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Abstract 
 

Overlapping data are often used in finance and economics, but applied work often uses 

inefficient estimators. The article evaluates possible reasons for using overlapping data and 

provides a guide about which estimator to use in a given situation. 
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Introduction 

 Time series studies estimating multiple-period changes can use overlapping data in order 

to achieve greater efficiency.  A common example is using annual returns when monthly data are 

available.  A one-year change could be calculated from January to December, another from 

February to January, and so on.  In this example the January to December and February to 

January changes would overlap for eleven months.  The overlapping of observations creates a 

moving average (MA) error term and thus ordinary least squares (OLS) parameter estimates 

would be inefficient and hypothesis tests biased (Hansen and Hodrick, 1980).  Past literature has 

recognized the presence of the moving average error term.  Our article seeks to improve 

econometric practice when dealing with overlapping data by synthesizing and adding to the 

literature on overlapping data.  We find limited statistical reasons for not using the disaggregate 

data and that the preferred estimation method can vary depending on the specific problem. 

 One way of dealing with the overlapping observations problem is to use a reduced sample 

in which none of the observations overlap.  For the example given above, the reduced sample 

will have only one observation per year.  Thus, for a 30-year period of monthly data only 30 

annual changes or observations will be used instead of 249 (the maximum number of 

overlapping observations that can be created for this period) annual observations.  This 

procedure will eliminate the autocorrelation problem but it is obviously highly inefficient.  A 

second way involves using average data.  For our example this means using the average of the 12 

overlapping observations that can be created for each year.  This procedure results in the same 

degree of data reduction and apparently ‘uses’ all the information.  In fact, not only is it 

inefficient, it also does not eliminate the moving average error term (Gilbert, 1986) and can 
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introduce autocorrelation not present in the original series (Working 1960).  A third way is to use 

the overlapping data and to account for the moving average error term in hypothesis testing. 

Several heteroskedasticity and autocovariance consistent (HAC) estimators have been 

constructed that can provide asymptotically valid hypothesis tests when using data with 

overlapping observations.  These HAC estimators include Hansen and Hodrick (HH) (1980),  

Newey-West (NW) (1987), Andrews and Monahan (AM) (1990), and West (1997).  A fourth 

way is to “transform the long-horizon overlapping regression into a non-overlapping regression 

of one-period returns onto a set of transformed regressors” Britten-Jones and Neuberger (B-JN) 

(2004).  A final way is to use OLS estimation with overlapping data, which yields biased 

hypothesis tests.   

 To illustrate the enormity of the problem the number of empirical articles involving the 

use of overlapping data in regression analysis in three journals during 1996 and 2004 were 

counted.  The journals were, The Journal of Finance, The American Economic Review, and The 

Journal of Futures Markets.  The methods of estimation are classified as OLS with non-

overlapping data (OLSNO), OLS with the Newey-West (1987) variance covariance estimator, 

OLS with any of the other GMM estimators, and just OLS. 

 The portion of articles using overlapping data increased from 1996 to 2004 (Table 1) so 

that the majority of articles in finance now use overlapping data.  Most of the empirical articles 

that used overlapping data studied asset returns or economic growth.  A common feature of these 

articles is that returns or growth are measured over a period longer than the observation period.  

For example, data are observed monthly and the estimation is done annually.  Authors provide 

several possible reasons for using aggregated data.  The most common reason given is 
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measurement error in independent variables.  For example, Jones and Kaul (1996, p. 469), state 

that they select “use of quarterly data on all variables as a compromise between the measurement 

errors in monthly data...”.  Most authors provide no justification for using overlapping data, but 

there must be some advantage to using it or it would not be so widely used.  Britton Jones and 

Neuberger (2004) contend, the use of overlapping data is based more on economic reasons rather 

than statistical ones.  Here, we evaluate possible statistical reasons for using overlapping data.    

 Table 1 also shows each of the estimation methods frequency of use.  The OLSNO and 

Newey-West estimation methods are used most often.  We defined OLSNO as estimation using 

non-overlapping observations.  This means that the data exist to create overlapping observations 

but the researchers chose to work with non-overlapping observations.  It might be more correct 

to say that OLSNO is used simply because it is not a practice to create overlapping data. The 

OLSNO method will yield unbiased and consistent parameter estimates and valid hypothesis 

tests.  But it will be inefficient since it “throws away information.” 

 We first demonstrate that the commonly used Newey-West and OLSNO methods can be 

grossly inefficient ways of handling the overlapping data problem.  This is done by determining 

and comparing the small-sample properties of Newey-West, OLSNO, MLE, and GLS estimates.  

Unrestricted maximum likelihood estimation is included as an alternative to GLS to show what 

happens when the MA coefficients are estimated1.  Then, we consider possible statistical reasons 

for using overlapping data such as nonnormality, missing data, and errors in variables.  Finally, 

we evaluate ways of handling overlapping data when there are economic reasons for doing so. 

While Newey-West and OLSNO estimation provide inefficient estimates the GLS 

estimation cannot be applied in every situation involving overlapping data.  An example would 
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be when lagged values of the dependent variable or some other endogenous variable are used as 

an explanatory variable.  In this case, as Hansen and Hodrick (1980) argue, the GLS estimates 

will be inconsistent since an endogeneity problem is created when the dependent and explanatory 

variables are transformed.  For the specific case of overlapping data considered by Hansen and 

Hodrick, we have little to add to the previous literature (eg. Mark, 1995) that favors using the 

bootstrap to correct the small sample bias in the Hansen and Hodrick approach. With a general 

multivariate time series model, often overlapping data cannot be used to recover estimates of the 

disaggregate process that generated the data.  The percentage of cases where lagged values of the 

dependent variable are used as an explanatory variable is reported in Table 1.  In The Journal of 

Finance less than 25 percent of articles include a lagged dependent variable as an explanatory 

variable (half with the Newey-West estimator and half with OLSNO).  For the American 

Economic Review about 7 percent (all with the Newey-West estimator) of the articles included a 

lagged dependent variable.  Thus, in most cases where nonoverlapping data are used, there are no 

lagged dependent variables and so more precise estimation methods are available. 

1. The Strictly Exogenous Regressors Case 

 There are many variations on the overlapping data problem.  We first consider the 

simplest case where the data represent aggregates and the explanatory variables are strictly 

exogenous.  This is the most common case in the literature such as when annual data are used for 

dependent and independent variables and monthly data are available for both. 

 To consider the overlapping data problem, start with the following regression equation: 

  ttt uxy    (1) 
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where yt is the dependent variable, xt is the vector of strictly exogenous independent variables, 

and ut is the error term.  Equation (1) represents the basic data that are then used to form the 

overlapping observations.  The error terms, ut, in (1) have the following properties:  

.if0],cov[and,][E,0][E 22 stuuuu stutt    

 However, one might want to use aggregated data and instead of (1) estimate the 

following equation: 

  ttt eX'Y    (2) 

where Yt and Xt represent an aggregation of yt and xt respectively.  To estimate (2) the 

overlapping observations are created by summing the original observations as follows: 

  













111 kt

tj
jt

kt

tj
jt

kt

tj
jt ue,xX,yY  (3) 

where k is the number of periods for which the changes are estimated.  If n is the original sample 

size, then 1 kn  is the new sample size.  These transformations of the dependent and 

independent variables induce an MA process in the error terms of (2).  

Because the original error terms were uncorrelated with zero mean, it follows that: 
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Also, since the successive values of uj are homoskedastic and uncorrelated, the unconditional 

variance of et is: 
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Based on the fact that two different error terms, stt ee and , have k - s common original error 

terms, u, for any 0 sk , the covariances between the error terms are: 

  .0)()(],[],cov[ 2   skskeeEee usttstt   (6) 

Dividing by 2
uk  gives the correlations: 

  .0)(],[corr 


 sk
k

sk
ee stt  (7) 

Collecting terms we have as an example in the case of 2 kn : 
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where, Ω is the correlation matrix.  The correlation matrix, Ω, appears in Gilbert’s article and the 

presence of a moving average error term is commonly recognized. 
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 With Ω derived analytically the generalized least squares (GLS) parameter estimates and 

their variance-covariance matrix can be obtained as follows: 

  YXXX 111 )(ˆ    (9) 

and 

  112 )(]ˆ[var  XXe  (10) 

where ),...,(and),...,( 1111   knkn YYYXXX .  Under these assumptions, the GLS estimator of 

the aggregate model will be best linear unbiased and asymptotically efficient.  If errors are 

normally distributed, then GLS is efficient in small samples, standard hypothesis test procedures 

would be valid in small samples, and the GLS estimator would be the maximum likelihood 

estimator.  This case cannot explain why authors would choose to use overlapping data.  The 

disaggregate model does not lose observations to aggregation so it would still be preferred in 

small samples.  

2.  Alternative Estimation Methods 

The next issue to be discussed is the OLSNO and Newey-West estimation methods and 

their inefficiency.  We consider only Newey-West rather than the alternative GMM estimators.  

As Davidson and MacKinnon (1993, p. 611) say “the Newey-West estimator is never greatly 

inferior to that of the alternatives.”  With the Newey-West estimation method, parameter 

estimates are obtained by using OLS. The OLS estimate b is unbiased and consistent but 

inefficient.  The OLS estimate of σe
2 is biased and inconsistent.  The Newey and West (1987) 

autocorrelation consistent covariance matrix is computed using the OLS residuals. 
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The OLSNO estimation method estimates parameters using OLS with a reduced sample 

where the observations do not overlap.  The OLSNO estimates of the variance are unbiased since 

with no overlap there is no autocorrelation.  The OLSNO parameter estimates are less efficient 

than the GLS estimates because of the reduced number of observations used in estimation.  

While it is known that GLS is the preferred estimator, the loss from using one of the 

inferior estimators in small samples is not known.  We use a Monte Carlo study to provide 

information about the small-sample differences among the estimators. 

 

3.  Monte Carlo Study 

 A Monte Carlo study was conducted to determine the size and power of the hypothesis 

tests when using overlapping data and GLS, OLSNO, Newey-West, and unrestricted MLE, 

estimation methods.  The Monte Carlo study also provides a measure of the efficiency lost from 

using OLSNO, Newey-West, and when the MA coefficients are estimated.  The mean and the 

variance of the parameter estimates are calculated to measure bias and efficiency.  Mean-squared 

error (MSE) is also computed.  To determine the size of the hypothesis tests, the percentage of 

the rejections of the true null hypotheses are calculated.  To determine the power of the 

hypothesis tests the percentages of the rejections of false null hypotheses are calculated. 

4.  Monte Carlo Procedure 

 Data are generated using Monte Carlo methods.  A single independent variable x with an 

i.i.d. uniform distribution (0,1) and error terms u with a standard normal distribution are 
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generated.  We also considered a N(0,1) for x but these results are not included here since the 

conclusions did not change.  The options RANUNI and RANNOR in SAS software are used.  

The dependent variable y is calculated based on the relation represented in equation (1).  For 

simplicity β is assumed equal to one.  The data set with overlapping observations of X and Y is 

created by summing the x’s and y’s  as in (3). 

 The regression defined in (2) was estimated using the set of data containing X and Y. The 

number of replications is 2000.  For each of the 2000 original samples, different vectors x and u 

are used.  This is based on Edgerton’s (1996) findings that using stochastic exogenous variables 

in Monte Carlo studies improves considerably the precision of the estimates of power and size.  

Six sample sizes T are used, respectively, 30, 100, 200, 500, 1000, and 2000.  Three levels of 

overlapping k-1 are used, respectively, 1, 11, and 29.  The level 11 is chosen because it 

corresponds to using annual changes when monthly data are available. 

 The OLSNO, the Newey-West, and GLS estimates of β were obtained for each of the 

2000 samples using PROC IML in SAS software.  The unrestricted MLE estimates of β were 

obtained using PROC ARIMA in SAS.  The Ω matrix to be used in GLS estimation was derived 

in equation (8).  The Newey-West estimation was validated by comparing it with the available 

programmed estimator in SHAZAM software using the OLS ... /AUTCOV option.  The power of 

the tests are calculated for the null hypothesis β = 0. 

5. Results for the Exogenous Regressor Case 

 The means of the parameter estimates and their standard deviations as well as the MSE 

values for the three overlapping levels 1, 11, and 29, for the OLSNO, Newey-West, and GLS are 
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presented in Tables 2, 3, and 4.  The true standard deviations for the GLS estimation are lower 

than those for the OLSNO and Newey-West estimation.  This demonstrates that the Newey-West 

and OLSNO parameter estimates are less efficient than the GLS estimates.  The inefficiency is 

greater as the degree of overlapping increases and as the sample size decreases.  For a sample 

size of 100 and overlapping level 29, the sample variance of the GLS estimates is 0.119 while 

the sample variance of the Newey-West and OLSNO estimates is 2.544 and 7.969 respectively.  

Besides the more efficient parameter estimates, the difference between the estimated and actual 

standard deviations of the parameter estimates are almost negligible for the GLS estimation 

regardless of sample size or overlapping level.  The estimated standard deviations for the 

OLSNO estimation show no biases as expected.  The Newey-West estimation tends to 

underestimate the actual standard deviations even for overlapping level 1.  The degree of 

underestimation increases with the increase of overlapping level and as sample size decreases.  

Sometimes the estimated standard deviation is only one-fourth of the true value.  The Newey-

West covariance estimates have previously been found to be biased downward in small samples 

(eg. Nelson and Kim, 1993; Goetzmann and Jorion, 1993; Smith and Yadar 1996; Britten-Jones 

and Neuberger, 2004).  The parametric bootstrap suggested by Mark (1995) and used by Irwin et 

al. (1996) can lead to tests with correct size, but still uses the inefficient OLS estimator. 

 The inferiority of the Newey-West and OLSNO parameter estimates compared to the 

GLS estimates is also supported by the MSE values computed for the three methods of 

estimation.  Thus, for the sample size 100 and the overlapping level 29, the MSE for the GLS, 

Newey-West, and OLSNO estimation is respectively 0.12, 2.55, and 8.02. 
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 The means of the parameter estimates and their standard deviations as well as the MSE 

values for the three overlapping levels 1, 11, and 29, for the unrestricted MLE are presented in 

Table 5.  The results are similar to the results presented for the GLS estimation.  However, in 

small samples the actual standard deviations of the MLE estimates are larger than those of the 

GLS estimates.  As the degree of overlapping increases, the sample size for which the standard 

deviations for both methods are similar, also increases (e.g. from 100 for overlapping 1 to 1000 

for overlapping 29). 

 The Newey-West and OLSNO estimation methods also perform considerably poorer than 

the GLS estimation in hypothesis testing.  The hypothesis testing results are presented in Table 6.  

The Newey-West estimator rejects true null hypotheses far too often.  In one extreme case, it 

rejected a true null hypothesis 50.0% of the time instead of the expected 5%.  In spite of greatly 

underestimating standard deviations, the Newey-West estimator has considerably less power 

than GLS except with the smallest sample sizes considered.  While the OLSNO estimation has 

the correct size, the power of the hypothesis tests is much less than the power of the tests with 

GLS. 

 The results of the hypothesis tests for the unrestricted MLE are presented in Table 7.  

While the power of the hypothesis tests is similar to the power for the GLS estimation, the size is 

generally larger than the size for the GLS estimation.  Unrestricted MLE tends to reject true null 

hypotheses more often than it should.  However, this problem is reduced or eliminated as larger 

samples are used, i.e. 500, 1000, 2000 observations.  Table 7 also presents the number of 

replications as well as the number/percentage of replications that converge.  Fewer replications 

converge as the degree of overlap increases and as sample size decreases.  Given the 
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convergence problems, as shown in Table 7, it can be concluded that, when MLE is chosen as 

the method of estimating (2), the MA coefficients should be restricted rather than estimated 

unless the sample size is quite large. 

6. Possible Statistical Reasons for Using Overlapping Data 

 If the explanatory variables were strictly exogenous, no observations were missing, and 

the errors were distributed normally as assumed so far, there are no statistical reasons to use 

overlapping data since the disaggregate model could be estimated.  We now consider possible 

statistical reasons for using overlapping data. 

 6.1  Missing observations.  Missing observations can be a reason to use overlapping data.  

It is not unusual in studies of economic growth to have key variables observed only every five or 

ten years at the start of the observation period, but every year in more recent years.  Using 

overlapping data allows using all of the data.  In this case, the disaggregate model cannot be 

estimated so OLSNO is what has been used in the past. 

 When some observations are missing, one can derive the correlation matrix in (8) as if all 

observations were available and then delete the respective rows and columns for the missing 

overlapping observations and thus use GLS estimation.  The Newey-West estimator assumes 

autocovariance stationarity and so available software packages that include the Newey-West 

estimator would not correctly handle missing observations.  It should, however, be possible to 

modify the Newey-West estimator to handle missing observations.  From this discussion it can 

be argued that the case of missing observations is a statistical reason for using overlapping data 

that stands up to scrutiny but more efficient estimators are available than the often used OLSNO. 
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 6.2  Nonnormality.  The GLS estimator does not assume normality, so estimates with 

GLS would remain best linear unbiased and asymptotically efficient even under nonnormality.  

The hypothesis tests derived, however, depend on normality.  Hypothesis tests based on 

normality would still be valid asymptotically provided the assumptions of the central limit 

theorem hold.  As the degree of overlapping increases, the residuals would approach normality, 

so nonnormality would be less of a concern.  The Newey-West estimator is also only 

asymptotically valid.  The GLS transformation of the residuals might also speed the rate of 

convergence toward normality since it is “averaging” across more observations than the OLS 

estimator used with Newey-West.  

 We estimated (2) with two correlated x’s and with the error term u following a t-

distribution with four degrees of freedom.  Results are reported in Table 8.  The main difference 

with the previous results is the increased standard deviations for all methods of estimation.  

Proportionally, the increase in standard deviations is slightly larger for Newey-West and 

OLSNO.  Thus, the Monte Carlo results support our hypothesis that the advantages of GLS 

would be even greater in the presence of nonnormality.  This can also be seen from the 

hypothesis test results presented in Table 8.  The power of the three methods of estimation is 

reduced with the biggest reduction occurring for the Newey-West and OLSNO.  Finally, the 

increase of the standard deviations and the resulting reduction in power of hypothesis tests, is 

larger when the correlation between the two x’s increases.  This is true for the three methods of 

estimation.  However, the GLS results are almost identical to the results from the disaggregate 

model.  This means that lack of normality cannot be a valid statistical reason for using 

overlapping data when the disaggregate data are available. 
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 6.3  Errors in variables.  The most common reason authors give for using overlapping 

data is errors in the explanatory variables.  Errors in the explanatory variables causes parameter 

estimates to be biased toward zero, even asymptotically.  Using overlapping data reduces this 

problem, but the problem is only totally removed as the level of overlap, k, approaches infinity. 

 We added to the x in (1) a measurement error, ω, that is distributed normally with the 

same variance as the variance of x, ω ~ N(0, 1/12).  We then conducted the Monte Carlo study 

with x not being autocorrelated and also with x being autocorrelated with an autoregressive 

coefficient of 0.8.  In addition to estimating (2) with GLS, Newey-West, and OLSNO, we also 

estimated (1) using the disaggregate data.  The results are reported in Table 9.  The estimation 

was performed only for two sample sizes, respectively 100 and 1000 observations.  In the case 

when x is not autocorrelated, there is no gain in using overlapping observations, in terms of 

reducing the bias due to measurement error.  This is true for all methods of estimation.  GLS 

would be the preferred estimator since it is always superior to Newey-West and OLSNO in terms 

of MSE, especially as the overlapping level increases relative to the sample size. 

 In the case when x is autocorrelated, for relatively low level of overlap in relation to the 

sample size, Newey-West and OLSNO have the smaller MSE, as a result of smaller bias.  As the 

degree of overlap increases relative to the same sample size, the GLS estimator would be 

preferred compared to Newey-West and OLSNO estimators based on smaller MSE as a result of 

the smaller variance.  Thus the trade-off for the researcher is between less biased parameter 

estimates with Newey-West or OLSNO versus smaller standard deviations for the parameter 

estimates with GLS.  However, the GLS transformation of the variables does not reduce further 

the measurement error producing estimates that are just barely less biased than the disaggregate 
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estimates.  On the other hand, Newey-West and OLSNO standard errors are still biased with the 

bias increasing as the overlapping level increases.  So the preferred estimation method in the 

presence of large errors in the variables would be OLS with overlapping data and with standard 

errors calculated using Monte Carlo methods. 

7.  Possible Economic Reasons for Using Overlapping Data 

The economic reasons for using overlapping data typically involve lagged variables.  

Even though in most cases where overlapping data are used, there are no lagged variables, it is 

important to consider the case because it is the case that has generated the most econometric 

research. The lagged variable may be strictly exogenous or be a lagged value(s) of the dependent 

variable.  With lagged variables and overlapping data, GLS is generally inconsistent and so the 

situation has generated considerable research interest.  A second economic reason for using 

overlapping data is the case of long-horizon regressions.  Examples of long-horizon regressions 

include the case of expected stock return (as dependent variable) and dividend yield (as 

explanatory variable) and also the case of the GDP growth and nominal money supply.  Since the 

economic reason for using overlapping data is increased prediction accuracy, we compare 

prediction errors when using overlapping data to those using disaggregate data. 

 7.1 Lagged dependent variables.  The case of overlapping data and a lagged dependent 

variable (or some other variable that is not strictly exogenous) was a primary motivation for 

Hansen and Hodrick’s (1980) estimator.  In the textbook case of autocorrelation and a lagged 

dependent variable, ordinary least squares estimators are inconsistent. 
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Engle (1969) shows that when the first lag of the aggregated dependent variable is used 

as an explanatory variable, that using OLS and aggregated data could lead to bias of either sign 

and almost any magnitude.  Generalized least squares is also inconsistent.  Consistent estimates 

can be obtained using the maximum likelihood methods developed for time-series models.  

 With a lagged dependent variable in the right hand side (for simplicity we are using a lag 

order of one), equation (1) now becomes: 

  )1,0(~,12110 Nuuxyy tttt     (11) 

where for simplicity α0 = 0 and α2 = 1.  The value selected for α1 is 0.5.  To get the overlapping 

observations, for k = 3 apply (3) to (11) to obtain the equivalent model of (2) as: 

  tttt eXYY  15.0  (12) 

where 2121211 and,,   ttttttttttt uuuexxxXyyyY .  The model in (12) also has the 

same variance-covariance matrix, described by (5) and (6), as our previous model in (2). 

 If Yt and Xt  are observed in every time period t, the order of the lagged variables as well 

as the AR and MA orders can be derived analytically.  For a detailed discussion of the issues 

related to temporal aggregation of time series see Marcellino (1996, 1999)3. 

 If Yt, or Xt, or none of them are observed in every time period t, then either lagged values 

for aggregate Y, (Yt -1 and Yt -2), or X, (Xt -1 and Xt -2), or both Y and X are not observable.  The 

model usually estimated4 in this second situation is: 

      132150 XXY.Y k  (13) 



  18 

where, τ represents every kth observation.   Assuming the data are observed every time period 

(13) is equivalent to5: 

  tttttt X.X.XY.Y   2
2

13
3 505050  (14) 

The resulting error term εt in (14) is a MA process of order four of the error term ut in (11) with 

coefficients 1.5, 1.75, 0.75 and 0.25, 4321 25.075.075.15.1   tttttt uuuuu . 

 One potential problem with the model in (14) is the noise introduced by aggregation.  The 

variable Xt -1 and Xt -2 include xt -1, xt -2, xt -3, and xt -4, while only xt -1, and xt -2, are relevant as 

shown by the model in (12).  This errors-in-variables problem biases parameter estimates toward 

zero.  The noise introduced and the associated bias would be greater as the degree of overlap 

increases.  The errors-in-variables problem is even bigger for the model in (13) where xt -5, is also 

included in the model through Xτ -1. 

 An analytical solution for the β-s in (13) cannot be derived.  This is because to be 

consistent with our previous result, X is strictly exogenous and not autocorrelated.  Based on the 

temporal aggregation literature (Brewer, 1973 (p.141); Weiss, 1984 (p. 272); and Marcellino, 

1996 (p. 32)), no analytical solution is possible unless xt is generated by some autocorrelated 

process and the unobserved terms can be derived from the observed terms. 

 Finally, another possible model using nonoverlapping observations for Y and overlapping 

observations for X is: 

     2
2

11
3 505050 ttt X.X.XY.Y  (15) 



  19 

 In general, in cases when nonoverlapping data are used, as also is the case of Hansen and 

Hodrick’s estimator, Marcellino (1996, 1999) shows that estimates of the parameters of the 

disaggregated process can no longer be recovered.  With nonoverlapping data, the time-series 

process can be quite different than the original process. 

 We estimated the models in (12), (13), and (15) with MLE employing PROC ARIMA in 

SAS software using a large Monte Carlo sample of 500,000 observations.  There is no need to 

estimate the model in (14) since the model in (12) can be estimated when overlapping data are 

available for both Y and X.  The results are reported in Table 10.  The empirical estimates of the 

AR and MA coefficients and the coefficients of the Xs for the models in (12) fully support the 

analytic findings.  The parameter estimates for the exogenous variables in (15) are similar to the 

analytical values.  On the other hand, the parameter estimates for the exogenous variables in (15) 

are very different from the analytical values derived for either (12) or (14) because of the 

different lagged values of the exogenous variable included in the model. Both models in (13) and 

(15) result in an ARMA(1,1) process with the AR coefficient 0.118 for (13) and 0.123 for (15).  

The MA coefficient is the same for both models, 0.163.  As noted above, the AR and MA 

coefficients for (13) and (15) are different from the respective coefficients of the disaggregate 

model. 

 With overlapping data and a lagged dependent value as an explanatory variable where the 

lag is less than the level of overlap, the only consistent estimation method is maximum 

likelihood.  Maximum likelihood provides consistent estimates when the explanatory variables 

are predetermined whether or not they are strictly exogenous.  When overlapping data are used 

for both the dependent and independent variables the parameters of the aggregate model are the 
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same as those of the disaggregate model.  When nonoverlapping data are used for the dependent 

or the independent or both dependent and independent variables the parameters of the aggregate 

model cannot be used to recover those of the disaggregate model. 

 7.2 The Case of Long-Horizon Regressions with Overlapping Observations 

 The underlying data-generated processes commonly assumed are: 

  ttt uxy    1  (16) 

  ttt xx   1  (17) 

  ];[)],,(),,[( 2
222112

2
11   tttt uuE  (18) 

The effect of the assumption in (17) is that the covariance between the error terms in (16) that are 

one period apart contains additional terms as compared to (6): 

  222
11 )1()1(][],cov[ vutttt keeEee     (19) 

The other covariance terms are as in (6). 

 The long-horizon variables, Yt and Xt-1 are created as in (3).  Then the estimated models 

include:  

  tktt eXY    1  (20)  

 As Valkanov (2003, p. 205) argues “Intuitively, the aggregation of a series into a long-

horizon variable is thought to strengthen the signal, while eliminating the noise.”  Several studies 
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have attempted to provide more efficient estimators of the standard errors compared to the 

ordinary least squares estimates.  Valkanov (2003) suggests rescaling of the t-statistic by the 

square root of the sample size, Hjalmarsson (2004) suggests rescaling the t-statistic by the square 

root of the level of aggregation, k and Hansen and Tuypens (2004) suggest  rescaling the t-

statistic by the square root of ⅔ of the level of aggregation, k. 

 Two scenarios are considered.  The first one is the scenario where the returns are 

unpredictable which implies that β = 0.  The second is when returns are predictable, so that β ≠ 0 

(studies usually assume β = 1).  The first scenario is exactly the case considered in Section 1, so 

the conclusions from Section 1 apply here.   

 For the case when returns are predictable, β = 1, we perform Monte Carlo simulations to 

compare the standard errors of the GLS estimator and the OLS standard errors rescaled by the 

square root of the sample size (Valkanov, 2003), by the square root of the level of aggregation 

(Hjalmarsson, 2004) and by the square root of ⅔ of the level of aggregation (Hansen and 

Tuypens, 2004).  We use two levels of aggregation k=12 with sample sizes, 50, 100, 250, 500 

and 1000 and k=75 with sample sizes, 200, 250, 500, 750 and 1000.  5000 replications are done 

for each case.  We conduct Monte Carlo simulations for commonly used assumptions of ρ = 1 (in 

equation (19)), and σ12 = σ21 = 0.9 and σ12 = σ21 = -0.9.  We also conduct simulations by 

changing ρ to 0.9 and σ12 to 0.5 and 0.1.  In addition, we assume α = μ = 0.   

 A summary of the results from the above simulation follows.  In general, all estimators 

and rescaling approaches produce very good power against the alternative hypothesis β = 0.  

However, this is not true for the size of the tests.  Size is the critical issue when using an 

approximation like this because a test should be conservative so that if the test rejects the null 
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hypothesis, the researcher can be confident that the conclusion is correct. For the high absolute 

values of σ12 considered above, respectively 0.9 and -0.9, the most promising approach is the one 

suggested by Hansen and Tuypens where standard errors are rescaled by the square root of ⅔ of 

the level of aggregation.  However, this approach still produces correct test sizes only when the 

ratio level of aggregation/sample size is close to 1/10.  Test sizes are greater than the nominal 

size when the ratio level of aggregation/sample size is less than 1/10 and less than the nominal 

size when the ratio level of aggregation/sample size is greater than 1/10.  Our simulations 

suggest that better test sizes are produced when the following adjustment is applied to the 

Hansen and Tuypens approach.  When the ratio is less than 1/10, the adjustment is as follows: 

 2

3
0 9 1. k   and when the ratio is greater than 1/10 the adjustment is: 2

3
0 9k k

n
. 






 .  Test sizes 

for the Hansen and Tuypens (HT) and our modified version of HT approach are reported in 

Table 11.  Table 11 also reports test sizes for the cases when σ12 equals 0.5 and 0.1.  In the case 

when σ12 = 0.5, the modified Hjalmarsson rescaling of the standard errors by the square root of 

the level of aggregation produces better test sizes for different sample/aggregation level 

combination.  In this case, for ratios less than 1/10, the adjustment is:  0 9 1. k   and for ratios 

greater than 1/10 the adjustment is: k k
n

0 9. 





 .  Finally, when σ12 = 0.1, the GLS standard 

errors produce good test sizes.  This is not surprising since a small σ12 brings us closer to the case 

of exogenous independent variables discussed in Section 1.  Therefore, no modified rescaling is 

needed in this last case.  However, we also report in Table 11 the test sizes for the unmodified 

Hjalmarsson rescaling as a comparison to the GLS test sizes. 
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 7.3  Prediction accuracy.  In this section we compare the prediction accuracy of the 

aggregate and disaggregate models.  We also compare the prediction accuracy for the Hansen 

and Hodrick (HH) model for HH given in endnote 4.  The disaggregate model with the HH 

estimator is similar to the aggregate model with the only change being the dependent variable is 

disaggregate (one-period change).  Numerous authors have argued for using overlapping data 

when predicting multiperiod changes. Bhansali (1999), however, reviews the theoretical 

literature and finds no theoretical advantage to using overlapping data when the number of lags 

is known.  Marcellino, Stock, and Watson (2006) consider a number of time series and find no 

empirical advantage to using overlapping data even when using pretesting to determine the 

number of lags to include. Since the models here are known, theory predicts no advantage to 

using overlapping data. 

 The Monte Carlo simulation involves generating 50,000 sample pairs.  The first sample is 

used to obtain the parameter estimates for the aggregate and disaggregate models for all cases.  

The second sample is used to obtain predicted values by utilizing the parameter estimates for the 

first sample.  Dynamic forecasting is used to obtain predicted values of the lagged values in the 

disaggregate model.  

 The means and standard deviations of the 50,000 root-mean-squared forecast errors are 

reported in Table 12.  Two levels of aggregation, 12 with five sample sizes, 50, 100, 250, 500, 

and 1000, and 75 with sample sizes 100, 250, 500, 750, and 1000, are used in the simulations.   

In the case of long horizon regressions the aggregate and disaggregate model are roughly equal 

in forecast accuracy as expected.  In the case of the HH model for low levels of aggregation 

(level 12) the differences between the aggregate and the disaggregate models are small.  With the 
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high level of aggregation, the disaggregate model sometimes outperforms the aggregate one.  If 

the economic goal is prediction, overlapping data might be preferred if they make calculations 

easier since there is little difference in forecast accuracy. 

8. Special Cases of Overlapping Data 

 There are several special cases of overlapping data that do not fit any of the standard 

procedures.  Since the solutions are not obvious, we now discuss how to handle overlapping data 

in the presence of varying levels of overlap, imperfect overlap, seasonal unit roots, additional 

sources of autocorrelation, heteroscedasticity, and generalized autoregressive conditional 

heteroskedasticity (GARCH). 

 8.1 Varying levels of overlap.  It is not uncommon in studies of hedging to consider 

different hedging horizons which leads to varying levels of overlap (i.e. k is not constant).  This 

variation of the missing data problem introduces heteroskedasticity of known form in addition to 

the autocorrelation.  In this case it is easier to work with the covariance matrix than the 

correlation matrix.  The covariance matrix is σ2
u times a matrix that has the number of time 

periods (the value of kt) used in computing that observation down the diagonal.  The off diagonal 

terms would then be the number of time periods for which the two observations overlap.  

Allowing for the most general case of different overlap between every two consecutive 

observations, the unconditional variance of et (given in (5)) now is: 

  222 ][][ uttet keEeVar    (21) 

Previously, two different error terms, et and et+s , had k-s common original error terms, u, for any 

k - s > 0.  Now, they may have less than k - s common u’s and there no longer is a monotonic 
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decreasing pattern of the number of the common u’s as et and et + s get further apart.  We let kts 

represent the number of common u’s (overlapping periods) between et and et + s.  Therefore, the 

covariances between the error terms et and et + s, are: 

  2)(][],cov[ utssttstt keeEee    (22) 

The example covariance matrix with n = s + 2 is then: 
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where, kts = kst.  The standard Newey-West procedure does not handle varying levels of overlap 

since it assumes autocovariance stationarity. 

 8.2 Imperfect overlap.  Sometimes observations overlap, but they do not overlap in the 

perfect way assumed here and so the correlation matrix is no longer known.  An example would 

be where the dependent variable represents six months returns on futures contracts.  Assume that 

there are four different contracts in a year, the March, June, September, and December contracts. 

Then, the six-month returns for every two consecutive contracts would overlap while the six-
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month returns between say March and September contracts would not overlap.  The six-month 

returns for the March and June contracts would overlap for three months, but they would not be 

perfectly correlated during these three months, since the March and June contract are two 

different contracts.  Let 

  
otherwise0

0if
),cov(




m
uu js

mstjt


 (24) 

be the covariance between the monthly returns m months (or days if disaggregate data are daily 

data) apart for the March and June contracts where ujt and ust are the error term from regression 

models with disaggregate data for the March and June contract.  Then,  

  22 )var()var(,)var()var( ustjtjtstjt keeuu    (25) 

and 

  jsjsmstjt kee  ),cov(  (26) 

where kjs is the number of overlapping months between the March and June contracts and 

2
uijs    where )2,1(1 i  is the correlation between the u’s for two consecutive contracts 

with maturities three )( i  and six )( 2  months apart.  The covariance matrix for (2) with n = 12, 

in this case is: 
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 8.3.  Seasonal Unit Roots.  The seasonal difference model of Box and Jenkins (1970), 

which is called a seasonal unit root model in more recent literature, uses data which are in some 

sense overlapping, but do not create an overlapping data problem if correctly specified.  For 

annual data, the seasonal root model is 

  
ttt

ttt

euu

uaxy




12

 (28) 

where et is i.i.d. normal.  In this case, the disaggregrate model 

  ttttt exxyy   )( 1212    
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has no autocorrelation.  In this example, twelfth differencing leads to a model that can be 

estimated using overlapping data and ordinary least squares.  Seasonal unit roots have largely 

been used when the research objective was forecasting (e.g. Clements and Hendry 1997).  One 

problem with the seasonal unit root model is that it is often rejected in empirical work (e.g. 

McDougall 1995).  Another is that it implies that each month has its own independent unit root 

process and so each month’s price can wander aimlessly away from the prices of the other 

months.  Such a model seems implausible for most economic time series.  Hyllebert et al. (1990) 

suggest that the seasonal unit roots may be cointegrated, which can overcome the criticism of 

one month’s price moving aimlessly away from another month’s price.  Wang and Tomek (2007) 

present another challenge to the seasonal unit root model since they argue that commodity prices 

should not have any unit roots.  While a seasonal unit root model may be an unlikely model, if it 

is the true model, it does not create an overlapping data problem. 

8.4  Additional source of autocorrelation.  In practice there may be sources of 

autocorrelation in addition to that caused by the overlapping data problem.  Mathematically, this 

would imply that ut in (1) is autocorrelated.  If the disaggregated process is an MA process, then 

the procedure developed in the lagged dependent variable section below can be applied straight 

forward. If the error term in (1) follows an ARMA process then the same procedure can be 

applied with slight modification.  Assume that ut in (1) follows the process: 

  tt LhuLm )()(   (29) 

where t is a white noise (WN) process, ),0(~  WNt .  Aggregation of (1) to obtain the 

overlapping observations 
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k uLLxLLyLL )...1()...1()...1( 111    (30) 

introduces the same level k of aggregation to (31), which now becomes: 

  t
k

t
k LhLLuLmLL )()...1()()...1( 11    (31) 

or 

  tt ELHeLM )()(   (32) 

Then, the procedures discussed in the lagged dependent variable case can be applied with respect 

to (31) to obtain the order and the values of the AR and MA coefficients in (32) to be used in 

estimating (2).  In this case, maximum likelihood methods for estimating a regression with 

ARMA errors can be used. 

 8.5  Heteroskedasticity.  If the residuals in the disaggregated data (ut in (1)) are 

heteroskedastic, then estimation is more difficult.  Define 2
ut   as the time-varying variance of ut 

and 2
et  as the time-varying variance of et .  Assume the ut’s are independent and thus 
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j
jtet x  and there is no way to consistently estimate   using only aggregate data 

(nonoverlapping data also have the same problem). 



  30 

The covariance between et and et+s for any 0 sk would be 

  2
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),(Cov jtu
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sj
stt ee 




    (33) 

The correlation matrix, Ω is known, as given by (8), so the covariance matrix can be derived 

using the relation: 

    (34) 

where  TT IXXX x],,[ 21    .  A feasible generalized least squares estimator can then 

be developed using (12).  It might be reasonable to use (9) as the first stage in a FGLS estimation 

that corrected for heteroskedasticity. 

 8.6 Overlapping data and GARCH processes.  With financial data, it is common that the 

disaggregate model would follow a GARCH process (e.g. Yang and Brorsen 1993). The 

combination of overlapping data and GARCH processes besides the MA process in the mean 

also introduces additional autocorrelation in the second moment.  As an example, let us assume a 

GARCH(1,1) process for the volatility of the disaggregate process and an overlapping level k=1.  

Then the diagonal elements of the covariance matrix for the aggregate model would follow a 

GARCH(2,2) process while the first off-diagonal elements would follow a GARCH(1,1) process.  

Thus the elements of the covariance matrix are correlated.  The appropriate estimator in such a 

case could be the topic of future research. 

9. Conclusions 
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 We have evaluated different statistical and economic reasons for using overlapping data.  

These reasons are especially important since they provide the motivation for using overlapping 

data.   

 With strictly exogenous regressors as well as other standard assumptions, GLS is vastly 

superior to Newey-West and OLSNO.  The Newey-West estimator gave hypothesis tests with 

incorrect size and low power even with sample sizes as large as 1,000.  Unrestricted MLE tends 

to reject the true null hypotheses more often than it should.  However, this problem is reduced or 

eliminated as larger samples are used, i.e. at least 1000 observations.  If overlapping data were 

the only econometric problem, there would appear to be little reason to use overlapping data at 

all since the disaggregate model could be estimated.  The practice of estimating a model with 

both monthly and annual observations, for example, would not have any apparent advantage. 

 We evaluated several statistical reasons for using overlapping data.  If the motivation for 

using overlapping data is missing observations then GLS is the preferred estimator.  Errors in 

variables with autocorrelated explanatory variables can be a reason to use overlapping data, but 

even with the extreme case considered, the advantage is small.  When overlapping data are used 

due to nonnormality or errors in variables that are not autocorrelated, then GLS is still preferred 

compared to Newey-West or OLSNO.  However, the GLS estimator provides no improvement 

compared to the disaggregate model.  The GLS estimator would be easier to implement than the 

Newey-West estimator for varying levels of overlap or imperfect overlap. 

 We also evaluated economic reasons for using overlapping data.  One such economic 

reason involves regressions of long-horizon asset returns with overlapping data as in the case of 

asset returns explained by dividend yields.  In this case we propose a modified rescaling of the 
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errors that produces correct test sizes for different sample sizes and level of aggregation. Another 

economic reason is the case when lagged dependent variables are used as explanatory variables.  

In this case the GLS estimator is inconsistent.  When aggregate data are used as regressors, 

consistent parameter estimates can sometimes be obtained with maximum likelihood.  In other 

cases, aggregation makes it impossible to recover the parameters of the disaggregate model.  

 It can be reasonable to use overlapping data when the goal is to predict a multi-period 

change.  Results showed no advantage in terms of prediction accuracy from directly predicting 

the multi-period change rather than using a disaggregate model and a multi-step forecast.  But 

the aggregate model could be preferred if it were more convenient to use. 

 Overlapping data are often used in finance and in studies of economic growth.  Many of 

the commonly used estimators are either inefficient or yield biased hypothesis tests.  The 

appropriate estimator to use with overlapping data depends on the situation, but authors could do 

much better than the methods they presently use. 
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  Endnotes 
 
1.  With normality, the GLS estimator is the maximum likelihood estimator.  The true MLE 

would have the parameters of the moving average process be known rather than 

estimated.  Such a restricted MLE should be considered with large sample sizes since it 

uses less storage than GLS. 

2.  When autocorrelation in x is large and the error term follows a first-order autoregressive 

process, Greene (1997, p.589) finds that the inefficiency of OLS relative to GLS 

increases when the x’s are positively autocorrelated.  Since many real-world datasets 

have explanatory variables that are positively autocorrelated, the inefficiency of OLS 

found here may be conservative. 

3.  See also Brewer (1973), Wei (1981), and Weiss (1984). 

4.  The model considered by Hansen and Hodrick is Y Y Yt t t     1 3 2 4 . 

5.  (14) is obtained by substituting for Yt -1 and then for Yt -2 in (12). 

6.  We also conducted Monte Carlo simulations for the transformations proposed by Britten-

Jones and Neuberger (2004) to this model.  Results are not reported since the β estimates 

from the BJN transformations were inconsistent.  
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Table 1.  Number of Articles Using Overlapping Data, 1996-2004. 

Journal Year 

Number of articles Total number of 
empirical 

articles in the 
journal 

Percentage of 
articles with 

overlapping data OLSNO NW Othera OLS Total 

J. Finance 
1996 16 8 8 - 26 55 47.3 

2004 23 16 16 3 45 71 63.4 

Amer. 
Econ. Rev. 

1996 10 3 2 - 14 77 18.2 

2004 19 4 2 - 20 109 18.3 

J. Fut. 
Mkts. 

1996 12 3 5 2 19 43 44.2 

2004 18 5 5 5 26 44 59.1 
Note: The sum of the columns 3 through 6 may be larger than the total in column 7 since some articles use more 
than one method of estimation. 
a These include HH and AM estimators. 
 
Table 2.  Parameter Estimates, Standard Deviations, and MSE for OLSNO, Newey-West, and GLS 

Estimation (Overlapping 1). 

 GLS Estimation  Newey-West Estimation  Non-overlapping Estimation 

Sample 
Size 

Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE 

30 0.981  0.639 a 
0.663 b 

0.440  0.971  
0.631 a 

0.808 b 
0.654 0.970 

0.893 a 

0.930 b 
0.865 

100 1.005 
0.348 a 

0.345 b 
0.119 0.996 

0.374 a 

0.423 b 
0.179 0.997 

0.490 a 

0.497 b 
0.247 

200 0.993   
0.246 a 

0.244 b 
0.060 0.993 

0.269 a 

0.303 b 
0.092 0.989 

0.346 a 

0.345 b 
0.119 

500 1.001 
0.155 a 

0.154 b 
0.024 1.003 

0.172 a 

0.189 b 
0.036 1.001 

0.219 a 

0.218 b 
0.048 

1000 1.001 
0.110 a 

0.109 b 
0.012 0.997 

0.122 a 

0.134 b 
0.018 1.005 

0.155 a 

0.156 b 
0.024 

2000 1.002 
0.077 a 

0.082 b 
0.007 0.998 

0.086 a 

0.098 b 
0.010 1.002 

0.110 a 

0.116 b 
0.014 

Note:  The sample sizes are the sizes for samples with overlapping observations. 
a These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates.     
Note: The model estimated is Y X et t t  '  where Yt and Xt represent some aggregation of the original 

disaggregated variables.  For simplicity    is chosen equal to 1. The model is estimated using Monte Carlo methods 

involving 2000 replications.  The errors for the original process are generated from a standard normal distribution 
and are homoskedastic and not autocorrelated.  As a result of the aggregation, et follows an MA process with the 
degree of the process depending on the aggregation level applied to x and y. 
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Table 3.  Parameter Estimates, Standard Deviations, and MSE for OLSNO, Newey-West, and GLS 
Estimation (Overlapping 11). 

 GLS Estimation  Newey-West Estimation  Non-overlapping Estimation 

Sample 
Size 

Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE 

30 1.001 0.647 a 
0.647 b 

0.418  1.032  0.665 a 
1.878 b 

3.527 1.220 2.940 a 
4.601 b 

21.216 

100 0.998 0.348 a 
0.359 b 

0.129 1.003 0.651 a 
1.047 b 

1.096 1.008 1.256 a 
1.308 b 

1.711 

200 0.994 0.245 a 
0.236 b 

0.056 0.989 0.527 a 
0.698 b 

0.487 0.993 0.871 a 
0.895 b 

0.802 

500 1.005 0.155 a 
0.155 b 

0.024 1.005 0.363 a 
0.455 b 

0.207 1.026 0.540 a 
0.542 b 

0.294 

1000 0.997 0.110 a 
0.112 b 

0.013 1.004 0.262 a 
0.315 b 

0.099 1.002 0.382 a 
0.390 b 

0.152 

2000 0.995 0.078 a 
0.077 b 

0.006 0.999 0.189 a 
0.223 b 

0.050 0.999 0.270 a 
0.272 b 

0.074 

Note: The sample sizes are the sizes for samples with overlapping observations. 
a These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates. 
 

Table 4.  Parameter Estimates, Standard Deviations, and MSE for OLSNO, Newey-West, and GLS 
Estimation (Overlapping 29). 

 GLS Estimation  Newey-West Estimation  Non-overlapping Estimation 

Sample 
Size 

Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE 

30 0.996 0.648 a 

0.668 b 
0.446 0.996 0.539 a 

2.204 b 
4.858 -- c 

 
-- c 
-- c 

-- c 

100 1.005 0.349 a 
0.345 b 

0.119 1.077 0.711 a 
1.595 b 

2.551 1.233 2.228 a 
2.823 b 

8.023 

200 0.996 0.245 a 
0.248 b 

0.062 1.016 0.694 a 
1.216 b 

1.478 0.988 1.467 a 
1.571 b 

2.469 

500 1.005 0.155 a 
0.158 b 

0.025 1.029 0.523 a 
0.726 b 

0.528 1.025 0.867 a 
0.893 b 

0.798 

1000 1.004 0.110 a 
0.110 b 

0.012 1.011 0.394 a 
0.496 b 

0.246 1.010 0.605 a 
0.611 b 

0.374 

2000 1.002 0.077 a 
0.078 b 

0.006 1.002 0.290 a 

0.343 b 
0.118 1.004 0.427 a 

0.425 b 
0.181 

Note: The sample sizes are the sizes for samples with overlapping observations. 
a These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates.     
c These values cannot be estimated because of the very small number of observations. 
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Table 5.  Parameter Estimates, Standard Deviations, and MSE for the Maximum Likelihood 
Estimates Assuming the MA Coefficients are Unknown for Three Levels of Overlapping (1, 11, and 
29). 

 Overlapping 1  Overlapping 11  Overlapping 29 

Sample 
Size 

Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE Parameter 
Estimates 

Standard 
Deviations 

MSE 

30 0.975 0.622 a 
0.624 b 

0.391 1.019 0.541 a 
0.833 b 

0.694 -c - c 
- c 

- c 

100 1.010 0.343 a 
0.347 b 

0.120 0.998 0.311 a 
0.374 b 

0.140 0.991 0.281 a 
0.455 b 

0.207 

200 0.989 0.243 a 
0.247 b 

0.061 0.995 0.230 a 
0.256 b 

0.065 0.984 0.216 a 
0.278 b 

0.078 

500 0.990 0.154 a 
0.156 b 

0.025 0.990 0.149 a 
0.158 b 

0.025 0.986 0.145 a 
0.165 b 

0.027 

1000 0.991 0.112 a 
0.109 b 

0.013 0.991 0.107 a 
0.112 b 

0.013 0.990 0.105 a 
0.112 b 

0.013 

2000 0.995 0.078 a 
0.077 b 

0.006 0.995 0.076 a 
0.078 b 

0.006 0.995 0.075 a 
0.080 b 

0.006 

Note:  The sample sizes are the sizes for samples with overlapping observations. 
a These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates.     
c These values cannot be estimated because of the very small number of observations. 
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Table 6.  Power and Size Values of the Hypothesis Tests for OLSNO, Newey-West, and GLS 
Estimation (Overlapping 1, 11, 29). 

Degree of 
Overlapping 

Sample 
Size 

 GLS Estimation Newey-West Estimation Non-overlapping Estimation 

Power Size Power Size Power Size 

1 30 0.319 0.052 0.366 0.135 0.181 0.044 

 100 1 0.043 0.500 0.090 0.500 0.052 

 200 1 0.042 1 0.081 1 0.049 

 500 1 0.053 1 0.078 1 0.052 

 1000 1 0.049 1 0.075 1 0.056 

 2000 1 0.058 1 0.089 1 0.072 

11 30 0.315 0.044 0.500 0.492 0.045 0.044 

 100 1 0.056 0.434 0.254 0.111 0.046 

 200 1 0.039 0.486 0.169 0.194 0.045 

 500 1 0.048 0.500 0.124 0.455 0.050 

 1000 1 0.053 1 0.104 0.500 0.051 

 2000 1 0.046 0.997 0.094 0.958 0.049 

29 30 0.340 0.049 0.500 0.500 -- a -- a 

 100 1 0.044 0.500 0.417 0.070 0.056 

 200 1 0.055 0.449 0.291 0.070 0.046 

 500 1 0.061 0.500 0.176 0.203 0.044 

 1000 1 0.050 0.500 0.132 0.364 0.055 

 2000 1 0.059 0.885 0.113 0.646 0.051 
Note: The sample sizes are the sizes for samples with overlapping observations. 
a These values cannot be estimated because of the very small number of observations. 
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Table 7.  Power and Size Values of the Hypothesis Tests for the Maximum Likelihood Estimates 
Assuming the MA Coefficients are Unknown for Three Levels of Overlap (1, 11, and 29). 

Degree of 
Overlap 

Sample 
Size 

Total Number 
of Replications 

Replications that Converge  
Power b 

 
Sizeb 

Number Percentage  

1 30 1000 999 99.9 0.331 0.070 

 100 1000 1000 100 0.827 0.047 

 200 1000 1000 100 0.982 0.058 

 500 1000 1000 100 1.000 0.060 

 1000 1000 1000 100 1.000 0.062 

 2000 1000 1000 100 1.000 0.051 

11 30 1400 994 71.0 0.476 0.252 

 100 1000 995 99.5 0.884 0.109 

 200 1000 1000 100 0.980 0.085 

 500 1000 998 99.8 0.998 0.075 

 1000 1000 1000 100 1.000 0.069 

 2000 1000 1000 100 1.000 0.056 

29 30 -- a -- a -- a -- a -- a 

 100 1600 970 60.6 0.814 0.254 

 200 1200 1027 85.6 0.980 0.135 

 500 1200 1082 90.2 1.000 0.081 

 1000 1100 1066 96.9 1.000 0.078 

 2000 1000 932 93.2 1.000 0.060 
Note: The sample sizes are the sizes for samples with overlapping observations. 
a These values cannot be estimated because of the very small number of observations. 
b These are calculated based on the number of replications that converged. 
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Table 8. Parameter Estimates, Standard Deviations, MSE, and Power and Size of Hypothesis Tests for OLSNO, Newey-West, and GLS 
Estimation with Two Xs and Nonnormal Errors(Overlapping 1, 11, and 29). 
Degree 

of 
Overlap 

 
Sample 

Size 

GLS Estimation  Newey-West Estimation  Non-overlapping Estimation  Disaggregate Estimation 

Parameter 
Estimates 

Standard 
Deviations 

MSE Power Size  Parameter 
Estimates 

Standard 
Deviations 

MSE Power Size  Parameter 
Estimates 

Standard 
Deviations 

MSE Power Size  Parameter 
Estimates 

Standard 
Deviations 

MSE Power Size 

1 30 1.014  0.953 a 

1.003 b 
1.007 0.208 0.046  0.997 0.898 a 

1.267 b 
1.606 0.288 0.152  1.049 1.334 a 

1.794 b 
3.220 0.201 0.128  1.012 0.977 a 

1.029 b 
1.058 0.192 0.050 

 100 0.969 0.498 a 
0.510 b 

0.261 0.494 0.053  0.969 0.526 a 
0.621 b 

0.386 0.460 0.095  0.999 0.700 a 
0.875 b 

0.766 0.342 0.111  0.970 0.517 a 

0.525 b 
0.276 0.467 0.052 

 500 1.008 0.226 a 
0.223 b 

0.050 0.988 0.051  1.005 0.249 a 
0.273 b 

0.074 0.956 0.082  0.996 0.317 a 
0.390 b 

0.152 0.832 0.117  1.008 0.236 a 

0.233 b 
0.054 0.983 0.055 

 1000 1.004 0.159 a 
0.155 b 

0.024 1 0.042  1.001 0.177 a 
0.192 b 

0.037 0.999 0.070  1.002 0.225 a 
0.286 b 

0.082 0.971 0.121  1.004 0.166 a 

0.163 b 
0.027 1 0.039 

11 30 1.019 0.943 a 
0.943 b 

0.890 0.202 0.049  0.977 0.830 a 
2.585 b 

6.684 0.579 0.541  -- c 
 

-- c 
-- c 

-- c -- c -- c  1.010 0.833 a 
0.870 b 

0.757 0.239 0.053 

 100 0.994 0.507 a 

0.523 b 
0.274 0.498 0.052  0.998 0.915 a 

1.482 b 
2.196 0.338 0.244  0.944 2.059 a 

2.230 b 
4.975 0.072 0.051  1.001 0.502 a 

0.523 b 
0.274 0.516 0.053 

 500 1.008 0.226 a 
0.225 b 

0.051 0.993 0.049  1.010 0.524 a 
0.663 b 

0.439 0.517 0.138  1.035 0.810 a 
0.828 b 

0.687 0.236 0.056  1.007 0.233 a 
0.233 b 

0.054 0.988 0.052 

 1000 1.003 0.159 a 
0.159 b 

0.025 1 0.042  1.022 0.378 a 
0.457 b 

0.209 0.734 0.107  1.016 0.557 a 
0.568 b 

0.323 0.432 0.057  1.002 0.164 a 
0.166 b 

0.027 1 0.040 

29 30 1.014  0.935 a 
0.995 b 

0.990 0.193 0.056  1.014 0.654 a 
2.614 b 

6.833 0.629 0.611  -- c 
 

-- c 
-- c 

-- c -- c -- c  0.995 0.680 a 
0.726 b 

0.527 0.319 0.051 

 100 1.009 0.507 a 
0.543 b 

0.294 0.513 0.046  0.995 0.911 a 
2.328 b 

5.420 0.505 0.455  0.982 4.919 a 
9.052 b 

81.94 0.063 0.059  1.020 0.466 a 
0.486 b 

0.237 0.599 0.041 

 500 1.010 0.226 a 
0.225 b 

0.051 0.989 0.050  0.958 0.759 a 
1.041 b 

1.085 0.335 0.177  0.950 1.350 a 
1.385 b 

1.920 0.103 0.052  1.009 0.228 a 

0.229 b 
0.052 0.988 0.046 

 1000 1.000 0.160 a 
0.162 b 

0.026 1 0.058  1.008 0.570 a 
0.739 b 

0.547 0.464 0.143  1.023 0.898 a 
0.904 b 

0.818 0.200 0.056  1.001 0.164 a 
0.168 b 

0.028 1 0.061 

Note:  The sample sizes are the sizes for samples with overlapping observations. 
a These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates.    
c These values cannot be estimated because of the very small number of observations. 
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Table 9.  Parameter Estimates, Standard Deviations, and MSE, for GLS, Newey-West, OLSNO, and the Disaggregate Estimation with 
Measurement Errors in X (Overlapping 1, 11, and 29). 

Correlation  
of  
X 

Sample 
Size 

Degree of 
Overlap 

GLS Estimation  Newey-West Estimation  Non-overlapping Estimation  Disaggregate Estimation 

Parameter 
Estimates 

Standard 
Deviations 

MSE  Parameter 
Estimates 

Standard 
Deviations 

MSE  Parameter 
Estimates 

Standard 
Deviations 

MSE  Parameter 
Estimates 

Standard 
Deviations 

MSE 

0 100 1 0.494 0.252 a 
0.252 b 

0.320  0.493 0.269 a 
0.311 b 

0.354  0.494 0.360 a 
0.361 b 

0.389  0.494 0.250 a 
0.250 b 

0.318 

  11 0.509 0.252 a 
0.263 b 

0.310  0.512 0.479 a 
0.739 b 

0.784  0.503 0.952 a 

1.028 b 
1.303  0.510 0.239 a 

0.251 b 
0.303 

  29 0.495 0.253 a 
0.254 b 

0.320  0.480 0.501 a 
1.185 b 

1.675  0.390 1.789 a 
2.310 b 

5.709  0.497 0.222 a 
0.223 b 

0.303 

 1000 1 0.499 0.079 a 
0.077 b 

0.257  0.502 0.088 a 
0.095 b 

0.257  0.501 0.112 a 
0.111 b 

0.261  0.499 0.079 a 
0.077 b 

0.257 

  11 0.502 0.079 a 
0.080 b 

0.255  0.499 0.189 a 
0.227 b 

0.303  0.497 0.277 a 
0.281 b 

0.332  0.501 0.079 a 
0.080 b 

0.255 

  29 0.499 0.079 a 
0.078 b 

0.257  0.517 0.285 a 
0.364 b 

0.366  0.509 0.441 a 
0.445 b 

0.440  0.499 0.078 a 
0.077 b 

0.257 

0.8 c 100 1 0.718 0.191 a 
0.199 b 

0.119  0.816 0.174 a 
0.214 b 

0.080  0.816 0.218 a 
0.223 b 

0.084  0.716 0.190 a 
0.198 b 

0.120 

  11 0.731 0.187 a 
0.196 b 

0.111  0.931 0.187 a 
0.302 b 

0.096  0.934 0.337 a 

0.351 b 
0.127  0.721 0.181 a 

0.187 b 
0.113 

  29 0.730 0.186 a 
0.194 b 

0.110  0.963 0.174 a 
0.429 b 

0.186  0.966 0.536 a 
0.701 b 

0.493  0.720 0.166 a 
0.174 b 

0.109 

 1000 1 0.735 0.058 a 
0.060 b 

0.074  0.833 0.055 a 
0.065 b 

0.032  0.832 0.066 a 

0.067 b 
0.033  0.734 0.058 a 

0.060 b 
0.074 

  11 0.733 0.058 a 
0.062 b 

0.075  0.940 0.071 a 
0.086 b 

0.011  0.941 0.096 a 
0.097 b 

0.013  0.732 0.058 a 
0.062 b 

0.075 

  29 0.736 0.058 a 
0.061 b 

0.073  0.954 0.091 a 
0.116 b 

0.016  0.950 0.135 a 
0.138 b 

0.021  0.735 0.057 a 
0.060 b 

0.074 

Note:  The sample sizes are the sizes for samples with overlapping observations. 
a These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates. 
c The x is generated as follows: xt = x0t + ωt, where x0t ~ uniform (0, 1) and ωt ~ N (0, 1/12). 
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Table 10.  Parameter Estimates of Different Models for the Case of the Lagged Dependent Variable. 

Equation 
Number 

Method of 
Estimation 

 
Data 

 
Estimated Model 

(12) MLE Overlapping 211 99999.00065.1496.00016.0   tttttt XYY   

(13) MLE Nonoverlapping 
 

333 163.0342.0413.1118.0019.0    XXYY  

(15) MLE Y Nonoverlapping 
X Overlapping 

13211 163.0251.0489.01002.1123.0019.0    ttt XXYY  

Note: The models in Table 10 are estimated using a large Monte Carlo sample of 500,000 observations.  The unrestricted maximum likelihood estimates are obtained using PROC ARIMA in SAS. 



  45 

Table 11.  Size of Hypotheses Tests (β=1) for the Hansen and Tuypens (HT) and Hjalmarsson  
(H) rescaling and our modified HT and H approaches for Long-Horizon Return 
Regressions (Overlapping 11 and 74). 

σ12 = 0.9 

Overlapping level 11 

Sample Size 50 100 250 500 1000 

Size of HT 0.0622 0.0504 0.0314 0.0302 0.0280 

Size of  

Modified HTa 
0.0554 0.0504b 0.0464 0.0430 0.0420 

Overlapping level 74 

Sample Size 200 250 500 750 1000 

Size of HT 0.0782 0.0724 0.0570 0.0458 0.0402 

Size of  

Modified HTa 
0.0522 0.0538 0.0524 0.0458b 0.0516 

σ12 = 0.5 

Overlapping level 11 

Sample Size 50 100 250 500 1000 

Size of H 0.0784 0.0608 0.0394 0.0308 0.0316 

Size of  

Modified H
c 

0.0510 0.0608b 0.0574 0.0498 0.0488 

Overlapping level 74 

Sample Size 200 250 500 750 1000 

Size of H 0.0962 0.0822 0.0668 0.0510 0.0504 

Size of  

Modified Hc 
0.0576 0.0526 0.0550 0.0510b 0.0564 

σ12 = 0.1 

Overlapping level 11 

Sample Size 50 100 250 500 1000 

Size of H 0.1014 0.0782 0.0558 0.0480 0.0446 

Size of GLS 0.0506 0.0530 0.0510 0.0468 0.0446 

Overlapping level 74 

Sample Size 200 250 500 750 1000 

Size of H 0.1200 0.1096 0.0900 0.0734 0.0730 

Size of GLS 0.0518 0.0520 0.0524 0.0504 0.0524 
Note:  The sample sizes are the sizes for samples with overlapping observations. 
a This is the modified Hansen and Tuypens rescaling. 
b No modification is performed when the ratio equals 1/10. 
c This is the modified Hjalmarsson rescaling. 
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Table 12.  Prediction accuracy for Long Horizon Regressions and Hansen and Hodrick Model 

Aggregation 
Level 

 
Sample 

Size 

     Long Horizon Regressions                    Hansen and Hodrick Model  
 Aggregate 

Model 
  

Disaggregate 
Model 

 
Aggregate 

Model 
 Disaggregate  

Model 
 Meana SDb   Meana SDb  Meana SDb  Meana SDb 

12 50  20.95 11.89   20.15 11.85  99.45 103.7  95.21 96.71 

 100  21.87 8.17   21.74 8.35  59.46 61.05  58.70 58.68 

 250  23.31 5.50   23.38 5.62  31.29 27.96  32.36 26.85 

 500  23.93 4.05   24.06 4.18  21.34 14.62  23.19 13.50 

 1000  24.33 2.90   24.49 3.00  16.48 7.34  18.98 6.53 

75 100  95.14 66.35   74.46 42.64  1294.59 1475.41  1688.32 1425.21 

 250  85.45 35.47   80.23 31.41  840.01 796.57  1034.06 1026.34 

 500  86.22 25.31   84.72 24.69  563.64 495.89  706.27 618.32 

 750  86.14 20.26   85.45 19.95  452.19 367.49  576.10 467.36 

 1000  86.89 17.77   86.54 17.66  393.16 293.33  503.94 374.08 
a These are means of the 50,000 estimated root-mean-squared forecast errors. 
b These are the standard deviations of the 50,000 estimated root-mean-squared forecast error.
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