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CHAPTER I 

INTRODUCTION 

1.1 Statement of Problem 

This dissertation addresses the problem of developing a new envelope tracking 

harmonic generator (ETHG) algorithm using the Short Time Fourier Transform {STFT} 

technique. This envelope tracking harmonic generator (hereafter ETHG} uses the existing 

bandlimited harmonic structure of a signal to generate estimates of higher harmonics 

by a modified spectral translation technique, while minimizing the mean normalized 

squared estimation error. The estimation error is minimized by noting that the harmonic 

generation process has the least amount of error in the middle of the Short Time Fourier 

Transform processed window. The ETHG has the potential to improve the sound quality 

of current analog band limited systems such as AM radio, the telephone, or audio-over­

the-Intemet. The human ear is capable of hearing up to 20 KHz, and many musical 

instruments including human voice are rich in harmonics, however many systems in use 

today are designed with base band bandwidths less than 5 KHz. As a result, they do not 

yield the sound quality that we desire. 

The goal of this dissertation is to theoretically analyze the ETHG algorithm's 

behavior, and find its optimal performance in terms of minimizing the mean normalized 

I 
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squared error between a processed signal and its full fidelity original, by investigating the 

performance of the algorithm when various parameters, such as window type, length, and 

zero padding, are adjusted. 

Fig. 1.1 shows a simplified block diagram of the ETHG algorithm. The high 

fidelity original X(n) with full harmonic structure is an input signal to the baseband 

equivalent narrow band system, and the distorted output Y(n) is the band limited audio 

with a missing higher harmonic structure. In this research, we assume that the degree of 

band limiting is so severe that no information exists as to the missing higher frequency 

energy, meaning that traditional linear filtering techniques will not work. 

The ETHG algorithm nonlinearly processes this distorted output, and generates 

I\ 

the processed output X(n) which has an estimate of the missing higher harmonic 

structure. This algorithm has the potential capability of improving the sound quality of 

severely band limited systems without the need of changing the transmitter, channel, or 

receiver configurations. In other words, instead of modifying the large installed base of 

transmitters and receivers, instead of increasing the bandwidth available in the channel 

(which for AM broadcasting would require FCC approval as well as bandwidth which just 

isn't there), the ETHG might be usable to process the band limited signal at the receiver 

output, giving the user the subjective impression ofextended high frequency response. To 

do this well, the behavior of the ETHG needs to be well understood. 



FU LL FIDELITY DISTORTED 
INPUT BASEBAND OUTPUT EQUIVALENT ETHG 

~ NARROWBAND ALGORITHM 
X(n) SYSTEM Y(n) 

Fig.1.1 Role of the ETHG algorithm 

1.2 Overview of Spectrum Analysis Technique 

PROCES SED 
T OUTPU 

A 

X(n) 

A summary on the spectrum estimation techniques and the comparison of their 

performance is discussed in this section. Understanding the current available techniques 

3 

could provide diverse options which may lead to achieving better performance in ETHG. 

1.2 .1 Classical Technigues 

The periodogram and Blackman-Tukey spectral estimators are classified as the 

classical spectral estimation techniques, which are based on the Fourier analysis. The 

periodogram is the most popular spectral estimator that is in use today. The periodogram 

estimator is defined as [Haye 96, Kay 88], 

A N-IA 

s xxper<ejw>= LRxx<k>e-jwk , (1.1) 
k=-N+I 

where the hat ( A ) indicates an estimated approximation. It is based on the Wiener-

Khinchin theorem which is defined as 

co 

Sxx(e1w) = LRxx(k)e-fkw, (1.2) 
k=-co 



4 

where Sxx( e Jw ) is the power spectrum, and Rxx( k) is an autocorrelation function of input 

x( n) described as, 

Rxx(k)= E[X(n)X(n+k)], (1.3) 

and E is the expected value operator. For ergodic finite data the autocorrelation estimate 

lS 

/\ 1 N-1 

Rxx(k)= N~x(n+k)x*(n), (1.4) 

where * denotes complex conjugate. We can rewrite Eq (1.4) using window function as 

/\ 1 N-1 

Rxx(k) = N~ wx(n+k)wx·(n), (1.5) 

where wx(n) is a windowed x(n). Taking the Fourier Transform of Eq (1.5) yields 

(1.6) 

1 I . 12 = N JfX(e1w) ' (1.7) 

where 

N-1 

WX(e 1w)= L wx(n)e-Jwn. (1.8) 
n=O 

Therefore, the periodogram can be directly obtained from the Fourier Transform of the 

input data as 

2 1 N-1 

= - Lwx(n)exp(-jwn) 
N n=O 

Using the DFT (Discrete Fourier Transform) notation, Eq (1.9) can be written as, 

(1.9) 
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A _2,rk 
1-

SXXper(e N ) = 
1 N-1 

- Lwx(n)exp(-j27lknl N) 
N n=O 

2 

(1.10) 

where k = 0, 1, ... , N -1 [Kay 88, Haye 96]. 

The periodogram estimate of Eq (1.10) is asymptotically unbiased, meaning the 

estimate approaches the true power spectral density as N ~ oo , and it · can be computed 

via the Fast Fourier Transform (FFT). The FFT, credited to Cooley and Tukey, is a fast 

and efficient method to compute the discrete Fourier Transform (DFT). 

The commonly used FFT algorithms are decimation-in-time (DIT) and decimation-

in-frequency (DIF) algorithms for the sequences with length of integer power of 2. 

Although the FFT algorithm enjoys the efficient computation order of Nlog2 N complex 

addit~ons and multiplications when N is a power of 2 [ Oppe 89], it has a frequency 

resolution problem, especially with short sequences which commonly occur in radar, sonar 

and seismic signal processing, and a leakage problem due to windowing of the data 

sequence [Kay 81, Kay 88, Soli 90, Oppe 89, Haye 96]. 

The Blackman-Tukey method is one of the modified periodogram techniques 

designed to reduce the variance of the periodogram' s spectral estimation. The estimation 

variance is reduced by discarding the autocorrelation estimate with largest variance. Then 

take the Fourier Transform with the remaining autocorrelation estimate. The Blackman-

Tukey periodogram is defined as 

" M " 
Sxxsr (eiw) = LRxx(k)w(k)e-ikw, (1.11) 

k=-M 

where w(k) is a lag window, and Mis the window length [Kay 88, Haye 96]. 

The Blackman-Tukey method was the most popular method until the introduction 
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of the FFT algorithmin 1965. It introduces less variance into the spectral estimate, 

however for signals with narrowband power spectral densities, it introduces a significant 

amount of bias, because using reduced number of the autocorrelation estimate results in a 

broader spectrum. The periodogram results in less bias [Kay 88, Haye 96, Oppe 89]. 

For a time varying signal which is stationary only for a short time, we should use 

the Short Time Fourier Transform (STFT). The ETHG algorithm uses this STFT because 

it provides highly efficient measurements of time varying harmonic structures of the audio 

signals [RMoo 90, Port 80, Port 81, Kay 88]. The STFT is 

00 

XJe 1w) = "i:,x(m)w(n-m)e-1wm, (1.12) 
m=-CO 

where x(m) is the input sequence, and w(n-m) is the window which is positioned at time n 

along the input sequence [Kay 88]. The window function will be discussed in Chapter 2. 

Several techniques to improve the accuracy of the STFT's frequency estimate have 

been proposed [Brow 93, Brow 96, Ando 93, Tabe 88, Park 86]. Among them, the 

Quadratic Fit Method and the frequency estimation by phase vocoder using the Single 

Frame Approximation (SF A) technique produce a frequency estimate with a higher 

accuracy. However, the computation load increases significantly with these techniques, 

and the increased accuracy is confined to the frequency estimate only, whereas the ETHG 

needs both frequency and phase estimates. 

In order to overcome problems related with the FFT, many algorithms have been 

introduced, and the advantages and disadvantages of some selected spectral estimators 

will be discussed in following sections. 
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1.2.2 Parametric Spectrum Estimation 

Model based spectrum estimation techniques have been developed to achieve 

better spectral estimation which is not possible, under certain conditions, with the 

conventional spectrum analysis methods such as the periodogram or Blackman-Tukey 

method. If one has an idea of how the signal was formed by an arbitrary transfer function, 

then one can generate better spectral estimates by using a model which adequately 

describes the transfer function. The model selecting and evaluating procedure is described 

in Box-Jenkins [BoxJ 94] and Pankratz [Pank 83]. The general model is an ARMA 

(autoregressive moving average) modei which is a pole-zero model, described as, 

q p 

y(n) = Lh1Xn-l - LakYn-k · {1.13) 
1=0 k=I 

The transfer function via z- transform is, 

(1.14) 

If b0 = I and all the remaining bi are zero then it becomes an AR (autoregressive) 

model, which is an all pole model, as, 

p 

y(n) = - LakYn-k +xn. (1.15) 
. k=I 

The MA (moving average) model, an all zero model, is, 

q 

y(n) = 1)1xn-1 · (1.16) 
1=0 

There are many algorithms to calculate the model parameters such as 



autocorrelation method, covariance method, adaptive linear prediction methods using 

various algorithms like LMS (least mean square), RLS (recursive least squares), and the 

MLE (maximum likelihood estimator). The estimator's properties such as unbiasedness, 

efficiency and consistency are described in Mendel [Mend 95], and a performance 

comparison is found in Hayes [Haye96], Kay [Kay 88], Haykin [Hayk 96], and Widrow 

[Widr 85]. 

8 

Even though these techniques yield better estimates than classical methods under 

certain circumstances, it is not always easy to find the parsimony model for the given 

realization, especially for a time varying transfer function structure. If the model does not 

adequately describe the transfer function, it will yield a poor estimation. Another major 

drawback is that the computational complexity of these algorithms is much more intensive 

than classical methods [Kay 81, Kay 88, Haye 96]. 

In addition to the parametric estimation methods, we have other spectral 

estimation techniques based on eigendecomposition of the autocorrelation matrix such as 

the Pisarenko Harmonic decomposition method and MUSIC (multiple signal classification 

method). These eigen-analysis based techniques generally require a very intensive 

computation load, and may yield a biased estimate because of the estimated 

autocorrelation matrix [Haye 96, Kay 88]. 

The ETHG should be able to follow the time varying structure of diverse audio 

signals with computational efficiency, so the short time FFT based method seems most 

appropriate for this purpose when it is carefully implemented, with a certain window type. 

In later sections, an analysis on the effects of window type, size and zeropadding on the 

estimation error, and the error effects on perceptive quality of generated audio signal with 
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higher harmonics will be discussed. Following is an overview of this paper. 

1.3 Overview of Chapters 

A literature review of other harmonic generation technique is presented in section 

2.2, followed by an introduction of the ETHG in section 2.3. In section 2.3.2, a model 

waveform generation scheme is introduced. Theoretical discussions about the optimal 

window type along with other window types and their role in the convolution with the 

frequency truncation impulse response is in section 2.3.4.3. Also, the error pattern of the 

ETHG will be shown, by computer simulations in section 2.3.4.4 and by mathematical 

derivation in section 2.3.4.5, to be minimum in the middle of the STFT processed window. 

Extensive computer simulation results using the window types described above and zero 

padding to enhance the frequency resolution are given in section 2.3.5 and section 2.3.6. 

A review of time domain and frequency domain distortion measures, which 

includes discussions of why the normalized squared error was chosen for error analysis of 

the ETHG, is presented in Chapter 3. 

A statistical analysis of real audio signals and simulation results using real audio 

signals are included in Chapter 4. The general relationship between harmonic structures, 

and the error effects on perceptive quality will be discussed. 

In Chapter 5, a summary of the key works done so far to achieve the goal of this 

paper, and the future research considerations are presented. 
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1.4 Summary 

We have discussed the goal of this dissertation in section 1. 1, which is to optimize 

performance by analyzing the ETHG algorithm's behavior. The motivation to improve the 

audio quality of a bandlimited audio source using the ETHG, while not modifying the 

configuration of current bandlimited systems such as AM broadcasting, the telephone 

system, and audio-over-the-Internet was mentioned as a possible use for this algorithm. 

A comparison of spectrum analysis techniques was made in section 1.2. The Short Time 

Fourier Transform was selected for the ETHG algorithm to efficiently follow the time 

varying nature of audio signals. The computation load of Short Time Fourier Transform 

appears to be much less than other complicated spectrum analysis techniques. 



CHAPTER II 

ENVELOPE TRACKING HARMONIC GENERATOR 

2.1 Introduction 

In this chapter, a discussion of other higher harmonic generating methods and 

problems is presented. Then a theoretical explanation of the ETHG algorithm and the 

computer simulation results which support the theory will be discussed. 

2.2 Other Higher Harmonic Generating Methods 

11 

There are a limited amount of related works on higher harmonic generation from 

a band limited signal. In the following sections, some of the works worthwhile to note 

are presented. 

2.2. lFrequency Doubler 

A simple squaring device called a :frequency doubler can generate the higher 

harmonic terms from a given sinusoidal input [Stre 90]. Define an input sinusoid as, 

x(t) = Acos(w0t). 

Ifwe suppose the input-output function is, 

y(t) = a1x(t) +a2x2 (t), 

(2.1) 

(2.2) 
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then the output can be written as, 

(2.3) 

(2.4) 

The last term in Eq (2.4)is the generated second harmonic. Likewise, the third harmonics 

and so on can also be generated. This is a simple illustration of the concept, and cannot 

be applied directly to the band limited audio signal, because of following reason. Suppose 

x(t) is composed of two sinusoids as 

x(t) = Acos(wof) +Bcos(w1 t). (2.5) 

Squaring of x(t) will generate two cross terms. Since an audio signal can be considered to 

be made up of possibly thousands of sinusoids, this squaring device will have a problem 

with many unwanted cross terms. 

2.2.2 High Frequency Regeneration 

This technique was proposed by Makhoul for the purpose of regenerating the 

high frequency portion of the excitation in a baseband coder for speech signal processing 

[Makh 79]. The high frequency regeneration technique is simply duplicating the baseband 

spectrum at higher frequencies in two possible ways: spectral folding, and spectral 

translation. Fig. 2.1 (a) is the baseband spectrum. Fig. 2.1 (b) shows the result of spectral 

folding, and Fig. 2. 1 ( c) the result of spectral translation. It is assumed that the signal 

bandwidth Wis an integer multiple of the baseband width B, for simplicity. The spectral 

folding in Fig. 2.1 (b) shows that the spectrum in the second band (between B and 2B) is 

the mirror image of the baseband, and the spectrum in the third band is the mirror image of 
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the second band. The spectral translation, Fig. 2.1 ( c ), shows the spectrum of second and 

third band as identical to the baseband. Details of spectral folding and translation are 

described in [Makh 79]. 

-38 

-8 0 8 

-28 -8 0 8 28 

Fig. 2.1 High frequency regeneration technique. 
(a) Baseband spectrum 
(b) 3-band spectral folding 
(c) 3-band spectral translation [Makh 79] 

W=38 
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This spectral duplication causes a breaking of the harmonic structure, thus creating 

distortions in the output speech. Makhoul stated that there were a number of distortions in 

the form of added tones, and these tones were generally more audible with a large number 

of bands and for higher-pitched voices. Some of the distortion tones could be reduced, but 

there were other audible tones which were difficult to trace. 

The basic idea of frequency duplication is used in the ETHG algorithm in that 

lower frequency energy is shifted to higher frequency regions, however, there is a 

significant difference. In the ETHG algorithm, the shifted energy is split up into pieces to 

preserve the harmonic structure, while the spectral duplication technique shifts whole 

sections of energy into higher frequency regions which results in a breaking of the 

harmonic structure. 

2.2.3 Summaiy 

It appears that there is presently no algorithm specifically designed for regenerating 

missing harmonically related high frequency energy, given knowledge of energy at lower 

frequencies, other than the ETHG algorithm. The closest reference would be the high 

frequency regeneration technique noted above, and no additional works regarding higher 

frequency regeneration have been noticed in the literature since Makhoul' s work in 1979. 

It would appear that the technique had been abandoned as unworkable. 
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2.3 ETHG Algorithm 

2.3. I Introduction 

The purpose of the ETHG algorithm is to take a band limited audio signal, and 

generate desired harmonics without the cross frequencies and distortion of the alternate 

techniques noted in section 2.2. The long term goal is to possibly use this technique to 

enhance the audio quality of band limited systems such as AM radio, telephone systems, 

and Internet audio without changing the current system configurations except at the 

receiver location. Many of these systems will be existing for years to come because of the 

economic unfeasibility of changing the large installed base. Therefore, an inexpensive 

device that could artificially insert higher frequency harmonics at the receiver, and make 

audio sounds.more pleasing to our ear seems to be in order. 

The original idea ofETHG algorithm was developed by Scheets [Sche 93, Sche 

94]. In [Sche 94], the general idea ofETHG algorithm, and preliminary simulation results 

with problems are described. The mathematical derivation of an error function using a 

constant amplitude sinusoid input with a rectangular window is found in [Sche 93]. 

These references form the foundation of this paper, however, additional work is needed 

to better understand and better characterize the behavior of the ETHG algorithm before it 

can be successfully applied to real audio. 

Following is a brief explanation of areas where the ETHG might be implemented. 

AM Radio 

AM radio is very popular because of its long range and inexpensive receivers. 

There are huge numbers of existing AM radio stations throughout the world. Its biggest 
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problem is that the baseband frequency response is generally limited to 5KHz [Enne 74, 

Stre 90]. Within recent years, stereo AM was introduced but flopped because of an 

inability to arrive at a single standard and because of the relatively poor audio quality 

compared to FM. DSP chips running the ETHG could be installed in AM receivers to 

improve the subjective quality, making the music and voice sound more pleasing. It would 

not be necessary to change any of the broadcasting or transmission equipment of existing 

installations. 

Telephone 

The analog telephone's bandwidth is limited to roughly 3.5 KHz [Rey 84]. This is 

a result of filtering and the sampling rate of 8000 samples per second. There are many 

existing advances currently ongoing in terms of fiber to the home, interactive cable TV, 

etc. The fact is, however, that this band limited analog system will be with us for many 

years. A possible use for this algorithm would be as an addition to the telephone receiver. 

In tum, the audio quality from the telephone line would sound crisper and more realistic. 

Internet Phone, Radio 

The use of personal computers on the Internet is rapidly increasing. Two of the 

promising features of the Internet are the Internet phone and Internet radio, however, the 

current quality of these services is rather poor, largely because of bandwidth limitations. 

This is due to the fact that the bandwidth comes at a premium. The ETHG might be 

included in computer systems, and would provide improved Internet phone and radio 

quality using the currently available telephone lines. 

Restoration of old recordings 

Some of the best musicians made their recordings when the equipment was inferior 



to what is available today. Both noise and frequency response is a problem on these 

recordings. Vaseghi reported a technique for restoration of old recordings, but his trial 

was limited to remove the noise disturbances such as scratches, impulse noise, and white 

noise [Vase 92]. The ETHG algorithm has the potential to enhance the audio quality of 

old recordings. 

Compression 

There are numerous compression techniques for digital links. This technique may 

make it possible to compress analog links or additionally compress digital links. By 

filtering the source audio to a smaller bandwidth before transmitting through the channel, 

less channel bandwidth would be necessary. The received audio signal may then be 

enhanced by the device attached at the receiver side. 
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The layout ofremainder of section 2.3 is as follows. In section 2.3 .2, the input 

waveform model to be used in the ETHG will be defined, and the generating scheme of 

this input waveform will be discussed. In section 2.3.3, a description of the ETHG and 

sources of errors are presented. In section 2.3 .4.2, the definition of error for the ETHG is 

defined .. An analysis of effects window function will be presented in section 2.3 .4.3. The 

mean error between harmonic generator output and the desired signal will be shown to be 

minimum in the middle of the STFT processed window, by computer simulations in 

section 2.3.4.4 and by mathematical derivation in section 2.3.4.5, for the time varying 

amplitude, single input frequency case. In section 2. 3. 5, the results of computer 

simulations for single input frequencies will be discussed, and important findings regarding 

window type and size will be addressed. Computer simulation results from multiple input 

frequencies will be discussed in section 2.3.6. Summary of key findings is in section 2.3.7. 



2.3.2 Waveform Model 

In this section, a possible input model for use in the ETHG algorithm will be 

defined. Selection of an adequate input model for a real audio signal is an important step 

in order to get satisfactory computer simulation results. The input model should be able 

to represent real audio properly, and render mathematical tractability as well. For 

example, in the audio synthesis arena, simple sinusoids are used to both synthesize audio 

and analyze the performance mathematically [Moor 77, RMoo 90, Hans 83]. In the 

additive synthesis audio technique, which is one of the popular methods to synthesize an 

audio signal and will be described in Chapter 4, it is assumed that an audio signal is 

comprised of multiple sinusoidal components with different amplitude and harmonic 

frequencies [Moor 77]. A cosine function, described below in Eq (2.6), is a good model 

to illustrate the harmonic structure of audio signals, and allows mathematical analysis of 

the ETHG algorithm [ Sche 93, Sche 94, Hans 84, Serr 90]. In [ Sche 93, Sche 94], the 

input signal is assumed as, 

x(i) = v(i) cos(21r 1; i + B) , 

and the desired signal with Nth harmonic is 

d(i) = v(i) cos( N21r 1; i +NB), 

(2.6) 

(2.7) 

where v(i) is an arbitrary time varying envelope, fin is the input frequency in Hertz which 

is assumed to be stationary ( or nearly so) during the L point window interval, fs is the 

sampling frequency in Hertz, and () is an arbitrary phase angle, which is also assumed to 

be stationary (or nearly so) during the L point window interval. Eq (2.7) is assumed to 
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missing due to severe band limiting. The ETHG algorithm processes Eq (2.6) to generate 

an estimate ofEq (2.7) which may be written as 

I\ 

I\ I\ fin I\ 

d(i) = v(i) cos( N2,r fs i +NB), (2.8) 

I\ I\ I\ 

where v(i), fin, and (} are all estimates of the input parameters [Sche 93, Sche 94]. 

For the cosine function above, a Rayleigh envelope, and a pulse envelope were used for 

performance analysis in [Sche 93]. 

We formulate the input model by modifying Eq (2.6) to accommodate multiple 

sinusoids, as 

(2.9) 

where Mis the number of sinusoids, v h (i) is the envelope amplitude of the hth sinusoid 

at time i, finh is the input frequency of hth sinusoid in hertz which is assumed to be 

stationary ( or nearly so) during the L point window interval, fs is the sampling frequency 

in hertz, and (}h is the phase angle of hth sinusoid which is also assumed to be stationary 

( or nearly so) during the window interval with length L. These parameters are defined 

similar to [Sche 93]. 

The desired signal d(i) is defined similarly as, 

(2.10) 

where N is the desired harmonic number, i.e., N = 2 means the second harmonic, and so 

on. Eq (2. 9) and Eq (2.10) describe the harmonic structure of audio signals that the ETHG 

is dealing with. The desired signal d(i) is a model of the missing higher harmonic structure 



with an arbitrary number of sinusoids in it. 

The envelope functions described in [Sche 93] may be seen in parts ofreal audio 

signals, however they do not fully represent the various randomly varying envelopes of 

audio signals. Therefore, it is needed to develop a real generic audio-like envelope 

function, which may be altered for more specific application such as speech or music if 

needed, for computer simulation of the ETHG' s performance. This envelope generation 

scheme should be a good approximation of the envelopes seen on real audio signals. Fig. 

2.2 shows the generation scheme of the input waveform, which uses autoregressive 

(AR) modeling. 

white 
noise 

ENVELOPE GENERATING 
FILTER USING AR MODEL 

COSINE 

waveform 

Fig. 2.2 Waveform Envelope Generation Model 
for a typical window. 
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The envelope function is generated by filtering a white noise sequence with the 

envelope generating filter using AR (p ), where p is the order of AR model parameters. 

The role of the envelope generating filter is to generate an envelope shape from white 

noise which statistically resembles the shape of audio signal envelopes. The AR model has 

been widely used in many signal processing areas, including speech and musical signal 

processing, because it provides a sufficiently accurate representation of given realization 

[Haye 96, RMoo 90, Kay 88]. For example, AR models with IO to 20 orders are used in 

speech signal processing, and orders of 50 to 100 are used for musical sound 

representation [RMoo 90]. 

The AR (100) model was chosen as accurate model, as discussed in Appendix 

I. Parameters of the AR model were obtained by a Box-Jenkins modeling procedure [BoxJ 

94], which is also discussed in Appendix I. Fig. 2.3 shows the block diagram of the 

envelope generation process. An overview of the modeling process, and an example using 

an envelope generated by the low pass filter in Fig. 2.3, is presented in Appendix I. 

AUDIO 

FULL-WAVE 
RECTIFIER 

LOW PASS 
FILTER 

INPUT ENVELOPE 

• :PARA~~TERS ~,;,.°!LOUT 

Fig. 2.3 Envelope Generation Process by AR modeling. 
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Note the purpose ofthis process is to generate an envelope which is slowly 

varying within a window intetval, and independent of any sinusoidal frequencies 

modulated by the envelope. In a real audio signal, the envelope amplitude is relatively 

slowly varying in a short window intetval, less than 25 msec, and is independent of 

frequency [Smit 87, Moor 90, Hall 91]. For example, an instrument can be played loudly 

or softly without changing the frequency [Hall 91]. This phenomenon may be explained by 

using the concept of simple harmonic motion (SHM), which is the same as a sinusoidal 

wave or pure tone. SHM occurs whenever the restoring force of vibration is linear. For 

example, the restoring force of a string or spring is directly proportional to the degree of 

displacement from the equilibrium status. Thus restoring forces of musical instruments 

such as violin and air-filled pipes can be described as one of SHM. The oscillation 

frequency is 

JK/M 
f= 2,r ' (2.11) 

where K is the stiflhess and Mis the mass of the medium [Hall 91]. We note that the 

oscillation frequency is not dependent on the displacement amplitude in Eq (2.11 ). 

Therefore, we may assume that the envelope function is independent of the sinusoidal 

frequency. 

Following is a brief discussion of the envelope generation process depicted in Fig. 

2.3. The purpose of this process is to generate an average power spectrum from various 

audio signals to obtain the estimated autocorrelation function (ACF). Non-overlapping 

one thousand point sections from a 3 second long audio signal, with 44 .1 KHz sampling 

frequency, were an input to the full-wave rectifier, and followed by a fifth order 
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Butterworth low pass filter with 3 dB cut off frequency of 177 Hertz, which was obtained 

from experimentation. Thus an average power spectrum of 132 power spectrums is 

obtained from this 3 second audio signal. Repeat the process more with 23 three second 

audio signals, and we obtain the average power spectrum of 24 three second audio 

envelopes. The autocorrelation function is then obtained from the inverse Fourier 

Transform of the average spectrum. After this, the AR (p ), where p is an order of AR 

model, model's coefficients are obtained by solving the Yule-Walker equation which is 

described in the Appendix I. We observed that AR (100) model, in general, accurately 

represents the average power spectrum. Fig. 2.4 (a) shows the normalized mean power 

spectrum, and Fig, 2.4 (b) shows the normalized power spectrum of AR (100) 

coefficients. Both figures show frequency range ofO to .001 Nyquist frequency. The 

estimated AR (100) parameters are shown in Appendix I. 

A comparison of statistical characteristics of envelopes from selected audio 

signals, and generated envelopes from AR filtering of white noise will be presented in the 

following discussion. 

Note here that the purpose of using the AR (100) model is to generate a waveform 

which has an arbitrary frequency with a real-audio-like envelope shape. An example of a 

generated waveform is shown in Fig. 2.5 (b). Fig. 2.5 (a) shows a section of classical 

music which is a relatively rapidly changing passage with many instruments. We see that 

the generated waveform shows considerable similarities. Note Fig. 2.5 (b) has one 

sinusoid, and Fig. 2.5 (a) has many sinusoids. Also note in Fig. 2.5 (a) that the input 

frequencies appear to be relatively stationary, and the envelope is relatively slowly varying 

during the window interval, which is generally true for real audio signals, thus generally 



(a) Normalized mean power spectrum x 10-:1 

(b) Normalized power spectrum of AR model x 1a-~ 

Fig. 2.4 Comparison of power spectrum. 

(a) Normalized mean power spectrum 
(0 - .001 Nyquist frequency). 

(b) Normalized power spectrum of AR model 
(0 - .001 Nyquist frequency). 
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Fig. 2.5 Example of waveforms (23 msec). 
(a) Real audio (Classical music). 
(b) Generated waveform (single sinusoid). 
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assumed in many references [Smit 87, Moor 90, Ando 93]. 

The histogram, and the autocorrelation function of the model envelope agree with 

those of real audio signals. Fig. 2.6 shows a histogram and autocorrelation function of a 

44100 data points envelope which is obtained from popular music (1 second long), which 

is composed of dominant voice and background music. The autocorrelation function 

shows up to .1 second. Likewise, the envelope histogram and autocorrelation plot of Fig. 

2. 7 is obtained from classical music. These plots have similar histogram shapes, and their 

autocorrelation functions show periodicities up to higher lags. These characteristics are 

typical of other real audio samples, and are also found in the histograms and 

autocorrelation functions of the model envelopes. Fig. 2.8 and Fig. 2.9 show examples of 

histograms, and autocorrelation functions of model generated envelopes. They appear to 

have similar histogram pattern, and periodicity in the autocorrelation plots, which implies 

the first and second order statistics of the model envelopes are similar to those of the real 

audio signals. Therefore the model waveforms shown here, which consist of a single 

sinusoid modulated by the generated envelope, are seen to have similar characteristics of 

real audio. · 

A word about the envelope amplitudes before we proceed further. The envelope 

amplitudes of Eq (2.9) and Eq (2.10) are the same, i.e. vh(n) is same for both Eq (2.9) 

and Eq (2.10). This assumption is not valid for real audio signals. In a real audio signal, 

the amplitude of each harmonic frequency is different. Every instrument, or every human 

has their own harmonic structure with different amplitudes at each harmonic frequency. It 

is the harmonic structure that determines a timbre of its own [Earg 95, Hall 91, RMoo 

90]. 
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Fig. 2.6 Statistical nature of real audio signal envelope. 
Histogram and Autocorrelation from a popular music 
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Fig. 2. 7 Statistical nature of real audio signal envelope. 
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In the ETHG algorithm, however, the generated output higher harmonic's 

amplitude will be approximately the same as that of the lower harmonic, because it was 

generated by using the lower harmonic structure, ifno adjustment is included. To more 

perfectly match reality, we will have to estimate the unknown amplitude of the higher 

harmonics, and analyze the subjective quality of the estimated higher harmonic amplitudes. 

Later in Chapter 4, the generated higher harmonic's amplitude will be adjusted in a 

statistical sense, and the subjective quality will be analyzed. 

Therefore, even though the assumption of equal amplitude is not valid for real 

audio signals, Eq (2.9) and Eq (2.10) are adequate models to describe the behavior of the 

ETHG algorithm's performance, which also renders good mathematical tractability. 

Details ofETHG algorithm with the model input waveform with an arbitrary envelope 

amplitude and single frequency will be introduced in section 2.3.3, followed by a 

discussion of the error characteristics of the ETHG algorithm with single frequency 

sinusoid using several windows in section 2.3.4. 



2.3.3 ETHG Algorithm: Single Frequency, Rectangular Window Case 

In this section, the ETHG algorithm will be explained in detail with a single 

frequency case using a rectangular window. This entire section is largely based on 

Scheets' work [Sche93, Sche 94]. 
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Fig. 2. IO illustrates the concept of missing higher harmonic generation [Sche 93], 

and Fig. 2.11 and Fig. 2.12 depict example signals during the higher harmonic generation 

process. It is assumed that a signal's higher harmonic is missing due to a severely narrow 

transmission bandwidth. In other words, only a signal with lower harmonic structure is 

available at the input side of the ETHG. This input signal is multiplied by a window 

with length Lin step 1, and becomes w(i), as shown in Fig. 2.11 (a), where a 256 length 

rectangular window was used. Fig. 2.11 (b) is a portion of the desired signal with same 

length as Fig. 2.11 (a). This desired signal is the second harmonic of Fig. 2.11 (a), with 

the same envelope. A 256 point Fast Fourier Transform yields W(f) in step 2. Fig. 2.11 

(c) shows the magnitude spectrum ofW(f). Note the magnitude spectrum of the desired 

signal depicted in Fig. 2.11 (d), which is a shifted version ofW(f) with different height 

and some difference at the lower and higher frequency sections. In step 3, W(f) is 

examined to determine the local peak frequency bin (Bpeak), and the phase angle of this 

bin (Bphase). The voltage spectra around this bin (Bpeak) is shifted to a bin associated 

with the proper harmonic. Frequency bins shifted to the right of L/2 are discarded. Also 

the phase angle of the relocated voltage spectra is rotated according to the local peak 

(Bphase) of the spectrum in step 4 to synchronize the generated output signal segments. 

The voltage spectra shift, and phase angle shift formulas are, 
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Voltage shift= (N-1) x Bpeak (bins), 

and 

Phase shift= (N-1) x Bphase (radians), 

where N is the desired harmonic. 

36 

(2.12) 

(2.13) 

The Output signal from the step 4 is W(f)new, which is shown in Fig. 2.12 (a). An 

L point IFFT is performed in step 5, which yields w(i) new. Fig. 2.12 (b) shows w(i) new. 

Then K (K ~ L) points from the middle section are extracted in step 6, as shown in Fig. 

2.12 (d). This middle window section is the area where the estimation error tends to be at 

the minimum. Fig. 2.12 (c) shows the squared error between the generated output signal 

and the desired signal. Note the amount of squared error in the middle of the window. 

Then the window is shifted to the right by K points in step 7, and the process is repeated 

until the shifting window spans all data points of the input. Since L >> K, the data points 

are overlapped by the window. Therefore, larger K allows less overlap in the window, 

which results in faster computation speed, while the amount of error increases. Finally all 

K outputs at each iteration are concatenated to form the final output y(i), which is the 

estimate of the desired signal which has higher harmonic structures [Sche 93, Sche 94]. 

The author noticed that the shifting of the spectrum introduces several main 

sources of error as follows [Sche 93, Sche 94]: 

- Bin resolution error is caused by the peak FFT bin and the actual unknown input 

frequency peak most likely not coinciding. As the FFT bins liefs I (L) Hertz apart, where 

fs is the sampling frequency, a shift of the spectrum based on the peak bin will usually 

result in the estimated harmonic frequency being incorrect. For example, with a constant 

amplitude sinusoid signal with a normalized frequency of .0878, and 32 length rectangular 
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window, the peak spectral magnitude lies in bin 3, where the frequency estimate is 3/32 = 

.09375 Hertz. A spectral shift of three bins results in an estimated second harmonic at 6/32 

= .1875 Hertz, whereas the actual second harmonic lies at .1756 Hertz. 

- A gap in the low frequency section appears, where some energy should be in that 

section. 

- An improper mix of aliased energy occurs in the higher frequency section. 

-An improper mix of negative frequency energy occurs in the shifted lower 

frequency section. 

Despite these errors, the author showed that for a constant amplitude, single 

frequency signal, the minimum amount of error exists in the middle of the processed 

window. The author also commented that additional work is needed to better understand 

the performance of the ETHG algorithm under various conditions before this algorithm 

can be successfully applied to real audio. Areas that need further research include : 

- Determining the optimum window size in the sense of minimizing the error while 

maximizing the processing speed. 

- Determining the optimum window type to minimize error. 

- Determining the applicability of this technique to audio signals. 

- Determining the best manner to split the energy with a multiple frequency input 

signal [Sche 93, Sche 94]. 

- Proving that, on average, the minimum error occurs in the middle of the 

processed window with a time varying envelope input signal. 

Following is a brief discussion of possible techniques which might be able to 
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reduce Scheets' initial problems with errors described above. 

The error problems mentioned above are related to the FFT length, therefore their 

effects on the accuracy of estimation are decreased as the FFT length goes up, while the 

computation load increases. The bin resolution error could be reduced by using a longer 

window, or using zero padding when it is appropriate to do so. Using a window other 

than the rectangular window may also result in reduced error. Discussions on the 

use of other window types, and implementing zero padding to improve the performance of 

the ETHG algorithm are found in section 2.3.5. 

The problem of dividing multiple peaks of the spectrum when the input signal is 

composed of multiple sinusoids may be related to the window's sidelobe magnitude. 

Windows with different sidelobe magnitude should be compared, with a notion that the 

human auditory system is more sensitive to the peaks of the spectrum than the spectral 

troughs [ Flan 72, Rabi 78, Dell 93]. 

The constant amplitude sinusoid signal used in the derivation for the estimation 

error is not a practical model for real audio signal. Envelopes of real audio signals are 

dynamically varying with time. Also, it was noticed that the error is not always 

minimum in the middle of the output window with time varying envelopes when the 

rectangular window is used. Therefore, it is necessary to understand the performance of 

the ETHG using input signals with arbitrary time varying envelopes, and to determine 

where the error is consistently minimum when other types and sizes of windows are 

implemented. This will be discussed in section 2.3.4. 
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2. 3 .4 Error Analysis 

2.3 .4.1 Introduction In this section the error criteria, and the error pattern of the 

processed output window of the ETHG are described for the single input frequency case. 

In [Sche 93], the author derived the error function for a constant envelope, single 

frequency case, and noted that the error was minimum in the middle of the window. 

However, experiments have shown that some processed time varying envelopes do 

not have a minimum error in the middle of the window. A question that needs to be 

addressed is whether or not the error in the middle of the processed window is minimum 

on average, i.e., is the middle the best place to extract output points? This question is 

discussed in the following sequence. In section 2.3.4.2 the error in the window interval is 

defined, followed by a discussion of the effects of window function in section 2.3.4.3. It 

will be noted that the truncation in frequency domain due to non-linear frequency 

translation in ETHG algorithm corresponds to a convolution between windowed wave­

form sequence and the impulse response of truncation function in time domain. This 

convolution, which depends on the choice of window type, results in distortions to the 

waveform. A prediction of the ETHG algorithm's performance, based on analysis of the 

amount of distortion of each window type, will be presented. After this discussion, the 

mean error pattern will be examined by computer simulations in section 2.3.4.4. Then it 

will be mathematically shown, in the mean sense, that the error approaches zero in the 

middle of the processed window in section 2.3.4.5. 
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2.3.4.2 Definition of Error The desired signal, from [Sche 93], given an L point 

window, is the Nth harmonic of Eq (2. 7) with the exact same envelope v(i), 

d(i) = v(i)cos(Nwa i +NS), i = 0, ... , L- 1 (2.14) 

(2.15) 

We note here that even though we use the desired signal for analysis purpose, it is not 

available in reality. The desired signal is used to analyze the general error pattern of the 

processed output window of the ETHG algorithm. 

The windowed input signal with length L, which is assumed to have the form of Eq 

(2.6), will become an estimate ofEq (2.14) after processing by the first five blocks of the 

ETHG in Fig. 2.4, as 

I\ 1 I\ I\ 

w(i)new = d(i)= w(i) [w(i)v(i)cos(Nwa i +NS)* hi(i)], i = 0, ... , L - 1, (2.16) 

I\ 

I\ f in (fin + 11.) 
where w a = 2;r fs = 2;r fs , (2.17) 

I\ 

11. is the frequency error equal to fin - f in, (2.18) 

w(i) is the window function, * denotes convolution operator, and h1 (i) is the 

impulse response of the truncation function which will be discussed in next section. 

The error signal is obtained by subtracting Eq (2.16) from Eq (2.14), which can be 

written as 

e(i) = d(i) - w(i) new (2.19) 
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1 (\ (\ 
v(i)cos(Nw di+ NS)- w(i) [w(i)v(i)cos(Nw di+ NS)* h1 (i)] 

i= 0, ... ,L-1. (2.20) 

The squared error ofEq (2.20) is going to be examined in section 2.3.4.4 by 

computer simulations using envelopes generated by the waveform generation model 

depicted in Fig. 2.2, following a discussion of convolution result between the impulse 

response of truncation function and the window function in section 2.3.4.3. We assume 

that the envelope amplitude is slowly changing within a window interval, as discussed in 

section 2.3.2. The equations from Eq (2.14) through Eq (2.20) assumes that we are using 

an arbitrary L length window. The choice of window function affects the error in Eq 

(2.19), because it affects the spectral shape in frequency domain, which in tum affects the 

amount of truncation of side lobes due to the non-linear frequency translation used in the 

ETHG. Truncation of frequency spectrum is equivalent to the convolution between the 

truncation impulse response and the windowed time domain waveform, which results in 

distortions to the time domain waveform. The amount of distortion depends on the 

selection of window function. Details of the window function, the reason why the selected 

windows were chosen, and the distortion after the convolution will be discussed in the 

following section. 

2.3.4.3 Analysis of the Effects of the Window Function A discussion of window 

functions on their roles in both time and frequency domain before the presentation of the 

simulation results seems to be necessary in order to provide a better understanding of the 

ETHG algorithm. The convolution relationship with the impulse response that truncates 
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the frequency content in frequency domain will be emphasized. Following is a discussion 

of window functions. 

It is well known that the short time Fourier Transform is useful for signals which 

are stationary for a short period. It has been widely used in audio signal synthesis [Smit 

87, Smit 91, Port 80, Moor 90], and audio signal analysis [Ando 93, Brow 93, Brow 96, 

Moor 90]. The short time Fourier Transform is defined as [Kay 88] 

00 

YJeiw )= "'f.x(m)w(n-m)e-iwm, (2.21) 
m=-oo 

where x(m) is the input signal and w(n-m) is the window sequence positioned at time n 

along the input signal. Eq (2.21) results in a convolution in the frequency domain, which 

affects the spectral distribution. 

Since we have to use a short data sequence, the problem of resolution occurs. 

It is well known that time resolution and frequency resolution of the short time Fourier 

Transform are dependent on the window size [Oppe 89, Harr 78]. A shorter window 

yields poorer frequency resolution, but the time resolution will be better since the input 

properties are averaged over short time intervals. The larger window, on the other hand, 

gives poorer time resolution and better frequency resolution. Therefore, the short time 

Fourier Transform cannot have arbitrarily good time and frequency resolution. The time-

frequency resolution is limited by the Uncertainty Principle, which is also known as the 

Time Bandwidth Product [Cohe 95]. The Uncertainty Principle describes that the 

broadness of time and frequency resolution is defined as an and aw, respectively, 

where 
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(2.22) 

and 

(2.23) 

The mean time n0 is defined as, 

n0 = fix( r)w('r- n)d,, (2.24) 

where w(n) is a window function. The mean frequency w0 is 

(2.25) 

where F(w) is the Fourier Transform of windowed signal. 

The Uncertainty Principle states 

(2.26) 

This uncertainty principle places limits on the resolution properties of the short time 

Fourier Transform procedure. 

Three different window types are used for comparison. The rectangular window 

provides the best frequency resolution, while the high proportion of energy leakage 

outside the main lobe is a problem. It is defined as [Oppe 89] 

w(i) = 1 i = 0, ... ,L - 1 (2.27) 

= 0 otherwise. 

The peak side lobe is down 13 dB from the main lobe level, and the rest of side lobes 

show fall off rate of 6 dB per octave [Jack 96]. In the ETHG algorithm, while the 

frequency content of a lower harmonic is translated into a higher position, the spectral 
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energy outside of the main lobe is truncated. Therefore, the energy outside of the main 

lobe, a.k.a., leakage problem, should be minimized in order to minimize the loss of 

frequency content during the translation. 

Truncation in the frequency domain can be explained by using an ideal low pass 

filter with a frequency response as 

H 1 (J)= I for - fc<f < fc 

0 otherwise, (2.28) 

where fc is an arbitrary cut off frequency. The time domain impulse response of this filter 

by using the inverse Fourier Transform for finite-energy digital signals [Kunt 86] is, 

h ( ) -- ffc ei2nfidij I j 
-f. 

= 
sin{2efi) 

1Ii 

We may express Eq (2.21) as 

Y{f) = X{f) * W{f) 

where * denotes convolution notation. Since the truncation of Y {f), after frequency 

(2.29) 

(2.30) 

(2.31) 

translation, by an ideal LPF corresponds to a multiplication in frequency domain, Eq 

(2.31) becomes 

Y' ( f) = [ X' ( f) * W' ( f)] HI ( f) ' (2.32) 

where X' ( f) is the translated spectrum to an arbitrary harmonic frequency N, and the 

W' ( f J is the translated window function. This concept is illustrated in Fig. 2.13. Fig. 

2.13 (a) and (b) shows an example of original spectrum and the truncated spectrum after 

frequency translation, respectively. Eq (2.32) corresponds to a convolution of the window 
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I x(f) I 

fs/2 f 

(a) 

I x'(f)I 

.- -... -----.. -.... -.... ----------------. . . . . . . . . . . . . . 
: :4--- Ht(f) 

fs/2 f 

(b) 

Fig.2.13 Spectrum translation. Note that this can be represented as the original spectrum 

IX( f JI shifted and multiplied by a rectangular window Ht( f). 
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function with the ideal low pass filter in time domain, and may be written as, 

y'(i)= x'(i)w(i) * h1 (i), (2.33) 

where x' (i) is the estimated signal with Nth harmonic frequency and the same envelope 

shape. We see in Eq (2.33) that the result y' (i) depends on the choice of window 

function. In the following discussion, we will see the convolution results between the 

selected window functions and the truncation impulse response. 

When the impulse response in Eq (2.29) is convolved with the rectangular 

window, we would see ripples in the window interval, which is the Gibbs phenomenon 

[Jack 96, Oppe 89]. It was noticed that the amount of the ripples in both comers of the 

rectangle stays the same regardless of the window length. However, the amount of the 

ripples in the middle of the window is decreased with a longer window length. For 

example, Fig. 2.14 (a) shows the result of convolution when the length of the rectangular 

window is 64, and Fig. 2.14 (b) is when the length is 256. The solid line is the rectangular 

window, and the circles represent the convolution result. We note here that as the window 

length increases, the amount of ripples in the middle of the window is decreased, however 

this still causes small distortions in the time domain waveform. 

This ripple problem is reduced when the window is tapered on both sides. The 

tapering of the window in time results in smaller frequency domain side lobes, but the 

width of the main lobe gets wider as well. When the spectrum with a tapered window is 

truncated outside of the main lobe, it will lose less energy compared to the rectangular 

window case. The tapered window also generates a smoothed convolution result in the 
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time domain, with the impulse response of the truncation function. The ripple problem in 

the window interval will be reduced, and thus less distortions to the time waveform could 

be achieved. The Hamming and Hanning window are used for performance comparison 

because they are easy to implement, provide adequate frequency resolution [Harr 78], and 

preliminary tests on other types of more complicated windows indicated that there exists 

negligible performance difference when compared to the Hanning window. The Hamming 

window is [Oppe 89] 

_( 2m) 
w(i) = . 54 - .46 co\ L _ I i = 0 , ... ,L - I (2.34) 

= 0 otherwise. 

The peak side lobe is -41 dB from the main lobe level, but the fall off rate of the 

remaining side lobes is 6 dB per octave which is same as that ofthe rectangular window 

[Jack 96]. We note here that both ends of this window are not zero, thus we see some 

small fluctuations at both ends of window interval after the convolution with the impulse 

response in Eq (2.29), which is much smaller than those with the rectangular window case. 

Fig. 2.15 ( a) and (b) shows the example of convolution result when the window length is 

64 and 256, respectively. The truncation length was L/16 of the FFT length. The solid line 

is the window, and the circles represent convolution result. Note the smoothness of the 

convolution result, except the slight fluctuations at both ends of the window. The sum of 

the absolute error of middle L/2 points between the window and the convolution result for 

the case (b) is .0292, whereas the sum of the absolute error for the rectangular window 

case in Fig. 2.14 (b) is .3732. 

Although the amount of ripple is much decreased compared to the rectangular 

window case, and therefore the distortion in the middle of the window is decreased 
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Fig. 2.15 (a) Convolution result with 64 length Hamming window. 
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Fig. 2.15 (b) Convolution result with 256 length Hamming window. 
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considerably, it could be reduced further. It was noticed that the Hanning window yields 

less error in the middle of the window, compared to the Hamming window case. The 

Hanning window is [Oppe 89] 

I 210) 
w(i) = . 5 - . 5 co\ L _ l i = 0, ... ,L - 1 (2.35) 

= 0 otherwise. 

The peak side lobe level is - 31 dB from the main lobe level, but the fall off rate of the 

remaining side lobes is 18 dB per octave [Jack 96], which is the best fall off rate among 

the compared windows. Fig. 2.16 (a) and (b) shows the convolution result with the 

impulse response of the truncation function. Note that both ends are much smoother than 

the Hamming window case. The sum of the absolute error, with a same truncation length, 

between the Hanning window and the convolution result for this case is . 0016, which is 

the smallest value. Therefore, we may say this type of window function yields the least 

amount of distortion to the time domain waveform after the convolution. Note here that 

the ideal window would be the one which does not introduce any distortion after the 

convolution, and at the same time it should not have a broad main lobe or a higher rate of 

side lobe fall off rate in the frequency domain as well. It would be impossible to obtain 

such window because of the limitation by the Uncertainty Principle. Table 2.1 shows the 

examples of sum of absolute error of middle L/2 points between the convolution result and 

the window function. The truncation length was L/8 for (a) and L/16 for {b), where Lis 

the FFT length. We observe from the table that the Hanning window apparently produces 

least amount of error. This observation enables us to predict that the performance of the 

ETHG algorithm would be at its best with the Hanning window when the simulation data 

and the real audio signals are processed. We will see that the Hanning window, which 
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Fig. 2.16 (a) Convolution result with 64 length Hanning window. 
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Fig. 2.16 (b) Convolution result with 256 length Hanning window. 
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has the smallest fall off rate of side lobes in the frequency domain and the least amount of 

distortions to the waveform after the convolution in time domain, yields the lowest error 

in section 2.3.4.4, section 2.3.5, and section 2.3.6, which in turn results in acceptable 

amount of distortion level when the real audio signal is processed in Chapter IV. 

Window Rectangular Hamming Hanning 
Len h 

64 .2085 .0154 .0035 
128 .1981 .0155 8.2766x 1 04 

256 .1931 .0154 2.0l 74x 1 04 

512 .1907 .0152 4.9879x 1 0-5 

1024 .1895 .0152 l.2407x 1 o-s 

(a) 

Window Rectangular Hamming Hanning 
Len h 

64 .4228 .0301 .0305 
128 .3865 .0285 .0068 
256 .3732 .0292 .0016 
512 .3675 .0292 4.005x1 04 

1024 .3648 .0291 9.95x1 0·5 

(b) 

Table 2.1 Examples of sum of absolute error of middle L/2 points between 
the window and the convolution result. 

(a) Truncation length is L/8 ofFFT length. 
(b) Truncation length is L/16 ofFFT length. 
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2.3.4.4 Error Pattern As stated in the beginning of section 2.3.4, the squared error 

is not always minimum in the middle of the processed window with some signals. This 

phenomenon will be examined in the following discussion. For this analysis, a 512 length 

rectangular window was used. 

The squared error pattern of the processed output window appears to depend on 

the position of the input signal energy in the window interval. When the envelope 

amplitude of an input signal is nearly constant within the window interval, or the majority 

energy is located in the middle of the window, the error appears to be minimum in the 

middle of the processed window. Fig. 2.17 (a) shows a signal with nearly constant 

envelope, and Fig. 2.17 (b) shows the squared error between the desired signal and the 

processed signal. The horizontal axis represents positions in the window interval. Fig. 2.18 

shows a case when the majority energy section is located in the middle of the window. In 

both figures, we see the squared errors are small in the middle of the window. 

When the major energy section is not located in the middle of the window, the 

minimum error position tends to be off center. Fig. 2.19 shows the squared error when the 

. 
major energy section of the input signal is located in the right side of the center of the 

window. The minimum error appears to be located in the right side of the middle of the 

window. Likewise, Fig. 2.20 shows the squared error when the major energy section of 

the input signal is in the left side. It is obvious that a low error position is moved to the left 

of the center. 
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Fig.2.17 Minimum squared error position (middle) . 



55 

4 I I 

:~~ r1 M~~ 
-2 .1 '\ ~· 

_4...__~~_._~~~~~~...__~~_._~~~~~~ 

0 100 200 300 400 500 600 
(a) Input signal 

(b) Squared error 

Fig. 2.18 Minimum squared error position (middle) 



56 

4 

2 r, 

0 

-2 

-4 
0 100 200 300 400 500 600 

(a) Input signal 

8 

6 

4 

2 

0 
0 100 200 300 400 500 600 

(b) Squared error 
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The shifting of the minimum squared error position noted above brings a question 

whether the middle section is the best place to extract output estimates or not. To find an 

answer for this, the average squared error pattern is investigated. 

To examine the mean squared error pattern, computer simulations were done as 

follows. The rectangular, Hamming, and Hanning windows were used for this simulation. 

Also, zero padding was implemented to all three window types to see the effects on error. 

The zero padding increases the resolution of the frequency spectrum, at the expense of 

increased computation load. The input signals are sinusoids with frequencies of. 05 -

.225, which modulate the envelopes that are generated by the envelope generation scheme 

in Fig. 2.3. Fig. 2.21 (a) shows the mean squared error (MSE) pattern at eight normalized 

frequencies, from .05 to .025, and the average MSE over all frequencies. The upper plot 

shows the MSE of 1000 trials at each normalized frequency, with a 512 length rectangular 

window, and the lower plot shows the average MSE, where the horizontal axis represents 

a position in the window. It appears that the average MSE is minimum in the middle of the 

window, and the middle section shows a shape of approximately quadratic curve. 

Likewise, Fig. 2.21 (b) shows the mean squared error and the average ofMSE when 512 

zeros are padded. Note the average MSE has decreased compared to Fig. 2.21 (a). 

Fig. 2.22 (a) shows plots of MSE and average MSE when the Hamming window is used. 

Fig. 2.22 (b) shows same plots when 512 zeros are padded. They also have minimum 

MSE in the middle of the window. Note the average MSE for the zero padded case 

decreased more, compared to Fig. 2.22 (a) and Fig. 2.21 (b). Likewise, Fig. 2.23 (a) and 

(b) shows MSE and average !',1SE when the Hanning window and zero padded Hanning 

window is used, respectively. Note that the zero padded Hanning window yields the 
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lowest average MSE, and the rectangular window yields the highest average MSE among 

the compared windows. These error differences will be intensively investigated in section. 

2.3.5, by computer simulations. 

These simulation results appear to indicate that the squared error of the processed 

signal is not only, on average, minimum in the middle of the processed window, but also it 

could be reduced by implementing window functions other than the rectangular window, 

and by applying zero padding. Therefore, the middle of the window seems to be the best 

place to draw the estimated output signals, in the mean squared error sense. 

We note here that even though the author in [Sche 93] assumed the envelope 

amplitude is constant, and derived that the error is minimum in the middle of the processed 

window, that assumption generally holds, in the mean squared error sense, for the sinusoid 

with time varying envelope, which are assumed to be slowly varying in the window 

interval. 

We observed in this section that the average error appears to be minimum in the 

middle of the processed output window. A remaining question is whether this average 

error pattern can be mathematically described or not. In next section, it will be shown 

mathematically that the error is, on average, minimum in the processed output window. 
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2.3.4.5 Error Analysis: Theoretical Derivation We observed in the previous 

section that the error is minimum in the middle of the window when the envelope within 

the window interval is nearly constant or when the majority energy section is located in the 

middle of the window. When the signal's major energy section is not located in the middle 

of the window, the minimum error point tends to slightly off the center. Nevertheless, we 

noticed that the mean squared error is minimum in the middle of the window. 

In this section it will be mathematically shown that, on average, the error is 

minimum in the middle of the window, i.e., the error function in Eq (2.20) approaches 

zero in the middle· of the window for a single frequency signal with a time varying 

envelope. The derivation here follows that in [Sche 93]. 

We observed in section 2.3.4.3 that the convolution between window and the 

impulse response of truncation function results in some amount of distortion to the wave-

form. It was also noted that as the window length increases the distortion amount in the 

middle of the window decreased to a smaller level, as shown in Table 2.1. The Hanning 

window produced the least amount of distortion after the convolution among the 

compared windows. Therefore with an assumption that the window length is long, the 

following equation in the right hand side of Eq (2.20) may be written as, 

I " " 
w(i) [ w(i)v(i) cos( N w d i + N 8) * ht (i)] (2.36) 

I\ I\ 

~ v(i)cos(Nwdi+NS)] i=O, ... ,L-1. (2.37) 

We assume that Eq (2.37) also holds for the rectangular window case, under the condition 

that the window length is long enough, to simplify mathematical derivation, even though 

we are aware that there exists Gibbs phenomenon on both sides of the rectangular window 
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after the convolution. Since we are taking estimates of the desired signal from the middle 

of the processed output window, we may make such assumption as in Eq (2.37), in the 

limited sense for the rectangular window case, to simplify the mathematical derivation. 

Then Eq (2.20) may be written as, 

I\ I\ I\ I\ 

e(i) ~ 2v(i) sin{.5(w d-w d)i+.5N(0-0)} sin{.5(wd+w d)i+.5N(0+0)}, 

i=O, ... ,L-1. (2.38) 

Assuming the envelope is independent of the sinusoid terms as described in section 2.3.2, 

and taking expected notation to Eq (2.38) yields 

E[e(i)] 

I\ I\ I\ I\ 

~ 2E[v(i)] E[sin{.5(wd-wd)i+.5N(0-0)}sin{.5(wd+wd)i+.5N(0+0)}], 

i = 0, ... , L- 1. (2.39) 

Eq (2.39) becomes zero when the low frequency term is equal to zero, i.e., when the 

frequency and the phase estimate is precise. It will be shown in the following discussion 

that, on average, the low frequency term approaches zero in the middle of the window, 

thus making the error signal approach zero for signals with time varying envelope case. 

The.frequency and the phase estimates are found by using the following methods. 

The first step to estimate the input frequency is to locate the local peak of the voltage 

spectrum. The local peak bin B peak is where the spectrum has the maximum magnitude. 

It is found from 

(2.40) 

where INT[•] operator indicates rounding off to the nearest integer, and Lis the FFT 



length. There are L bins , and the frequency separation of each bin is 

fs 
t:,.f=7, 

I\ 

The frequency estimate fin is found by, 
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(2.41) 

(2.42) 

. js 
This gross estimate can be off by as much as 2L Hertz, however as the FFT length 

I\ 

L ~ oo the spectrum interval t:,.f decreases, and the estimated frequency fin converges 

to the real value fin. 

I\ 

B is the phase angle of the FFT at the estimated peak frequency bin B peak . 

The Discrete Fourier Transform definition when the rectangular window is used is 

L -I 

X(f) = Lx(i)e-iZ'ffilL (2.43) 
i=O 

Evaluating at f = B peak yields 

L -I 
"""' fin - '2,zB ·IL X( B peak ) = ~ v(i) cos(2.7l'--i + B)e 1 ,,.,., 

i=O fs 
(2.44) 

L -I 

= ~v(i)cos(21l'j;i+B)[cos(2nBPeaki/ L )- jsin(2nBpeaki/ L )], (2.45) 

where)=~-

In addition to the assumption that the envelope is independent of the sinusoidal frequency, 

we also assume that the envelope is slowly varying within a short window interval, as 

discussed in section 2.3.2, and the sinusoidal frequency is a constant with a constant 

phase. The mean voltage spectrum at/= Bpeak Hertz is then, 
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E[X( B peak ) ] 

L -I 

= E[~v(i)cos(21rj;i+B){cos(27r8peaki;1, )- jsin(27r8peaki/L )}] (2.46) 

=E[v(O)cos(2x; 0+8){cos(27tBpeakO/ L)- jsin(27tBpeakOI L)} + ... + 

v(L - I) cos(21t j; (L -:-1) + 8){ cos(27tB peak (L - I) IL) - j sin(27tB peak (L - I) IL)}] 

(2.47) 

=E[v(O)]E[cos(21t; 0+8){cos(27tBpeakO/ L)- jsin(27tBpeakO/ L)}] + ... + 

E[v(L- l)]E[cos(21t 'j; (L-1) +8){ cos(27tBpeak(L-1) IL)- j sin(27tBpeak (L-1) IL)}] 

(2.48) 

We observed in section 2.3.2 that the envelopes of audio signals have a bell shaped 

probability density function. Therefore, assuming ergodicity, each envelope data point in 

the window has the same probability density function, and the expected value is 

(2.49) 

where A is the maximum amplitude of audio signal, k is the number of trials at i th 

envelope position, and i = 0, ... , L - I. Therefore, Eq (2.48) may be simplified 

as, 

E[X( B peak ) ] 

A fin 
= 2 E[cos(21t fs 0+0){cos(27tBpeakO/ L)- jsin(27tBpeakO/ L)}] + + 

A fin 
2 E[cos(21t fs (L-1)+8){cos(27tBpeak(L-1)/ L)- jsin(27tBpeak(L-1)/ L)}] 

(2.50) 
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i=O, ... ,L-1. (2.51) 

I\ 

The phase angle (} ofEq (2.46) is therefore 

L-1 fin 
-E[i~(A /2)cos(21tfti +8)sin(2nBpeaki IL)] 

L-1 fin 
E[;~(A I 2)cos(21t fs i + 8)cos(2nBpeaki IL )] 

(2.52) 

L-1 fin 
-(A I 2)E[;~cos(21tfti +8)sin(2nBpeaki IL )] 

L-1 fin 
(A/2)E[;~cos(21t fs i+8)cos(2nBpeaki IL)] 

(2.53) 

L-1 Ji 
-E[Lcos(21r_!!_i + (})sin(2nl3peaki IL )] 

i=O fs 
L-1 fin 

E[~ cos(21r fs i + (}) cos(21rB peaki IL )] 

i=O, ... ,L- 1. (2.54) 

The sinusoidal frequency, phase, and the peak bin B peak are constants, thus 

i=O, ... ,L- 1. (2.55) 

Obtaining the sum and difference frequency terms of the sinusoids in Eq (2.55), letting 

B peak = B, and then approximating the summation as an integral and integrating, as 

described in [Sche 93] for constant envelope case, yields 
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cos[(L- l)2Jra + B]-cosB cos[(L- l)2Jrfi + B]- cosB 
I\ 2Jra 2JTP B =tan-1 -~~~~~~~~~~~~~~~~-

sin[(L-l)2Jra + B]- sinB sin[(L -1)2Jrfi + B]- sin B . +~~~~~~~~ 

2Jra 2Jrfi 

(2.56) 

_ _1 {Pcos[(L- l)2Jra + B]-PcosB- acos[(L- l)2JTP + B] + acosB} 
-tan psin[(L-1)2Jra + B]- PsinB+ asin[(L-1)27rfi + B]- a sinB ' 

(2.57) 

where 

I\ 

fin B fin fin 
a=-+-=-+-

fs L fs fs 
(2.58) 

and 
I\ 

fin B fin fin 
f3=---=---

fs L fs fs 
(2.59) 

2B 
Noting that a= f3 +L, and assuming the window length L >>l, we may rewrite 

Eq (2.57) as 

I\ 

B ~ 

tan_1 {pcos[(L-1)2:,r(p +2B IL) +O]-(P +2B I L)cos[(L-1)2:,rp+O] +(2B IL) cos(}} 

psin[(L-1)2:,r(fi+2B IL) +O]+(P+2B IL) sin[(L-1)2:,rp +0]-2(P+ BIL) sin(} 

(2.60) 

_1 { P cos[27r(PL + 2B) + B]- (P + 2B IL) cos[2JTLP + B] + (2B I L) cosB } 
tan p sin[2Jr(PL + 2B) + B] + (P + 2B IL) sin[(2JrLp + B]- 2(P +BIL) sin B 

(2.61) 
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_1 { P( cos[21rPL + O] - cos[21rLP + O]) + 2B IL( cos 0- cos[21rLP + O]) } 
tan P(sin[21rPL + O] + sin[2m,p + O]- 2 sin 0) + 2B IL{ sin[2m,p + O]- sin 0 

(2.62) 

-I { 2B IL( cos 0- cos[21rL/J + O]) } 
= tan 2P(sin[21rPL + O]- sin 0) + 2B I L(sin[21rLp + O]- sin 0) 

(2.63) 

_1 { (cosO- cos[2m,p + O]) } 
= tan (PL! B+l)(sin[2m,p+O]-sin0) 

(2.64) 

= tan 
_ 1 { sin[ 1rL/J + O] sin m,p } 

(/JL /B + l)cos[1rL/J + O]sinm,p 
(2.65) 

_1 { sin[m,p + O] } 
= tan (PL I B + 1) cos[m,p + O] · 

(2.66) 

Note that PL I B << 1 because the value of~ is usually less than 1/2L and the peak bin B 

is usually greater than 1. So Eq (2.66) becomes 

I\ 

o ~ m,p+o. (2.67) 

I\ 

Note in Eq (2.67) that the expected value of O. asymptotically converges to O as the 

I\ 

length ofFFT increases. Therefore, 0 is an unbiased estimator of phase. 

Substituting Eq (2.67) into Eq (2.38) yields 

E[e(i)] 

I\ I\ 

~ 2E[v(i)]E[ sin{.5(w a- w a )i+.5N1tl~)} sin{ .5(w a+ w a )i+.5N(1tl~+ 28)}], 

i=O, ... ,L-1. (2.68) 

The low frequency sinusoid in Eq (2.68) makes E[e(i)] equals to zero when 
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/\ 

[.5(wa-Wa)i+.5N7tl~]Mov211 = 0, i = 0, ... , L- 1, (2.69) 

where MOD 21t indicates Modulo 21t arithmetic. Further simplifying Eq (2.69) yields, 

[N21CAi I Js+ N1tL~]MoD2 11 = 0 (2.70) 

= [ 2/li I fs + LPlMov211: (2.71) 

= [ 2/li I Js- LA Ifs ]Mov2n: (2.72) 

= [ 2i - L]MOD2n: (2. 73) 

When i = L/2, Eq (2. 73) equals to zero, hence Eq (2.38) approaches zero in the mean 

sense, which was also observed in the previous section via computer simulations. 

The mathematical derivation for non- rectangular window case is complicated due 

to the fact that the complexity of convolution operator does not lend a closed form 

solution for Eq (2.52). However, we may say the result ofmatheinatical derivation holds 

stronger for the Hamming and Hanning window cases, based on empirical analysis in 

section 2.3.4.4. Discussions on analysis of the output error via computer simulation when 

parameters such as window type, window size, and the zero padding are adjusted for 

single and multiple frequency case in the following sections support above theoretical 

result. 
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2.3.5 An Analysis of the Single Frequency Case 

In this section, a general description of the simulation, an introduction of the 

window selection criterion (WSC), and computer simulation results will be presented. 

Through the analysis of the simulation results, we will verify that the theoretical 

prediction, which was based on theoretical analysis of window function in section 2.3.4.3, 

agrees with the results of computer simulation. In section 2.3.5.1, the simulation results 

from a constant envelope, single sinusoid model are presented. Section 2.3.5.2 contains a 

discussion of the simulation results from the time varying envelope, single sinusoid model, 

which was described in section 2.3.2. A discussion of the WSC based on the results of the 

time varying envelope, single sinusoid model is then presented. 

Following is a general description of the simulations. 

- The window lengths Lare 32, 64, 128,256, 512, and 1024. Window lengths 

less than 1024 points were selected, because of the time varying nature of audio signals. 

Brown suggested that the time resolution of less than 25 msec is desirable for analyzing 

computer music [Brow 93]. 25 msec corresponds to 1102 points at 44.1 KHz sampling 

rate, thus 1024 point window is the maximum window length for this simulation. 

- L length rectangular, Hamming, Hanning, and zero padded Hanning 

window with L/2 data points and L/2 zeros are used. 

- Normalized frequencies of .05 to .225 are used with an increment of .025. 

There are a total of 8 normalized frequencies used. 

- The number of output points in the middle of the output window K is varied 

from 2, 4, ... , L/2. 
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The Normalized Squared Error (NSE) was chosen as the performance figure of 

merit for this estimator, despite the possibility that other error functions may be better 

suited for audio signals. NSE was chosen to both facilitate the analysis and because no 

known objective error function precisely describes the relationship between low and high 

errors, and what sounds good. A small NSE will have a strong correlation with good 

perceptive quality of voice or music, however a high NSE does not necessarily mean 

poor sound quality. The NSE is defined as, 

(2.74) 

where Mis the number of data sample points, and e(i) is the error signal defined in 

Eq (2.19). Note that a large value ofNSE could result in Eq (2.74) when the desired 

signal is near zero, i.e., a silence portion in between speech or music frames. This problem 

can be alleviated by excluding the silence portions from error calculations. 

A mean NSE, denoted as the MNSE, is calculated for each combination of L, K, 

window type, and normalized frequency. The desired MNSE is set below .01, at every 

frequency, for the constant envelope, single frequency case, and .02 for the time varying 

envelope, single frequency case. These numbers (.01 and .02) are based on experience, 

and represent 1 % and 2 % error power with respect to the signal power. For example, in 

the constant envelope, time varying case, let the window length L = 32 and K = 2, and we 

observe the computer generated MNSE at each normalized frequency. If the MNSE is 

below . 01 at all frequencies then we can take 2 points from the output as a part of the 
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generated signal with higher harmonic frequency. If the MNSE is over .01 in any of the 

normalized frequencies, then the estimate is not assumed to be suitable for output because 

the error is higher than the threshold value. We then observe the MNSE at K = 4 for all 

frequencies, and so on. 
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2. 3. 5 .1 Result 1 : Constant Envelope, Single Sinusoid The constant envelope 

single sinusoid with random phase is used as an input to the ETHG. For this experiment, 

the desired output is the second harmonic frequency of this sinusoid. As discussed before, 

the estimation error is minimum in the middle of the output window. Therefore, K output 

points are extracted from the middle of each output window. Table 2.2 shows a 

comparison of obtainable K when the MNSE is desired below . 01 at all eight normalized 

frequencies, which are varying from .05 to .225, for this constant envelope single sinusoid 

case. The MNSE is the mean NSE of2000 trials at each frequency. 

OBTAINABLE K WHEN MEAN NSE IS BELOW 0.01 AT ALL NORMALIZED 
FREQUENCIES (2000 TRIALS AT EACH FREQUENCY) 

FFI' RECTANGULAR HAMMING HANNING HANNING 
LENGTH(L) (L/2 ZEROPAD) 

32 0 0 0 0 

64 0 8 8 4 

128 8 16 16 16 

256 32 32 32 32 

512 64 64 64 64 

1024 128 128 128 128 

Table 2.2. Obtainable K for constant envelope, single sinusoid. 
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The MNSE of rectangular, Hamming, Hanning, and Hanning window with L/2 

zero padding are compared as a performance measure. Note here that the FFT length is L. 

In Table 2.2, no window oflength 32 yielded an acceptable MNSE. At L = 64, the 

Hamming and Hanning windows allow a larger K than a 32 point Hanning window with 

32 point zero pad. The rectangular window yields unacceptable results. 

At L = 128, 256, 512, and 1024 all window types yield same number of K, except 

at L = 128 where the rectangular window shows less K. It was observed that the 

rectangular window yields higher MNSE. Fig. 2.24 shows a comparison of the average 

MNSE, which is the average of eight MNSEs at eight normalized frequencies and 2000 

random phases, of each window type with L = 256, 512, and 1024. The rectangular 

window appears to yield the highest average MNSE. 

Generally, the number ofK is proportional to L/8, which means K =128 when L 

=1024, K = 64 when L = 512, and so on. 

Fig. 2.25 and Fig. 2.26 show the average MNSE with K = 4 and K = 8, 

respectively. The horizontal axis represents the window length L. Fig. 2.27 shows the 

case with K = 16 and L from 128 to 1024. Likewise Fig. 2.28 is for K = 32 and 

L of256 through 1024, and Fig. 2.29 is for K = 64 with L of 512 and 1024. Fig. 2.30 

shows the average MNSE for K = 128 when L = 1024. Here the Hamming and Hanning 

windows show the lowest MNSE, while the rectangular window shows a higher MNSE. 

We note that as the window length increases, the average MNSE decreases, as 

shown in Fig. 2.25 through Fig. 2.29. 

In general, the performance of the windows described above do not show a 

significant difference for the constant envelope single sinusoid case. 
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Average MNSE(K=4) 
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Fig. 2.25 Average MNSE for L = 64, 128, 256, 512, 1024, K = 4 
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Average MNSE(K=S) 
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Fig. 2.26 Average MNSE for L = 64, 128, 256, 512, 1024, K = 8 



Average MNSE(K=16) 
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Fig. 2.27 Average MNSE for L = 128,256, 512, 1024, K = 16 
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Average MNSE(K=32) 
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Fig. 2.28 Average MNSE for L = 256, 512, 1024, K = 32 
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Average MNSE(K=64) 
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Fig. 2.29 Average MNSE for L = 512,1024, K = 64 



85 

Average MNSE(K=128) 
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Fig. 2.30 Average ofMNSE for L =1024, K=l28. 
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The constant amplitude sinusoid is not a realistic model for real audio, because 

the envelope of an audio signal is generally dynamically varying. But a general assumption 

is that the amplitude is slowly varying within short window interval [Smit 87, Brow 93, 

Port 81]. It was noticed in section 2.3.4 that when there is a significantly sharp transition 

point in the window, a significant amount of error may be found in the middle section, 

depending on the position of the transition. Nevertheless, we observed in section 2.3.4, 

by theoretical derivation and computer· simulation, that the average errors in the middle 

section of the processed output window were minimal. 

In the next section, a discussion of computer simulation results from time varying 

envelope sinusoids will be presented. It will be shown that the average MNSE is decreased 

as the window length increased, and the zero padded Hanning window yields the lowest 

average MNSE, for the input signal with a time varying envelope case. 
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2.3.5.2 Result 2: Time Varying Envelope. Single Sinusoid This section discusses 

the experimental results from a single input sinusoid with a time varying envelope model. 

Similar to the previous section, the normalized frequency is varied from .05 to .225. Fig. 

2.5, in section 2.3.2, shows examples of input signals generated by the model in Fig.2.2. 

Input signals were generated by the waveform generation scheme which was discussed in 

section 2.3.2. In order to make a more exact comparison, theinitial seed was fixed, and 

the consecutive seeds of the random.number generator were adjusted in a controlled 

manner to generate exactly the same envelope shapes for different window types. Again, 

the MNSE is a mean NSE of2000 trials at each normalized frequency and K, however, 

the desired MNSE was set below . 02. 

It was observed that there are larger errors in the middle of the output window 

compared to the constant envelope, single frequency case. Only the zero padded Hanning 

window achieved the MNSEs below . 02 at all normalized frequencies, under specific K 

values. The last column in Table 2.3 shows that the Hanning window with zero padding 

has obtainable Kat every window length, except L = 32, while other windows yielded 

none. Table 2.4 shows the MNSE of the rectangular, Hamming, Hanning, and Hanning 

window with zero padding at each K and normalized frequency with 1024 FFT length. 

The Hanning window with zero padding shows the lowest MNSE among the window 

types. For example, note the highlighted rows at K = 128. Fig. 2.31 is a plot of the MNSE 

with 1024 length rectangular, Hamming, Hanning, and 512 length Hanning window zero 

padded with 512 zeros at 8 normalized frequencies. The MNSE is shown when K = 128 

points are extracted from the middle of estimated signal at eight different normalized 

frequencies. It shows that the 512 length Hanning window zero padded with 



OBTAINABLE K WHEN MEAN NSE IS BELOW 0.02 AT ALL NORMALIZED 
FREQUENCIES (2000 TRIALS AT EACH FREQUENCY) 

FFT RECTANGULAR HAMMING HANNING HANNING 
LENGTH(L) (L/2 ZEROPAD) 

32 0 0 0 0 

64 0 0 0 4 

128 0 0 0 8 

256 0 0 0 16 

512 0 0 0 32 

1024 0 0 0 128 

Table 2.3. Obtainable K for time varying envelope, single sinusoid. 
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Window K Normalized frequency 
T e .05 .075 .1 .125 .15 .175 .2 .225 
Rectangular 2 .025 .016 .0432 .0238 .0389 .033 .0241 .0816 

4 .0158 .015 .0461 .0193 .0428 .0268 .0151 .0551 
8 .0217 .0148 .0459 .0164 .0428 .0222 .0145 .0469 
16 .0313 .0216 .0482 ,0118 .0469 .0202 .0206 .0548 
32 .0265 .0219 .0492 .009 .047 .0154 .0176 .0558 
64 .0186 .0156 .0459 .0049 .0441 .0127 .0137 .0482 
J®fI @\jj/ )i.jJ1{ Ai~lJ )®.f,Wi @Wi JhUt i:ffftlC Ji.@# 
256 .0179 .0163 .0616 .0017 .061 .0154 .0156 .0627 
512 .0372 .0362 .1382 .0013 .1379 .0355 .0357 .1383 

Hamming 2 .0117 .0108 .0199 .021 .0159 .0251 .0124 .0352 
4 .0106 .0093 .0206 .0167 .0171 .0189 .0092 .0274 
8 .0166 .0097 .022 .0142 .0193 .0157 .0094 .0248 
16 .0264 .0167 .0243 .0105 .0229 .0138 .0152 .0295 
32 .0215 .0172 .0252 .009 .0224 .0104 .0129 .0313 
64 .0134 .0107 .0212 .0049 .0194 .0076 .0086 .023 
{;,~( iiUJlJ @Jiff 1®.ilf i®.ilf li~f »l~iE ;mtM i®.tif 
256 .0125 .Oll .0367 .0017 .0361 .0101 .0103 .0375 
512 .0313 .0303 .113 .0013 .1127 .0296 .0298 .113 

Hanning 2 .0111 .0105 .0184 .0209 .0143 .0246 .0118 .0339 
4 .0104 .0089 .0189 .0166 .0152 .0184 .0088 .0266 
8 .0163 .0094 .0204 .0142 .0178 .0153 .0091 .0235 
16 .0261 .0165 .023 .0104 .0215 .0134 .015 .0279 
32 .0212 .017 .0239 .009 .0209 .0101 .0126 .0297 
64 .0131 .0104 .0198 .0049 .0179 .0073 .0083 .0214 
t@r ;m~r 1W.IH »i~r i~j@ ;J;f~f 1@.ij~j ti®t:r »urr 
256 .0122 .0107 .0352 .0017 .0347 .0098 .01 .036 
512 .0308 .0299 .lll4 .0013 .llll .0292 .0294 .1115 

Hanning 2 .0103 .0057 .0084 .0098 .0064 .009 .007 .0131 
w/zeropad 4 .0109 .0065 .0089 .008 .0073 .0076 .0054 .0164 

8 .0153 .0094 .011 .0079 .0097 .0076 .007 .0152 
16 .021 .0155 .0161 .0089 .0138 .0099 .Oll7 .0182 
32 .0154 .012 .0138 .007 .0113 .007 .0088 .0167 
64 .0101 .0076 .0109 .0042 .0095 .0051 .0059 .0122 
asr i@.fi @Jiff Ji.itif \@.jijj fillif »Iii/ @ri.Mt :JtUt 
256 .0106 .0094 .0293 .0017 .0288 .0084 .0086 .0298 

Table 2.4 Comparison ofMNSE (FFT length= 1024). 
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Fig. 2.31 MNSE for FFT length= 1024, K = 128. 
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512 zeros yields the smallest estimation error at every normalized frequencies. 

Similar results were also observed at other window lengths. Fig. 2.32 shows the 

average of MNSEs at eight normalized frequencies when K = 4 points are taken with L of 

· 64, ... , 1024. We see that the rectangular window produces the highest estimation error 

on average, and the zero padded Hanning window yields the lowest average estimation 

error. Also, in Fig. 2.33 through Fig. 2.36, we note that the zero padded Hanning window 

yields the lowest MNSE at every window length. 

The average MNSE generally seems to decrease and more K can be taken as the 

window length increases, as shown in Fig. 2.32 through Fig. 2.35. The allowable K is 

proportional to L/16 for window lengths of 64, ... , 512, and L/8 for 1024 length. 

However, increasing the window length also increases the computation load, 

which results in a longer time to generate the estimate. Therefore, we should find an 

optimal window length which satisfies the required minimum MNSE , which is . 02, and 

optimizes the computation speed. 

The window selection criterion (WSC) was developed to find an optimal window 

length in the sense of maximizing the computation speed under the desired MNSE. There 

are three factors to consider. First, the FFT computation load which is proportional to 

L log2 L additions and multiplications. We will use L log2 L for simplicity. The number 

of available K points also affects the speed (!f the whole process of generating an 

estimate of the signal with higher harmonics. The third factor is the difference ofMNSE, 

however, it is not clear how to calibrate the MNSE difference into the WSC calculation, 

because it depends on psychoacoustic perception. Therefore, based on the K value, and 
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the window length, the optimal window size and type where the FFT computation load 

and number of output points K produce an optimal computation speed under the desired 

MNSE will be determined. 

The window selection criterion (WSC) is defined as 

FFI;oat1 
WSC=-K~ (2.75) 

where 

FFI;0 at1 is the FFT computation load, 

FFT computation load = L log2 L [Oppe 89], (2.76) 

and K is the obtainable K at window length L. The smaller the value of the WSC 

the smaller the overall computational load will be. 

Table 2.5 shows the WSC values at various FFT lengths using the Hanning 

window with zero padding technique, based on results found in Table 2.3. The 2048 

length FFT (1024 zero padded) is added for comparison purpose. The minimum WSC 

value is achieved with L = 1024 with 512 zeros padded. 

Note here that with 2048 FFT, K = 256 is obtained. The 2048 length FFT also 

yielded K of 128 with MNSEs less than .01 at all normalized frequencies. Table 2.6 shows 

the average of MNSEs at eight normalized frequencies, with K values from 2 to 128. It is 

obvious that the 2048 length FFT yielded less average MNSE. 

Even though the minimum WSC value is located at 1024 FFT length, it should be 

used with caution because the difference ofMNSE between other FFT length was not 

considered. In other words, the minimum WSC value does not guarantee the best 

perceptive sound quality, since it is only a computation speed measure based on MNSEs 
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FFT K FFTLOAD wsc 
LENGTH 

64 4 384 96 
128 8 896 112 
256 16 2048 128 
512 32 4608 144 
1024 128 10240 80 
2048 256 22528 88 

Table 2.5 Window Selection Criterion (WSC). 

K AVERAGE MNSE 
1024FFT 2048FFT 

(5 I 2 data, 5 I 2 zeros) (1024 data,1024 zeros 
2 .0087 .0084 
4 .0089 .0072 
8 .0104 .0087 
16 .0144 .0138 
32 .0115 .0132 
64 .0082 .008 
128 .008 .0057 

Table 2.6 Comparison of average MNSE of 1024 FFT and 2048 FFT. 



below the threshold value .02. How to allocate a weight for MNSE difference between 

window lengths on the WSC calculation is not clear at this moment, thus it was not used 

in the WSC value. The effects of error difference on the subjective quality should be 

analyzed by hearing test, etc., and it will be discussed in chapter 4. 
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We note here that the zero padding enhances the resolution of the frequency 

spectrum, but the window length should not be too small. For example, at L = 32 the 

zero padding was not observed to make any improvement. The window length should be 

minimum of 64 in this case. Note in the constant envelope case, we observed that zero 

padding does not make any performance improvement over Hamming and Hanning 

window. However, zero padding achieved more K values compared to the rectangular 

window as shown in Table 2.2. In the next section, some simulations with multiple input 

frequencies are done to see whether the zero padded Hanning window consistently yields 

the lowest MNSE. 
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2.3.6 The Multiple Frequency Case 

In this section, the average error pattern will be investigated when the input signal 

has multiple frequencies, and will be followed by a discussion of differences of MNSEs 

between window types. 

The average squared error pattern is investigated in the following discussion. For 

this experiment, two constant frequency sinusoids modulated by an envelope which was 

generated by the envelope generation scheme discussed in section 2.3.2 were generated. 

The frequencies of these sinusoids were independent and uniformly distributed between 

normalized frequencies ofO and .23 Hertz. Fig. 2.37 shows a block diagram of the 

generation scheme for a typical window. It shows that sum of the two sinusoids are 

modulated by envelope function. It appears that the estimation error is, in general, also 

minimum in the middle of the window for this case. Fig. 2.38 shows an example plot of 

mean squared error between the desired signal and the generated output when the 512 

length Hanning window is used. This plot is a mean of 2000 trials. The minimum mean 

squared error is shown to be in the middle of the processed window. This behavior was 

consistently observed with other window types and lengths. Note the minimum error is 

larger than the minimum error in Fig. 2.23, which is a plot for single frequency case. This 

increased error is not unexpected, because, unlike the single frequency case, two 

overlapping spectral magnitude should be separated in this case. For this simulation, 

spectral peaks were separated at the minimum spectral magnitude point in between them. 

In general, separating two spectral peaks by the minimum magnitude point or by the 

middle point did not cause significant differences. 
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Computer simulations were performed to examine the MNSE difference between 

the rectangular, Hamming, Hanning, and the zero padded Hanning windows, using the 

signal generated by the scheme in Fig. 2.37. It was also observed that the Hanning 

window with zero padding consistently yields more K points with less errors. Table 2. 7 

shows a comparison of obtainable K when the MNSE from 2000 trials is less than . 02, for 

two sinusoid input case. 

COSINE WITH 
FREQUENCY1 

COSINE WITH 
FREQUENCY2 

AR FILTER 

OUTPUT 
SIGNAL 

WHITE 
NOISE 

Fig. 2.37 Waveform with double frequencies generation for typical window. 
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Fig. 2.38 Mean squared error, 512 length Hanning window. 



FFT 
LENGTH(L) 

32 

64 

128 

256 

512 

1024 

OBTAINABLE K WHEN MEAN NSE IS BELOW 0.02 
(2000 TRIALS) 

RECTANGULAR HAMMING HANNING HANNING 
'2 ZEROPAD) 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 4 

Table 2. 7. Obtainable K for time varying envelope, double sinusoid. 
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Each entry in Table 2.7 represents a mean of2000 trials. Note the K points are decreased 

to 4 at FFT length L = I 024 and no K points are shown for other windows. This result 

shows that the zero padded Hanning window consistently yields lower estimation error, 

even though the error amount is larger compared to the single :frequency case. Another 

look at this two sinusoid case is presented in the following discussion. 

Fig. 2.39 shows a comparison ofl\1NSE when K = 32, for window length of 256, 

512, and I 024, using rectangular, Hamming, Hanning, and zero padded Hanning window. 

The zero padding length is same as the window length for this plot, where as L/2 zero 

padding was used for plots in section 2.3.5. Again, each point in the plot represents a 
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mean of2000 trials. Likewise Fig. 2.40, and Fig. 2.41 shows when K = 64, and 128, 

respectively. The MNSE is decreased as the window length goes up, and the zero padded 

Hanning window shows the lowest MNSE. In Fig. 2.41, the MNSE from 2048 length FFT 

using 1024 zero padded Hanning window shows the lowest MNSE. We also noticed in 

single frequency case (Table 2.6) that the 2048 length FFT using Hanning window with 

1024 zeros yielded the lowest MNSE. The MNSE of 2048 length FFT is . 0291, and non­

zero-padded 1024 FFT using Hanning window is .0346. The MNSE from zero padded 

2048 FFT is 16 % lower than that from 1024 FFT. 

We_ observed in this section that the zero padded Hanning window consistently 

yields lower MNSE. Note this result shows· conformity to the prediction made in the 

section 2.3.4, which predicted improved performance from the Hanning window. It was 

noticed that the zero padded 2048 length FFT yields 16 % lower MNSE than the non­

zero-padded 1024 FFT. The effect of this difference on subjective listening quality will be 

tested in chapter 4. 
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2.3.7 Summary 

We have discussed that there is no algorithm designed specifically for enhancing 

the quality of severely bandlimited audio, and possible applications of the ETHG 

algorithm in section 2.2 and 2.3, respectively. 
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An envelope waveform model was introduced in section 2.3.2. The waveform 

model is used for simulation purposes, and matches the first and second order statistics of 

real audio envelopes. 

In section 2.3.3, the general description and sources of error for ETHG algorithm 

were presented. An important convolution relationship between the impulse response of 

the frequency truncation function and the window function was discussed in section 

2.3.4.3. The Hanning window produced the least amount of distortion among the 

compared windows. A prediction, based on theoretical analysis of the convolution result, 

was made that the Hanning window would yield the best performance. It was also shown, 

by computer simulations in section 2.3.4.4 and by theoretical derivation in section 2.3.4.5, 

that the mean squared error is minimum in the middle of the processed window. 

Computer simulation results in section 2.3.5 and section 2.3.6 appear to indicate 

that the Hanning window with zero padding yields the least amount of MNSE, which 

agrees with the prediction made in the section 2.3A.3. 

The window selection criterion was discussed as a reference to find an optimal 

window size for optimal computation speed. Also, the need to do listening tests to find out 

the effect ofMNSE difference on subjective listening quality was addressed. 
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CHAPTER ID 

DISTORTION MEASURES 

3. I Introduction 

The signal after processed by the ETHG algorithm is different from the desired 

signal due to the errors discussed in section 2.3.4. The amount of difference can be 

evaluated either by objective distortion measures or by subjective quality tests. Subjective 

tests are, in general, time consuming, difficult to reproduce, and may be inconsistent. On 

the other hand, objective measure can be repeated with consistency, and reliability [Beer 

92, Pali 92, Quack 88]. It is generally believed that an objective distortion measure should 

not be computationally intensive so that the actual distortions can be easily computed, and 

have some correlation with the subjective perception of quality [Gray 80, Quac 88]. We 

note that there is no universal objective quality measure that can explain the characteristics 

of any processed output signal. They are usually designed for a specific application. 

This chapter serves as a literature survey of some objective distortion measures in 

use today. In the following section, several types of time domain and frequency domain 

distortion measures will be briefly discussed. The discussion includes their usefulness for 

ETHG algorithm with advantages and disadvantages. 
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3 .2 Time Domain Distortion Measure 

Time domain distortion measures typically evaluate the difference of certain set of 

compared signals. Usually, when there is a small error, it is highly correlated with a good 

subjectively perceived quality [Beer 92]. 

The main drawback of time domain distortion measures is the inability to explain 

psychoacoustic perception. For example, even though a slight phase misalignment 

between two signals may cause a high distortion measurement, the human auditory 

system may not perceive any difference. This is due to the fact that human ear is 

insensitive to phase distortion [Wang 82, Kubi 91]. We note that there are cases when the 

phase information is critical, such as noise, or echo suppression by an adaptive signal 

processing technique [Hayk 96, Widr 85]. 

Following is a discussion of some selected time domain distortion measures. 

3 .2.1 Signal to Noise Ratio 

The signal to noise ratio (SNR) has been widely used in many signal processing 

areas due to its simplicity and tractability. The original unprocessed signal is needed to 

calculate the SNR, so it is useful for measuring the quality of audio enhancing or coding 

systems [ Dell 93, Kubi 91, Quac 88]. SNR is defined as [Dell 93] 

I:d2(n) 

SNR = 10 log!O n " 

L[d(n)-d(n)]2 
(3.1) 

n 

I\ 

where d(n) is the original signal, and d(n) is the processed output signal. 
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SNR tells us the ratio of signal power versus the error power. Therefore, it is meaningful 

when the degree of differences between the original signal and a processed signal is 

compared. There are cases, however, that small SNR does not necessarily mean poor 

subjective perception quality. For example, even though a processed signal with a phase 

distortion shows a smaller SNR, the human ear may not detect the difference. This is a 

major drawback of SNR when phase distortions exist in the processed signal. 

Despite this problem, SNR is an important distortion measure because the ear is 

very sensitive to amplitude and frequency distortions [RMoo 90]. A higher SNR between 

the original and a processed signal indicates that the two signals have little differences, 

because the SNR is based on sample-by-sample differences. Therefore, a processed signal 

that yields high SNR may be said to be a good estimate of the original signal. 

Many variations of SNR have been proposed so far, such as segmental SNR, and 

frequency weighted segmental SNR. Among them, the frequency weighted segmental 

SNR is discussed as follows. 

3 .2.1.1 Frequency Weighted Segmental SNR The frequency weighted segmental 

SNR ( SNRfw_ seg ) puts weight on frequency bands which is proportionally spaced to the 

ear's critical bands. The purpose of the frequency weight is to closely approximate 

psychoacoustic perception. Therefore, a knowledge of the frequency-dependent critical 

bands is needed. Among many different types of SNRfw-•eg, Tribolet's formula is 

introduced here. It is expressed as [Dell 93] 



112 

(3.2) 

where Mis the number of frames, K the number of frequency bands, w is the weight, 

E s,k (m j) is the short term signal energy contained in the kth frequency band for original 

signal frame, and E &,k (m j) is the noise energy in the kth frequency band. SNRrw_ seg 

measures the perceptive quality of a processed signal better than the standard SNR and 

SNR seg [Dell 93, Quac 88]. However, due to the complexity of frequency-dependent 

weighting function, it was not implemented for the ETHG. 

3 .2.2 Mean Sguare Error 

. The mean square error (MSE) between the original signal d(n) and the 

A 

processed output signal d(n) is defined as 

A 

MSE = E[{d(n)-d(n)} 2 ] , (3.3) 

where Eis an expected value operator. 

MSE has been widely used in many areas of signal processing such as Wiener filtering and 

Widrow's adaptive Least Mean Square (LMS) algorithm [ Hayk 96, Widr 85]. 

MSE was used in section 2.3 .4 to show that the error was minimum in the middle 

of the processed output window. Since it does not show the ratio of error amount with 

respect to the desired signal power, which gives a clear indication of error percentage for 

both large and small signal power sections, its use was limited to section 2.3.4. 
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3.2.3 Normalized Squared Error 

The normalized squared error (NSE) is an energy ratio of the desired signal and 

error signal between the desired signal and processed signal. It was used in [Sche 93] and 

[Sche 94] to facilitate the performance analysis of the ETHG algorithm. NSE is defined in 

Eq (2.32), and rewritten as 

M 

Le2(n) 

NSE= n=O (3.4) M 

Ld2<n) 
n=O 

where Mis the number of data sample points, and e(n) is the error signal between 

the desired signal and processed signal. We note that the desired signal is available only 

for simulation, and is not available in reality. The NSE weights the error measured with 

respect to the signal power, so that large errors occurring during periods oflarge signal 

power are not so important as the same amount of error occurring during a period of small 

signal power. This ratio of error power versus desired power is very important in 

subjective quality, because the human auditory system tends to be more sensitive to the 

errors for small signal power period than the errors at large signal power period, due to 

the masking effect. So, a smaller NSE is highly correlated with better subjective quality 

[Beer 92]. However, we note that a higher NSE value does not necessarily mean a poorer 

audio quality, since NSE does not wholly correlate with the perceptive nature of the 

human ear. 

NSE measure can be erroneous with a silence segment of the desired signal, which 

does not affect the accuracy of the error analysis. This erroneous portion may be avoided 
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by not including the silence segment of signal into calculation of NSE. 

The mean normalized squared error (MNSE) is a mean value of K trials with M 

length signals, and it is statistically more reliable than the single NSE. 

MNSE is defined as 

M 

MNSE- J..f ~e'(n) 

K T=1 fd2(n) 
(3.5) 

n=O 

where K is the number of trials. In the computer simulation section in chapter 2, we used a 

target MNSE of . 0 I for constant envelope, single frequency case, and . 02 for time varying 

envelope, single frequency case, to compare the performance of windows. As stated 

before in Chapter 2, these numbers were borne out of experience. We noticed that the 

MNSE is a convenient tool to compare different windows with different lengths, with 

good mathematical tractability. 

3.3 Frequency Domain Distortion Measure 

Frequency domain distortion measures generally use the second order statistics of 

the compared signal. The power spectrum is estimated by many techniques such as 

periodogram, modified periodograms, and linear prediction (LP) [Haye 96, Kay 88]. 

In general, a frequency domain distortion measure has more ability to explain the 

psychoacoustic perception characteristics [Kubi 91, Itak 70, Dell 93]. 
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3. 3. 1 Distance Measure 

The distance measure is the most common spectral distortion measure, and it 

shows the difference between the input power spectrum and output power spectrum, 

based on frames. A unweighted LP norm is defined as [Kubi 91], 

I 

[ 
1 L-1 p]P 

D= L~{PY;-PXj} , (3.6) 

where PY; and PXj represent the output and input power spectrum at the ith frequency, 

Lis the number of frequency points, and pis the distance norm. The most commonp 

selections are 1, 2, and oo, and 2 ( root mean square) is most popular because of analytical 

tractability [ Gray 80]. However,p = 8 provides better correlation to subjective quality 

thanp = 2 [ Kubi 91]. Note a larger value ofp puts more emphasis on large spectral 

distances [Quac 88, Kubi 91]. 

This distance measure is insensitive to a slight misalignment of input signal and 
' 

output signal frames because a slight misalignment between the signals causes negligible 

differences in the power spectrum. Therefore, it is a more reliable measure of the 

subjective quality than the time domain distortion measures [Kubi 91]. 

A :frequency weighted LP norm is 

I 
L-1 p 

L PXjlPJ:-PXj( 
D = ___ i=_O ______ _ 

L-1 (3.7) 

LPXj 
i=l 



Eq (3. 7) puts more weight on the distortion in the region of greater spectral energy 

[Kubi 91, Quac 88]. 

3.3.2 Other Spectral Distance Measures 
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Many spectral distance measures are generally designed to describe the subjective 

quality of specific application areas [Dell 93, Kubi 91, Quac 88]. Following are brief 

descriptions of some selected distortion measures. 

The Information index uses the human auditory model to describe the transmission 

loss, circuit noise, room noise, attenuation, frequency distortion, and side tone [ Kubi 91]. 

It divides the spectrum into 16 critical bands, and applies frequency weights and hearing 

thresholds to compute the signal-to-distortion (SOR) ratio. The SOR is then used for 

calculation of Information index. This process is complicated due to the weighting 

functions for frequency channels, and the hearing threshold functions. 

The Coherence function describes a measure of signal-to-distortion ratio (SOR) 

weighted to account for hearing sensitivity, noise threshold effects, and the receiver 

sensitivity. It divides the speech frames into four quartiles based on amplitude [Kubi 91]. 

The Coherence function also is complicated due to the weighting functions, scale factor, 

and nonlinear mapping functions. 

The Itakura distance measure, and Itakura-Saito (IS) distortion measure are based 

on the distance of AR parameters between input and output signal. The AR parameters are 

found by minimizing the IS distortion measure, which is equivalent to maximizing the 

likelihood function [Itak 70, Dell 93]. They are widely used in speech signal processing 

area. 
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3. 4 Cepstral Distance Measure 

This measure is based on the cepstral distance between input and output signal. 

The cepstral coefficients are derived from the parameters of the linear predictive coding 

(LPC), which uses an AR model described in Eq ( 1. 15). The cepstral distance is defined as 

[Kubi 91], 

I 

CD= -L0-;e-0
10-[2t[C,(i)-C,(i)]' ]', (3.9) 

where Cx(i) and Cy(i) are the ith cepstral coefficients of the input and output signal, and 

m is the number of the coefficients used. The cepstral coefficients are obtained from 

(3.10) 

where c(k) is the cepstral coefficients, and A(z) is the LPC model polynomial [Dell 93]. 

The cepstral distance measure is used in speech signal processing, where the LPC 

generated parameters provide an estimate of the smoothed speech spectrum [Dell 93]. 

3.5 Summary 

We have discussed several time domain and frequency domain distortion measures 

in this section. Any one of them could have been chosen as the performance measure, but 

the NSE was chosen for the following reasons; 

1) It offers good mathematical tractability, 

2) A low error is highly correlated with good perceptual quality, and 



3) it was also used in preliminary investigations by Scheets [Sche 93 Sche 94]. 

The SNR is basically an inverse ofNSE, thus it could be used for the ETHG as 

well, but the NSE was chosen in part to maintain continuity with previous work. 
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We note that the NSE is not a good choice for the subjective quality measure if 

signal phase misalignment exists between input and output signals, as a large NSE may not 

necessarily correspond to bad perceptive quality. However, when the NSE amount is 

small, and it is small when an appropriate window type and length is applied which we 

observed in chapter 2, it has high correlation to good audio quality. Therefore, the NSE 

was selected as the major performance analysis tool for the ETHG algorithm. 
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CHAPTER IV 

SIMULATION WITH AUDIO SIGNAL 

4 .1 Introduction 

This chapter describes computer simulation results with real audio signals, and is 

composed as follows. Section 4.2 contains a brief introduction of sound generating 

mechanisms, and sound synthesis techniques. A review of the psychoacoustic nature of the 

human auditory perception system is in section 4.3, and a statistical analysis of selected 

audio signals is presented in section 4.4. Section 4;5 contains discussions about selecting 

the proper length of the Hanning window with zero padding, .and the effects of the 

injected magnitude of the harmonics generated for 5 - 10 KHz interval on the subjective 

quality. Extension of harmonic generation to 10 - 15 KHz region, and the analysis of the 

perceptive quality is discussed in section 4.6. · Section 4.7 is a summary of important 

findings in chapter 4. 

4.2 Sound Generating Mechanism and Synthesis Techniques 

Sound is a pressure wave propagated by disturbing air molecules. The disturbance 

is originated by vibrations of objects such as musical instruments, vocal cords, etc. The 

vibration can be either periodic or aperiodic. In order to properly design the sound 
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processing system, it is necessary to understand the generating mechanism and modeling 

of sounds from human and instruments. Following is a brief explanation of voice and 

musical sound analysis and synthesis techniques in use today. 

4.2.1 Definitions 

Before we discuss the generating mechanism and synthesis of sound, some 

definitions are in order. 

Harmonic 

The sinusoidal frequency components of a periodic sound which are integer 

multiples of the fundamental frequency. 

Partial 

The sinusoidal frequency components of a sound which are not integer multiples 

of the fundamental frequency. 

Inharmonic 

related. 

Pitch 

The sinusoidal frequency components of a sound which are not harmonically 

A subjective perception of sound quality (bass or treble) based on frequency. 

Pure Tone 

A tone for which the air pressure varies in a sinusoidal pattern with time. 

4.2.2 Speech Model and Synthesis 

The generally accepted speech production model by Schafer and Rabiner [Scha 
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75] describes speech as an output of a linear time varying filter which simulates the 

resonance characteristics of the vocal tract. For voiced speech, the filter is driven by a 

quasi-periodic unit sample generator which approximates the quasi-periodic flow of air 

from the lungs through the glottis, causing vibrations in the vocal tract. The filter is driven 

by a stationary white noise sequence for unvoiced speech [Scha 75]. Voiced speech is, in 

general, periodic, and the consonants ( especially the fricatives) are inharmonic. The vocal 

tract is moving relatively slow compared to the input and output waveforms, so the 

system is approximately stationary for the duration of its memory, and it is called a 

"quasi-stationary" system [Port 81]. 

4.2.3 Analysis and Synthesis of Musical Sound 

The sound from musical instruments is generally modeled and synthesized by 

additive, subtractive, and nonlinear methods. The additive method is a spectrum based 

harmonic analysis technique which can produce remarkably good instrument sounds. The 

basic idea of the additive method is that musical sounds are the result of summation of 

multiple sound components. In the additive model, the signal is assumed to be composed 

of multiple sinusoids with different amplitude and harmonic frequencies. The signal is 

expressed as, 

M 

x(n) = LAk(n)sin{n1Ikw+27l"Fk(n)]} (4.1) 
k=I 

where x(n) is the signal at time nT, n is the sample number (time index), Tis the time 

between consecutive samples, w is the radian fundamental frequency of the note, k is the 

harmonic number, Ak (n) is the amplitude of harmonic k at time nT, Fk (n) is the frequency 
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deviation of harmonic k at time nT, and Mis the number of harmonics. The amplitude 

Ak (n) and frequency deviation Fk (n) are assumed to be slowly time varying [Moor77]. 

The additive method is well described by Fourier theorem in that a periodic waveform can 

be expressed as a sum of harmonically related sinusoids, each with a particular amplitude 

and phase. The phase vocoder which was developed by Flanagan and Golden in 1966, and 

applied to the analysis of musical sound by Moorer, is a very useful tool for analysis and 

manipulation of the parameters of the additive method. The additive method's main 

drawback is that it can be applied only to the isolated tones of nearly constant frequency, 

and the dedicated oscillators become quite expensive even on the single sound. For 

example, the number of dedicated oscillators required to cover all the partials for a single 

sound can easily be more than 100 [Moor 77, RMoo 90, Puck 95]. 

The subtractive method is based on the complementary idea that a sound is formed 

after subtracting unnecessary components from the complex sound block. The resulting 

time varying filter is driven by an excitation source to formulate the sound. This model has 

been extensively used in speech synthesis. Linear prediction, which uses an all pole model, 

is one of the popular methods to select the coefficients of a time varying filter. The 

subtractive method is not constrained to the isolated tones of constant frequency, but it 

has less fidelity in generated sound compared to that of the additive method [RMoo 90]. 

The nonlinear method is based on intuition and requires trial and error. This 

method is much simpler and needs less memory compared to the previous methods. The 

summation formula synthesis technique, especially the frequency modulation (FM) 

synthesis technique devised by Chowning [Chow 73] is most appropriate method for 

systems with limited resources [Moor 77]. Typical examples of non linear synthesis 
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methods are frequency modulation and nonlinear distortion. The generated sound does not 

exactly match to an arbitrary sound, but it provides a convenient and highly efficient 

method to control the sound parameters. Determining the parameters automatically by 

using an algorithm called Genetic Algorithm was proposed to overcome the drawback of 

trial and error nature [Chan 96]. 

4.3 Psychoacoustics 

Via the human ears, sound is processed through a narrow 20 Hz to 20 KHz 

bandwidth auditory system, and perceived as a meaningful information by the mental 

judgment of the brain. For most people, the hearing bandwidth is even narrower. 

According to Hall, healthy young persons' upper limit is usually 17-18 KHz, and 

gradually decreasing to 12 KHz (women) or 5 KHz (men) by retirement age [Hall 91, 

Enne 74]. The ear is most sensitive in the region of 1 to 5 KHz, and has a logarithmic 

response to sound pressure levels. The human auditory organ is depicted in Fig. 4.1 [Pohl 

95]. 

The sound waves pass through the ear canal, which resonates at about 3 KHz to 

provide extra sensitivity for speech intelligibility, and causes vibrations to the ear drum. 

These vibrations are transmitted by the middle ear organs to the cochlea, causing motion 

of the basilar membrane. The hair cells along the basilar membrane detect the vibrations 

and convey audio information via electrical impulses to the brain. These hair cells 

respond to the strongest vibrations in their local region, and are unable to distinguish 

nearby vibrations. This is the critical band, which works analogous to the spectrum 

analyzer with variable center frequencies. The hair cells send frequency components using 
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separate nerve fibers when they are separated more than the critical bandwidth, but send 

the frequency components that are within the critical bandwidth over same nerve fibers. 
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Fig. 4.1 The human auditory organ [Pohl 95]. 
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The critical bands are much narrower at low frequencies, approximately 100 Hz wide 

between 20 Hz and 400 Hz, and approximately 1/5 octave wide for frequencies from 1 to 

7 KHz. This means that the ear gets more information from low frequencies. This critical 

band concept is used in conceptual coding, which uses the masking phenomenon of the ear 

[Pohl 95, Ghit 94]. 

The ear perceives sound with higher frequency harmonics as bright or shrill, and a 

sound with dominant low frequency harmonics as dull, or not bright. Also, sound which is 

not periodic is neither clear nor bright. It will generally sound impure or unsteady [Pier 

83, Hall 91]. These aspects justify an effort to develop the ETHG algorithm which has the 

potential to regenerate the missing higher harmonics due to the narrow bandwidth of 

current systems such as AM radio or the telephone system. 

4. 4 Audio Characteristics 

In this section, general characteristics of an audio signal are addressed. Knowledge 

of audio characteristics such as harmonic structure, role of harmonic components, and the 

effects of manipulating harmonic structure are essential for designing the generated 

harmonic structure by the ETHG algorithm. Following are some of important aspects of 

audio signals. 

Most musical signals and voiced speeches, on a short time basis, are nearly 

periodic with harmonically related frequencies, except unvoiced speeches and certain 

musical signals such as piano, bells, drums, and gong. The harmonic frequencies of the 

periodic signals are exactly or nearly equal to integer multiples of fundamental frequency 

[Brow 96, Port 81, Ando 93]. 
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The intensity of the harmonics are changing with time. As the sound dies away, the 

higher harmonics have a lower peak amplitude than do the lower harmonics [Pier 83]. 

Also, a louder note tends to have more significant higher harmonics, or partials than a 

softer note [Jaff 95]. 

The shape of an audio signal determines the timbre, or tone quality [Enne 7 4, Hall 

91]. For example, audio signals from two different instruments playing the same note with 

a same frequency or two people saying same speech with same frequency will not sound 

the same because of different wave shapes. Therefore, it is very important to follow the 

envelope shape in the ETHG algorithm to preserve the timbre. 

4.4.1 Statistical Analysis of Audio Signals 

The statistical characteristics of time varying spectral envelopes of full fidelity 

audio signals may provide important information for ETHG design, because bandlimited 

signals do not provide enough information as to the higher harmonic structure. Inserting 

generated higher harmonics should be done in a proper fashion in order to prevent 

additional distortion from wrong harmonic amplitudes. One possible method to figure out 

how to control the amplitude of the generated higher harmonic is a statistical analysis of 

the harmonic structure, even though we ilote that the frequency envelope of audio signals 

are time varying, thus the statistics at one time does not represent other times [Ando 93, 

Brow 96, Grei 89, Meye 93]. In other words, they are not stationary. Nevertheless, it 

is important to find general amplitude relationship between harmonics in order to minimize 

the distortions from outputting the wrong harmonic amplitude. This was done by 

analyzing the frequency roll-off of several different types of audio. 



127 

Sample audio signals are obtained from compact discs with length about 3 

seconds long with 44. 1 KHz sampling frequency at 8 bit resolution. An 8 bit resolution 

was used to reduce data amount, even though compact discs use 16 bit resolution. A 256 

length FFT is performed with a rectangular window from data point 1 to 256, and the 

magnitude of each frequency bin is recorded. We continue to calculate 256 point FFTs 

until the entire 3 second audio clip has been transformed. Then the means of the 

magnitude of each bin are calculated for each audio signal. The mean of each bin is 

1 N 

Mbin(k) = N ~ IAk(i) I, (4.2) 

where k is the bin number, Nis total number of trials, and Ak(i) is the amplitude of kth 

bin at ith trial. 

Twenty four audio signals with length of about 3 seconds, at the sampling 

frequency of 44.1 KHz, were selected from various musical categories. Fig. 4.2 shows 

typical mean magnitude spectrums of audio signals. Fig. 4.2 (a), (b), (c), and (d) is from a 

classical music, piano, violin, and popular music, respectively. These various means show 

that the audio signal's statistics are dynamically varying both within a specific type of 

audio and in between different audio signals. 

Table 4.1 shows the voltage ratios of2.5 - 5 KHz range versus 5.1 - 10 KHz 

range, and 10 .1 - 15 KHz range of the mean magnitude spectrum. The ratio 1 is a ratio of 

sum of mean magnitudes between 5 .1 - 10 KHz divided by sum of mean magnitude 

between 2. 5 - 5 KHz. The ratio 2 is a ratio of sum of mean magnitude between 10.1 - 15 

KHz divided by sum of mean magnitude between 2.5 - 5 KHz. The average of ratio 1 and 



15 

ID 10 -c; 

5 

0 
0 

15 

ID 10 
-c; 

5 

0 
0 

I I 15 I I -------r-------~-- I I 
I I I 

C• 
I I 

ID 10 - ------r--------r--c; ., 
5 --------------..--

I 

0 
1 2 0 1 2 

(a) X 10 .. (b) X 10 .. 
I I 15 - ------· --------·--------~-------J-- I I 
I I 

I 

- - - -1- - - - - - - - -·- - ID 
-c; 

,. 
I 

0 
1 2 0 1 2 

(c) X 10 .. (d) X 10 .. 

Fig. 4.2 Mean magnitude spectrum 
( x-axis : frequency). 

(a) : Classical music . 
(b) : Piano 
(c) : Violin 
( d) : Popular music 

128 



129 

AUDIO SIGNAL MAGNITUDE MAGNITUDE 
1YPE RATIO 1 RA1102 

(5.1-1 OKHz) (JO.l-15KHz) 
Orchestra 1 .9121 .6411 
Orchestra 2 .3943 .1816 
Orchestra 3 .6906 .4521 
Orchestra 4 .5044 .1953 
Orchestra 5 .5893 .4028 
Orchestra 6 .9281 .6989 
Orchestra 7 .536 .3753 
Orchestra 8 .5832 .2577 
Orchestra 9 1.0841 .7859 
Orchestra 10 .8061 .6357 

· Piano .5559 .3372 
Violin ( quiet phase) .2643 .0875 
Flute (solo) .7924 .5512 
Flute (with music) .8242 .5343 
Popular song 1 .5516 .3021 
Popular song 2 1.1256 .4079 
Popular song 3 .6775 .2329 
Popular song 4 .8609 .3532 
Popular song 5 .9316 .336 
Popular song 6 .6077 .2759 
FM Music 1 1.0213 .1521 
FMMusic2 .9112 .3501 
FM Music 3 .8931 .1001 
FMMusic4 .8919 .4701 

MEAN OF ALL .7474 .3757 

Table 4.1 Mean spectral magnitude ratios. 
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ratio 2 are shown at the bottom of Table 4.1, and they are. 7474 and .3757, respectively. 

The frequency range of 2. 5 - 5 KHz was chosen, because later it will be assumed 

that we have an AM signal with 5KHz baseband bandwidth, and harmonics from this 

interval will be used to generate higher harmonics. Also, the fundamental frequency range 

of most musical instruments and human voice are within 2.5 KHz [Earg 95]. 

It appears that the ratio 2 is, on average, approximately half of ratio I for all audio 

signals. Individual ratio I appears to show some variation, but the average of ratio I from 

the 24 musical signals is . 7 4 7 4. 

Bearing the average ratio 1 and ratio 2 in mind, we manually controlled the 

generated harmonic's amplitude, and tested the subjective sound quality. 

4.5 Subjective Quality Analysis: Generation of Harmonics for 5 - IO KHz Region. 

The proper length of the Hanning window with zero padding techniques,. and the 

effect of changing magnitude of generated harmonics will be discussed in this section. As 

described in section 2.3.5, the WSC (window selection criterion) does not contain any 

information of psychoacoustic perception quality of the MNSE difference. We observed 

that even though the I 024 length FFT with 512 length Hanning window padded with 512 

zeros yield the lowest WSC value in Table 2.5, it yielded higher average MNSE than the 

2048 FFT length, as shown in Table 2.6. Therefore, it is needed to test the effect of the 

difference in MNSEs. The sound quality was tested with the FFT length of 32, 64, 128, 

256, 512, 1024, and 2048 with L/2 Hanning windowed data points and L/2 zeros padded 

after the window. Among these FFT lengths, the 2048 length FFT appears to generate a 

sound with the least amount of distortions. It was observed that with the louder portions 
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of musical passages, the distortion was hardly noticeable. Also, the distortion was slightly 

noticeable with a careful, repetitive listening for a single, less dynamic portion of musical 

signal. Hence, a 1024 length Hanning window with 1024 zeros padded after the window 

was selected for testing the subjective quality when changing the magnitude of generated 

harmonics. The value ofK =128 was selected, after testing several K values. We noticed 

that as the window length decreases, the sound quality gets degraded, which is closely 

related to the fact that the MNSE is increased as the window length decreased, which was 

observed in Chapter 2. 

For this analysis, the initial goal is to take an AM quality signal, which is. 

bandlimited to 5 KHz, and generate the harmonics for 5 - 10 KHz interval. To do this 

task, the harmonics in the frequency range of2.5 - 5 KHz are used for generation of 

higher harmonics for the frequency range of 5 - 10 KHz interval. It was stated before, 

that the harmonic amplitude is generally decreasing as the frequency goes up, as seen in 

the previous section. Therefore, the effect of attenuating the amplitude of the generated 

harmonics will be investigated. 

The audio signals used in the previous section were used for this analysis. To 

simulate an AM signal these audio signals were filtered with a 20th order Butterworth low 

pass filter. The cut off frequency was set to 5 KHz. This bandlimited signal was processed 

by the ETHG algorithm to generate an enhanced audio signal. The amount of 

enhancement can be controlled by adjusting the magnitude of generated harmonics. The 

magnitude of harmonics for 5 - 10 KHz interval was set from I to .2, on .2 scale. 1 

means that the amplitude of generated harmonics are equal to the amplitude of the 

harmonics in 2.5 - 5 KHz interval. 
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A listening test was performed with several individuals. Among them a musician 

was included to see there are any distortions related to musical sense, i.e., change of note, 

unnatural sounds, etc. This test is informal, thus it needs to be done with a certified testing 

method in the future. For now, checking of any audible distortions, and any unnaturalness 

are the major concern, therefore this initial test suffices. 

With a setting of 1, the enhanced music appears to be more brighter than the 

bandlimited signal, and it was clear that the sound had increased high frequency 

components. Noise-like distortions were hardly audible in most audio cases. With less 

than 1 setting, the degree of generated high frequency components clearly decreased. 

Some commented that with less than 1 setting (.6 or .4), they felt more comfortable. Note 

the setting of .6 is close to the average ratio 1 value in Table 4.1, which is .7474. This 

factor needs to be considered, because often times, hearing audio with significant high 

frequency energy may cause fatigue. Therefore, the amount of enhancement should be able 

to be adjusted to suit individual needs. This could be done by using a controlling knob, 

when the ETHG is implemented in real time, with a default value around . 7. 

We observed in this section that there were not any significant noise-like 

distortions, but a careful comparison with the full bandwidth original signal does reveal 

noticeable audible differences. The enhanced audio appears to be much brighter and 

crisper than the band limited audio, with tolerable amount of distortion and 

unnaturalness. Thus, harmonic enhancement extension to 10 - 15 KHz region in order to 

achieve "quasi-FM" quality, which requires 3rd and 4th harmonic generation, is discussed in 

next section. 
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4.6 Subjective Quality Analysis: Generation of Harmonics for 10 - 15 KHz region 

The effect of extending harmonic generation and injection to the 10 - 15 KHz 

region is discussed in this section. In the previous section, we used the harmonics in the 

frequency range of2.5 -5 KHz to generate the second harmonics for 5 - 10 KHz region, 

whereas the harmonics 3.5 - 5 KHz region is used to generate harmonics for 10 - 15 

KHz region in this section. The magnitude of generated harmonics was controlled around 

the ratio2 value, which is shown in Table 4.1. Fig. 4.3 shows an example of the extended 

harmonic generation. Fig. 4.3 shows original spectrum in the top plot, band limited 

spectrum in the middle, and the enhanced spectrum in the bottom, respectively. The 

horizontal axis shows the frequency from zero to 22.05 KHz, and they axis shows the dB 

magnitude. Note the O - 5 KHz portion of the band limited spectrum looks similar to that 

of the original signal, due to the fact that the Butterworth filter has maximally flat 

response in the pass band and stop band. We observe from the enhanced spectrum that 

the harmonic estimates are, in general, located close to the position that corresponds to 

the original spectrum, especially in the interval of 5 - 10 KHz region. We also note that 

the gaps are evident in the enhanced spectrum, however these are probably not that 

important to the human perception because of the fact that the ear is sensitive to the 

spectral peaks rather than to the troughs. 

The enhanced sounds, with the harmonic magnitude control values of around . 8 

for 5 -10 KHz and around . 3 for 10 ,- 15 KHz region, appear to be brighter and crisper 

than the ones with 5 - 10 KHz region enhanced only. While the distortion level seems to 

be increased slightly more, it does not cause a noticeably unpleasant or unnatural 
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sensation. As we have noticed in the previous section, although the enhanced audio 

sounded brighter and crisper, the amount of the enhancement seems to be able to be 

adjusted to satisfy individual preference. Also, this subjective test result is based on 

informal testing with limited number audio samples and people. It would be necessary to 

perform extensive testing in the future. 
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4.7 Summary 

A brief introduction of sound generating mechanism, and sound synthesis 

techniques was presented in section 4.2. The psychoacoustic nature of human 
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auditory perception system was discussed in section 4. 3, and statistical analysis of selected 

audio signals was presented in section 4.4. The mean magnitude spectrums of24 musical 

signals were inspected, and the general relationships between regions of2.5 - 5 KHz and 

5.1 - 10 KHz, and 5.1 - 10 KHz and 10.1 - 15 KHz were found. In section 4.5, 

discussions on selecting the proper length of the Hanning window with zero padding, and 

the effects of magnitude controlling of harmonics generated for 5 - 10 KHz interval on 

the subjective quality were presented. It was noted that a Hanning windowed 2048 point 

FFT with a 1024 point data signal and zero padding yields acceptable sound quality. This 

result agrees with the prediction, which was based on the theoretical analysis of the 

convolution result between the impulse response of the frequency truncation function and 

the window function in the section 2.3.4. The need to control the magnitude of the 

enhancement to suit individual preference of the people was discussed. Also, extending 

harmonic generation for 10 - 15 KHz region to achieve quasi-FM quality audio resulted in 

a brighter sensation. There is slightly increased audible distortion compared to the original. 

These listening tests are based on a limited number of people, thus extensive subjective 

quality tests in the future is needed. 
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CHAPTER V 

CONCLUSION 

5.1 Summary 

The goal of this work is to analyze the ETHG algorithm's behavior and find the 

parameters which minimize the MNSE by investigation of window type, window length, 

and zero padding, and which also results in an acceptable computation load. To 

accomplish the goal, the following key works were completed. 

In section 2.3.2, a model envelope waveform generation scheme, which is 

approximately same as the real audio envelopes in the first and second order statistical 

sense and lends mathematical tractability, was developed. This model was used for 

simulations in chapter 2. The AR parameters were obtained by the model fitting procedure 

of Box and Jenkins [BoxJ 94]. 

In section 2.3.4, the theoretical convolution relationship between the truncation 

function's impulse response and the window was investigated. It was noticed that the 

convolution results in distortion to the waveform due to the Gibbs phenomenon, and the 

Hanning window produced the least amount of distortion because it smoothes out the 

Gibbs phenomenon. A theory based prediction was made that the Hanning window would 

yield the best performance of the tested windows, when the model signal and the real 
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audio signal are processed by the ETHG algorithm. Also, a discussion about the ideal 

window type, and the reason why it is unrealizable was included in section 2.3.4. The 

average mean squared error was shown, by mathematical derivation and computer 

simulations, to be minimum in the middle of the processed output window for time varying 

envelopes with a rectangular; Hamming, Hanning, and zero padded Hanning window. The 

computer simulation results in section 2.3.5 and section 2.3.6 indicate that the zero 

padded Hanning window produced the least amount of error among the compared 

windows, which shows agreement with the theoretical prediction. 

The window selection criterion (WSC) for selecting optimal window size and type, 

based on a time domain distortion measure, the MNSE, and the computation load was 

developed in section 2.3.5. 

The Normalized Squared Error (NSE) was chosen as the major performance 

analysis tool for the ETHG algorithm, based on an examination result of both time and 

frequency domain distortion measures in Chapter 3. The main advantage of the NSE is 

that it is very tractable mathematically, and low values correspond to a good perceptive 

sound quality. 

A statistical analysis of selected audio signals was performed, and the general 

relationship between the harmonics was found in chapter 4. Also, it was found in 

chapter 4 that the reduced error obtained by using the zero padding technique is directly 

related to good sound quality. This implies that the lower error corresponds to better 

perceptive quality, however high error does not necessarily mean a poor quality because 

the human ear is insensitive to the phase delay. We noticed, by hearing tests with several 

people, that the audio signals with enhanced harmonics for 5 - 15 KHz interval by using 
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the zero padded Hanning window produced smaller amounts of audible noise-like 

distortions, compared to Hanning window without zero padding and other window types. 

The enhanced audio sounded brighter, crisper, and generally appears to have more high 

frequency range with a tolerable amount of distortion and unnaturalness compared to the 

band limited input signal which sounded relatively dull and muffled. However, one can 

notice audible differences between the full fidelity original signal and the enhanced signal 

when both signals are compared side by side. 

Although the enhanced audio appears to be positively brighter and crisper, such 

sensation may be different to different people, thus it is necessary to include the option of 

controlling the magnitude of enhancement to suit individual preferences. 

5.2 Future Research Considerations 

Presently, it seems that no other algorithm specifically designed for enhancing band 

limited audio signals exists. This dissertation serves as an introduction to this arena, thus 

there is still much research that can be done toward an optimal algorithm which possesses 

reasonably small computation load and yields acceptable subjective quality. 

We noticed a good improvement of sound quality by artificially generating 

spectral energy into the 5 - 15 KHz range. Although the enhanced audio appears to be 

positively brighter and crisper than the band limited audio, which sounds dull and muffled, 

it is necessary to perform extensive subjective analysis of the enhanced audio quality in the 

future, because the result above is based on the listening test with limited number of 

people. After that, efforts to implement the ETHG algorithm in real time appear to be 

worthwhile, in part due to the rapid improvements of the DSP chip technology in recent 



years. Further study to reduce the computation load would be worthwhile also. One 

possible method would be developing and implementing a non-linear FFT algorithm, 

which is capable of generating the FFT of required spectral regions with high precision 

and a lower amou11t of computation complexity in order to expedite the harmonic 

generating and injecting process. 
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We also note that the quality evaluation of enhanced audio signal requires 

subjective perception. It is believed that no known objective measure has the absolute 

capability to explain the subjective performance of the ETHG algorithm. Therefore, such 

an objective measure still remains to be found. Further research to include subjective 

audible distortion into the WSC value, in order to find the best combination of 

computational complexity versus perceived quality, would be one of the efforts to 

develop such an objective measure. 

Finally, research efforts to find a mathematical equation(s) which can predict the 

value of the Normalized Squared Error (NSE), given parameters such as window type, 

length, and zero padding would be worthwhile. Obtaining such predicted outcomes in 

advance would provide more flexibility to the ETHG design process, and may enable the 

designers to achieve the best possible subjective quality . 
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APPENDIX I 

MODELING PROCESS 

1. Introduction 

In this section, an overview of system identification process by Box and Jenkins 

[BoxJ 94], and an example of the process using envelope signal from real audio signal will 

be presented. 

2. Overview of System Identification Process 

The system identification procedure for estimating ARMA model was developed 

by Box and Jenkins [BoxJ 94]. The iterative procedure, which contains four steps, is 

shown in Fig. A 1 [ BoxJ 94]. Fig. A 1 describes the process as follows. 

Step] : Preprocessing 

Testing stationarity of the data to be analyzed is the first step of the 

modeling process. If the data is not stationary, it can be made to be stationary by removing 

the linear trend or periodic component. This process is referred to as the differencing. First 

or second differencing suffices in general. The data length should be at least 50 to generate 

reasonable estimate [BoxJ 94, Pank 83]. 



Step 2 : Order Identification 

In this step we obtain estimate of the order of the data. The order of 

autoregressive part of the model is p, and the order of moving average part is q. To get 

p and q, we observe the autocorrelation function (ACF) and the partial autocorrelation 
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Fig. A. I Box-Jenkins method of estimation sequence [BoxJ 94]. 
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function (PACF) of the data. We use the fact that the ACF r(tau) = 0 for tau> pin 

moving average process, and the P ACF </>;11111 = 0 for m > p in autoregressive process. 

ARMA model has a generalized partial autocorrelation (GPAC) pattern of <P~m = 0 for 

j = q and m > p, and <P~m = </JP form= p and j ~ q , i.e., 

<P~m = 0 for j = q and m > p, and 

(A.l) 

The pattern in GPAC <P~m is shown in the Fig. A.2 [Haga 94]. Note the highlighted 

pattern. 
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Fig. A.2 GPAC [Haga 94]. 
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The P ACF can be obtained by using Cramer's rule, or Levinson algorithm [Haga 

94, Pank 83, Haye 96]. Using the Cramer's rule, PACF is defined as [Haga 94, Dorf93], 

det 

r(O) 

r(j + I) 

r(j+If 

J(J+m-1) r(j+m)_ 
<Ai = ----=------------==----

mm r(j) r(j - I) r(j - m + If ' 

det 
r(j + I} r(j) r(j - m + 2) 

J(J + m - I) r(j + m - 2) r(j) 

where det [ •] denotes a determinant of a matrix. 

Step 3 : Parameter Estimation 

(A.2) 

After estimation of the order of data, which will be ARMA (p,q), AR (p ), or MA 

(q), parameter estimation algorithms are used to generate estimate of the parameters. For 

example, the least squares (LS) may be used for AR process, and the maximum likelihood 

estimator may be used for ARMA process [Haye 96, Hayk 96]. A discussion of the 

relationship between the AR power spectrum and the autocorrelation function (ACF) 

seems to be in order here. Following is a brief discussion of the relationship between the 

ACF and power spectrum of AR process, and how the estimates of AR parameters are 

obtained. 

The ACF and power spectrum of AR process is related by the Wiener-Khinchin 

theorem as [Haye 96, Kay 88], 

(A.3) 
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where er; is a variance of input signal, which is assumed as white noise, 

z = ej21lk/N , (A.4) 

and <A are the true AR parameters we want to estimate. The AR order of a given 

realization should be estimated, before any attempt to get the estimates of parameters. The 

order of AR process is obtained by inspection of ACF and partial autocorrelation function 

(P ACF), as described in Step 2. By using the symmetry nature of the ACF, we may 

express Eq (A.3) in matrix notation, which is known as Yule-Walker equation [Haye 96, 

Hayk 96], 

r(O) 
r(l) 

r{l) 

r(O) 

r(P-1) r(P-2) 

r(P-1) 1 r(l) 

r(P- 2) rA r(2) 
= (A.5) 

r(O) r(P) 

A 

The estimate of AR parameters rp may be obtained by solving Eq (A.5) with the 

Cramer's rule, or the Levinson-Durbin recursion algorithm, using ACF. Another 

algorithms to get estimates directly from the data set are least squares algorithm (LS), and 

maximum likelihood estimator (MLE) [Haye 96, Hayk 96, Haga 94]. The result is the 

same regardless of algorithm chosen. 

After parameter estimates are obtained, the stationarity condition should be 

inspected. For AR (1) or ARMA {1,q) system, the stationarity requirement is that [Pank 

83], 

(A.6) 

and for AR (2) or ARMA (2,q) system, following three conditions must be satisfied. 
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¢/'2 + ¢/'i < 1 

¢/'2 - ¢/'1 < 1. 

(A.7) 

When p > 2, the necessary (but not sufficient) conditions is, 

¢/'2 + (>''1 + ... + ¢/' p < 1. (A.8) 

In other words, the stability condition requires all poles inside the unit circle [Oppe 89]. 

Step 4 : Diagnostic Checking 

There is always possibility that the estimated parameters are not correct. Thus it is 

needed to perform the diagnostic checking. If diagnostic checking results are 

satisfactory, then the parameters can be used for modeling. Otherwise, steps 1-3 should be 

performed again. 

Diagnostic checking is usually based on residual errors. The variance of the 

residual should be reasonably small. When making a selection from multiple models, 

usually the model with the minimum variance is selected. The covariance of the parameter 

tells the accuracy of the estimated parameters. The 95 % of true value of parameters will 

be in between 2 square root of covariance[Pank 83, Haga 94], i.e., 

True parameter value = Estimated parameter ± 2 J Co variance . (A. 9) 

The whiteness of the residual should also be inspected, to make sure the residual is 

not correlated in any manner. In theory, if the parameter estimation is perfect, the residual 

should be white, i.e., there is no correlation between the residual data points. The ACF 

and P ACF are inspected for whiteness test. The ACF should be, except zeroth lag, within 

2 standard error defined as [Pank 83], 
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k-1 

1+21>f 
j=l 

(A.10) 
n 

where k is the number of autocorrelation lag, n is the number of the data points. 

The t-statistic test also shows quantitative measure of how the estimated 

parameter is far from the hypothesis on a certain confidence level [Pank 83, Stee 80]. 

It is defined as, 

rk -A t =---
'• s(rk) ' 

(A.11) 

where A is the hypothesized autocorrelation value, which is a zero. When t value is 

greater than absolute 2, we reject the hypothesis that the autocorrelation at that lag is zero 

, meaning it shows a correlation. The standard error and t-test yield the same result, thus 

the standard error was used in this paper. 

The standard error for PACF is [Pank 83], 

I\ 1 
s( <P kk ) = Jii ' (A.12) 

where n is the data points used for calculation of the P ACF. 

Another method of hypothesis testing is the Portamanteau lack of fit test, which is 

known as chi-square test [Haga 94, Shan 88]. It calculates the sum of the square of the 

residual autocorrelation using the formula, 

k 

Q = NLRa2(r), (A.13) 
T=l 

where k is the number of autocorrelation lag, N is the number of data used for residual 

autocorrelation calculation, and Ra is the residual autocorrelation. This Q value is used 



152 

with degree of freedom df = (k-p-q) to check the whiteness at certain confidence level in 

the chi-square distribution table. 

The modeling procedure described above is explained using an audio envelope 

, which is an output oflow pass filter in Fig. 2.3, as follows. 

3. Example 

Fig. A.3 shows an example of typical smoothed output envelope from the low pass 

filter in Fig.2.3, when a segment of a real audio signal with 23 msec long data length at 

44 .1 KHz sampling frequency is an input. 

Envelope to be modeled 
2.--------.--------.--------.....-.------.....-------, 

,.,. .......... 
I \ 

II \ 
I \ 
t \ 

,~ I \ 
o I ,J \ 

I \ 
I \ 

1.5 

1 

0.5 

~EI \ 
I \ i 

-1 / \ ,/ 

-1.5 \ I 
V' ~'----------·--------------..._ ______ ..._ ____ ___, 

0 200 400 600 800 1000 
x-axis: Time (23 msec), y-axis: volts 

Fig. A.3 An envelope to be modeled. 
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In step 1, the GPAC in Fig. A.4 is inspected to find a pattern. We see three 

possible patterns in the GPAC, which are AR (p}, ARMA (2,1), and ARMA (3,2). These 

three possible models were analyzed by using the Box-Jenkins procedure, and it turned 

out that the AR model describes the :frequency spectrum of the envelope more accurately, 

although details of the comparison of AR (p) model with the ARMA (p,q) is not presented 

here. Fig. A.5 shows a comparison of AR (p) models' normalized frequency response 

(magnitude}, where p = 10, 50, 80, and 100. We see that the AR (100) model's 

normalized frequency response, denoted as AR (100) in Fig. A.5, closely approximates the 

frequency spectrum of the envelope in Fig. A.3, which is denoted as FFT{envelope) in Fig. 

A.5. Following is a discussion of the procedure to obtain the AR (100) parameters, which 

is a typical example. 

~ 
0.9988 \IDJ.99.11 D!P:9.19. 0.0000 0.0000 0.0000 
o.9987 ·:ct99s·2 iliii . 0.0000 o.3013 0.0102 
0.9986 -0.9981 0.9988 0.0000 0.0109 0.8918 
0.9985 -0.9981 0.9988 0.0000 -100.9955 -0.0274 
0.9984 -0.9981 0.9988 0.0000 -0.1298 -1.5904 
0.9983 -0.9980 0.9988 0.0000 -0.0087 1.5930 
0.9982 -0.9980 0.9988 0.0000 6.0622 -0.0596 

Fig. A.4 GPAC of the envelope signal in Fig. A.3. 



Comparison of AR model's 
Frequency Response(Normalized) 

--- AR(10) 
-B- AR(50) 
-A- AR(80) 
-v- AR(100) 
-+- FFT(envelope) 

5 10 15 

Frequency( O -.002 Nyquist Frequency) 

20 

Fig. A. 5 Comparison of AR model's normalized frequency response. 
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The parameters of AR (100) model were obtained by the maximum likelihood 

estimator (MLE) program, which is attached at the end of Appendix I. Table A. I shows 

the result of the MLE program. It shows the AR parameters, the covariance, the variance 

of the residual, and the hypothesis testing results. 

The estimated AR parameters are 

I\ 

<A 1.0112 
I\ .0006 ,f>z = (A.14) 

I\ -.0001 
'Pioo 

and the variance of the residual is .0016. The covariance matrix of the parameter estimate 

is a measure of the accuracy. The true parameters will be in between 

<A 1.0112 ± 2.J.0011 

r/Ji .0006 ± 2.J.0022 
= (A.15) 

<Aoo -.0001 ± 2.J.OOI l 

The standard error test for ACF and PACF show that none of the ACF and P ACF 

lag is more than two standard error. Fig. A.6 shows the ACF and PACF of the residual, 

and they appear to be white. 

The chi-square test value is ql = .0842. We used k = 150 lags for Q value 

computation, thus with p = 100, the degree of freedom df = (150 - 100) = 50. From the 

chi-square distribution table [Stee 80], we get 28.0 with a hypothesis that 95 % of the 

peaks falls within 2 standard error interval. Since Q < 28.0, we accept the hypothesis. 



Converged estimated parameters 

-- AR parameters --

1.0112 
0.0006 

-0.0004 
-0.0001 
-0.0001 
-0.0001 

-0.0001 
-0.0056 

-- Covariance --

0.0011 
0.0022 
0.0022 
0.0022 
0.0022 
0.0022 

0.0022 
0.0011 

Estimated variance of residual 

.0016 

------- HYPOTHESIS TESTING--------

ql = 

0.0842 

Number of lags exceeding 2 standard error range 

ACF: O 

PACF: 0 

Table A. I Result of MLE program 
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Autocorrelation of residual 
1....--------,1--------..1--------.-1----------1-------, 

I I 
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0.5 -------- .- -------- : ---------: ---------:- --------.. 
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Fig. A.6 Plot of ACF and PACF of residual. 
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The stationarity of the parameter estimates should also be inspected. The sum of 

the AR parameters are .9951, which is barely less than 1, and all poles are within the unit 

circle. Thus, it is a stable model. 

So far, we have discussed the modeling procedure using an envelope in Fig. A.3. 

We observed that the AR (100) model satisfactorily describe the envelope's frequency 

spectrum, and passed all hypothesis tests. In section 2.3.2, we developed an envelope 

generating system using AR (100) model, where the parameters were obtained from the 

ACF which was obtained from inverse Fourier Transform of the mean power spectrum of 

real audio signals. Since the original envelope signal, such as Fig. A.3, is not available for 

this case, the hypothesis testing was not performed. Instead, we compared the power 

spectrum of the AR (100) model with the smoothed power spectrum in Fig. 2.4 in section 

2.3.2, and it showed that the AR (100) power spectrum closely approximated the mean 

power spectrum. The parameters of AR (100) model is shown in Table A.2. 



AR(l:20) (21:40) (41:60) (61:80) (81:100) 

1.0400 -0.0009 -0.0005 -0.0001 0.0001 
-0.0034 -0.0009 -0.0004 -0.0001 0.0001 
-0.0020 -0.0008 -0.0004 -0.0001 0.0001 
-0.0019 -0.0008 -0.0004 -0.0001 0.0001 
-0.0016 -0.0008 -0.0004 -0.0001 0.0001 
-0.0015 -0.0008 -0.0004 -0.0001 0.0001 
-0.0014 -0.0007 -0.0004 -0.0001 0.0001 
-0.0013 -0.0007 -0.0003 0.0000 0.0001 
,-0.0013 -0.0007 -0.0003 0.0000 0.0001 
-0.0012 -0.0007 -0.0003 0.0000 0.0001 
-0.0012 -0.0007 -0.0003 0.0000 0.0001 
-0.0011 -0.0006 -0.0003 0.0000 0.0001 
-0.0011 -0.0006 -0.0003 0.0000 0.0001 
-0.0011 -0.0006 -0.0002 0.0000 0.0001 
-0.0010 -0.0006 -0.0002 0.0000 0.0001 
-0.0010 -0.0006 -0.0002 0.0000 0.0001 
-0.0010 -0.0005 -0.0002 0.0000 0.0001 
-0.0010 -0.0005 -0.0002 0.0000 0.0001 
-0.0009 -0.0005 -0.0002 0.0001 0.0001 
-0.0009 -0.0005 -0.0001 0.0001 -0.0022 

Table A.2 Parameters of AR (100) model in Fig.2.4 in section 2.3 .2. 
First column: AR{l:20), ... , Last column: AR(81:100). 
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4. Maximum Likelihood Estimator program code 

% OKLAHOMA STATE UNIVERSITY 
% ELECTRICAL AND COMPUTER ENGINEERING 
% 
% MAXIMUM LIKELIHOOD ESTIMATOR for AR(p) case 
% PROGRAMMER: JAE Y. LEE 
% APR 111995 
% 
% SUBROUTINE : 
% 
% IFIL TAR : CALCULATE a (= residual) from measurement y 
% 
% 
% PRE : DATA y IS READ INTO PROGRAM. ASSUME THE ORDER OF y WAS 
% ESTIMATEDBYGPAC. 
% 
% POST : THE PARAMETER OF y IS ESTIMATED 
% 

%--------------------------------------------------------------------

clear 
clc 

load y; % DATA READ 
y=y(:); 
k=length(y); 
y=y-mean(y); % make y zeromean 
y= y./std(y); % make variance ofy =1 

delta=input('Enter delta(typical value is: 0.001) : '); 
mu=input('Enter mu (Typical value is :0.01): '); 
f2=10; % CONSTANT TO CONTROL MU WHEN ERROR IS DECREASING 
mumax=IO; % UPPER LIMIT OF MU 
maxiter=input('Enter max iteration .. '); % MAX # OF ITERATION 
eps=input('Enter epsilon .... '); % ERROR THRESHOLD USED FOR TESTING 
CONVERGENCE 
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% ESTIMATED ORDER OF AR SYSTEM OBTAINED BY INSPECTION OF GPAC 
p=input('Enter AR order .... (1,2, ... ): '); 
beta=zeros(l ,p )'; % INITIAL GUESS OF PARAMETER 
n 1 = 1; % starting first iteration 
a=zeros(k,p+ I); 

numiter=l; 



while n 1 = 1, % if error is decreasing n 1 = 1 
numiter % tells current interation number 

a{:,l)=ifiltar(beta,y); % GET a vector (=residual) from y 
beta 1 =zeros{l ,p )'; 
beta 1 ( 1 )=delta; 
beta 1 =beta+beta 1; 

i=2; 
while i < p+l, 
a{:,i) = ifiltar(betal,y); 
clear beta I 
beta 1 =zeros{p, 1 ); 
betal{i) =l *delta; 
beta 1 =beta+beta 1; 
i=i+l; 

end 

a( :,p+ 1 )=ifiltar(betal ,y); 

% Error matrix, each column is error of 
% a vector from using total beta minus 
% a vector from using each individual parameter of beta 
% 

for i=l:p, 
x(:,i)=a(:, 1)-a(:,i+ I); 
end 

x = x ./delta; 

aij=x' * x; 
g=x' * a(:,1); 
d=sqrt( diag( aij) ); 
astar 1 =aij ./( d * d'); 
astar2=eye(p )*mu; 
astar=astar 1 +astar2; 
gstar=g .Id; 
hstar= astar \ gstar; 
hj=hstar .Id; 

betanew=beta+hj; 
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% Check conditions if error power of a is decreasing ... 

betaold=beta; 
sold=a(:, 1 )' *a(:, 1 ); 
a(:, 1 )=ifiltar(betanew,y); 

snew=a(:, 1)' *a(:, I); 

if silew < sold, 

if max(abs( hj)) <eps, 
fprintf('Converged estimated parameters\n'); 
fprintf(' \n'); 
fprintf(' -- AR parameters -- \n'); 
fprintf(' \n'); 
betahat=beta ;% ESTIMATED PARAMETERS 
ar=-betahat(l :p ); % AR part 

fprintf('%5 .4 t\n', ar); 
fprintf(' \n'); 

fprintf('Estimated variance of residual \n'); 
fprintf(' \n'); 
sigahat=snew /(k-p); % ESTIMATED VARIANCE OF RESIDUALS 
fprintf('%5.4f,sigahat); 
fprintf(' \n'); 
covariance=sigahat*inv(aij) % COVARIANCE MATRIX OF BETA 
break; 
return; 

else, 

mu=mu lf2; 
numiter=numiter+ 1; 
beta=betanew; 
nl=l; 

end% if abs 

else, 

mu=mu*f2; 
numiter=numiter+ 1; 
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beta=betaold; 
if mu > mumax, 

error('over mumax'); 
betanew 
break; 
return; 

end% ifmu 
ifnumiter > maxiter, 

error(' over maxiter'); 
betanew 
break 
return; 

end % if numiter 
nl=l; 
end % if 

end% while nl=l 

%----- CALCULATE AUTOCORRELATION AND GPAC OF RESIDUAL----

for tau=l :k/4, 
ra(tau)=(l/(k-tau+ 1)) *a(l :k-tau+ 1, l)'*a(tau:k, l); 
end 

ra= ra ./ra(l); % normalize 

%------- HYPOTHESIS TESTING ----------

fprintf('------- HYPOTHESIS TESTING -------- \n'); 
fprintf(' \n'); 

% CID-SQUARE TESTING 

ql=l50*sum(ra(2:150) .A2) 

% STANDARD ERROR TESTING ON RESIDUAL ACF 

countl=O; 
for i = 2: 150, 
sacf(i) = (1+2*sum(ra(l:i-l) ·.A2)) .A.5 .I sqrt(k); % standard error 
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if abs(ra(i)) > 2 * sacf(i) 
count I =count I+ I; 
end 
end 

% CHECK PACF OF RESIDUAL 

pacf= rtophi(ra); 
count2=0; 
for i = 2: 150, 
spacf = II sqrt(k); .% standard error for pacf 

if abs(ra(i)) > 2 * spacf 
count2=count2+ I; 
end 
end 

fprintf('Number of lags exceeding 2 standard error range \n ') 
fprintf(' \n'); 
fprintf('ACF : '); 
fprintf('%2d\n',count I) 
fprintf(' \n'); 
fprintf('P ACF : '); 
fprintf('%2d\n',count2) 

subplot{2, I, I ),plot(ra, 'b'); 
grid; 
title('Autocorrelation of residual'); 
subplot(2, 1,2),plot(pacf, 'b'); 
xlabel('lag of O - 5. 7 msec') 
grid; 
title('Paitial autocorrelation of residual'); 
whitebg 
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% FUNCTION IFILTAR.M 
% 
% This function calculates a ( = residual) from y for AR(p) case 
% Jae Y. Lee 
% Apr 1995 

function al=ifiltar(beta,y); 

al=filter([l beta(:,l)'],l,y); 

return; 
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