The post-hoc examination of the average latency measures provided some support 

for the notion that increased experience with a given stimulus should result in a decrease in 

latency measures. The average latency measures for D3F (the condition with the most 

experience with a given stimulus) were smaller than all other conditions (with measures 

collapsed across electrodes) and Tukey's HSD found a significant decrease for D3F in 

comparison to both D2N and D30N. 

The larger responses for Day 3 in the present study suggested a strengthening of 

the neural ensembles for responding to familiar auditory stimuli. This increase in response 

measures for the familiar rather than the novel stimulus indicated differentiation between 

novel and familiar stimuli in response to amplitude and latency variability. The larger 

responses in concert with the decrease in latency variability measures for the Day 3 

familiar stimulus over the novel support the general hypothesis that an increase in 

experience with a stimulus produces more mature neural responses in 3-month-old 

subjects that are quantitatively similar to 5-month-olds. 

Previous work with 5-month-old subjects found robust novel/familiar 

differentiation on the second day of the study (Thomas & Lykins, 1995). Another study 

utilizing the same paradigm but with younger (3-month-old) subjects found a more robust 
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pattern of stimulus generalization, with an indication of differentiation at peak N2. The 

present study suggested that with an increase of experience with a given stimulus, 

3-month-old subjects would show patterns of neural responding similar to the 

5-month-subjects. The lack of robust findings with the 3-month-old subjects in the 

present study could indicate that there is more than stimulus experience, or the length of 

consolidation time, influencing the pattern of neural responding. 

The lack of robust findings of novel/familiar differentiation on Day 3 could also be 

the result of an inadequate sample size. Future investigations might utilize a larger (n=36) 

sample to make better comparisons of younger infants with older subjects. The use of the 

statistical measure Omega-squared indicated a small to medium effect size (.017 to.163) 

for D3F and D3N comparisons in the present study. The study with 5-month-old infants 

found a large effect size, Omega-squared ranged from .20 to .43 for D2F to D2N 

comparisons. Omega-squared is unaffected by sample size; however, if an effect size is 

small it is difficult to ascertain if there are true differences between groups if the sample 

size is also small, because of the lack of a satisfactory level of statistical power. With a 

larger sample size and thus a higher level of power, the nonsignificant trends found 

throughout the data for differential responses for the familiar and novel stimuli might have 

been enhanced. 

The data suggest that the neural responses of3-month-old infants become stronger 

and less variable with experience. However, both developmental changes and experience 

affect the number of dendritic spines, the sizes of the synaptic contact area, dendritic 

branching and myelin formation in the infant brain. During early human development there 

is a profusion of brain growth (Kolb & Whishaw, 1990). At birth the human brain weighs 

about 350 grams; by the end of the child's first year the brain has increased to 1,000 

grams. Much of this increase in neural growth is due to dendritic proliferation and 

myelination. Synaptic density increases until about 2 years of age and then declines until 

about 50% have disappeared by the age of 16 (Kolb & Whishaw, 1990). 

33 



Electrophysiological Correlates of Memory 

However, the normal course of neural development can be strongly influenced by 

the organism's experience. There is an established body of research detailing the results of 

experience and brain development. Experience affects both the structure and the 

chemistry of the neural system. Studies with non-human subjects have found that a single 

session of learning was sufficient to alter hippocampal synapses both in number and 

morphology (Rosenzweig, 1984). Experience engenders an increase in 

acetycholinesterase (AChE) activity, which in tum affects protein development in the brain 

(Rosenzweig, 1984). With more protein development, brain size and weight increases. It 

is not currently known how protein affects this change. 

The experience of multiple presentations of an auditory stimulus could strengthen a 

neural pathway by these types of processes. The second and third sessions with familiar 

stimuli might provide an environment that increases the "survivability" of that neural 

pathway. This could account for the increase in neural responding on Day 3 for the 

familiar stimulus. Rather than a "shedding" of synapses, experience may be more 

necessary for providing the necessary AChE activity ( and other enzymatic processes) 

needed to "build" stronger neural pathways. 

The stimuli used in the present study were simple pure tones ( 400 Hz, 700 Hz, and 

1000 Hz). Animal studies have found that subjects exposed to more complex stimuli 

showed higher levels of cortical AChE activity and greater changes in brain weight 

(Rosenzweig, 1984). One study used three conditions: a) a control group of rats that 

were isolated in cages, b) social control groups (SC) of three animals to a cage, and c) 

groups of three animals with an enriched environment (EE). There were significant 

differences between all groups. Not only did the additional experience of an enriched 

physical environment with toys and running wheels cause differences in brain growth, but 

the mere presence of others influenced development (Rosenzweig, Krech, & Bennett, 

1961 ). There were larger changes between the EE group and the control group than 

between the EE group and the SC group. Future auditory ERP research with human 
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infants might therefore employ more complex auditory stimuli. The more complex stimuli 

could possibly increase the differential response patterns among the six conditions (DlF, 

D2F, D2N, D3F, D30N, D3NN). 

The present study indicated larger responses for Day 3 Familiar over Day 3 New 

Novel; however, these findings were not particularly robust. Our laboratory is now 

examining this issue by collecting ERP data with 3-month-old subjects and using speech 

sounds for the auditory stimulus. More complex stimuli (speech sounds) might strengthen 

the response patterns and more robust differential response patterns might emerge. 

This project found a weak pattern of stimulus-specific responses for 3-month-old 

infants with additional experience with a given stimulus; however, there were even more 

indicators of stimulus generalization throughout the analyses of the various electrode sites 

and different peaks. This suggests that the younger (3-month-old) subjects can produce 

(with additional stimulus experience) neural patterns similar to those of older subjects; 

however, there seems to be natural developmental differences as well. The behavior 

studies (Rose et al., 1982), suggest that younger subjects behave much like older infants, 

given sufficient stimulus experience. Our study does not find such a cut and dry 

explanation; younger infants with additional stimulus experience show general neural 

patterns similar to those of same-age subjects with less experience. Younger subjects can 

be "pushed" to behave neurologically similar to older subjects, but not completely. 

Another matter that must be considered in future ERP studies of infant recognition 

memory involves the theory of time windows in cognitive development (Rovee-Collier, 

1995). Rovee-Collier found that an earlier-experienced stimulus can be integrated with a 

new stimulus if that new stimulus is sufficiently similar to the prior one. This can occur if 

the two experiences with the stimuli are close enough in time. Rovee-Collier found that 

her 3-month-old subjects would integrate two similar stimuli within a 4-day time window. 

The integration of information about two, sequentially experienced stimuli, is thought to 

result from the simultaneous activity of their representations in primary or working 
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memory (Rovee-Collier, 1995). This creates a new memory representation that contains 

aspects of both stimuli . In other words, it is possible that, in the present study, the 

experience with the familiar stimulus on Day 1 and on Day 2 was integrated with the novel 

stimulus presented on Day 2. Perhaps by the third session, neural comparisons were 

actually being made between the Day 3 New Novel stimulus and the combined experience 

of the other two stimuli presented on the first and second day of the study. This is an 

important question that would need to be addressed in any future studies of infant 

recognition memory. 
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Table 1 

Means, Standard Deviations, and p Values for the Average Peak Amplitude for P2 

Cz Fz Fpz T3 

X s X s X s X s 
--------------------------------------------------------------------------------------------------

DlF 4.60 3.32 4.82 2.84 5.10 3.08 4.03 3.80 

D2F 5.36 4.28 6.17 3.67 6.63 3.62 4.81 3.96 

D2N 5.48 3.55 6.45 2.83 6.72 2.74 5.67 3.56 

D3F 4.29 5.66 5.53 5.13 5.56 5.06 5.66 4.66 

D30N 5.08 5.16 5.51 4.30 5.62 3.94 4.97 4.72 

D3NN 5.10 4.88 5.92 5.26 5.80 5.37 5.81 4.81 

Comparisons Cz Fz Fpz T3 

D1Fvs. D2F NS NS NS NS 

D2Fvs. D2N NS NS NS NS 

D1Fvs.D2N NS .025 .028 <.l* 

DlF vs. D3F NS NS NS NS 

D1Fvs. D3NN NS NS NS <.l* 

D3Fvs. D3NN NS NS NS NS 

D2Nvs. D3NN NS NS NS NS 

D2Fvs. D30N NS NS NS NS 

D2Fvs. D3F NS NS NS NS 

* Statistically marginal significance 
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Table 2 

Means, Standard Deviations, and p Values for the Average Peak Amplitude for N2 

Cz Fz Fpz T3 

X s X s X s X s 
--------------------------------------------------------------------------------------------------

DlF -5.06 3.16 -5.78 · 3.26 -5.74 3.62 -4.89 3.90 

D2F -6.45 3.79 -6.82 3.57 -7.00 3.37 -5.87 2.79 

D2N -5.17 3.99 -5.33 3.79 -5.47 3.79 -5.20 4.25 

D3F -7.27 3.66 -7.92 4.13 -7.63 4.32 -6.63 4.12 

D30N -6.23 4.10 -7.17 4.32 -7.14 4.54 -6.45 4.04 

D3NN -5.99 3.95 -5.97 3.32 -5.95 3.46 -6.54 4.90 

Comparisons Cz Fz Fpz T3 

DlFvs. D2F NS NS NS NS 

D2Fvs. D2N NS .035* .039* NS 

DlFvs. D2N NS NS NS NS 

DlFvs. D3F .015 .039* <.I* <.1* 

DlFvs. D3NN NS NS NS <.1* 

D3Fvs. D3NN <.1* .024 .037* NS 

D2Nvs. D3NN NS NS NS NS 

D2Fvs. D30N NS NS NS NS 

D2Fvs.D3F NS NS NS NS 

* Statistically marginal significance 
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Table 3 

Means, Standard Deviations, and p Values for the Average Peak Amplitude for P3 

Cz Fz Fpz T3 

X s X s X s X s 
-------------------------------------------------------------------------------------------------· 

DIF 4.86 1.93 4.25 2.27 4.30 1.95 3.78 2.36 

D2F 4.10 2.83 4.42 3.13 4.44 3.29 4.33 2.88 

D2N 5.07 2.97 4.52 2.53 4.17 3.23 4.40 2.86 

D3F 5.80 3.37 5.37 2.86 5.35 2.93 5.14 2.58 

D30N 5.84 3.12 4.99 2.91 4.88 2.90 4.28 2.09 

D3NN 6.24 2.13 5.42 3.11 5.33 3.13 4.56 2.76 

Comparisons Cz Fz Fpz T3 

D1Fvs. D2F NS NS NS NS 

D2Fvs. D2N NS NS NS NS 

D1Fvs. D2N NS NS NS NS 

D1Fvs. D3F NS <.1* <.1* .005 

D1Fvs. D3NN .013 <.1* NS NS 

D3Fvs. D3NN NS NS NS NS 

D2Nvs.D3NN <.1* NS NS NS 

D2Fvs. D30N .021 NS NS NS 

D2Fvs. D3F <.1* NS NS NS 

* Statistically marginal significance 
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Table 4 

Means, Standard Deviations, and p Values for the Latency Variability for Peak P2 

Cz Fz Fpz T3 

X s X s X s X s 
--------------------------------------------------------------------------------------------------

D1F 88.09 10.22 87.00 8.66 85.48 8.21 88.44 8.36 

D2F 85.18 11.58 84.18 14.53 85.55 15.28 86.98 11.02 

D2N 87.87 10.43 85.85 9.21 86.89 10.55 88.07 8.74 

D3F 85.44 12.54 84.02 14.24 83.62 15.37 81.54 17.87 

D30N 88.33 10.15 88.61 9.33 89.45 9.45 85.30 9.32 

D3NN 87.56 8.31 86.79 8.86 86.04 10.29 84.82 13.15 

Comparisons Cz Fz Fpz T3 

D1FvsD2F NS NS NS NS 

D2FvsD2N NS NS NS NS 

D1FvsD2N NS NS NS NS 

D1F vs D3F NS NS NS <.1* 

D1FvsD3NN NS NS NS NS 

D3FvsD3NN NS NS NS NS 

D2NvsD3NN NS NS NS NS 

D2FvsD30N NS <.1* NS NS 

D2FvsD3F NS NS NS NS 

* Statistically marginal significance 
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Table 5 

Means, Standard Deviations, and p Values for the Latency Variability for Peak N2 

Cz Fz Fpz T3 

X s X s X s X s 
--------------------------------------------------------------------------------------------------

DlF 89.05 6.60 87.75 8.12 86.37 7.75 90.98 10.53 

D2F 88.00 9.20 86.51 9.72 85.19 9.52 86.6 9.31 

02N 89.57 7.63 89.80 6.81 89.74 8.14 88.85 7.63 

D3F 81.89 10.70 81.74 13.59 82.42 13.99 79.91 15.84 

030N 88.33 10.15 88.61 9.33 89.45 9.45 85.30 9.32 

D3NN 87.08 8.68 88.82 9.74 86.31 10.59 84.55 12.01 

Comparisons Cz Fz Fpz T3 

D1Fvs02F NS NS NS NS 

D2FvsD2N NS NS .019 <.1* 

D1FvsD2N NS NS <.l* NS 

D1FvsD3F .000 .012 <.l* .005 

D1FvsD3NN NS NS NS <.l* 

D3FvsD3NN <.1* .019 NS <.l* 

D2NvsD3NN NS NS NS NS 

D2FvsD30N NS NS NS <.1* 

D2FvsD3F .009 <.1* NS .036* 

* Statistically marginal significance 
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Table 6 

Means. Standard Deviations, and p Values for Single-trial Amplitude for Peak P2 

Cz Fz Fpz T3 

X s X s X s X s 
--------------------------------------------------------------------------------------------------

D1F 11.09 6.79 13.51 4.25 13.35 4.13 10.37 6.04 

D2F 12.89 7.20 13.01 6.03 13.33 5.66 11.77 8.12 

D2N 15.13 6.64 14.64 8.38 14.73 8.31 12.90 7.80 

D3F 11.88 8.29 14.23 5.12 14.24 5.11 12.45 5.51 

D30N 14.00 6.48 14.24 6.30 14.14 6.14 11.74 8.38 

D3NN 12.60 10.15 14.03 10.04 13.15 9.90 12.78 8.43 

Comparisons Cz Fz Fpz T3 

D1FvsD2F NS NS NS NS 

D2FvsD2N NS NS NS NS 

D1FvsD2N .015 NS NS <.1 * 

D1FvsD3F NS NS NS NS 

D1FvsD3NN NS NS NS NS 

D3FvsD3NN NS NS NS NS 

D2NvsD3NN NS NS NS NS 

D2FvsD30N NS NS NS NS 

D2FvsD3F NS NS NS NS 

* Statistically marginal significance 
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Table 7 

Means, Standard Deviations, and p Values for Single-trial Amplitude for Peak N2 

Cz Fz Fpz T3 

X s X s X s X s 
---------------------------------------~----------------------------*-----------------------------

DIF -12.50 7.28 -14.09 5.29 -13.52 5.74 -10.23 5.60 

D2F -15.35 8.35 -14.40 9.01 -14.63 7.00 -12.53 6.54 

D2N -14.50 7.36 -13.45 7.19 -13.89 7.22 -11.29 7.46 

D3F -15.95 7.17 -15.11 7.57 -14.46 7.11 -13.33 6.80 

D30N -14.17 7.55 -15.75 6.82 -15.17 7.35 -15.66 5.43 

D3NN -14.70 8.15 -15.16 6.12 -14.71 6.54 -13.98 6.27 

Comparisons Cz Fz Fpz T3 

D1FvsD2F <.l* NS NS <.l* 

D2FvsD2N NS NS NS NS 

DIFvsD2N NS NS NS NS 

D1FvsD3F <.I* NS NS .031 

D1FvsD3NN NS NS NS .006 

D3FvsD3NN NS NS NS NS 

D2NvsD3NN NS NS NS <.l* 

D2FvsD30N NS NS NS <.1* 

D2FvsD3F NS NS NS NS 

* Statistically marginal significance 
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Table 8 

Means and Standard Deviations for the Average Peak Latency for P2 

Cz Fz Fpz T3 

X s X s X s X s 
----------------------------------------------------------------~---------------------------------

D1F 235 48.94 233 44.23 234 44.51 221 54.60 

D2F 223 51.82 225 44.44 226 43.91 226 59.55 

D2N 217 43.75 213 33.89 213 31.10 228 56.84 

D3F 235 38.87 231 38.19 229 38.74 238 52.48 

D30N 235 48.52 227 55.69 222 54.50 244 60.18 

D3NN 242 44.23 230 38.30 227 36.70 232 50.10 
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Table 9 

Means and Standard Deviations for the Average Peak Latency for N2 

Cz Fz Fpz T3 

X s X s X s X s 
--------------------------------------------------------------------------------------------------

D1F 422 94.8 424 86.83 421 88.41 418 104.53 

D2F 409 82.29 426 77.61 439 91.42 438 96.15 

D2N 441 88.91 453 78.89 456 78.26 445 98.97 

D3F 395 81.12 399 84.35 388 73.90 410 90.75 

D30N 441 88.91 461 87.53 460 86.00 436 84.63 

D3NN 407 66.47 416 71.71 414 75.05 411 80.28 
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Table 10 

Means and Standard Deviations for the Average Peak Latency for P3 

Cz Fz Fpz T3 

X s X s X s X s 
---------------------------~~---------~-----------------------------------------------------------

DlF 845 208 880 171 881 198 950 188 

P2F 832 215 858 230 862 235 873 208 

D2N 781 216 793 201 816 197 759 187 

D3F 732 235 759 246 738 251 711 259 

D30N 757 194 804 220 796 215 834 203 

D3NN 798 215 831 232 857 214 912 186 
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Table 11 

Tukey's HSD Test for Condition Mean Differences for Latency at N2 Peak 

Means D3F D3NN DIF D2F D2N D3NN 

D3F = 398 14 23 30 49* 51* 

D3NN= 412 9 16 35 37 

DIF = 421 7 26 28 

D2F= 428 19 21 

D2N= 447 2 

D3N= 449 

* Significant Differences Between Means 
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Figure 1 
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Figure 2 
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Figure 3 

Average Peak Amplitude Peak P2 
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Figure 4 

Average Peak Amplitude Peak P3 
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Figure 5 

Average Peak Amplitude Peak N2 
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Figure 6 

Average Peak Amplitude Peak N2 

Electrode 

-1 

* 

* ** ** 
* }!<.032 ** }!<.10 

60 

* 

D 
[] 



Figure 7 

Average Peak Amplitude Peak N2 
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Figure 8 
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Figure 10 

Average Peak Amplitude Peak P3 
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Figure 11 

Peak N2 Single-trial Amplitude Tone by 
Condition Interaction 
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Figure12 

Peak P2 Average Amplitude Group by Condition Interaction 
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Figure 13 
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Figure 14 
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Figure 15 

Latency Variability Peak N2 
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Figure 16 

Average Latency Variability Peak N2 
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Figure 17 

Peak P2 Latency Variability Group by Condition Interaction 
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Figure 18 

Single-trial Amplitude Peak P2 

~~~*~~~~~~~~~-

ii--+------------

12-+------------t 

e a 
6 

4 

2 

Electrode 

* Q<.032 ** Q<.10 

72 

** 

** 

13 

D 

D 



Figure 19 

Single-trial Amplitude Peak N2 
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Figure 20 

Single-trial Amplitude Peak N2 
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Figure 21 

> ::t 

Peak P2 Single-trial Amplitude Group by 
Condition Interaction 

11 
1, 

14 
12 

8 
6 

4 
2 

75 

DCF 

D CF 
DCN 

DDF 



Figure 22 
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