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Abstract 

Oklahoma City, Oklahoma (OKC) is a fast-growing city undergoing urbanization. 

Rapid urbanization can lead to neighborhood construction where impervious surfaces are 

prioritized over urban green space (UGS). Urban green space can be defined as green 

vegetation on housing parcels not just parks and recreational areas. Housing properties 

are funded through banks and socio-economic status. Creating an efficient UGS without 

proper funding can make UGS unsustainable. Redline districts are districts that are 

financially hazardous to fund. National Agriculture Imagery Program (NAIP) offers high 

spatial resolution imagery (1m) that is used to create land cover classification map 

consisting of trees and grass in Google Earth Engine (GEE). Comparing percentage of 

trees (dependent) to socio-economic status variables and bio-physical variables told us 

that the spatial autocorrelation with a financially hazardous neighborhood exhibited 

higher tree percentages and higher Normalized Difference Vegetation Index (NDVI) in 

comparison to neighborhoods declared desirable. Financially hazardous neighborhoods 

do show a higher percentage of vacant lots which leads to overgrown vegetation. 

Overgrown vegetation will help the remote sensing camera detect a pure vegetation pixel 

compared to a sparce environment where the camera may detect the soil instead of 

vegetation. Much more research is still needed to bring down the number of variables that 

have an effect on vegetation growth. 
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Chapter 1: Introduction 

1.1 Urban Green Spaces 

Rapid urbanization has led to higher densities of impervious surface land cover in 

cities across the United States (Bounoua et al., 2018). One way to respond to the increase 

of impervious surface is by aiming for compact urban development. Compact cities 

respond to accommodate the population growth of metropolitan areas by maximizing 

land use for new houses and infrastructure, often resulting in high-density housing and 

infill development (Obiakor et al., 2012). The latter can result in reduced inner-city 

vegetation which has a detrimental effect on air quality and extensive precipitation 

surface runoff (Baldauf et al., 2008; Sanders, 1986).  

Given the rapid urbanization in metropolitan areas in the U.S. over the past 

decades and the a resulting reduction of both urban and rural vegetation to accommodate 

a growing population (Bounoua et al., 2018; Colding et al., 2020), cities need to 

emphasize urban green spaces (UGS) as a way to balance the negative impacts of 

ongoing urbanization processes. Urban green space can be defined as “urban land use 

classified by any type of vegetation” (EPA, 2022). Public spaces such as parks or 

recreational areas in an urban setting are excellent examples of UGS that can create 

opportunities for interactions among residents and ways to foster a sense of community 

(Jennings and Bamkole, 2019). Private urban green spaces such as yards of residential 

housing can help with the general aesthetic of neighborhoods and lead to higher property 

values (Anderson and Cordell, 1988).  
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1.2 Urban Green Spaces Effects on Microclimate 

Urbanization – and the corresponding change in land cover - has led to increased 

temperatures in cities, also known as an urban heat islands (UHI; Grimmond, 2007). 

Impervious surfaces like concrete, asphalt and roofing tile possess higher heat capacities 

in comparison to areas covered by vegetation (Sekertekin and Zadbagher, 2021). 

Impervious surfaces retain heat from the incident solar radiation during the day and 

slowly re-emit longwave radiation throughout the afternoon and evening. Vegetation, soil 

and water act as a natural cooling mechanism to convert water to water vapor (Wu and 

Zhang, 2019). This process of evapotranspiration takes in a large amount of energy from 

the nearby environment and cools down the surrounding microclimate. Hence, UGS can 

reduce the ambient and surface temperature of the microclimate of neighborhoods or 

cities (Clinton and Gong, 2013).  

 

1.3 Urban Green Spaces Effects on Mental and Physical Health 

Urban green spaces benefit humans’ physical and mental health. For example, 

using UGS for recreation provides a break to the overstimulating environment of the 

urban landscape by alleviating stress, anxiety or other mood disorders (Tsai et al., 2018). 

Hunter et al. (2015) found an increase in physical activities of middle-aged adults in the 

presence of UGS, in part due to the aesthetically pleasing effect vegetation can have on a 

person. Moreover, aesthetically pleasing neighborhoods encourage getting outside and 

being physically active (Tzoulas et al., 2007). Urban green spaces also benefit the 

respiratory health of humans by purifying air pollution (Villeneuve et al., 2012). 
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Donovan et al. (2011) found that pregnant mothers can be positively stimulated by “feel 

good” factors of UGS and Hipp et al. (2016) found that well-kept campus UGS was 

associated with a calmer attitude in students compared to students in un-kept UGS. 

 

1.4 Impact of Urban Green Spaces on Community Revitalization 

Urban green spaces improve neighborhood aesthetics by introducing a green 

environment, which provides communities with a place to come together for recreational 

activities or social gatherings (Jennings and Bamkole, 2019). A united community will 

help increase a sense of togetherness along with pushing for increased housing prices 

when selling property in the neighborhood (Clarke and Freedman, 2019). Increased 

property value is linked to UGS by having a pleasant aesthetic, community unity and 

environmental benefits (Bolitzer and Netusil, 2000). As a result, municipalities have used 

UGS to revitalize lower-income neighborhoods (Anguelovski et al., 2018). Oklahoma 

city has revitalized a lower-income neighborhood through the MAPS project in the 

Oklahoma City metropolitan area that resulted in the implementation of Scissortail 

(OKC, 2009). While these revitalization efforts can improve the livability in 

neighborhoods, they also have the potential to create gentrification dynamics, e.g. via 

increased property values and the influx of a more affluent population ultimately leading 

to a displacement of the original occupants of neighborhoods (Cole et al., 2019). 
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1.5 Socioeconomic Factors and Urban Green Spaces 

In the U.S., UGS are typically implemented through cooperation between 

neighborhoods and municipalities. Socio-economic factors (e.g., population numbers, 

household income, whether a house is occupied or vacant (Dawson et al., 2018; Pearsall 

and Christman, 2012) are frequently use to represent varying priorities, values, and 

opportunities among the urban populations. Neighborhoods closer to downtown areas 

typically meet limitations to establishing a greener landscape as population density near 

downtown areas tends to be much higher as compared to suburban neighborhoods. 

However, yards of vacant houses may have overgrown vegetation resulting in visibly 

greener environment (Pearsall and Christman, 2012). Residential and well as public green 

spaces require constant maintenance such as lawn and tree maintenance, and irrigation, to 

ensure vegetation remains healthy throughout the year and to keep lots up to code 

(Mukherjee and Takara, 2018). This requires money to help facilitate personal and 

neighborhood projects. Household income that is disposable for household maintenance 

is only achievable through high household incomes or through loans (Pearsall and 

Christman, 2012). Loans coming from banks require proof that you can return their 

investment. Households that are from the lower class may not have the proof that they 

can pay back the loan or the bank will not allow a loan for certain neighborhoods. 

 

1.5.1 Historical Maps of Redlining – Shaping Urban Landscapes 

Redlining is a practice used by federal, local, and private organizations in the 

1930s to discriminate against people of color and suppress minorities and citizens in low-
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income neighborhood from obtaining goods and services through the use of racial 

mortgage appraisal practices established in the 1930s (Nardone et al., 2021). The federal 

government created the Home Owners’ Loan Corporation (HOLC) as part of rescue 

effort to help home owners from defaulting on their home loans (Hillier, 2003). Mortgage 

companies used these boundaries to denote neighborhoods of “financial risk,” 

withholding those neighborhoods from accessing home loans for revitalizations or 

renovations. Redline practices are known to exacerbate segregation of neighborhoods by 

promoting black ghettoization and from developing heterogeneous neighborhoods (Faber, 

2020). 

 

1.6 Case Study – Urban Green Spaces in Oklahoma City 

Research on UGS and their correlation to socio-economic drivers has been 

conducted around the world in different cities including American cities Chicago, 

Detroit, Philadelphia, and Porto, Portugal, and Beijing, China (Dawson et al., 2018; de 

Vries et al., 2020; Hoffimann et al., 2017; Liu et al., 2014). There are two major clusters 

of studies on green spaces in urban areas. A large body of literature exists that focuses on 

public UGS, such as parks, and their relevance in the environmental justice context, 

evaluating the association among greenness and socio-economic characteristics (Balram 

and Dragićević, 2005; Dawson et al., 2018; Pearsall and Christman, 2012). Research in 

the field of remote sensing frequently analyses greenness indices across urban areas 

(including public as well as residential vegetated areas), for example to understand the 

impact of vegetation on surface temperature or urban heat islands (Gomez-Martinez et 
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al., 2021; Mohajerani et al., 2017; Onishi et al., 2010; Zipper et al., 2016). However, 

fewer studies exist to combine the evaluation of socio-economic factors focusing on 

residential green spaces, such as yards, and their association to socio-economic 

characteristics.  

The city of Oklahoma City (OKC) has not received much research attention in 

general and is especially understudied regarding the analysis of the association among 

greenness as a proxy for urban greenspaces and socio-economic characteristic. Moreover, 

to my knowledge, no study exists that evaluates the association among greenness and 

redlining in OKC. This research focuses on Oklahoma City residential areas, examining 

the correlation between greenness values and socio-economic characteristics. As such, 

this research aims to close the research gap identified above and start growing 

environmental justice related research with a focus on the understudied OKC 

metropolitan area. 

 

1.7 Research Questions, Hypothesis, and Objectives 

The objective of this study is to examine the spatial distribution of UGS in the 

OKC spatial extent and analyze the spatial distribution of greenness values at the parcel 

spatial level. Examination of spatial distribution of greenness values at the parcel level 

will help researchers, homeowners and urban development officials find the socio-

economic and bio-physical drivers that correlate to higher greenness values on properties 

and UGS. Strong correlation between median income and urban greenness is observed in 
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other studies from urban areas such as Chicago, Detroit, and Philadelphia  (Dawson et al., 

2018; de Vries et al., 2020; Hoffimann et al., 2017). I hypothesize that higher median 

income neighborhoods will show a stronger correlation to high greenness values. The 

research questions the study examines are: 

1) Do we find the same general patterns in OKC as in other cities across the US?  

2) What is the relationship between greenness and socio-economic factors?  

3) Is there a difference in the relationship between greenness and socioeconomic  

factors inside formerly redlined areas of OKC as compared to non-redlined areas?  

In section 2, I provide an overview of the literature relevant to interpret and 

contextualize my findings. Section 3 introduces the methods applied in this study along 

with the statistical analysis applied to the methods. Section 4 presents the results of the 

study with maps and tables. Section 5 I discuss the results in extensive detail and 

contextualize it to my research questions. Section 6 wraps the study up with a brief 

description of the results, study limitations and future study adaptations. 
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Chapter 2: Background 

2.1 Green Spaces in Urban Areas 

There is a general trend that can be observed between population density and 

proximity to city centers; the closer a neighborhood is to a city center, the smaller amount 

of space available to use for individual lots (Delmelle et al., 2014) , whereas suburbs tend 

to have larger lots in comparison. Urbanization has led to both urban sprawl and urban 

densification and infill in city centers (e.g., Meentemeyer et al. 2013). Vertical growth in 

downtown regions will increase the population density while suburban regions growing 

in a horizontal direction will lead to smaller population density. 

A common way to develop UGS in downtown regions is to create what is known 

as a green roof design. This green roof design is meant to minimize the urban heat island 

effect by preventing concrete roofs from absorbing too much incident radiation (Asadi et 

al., 2020). Incident radiation is the incoming shortwave radiation produced from the sun. 

Incident radiation absorbed by concrete will be held on to longer through specific heat of 

the concrete. Higher specific heats will hold onto incident radiation longer throughout the 

night causing an increased ambient temperature in the urban landscape. Green roof 

designs have vegetation on the roof that will absorb the incident radiation but will not 

hold onto that energy as long throughout the night. Energy reemitted in the nighttime will 

result in cooler temperatures in the morning. Cooler temperatures in the morning will 

result in the sun not being able to heat up the soil and vegetation to even higher 

temperatures throughout the next day. 
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Suburban population density is typically much lower due to the horizontal growth 

of neighborhoods (Guo and Zhang, 2021). Large parks and recreational areas are more 

prevalent in suburban regions due to the lower population density. The number of UGS in 

suburban regions is much higher compared to UGS in downtown regions due to the 

access to more land. Properties in suburban regions has the availability to create 

vegetated landscapes on their own property whereas downtown regions do not have the 

luxury. 

Measuring greenness is conducted through remote sensing methods. Remote 

sensing platforms like the United States Geological Survey (USGS) Landsat program, 

National Agriculture Imagery Program (NAIP), or European Space Agency (ESA) 

Sentinel program give snapshots of the land surface in the form of pictures. The images 

captured will provide a spectral analysis of what is happening at the point. Greenness of 

the vegetation can be calculated based on different mathematical combinations of spectral 

band measurements from remote sensing platforms (Xue and Su, 2017). Common 

spectral vegetation indices are Normalized Difference Vegetation Index (NDVI), Near-

Infrared vegetation (NIRv), and Normalized Difference Water Index (NDWI) (Xue and 

Su, 2017). The bands present in most common spectral vegetation indices are red and 

near-infrared which tie close to vegetation cell-structure (Peñuelas and Filella, 1998). 
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2.2 Greenness and relationship to socioeconomic factors 

Greenness in neighborhoods do not come naturally as there are Homeowners 

associations (HOA) or Neighborhood associations (NAS). Homeowner associations and 

NAS have guidelines on lawn heights and tree canopies exceeding property lines (Morera 

et al., 2020; Sisser et al., 2016; Turner and Stiller, 2020). Lawn height and making sure 

trees do not cross property lines comes at a price (Kuo et al., 2018). Socioeconomic 

factors like median household incomes is highly correlated to greenness in 

neighborhoods. Lower income households that do not abide by HOA and NAS guidelines 

are more likely to make the choice of not having grass lawns or trees to save income. 

Keeping lawns healthy requires extensive amounts of water and may not be as effective 

as shading from tree canopies (Wang et al., 2016). Higher income households have the 

opportunity to water their lawns on a regular basis due to availability to disposable 

income. Lower income households will not have the excess money to allocate to 

irrigation for lawncare. 

Houses that were built decades earlier have the time to produce mature trees and 

result in higher NDVI values. Families with more children tend to plant or move to 

neighborhoods that contain higher percentages of tree canopies (Lowrie et al, 2012). 

Lifestyle behaviors such as households containing families have a strong statistically 

significant association but weak positive correlation with greenness on properties (Orban 

et al., 2017). Families tend to promote physical activity instead high stimulus activity like 

indoor entertainment technology (television, social media, video games, etc.) (Saelens et 

al., 2003). Urban green spaces can reduce stress and promote mental health by reduced 
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urban noises like traffic. Downtown cities have a higher population density and lower 

greenness values in comparison to houses in the suburbs. The lower greenness values in 

downtown regions are correlated to an increase in impervious surfaces (Onishi et al., 

2010). Families that want to move out to the suburban regions want larger properties with 

higher percentage of grass and trees to impervious surfaces.  

 

2.3 Tree and grass ecology 

Trees can have a significant impact on the quality of life by providing natural 

shade for residents and vegetation, reducing the ground surface temperature on the 

property, and purifying the air. Trees contain a higher leaf area index due to the multiple 

layers of leaf development in the canopy. The higher the leaf area index the more 

significant shading available for the property. High leaf area index will result in higher 

NDVI values due to the sensor picking up more vegetation area (Johnson, 2003). Trees 

improve air quality by absorbing air pollutants through their stomata and depositing the 

resultant pollutant onto the leaves and branches (Vos et al., 2013). Properties that possess 

high percentage of concrete create large amounts of storm runoff due to lack of soil 

absorbing water. Cities have neglected maintenance on storm drainage systems, and this 

has caused neighborhoods to flood during higher precipitation storms. Trees are useful 

for preventing large storm runoffs by absorbing water through transpiration and stemflow 

(Gotsch et al., 2018). Water that would normally flow over the concrete or bare soil into 

the storm drainage systems, are instead reused for vegetation growth.  
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Urban grasses (lawns) are characterized by being constantly manicured and being 

uniform throughout a neighborhood. This differs from natural grasslands where natural 

grasslands have tall vegetation. Lawns are aesthetically pleasing to the community when 

they are manicured to low grass heights. Manicured lawns can reduce the vegetation 

structure and composition by removing the ability for grasses to flower. Plant diversity is 

reduced with manicured lawns through the lack of pollination and an increase in pest 

species is seen (Watson and Lovelock, 1983). Manicured lawns are only useful for 

aesthetic reasons in the neighborhood. Keeping lawns well-manicured also requires an 

abundance of water to make sure vegetation stays healthy. Dry regions like 

neighborhoods in California that are prone to droughts will have to receive more 

irrigation to ensure lawn vegetation stays healthy throughout the year.  

Trees have a more significant impact on air quality through shading and lack of 

maintenance required compared to lawns (Norton et al., 2015). Lawns absorb rain runoff 

preventing large discharge into the urban storm drains. Rain runoff that cannot be 

absorbed through roots or leaves have the availability to be absorbed through the soil. 

Soil absorption of rainwater will be able to increase the natural water table in the 

environment. Increasing the water table has significant benefits for natural irrigation of 

vegetation in the environment instead of relying on water companies. Environments with 

more availability to water will show a more consistent diurnal temperature fluxuation due 

to the specific heats of water and vegetation (Wang et al., 2016). Neighborhoods 

containing more concrete and dry environments will have larger temperature swings 

throughout the day and night (Onishi et al., 2010).  
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Environments control what type of vegetation that can integrate into the 

ecological balance of the geography. Ecoregions are geographical regions of ecosystems 

that share similar regional ecological patterns (Omernik, 1987). Similar biotic and abiotic 

species will dominate an ecoregion, creating a somewhat homogeneous environment. 

Ecoregions like the Cross-Timbers show abiotic similarities like post oak and blackjack 

oak with sandy, coarse soils while ecoregions like the Central Great Plains is dominated 

by grasslands (Omernik, 2004).  

Lawns can thrive depending on multiple environmental and ecological variables. 

Vegetation can be classified as C3 or C4 plants. The terms C3 or C4 denote the type of 

carbon dioxide fixation pathways used during photosynthesis. C3 plants produce a 3-

carbon molecule while C4 plants produce a 4-carbon molecule (NSW, 2022). Every 

species possess the primitive C3 pathway, but some grass species have evolved to use the 

C4 photosynthetic pathway. Photosynthetic pathways are import to urban lawns due to the 

environmental and ecological requirements for healthy growth. C3 grasses have been 

shown to be more abundant in shaded regions while C4 grasses produce more biomass in 

well-lit environments (NSW, 2022).  

 

2.4 Trees and socioeconomic factors 

Tree patterns are often a result of municipal policy like HOA and NAS along with 

socioeconomic characteristics of parcels (Chalker-Scott, 2015). Municipal policies are 

derived from socioeconomic trends like the housing market or could come from 
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biophysical variables like invasive tree species. Invasive tree species can be damaging to 

the environment by decreasing ecosystem resilience (Dyderski and Jagodziński, 2020). 

Municipal policies will enforce rules on what type of tree species are available for 

planting on the property or the neighborhood. Capita mean annual income in 

neighborhoods can persuade HOA and NAS to produce municipal policies for aesthetics 

alone with no consideration of the environmental impact invasive tree species can have 

(Zhai et al., 2018). 

Older neighborhoods have matured trees while newly built neighborhoods will tend 

to have juvenile tree species. Transporting matured trees is an expensive process in 

comparison to planting juvenile tree species. Higher income communities have the 

financial resources to be able to participate in ecological programs to preserve and 

increase tree cover. Reforestation projects can require a substantial amount of money to 

implement. Homeowner associations and NAS need to plan that the neighborhood will 1) 

appreciate it enough for the HOA and NAS to get their money’s worth and 2) 

neighborhoods will be able to properly take care of the vegetation (Koeser et al., 2014). 

Reforestation projects can lead to spatial clustering of tree distribution throughout a city. 

Lower income population neighborhoods can be at a disadvantage for reforestation 

projects to redline neighborhoods as cities tend to fund forestation projects for high 

income neighborhoods (Flocks et al., 2011).  
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2.5 Oklahoma City studies of greenness 

2.5.1 Oklahoma City water consumption with population growth 

Oklahoma City is the largest urban area in Oklahoma, with a 17% increase in 

population which proposes potential water consumption from other water sources like the 

Kiamichi watershed (Burch et al., 2020; Ellis and Mathews, 2019). Oklahoma City water 

use comes from outside sources like surrounding reservoirs and the Kiamichi watershed 

in the southwest. Population growth of cities result in more houses being built with green 

spaces added into the properties. Keeping greenness within a property throughout the 

year requires a tremendous amount of water consumption. Kharel et al (2018) used the 

ENVISION model to analyze the relationships among climate change, population growth, 

urban development, vegetation greenness, and residential water use for irrigation in the 

OKC metropolitan. Testing different population growth scenarios, Kharel et al (2018) 

showed that tree cover plays a larger role in urban greenness. Water consumption did not 

have that high of an effect on vegetation greenness but related to mean maximum 

temperature, building age, land value.  

 

2.5.2 Oklahoma City spatial distribution of tree canopies 

Urbanization in OKC has created an increase in population density by the destruction of 

forests and grasslands in favor of impermeable surfaces (Ellis and Mathews, 2019). 

Urban green spaces can provide significant results for physical activity as well as 

providing a natural air purification system, a more moderate climate, decrease urban 

noises (Irvine et al., 2010; Nowak & Dwyer, 2007; Wu, 2008). Ellis et al. (2018) uses 
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lidar-derived digital terrain models (DTMs), digital surface models (DSMs), and National 

Agriculture Imagery Program (NAIP) to examine spatial distribution and change of tree 

canopies in Oklahoma City between 2006 – 2013. The image classification method Ellis 

et al. (2018) used was object-based image analysis (OBIA) which removes the 

heterogeneity of image classification. Ellis et al. (2018) showed that 9.69 km2 of tree 

canopy coverage which accounts for a 2% total loss in greenness. 

 

2.5.3 Oklahoma City urban heat island effect 

Urbanization can lead to natural spaces being converted to impervious surfaces 

which have a positive correlation to urban heat islands (UHI). Impervious surfaces absorb 

and retain solar radiation causing a rise in ambient temperature while vegetation will 

absorb solar radiation and create evapotranspiration reducing the ambient temperature of 

the microclimate. Impervious surface spatial clusters can provide insight into ratio of 

impervious surface to urban green spaces. Cui et al. (2018) examined multiple cities 

(rural and urban) in Oklahoma using the Oklahoma Mesonet, remotely sensed land 

surface temperature, and enhanced vegetation index to look at the UHI from 2000 - 2014. 

Looking at rural cities will show how the difference in ratio of impervious surface to 

urban green spaces can contribute to the UHI. Rural cities will have less impervious 

surface in comparison to cities like Oklahoma City and Tulsa. Oklahoma City showed to 

have the highest UHI intensity with a value of 0.58°C and an increase of impervious 

surface by 3.19%. 
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2.5.4 Oklahoma City environmental and community benefits from greenness 

Spatial distribution of UGS is highly dependent on socioeconomics of the space. 

Neighborhoods are categorized by undesirable to desirable and funding for anything 

based on the classification of the neighborhood is dependent on how desirable the 

neighborhood is. The expense of reforestation or refurbishing neighborhoods depends on 

the amount of risk involved with funding reforestation or refurbishing projects. Lower 

income neighborhoods tend to have smaller UGS that are run down while higher income 

neighborhoods have access to larger well-kept UGS. Delano (2015) showed in Oklahoma 

City that census block groups categorized with higher percentage of minority and lower 

income neighborhoods are in closer proximity to UGS but are smaller than UGS in higher 

income neighborhoods  
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Chapter 3: Materials and Methods  

3.1 Study Area 

The study area covers Oklahoma City (OKC), which is the capital of and located 

in the central part of the state of Oklahoma (Figure 1). Oklahoma City has a total area of 

1,608 km2 making it the largest metropolitan area in the state. Data from the U.S. Census 

reports a population of 620,553 people with a median age of 34.4 years for the year 2014 

(U.S. Census Bureau, 2014). The economic sector in OKC consists mainly of livestock 

and petroleum markets; Tinker Air Force Base, one of Oklahoma’s largest employers, is 

in the southwestern part of the OKC metropolitan area.  

 

 

Figure 1: The study area covers the Oklahoma City spatial extent located centrally in the 

state of Oklahoma. 
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3.2 Vector Data 

3.2.1 Counties 

The full spatial extent of the OKC metropolitan area includes the four counties: 

Canadian, Cleveland, Oklahoma, and Pottawatomie. However, 99.996% of the parcels 

fall into Canadian, Cleveland, and Oklahoma counties (196,859 parcels), with only 

0.0041% in Pottawatomie County (8 parcels) (Figure 2). Hence, I excluded the latter 

from the analysis to assure statistical significance to use in the analysis. The county 

dataset is downloaded from the US Census Bureau. 

 

 

Figure 2: Counties within the Oklahoma City spatial extent. 
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3.2.2 United States Census Tracts 

Census tracts have a total population between 1,200 and 8,000 people and are 

designed to be homogeneous with respect to socio-economic variables like living 

conditions, economic status, and population (U.S. Census Bureau, 2022) . Since the 

census tracts’ boundaries are defined via population numbers, larger census tracts have a 

lower population density in comparison to smaller census tracts. As new housing 

developments are established, population density in the tracks increases. Every ten years 

the census tracts are updated because of socio-economic changes in the census tracts.  

Census tracts have unique identifiers (four-digit number) and sub-tracts share the four-

digit identifiers with two more suffix unique identifiers. The OKC spatial extent for this 

study contains 253 census tracts (Figure 3). 
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Figure 3: U.S. Census Tracts for the year 2014 of the city of Oklahoma City, Oklahoma. 

For spatial reference in the state of Oklahoma, please refer to Figure 1. 

 

This study uses census tract data for the year 2014, to be in line with the parcel 

dataset (see below). Since the year 2014 falls between the 2010 and 2020 census surveys, 

I derived the socio-economic information from the American Community Survey (ACS), 

which provides yearly estimates of data on topics that the decadal census does not cover 

(e.g., education or employment) (ACS, 2017). I derived information on the census tract 

level (Table 3) for the year 2014 from the ACS.  
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3.2.3 Environmental Protection Agency Ecoregions 

The climate in central Oklahoma is meteorologically influenced by the moisture 

from the Gulf of Mexico and dry, cold air from the jet stream in the northwest. Moist air 

from the south and dry air from the northwest tend to produce severe weather in the 

Spring and Fall (Wang et al., 2020). The moisture from the Gulf of Mexico creates 

natural ecological boundaries of the ecoregions that make up the OKC metropolitan area. 

Ecoregions are areas that have very similar biotic and abiotic species characteristic traits 

(Omernik, 1995). Some vegetation only grows in one type of ecoregion and cannot 

survive in other ecoregions, unless there are interspecific connections that benefit the 

relationship (Morales & Aizen, 2010). 

The eastern part of the study area receives more precipitation as compared to the 

west due to the moisture from the  Gulf of Mexico resulting in a higher density of trees 

on the eastern region of OKC. The Environmental Protection Agency (EPA) level three 

ecoregions dataset was chosen for this study due to the representation of vegetation and 

precipitation (EPA, 2021). Since level one and two are too broad of a spatial extent of 

each ecoregion (Omernik & Griffith, 2014), for this study I chose to use EPA level three 

ecoregion data. The study area covers two ecoregions (Central Great Plains and Cross 

Timbers) at the EPA level three within the OKC spatial extent (Figure 4). The OKC 

spatial extent is split between a transitional zone in the Great Plains. Transitional zones 

share similar biodiversity, especially at the dividing line of ecoregions known as 

ecotones. Ecotones tend to show similarities in biodiversity (Senft, 2009). The Central 

Great Plains, covering the western part of the study area, is a semi-arid prairie ecoregion 
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with less dense tree canopy and higher density of grasslands. The Cross Timbers, 

covering the eastern part of the study area, contain a mix of prairie, savanna, and 

woodlands with higher precipitation accumulation than the Central Great Plains (Figure 

4). 

 

  

 

Figure 4: Oklahoma City spatial extent showing the Central Great Plains in the west 

(yellow) and Cross Timbers ecoregion in the east (Green). 
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3.2.4 Redline Districts 

Redlining data was acquired from American Panorama (Nelson et al., 2016). The 

Homeowners’ Loan Corporation (HOLC) maps are a public domain with most maps 

coming from the National Archives. Figure 5 shows the spatial distribution of the 

classified redline districts. The first thing to note is the lack of spatial distribution 

creating a cluster of classified redline districts in the dense urban environment of 

downtown OKC. The majority of classified redline districts are located on the south side 

of downtown OKC. 

 

Table 1: Redline classifications reported from (Nelson et al., 2016). The best locations are 

classified as A and the worst locations are classified as D. 

REDLINE 

CLASSIFICATION 

REDLINE 

DESCRIPTION 

A Best 

B Still Desirable 

C Definitely Declining 

D Hazardous 
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Figure 5: A map of the redline districts of Oklahoma City. The redline district grades are 

green (best), yellow (still desirable), orange (definitely declining), and red (hazardous).  

 

3.2.5 Tri-County Parcels 

The parcel dataset contains information at the parcel scale in 2014. The parcel 

dataset was collected by the city of Oklahoma City Planning Department. The 

information used in this dataset is the current land use category (CLUcat). CLUcat is the 

basic level of generalization (smallest number of categories). Any parcel with a floor area 

ratio (FAR) (Eq. 2) below 0.01 regardless of whether or not it has improvements. Indoor 
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floor area is a calculated value from the parcel floor plan and the area of the parcel is 

calculated by the total shapefile feature of the parcel. 

 

𝐹𝑙𝑜𝑜𝑟 𝐴𝑟𝑒𝑎 𝑅𝑎𝑡𝑖𝑜 (𝐹𝐴𝑅) =  
𝐼𝑛𝑑𝑜𝑜𝑟 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙
 (2) 

 

This could be from housing, apartment complexes, duplexes, residential housing, 

military housing, or farmland that contains a residential house. Parcels that were 

classified as residential or rural residential were chosen in CLUcat variable. There ended 

up being 197, 270 parcels after filtering out other parcel data that did not contain 

residential, rural residential, no census data available for the tract the parcel belonged in, 

or parcel contained extreme census socio-economic values. Residential parcels account 

for 33% of the OKC spatial extent. 
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a) 

 

b) 
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c) 

  

Figure 6: a) Oklahoma City spatial extent for tri-county parcel 2014 dataset containing 

every CLUcat unique value. b) Parcel dataset with every residential and rural residential 

CLUcat classification. c) Zoom in parcel dataset with only residential and rural 

residential and rural residential CLUcat classification. 

 

3.3 Raster Data 

3.3.1 National Agriculture Imagery Program 

National Agriculture Imagery Program (NAIP) data are orthophotography images 

that are captures through an airplane. Each image is comprised of a multispectral 

representation of the surface features. Most studies examine land cover and biophysical 

properties using Landsat imagery. Landsat imagery uses a spatial resolution of 30m 

(Figure 7a) and has a temporal resolution of 16 days, which is ideal for time series 

analysis throughout each year. National Agriculture Imagery Program uses a high spatial 

resolution of 1m (Figure 7b) to create a digital ortho quarter quad (DOQQs) into a single 

mosaic. The temporal resolution of NAIP has a low resolution of 2 years in some states 
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like Oklahoma (USDA, 2017). The temporal resolution of the NAIP is a downside to 

using it for land cover analysis but a 1m spatial resolution makes up for the lack of 

temporal resolution as long as there is not much land use land cover change between 

image acquisition dates. A spatial resolution of 1m can provide further insight into 

differentiating grass, trees and urban landscape. 

 

 

 

a) 

 

b) 

 

c) 

 

d) 
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Figure 7: Landsat 8 top of atmosphere and b) National Agriculture Imagery Program 

images at the same location and spatial extent of the National Agriculture Imagery 

Program image. Shows how the resolution makes a significant impact on the quality of 

pixel classification. c) Landsat 8 top of atmosphere tile and d) National Agriculture 

Imagery program quarter-quad tile in comparison to the spatial extent of the study area. 

 

National Agriculture Imagery Program schedules flight plans for remotely sensed 

orthophotography during days that have atmospheric stable conditions less than ten 

percent cloud cover. These images are necessary for the agricultural leaf-on season to 

observe vegetative growth the year of image acquisition to crop rotations (Maxwell et al., 

2017). The leaf-on season is related to biological plant phenology transitioning from fall 

to winter brown dehydrated leaves in the dormant season to spring to summer healthy 

green leaves in the growing season (Maxwell et al., 2017). Central Oklahoma has a vast 

range of leaf-on season, but an average growing season for tree canopies is from March 

to September each calendar year (Wagle & Kakani, 2014). 

This study uses the years 2013 and 2015 for a total of 146 images. National 

Agriculture Imagery Program started with real-color images of Oklahoma with a spatial 

resolution of 1m till 2007 and in 2010 the program changed the cameras by installing a 

multispectral camera that includes the near-infrared band (Maxwell et al., 2017). A 

Google Earth Engine (GEE) script was created to avoid having to download a terabyte 

worth of images and reduce image processing time. The GEE script filtered out images 

that were outside of 2013 to 2015, did not have the red, green, blue, and near-infrared 

(NIR) spectral bands, and clipped each image to the OKC spatial extent. Once the images 

were filtered and clipped to the study area, the median function was used to create a 
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single pixel that would represent 2014 for each overlapping pixel was calculated to 

produce a mosaic of NAIP imagery for OKC representing 2014. 

 

3.3.2 Vegetation Indices and Land Cover Classification 

Vegetation index NDVI is a measure of the greenness of vegetation using the red 

and NIR bands (Pettorelli et al, 2005). Chlorophyll absorbs visible light in the red 

spectrum and the internal spongy mesophyll will reflect light in the NIR spectrum. When 

vegetation becomes diseased, the internal composition loses structure and begins to 

absorb NIR light and the vegetation will begin to heat up (Pettorelli et al, 2005). The 

values of NDVI are between -1.0 and 1.0. 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (2) 

 

Vegetation index NIRv is mainly used for detection of solar-induced chlorophyll 

fluorescence and gross primary production (GPP) of vegetation (Badgley et al, 2017). 

This study uses NIRv to make a clear separation of vegetation from impervious surfaces 

and water bodies in the study area. Grass and tree canopies have a very high value in 

comparison to impervious surfaces (Badgley et al, 2017). Impervious surfaces have a 

value closer to the minimum range of the product (Badgley et al, 2017). 
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𝑁𝐼𝑅𝑣 =  𝑁𝐷𝑉𝐼 ∗ 𝑁𝐼𝑅 (3) 

 

Vegetation index NDWI is a measure of water bodies in the study area using the 

green and NIR bands (McFeeters, 1996). The primary purpose of NDWI is to source 

open water bodies and eliminating soil and vegetation from the image. Positive values 

denote water bodies and impervious surfaces while negative values denote non-flooded 

vegetation (McFeeters, 1996). The values of NDWI are between -1.0 and 1.0. 

 

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (4) 

 

I explored vegetation index threshold classification using vegetation index values 

as boundaries for different land cover classifications but ended up using a training dataset 

created myself (Figure 8). I used a pixel-based land cover classification using vegetation 

indices and spectral bands to classify trees, grass, and urban land cover. A training 

dataset of points were used to run through a machine learning Classification and 

Regression Tree (CART) to classify each pixel based on vegetation indices and spectral 

bands (Table 1) (Figure 8).  The CART classification is chosen over threshold index 

classification as threshold classification produced lower accuracy in comparison to 

CART classification. The vegetation indices used in this study are Normalized Difference 
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Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Near-

Infrared Vegetation (NIRv) (Equations 2 – 4). 

 

Table 2: Point pattern training dataset used for Classification and Regression Tree 

machine learning algrorithm. 

RECLASSIFY 

VALUE 
COLOR 

LAND COVER 

CLASSIFICATION 

NUMBER OF 

POINTS 

01 Green Trees 500 

02 Lime Grass 500 

03 Black Other 500 
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Figure 8: Distribution of training dataset throughout the Oklahoma City spatial extent. 

The National Agriculture Imagery Program imagery is used for reference to acquire 

accurate training data. Processed through Google Earth Engine using a projection of 

WGS84. 

 

 

 

3.4 Study Design 

This study focuses on Oklahoma City and uses open-source datasets to examine 

the relationship between bio-physical and socio-economic variables at the parcel level 

and their effects on percentage of trees in neighboring parcels. For the purpose of my 
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study, I use spatial parcel data on neighborhoods in the OKC spatial extent and combine 

those with census data and NAIP imagery. National Agriculture Imagery Program uses 

high spatial resolution with one pixel representing one square meter in the reality (USDA, 

2017). The use of high resolution NAIP imagery allows for a more accurate 

representation of bio-physical variables on the parcel level in comparison to platforms 

like Landsat. More specifically, the use of NAIP imagery as compared to the frequently 

used Landsat (30m), allows researchers to evaluate (1) the spatial relationship between 

percentage of trees versus percentage of grass on residential parcels in OKC, and (2) the 

spatial relation among percentage of trees/grass and socio-economic variables (e.g., 

educational background, travel time to work, driving habits, income, etc.) on residential 

parcels in OKC.  

I expect a higher percentage of trees to be located in neighborhoods with higher 

median household incomes and older parcels, based on the assumption that established 

parcels and parcels with a higher median household income will have more disposable 

income to use on landscaping. Newer lots are expected to have mainly grass covered 

yards or younger trees which are harder to identify in satellite images; the lower leaf area 

index of younglings cause the satellite imagery to detect the ground rather than the tree 

itself (Xiao et al., 2004). Moreover, I expect to find a higher percentage of trees in 

suburban neighborhoods, based on the assumption that suburban lots are larger, and 

hence, have a lower fraction of impervious surface. Analyzing these assumptions and 

understanding the relative importance of trees versus grass versus impervious surface and 

the resulting greenness of parcels in OKC, which is partially located in the Cross-Timbers 
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region (amongst others dominated by woodlands and oak-hickory forests), will contribute 

to a more nuanced understanding of the relationship between socio-economic 

characteristics and UGS. 

In this study, I use NAIP imagery to derive information on NDVI, tree pixel 

classification, and grass pixel classification for OKC. I then combine this information 

with residential parcel boundary data to calculate mean NDVI per parcel, as well as 

percentage tree and percentage grass for each residential parcel in the study area. In the 

second step, I add socio-economic information from the U.S. Census to the residential 

parcels. The socio-economic information is essentially tract level U.S. Census 

information but transformed based on a parcel weighted ratio (Eq 1). The weighted parcel 

ratio is used to see trends at the parcel spatial level. 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 =  
1 𝑝𝑎𝑟𝑐𝑒𝑙

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑖𝑛 𝑡𝑟𝑎𝑐𝑡
 (1) 

 

I include bio-physical independent variables such as mean NDVI, parcel area, and 

ecoregion to describe the spatial characteristic of each residential parcel in OKC. I 

include commuting tendencies, educational background, housing situations, financial 

availabilities, and demographics to describe the socio-economic characteristics of each 

residential parcel in OKC. After completing pre-processing of spatial data, I conducted a 

multiple regression analysis to find a model that best describes the influential factors on 
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the dependent variables (first greenness, and then in a second step percentage of trees). I 

used the Akaike Information Criterion (AIC) to identify different independent variables 

in models to show the best statistical model to use. I use spatial autocorrelation with the 

best model to show global and local indicators of spatial clustering of parcels that have 

similar characteristics as neighboring parcels’ percentage of trees. 

 

3.5 Data Processing 

This study is meant for replicability, thus requiring python, R, and GEE computer 

programming scripts used throughout the study. All shapefiles were reprojected to use the 

same spatial projection as the Tri-County Parcel shapefile which was the North American 

Datum 1983 Lambert Conformal Conic Oklahoma North in feet. Counties shapefile was 

used for clipping the OKC spatial extent by selecting Canadian, Cleveland, and 

Oklahoma counties. Counties shapefile reduced the OKC spatial extent by reducing the 

eastern portion of the city. Census tracts in Pottawatomie County did not possess enough 

tracts to make it statistically significant to keep. The census tracts dataset provide 

information about the entire census tract. Two census tract shapefiles were created to 

properly assign socio-economic census survey information down to the OKC spatial 

scale. Counting the number of parcels inside the full census tract shapefile and counting 

the number of parcels inside the OKC spatial extent are used to create the ratio used to 

proportionally disaggregate the socio-economic data (Equation 4). Number of parcels 

was used for disaggregation instead of area of tract due to the idea that tracts that are 

large mean that there is a smaller population density compared to small tracts which are 
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located near the downtown regions of cities. The parcel ratio is used to transform census 

tract data from tract level to parcel level (Equation 5). Number of parcels gives a more 

accurate representation when downscaled to smaller spatial levels as census tracts are 

describing people and not spatial area. 

 

𝑇𝑟𝑎𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑖𝑛 𝑐𝑙𝑖𝑝𝑝𝑒𝑑 𝑡𝑟𝑎𝑐𝑡 𝑠ℎ𝑎𝑝𝑒𝑓𝑖𝑙𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑖𝑛 𝑓𝑢𝑙𝑙 𝑡𝑟𝑎𝑐𝑡 𝑠ℎ𝑎𝑝𝑒𝑓𝑖𝑙𝑒
 (4) 

  

𝑃𝑎𝑟𝑐𝑒𝑙 𝑅𝑎𝑡𝑖𝑜 =  
1 𝑝𝑎𝑟𝑐𝑒𝑙

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑖𝑛 𝑠𝑎𝑚𝑒 𝑡𝑟𝑎𝑐𝑡
 (5) 

 

Each parcel in the parcel dataset needs a tract identifier number to assign socio-

economic census survey information. The Point on Surface geoprocess in QGIS was used 

to transform each polygon feature in the parcel shapefile to an area-weighted centroid 

point. Some features of the parcel shapefile will intersect tract boundaries creating a 

problem for assigning tract identifier numbers but turning the polygon features into points 

will remove this error by using a point instead of polygons. This points shapefile was 

used for assigning tract identifiers, ecoregion, and redline intersections. Unique 

identifiers were created for the parcel shapefile that are used to match up the point 

shapefile attributes to the polygon shapefile attributes. The bio-physical variables (trees 

count, grass count, other count, and mean NDVI) were calculated in GEE and exported 
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into a comma-separated value to be imported into the polygon shapefile attribute table. 

Percentages of grass and trees were calculated in the R-script. 

 

3.6 Statistical Analysis 

The statistical analysis was conducted on the parcel shapefile. The dependent 

variable of this study is the percentage of trees, and the independent variables are the 

socio-economic and some bio-physical variables (Table 3).Twenty-four parcels were 

removed due to having extreme outlying values across the socio-economic variables 

(Tracts 107500, 107808, 108404, 202106, 301410) or having no census survey 

information (Tracts 107101, 400101, 501003). There are 261 parcels that are removed 

due to containing NA values in any of the socio-economic variables. All variables 

(dependent and independent) that are a proportion or percentage are transformed using 

the arcsine square root transformation method (Ahrens et al., 1990). Arcsine square root 

transformation is used on proportions and percentages because as the ratios are reaching a 

maximum value at a proportion of 0.5 and declining to zero at proportions of boundary 

effects. 

This study examines the ordinary least squares (OLS) of the multiple linear 

regression analysis. A linear regression approach is conducted due to the relationship 

shown between mean NDVI and percentage of trees in a parcel. Dependent variables are 

percentage of trees or percentage of grass on each parcel (Figure 11). Choosing the 

dependent variable was statistically chosen by using two OLS simple linear regression 



40 

tests using mean NDVI as the dependent variable and percentage trees as the independent 

variable for the first test. The second test is mean NDVI as the dependent variable and 

percentage grass as the independent variable for the second test. 

The dependent variable is percentage of trees, and the independent variables are 

described in table 3. Multiple regression analysis is useful for this study as bio-physical 

variables are dependent on more than on socio-economic variable to fully understand the 

causal effects of greenness in parcels. The independent variables are chosen based on the  

Akaike Information Criterion (AIC). The statistical test AIC is useful for measuring 

which independent variables are not suitable in the linear multiple regression model.  

Spatial autocorrelation is useful for measuring how closely related the socio-

economic variables are for each parcel the neighboring parcels using a first-order queens 

based spatial weights matrix. Zero-policy is set to true to account for the non-residential 

parcels filtered out of the parcel dataset and the weights style of the neighbors are set to 

“W” to standardize the rows. Moran’s I statistic is used for testing global spatial 

autocorrelation in the residuals and testing if there is a presence of spatial clustering. 

Local indicators of spatial association (LISA) test is used for local clustering in the 

residuals by reclassifying parcels based on the mean value of the OLS multiple linear 

regression fitted value and the mean local Moran’s-I value for the parcel being positive or 

negative. If the p-value of the parcel does not meet the statistical significance threshold 

(p-value < 0.001) in the LISA test, then a zero is assigned to the parcel. An alpha 

threshold of 0.001 is chosen to increase the strength of the results by removing the chance 

of seeing false positives in the results. 



41 

Chapter 4: Results 

4.1 National Agriculture Imagery Program Classification Validation 

The NAIP land cover classification was tested for accuracy by examining 

individual parcels (Figure 9). Further systematic accuracy examining looked at the kappa 

coefficient that resulted in 0.99. The overall accuracy of the machine learning land cover 

classification produced a value of 0.99. The confusion matrix shown in table 2 shows 

slight variance in between training data and classified pixels. Overall this training data 

showed positive results in classifying NAIP pixels. 

 

Table 3: Resubstituting error matrix for training data using 20% as a random sample of 

the 1500 training points used for land cover classification 

 Reference Data 

Trees Grass Other Total 

Classified 

Data 

Trees 111 0 1 112 

Grass 0 96 1 97 

Other 0 0 109 109 

Total 111 96 111 318 
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Figure 9: Land cover classification map produced from Classification and Regression 

Tree machine learning algorithm using Google Earth Engine with a projection of 

WGS84. 
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a) 
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b) 

  

  

 

Figure 10: Subjective validation of land cover classification examining individual 

parcels. a) Oklahoma City residential and rural residential houses with four parcels 

selected for validation. b) Zoomed in National Agriculture Imagery Program true color 

imagery overlayed with the Classification and Regression Tree algorithm result from 

Google Earth Engine for that parcel using a WGS84 projection (Unique IDs: 265900, 

154690, 164926, 223083 respectively). The numbers are the unique ID associated with 

each parcel. 
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4.2 Ordinary Least Squares Regressions 

The original OLS test to decide the dependent variable to examine with OLS 

multiple linear regression model showed that percentage of trees is a more suitable 

variable to use (Figure 11). Percentage of grass correlated to mean NDVI only showed an 

adjusted R2 value of 0.09323 and a p-value of less than 0.05. Percentage of trees 

correlated to mean NDVI showed an adjusted R2 value of 0.66 and a p-value of less than 

0.05. Percentage of trees was chosen for the OLS multiple linear regression model by 

showing a more accurate correlation of mean NDVI with a higher R2 value.  

 

 

Figure 11: Density scatterplot showing the correlation between trees and grass coverage 

percentage in a parcel compared to the mean NDVI of that parcel. The bins were situated 

at 500. 
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The OLS multiple linear regression model was originally ran using every variable 

I created in the parcel shapefile for the independent variables and percentage trees used 

for the dependent variables (Table 3). Independent variables percentage of associates 

degree and percentage of vacant parcels were removed from the OLS multiple linear 

regression model as the variables show p-values larger than 0.05. The first and second 

OLS multiple linear regression models were tested to see which statistical model would 

be a better fit to describing the relationship to percentage of trees in each parcel. Both 

models were tested using the AIC method and both models produced an AIC value of -

320288.4. Since both models produced the same AIC value, the model that removed 

independent variables associates and vacant was chosen for the spatial autocorrelation 

statistical method. There is a strong correlation between the statistical fitted values 

assigned to each parcel and greenness values based on the multiple linear OLS 

regression.  
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Figure 12: Choropleth map showing the spatial distribution of the statistical fitted values 

throughout Oklahoma City. 
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Figure 13: Density scatterplot showing the correlation between fitted statistical values 

and greenness. The bins were situated at 500. 
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Table 4: Independent and dependent variable definitions and summary statistics of parcel 

dataset used in statistical analysis. 

VARIABLES DESCRIPTION TYPE RANGE MEAN MEDIAN STDEV  

 

INDEPENDENT 
       

medianAge Median household age Numeric 21.1 - 57.7 35.5807 34.6 6.1507 *** 

driveAlone Ratio driving alone Numeric 0.0243 - 17.2 0.091 0.0633 0.2581 *** 

carpool Ratio driving carpool Numeric 0 - 3.175 0.0134 0.0076 0.0359 *** 

workTravel 
Average commute time 
(minutes) Numeric 

12.2 - 36 20.9079 20.9 3.5694 
*** 

ged Ratio having a GED Numeric 0.0019 - 
5.5285 0.0197 0.0129 0.0688 

*** 

bachelors 
Ratio having a 
bachelor’s degree Numeric 

0 - 7.4219 0.0136 0.0091 0.0541 
*** 

graduate 
Ratio having a graduate 
degree Numeric 

0 - 3.6458 0.0074 0.0041 0.0384 
*** 

owned 
Ratio houses that are 

owned Numeric 
0 - 17.5731 0.0687 0.0496 0.23 

*** 

rented 
Ratio houses that are 
rented Numeric 

0 - 25 0.0442 0.0284 0.2208 
*** 

occupied 
Ratio houses that are 

occupied Numeric 0.0269 - 

21.6398 0.0998 0.0716 0.303 
*** 

houseAge Age of house (years) Numeric 1 - 128 44.735 45 24.8482 *** 

medIncome 
Median household 

income Numeric 9250 - 

137105 56862.23 53007 26164.49 
*** 

redline Redline neighborhoods Factor 0, A, B, C, D NA NA NA *** 

ecoregion Ecoregion Factor 
Central Great 

Plains, Cross 
Timbers NA NA NA 

*** 

areaFT Area of parcel (ft2) Numeric 0.011 - 

27925367.354 31863.68 7928.976 285832.6 
*** 

perGrass Percentage grass Numeric 0 - 100 32.009 30.64 14.7383 *** 

meanNDVI Mean NDVI Numeric -0.8164 - 
0.6064 0.1147 0.1108 0.1318 

*** 

 

DEPENDENT 
     

 
 

perTrees Percentage Trees Numeric 0 – 100 18.6015 12.92  *** 

*** p < 0.001 
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Table 5: Table showing the statistical means of independent variables filtered to the 

redline districts for fitted value comparison. Med is short for median. 

REDLINE 

DISTRICTS 

TOTAL 

POP 

MED 

AGE 

OWNED 

PARCEL 

RENTED 

PARCEL 

OCCUPIED 

PARCEL 

VACANT 

PARCEL 

AGE OF 

HOUSE 

0 2.7779 37.2875 0.0734 0.0293 0.0927 0.01 41.3981 

A 2.5883 34.3684 0.0716 0.0511 0.1045 0.0182 87.4716 

B 3.0763 32.1749 0.0446 0.0534 0.0831 0.0149 85.7289 

C 2.6354 34.8503 0.0436 0.0467 0.0769 0.0134 72.4802 

D 3.7797 29.4698 0.0555 0.1607 0.169 0.0473 70.6976 

        

REDLINE 

DISTRICTS 

MED 

INCOME 

($) 

PARCEL 

AREA 

(FT2) 

GRASS 

(%) 

TREES 

(%) 

MEAN 

NDVI 

MORAN’S 

– I 

FITTED 

VALUE 

0 68488.69 80841.84 22.8098 34.5242 0.15 2.9774 0.5172 

A 54125.13 9560.173 20.5896 54.109 0.3076 2.8306 0.8646 

B 35514.57 7792.797 20.8203 56.2993 0.3307 3.3318 0.8837 

C 32933.66 8130.821 22.6895 55.8729 0.3321 3.0439 0.8662 

D 27118.08 8820.053 19.5689 59.0348 0.3209 3.704 0.8803 

 

 

4.3 Spatial Autocorrelation 

The neighbor list of each parcel resulted in an average of 3.36 neighbors per 

parcel. I used a true zero policy for creating a neighbor list and produced 3108 parcels 

with no queen’s case connections to neighboring parcels. The global spatial 

autocorrelation resulted in a Moran’s-I statistic of 0.68 with a statistically significant p-

value of less than 0.05. The global Moran’s-I result shows spatial clustering with parcels 

sharing similar characteristics to the neighboring parcels allowing us to reject the null 

hypothesis. The null hypothesis in the global spatial autocorrelation is that there is no 

spatial autocorrelation between parcels and every parcel is random dispersed when 
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examining the correlation between socio-economic variables and bio-physical variables 

to percentage of trees. A Monte-Carlo simulation of Moran’s-I reinforces the significance 

of the global result by running 1000 simulations and producing the same 0.68 Moran’s-I 

and a p-value less than 0.05.  

 

 

Figure 14: Spatial distribution of local Moran’s - I statistics at every statistically 
significant parcel in Oklahoma City. 

 

Local indicator of spatial autocorrelation resulted in a Moran’s-I range of -6.32 to 

32.06. There were 11 parcels presenting low-low spatial clustering, meaning significant 

parcels will exhibit opposite trends compared the neighboring parcels. There were 13,608 
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parcels presenting high-high spatial clustering, meaning significant parcels will exhibit 

similar trends compared the neighboring parcels. Insignificant parcels were removed 

176,212 parcels in the LISA analysis due to parcels containing a p-value above 0.001. 

Parcels that contain a p-value above 0.001 are essentially spatially random in comparison 

to the neighboring parcels. 

 

Table 6: Local indicator spatial autocorrelation classifications and total number of 

parcels for each classification. 

LISA 

CLASSIFICATION 

DESCRIPTION CLUSTER TYPE TOTAL 

0 Insignificant None 176212 

1 Low – Low (-) Spatial cluster 11 

2 Low – High (-) Spatial outlier 7439 

3 High – Low (+) Spatial outlier 0 

4 High – High (+) Spatial cluster 13608 
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Figure 15: Density scatterplot showing the local Moran's-I statistic compared to the 

statistical fitted values of each parcel. The bins were situated at 500. 
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Figure 16: Local indicator spatial autocorrelation cluster analysis showing insignificant 

parcels with no color, spatial clustering in dark red and blue, and spatial outliers in light 

blue. 
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Figure 17: Significance map of Local Indicator Spatial Autocorrelation in Oklahoma 

City. 
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Figure 18: Choropleth maps showing the spatial distribution of a) Moran's – I (top-left), 

b) mean NDVI (top-right), c) median household income (bottom-left), and d) percentage 

of trees (bottom-right). 
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Chapter 5: Discussion 

5.1 Spatial Clustering of Trees 

Global spatial autocorrelation resulted in a Moran’s-I value of 0.68 meaning that 

Oklahoma City does show spatial clustering of parcels. Neighborhoods and communities 

tend to have strict rules for the aesthetic curb appeal of parcels. Not following the 

neighborhood rules for parcel curb appeal will result in fines. Neighborhood associations 

and HOAs can affect global spatial autocorrelation by creating spatial clustering within 

the confines of the NA and HOA boundaries. 

The local indicator of spatial autocorrelation provides additional insights into the 

socio-economic trends that are shared by neighboring parcels. Spatial clustering of high-

high LISA values is apparent for the areas north and east of downtown Oklahoma City. 

North and east of downtown also show a relationship with high percentage of trees with 

high greenness values; the percentage of trees variable has a positive correlation to 

greenness due to tree canopies typically displaying high LAI (Myneni et al., 2002). 

Multiple layers of tree canopies reduce the background scatter of sensor sensing 

heterogeneous pixels. Heterogeneous pixels are caused by lower LAI and gaps in tree 

canopy causing the sensor to pick up grass or other land cover (Chen and Black, 1992). 

The analysis does not show significant local indicator of spatial autocorrelation 

for the majority of downtown OKC (Figure 16). Figure 16 shows high-high parcels (red) 

in close proximity of downtown, but the parcels are still north and north-west of 

downtown. This is in line with findings by Mjaherjani (2016), Obiakor (2012), Onishi 
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(2010); downtown areas have high population density with a high percentage of 

impervious surface land cover, i.e., low greenness values. In comparison, suburban areas 

of cities have lower population densities, and as a result, a lower percentage of 

impervious surface land cover (Obiakor et al., 2012).  

 

5.2 Socioeconomic Effects on Trees 

While socioeconomic variables like median household income can play a big role 

in the spatial distribution of percentage trees and greenness, this is not always the case. 

The analysis shows parcels that have a high median household income, higher Moran’s-I, 

and a higher percentage of trees in the statistically significant regions (p < 0.0001) of 

Moran’s-I. The high-high LISA analysis of parcels with mean NDVI of the parcel above 

the average of 0.11467 and parcels having a percentage of trees above the mean value of 

12.92%. Rural locations in the southeast section of Oklahoma City show statistically 

significant parcels with high-high LISA analysis. Rural parcels typically share the same 

biophysical features (trees and grass). Farmers share the same style of landscape 

(depending on crops produced) or rural housing has the same biophysical features 

(overgrown vegetation). Overgrown vegetation on rural parcels will show a higher NDVI 

due to more vegetation for what the sensor detects. There is a wide range of values for 

every socioeconomic variable. Moreover, median household income cannot be the only 

variable used in studies to examine greenness and the percentage of trees. Univariate 

studies cannot fully understand the systematic patterns that affect greenness. 
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5.2.1 Redlining Effects on Trees 

Redline neighborhoods show the same results which is a wide range of values for 

every socioeconomic variable. Mean NDVI variable is of some interest as it showed a 

higher mean NDVI value and percentage of trees in redline neighborhoods classified as 

hazardous (Grade D). Locke et al (2021) showed that 37 metropolitan areas showed that 

grade D neighborhoods have on average ~23% tree canopy cover compared to grade A 

neighborhoods. Oklahoma City seems to show an opposite pattern with grade A 

neighborhoods having 47.55% and grade D neighborhoods having 52.47% ). Hazardous 

neighborhoods could offer a higher percentage of trees and a higher greenness value 

since there is a higher percentage of vacant lots in hazardous neighborhoods (Schwarz et 

al., 2018). Hazardous neighborhoods have a mean vacancy percentage of 0.4178% 

compared to best neighborhoods having 0.02923%. Vacant parcels will have overgrown 

vegetation and untrimmed trees. Overgrown parcels and untrimmed trees increase the 

LAI value which saturates NDVI curves in the higher NDVI values (Chen and Black, 

1992). 

 

5.3 Ecological Effects of trees 

Higher mean NDVI values of parcels located outside of downtown but are 

concentrated in and near the Cross Timbers ecoregion. The Cross Timbers ecoregion is 

ecologically prone to produce more trees in comparison to the Central Great Plains 

(Olson et al., 2007). Cross Timbers ecoregion is located in the eastern section of 

Oklahoma City and shows some of the highest Moran’s-I values, mean NDVI, and 
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percentage of trees (Figure 18). Spatial clustering of statistically significant (p < 0.0001) 

parcels are more present in the Cross Timbers ecoregion (Figure 16). Parcels located in 

the northeast near rivers in the Cross Timbers ecoregion show statistically significant (p < 

0.0001)  parcels with high-high LISA analysis. Trees can be spatially clustered near 

rivers due to the significance of water for tree sustainable growth (Torquato et al., 2020). 

Percentage of trees and mean NDVI change drastically on the west side of Oklahoma 

City located in the Central Great Plains. The Central Great Plains are ecologically 

different than Cross Timbers ecoregion (Omernik, 2004). The Central Great Plains have 

more grass, less trees, and less precipitation. Moran’s-I values are smaller and less 

consistent between neighboring parcels. The spatial randomness of Central Great Plains 

is related to the lack of trees in comparison parcels in the Cross Timbers ecoregion.  

 

5.4 Greenness in Oklahoma City and other cities 

Pearsall et al. (2012) examined Philadelphia’s UGS and its relationship to 

socioeconomic variables. The study showed that greenness is not always positively and 

strongly correlated with household income but does not appear in heterogeneous urban 

environment. Greenness in heterogeneous urban environments like Oklahoma City show 

the same results as the Pearsall et al. (2021). Northwest downtown Oklahoma City show 

drastic changes in urban greenness and Moran’s-I values denoting drastic changes in 

parcels from the parcels neighbor. Oklahoma City UGS has a negative correlation to 

median household income. Philadelphia and Oklahoma City share the association of high 

vacancy associated with mean NDVI in lower income neighborhoods. 
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Environmental injustice is seen throughout cities, but in Oklahoma City higher 

mean NDVI values are seen in redline districts classified as hazardous. Li et al. (2015) 

showed that lower income neighborhoods contain less street greenery in Hartford, 

Connecticut. Higher mean NDVI values can be associated with vacant lots which are 

more likely to be seen in lower income neighborhoods. Projects to refurbish lower 

income neighborhoods are less likely to happen due to the financial risk involved in 

funding reforestation projects on the street view of neighborhoods. Higher income 

neighborhoods are more likely to appreciate reforestation projects. My study examines 

the parcel level rather than street greenery, but the parcel dataset used in my study 

contains streets in some sections.  

 

5.5 Study Limitations 

The limitations to this study are strongly influenced by the parcel dataset. The 

parcel dataset shows parcels located on the streets of neighborhoods or where parcels are 

split across census tracts. Neighborhoods can own streets located within their borders but 

the problem with streets labeled as residential and rural residential is that no people live 

on the street that are recorded in the census tract data. The parcel dataset skews the 

census tract data by causing an increase in the individual household socio-economic 

values located in each census tract. The parcel number reported in the disaggregation of 

census tract socioeconomic data is wrong due to the wrong number of parcels located in 

each census tract. Disaggregating census tract information down to the parcel scale brings 

error into the estimate of what is actually going on at the parcel level. The only way to 
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fully understand the socioeconomic variables at the parcel scale is to conduct a survey at 

every single house in the study area and that is only doable if every single house is 

willing to provide personal information to a study. This is unfeasible as people are not 

willing to provide personal information for a study and there is a very large number of 

parcels in a city.  

The redline district dataset is a major limitation as there is lack of spatial 

distribution throughout Oklahoma City. The redline district dataset is only located in the 

downtown region of the city. The spatial clustering of redline districts will cause bias in 

the results for redline spatial autocorrelation as only parcels located downtown will be 

associated with any type of redline factors. The redline district dataset is not normally 

distributed spatially throughout Oklahoma City, but the data in some sections did help 

show bio-physical variables that were present in each HOLC grade. 

The land cover classification map presents some limitations to the study as NAIP 

has a very low temporal resolution of one, maybe two days every 2-3 years (depending 

on the state). Land cover classification training data should have one- or two-years’ worth 

of data to examine the seasonal changes of the vegetation. Examining seasonal changes 

of vegetation can help with classifications by locating greening cycles. Greening cycles 

that show high NDVI throughout the year will show evergreen vegetation while multiple 

peaks and troughs of NDVI throughout the year will show types of crops. The lack of 

temporal resolution for NAIP can prevent the study from examining if there is significant 

land cover changes in pixels from image acquisition to image acquisition. 
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5.6 Future studies 

In the future, I would like to research on urban greenness in Oklahoma City by 

examining a systematic study on ecological effects on urban green spaces without 

socioeconomic variables. Socioeconomic variables are important to understanding where 

UGS are spatially distributed. Ecological studies into what type of grasses and trees 

produce the best sustainable results may help UGS managers make informed decisions 

for water management in neighborhoods and cities. C3 and C4 grasses make a big 

difference in water consumption and landscape on parcels. Parcels that make proper use 

of vegetation on their property can produce a sustainable green environment. 

 

5.5 Study Limitations 

The limitations to this study are strongly influenced by the parcel dataset. The 

parcel dataset shows parcels located on the streets of neighborhoods or where parcels are 

split across census tracts. Neighborhoods can own streets located within their borders but 

the problem with streets labeled as residential and rural residential is that no people live 

on the street that are recorded in the census tract data. The parcel dataset skews the 

census tract data by causing an increase in the individual household socio-economic 

values located in each census tract. The parcel number reported in the disaggregation of 

census tract socioeconomic data is wrong due to the wrong number of parcels located in 

each census tract. Disaggregating census tract information down to the parcel scale brings 

error into the estimate of what is actually going on at the parcel level. The only way to 

fully understand the socioeconomic variables at the parcel scale is to conduct a survey at 
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every single house in the study area and that is only doable if every single house is 

willing to provide personal information to a study. This is unfeasible as people are not 

willing to provide personal information for a study and there is a very large number of 

parcels in a city.  
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Chapter 6: Conclusion 

This study provides a discussion of UGS parcels and the correlation to the socio-

economic variables in the spatial extent of OKC. Oklahoma City has not had extensive 

research into the topic of UGS and there is a need for creating a sustainable UGS parcel. 

Bio-physical research is conducted on vegetation in OKC but bio-physical variables 

cannot encompass the full relationship of humans and UGS. Humans provide a 

significant impact on the physical environment we share with nature. Socio-economic 

variables can provide insight into the demographics that  use UGS. Urban green spaces 

are beneficial for our environment, and our physical and mental health. Researching the 

spatial distribution of healthy UGS and the associated socio-economic variables can 

provide further insight into UGS. 

The limitations of the study are strongly influenced by the parcel dataset. Census 

Tract data is not meant to be scaled down to the Census Block level as it loses accuracy 

in the survey data. Census data does a good job representing the community as a whole 

but to examine the differences of each household provides privacy issues. The bio-

physical variables provide a source of error as NAIP imagery for this study is only 

available every other year during the growing season. Getting a mean value of vegetation 

with only the growing season of two years is not the best representation of parcel 

vegetation. Most studies do not examine the redline districts of cities. The dataset for 

redline districts do not encompass the entire study area extent. Redline districts are not 

measured out in rural areas causing the redline districts to be skewed to urban landscapes. 
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This study showed that there are the general same spatial greenness patterns 

across the OKC metropolitan area. The same spatial greenness patterns are that we notice 

neighborhoods located further from the central portion of OKC have a higher NDVI 

value in comparison to downtown neighborhoods. The spatial distribution of greenness 

across OKC can be positively related to median household income. We also notice that 

redline neighborhoods classified as hazardous (grade D) do present higher NDVI value 

compared to desirable neighborhoods (grade A). The redline information could show that 

grade D regions may have higher vacant lots or overgrown vegetation which could 

contribute to the higher NDVI values. 

Future research into this subject can change the way we perceive UGS. Urban 

green space does not have to be large park or recreational areas. Urban green space on the 

parcel level can provide insight into how neighborhoods can create lower budget UGS. 

Research must look into the bio-physical variables that have an effect on ecological 

connectivity to enhance the research I have presented in this paper. 
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