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Abstract: Blockchain technology is undergoing a tremendous growth choking itself up to
its capacity and performance limits. It is exigently sought to address and respond to these
issues, being mostly concerned about the scalability, performance and dependability of
the blockchain system. This research will address and investigate on various, yet critical
performance and dependability issues and problems as identified in blockchain-based
crypto computing with specific respect to the on/off-balanced chain, the real-time chain;
the slim chain; and a hybrid chain as to be proposed in this research. A hypothetical and
theoretical design of each proposed crypto computing solution is developed in order to
establish an engine for preliminary yet extensive parametric simulation, and the results
are demonstrated and validated through an isolated testing built on Ethereum and
Hyperledger open source-based prototype. With dependability referred to as the
likelihood to be performed as desired, each hypothetical and theoretical model is built
centered around the dependability of each proposed crypto solution to accommodate
capabilities of the on/off-balanced crypto computing, the real-time computing, the slim-
computing and the hybrid computing. A dependability model for each proposed crypto
solution has been identified and defined along with various performance variables, and
has ultimately provided a theoretical yet practical understanding of each crypto solution.
A prototype, to demonstrate each proposed crypto solution and to validate its
hypothetical and theoretical results, has been built by identifying and isolating the
insertion points for necessary technology modification within Ethereum and Hyperledger
open source to start out with and to ultimately realize a new core blockchain for optimal
crypto computing focused on performance and dependability.
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CHAPTER I

INTRODUCTION

Blockchain [1, 2] as a technology is undergoing tremendous changes in the recent years given the
boom in the crypto currency market. While these changes are attributed mostly towards the
crypto currency there are quite a few limitations that hinder blockchains rise in popularity in other
domains such as B2B, health, insurance etc. This research addresses those limitations of the
blockchain by implementing new algorithms, thereby improving the performance of the

blockchain in areas primarily focused on speed, size, security and connectivity.

A blockchain is a data structure that makes it possible to create a digital ledger of data and share
it among a network of independent parties. Depending on the sharing properties of the blockchain
there are different types of structures defined when it comes to how much of the blockchain us
meant to be visible: public, permissioned and private blockchains. Public blockchains are ones
those are open to anyone to access and participate in the blockchain [6]. Bitcoin and Ethereum are
two of the most well-known public blockchains. A permissioned blockchain will have control

over which individuals can join the network.



Blockchains have laid a foundation where the need for trust has been taken out of the equation.
Where before asking for “trust” was a big deal, with blockchains it’s small. The content of
permissioned blockchain can be accessed only with appropriate access to the blockchain and one such
example of a permissioned blockchain is Ripple. Blockchains incorporate hashing, which transforms
any size of data into fixed length values. This process is done continuously from the genesis block
(starting block in the blockchain). Any change to the transactions in the blockchain will change the
hash addresses of all the subsequent hash addresses. This is the primary reason for blockchain being
not so easy modifiable. Although there are multiple blockchain frameworks out in the market at the
time of this writing, the entire research is implemented on Ethereum blockchain. In the blockchain
world, consensus is the process of developing an agreement among a group of commonly mistrusting
shareholders. These are the full nodes on the network. The full nodes are validating transactions that
are entered into the network to be recorded as part of the ledger. Each blockchain has its own

algorithms for creating agreement within its network on the entries being added [35].
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Figure 1. How blockchains work [35]



The primary advantages of blockchain are:

e No third-party involvement in making financial transactions: Unlike transferring fiat currency
through banks and other financial institutions, a blockchain doesn’t need a third-party to
create trust in transferring crypto currency.

e Secure and publicly maintained ledger: The blockchain is structured in a Merkle tree, thereby
making it near impossible to modify any content. Any modification that is done will affect all
the subsequent hash addresses. Moreover, a public blockchain gives the transparency to the
user.

e Impossible to modify any content that has already posted to the blockchain in the form of

transactions.

This research focuses on disadvantages of blockchain, either by completely trying to overcome the

disadvantage or by creating an alternate solution. The main disadvantages of blockchain are as:

e Latency: The average time to post a transaction in blockchain is much higher than a normal
transaction involving fiat currency through any financial institution. It is proposed to address
this problem by implementing a real-time blockchain wherein the transactions are picked up
based on different sampling techniques to enhance the speed with which they are processed
into the blockchain.

e Closed Network: A blockchain in general is not designed [4] to access any information from
the internet thereby making it a closed network. An interface was developed to answer the
likes of higher gas fees and also making the blockchain open to posting transactions from
outside the network. Crypto solution has been addressed for both Intra-connectivity and inter-
connectivity issues.

o 51% Attack: Given any security flaws in the blockchain or any breaches, the proposed

checkpoint and rollback algorithm is designed to revert the blockchain to its previous data.



There are different types of blockchain based on the needs and requirements for the blockchain. The

types of blockchain in brief are as follows:

e Public networks are large and decentralized, anyone can participate within them at any level
— this includes things like running a full node, mining cryptocurrency, trading tokens, or
publishing entries. They tend to be more secure and immutable then private or permissioned
networks. They’re often slower and more expensive to use. They’re are secured with a
cryptocurrency and have limited storage capacity with no capability to store any private
information.

e Permissioned networks are viewable to the public, but participation is controlled. Many of
them utilize a cryptocurrency, but they can have a lower cost for applications that are built on
top of them. This feature makes it easier to scale project and increase transaction volume.
Permissioned networks can be very fast with low latency and have higher storage capacity
over public networks.

e Private networks are shared between trusted parties and may not be viewable to the public.
They’re very fast and may have no latency. They also have a low cost to run and can be built
in an industrious weekend. Most private networks do not utilize a cryptocurrency and do not
have the same immutability and security of decentralized networks. Storage capacity may be

unlimited.

Blockchain technology is undergoing a breath-taking growth, choking itself up to its capacity and
performance limits, mandating the departure of potentially significant volume of code and data off the
chain, in order to relieve the blockchain spatially as well as temporally, thereby ultimately addressing
and resolving the exigently sought scalability. However, as demonstrated in, the attempts to relieve
the supposed-to-be on-chain volume of data and code to off-chain space are risky potentially affecting

on the dependability of the computation in a negative manner unless otherwise countered, even if



expectedly offering performance benefits either spatially or temporally, which triggers the proposed

research on the slim chain.

The dependability [23, 24, 29, 31] of the slim chain will be modeled with respect to such various
variables as the on- and off-chain dependability from a single transaction’s standpoint, the crypto rate,
and, namely, the IPFS rate, and along further with the read rate from the off-chain space or the write
rate to the off-chain space. Note that the off-chain space will serve as a storage for the code and data
migrating from on-chain space, and IPFS will be the option under consideration for the purpose.
Notice that, without loss of intuition, write operations from on-chain to off-chain will cause less
potential dependability loss because they at the moment of writing do not influence the dependability
back on-chain, whereas read operations will expose the on-chain dependability to potential risks of
dependability loss by migrating potentially undependability-contaminated transactions back on the
chain, and thus write and read rates are taken into account as two primary variables of the
dependability model of the proposed slim chain. In this context, it is proposed in this research that
rather than storing the details of the entire transaction onto the blockchain, the transaction is hashed
into a 32-bit hex address. Only the hash address is stored in blockchain and the transaction itself

resides on distributed ledger, namely, Inter Planetary File System (IPFS).

The research is organized as follows: the proposed approach to modeling and analysis of the
dependability of the proposed on-off blockchain, slim chain, realtime chain and hybrid chain is
described in the following section: each section is followed by demonstration of extensive parametric
simulations versus various crypto solution-related parameters and results are shown along with a
prototype demonstration in each section; then conclusions are drawn in the last section followed by

Appendix which highlights some complex mathematical equations.



CHAPTER II

PRELIMINARIES AND REVIEWS

Blockchain technology [1] is undergoing a tremendous growth choking itself up to its capacity
and performance limits and thereby resulting in cost spike. It is exigently sought to address and
respond to these issues, being mostly concerned about the cost spike issue. In this context, firstly,
it is proposed in this work particularly how to mitigate the cost of blockchain transactions
specifically in terms of the gas fee on Ethereum [2] by developing a scheme which involves on-
and off-chain transactions mixed (referred to as crypto mix) at a certain ratio (referred to as
Crypto ratio), and managed and operated through an interface developed in house. Then,
secondly, it is proposed how to maintain the authenticity and security of the off-chain transactions
by using a crypto (i.e., on-chain) checkpoint and rollback protocol as proposed in this work. The
interface developed in house provides a seamless context switching in between on- and off-chain
transactions and it is demonstrated that significant cost saving would be realized depending on the
size and type of the computations by the transactions such that the larger the size is and the more

complex the computation is, the more substantially the cost saving is realized.



It is observed that there exists an optimal mix of on- and off-chain functions to minimize the
expected total gas fee. In order to justify the effectiveness of the proposed crypto mix/ratio
scheme, it is mandated to maintain the authenticity and security of the transactions executed on
the off-chain functions. A novel crypto checkpoint and rollback algorithm is proposed in an
adaptive manner with two different checkpoint intervals, one at a fixed length and another at a
variable length triggered and adjusted by a suspicious transaction detected and reported by the
backend blockchain analytics engine. A quantitative figure of merit [10], [11] is modeled and
referred to in order to determine whether the blockchain analytics result hits beyond a threshold

point or not.

Lastly, an on-chain voting is conducted every time a context switching takes place across the
border between on- and off-chains in order to manage and exercise the centralized off-chain
transactions in a decentralized manner on-chain. An experimental prototype is developed and a
variety of decentralized applications [14] are developed to demonstrate various and extensive
crypto mixes and ratios. Various checkpoint intervals and rollback frequencies are tested to

demonstrate their efficiency and effectiveness with respect to the figure of merit of interest.

The performance of the transactions on blockchains is considered to be one of the most critical
issues for the blockchain technology to address and resolve for any further breakthrough and
momentum gain [16,19,20,22]. Scalability [17,23] is the immediate concern to do with the
performance of the transactions and is primarily governed by the speed of the transactions
without loss of practicality. The speed and along with appropriate prioritization and scheduling of
the transactions in general, if possible, are ultimately doomed to influence the deadline

requirements in real-time systems [18].

In this context, an analytical study is conducted in this work on the block-dependability. The

block-dependability in this work is defined by the probability all the transactions within the



block-deadline (i.e., the deadline for a transaction to be posted in the target block) are to be
posted within the target block. The analytical study will employ a probabilistic approach to
identify a set of performance-variables that are doomed to influence the block-dependability such
as the number of transactions, the average size of transactions, the speed (bytes/sec) of
transactions with respect to deadline, gas fees and the number of miners, to mention a few. This
set of variables but not limited to them will be taken into account with an implicit influence by
miners as well, for the modeling and analysis of the block-dependability in the context of real-

time blockchain-based crypto computing.

The block-dependability will be evaluated against various transaction prioritization and selection
methods [23] such as normal (as is being exercised by the current Ethereum blockchain), random
(as the baseline), sorted (as a heuristic based on certain characteristics such as gas fee by miners),
and stratified (as another heuristic for a statistical optimization in the course of transaction
selection process). Extensive analytical experiments will be conducted to reveal the direction of
optimization how to realize the exigently-desired scalability and how to ultimately realize the
real-time execution of transactions under stringent deadline requirements as more and more apps

are in demand of real-time capability as the technology matures.

This research presents a work on how to assure the dependability of a crypto system built across
on and off the blockchain by using the proposed adaptive checkpoint and rollback algorithm, and
a prototype is developed for demonstration purpose. The theoretical background of the proposed
checkpoint and rollback algorithm is studied to characterize the variables affecting the
dependability such as security, authenticity and reliability with respect to the rates of hit by any
events of those issues, the rates to detect and diagnose, and then the rate to vote for a consensus
whether to trigger a rollback or not. Based on the variables characterization in a stochastic
manner, then steady state probabilities and state transition probabilities are derived in order to

assure the ultimate effective dependability of each individual dependability variable (i.e.,
8



security, authenticity and reliability), then finally to assure the dependability in a compound
manner with each variable assigned a weight depending on the nature of the systems
specifications. Based on the theoretical study, a protype of a crypto system is built to demonstrate
the underlying architecture and operations and to justify the need for such system to take
synergistic advantages from both on- and off-chain blockchains, with an experimental result of a
benefit in the gas fee. This is the most exigently addressed issue today in blockchain systems
especially in Ethereum network of blockchains. An astonishing gas fee saving results are
demonstrated. It is observed that the crypto system benefits more if more computationally

intensive transactions are executed off-chain while vice versa.

LATENCY

This research also proposes an analytical approach how to design and realize a crypto computing
(Ethereum blockchain-based) under stringent real-time requirement. In order to evaluate the
efficacy of the approach, a new analytical metric is defined and developed to estimate the
dependability, referred to as the block-dependability. The proposed block-dependability precisely
models the probability for the pending transactions to be posted within the current, in other
words, within the target block delay, namely, within the deadline required if their expected
execution times are within the temporal range of the deadline. Various methods how to prioritize
and select transactions in the pending transaction pool in order to facilitate those transactions to
be executed within their deadline requirements, such as the normal, random, sorted, and stratified,
are proposed and simulated. A set of performance variables, or parameters, such as the number of
pending transactions in the pool, the average speed of the transactions, gas fees, deadlines as well

as the number of miners, are identified and taken into the block-dependability to reveal the



influence of each variable on the block-dependability, versus each of those proposed

prioritization and selection methods.

SIZE OF BLOCKCHAIN

This research proposes a crypto solution to address the size of the blockchain with slim-chain
facilitated by IPFS. The proposed slim-chain distinguishes itself from the light-chain such that
light-chain attempts to mitigate the size and delay overhead and issues of the blockchain by
shrinking the extent of the synchronization window, whereas the proposed slim-chain attempts to
slim down the size of the blockchain by keeping the smart contracts and data in an off-chain
decentralized storage, namely, IPFS. Instead of keeping the entire transactions and data on the
chain, selections are made on the transactions and data in a certain manner and store them off the
chain in a decentralized storage such as IPFS. In order to address and resolve any potential
reliability and security loopholes (referred to as the dependability together) due to the off-chain
storage involvement, a new analytical model is developed to assure the dependability of the
crypto computing with respect to the off-chain storage, and the off-chain storage is to be managed
in a decentralized manner in association with the blockchain as well. The proposed decentralized
management of the off-chain storage is to create an off-chain crypto link (e.g., a hash address) to
a partition of the off-chain storage and those are kept on blockchain in place of the full load. An
effective and efficient algorithm is proposed to select the contents under the influence of various
constraints and conditions such as frequency ratio of off-chain reads issued by on-chain
transaction versus writes in communication with the target off-chain data; and the number of off-
chain crypto links, to mention a couple. If read/write ratio goes high, the overall dependability
will be more influenced by and sensitive to the dependability of the off-chain storage; and there
will be a trade-off between the number of off-chain crypto links and the speed of the off-chain
transactions and an optimal balance between them will be sought as the more number of off-chain

crypto links the slower the execution of the transactions involving off-chain data access. An
10



extensive parametric simulation will be performed, and a set of parameters will be identified for

the optimal design for dependability of the proposed slim-chain-based crypto computing.

A few key concepts and components of blockchain are listed as follows:

Public Key: Every node/user in the blockchain is assigned a public/private key. A
transaction to be made on the blockchain has to be signed by a private key, while the
public key is always visible to everyone on the blockchain.

Transaction: A transaction contains the details of the both the public keys (in case of
smart contract [ 16] — contract address), hash of the previous block, current block number
and the amount of crypto currency being transferred to along with the gas need to execute
the transaction; block is a list of transactions recorded into the distributed ledger over
time. The transactions are grouped together and put it in the block which are then mined
to be added to the blockchain. The immutability of the blockchain assures that the
transaction once recorded in a block cannot be deleted or undone.

Chain: All the blocks have a unique block number. The block number is incremented by
1 for every block that is added to the chain. The hash in blockchain is created from the
data that was in the previous block. The previous block hash will also be added to the
current block details. Thereby, any change in the previous block completely alters the
entre hash which would invalidate the blockchain.

Crypto Currency: Ether is the crypto currency in Ethereum blockchain. Any transaction
to be posted on the blockchain utilizes the respective crypto currency of the blockchain;
Gas: The amount of ether needed to post a transaction in Ethereum blockchain. The
current blockchain is coded in such a way that the transaction with highest gas fees is
given higher priority to be included in the block. This proposed real-time, details out
different algorithms that can be used to order transactions differently in the block; Miner:

Nodes that participate in creating a new block are called miners. Miners are responsible
11



for adding blocks to the blockchain. The blocks are created based on the number of
transactions present in the txnpool and other characteristics like gas fee, block size,
arrival time.

e Transaction Pool: Transaction pool is an array datatype of transactions containing the
pointers to the transactions that are not yet posted to the block. Pending transactions are
the transactions that are not yet posted to the blockchain and these pending transactions
reside in the transaction pool [29]. The different ordering of the transaction pool creates
different mining [14, 15] algorithms.

e Mining: The central process of blockchain-based computing to establish a trust among
the nodes in the network connected in a P2P manner. Miners compete for the next new
hash code which requires a computationally intensive process and is highly costly. In this
context, there have been efforts made extensively to mitigate or eliminate the mining

process.

There have been reported on various yet critical performance and dependability problems in [17-
20], where extensive research have been conducted on theoretical designs of a few blockchain-
based solutions in order to establish a theoretical yet substantial foundation. As the ultimate
quality of crypto computing will be determined by its likelihood to be performed as commanded
or desired, referred to as the dependability, those theoretical models emphasized and centered
around the dependability of each of those crypto solutions to accommodate such capabilities as
the on/off-balanced crypto computing [12], the slim-computing [30], the real-time computing
[32], and the hybrid computing [31]. A theoretical study on performance will be in an ultimate
interest to identify a theoretical intersection versus the dependability, which is the ultimate
objective of the proposed Variable Bulk Arrival and Variable Bulk Service (VBAVBS) Model

with Az in the context of the proposed realtime chain.

12



Crypto solution that addresses the inter-connectivity is a proposed double-tuple queueing model
for hybrid chain, based on the single tuple VBASBS queueing model which is to be extended to a
double-tuple to address the two chains into account in a Markovian manner, through which the
effectiveness, efficiency and versatility of the VBASBS model will be demonstrated in this
research. A novel queueing model of the type M1™/M™"/1 has been proposed in order to establish
a quantitative model to guide the design of a blockchain-based network in Ethereum. The model
assumes bulk arrivals of transactions in Poisson distribution, i.e., M>™, and static bulk service of
transactions in exponential time, i.e., M™, for posting a transaction in the current block, namely,
VBASBS, while for double-tuple queues, is extended from the single-tuple queueing model as in
VBASBS. In the proposed double-tuple VBASBS, the same assumptions are made such that the
variable bulk arrival rate be assumed to vary linearly proportional to the size of the transactions in
a multiple of A per slot, respectively for each queue, and the static bulk service is assumed to take
place when the number of slots in the mined transactions reaches at n, i.e., a bulk processing of

multiple transactions across multiple slots for posting in a block.

A hybrid chain has been proposed to investigate on a new blockchain network that is to be built
across private and main nets, namely. In the hybrid chain, the dependability was the primary
interest and concern of the work to build a dependable interface in between private and main nets
if it is to support business to consumer (or vice versa) transactions for instance. A dependable
interfacing across private and main nets, is one of the most critical design factors such that it be
ensured that private transactions stay under the private control and public transactions stay public
in the main net, and further in order to manage a seamless yet dependable execution of
transactions across the border. The efficacy of the privacy of the private net and the publicity of
the main net are addressed and modeled in the dependability model by tracing transaction’s

stochastic processes.
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CHAPTER III

ON/OFF-BALANCED CHAIN

Checkpoint and rollback, abbreviated as CPR, is an algorithm designed to mitigate the security
risks in a public blockchain. The primary role of the checkpoint and rollback is to reverse all
possible transactions thereby ensuring that the system is reset to a checkpoint which is created
earlier. In order to ensure security to the blockchain [3], checkpoints are made at every stage
whenever necessary and then these checkpoints can be used to revert back the transactions
executed with the cause of the checkpoint with insecurity (or an undependability). Checkpoints
are either created manually or have a timed interval to create checkpoints into the system
automatically. Note that the checkpoint and rollback cannot be implemented for all the
transactions on the blockchain as there are few restrictions that are pointed out later in this

chapter.
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CPR will also not be possible on transactions that involve transferring of ether. The primary

reasons for not being able to perform CPR on a monetary transaction are:

L.

There be only one possession of private key as the other private key will be in the
possession of the user [15]. Hence without a private key a transaction cannot be made just
by using the public key.

Even if the private key is in procession, the funds transferred to the public address might
have been used/transferred by the time rollback is initiated. Hence, the reversal of the
transaction will not be possible as there will not be enough funds in the transferred
account to transfer back.

Likewise, transactions involving transferring funds to a smart contract function as private
key of a smart contract is in possession of the user that has created the smart contract in

the first place.

Checkpoint and rollback (CPR) are possible on some types of transactions, detailed as below:

Transactions in which a variable is being written into smart contract. During a rollback,
the variable could be written back to the previous value based on the checkpoint selected.
Since blockchain records all the data in the form of blocks, the user could choose a
checkpoint based on the time of the block. The rollback is assumed to be done through
the same public key that is used to create the contract. In general, checkpoint and rollback
are performed: To increase further security in the blockchain. Given a case where a user
accidentally changed a variable in the smart contract, checkpoint and rollback can be
useful to revert the changes. Checkpoint and rollback does not delete any transactions
that are posted in the blockchain, but will be able to post transactions back again such

that the state of the smart contract is reverted to the previous checkpoint.
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2. Given a flaw in a smart contract, an intruder changes the contents of the smart contract.
CPR will be able to revert the transactions changes mitigating the security attack.
3. CPR can also be performed to reset the state of the smart contract. Rather than create a

new smart contract, CPR could be used to reset the smart contract to its default settings.

Some possible scenarios that can be posted for check pointing in the blockchain are as follows:
Transaction history, Ether transfer, Change in the smart contract variables. The proposed

procedure of CPR is as follows:

1. All the transactions towards a smart contract are recorded off-chain along with
checkpoints, through which the value of the variables before the checkpoint is rolled back
to incase needed. These checkpoints are kept track of in another smart contract, which
also include the voting procedure.

2. A rollback proposal can be made through the voting smart contract. This rollback
proposal will be timed for a period, before which the proposal should reach a
predetermined number of votes for the rollback to happen. If in any case the number of
votes is not reached, the proposal is discarded. Voting and proposing for a rollback will
be only available to specific set of users in the blockchain, i.e., not everyone connected to
the blockchain can vote for a proposal or raise one. The users who will be allowed to vote
or propose will be determined later.

3. While rolling back, analysis must be performed on which other transactions are affected

by the rollback indirectly due to the change in the values of the variables.

In the proposed checkpoint and rollback algorithm is the checkpoint interval is determined in an
adaptive manner. The pseudo code for the checkpoint and rollback algorithm is shown in

Appendix A.
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Notice that the current checkpoint interval is adjusted to the difference of the new checkpoint
time and the last checkpoint time to proactively respond to the report from the backend analytics
engine and to adapt to the higher potential security threat by shortening the current checkpoint
interval. On the other hand, if the check pointing routinely continues without any threat detected,
then the current checkpoint interval can be extended back to prevent a monotonic decrease of the
current checkpoint interval as shown in the else statement in the algorithm. To manage the
checkpoint and rollback in a decentralized manner, voting will be conducted every time a
rollback is to be performed or an adjustment in the interval of checkpoint. Note that checkpoint
and rollback, itself, is a centralized algorithm and the proposed voting will mediate the

centralization into a decentralization.

STATE TRANSITION MODEL

There are two states that CPR would stay in: Secure and Insecure. Considering the two states, the
model in Figure 1, presents a state transition diagram with the states, namely, Psocyre and
Pinsecure, and the state transitions between those two states, namely, qcpeck—secure a4 Qrotback
as defined below as well. Note that security is one of the variables that to define the dependability
and in Figure 1, the model for the security is presented and likewise a model can be drawn for

each variable, respectively.

Psecure: the probability for the system to be secure

Pinsecure: 1 - Psecure

Qcheck—secure. the rate for checkpoint to check secure

Qroutback - the rate for rollback to occur successfully
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Figure 1. The proposed model for Pscyre

In Figure 1,

Qcheck—secure = 1 — Dhit

where pp;¢ represents a rate to take a hit by an event such as hacking (in case of security concern),
impersonation (in case of authentication concern), or failure (in case of reliability concern), to

mention a few to which the proposed checkpoint and rollback algorithm can be applied.
Qroliback can be expressed in a binomial manner as follows:

Grouback = Prit + 0(1 — Ppir)

when hit by an event. Then, when the hit event is detected through a procedure such as a backend
blockchain analytics engine for an attack, impersonation or failure, q,oipqck can be expanded as

follows:

Qrollback = phit(pdetect + 0(1 — pdetect))

Then, in order to manage the potentially centralized process in a decentralized manner, a voting
process can be employed to draw a consensus on whether to take a rollback to the last known safe
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state of the system or not by the nodes involved on the blockchain network of interest. Thus,

Groiback can be further expanded as follows.

Qrouback = Dhit (pdetect(pvote + 0(1 — onte)))
Therefore, q,-o1pack can be expressed as follows to take all those processes into account.
Qroltback = Phit * Pdetect * Pvote
The effective security (Security,sr) is defined as follows:
Security.rr = (1 — cryptorate) * Pyocyre

where cryptorate refers to the rate of crypto (i.e., on-chain) portion in the system of concern, in
other words, (1 - cryptorate) refers to the rate of the off-chain portion. For simplicity, the

security on-chain portion is perfect. The steady state equations of the model are derived as

follows:
Psecure = Psecure * (check—secure +Pinsecure * (rollback
Pinsecure = Psecure * (1 - qcheck—secure) + Pinsecure * (1 - qrollback)

Psecure + Pinsecure = 1

The equations are solved at equilibrium as follows:

P _ Qrollback
secure —

1 - qcheck—secure + Qrollback
p _ 1 = Qcneck-secure
insecure —

1 - qcheck-secure + Qrolback

Therefore, the effective security can be obtained in a closed form as follows:
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(1 - cryptorate) * Qrolback

Security, =
o 1 = qcheck-secure + Qrouvack
Likewise,
Autheticity,rr = (1 — cryptorate) * Grouvack
o 1 — qcheck-authentic + Qrouback
1 — cryptorate) *
Reliabilityess = ( yp ) * Qrouback

1 - qcheck-reliable + Qrollback

After all, a compound dependability can be expressed as follows:

Dependabilitycompouna
= Wsecurity * Securityeff + Wauthenticity * AuthentiCitYeff + Wreliability

* Reliability.sr

where note that Wsecurity T Wauthenticity T Wreliability = 1,

and the distribution of weights is determined by the nature of the architecture and transactions
involved. Based on the analytical models developed, numerical simulations have been conducted
and the results are shown in Figures 2 and 3. In Figure 2, P;ocyyre VEISUS Gepeck—secure are plotted
at various qronpack values (e.g., 0.99, 0.9, 0.8, 0.7 and 0.5). It is observed as expected

Psecure grows at a slightly higher rate than linear and at a steeper rate approaching

Qcheck—secure = 1.
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Figure 2. PsecyreVS Qeheck—secure at various values of qroppack

In Figure 3, Psocyre VETSUS Qeheck—secure are plotted at various q,onpack values (e.g., 0.99, 0.9,
0.8, 0.7 and 0.5) and the cryptorate (e.g., 0.1, 0.33, 0.5, 0.66, 0.9). Note that the crypto rate of
0.66 (i.e., 33% of the computation resides on-chain and the rest (i.e., 66% off-chain) has been
realized in this work and its experimental results are shown in this work in terms of gas fee
savings and execution time (i.e., block delay) later in this research using an interface that enables

data to flow into the blockchain from outside the network.
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Figure 3. Securityesrective VS Qcheck—secure at various values of groypackand cryptorate

THE PROPOSED INTERFACE BETWEEN ON- AND OFF-CHAIN

In this section, the interface developed in this work to coordinate the processes executing across
back and forth on and off-chain is introduced and demonstrated, which triggers the need for the
proposed checkpoint and rollback process. A blockchain network [1], [4], [12] in itself cannot
access any information that resides on the web off-chain given the deterministic nature of
blockchain. In order to access such information, an interface agent is proposed and developed as
an API design which handles the movement of information from off-chain to on-chain and vice-
versa. The interface agent will be fully synced with the current Ethereum blockchain. The

interface agent will have a continuous watch on all transactions being posted in blockchain and
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filters out the transactions that references the contract address. Such transactions are then
processed off-chain and the results are posted back to the blockchain via another off-to-on
transaction through interface. API will ultimately be the interface that helps make BaaS
(Blockchain as a Service) computing model by connecting seamlessly to the cloud and
blockchain. Interface agent will be integrated with a number of blockchain protocols and the
oracle service will be also used for non-blockchain applications such as accessing simple
information from the internet through blockchain. The functionality of the interface is to not only
provide a login access to cloud server by posting the transaction in the public blockchain thereby
maintaining transparency but also to be able to pull/process data from the blockchain to perform
analytics [8] in the backend with Hadoop located off the blockchain [13]. The proposed interface
will also hold various references (e.g., hash codes) which can be accessed from within the

blockchain thereby providing simpler on-to off access.

The proposed interface agent is applicable to Ethereum blockchain and can be generalized for
other types of blockchains as well. Each block has transactions that are cryptographically signed
by the person starting the transaction and also contains a reference hash to the previous block. All
the transactions posted in the public blockchain become immutable and are publicly visible to
anyone accessing the same blockchain. Blockchain is designed to be non-deterministic, i.e., a
node connected to the blockchain cannot access information outside the blockchain. Blockchain
network in general is not designed to access data over the web in real time, the reason being that a
result from web can change from time to time and is not deterministic. Hence, the work of
accessing data outside the blockchain network is done by Oracles. Oracles are trusted data feeds
that send information to the smart contracts thereby removing the need for smart contract to

contact outside their network [4 — 6].

Note that Interface agent will have the transactions that are being processed to access functions

both on- and off-chain posted onto the blockchain. The conventional systems would only have the
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transactions that are being accessed from off to on-chain posted on the blockchain. The
performance of Interface agent is measured as to how fast the requests to the transactions are
processed and the result posted back to the blockchain. The targeted performance level is that all
transactions in the new block are processed and posted in the immediate next block. Any
transactions that are processed late or have any technical difficulties such as the server not
responding to the off-chain request and such are sent to another queue where they are processed

as soon as ready.

In order to further increase the performance of the Interface agent as a whole, the watch that is
being put on the blockchain is timed at intervals so that the API determines an exact time at
which the new block would be formed in the blockchain. Note that the interval time that the API
will wait before watching the blockchain is determined after studying the pattern of new block
times in Ethereum network for the previous blocks. Figure 4, presents the proposed interface
model.

Watch

¢ Watch the Blockchain
continously for a new
block

Deploy Download
* Deploy the results back * Download the entire
to the blockchain block of transactions
Process Search
® Process the request of o Search for the specific
filtered transactions to-address in all the
sequentially transactions

Figure 4. Interface model
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Figure 5. Transaction posted by the user of the blockchain to the specified contract

An example is shown in Figure 5 which depicts a transaction made by the user of the blockchain
to a contract that the interface has a watch on. As soon as a new block is detected in the block-
chain, all the transactions in the blockchain are scanned for any transactions referring to pre-
determined contract. All the requests from the transactions referring to Interface agent are
processed offline and the results are posted back to the block-chain. Figure 6 shows the
transaction that was posted automatically by the interface once the request is processed; and

Figure 7 shows the script posting the result of the processed transaction back to the blockchain.
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Interface will be able to handle different types of requests. Firstly, accessing a variable or a data
from the http/https website and returning back to the user. Secondly, the user can also call a
computational function. Calling a computational function can be costly if done inside the
blockchain, Interface will help reduce the gas of the transaction by performing the computation
offline and posting back the result to the blockchain. Figures 8 and 9 show the details of the

transaction that were posted on to the blockchain by the interface captured by a GUI application

called Ganache.

CURRENT BLOCK GAS PRICE GAS LIMIT NETWORK ID RPC SERVER MINING STATUS
2000000000 6721975 5777 HTTP://127.0.0.1:7545 AUTOMINING J

—sack  BLOCK 43

GAS USEDGAS LIMIT  MINED ON BLOCK HASH
3290 672197 2018-09-23 19:04: 0x84c0923a4525fc368c5961bb73a001b59d1478436a828539bd03bf8e0

0 5 02 7de8199

TX HASH
0x8e8f6dc2fe@9b8045f70ea2d6eacfa78b252fcec3c32278b2ed8a83f56bb8bbf

FROM ADDRESS GAS USED VALUE

0x9254caEACa0689E78aE07cC58Ee7A126367D94F3

Fig 8. Posted transaction in block 43 in the blockchain
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CURRENT BLOCK GAS PRICE GAS LIMIT NETWORK ID RPC SERVER MINING STATUS
2000000000 6721975 5777 HTTP://127.0.0.1:7545 AUTOMINING

TX
Ox8e8f6dc2fe09b8045f70ea2d6eacfa78b252fcec3c32278b2ed8a83f56b

— BACK

SENDER ADDRESS TO CONTRACT ADDRESS
0x9254caEACa0689E78aE07cC58Ee7A126367D9 0xA7088de43b84B40019187aFd474DCc87ad2dF
4F3 963

VALUE GAS USED GAS PRICE GAS LIMIT MINED IN BLOCK
0.00 ETH 32900 100000000000 6721975 43

TXDATA

0x26Cal14€6000000000000 000000000000000000000000000000000000000002000000000000000000000000000000000000000

000000000000000000000000013000000000000000000000000000000000000000000000000000000000000000

Fig 9. Details on the transaction hash posted on the blockchain

Interface agent will be able to revolve around three entities in general:

e Data Source: Data source is the source of information the user wants to access through
Interface agent. There can be different aspects of data sources such as Information from
cloud service regarding the correct login details; Information regarding a statistic that can
be obtained from internet commonly known as web2; Information regarding the analytics
related to the apps functions that are being performed by Hadoop [8], [9]; and not only
information getting but also information posting, such as storing a piece of data on a
cloud server or even a website, to mention a few. Note that Interface agent is supposed to
provide all the above functionalities when it comes to dealing with data sources.

e Query: The query is the function that user uses to access different data sources that
Interface agent provides. To distinguish from the data source that the user is wanting to

access, a query function will contain a string argument apart from the usual arguments

28



needed for the data source. This way Interface agent will be able to identify the purpose
of the query the user is accessing.

o Interface agent: The current network that the Interface agent is proposed to run in on
Ethereum network. Interface agent after processing the current block is also supposed to
interact with Hadoop [5] nodes that perform the analytics of all the B2B transactions that
are processed through Interface agent in the Ethereum network. Interface agent will
return back with the appropriate result by looking up the query from the entire stack of
blockchain that Interface agent has downloaded. This would be faster, given that the
query will not be searched from the blockchain again resulting in a delayed response,
rather the query will be searched in the offline blockchain data that Interface agent
maintains using Hadoop. The bigger the blockchain the slower would be the response for
searching the entire blockchain. In this case, Hadoop is employed in the background to

fasten up the search responses.

Given that Interface can access off-chain information through the blockchain, it is proposed that
the entire smart contract can be split up into on-chain and off-chain. The amount of contract that
rests on off-chain is left for the user to decide. Interface will have different options laid out and
for each transaction posted into the block-chain the user will get it choose from the various crypto
mix options wherein each option proposes different gas prices, execution times and security
levels involved inside. A recommendation of the crypto mix is provided to the user based on the
average gas prices of the transaction and other attributes. This crypto mix is further analyzed to

see if that is the right choice or not for the customer using the Interface.
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Fig 10. HTML Homepage

Fig 11. Crypto Rate / Mix

30



IMPLEMENTATION

Clicking on 1.3.4 on the homepage in Figure 10 displays four different types of smart contracts
uploaded to blockchain as shown in Figures 11, 12, and 13, in which all the smart contracts have
the same functionality with the difference as illustrated below: The steps to control the crypto rate

and mix is shown in Figure 14.

1. Case 1: 100% Crypto on chain (Intensive computation) 100% crypto refers that all the
functionality of the smart contract is located within the smart contract itself and any calls
made to these functions are executed within the blockchain. The results and transaction
fee for case 1 is displayed as shown in Figure 15.

2. Case 2: 66% Crypto Off chain (Intensive computation) 66% crypto refers to the fact that
some of the functionality is present outside the blockchain. The calls to these functions
are requested through placeholder functions which do not contain the functionality itself.
The interface picks up the request accessed to these functions and processes and posts the
result back to the blockchain. The reason this is 66% crypto is that the original smart
contract had 3 functions and one of the functions is put off-chain, 66% of the earlier
smart contract resides on the blockchain and the 33% approximately of the functionality
reside off chain. The results and transaction fee for case 2 is displayed as shown in Figure
16.

3. Case 3: 100% crypto on chain (Simple computation) similar to #1, but the computation
made inside the function is less intensive, i.e., takes fairly less gas compared to the same
transaction posted in #1. The results and transaction fee for case 3 is displayed as shown
in Figure 17.

4. Case 4: 66% crypto on chain (Simple computation) similar to #2, but the computation

made inside the function is less intensive, i.e., takes fairly less gas compared to the same
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transaction posted in #2. The results and transaction fee for case 4 and comparison among

four cases is displayed as shown in Figure 18.

Enter any computation here in string format

Enter two numbers separated by space for multiplication Execute Computation through blockchain

Execute Computation through blockchain Input posted

transaction

Result posted
transaction

Input posted Block
Number

Result block Number

Delta Block

Enter two numbers separated by space for multiplication

Fxecute Comnuitation thraniah hlackchain

Fig 12. Four smart contracts — first part

Input posted Block Input posted Block
Number ) Number

Delta Block Result block Number

Delta Block

Enter any computation here in string format

Enter two numbers separated by space for multiplication

Execute Computation through blockchain Input posted

Reset computation variable I Get computation variable value transaction

Input posted Result posted
transaction } ) transaction

Input posted Block Input posted Block
Number

Result block Number

Delta Block

Fig 13. Four smart contracts — second part
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Note that in Figure 18, all the four different smart contracts are made to perform multiplication
with the same input. It is observed that each transaction posted uses different gas, where notice
that the 100% crypto smart contract uses significantly more gas than 66% crypto smart contract.
Therefore, it is concluded without loss of generality that the lower crypto rate (i.e., less portion of
the code reside on-chain) the higher chance of saving gas fee (i.e., transaction fee) if the off-chain

portion is computationally intensive yet less security sensitive.

—>
Blockchain
Write back the output
—>
Write the output transactions h )
to the file once posted Display the g:f:ﬁ; fransaction
to the blockchain
Write all input
——— requests to a input.txt
l file
Post result back
to blockchain
Interface (running) constantly check for any
transactions addressing our Smart contract
; ) Input requests transactions
Process the input requests off -chain and ) .
post the results back to the blockchain are recorded in the file
(Busy Waiting)
Application (HTML page)
Post input requests to the Post input requests links to
blockchain blockchain
Input transactions read «—
from the file (Busy waiting in local
server given an input is
recorded)
Post user input requests to blockchain L
User
(Busy Waiting) «— |

Fig 14. Crypto Rate / Mix flowchart

33



Enter any computation here in string format

Enter two numbers separated by space for multiplication Execute Computation through blockchain

Execute Computation through blockchain Input posted

transaction

Input posted Result posted
transaction ) transaction

Input posted Block Input posted Block
Number ) Number

Delta Block Result block Number

Delta Block

498033

Fig 15. Case 1: Results and gas fee

Execute Computation through blockchain

Execute Computation through blockchain Input posted

Reset computation variable I Get computation variable value transaction

Input posted https://rinkeby.etherscan.io/tx & Result posted
transaction | /0xf4f6a4152bdd8092085dd2a | transaction

Input posted Block 3146047 Input posted Block
Number Number

Delta Block Result block Number

Delta Block

498033 115803

Fig 16. Case 2: Results and gas fee
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Execute Computation through blockchain

Execute Computation through blockchain Input posted

transaction

Input posted https://rinkeby.etherscan.io/tx & Result posted
transaction | /0xf4f6a4152bdd8092085dd2a - transaction

Input posted Block 3146047 Input posted Block
Number b ) Number

Delta Block Result block Number

Delta Block

498033

Fig 17. Case 3: Results and gas fee

Reset computation variable I Get computation variable value transaction _|/0x1e76beac4abbd4a650261bd

Input posted https://rinkeby.etherscan.io/tx & Result posted https://rinkeby.etherscanio/tx =
transaction § /0xf4f6a4152bdd8092085dd2a = transaction . /0x25ab81916203a1216095f8924 -

Input posted Block 3146047 Input posted Block 3146063
Number ) Number

Delta Block Result block Number 3146064

Delta Block

498033 115803 27280 64519

Fig 18. Case 4: Results and gas fee
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FUTURE WORK

The interface with which transactions are posted to the blockchain from outside the blockchain
has been implemented. The same interface would be used to build checkpoint and rollback
algorithm. The interface developed will keep track of the variable changes (checkpoints) that are
being made to one smart contract. These checkpoints will be later used to revert the state of the
smart contract. The interface will also be linked to a voting smart contract present on the
blockchain, through which the rollback process is voted. On successful voting, rollback is
performed on the smart contract thereby reverting the variable states to the selected checkpoint.
User voting need not be synced with the blockchain to make a vote, rather the user will be able to
vote through the HTML page designed for the same purpose. The voting process will be timed, so
that there would not be an indefinite wait time to decide on the rollback. The extended work will
also be containing validation from the sources that were able to post the transactions into

blockchain from outside the network.
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CHAPTER IV

SLIM CHAIN

To utilize the full potential of a blockchain, one has to download an entire copy of the blockchain
on one’s local machine. The current size of both BitCoin and Ethereum have exceeded 300 GB
and the size has been monotonically increasing over time. This current size of the blockchain
would take up more than half the space of an average sized hard disk (512 GB). The proposed
slim chain is a modification to the structure of the blockchain to address the issue on the size of
the blockchain by creating an off-chain link to IPFS, to store a portion of information that is
supposedly stored on blockchain. The model proposed for slim-chain consists of the states
expressed from the standpoint of a transaction’s life span in steady state. Note that the
dependability in the following context is defined by the state of a transaction 100% reliable and

secured as desired and defined, or undependable otherwise.
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DEPENDABILITY MODEL

P,,,: the state in which a transaction stays on-chain and dependable. Note that it is assumed that
the status of a transaction on chain is dependable without loss of generality. However, it is
assumed in this research that there exist potential risks of undependability on chain, as denoted by
P,,, as follows, such as security breaches escaping the guard of the 51% rule or hardware/software

failures, to mention a few, which is not impossible to hit in practice.

P, the state in which a transaction stays on-chain but undependable. Note that this state is not a
routine probabilistic complement of P,,, and, instead, is a steady sate probability for a transaction

to switch and stay its state into the undependable one in the course of its life span.

P, s 5 the state in which a transaction stays off-chain and dependable.

Py the state in which a transaction stays off-chain and undependable. In practice, this state

would be the one with the highest susceptibility to all sorts of potential off-chain readily high
undependability risks such as all sorts of known web2-security breach risks without any sorts of

security and dependability measure such as the 51% rule and hardware/software failures.
The random variables to express the state transition probabilities are as follows:

don, dofy: the dependability of a transaction on-chain and off-chain, respectively. Note that each

of these variables are an instantaneous rate for a transaction to switch and stay its state into the

dependable state either on- or off-chain, respectively (cf. Py, and Pysr).

¢, ¢': the crypto rate and un-crypto rate of a transaction, respectively. The crypto rate implies the
rate at which a transaction stays on-chain, or un-crypto rate otherwise i.e., rate at which the
transaction stays off-chain. As has been reported in [23], the crypto rate can be determined based

on the size and type of computations by the transactions such that the larger the size is and the
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more complex the computation is, the more substantially the cost saving is realized and ultimately

significant cost (e.g., gas fee) saving would be achieved.

i, i": the IPFS rate and un-IPFS rate of a transaction, respectively. The IPFS rate denotes the rate
a transaction is uploaded onto IPFS (inter-planetary file system) and at the same time (or as part
of the transaction execution process) a hash code is created and linked back and posted into the
blockchain in place of the original transaction that has been migrated off-chain and would have

been in huge volume, otherwise.

r, r': the read rate on a transaction without modifying the transaction context and write rate (r")
with modification on a transaction that is likely to cause an undependable consequence on it

without loss of generality.

The state transition probabilities (i.e., t(Pi, P]) state transition probability from P; to P;) are

defined as follows:

t(Pyn, Pon) = cdyp, this state transition tracks and implies the sustainability of the dependability
of a transaction on-chain such that if a transaction is currently dependable on-chain and it
continues to stay on-chain (i.e., at the rate of ¢) and sustains its dependable state (i.e., at the rate

of d,,,), then it contributes to the steady state probability of P, in a positive manner.

t(Pon, Pys f) = (', this state transition tracks and implies the rate to switch the execution location
of a transaction from on- to off-chain with the dependability sustained such that if a transaction is
currently dependable on-chain and it switches its execution location to off-chain (i.e., at the rate
of ¢') and sustains its dependability (i.e., at the rate of 1.0, and note that the 1.0 implies that it is
assumed that there is no dependability loss in the course of execution location switch from on- to

off- chain), then it contributes to the steady state probability of P, ¢ in a positive manner while to
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P, in a negative manner. However, note that, from the standpoint of the overall dependability,

there is no loss of dependability of the transaction as far as this state transition is concerned.

t(Pyn, Pon) = c'd,np, this state transition tracks and implies the rate to switch the dependability
status of a transaction from dependable to undependable such that if a transaction is currently
dependable on-chain (i.e., at the rate of ¢) but it fails to sustain the dependability (i.e., at the rate
of d,y), then it contributes to the steady state probability of P,,, in a negative manner while to P,,,

in a negative manner.

t(Pyn, Pon) = c, this state transition tracks and implies the undependability of a transaction on-
chain such that if a transaction is currently undependable on-chain and it continues to stay on-
chain (i.e., at the rate of ¢) and stays undependable (i.e., at the rate of 1.0, and note that the 1.0
implies that it is assumed that there is no change in the status of the undependability of the
transaction as there is no reversibility in specific order to reverse the undependability issues as
long as staying on-chain without loss of generality. By the way, also note that security breaches
escaping the guard of the 51% rule or hardware/software failures are examples of malicious
reversibility while the above mentioned reversibility is the one to remedy any undependability
issues in a benignant manner.), then it contributes to the steady state probability of P, in a

positive manner.

t(Po’n, p, f f) = ', this state transition tracks and implies the rate to switch the execution
location of a transaction from on- to off-chain with the undependability maintained such that if a
transaction is currently undependable on-chain and it switches its execution location to off-chain
(i.e., at the rate of ¢") and maintains its undependability (i.e., at the rate of 1.0, and note that the
1.0 implies that it is assumed that there is no remedy for dependability in the course of execution
location switch from on- to off- chain), then it contributes to the steady state probability of Py

in a positive manner while to P,,, in a negative manner. However, note that, from the standpoint
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of the overall undependability, there is no change of undependability of the transaction as far as

this state transition is concerned.

t(PO 7frPor f) = i’(r +7r'd, ff), this state transition tracks and implies the sustainability of the
dependability of a transaction off-chain such that if a transaction is currently dependable off-
chain and it continues to stay off-chain (i.e., at the rate of i’, that is, the rate not to be posted back
on the chain, cf. { ) and sustains its dependable state (i.e., at the rate of d,sf) in case of write
operations taken place (i.e., at the rate of "), or only read operations have taken place (i.e., at the

rate of ), then it contributes to the steady state probability of P, in a positive manner. Note that

the sum of all the outbound state transition probabilities from P,¢s is i + i’ (T +

r’(do it dos f')) = 1.0, and this particular state transition probability is responsible for the

portion of i’ (r + r’doff).

t(PO Ffo Pon) = {, this state transition tracks and implies the rate to post the hash address
generated through IPFS of an off-chain transaction back on to the chain with the dependability
sustained such that if a transaction is currently dependable off-chain and it is processed through
IPFS and a hash address has been generated to be posted back on the chain (i.e., at the rate of i)
and sustains its dependability (i.e., at the rate of 1.0, and note that the 1.0 implies that it is
assumed that there is no dependability loss in the course of posting the hash address of the
transaction from off- to on- chain), then it contributes to the steady state probability of P, in a
positive manner while to P, ¢ in a negative manner. However, note that, from the standpoint of
the overall dependability, there is no loss of dependability of the transaction as far as this state

transition is concerned.

t(PO 75 Pof f) = i'r'd,ss , this state transition tracks and implies the loss of the undependability

of a transaction off-chain such that if a transaction is currently dependable off-chain and it
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continues to stay off-chain (i.e., at the rate of i’, that is, the rate not to be posted back on the
chain, cf. i ) but switches its dependable state to undependable state (i.e., at the rate of dg, ) only
in case of write operations taken place (i.c., at the rate of "), then it contributes to the steady state

probability of P, in a positive manner while to P, s in a negative manner. Note that the sum of
all the outbound state transition probabilities from Py sfis i + i’ (r + r’(do frt+ dos f)) = 1.0,

and this particular state transition probability is responsible for the portion of i'r'df.

t(P(; Ffr Po’n) = i, this state transition tracks and implies the undependability of a transaction off-
chain such that if a transaction is currently undependable off-chain and it continues to stay off-
chain (i.e., at the rate of i’, that is, the rate not to be posted back on the chain, cf. i ) and stays
undependable (i.e., at the rate of d;, ;) in case of write operations taken place (i.e., at the rate of
r"), or only read operations have taken place (i.e., at the rate of r), then it contributes to the steady

state probability of P,/ in a positive manner. Note that the sum of all the outbound state
transition probabilities from Py,pis i + i’ (r + T'(do frt+ dos f)) = 1.0, and this particular state

transition probability is responsible for the portion of i'(r’d,’, frt r).

t(P(; £ Por f) = i'r'd,ss , this state transition tracks and implies the rate to post the hash address
generated through IPFS of an off-chain transaction back on to the chain with the undependability
maintained such that if a transaction is currently undependable off-chain and it is processed
through IPFS and a hash address has been generated to be posted back on the chain (i.e., at the
rate of i) and stays undependable (i.e., at the rate of 1.0, and note that the 1.0 implies that it is
assumed that there has been no remedy taken place to fix the undependability in the course of
posting the hash address of the transaction from off- to on- chain), then it contributes to the steady
state probability of Fy;, in a positive manner while to P, in a negative manner. However, note

that, from the standpoint of the overall undependability, there is no change of undependability of
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the transaction as far as this state transition is concerned. Given that there are four states in the
proposed state model , the five equations are highlighted in Equations 1 - and each of the

equations shows the steady state probabilities of that particular state.

Pon(cdon + cdon + ¢') = Pogpi (D

Pon(c+c') = Popcdon + Posyi )

Poff(i’(r + r’doff) +i'r'dorp + i) = Pppc' + Posri'r'dosy 3)
Poer(i'r'dyss + 1T + 17 dopr + 1) = Popc’ + Pogpi'r'dy sy 4)
Pon+Po'n+P0ff+P(;ff =1 5)

ANALYSIS

The detailed solutions of the steady state equations are shown in Appendix B. The final solutions

for the above steady state equations for the slim model are shown in Equations 6 - 11.

1
Pon = @ (6)
cdy, +cdp, +C'
P ., =
of f 0, )
1 1 cd,, +cd,, +c
P == <cd0n + —<cd0nc’ 42t ___—on )z) (8)
Q2 Q1 l
11 cd,, +cd,, +C’
Pow=—>cd. c +-2o" on
oFF Q0 <C on¢ [ ©)
Qr=i'r'dosp +i'r+i'r'dosp +1i—ic’ (10)
icd,,c' +cd,,c’ cd,, +cd., +c"\ [2i'r'd]
0, =1+ cd,, + on 3 on +< on ion >< Qoff_l_l) (11)
1 1

Based on the solutions of the proposed slim chain model, the following simulation are conducted
in order to demonstrate the expected dependability (i.e., P,;) versus various yet primary variables

such as d,p, ¢ and i; and another expected dependability (i.e., P,rs) versus the variables such as
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dosr, ¢ and i. Note that, in fact, the overall dependability of interest is the sum of £, and P,¢f in

the proposed slim model.

The graphs on P,, versus d,,, shown in Figure 1 are plotted in order to demonstrate the effect of
d,n of a transaction on the steady state probability for the transaction to be in state P,,, at high or
medium (e.g., .9 or .5, respectively) of d,¢¢, i and at low or medium (e.g., .1 or .5, respectively)
of ¢, where the plots at the top (i.e., dysr, i = .9 and ¢ = .1) and the 2nd from the top (i.e., dofy,
i = .9and c = .5) reveal that at high d, ¢ and i, i.e., with the off-chain portion of the
transaction life span is highly dependable along with highly dependable IPFS processes in place,
the effect of d,,, on P,,, dilutes nearly-linearly logarithmically as d,, rises and ¢ drops, and it is
also observed that the gap between the top and the 2nd top P,,, is widening as d,,, rises, and also
where the plots at the bottom (i.e., dysf, i = .5 and ¢ = .1) and the 2nd from the bottom (i.e.,
dosr, i = .5and ¢ = .5) reveal that at medium d, ¢ and i, i.e., with the off-chain portion of the
transaction life span is moderately dependable along with also moderately dependable IPFS
processes in place, the effect of d,,,, on P,,, dilutes nearly-linearly logarithmically as d,,, rises and
c rises as well, and the gap between the bottom and the 2nd bottom P,,, is widening as d,;, rises

at a medium,;
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Figure 1: P,,, versus d,,

P,y versus i at high or medium (e.g., .9 or .5, respectively) of dyp,, dyfr and at low or medium
(e.g., .1 or .5, respectively) of ¢, where the plots at the top (i.e., dopn, dpsf = .9 and ¢ = .1) and
the 2nd from the top (i.e., don, dorr = .9 and ¢ = .5) reveal in Figure 2 that at high d,,, and
dosr, 1.e., with both the on- and off-chain portions of the transaction life span are highly
dependable along with yet low or moderate crypto rate c, the effect of i on P, plots a positive
concavity as d,, rises and as c drops, the concavity point is being delayed, and it is also observed
that the gap of P,,, between the top and the 2nd top is widening as I rises towards the concavity
point then narrows back till the top curve and the 2nd top curve intersect, and also where the plots

at the bottom (i.e., dyp, dogr = .5 and ¢ = .5) and the 2nd from the bottom (i.e., oy, dosr = .5

and ¢ = .1) reveals that at medium d,,, and d,¢y, i.e., with both on- and off-chain portion of the
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transaction life span is moderately dependable, the effect of i on P,,, also plots a positive
concavity as d,, rises and as ¢ drops, the concavity point is being delayed, and it is observed that
the gap of P,,, between the bottom and the 2nd bottom is widening yet much narrower than the

case where at high d,, and d, sy, as i rises towards the concavity point then narrows back till the

bottom curve and the 2nd bottom curve intersect;
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Figure 2: P,,, versus i

Figure 3 P, versus c at high or medium (e.g., .9 or .5, respectively) of dp, dy5f and i (notice
that there are only two graphs plotted as c itself runs on the x-axis), where the plots at the top
(i.e., don, dosr,i = .9) and the bottom (i.e., doy, doffs,i = .5) reveal that at high dyp,, dosr and i,
i.e., with both the on- and off-chain portions of the transaction life span are highly dependable
along with also highly dependable IPFS processes in place, the effect of ¢ on P,, plots a negative
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concavity as ¢ rises and as d,p, d, s and i drop to .5, the concavity point is being delayed, and it
is also observed that the gap of P,, between the top and the bottom is initially narrowing as ¢

rises towards the concavity point then widens back through.
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Figure 3: Pp  versusc

The graphs on P, s versus d,rr demonstrated in Figure 4 are plotted in order to demonstrate the
effect of d, ¢ of a transaction on the steady state probability for the transaction to be in state P, ¢ s
at high or medium (e.g., .9 or .5, respectively) of d, ¢, 1 and at low or medium (e.g., .1 or .5,
respectively) of ¢, where the plots at the top (i.e., dpp, I = .9 and ¢ = .1) and the 2nd from the
top (i.e., dpn, I = .9 and ¢ = .5) reveal that at high d,,, and i, i.e., with the on-chain portion of
the transaction life span is highly dependable along with highly dependable IPFS processes in

place, the effect of d, ¢ on P, s increases nearly-linearly and flat as d,, s rises and ¢ drops, and
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it is also observed that the gap between the top and the 2nd top P, s is widening as d, s rises,
and also where the plots at the bottom (i.e., d,y,, i = .5 and ¢ = .1) and the 2nd from the bottom
(i.e., dpn, i = .5 and ¢ = .5) reveal that at medium d,,, and i, i.e., with the on-chain portion of
the transaction life span is moderately dependable along with also moderately dependable IPFS

processes in place, the effect of d, s on Py, slightly increases nearly-linearly and flat as d, ¢
rises and c rises as well, and the gap between the bottom and the 2nd bottom P, s is maintained

nearly consistent as d,, s rises;
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Figure 4: P, ¢r versus dyrs

P, sr versus i (Figure 5) at high or medium (e.g., .9 or .5, respectively) of d,,, dy ¢ and at low or
medium (e.g., .1 or .5, respectively) of ¢, where the plots at the top (i.e., dpp, dpsr = 9 and ¢ =

.1) and the 2nd from the top (i.e., don, dorf = .9 and ¢ = .5), and at the bottom (i.e., d oy,
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dosr = .5and ¢ = .5) and the 2nd from the bottom (i.e., dypn, dosf = .5 and ¢ = .1) reveal that

athigh d,, and d,sy, i.e., with both the on- and off-chain portions of the transaction life span are

highly dependable along with yet low or moderate crypto rate ¢, the effect of i on Py, plots

decreasing trends in an intermingled manner regardless of various combinations of dyy,, d,fr and

c as d,fy rises, and it is observed that ¢ does not influence them in a significant manner, curve

intersect;
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Figure 5: P,¢f versus i

and P, s versus ¢ at high or medium (e.g., .9 or .5, respectively) of dyy,, dofr and i (Figure 6)

(notice that there are only two graphs plotted as c itself runs on the x-axis), where the plots at the

top (i.€., don, doss, I = .9) and the bottom (i.e., don, dors,i = .5) reveal that at high d oy, doff

and i, i.e., with both the on- and off-chain portions of the transaction life span are highly
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dependable along with also highly dependable IPFS processes in place (i.e., dop, dosr, L = .9)
and with both the on- and off-chain portions of the transaction life span are moderately
dependable along with also moderately dependable IPFS processes in place (i.e., don, doff,i =
.5), respectively, the effect of ¢ on P, plots a slightly negative concavity as ¢ rises and as d,
dosr,and i picks up to .9, the concavity point is being delayed, and it is also observed that the
gap of P, between the top and the bottom is initially widening as c rises towards the concavity

point then maintains consistently through.
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Figure 6: P,sf versus ¢

Further, it is to be noted in this research that in order to build and demonstrate a slim chain, the
open source of Ethereum is used to build upon and tested in an isolated manner. Most of the
modifications are centered around the part where the transaction gets mined successfully and is
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ready to be added to the blockchain. Modifications are made to decide whether a transaction is
actually being added to the blockchain or the transaction is being added to the IPFS and only the
return hash code from IPFS is added to the block. Upon doing so, the size of the blockchain is
considerably reduced depending on the ratio of transactions sent to IPFS to those posted directly
on the blockchain. The addition of a transaction in the slim chain can be described in a flow chart

as shown below.

Repeat txn processing
steps

xn included
in the next
block

Not adding
to IPFS

Keep track of error count Adding to IPFS
for the same transaction

Block
appended to
e blockchai

remaining
txns

reate user |
in IPFS if
doesn't exist

Add the transaction
details to IPFS

Add the hasr
code to the
block using
ame user 1D

Upon any
error, process
again

Waiting for addition

Return the
has code if
successfully
added

Hash code

Figure 7. Flowchart for slim chain

IMPLEMETATION

In the following, it is demonstrated that the IPFS public address can be seen in the terminal

window.

1. The transaction that is mined and to be added to the blockchain.
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2. Addition to IPFS: A user ID will be created in IPFS using the same user ID that was used
to post the transaction on to the blockchain. This user ID will be used later on to track the
transactions uploaded to IPFS. Thereby, the user ID are in a way hash-mapped to one
another.

In the following, it is demonstrated that the IPFS public address can be seen in the

terminal window.

Sro ~ % ipfs init
puholdings/.ipfs

RSA K done
QrieEHwa 2Y49m [C52 jwecGebeR7ThBATK6SueLKXLCuvylg
to get sterted, enter:

ipfs cat /ip7s/QuSéustLE4uoBF readme

bpuhaldings@bpuholdingss—Hachack-Pro ~ % I

ng TPFS nade at /u:ers/bnuncla;ngsf iprs

ting 2048-bit RSA keypair...don:

peor identity: GmeEHwazY4omiCssiwbcopSeR7TbBATkESUCLKxLCUVY1a
to get started, enter:

ipfs cat /ipfs/QnSéustl 5 i Iroadne

1dingss-MacBook-Pro ~ % ipfs daemon

mdé4/darwin
Golang version: go1.13.7
swarm listaning on /ip4/127.6.8.1/tcp/4001
G on /ip4/192.148.2.2/tcp/4801
<p,

nouncing / P6/::1/tcp/40801
er listening on /ipé/127. 8.¢.1/tcp/5001

webuls nttp://127.6.8.1:5081/webu

Batowsy (rasdonly) sefver 1istening on /ipé/127.8.0.1/tcp/8080
Daemon is ready

IPFS has started running using the command ‘IPFS daemon’. A visual representation of
IPFS distributed storage system for this public address when viewed through the browser

looks as follows:

°
&
e
]
B
=
@
[ ]

B

o
o

Connected to IPFS
Hosting 2.7 M of files — Discovered 69 peers

QreEina249mfCs2 wbclpSeRTTHRATKESucLKxL Cuvyla
go-ipfs 8.4.23

253
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3. Add transaction to IPFS: This step takes care of the addition of the transaction to the

5.

IPFS itself. A hash code is returned upon successful addition to the IPFS. This hash code
will be used to address the transaction if necessary, in the future.

Hash code is returned back from the IPFS to the blockchain upon successful entry into
IPFS. Using another console which is attached to the geth console, a contract is posted to
test this particular scenario where the transaction also gets posted to IPFS. The screen of

the console is shown as below:

Few steps, which include creating a new private public key and setting the same public
key as the etherbase account for this particular geth and also to start mining process
which further increase the balance on the account. All these steps are taken to initialize

the account with some ether in the private blockchain which can be seen as below:

getSyncing: function(callback),
getTransaction: function()
getTransactionCount:
getTransactionFronBlock: ion(),
getTransactionReceipt: function(),
getUncle: i

sendIBANTransaction: funct
sendRawTransaction: function(),
sendTransaction: function(),
sign: function()
signTransaction: function(),
submitTransaction: function()
submitWork: function(

"ox e 4b5C3380 4bb* ]

> personal.unlockAccount (personal.listAccounts[@],"",0)
true

> web3.eth.getBalance (personal.listAccounts[8])

o

> miner.setEtherbase(personal.listAccounts[6])
true

> miner.start()

null

If any error persists while adding the transaction to IPFS, the necessary steps are repeated
for addition. The error count will be kept track of to ensure that the delay of transaction

being posted is minimized. Upon reaching a pre-defined error limit the transaction will be
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added to the blockchain itself (this is only to reduce the time delay for a single

transaction).
A simple contract was posted in Ethereum using the same console and the contract

address is visible on the following screenshot:

um-master — geth --datadir ~/blockchain ¢ kehain/geth.ipc --jspath ~/blockchain/zJsLib ~ — ipfs daemon ==
at function (address, callback) {
var contract = new Contract(this.eth, this.abi, address);

/1 this functions are not part of prototype,
/1 because we dont want to spoil the interface
addFunctionsToContract (contract) ;
addEventsToContract (contract);

if (callback) {
callback(null, contract);

3
return contract;

getData function () {
var options = {}; // required!
var args = Array.prototype.slice.call(argunents);

var last = argslargs.length - 11;
if (utils.isObject(last) && lutils.isrray(last)) {
options = args.pop();

var bytes = encodeConstructarparams (this.abi, res);
options.data += bytes

return options.data;

true
= pending transactions! Mining...

transactions! Mining stopped.
Contract mined! Address
[object Object]

6. The hash code is received at the slim chain end from IPFS. The same contract block is
posted to IPFS and the hash code is returned from IPFS is stored in the blockchain. The

IPFS hash code returned from IPFS to geth can be viewed here:

thereum-master — geth --datadir ~/blockchain -kehain/gethipc --jspath ~/blockchain/zJsLib. ~ —ipfs daemon +

INFO [01-31]19:55:29.026] Transaction to be posted to IPFS without block number value="&{s:{\"nonce\":\"exe\",\"gasPrice\":\"ax
369aca00\" ,\"gas\*:\"0xF42401 " \"To\" :null, \*value\" :\"8x0\" ,\"input\*:\

146046578
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‘ 0 [01= 33\19 55 29:1281 Commis new mining work nunher=373 sealhash=8ff3ed.70b105 uncles=d txs=l gas=146022
.54
201 [0xc082¢
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11>} td:<nil> ReceivedAt:0001-91-01 00:09:00 +0880 UTC ReceivedFrom:<nil
31.909] ) block reached canonical chain Unber=366 hash=baéla3.9e1ash
31.910] block.Transactionns () xco02c fa
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INFO [01-31]19:5¢ o) &block nansamwsn[a] Pointer Valuesblock LOG15_ERROR= LOG15_ERROR="Normalized od
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INFO [01-3119:56:31.910] block. Reseptias

TNFO [01-31]19:55:31.910] Successfully sealed new block
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73 scalhash=8ff3ed.70b105 hash=b36B4d.cde9ld clapsed

)
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INFO [01-31]19:55:31.910] \ mined potential block

573 hash=b3684d..cdesld

7. Hash code is stored in the blockchain, rather than the entire transaction itself. The IPFS

hash code accessed through the web browser is as below:
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Connected to IPFS

Hosting 2.8 M8 of files — Discovered 376 p:
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{"nonce" :"0x0", "gasPrice”: "0x3b9acad0" ,"gas" : "0xf4240","to" inull, "value" : "0x0"  "input" :

The transaction is added into the block which is further appended to the blockchain.

The above was an implementation of the proposed slim-chain model using Ethereum and IPFS as
the two distributed ledgers to distribute the data on each other. The percentage of size reduction is
dependent on how much of the initial blockchain data is put on IPFS. The more the data

transferred to IPFS, the higher the percentage save in the size of the blockchain.
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CHAPTER V

REALTIME CHAIN

All the transactions that are posted towards the blockchain enter into a storage area called
transaction pool and the transactions that are not yet posted to the blockchain are pending
transactions. Pending transactions are the transactions that are not posted to the blockchain yet
submitted by the end-user, and they are present in the transaction pool [29]. In order to reduce the
time taken for a transaction to be posted to the blockchain, the following potential issues have to

be addressed and resolved:

e  Mining process: such that as the difficulty is increased, the mining gets harder thereby
taking much more time. The difficulty is a parametric variable that is controlled by the
users of the blockchain.

e Variables set in the blockchain: such as the minimum number of transactions to be

present in one block or minimum time to wait for the next block to be added to the

blockchain.
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A novel approach to the real-time chain proposed in this work is as follows. The pending
transactions in the pool are sampled and sent to the miners. The algorithm of sampling is
determined depending on the characteristics of the blockchain of concern. The three algorithms
below are to be investigated for transaction sampling in this work, in order to prioritize the

transactions in the pool for inclusion for posting in the block.

e Random sampling: A set of transactions are sampled randomly from the transaction pool
and then processed. In other words, the prioritization is conducted randomly.

e Sorted sampling: the transactions are sampled based on certain characteristics of the
blockchain and then sent to the miners. For example, the transactions can be sorted based
on the transaction fee or gas fee, to mention a couple.

e Stratified Sampling: The transactions are stratified based on the characteristics of
transactions and then a different number of transactions are sampled from each stratum.
Statistically, the confidence level of the samples is expected to be improved than the
random sampling, and further the stratified sampling is employed in this work with an

expectation of improved block-dependability.

The variables to be taken into account to model the block-dependability in the real-time chain are

as follows.

e Current # of nodes in the blockchain — n

e Current # active (i.e., participating) miners — m

e Qas fee of the transaction — g; (integer, gas used determined after a transaction getting
successfully mined)

e Actual fee of the transaction — a; (integer, also determined after the transaction got mined

to the blockchain)

57



e “From address” of the transaction — public key, which is a 32 bit hash address supposedly
unique in the entire blockchain. This address is the public key of the user who is initiating
the transaction in the blockchain.

e “To address” of the transaction — 32 bit hash address supposedly unique in the entire
blockchain. This address is the address to which the transaction is being sent to. The

address could be a public key of a user or the public key of a smart contract.

The variables to represent the time taken for transactions to be posted to blockchain are as

follows:

e Normal —t
e Random —t,
o Sorted — tgprt

e Stratified Sampling — ¢

Given the same set of inputs for all the above four different algorithms of sampling the pending
transactions for mining, it is expected without loss of intuition (shown in Equation 12) that either

the sorted or sampled algorithms be faster than the normal algorithm.

trytsorts ts < (12)
A transaction is broadcasted by a wallet application, and then waits to be sampled up by a miner
on the blockchain. Unless it is sampled up, the transaction stays present in a pool of unconfirmed
transactions. This pool is a collection of unconfirmed transactions on the network that are waiting
to be processed. These unconfirmed transactions are usually not collected in one giant pool, but
more often in small subdivided local pools, namely, the Mempool. Every node in the blockchain

has its own Mempool which will consist of all the pending transactions.

58



In general, unless otherwise coordinated, the way how it is decided as to which transaction to be
the one that gets mined by a miner is such that miners usually sample the transaction with the
highest fees. However, if necessary and justifiable from a particular performance perspective,
such as the deadline as is proposed in this work, instead of sampling the transaction with the
highest fees, miners can sample (or select) transactions from the pool by using the following
algorithms, in particular order to facilitate and coordinate the proposed real-time chain, possibly

in a direct or indirect manner.

e Normal — The current way in Ethereum as to how the transactions are pulled from the
pool. The highest transaction fee will be sampled first with the highest priority.

e Random — A random transaction from the transaction pool will be sampled to be in the
mining process thus making the possibility of any transaction being picked from the
transaction pool equal to another.

e Sorted — All the transactions are sorted in the transaction pool in a way as demanded by a
particular prioritization criterion. The criteria are determined by using one the variables
determined earlier.

e Stratified — Using stratified sampling algorithm, the transactions will be sampled one per
stratum. Transactions in the pool will be logically stratified using one of the
characteristics of the transactions like gas, transaction fee, the amount of ether involved,

to mention a few.

Let the total number of transactions in the pool be represented by n, and then each i*" transaction
by t;, 1 < i < n. In the normal method of sampling transactions out of the pool, the highest fee
transactions are given the priority. Equation 13 determines the probability of a transaction to be

sampled for mining, which is dependent on the amount of fees that particular transaction holds.

ppicki X gi (13)
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Where, g; is the gas amount of the i‘" transaction. The higher the gas fee included in the
transaction the higher the probability of the transaction getting sampled. Suppose that the total

sum of the fees in the transaction pool = S, the summation equation is described in Equation 14.

S = igi (14)

Equation 15 determines the proportionality of the probability for the i*" transaction to be

sampled.

Ppick; € h (%) (15)

Where, h() represents a function of g; and % In the proposed random algorithm of sampling
transactions from the pool, every transaction has an equal chance of being sampled for mining

and then posted into the blockchain. Equation 16 represents the probability for a transaction to be

sampled in a random manner is proportional to a certain constant c.

Ppick X € (16)
Note that the value of ¢ is dependent on the number of transactions present in the transaction
pool. In fact, this constant can be controlled as a variable as well depending on whether the

sampling algorithm is adaptive or not. The block dependability dg; is directly proportional to the

Ppick as shown in Equation 17.

dgi X Dselect (17)
In order to take the number of transactions into the block dependability, the following can be
drawn. The higher the number of transactions in the pool, the lesser the block dependability of
any transaction sampled turns. Equations 18, 19 and 20 describe such proportionalities associated

with block dependability.
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1
dgi [0 6 ; (18)

The faster the transactions arrive at the mining pool, the lesser the block dependability turns as

expressed in Equation 19.

;o< — 19)

dgi < m (20)
Where, s is the average speed of the arriving transactions into the mining pool and m is the
number of active miners connected to the blockchain at the particular instant of time. The higher
the deadline, the higher the number of transactions to be sampled for mining process turns up, and

the proportionality is expressed in Equation 21.

dgi Xty (2 1)
Where, t; is the temporal extent of the deadline for the transaction to be posted. Combining eq. 9

and 10 into a single proportionality equation, we have Equations 22 and 23.

1 1
dgi:cl*a*cz*g*m*td (22)
d. = m*td 23
gi—Cr*n*S ( )

where ¢, and ¢, are proportionality constants. In the proposed sorted algorithm of sampling
transactions, the transactions are given priorities based on the characteristics of the transaction. If
the sorting algorithm is used with respect to gas fee, the algorithm would reflect the same

algorithm as normal one.

In the proposed stratified algorithm of sampling transactions from the pool, the transactions are
sorted into different strata based on a pre-defined characteristic. Let S; denote a stratum formed.

Note that stratification process may be performed by considering whether the transaction is a
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contract transaction or a transaction involving only transfer of ether if necessary, yet, which is not

considered in this work.

Gas fees of the transactions can also be used as a characteristic to perform stratification of the
transaction pool. The stratification is proposed through sampling strata based on the mean value
of the gas fees present in the mining pool. The transactions are grouped together based on how far
the current transaction is from the mean. With the mean of all the transactions in the mining pool
being (g, the strata can be formed by using a constant ¢ * g,. The strata formed from the
transactions are grouped in a way such that one stratum has transactions all having gas fees

falling in range of ugy + ¢ * ay.

Assume that the total number of strata created are s and the total number of transactions n, then

Equation 24 holds.

n= Z S; (24)

n
=1
Where, each stratum S; consists of a group of transactions from the transaction pool homogenous
in characteristic. The probability of sampling one stratum from all the strata at random is given in

eq. 25.

1
Ppick X ; (25)

Where, s is the total number of strata in the transaction pool. Once stratification is performed, the
transactions are sampled randomly from within each stratum in proportion to the size of each
stratum. On another note, if the stratum sampled is based on a characteristic such as total gas fees

of the stratum, then the probability of s; getting sampled will be the highest.
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In this work, under a stringent deadline constraint as is to be addressed and enforced in the real-
time blockchains, it is demonstrated how to identify the maximum number of transactions that

can be posted into the target block as an attempt to realize a dependable real-time blockchain.

In the stratified sampling algorithm, the block dependability is defined for a stratum rather than
for an individual transaction. The block dependability dg; of a particular stratum is given in

Equation. 26.

dsi « gsi (26)

Where, g, is the total gas fees of i;; transaction.

dg Xmx*ty 27)
In case of random transaction sampling, the transactions are sampled randomly from the pool,
where the probability for a transaction to be sampled is equally distributed for any transaction as

shown in eq. 28.

1
pr= (28)

The probability for a transaction to be sampled for inclusion in the target block for posting is
referred to as block-dependability in this work. As the probability of getting sampled is in equal
amounts at the initial stage, the block-dependability for a deadline requirement is equal for all

transactions. In other words, from the n transactions present in the pool and then, i transactions

are sampled at random to be processed by miners (i.e., p (i) the probability function p() of i and

;). The number i is directly proportional to the deadline, i.e., a time constraint t, set beforehand.

If tqy4 is the average amount of time taken for a transaction to be processed by one miner and

there are m such miners, in eq. 29 shows the proportionality.

63



o) <afets )

. 1 . .
where g( ) represents a function of t, ——.m In case of prioritized (or sorted) transaction

avg
sampling, let the speed at which the transactions get processed into the blockchain be s. In other
words, s represents the number of bytes of transactions that can be processed in a unit time. Let

the average time taken for the transactions to get into the blockchain be t4,,4 and t represents a

deadline, then s can be expressed in eq. 30.

n (bytes)
"t (secs)

(30)
Given a time constraint, i.e., deadline, the maximum number of bytes of transactions that can be
processed for posting into the blockchain need to be identified in an attempt to realize a
dependable real-time blockchain. Notice that once the number of bytes is determined, the
transactions that are present in the transaction pool can be prioritized based on characteristics of
transactions. Given a deadline time t, the total number of transactions that can be estimated to be
completed within t, are the transactions that have the maximum size of s bytes/sec as n = st,
where n is the number of bytes that can be processed within the given time t. From the transaction
pool, the transactions are sampled in such a way that the total size all the sampled transactions

doesn’t exceed n bytes. Note that the transactions are then executed in a sequential manner by the

miners.

Let i be the number of transactions sampled from the pool that satisfy the size constraint for
deadline, and they will be the ones that are to be posted to the blockchain with higher likelihood
compared to the rest of the pending transactions in the pool. Then, the miners are allotted the
transactions sequentially. Given the current number of active and participating miners, one

transaction will most likely be allotted to more than one miner. As soon as one of the miners
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mines the transaction and post it to the blockchain, the same set of miners are given the next
pending transaction from the prioritized items. If there are no more prioritized items, all the
current pending transactions are reevaluated to determine the new i number of transactions. The

size of each transaction is given by s,,, where 1 < n < i. Equation 31 describes the summation

property.

S1+S;++5,<s 31
The gas fees associated with ¢; is g;. As in the stratified approach, the gas fees for the

transactions are monotonically increasing as shown in eq. 32.

915925 =4 (32)
Depending on the number of transactions in the pool, miners will be given the highest critical
transaction in the current prioritized transactions. Considering the gas fee for the transaction as a
random variable x, the probability distribution of the transaction fees with an assumption of
normal distribution is described in eq. 33.

I )

P(x) = ncrg-—Z\/_rr e g

a4 represents the standard deviation of the transactions with respect to the gas fee, and ug
represents the mean of all the current pending transactions in the transaction pool. When
sampling the transactions based on a sorting by gas fees, particularly, the higher the gas fee is
offered the higher is the probability for a transaction to be sampled by the miners. Also, if the
transactions are sampled based on a sorted list by the miners that are currently active, then,
without loss of generality and practicality, the maximum number of miners that can be working

on one transaction is determined based on the sorting result.

Whether a transaction with a block-dependability (dgi)’ i.e., a transaction with gas g;, is

prioritized or not, can be determined by how far the gas fee is from the highest gas fee offered in
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the pending transaction pool. Hence, the block-dependability dg; determined by proportionality

are shown in eq. 34 and 35.

_\i-1
oI Enidn (34
g
i-1
dy, o< 1— Zn=19n (35)
' g

Where, g is the total gas of all the prioritized transactions and Y\, % g,, represents the total gas of
the transactions lower than the g;. Equations 36 and 37 show that the block-dependability is also
proportional to the time constraint set beforehand, i.e., the deadline, and also directly proportional
to the number of active miners in the blockchain which is a variable unlike the typical deadline

constraint which is constant for a set period of time.

dg, X tg (36)

dg, xm (37
Where, t, is the deadline set and m is the number of active miners at an instant of time. Equation
38 shows that block dependability is in turn inversely proportional to the speed of the arrival of

new transactions as follows.

1
d, «<— 38
9i €5 (38)

where s is the average arrival speed of the transactions in the mining pool. Then, the block-

dependability of a transaction with g is drawn in eq. 39 and 40.

i-1
! m
dg, X tg - <1 - Zn_lgn) -— (39)
g s
¢y * ML m
dgizcz.td.<1_#>.? (40)

where c¢; and c, are the constants to fit the block-dependability.
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PARAMETRIC SIMULATION AND RESULTS

Extensive parametric simulations are conducted, and the results are discussed in this section. The
aforementioned random sampling algorithm of the transactions is simulated as the baseline; and
the normal sampling algorithm is simulated as one of the sorted sampling algorithms in which
the transactions are supposed to be sorted for prioritization by their gas fees offered in the
transactions, and miners are supposed to sample the transactions from the ones with the highest
gas fee offered. In the followings, the random sampling algorithm and the sorted sampling
algorithms are simulated with respect to various performance parameters such as the number of
transactions, the average speed of the transactions, the deadlines and the number of miners. The
followings are the results from the random sampling algorithm of transactions from the mining

pool and the observations made. Equation 40 is used to plot the below mentioned graphs.

Block dependability vs. Number of transactions: The higher the number of transactions in the
mining pool, the lower the block dependability of the transactions being considered to be
sampled. Figure 1 shows the graph of block dependability vs. the number of transactions. The
graph shows 4 different cases, each of which with a different deadline selected. The higher the

deadline the higher the block dependability of the transactions.
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Figure 1. Block dependability vs. Number of transactions (Random)

Block dependability vs. Average speed of the transactions: The higher the average speed of
the transactions coming into the transaction pool goes, the slower the processing and posting of
those transactions goes, which would reduce the block dependability significantly, given a
constant number of miners. Using the equations derived earlier for the random sampling from the
transaction pool, it is shown in Figure 2 how the block dependability is related with the average

speed of the transactions generated in the blockchain. Note that the average speed might vary

considerably depending on the blockchain traffic.
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Figure 2. Block dependability vs. Average speed (Random)

Block dependability vs. Deadline: The relation between the block dependability and the
deadline itself are shown in the case of the random sampling of transactions from the mining
pool. If the deadline is extended, the higher would be the chance for a transaction to get into the
targeted block. The increase in the block dependability is shown in Figure 3, assuming that the

number of miners and, average speed of the incoming transactions is kept constant.
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Figure 3. Block dependability vs. Deadline time (Random)

Block dependability vs. Number of miners: Lastly, in the case of random sampling of the
transactions from the pool, it is demonstrated how the number of active miners present in the
blockchain affect the block dependability of a particular transaction. The higher the number of
miners goes the higher the block dependability turns as the processing of transactions would

further speed up as shown in Figure 4.
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Figure 4. Block dependability vs Number of miners (Random)

The followings are the results from the sorted sampling algorithm (by gas fees in decreasing order

as is exercised in the normal algorithm by the miners) of transactions from the mining pool and

the observations made. Equation 40 is used to plot the following graphs.

Block dependability vs. Number of transactions: The relation of the block dependability vs.

the number of transactions is very similar to the random case but with steeper slope for the

transactions with higher gas fees as the transactions are sorted based on the gas fees. Figure 5

shows this scenario for different deadlines. As can be observed from the figure, the higher the

number of transactions in the pool goes, the lower the block dependability goes. Also, as the

number of transactions increases in the pool, the effect of deadline decreases.
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Figure 5. Block dependability vs. Number of transactions (Sorted)

Block dependability vs. gas fees of the transactions: As in this algorithm of sampling
transactions from the pool, it involves sorting the transactions by the gas fees, and the transaction
with the highest gas fee is supposed to be given the priority. Therefore, the block dependability of
the transactions keeps increasing as the gas fees of that transaction increases. Note that there is
only minimal increase in the block dependability beyond a certain gas fee. This value can be used
to determine the minimum amount of gas fee that should be added to the transaction for it to have

a high block dependability. The results of this scenario are shown in Figure 6.
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Figure 6. Block dependability vs. Gas fees (Sorted)

Block dependability vs. Speed of the transactions: As in the random case of comparing the

block dependability with the speed of the transactions, the sorting algorithm also has a similar
curvature but with steeper slope as well. Note that once the average speed of the transactions hits
a certain threshold, the gas fees do not have that high of an effect on the block dependability. The

faster the transactions are incoming into the transaction pool, the lower the block dependability of

all the transactions becomes. Figure 7 shows the results from this scenario.
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Figure 7. Block dependability vs. Average speed of the transactions (Sorted)

Block dependability vs. Number of miners: Lastly, in the sorted way of sampling transactions
from the mining pool, the relation between the block dependability and the number of active

miners present in the blockchain is shown. The higher the number of miners goes, the higher the

processing of transactions would further speed up. Figure 8 shows the increase in block

dependability with the increase in the number of active miners.
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Figure 8. Block dependability vs Number of miners (Sorted)

PROPOSED VARIABLE BULK ARRIVAL AND VARIABLE BULK SERVICE WITH Af

FOR REALTIME CHAIN

In the proposed Realtime Chain model, an embedded Markovian single-server exponential
queueing system (i.e., M1™/ M1™ / 1) is considered without loss of generality, and the server
(e.g., the server is the equivalence of the group of miners to select the transactions to be posted)
serves the entire batch of customers (e.g., the customers are the equivalence of the transactions to
be posted in the block) in the queue (e.g., a queue is the equivalence of a block to be mined and
posted) all at once at the same time. Whenever the server completes a service (e.g., a service is

the equivalence a process of posting a block), it then purges the queue (e.g., the equivalence of
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the posting a block) and then serves the influx of new customers incoming. Note that it is
assumed that the service takes place within a certain amount of time yet no transaction is assumed
to arrive in the meantime. However, note that it is not unlikely to have new customers arrive if a

significant amount of service time is assumed, from a practical point of consideration. It is

assumed that the service time is exponential at m when the server is serving the entire queue of

any size between 0 and n, inclusive (e.g., equivalently, posting and purging the entire queue).
Without loss of generality, it is assumed that customers arrive at an exponential rate of 4
successfully within deadline yet at the rate of A the customers are assumed to fail to arrive
within a specific deadline to meet the realtime requirement. The underlying queueing process is
assumed to take place with variable-sized slots and the status of the queue is determined by the

number of slots of any size in the current block.

Based on the assumptions above, the proposed VBAVBS model with A¢ also employs an
embedded Markovian queueing model as VBASBS in [19], and it defines the states as expressed
in terms of the number of slots assigned to a block and it traces the normalized number of slots
allocated for the transactions in steady state than the number of transactions whose size varies in

the number of slots.

e P, : the state in which there is no transaction (i.e., no slot) arrived in the queue as of yet
for the posting in the block, currently [19].

e P, : the state in which there are n number of slots (i.e., which is the capacity of the queue,
equivalently, the maximum number of slots set and voted by the miners or voters) arrived
in the queue for the posting in the block, currently [19].

e P; : the state in which there are i number of slots (where 0 < i < n) arrived in the queue

for the posting in the block, currently [19].

The random variables employed to express the state transition rates are specified as follows.
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e ]: the rate for a slot of a transaction to arrive successfully within the realtime deadline
requirement, and the rate for a transaction to arrive is determined by the number of slots
allocated for the transaction in a prorated manner such that a transaction with a size of j
number of slots arrives at the rate of jA, without loss of generality and practicality as
well.

e Ag: the rate for a slot of a transaction to arrive unsuccessfully past the realtime deadline
requirement, and at the rate, the state will self-loop without making any state transition.
This rate is the unique one to distinguish VBAVBS from VBASBS in which there was no
realtime deadline requirement taken into consideration.

e u: the rate for the slots of the transactions in the entire queue to be posted and purged.

Notice that this is a single and unique state transition 1, 2 and 3.

The balance equations for VBAVBS with A are shown in Appendix C. The final values of the

steady state values are given in Equation 41.

P, = q;'Py [ij[li [ﬁqz‘lﬂ k‘ (41)
j=1 [k=1li=1

The followings are a few baseline performance measurements of primary interests in VBAVBS

with Ap.

e L,: the average number of customers (i.e., equivalently the average number of

transactions) in the queue (i.e., the block currently being mined) [19] with the new P;.

i=0
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e W,: the average amount of time a customer (i.e., equivalently, a transaction) in the

queue (i.e., the block currently being mined) [19].

e IV: the average amount of time a customer (i.e., equivalently, a transaction) in the

system (i.e., the transaction pool in the blockchain) [19].
w=Ww, + !
¢
e L: the average number of customers (i.e., equivalently, the average number of
transactions) in the system (i.e., the transaction pool in the blockchain) [19].
L=AW
ANALYSIS

The efficacy of the proposed VBAVBS model with Ar is tested and verified through numerical
analysis for the Lq,W,,W and L versus n (i.e., size of a block), A (i.e., successful transaction

. . . : 1.
arrival rate or speed), Ag (i.e., unsuccessful transaction arrival rate or speed) and " (i.e., block

posting time). Figure 1 plots Average number of customers in system (L) versus number if slots

(n), for various A and a u (at 1/15).
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Figure 9. Average number of customers in system (L) vs Number of slots (n)

L versus n, for various A and a p, are plotted in Figure 9, and it is observed that L picks up as n
increases as expected yet in a near linear manner. Also, it is observed that L picks up as 1
increases as expected. Notice that the intervals in between the plots are quite proportionally

spaced.

Likewise, Figure 10 shows average number of customers in system (L) plotted against rate of

slots (u) for various 4 and an n (at 10).
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Figure 10. Average number of customers in the system (L) vs Rate of slots (u)

It is observed that L declines as u increases as expected. Also, it is observed that L picks up as 4
increases as expected. Notice that the intervals in between the plots are quite proportionally

spaced. The following graph plots L, versus n, for various A and a u (at 1/15).
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Figure 11. Average number of customers in the queue (Lg) vs Number of Slots (1)

It is observed in Figurell L, picks up as n increases as expected yet in a near linear manner.
Also, it is observed that L, picks up as A increases as expected. Notice that the intervals in
between the plots are quite proportionally spaced. Average number of customers in queue (Lg)

versus rate of slots (¢) is plotted in Figure 12, for various 4, and an n (at 10).
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Figure 12. Average number of customers in the queue (Lq) vs Rate of slots (u)

It is observed that L, declines as u increases as expected. Also, it is observed that L picks up as
A increases as expected. Notice that the intervals in between the plots are quite proportionally

spaced. The following graph plots W versus n, for various A and a u (at 1/15).
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Figure 13. Average amount of time in system (W) vs Number of slots (1)

It is observed in Figure 13 W picks up as n increases as expected yet in a near linear manner.
Also, it is observed that W picks up as A increases as expected. Notice that the intervals in
between the plots are quite proportionally spaced. The following graph plots W versus p, for

various A, and n (at 10).
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Figure 14. Average amount of time in system (W) vs Rate of slots (1)

It is observed that in Figure 14 W declines as u increases as expected. Also, it is observed that W

picks up as A increases as expected. Notice that the intervals in between the plots are quite

proportionally spaced. Figure 7 plots W, versus n, for various A and a u (at 1/15).
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Figure 15. Average amount of time in queue (Wy) vs Number of slots (1)

It is observed that Wy, picks up as n increases as expected yet in a near linear manner. Also, it is
observed that W, picks up as 4 increases as expected. Notice that the intervals in between the
plots are quite proportionally spaced. The following graph plots W, versus u, for various 4, and n

(at 10).
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Figure 16. Average amount of time in queue (Wy) vs Rate of Slots (u)

It is observed in Figure 16 W, declines as u increases as expected. Also, it is observed that W,
picks up as A increases as expected. Notice that the intervals in between the plots are quite

proportionally spaced. Equation 42 shows the throughput per block in the presented model.

/1n(n+1)P B An(n+ 1)

= uP,=pu— = 1— 42
Y= u “u2° > Fo (42)

The following graph plots y versus n, for various A and a pu (at 1/15). Note that y is plotted versus
full range of potential n values so that the y at an n represents the normalized y value in the full

range up to n.
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Figure 17. Throughput per block (y) vs Number of slots (n)

Figures 17 and 18 plot the throughput per block. It is observed that y stays constant throughout as
P, barely changes throughout. The following graph plots y versus p, for various 4, a u (at 1/15)

and a A (at 0.001).
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Figure 18. Throughput per block (y) vs Rate of slots (ut)

It is observed that y picks up as u increases as expected. Also, it is observed that y picks up as 4
increases as expected. Notice that the intervals in between the plots are quite proportionally

spaced. The following graph plots L versus A, for various A, a u (at 1/15), and n (at 10).
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Figure 19. Average number of customers in system (L) vs Rate of unsuccessful arrival (Ag)

It is observed in Figure 19 L declines as Ay increases such that as more number of transactions (or
slots) fail to arrive within the required realtime deadline, less number of transactions will be
accommodated. Also, it is observed that L picks up as A increases as expected. Notice that the
intervals in between the plots are spaced narrower at higher A4 as expected. The following graph

plots Ly versus A, for various A, a u (at 1/15), and n (at 10) in Figure 20.
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Figure 20. Average number of customers in queue (Lg) vs Rate of unsuccessful arrival (Az)

It is observed that Lydeclines as A increases as more number of transactions (or slots) fail to
arrive within the required realtime deadline, less number of transactions will be accommodated.
Also, it is observed that L, picks up as A increases as expected. Notice that the intervals in

between the plots are spaced narrower at higher A as expected.

The following graph plots W versus A, for various A, a u (at 1/15), and n (at 10).
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Figure 21. Average amount of time in system (W) vs Rate of unsuccessful arrival (Az)

Figures 21 and 22 plot the average amount of time in the system/queue with respect to rate of
unsuccessful arrival. It is observed that W declines as A increases as more number of
transactions (or slots) fail to arrive within the required realtime deadline, less amount of time on
average each transaction (or slot) will be waiting in the block prior to posting. Also, it is observed
that W picks up as 4 increases as expected. Notice that the intervals in between the plots are

spaced narrower at higher 1 as expected.

The following graph plots W, versus A, for various 4, a p (at 1/15), and n (at 10).
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Figure 22. Average amount of time in queue (Wj) vs Rate of unsuccessful arrival (Ar)

It is observed in Figure 22 W, declines as A increases as more number of transactions (or slots)
fail to arrive within the required realtime deadline, less amount of time on average each
transaction (or slot) will be waiting in the block prior to posting. Also, it is observed that W picks
up as 1 increases as expected. Notice that the intervals in between the plots are spaced narrower

at higher A as expected.
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IMPLEMENTATION

This section details on the different transaction-sampling algorithms that were put to test by

implementing the real-time model using the Ethereum open source. The flow diagram below

shows the flow of control related to the mining and transaction sampling algorithm.

Real time
1 2
New block to Txns in the txn Sorr;::es;::n Soning/SampIing is done
be added pool block # stratified with new txn pool
ampline
Sort based on the » .
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3
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12 e 9
Mine the Append t0 5
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ccessful
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txns not
added to the block to the
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Figure 23. Realtime flowchart

To analyze those different transaction-sampling algorithms, 4 transactions are posted with

different gas fees and at different times are demonstrated in Figures 24, 25, 26 and 27.
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1. Sorted (e.g., the normal case as in decreasing order): The transactions in the transaction
pool are sorted and then picked by miners. It is shown in Figure 24 that the transactions

with highest gas fees are posted in earlier blocks.

> web3.eth.getTransaction("@x44e@bcf34066ae21419aebecf1477b6c38d7c66a6e33b724aa2d096¢226d9569")
{

blockHash: "@0x2d3e721de73c74b9f3a24227ef89f7174439e92858276ae68e18139637ac0638",

blockNumber: 11,

from: "0x3e628b324194fd7612485ccc7579b146ebel2%el”,

gas: 3000000,

gasPrice: 1000000000,

hash: "@x44e@bcf34066ae21419ae4ecf1477b6c38d7c66a6e33b724aa2d096c226d9569",

input: "0x608060405 1. 3480156100255760006000fd5b50610021
480156100115760006000Fd5b506004361061005c5760003560e01c806360fe47b1146100625780636d4ceb3c146100¢
b9578063e5aa3d58146100d75761005c565b60006000fd5b610081600480360360208110156100795760006000fd5b8:
05b610099610111565b6040518082815260200191505060405180910390F35b6100b7610123565b005b6100c161013e!

f35b6100df610147565b604051808281526020019150506040518091039035b. 1 166
06101 b b 1 02, 1 b b 1 1 b
c0d58b941133022d917d1bde22e9c7d75b1c07774ed8d97d39cb64736F6c63430006020033",

nonce: 6,

r: "@xb7e7dc173708cce998b7daé1lb2e52fcab0@5f878b34311c7d2465613121b33d0",
s: "Ox2ef34d45622df844124001671d99d4c74d4bOdc5790729472982ed928986e775" ,
to: null,

transactionIndex: 1,

v: "ex42",

value: @

web3.eth.getTransaction("@xe@4b00835fff045289e72a7add9c9e9bd062a815e378516af965fa76e5b3f11c")

~V

blockHash: "@x2d3e721de73c74b9f3a24227ef89f7174439e92858276ae68e18139637ac0638",
blockNumber: 11,

from: "0x3e628b324194fd7612485ccc7579bl46ebel129el",

gas: 2000000,

gasPrice: 1000000000,

hash: "@xe@4b@0835fff045289e72a7add9c9e9bd062a815e378516af965fa76e5b3f11c",

input: "0x 534801561001b57 fd5b50610021565b61010a806100306
d5b506004361060405760003560e01c806360Te47b11460465780636d4ce63c146072578063e5aa3d5814608e576040
5760006000Td5b81019080803590602001909291 565b b607 b b 180828152602001915
15260200191505060405180910390F35b 1 b 5b90
31cc49063d6c6c1b999F6a5eaB1f7614b14d53b22eb7ec6097f4dafecc7c9764736F6c63430006010033",

nonce: 7,

r: "Oxf7714b@b2ca2132f4a865d30aaad4c194f0d3e6d166eald6bf4865810197b3F0",
s: "Oxleb98cc189a87170c8ac4deef8392e770125f5afd455cacc225b40f1fbad7¢c9b",
to: null,

transactionIndex: 2,

v: "exsl",

value: @

web3.eth.getTransaction("@xbccb82fabbd2530d59526cfb9d9441e65e77fe8af22784d10d25bchb4ed99b8d" )

~V

blockHash: "0x@004be3063b98ab04f2a3d051310832a7b8c4313dbfc8cd255e5a554f7e579da",

blockNumber: 10,

from: "0x3e628b324194fd7612485ccc7579bl4bebel29el",

gas: 5000000,

gasPrice: 1000000000,

hash: "@xbccbh82fabbd2530d59526cfh9d9441e65e77fe8af22784d10d25bcbb4ted99b8d",

input: "0x 52 1. 3480156100255760006000fd5b5061002
480156100115760006000fd5b506004361061005c5760003560e01c80634f2be91f1461006257806360fe47b1146100
b9578063e5a2a3d58146100d75761005c565b60006000fd5b6100626100F5565b005b61! 80360360208110156
190505050610110565b005b6100a3610120565b6040518082815260200191505060405180910390135b6100c1610132
f35b6100df61013b565b6040518082815260200191505060405180910390135b 001 50540160016

b 905061012565b b 1 1 b 50548156Tea26469706673

954093191e443b2de52afdfdabb464736T6c63430006020033"

nonce: 4,

r: "Ox804bde61felc313afe3161b433e562a4827d5369296435c51dbf8e90327e8f9",

Ss: "Ox25489e6abf13bb9f7a00e416519d1b583026ee11b71df8d8477¢0162573b40bO" ,

to: null,

transactionIndex: o,

v: "ex4l",

value: @

Figure 24. Sorted mining order transaction postings

Random: The transactions from the transaction pool are sampled at random irrespective of the gas

fee and arrival time of the transactions. This gives equal probability to all of the transactions in
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the transaction pool. The randomness of the transaction sampling by the miners is shown below
for the same quantity of transactions posted as earlier. Figure 25 shows the ordering of the
transactions in the block by the random algorithm is different from the one by the sorted (normal)

algorithm.

[> web3.eth.getTransaction("@xd69b31ed5a805de659d2420a374fed783fa9ea97d7¢c01506c0644e505bb5def6 ")
{

blockHash: "0x986d6f59c31118a9b3a9a67176177d87dda@1f3el2eddc2277461ad11af3561fc",

blockNumber: 9,

from: "@x636e913e5fal2ase169db20875f12cff73dfe17c",

gas: 2000000,

gasPrice: 1000000000,

hash: "Oxd69b31€d53BGSdeéS‘?dZkZOE37&fed783fa?ea97d7c61506c664be§65bb5def6"

input: "@x 34801561001b5760006000fd5b50610021565b61010a806100306€
d5b506004361060405760003560e01c806360Te47b11460465780636d4ceb3c146072578063e5aa3d5814608e5760408
5760006000fd5b81e190808035906020619092919050505066aa565b005b60786eha565bé04051808281526020019152

15260200191505 180910390f 1 565b905
31cc49063d6c6c1b999f6a5ea8lf7614b14d53b22eb7ec6097f4dafccc7c9764736F6c63430006010033",
nonce: 5,

r: "0x30d72b8484eebbela8f5a0f69fb20ad655d6csed@b516d1lchdb756a873bc10ed"
s: "@x29ce7156a9040077blle797c48a8247ea039a84122eb43daafc7869alla7fa71",
to: null,

transactionIndex: 1,

v: "ex42",

value: @

web3.eth.getTransaction("@xdel2c76a@d! fe2d3a39e: 36cdd2ee3c371f5676fefc684707ea7270")

~v

blockHash: "@xfa6f8ae799ca582276311c165d13d86b525a8b619106cc0debf27d3791d230e9",

blockNumber: 10,

from: "0x636e913e5fal2asel69db20875f12¢cff73dfe17¢c",

gas: 3000000,

gasPrice: 1000000000,

hash: "exdelZc7(:aedeeéafezrﬂa39e2h5‘78c036cdd2&e!c!71f5676fef:681¢7e7ea7270"

input: '@ 526008 914 3480156100255760006000fd5b5061002|
480156100115760006000fd5b506004361061005c5760003560e01c806360fe47b1146100625780636d4ce63c146100'
b9578063e5aa3d58146100d75761005¢5 fd5b610081600480360360208110156100795760006000fd5b8
05b610099610111565b6040518082815260200191505060405180910390135b6100b7610123565b005b6100c161013e!
f35b6109df610147565b60495180828152682061915050684851899163901’ 1 16!
0610120565b90565b6001 L} 5505b565b6001 815
58d58b914f133022d9l7d1bdeZZe9c7d7Sb1(:07771~edBd97d39cb6A736f6c631~30806026033"

nonce: 7,

r: "Ox4e255505ecbbba4242e232325954ee932a0d2abfdfcc47057a409c9d37b245b7",

s: "Ox2edd1e1248383168192b3eba47a75027286b2528aae31a833226b1a8da5703d5",

to: null,

transactionIndex: 1,

v "ex42",

value: 0

web3.eth.getTransaction("@xee@75787f5f89a92a89d94ff5950e9f33737651c69d5ef2f99cbesb3e848a802")

~v

blockHash: "@xfa6f8ae799ca582276311c165d13d86b525a8b619106cc@debf27d3791d230e9",

blockNumber: 10,

from: "@x636e913e5fal2asel69db20875f12cff73dfel7c",

gas: 5000000,

gasPrice: 1000000000,

hash: "@xee@75787f5f89a92a89d94ff5950e9f33737651c69d5ef2f99cbc4b3e848a802",

input: "0x 2d6001 53480156100255760006000fd5b5061002|
480156100115760006000fd5b506004361061005c5760003560e01c806360fe47b1146100625780636d4ceb3c146100'
de578063e5aa3d58146100fc5761005c565b60006000fd5b61008600480360360208110156100795760006000fd5b8:
05b61009961014c565b6040518082815260200191505060405180910390F35b6100dc600480360360208110156100C6!
505061015e565b005b6100e6610175565b6040518082815260200191505060405180910390735b61010461017e565b6!

1 50546001 " 5 1 " 1 505b5
1 1 5b 1 815, 00050548156Tea2646970667358221

20dféec1d2796d5254ce73f64736T6c63430006020033",

nonce: 6,

r: "Ox1ldaf73d8alc010e78b79df78c8f5fes43d0el73f52delca78f979172288f3¢c57b",

s: "Ox3b44151b3e3bc3e021e8974054960d5052374337be379cb5d@aded7aslafd8fée",

to: null,

transactionIndex: @,

v: "ex4l",

value: @

95



web3.eth.getTransaction("0x52098da9ca63f146c5bd7c3ab9ba51933e5643c59a0f791a78cb5daf9obf33e73")

~v

blockHash: "0x986d6f59¢31118a9b3a9a67176177d87dda@1f3el2eddc2277461ad11af351fc",

blockNumber: 9,

from: "@x636e913e5fal2asel69db20875f12cff73dfel7c",

gas: 5000000,

gasPrice: 1000000000,

hash: "@x52098da9ca63f146c5bd7c3ab9ba51933e5643c59a0f791a78ch5dafobf33e73",

input: "0x608 052 1. 53480156100255760006000fd5b5061002|
480156100115760006000Fd5b506004361061005c5760003560e01c80634F2be91f1461006257806360Fe47b1146100:
b9578063e5a2a3d58146100d75761005c565b60006000fd5b61006a610015565b005b610099600480360360208110156!
190505050610110565b005b6100a3610120565b6040518082815260200191505060405180910390135b6100c1610132!

35b6100df61013b565b6040518082815260200191505060405180910390135b 001 50540160016/
b! 5b 50549050610121565b90565b 1 505481565b 50548156Tea26469706673!
954093191e443b2de52afdfdabb464736T6c63430006020033"
nonce: 4,

r: "@xba5d2e92201e92ed7d7371ff3fe94c70a67a7051ec638857edas52d2abb3251" ,
s: "Ox4el5f77728b6941abf503b69dee5dad91970d77d034bdbc70811234d6224F859" ,
to: null,

transactionIndex: o,

v: o "ex42",

value: @

Figure 25. Random mining order transaction postings

Sorted (increasing order unlike the normal sorted): Similar to the sorted (normal) algorithm
presented earlier in which the transactions are sorted in decreasing order, yet it sorts the
transactions in increasing order of the variable taken into consideration. In this example, the
transactions are sorted based on gas fees so that the higher the gas fee goes, the later the
transactions are posted onto the block. Figure 26. depicts the scenario where in higher gas fee

transactions are posted in later blocks.

[> web3.eth.getTransaction("@xb663fa3a634a2f7150d9e2d569c16ec53f4e77cal3fb63f97clcedfo7e20bd2b")
{

blockHash: "@x5f44a31187e7e2cec2778edb5d2b2e1a8075bd16579bd74ee180c49543d6bb58",
blockNumber: 29,

from: "@xabe7c549d91bcecbbbl27a3134e098463b6al87a",

gas: 1000000,

gasPrice: 1000000000,

hash: "@xb663fa3a634a2f7150d9e2d569c15ec53f4e77cal3fb63f97clcedf@7e20bd2b",

input: "0 052, 5 5534801561001b5760006000Fd5b50610021565b61010a806100306
d5b506004361060405760003560e01c806360Te47b11460465780636d4ceb3¢c146072578063e5aa3d5814608e576040
5760006000Td5b810190808035906020019092919050505 565b005b607860ba565b 5180828152602001915
15260200191505060 180910390 35b8! 05081 b 5 b
31cc49063d6cbéc1b999f6abea8lf7614b14d53b22eb7ec6097 f4dafccc7c9764736F6c63430006010033",

nonce: 9,

r: "0xdeeldc79aa297fd2a9470f2a88014e125077e42d6ced256b8alf591e293c4fce",
s: "@x27c9ed817989077c2e22e498fach87cb1d0a@dblf718035766c84b9c87a51fcc",
to: null,

transactionIndex: 0,

v "ex42",

value: @

web3.eth.getTransaction("@xb64508ee@c7eb30775731ac671dabcfaeds f bb6884199178")

~V

blockHash: "0x9c976e649ac762644b18da0520f07c24b0e13f0d91b035e4c27002a89eddde82",
blockNumber: 30,

from: "@xabe7c549d91bcecbbbl27a3134e098463b6al87a",

gas: 2100000,

gasPrice: 1000000000,

hash: "@xb64508eedc7eb30775731acé71dabecfae3648aa59bfbs9eeeb96bb6884199178",

input: "0x 052, 5 5534801561001b57 fd5b50610021565b61010a806100306
d5b506004361060405760003560e01c806360Te47b11460465780636d4ceb3¢c146072578063e5aa3d5814608e576040
5760006000Td5b810190808035906020019092919050505 565b005b607860ba565b 5180828152602001915
15260200191505060405180910390f 1 5b 5b98
31cc49063d6cbc1b999f6abea8lf7614b14d53b22eb7ec6097 f4dafccc7c9764736F6c63430006010033",

nonce: 2,

r: "@xbc38577d706d86a09c5a1671b257e7244e039b5¢109b983ddee98822cd1915bc",
s: "Ox57ball8b8ec4c83af1991875ecae9a45759easld112eab7167fab175e76d45f9",
to: null,

transactionIndex: @,

v: "ex4l",

value: @
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web3.eth.getTransaction("@x6df5e81e2d84603a684cffa56d1lbch90ba25052336Fbb568fc2025216ad49act")

~V

blockHash: "@x5fe66c7b0f8432d1f9aesabc690290863e8d70f617c3e2el5aefd8c5f5a4en2a",

blockNumber: 31,

from: "Oxabe7c549d91bcecbbbl27a3134e098463bbal87a",

gas: 2150000,

gasPrice: 1000000000,

hash: "@x6df5e81e2d84603a684cffa56d1bcb90ba25052336Fbb568fc2025216ad49acf",

input: "0x6080604052600860006000509090556009600160005090905534801561002557600060001d5b5061002
480156100115760006000Fd5b506004361061005c5760003560e01c80634F2be91f1461006257806360Fe47b1146100
b9578063e5aa3d58146100d75761005c565b60006000fd5b610062610015565b005b610099600480360360208110156
190505050610110565b005b6100a3610120565b6040518082815260200191505060405180910390135b6100c1610132

f35b6100df61013b565b6040518082815260200191505060405180910390135t 50546001 50540160016
5505b50565E 905061012f565b90565b6001 1565k 156fea26469706673
954093191e443b2de52afdfdabb464736F6c63430006020033",

nonce: 3,

r: "Ox8aeceba3d163blfafé69c7¢7761661d954f2bba780ebede5484F63b5ededb6fael”,

s 0x17ff1902cfob770f420f1a8185cd10928c2447e83c8cedbeclPaa3bs3c5ab81a”,

to: null,

transactionIndex: o,

v: "ex42",

value: @
3
> web3.eth.getTransaction("0xa0397355c426480a70e87a033c1c63790e01d4663406682422025fac0617867¢")
{

blockHash: "@x5f44a31187e7e2cec2778edb5d2b2e1a8075bd16579bd74ee180c49543d6bb58",

blockNumber: 29,

from: "@xabe7c549d91bcecbbb127a3134e098463b6a187a",

gas: 2000000,

gasPrice: 1000000000,

hash: "@xa0397355c426480a70e87a033c1c63790e01d4663406682422025fFac0617867¢c",

input: "0x 052 5 5534801561001b5760006000fd5b50610021565b610102806100306
d5b506004361060405760003560e01c806360Te47b11460465780636d4ceb3¢c146072578063e5aa3d5814608e576040
5760006000Td5b810190808035906020019092919050505 a565b005b607860ba565b 5180828152602001915

15260200191505060405180910390135b 19090 5505b50565b 5054905060c8565b90
31cc49063d6c6c1b999f6abea8lf7614b14d53b22eb7ec6097 f4dafccc7c9764736T6c63430006010033",
nonce: 1,

"@x216afl7ec4fddb34b8039c52e05380ac0e919d29e9cesataBlc8daf9febaecald”,
: "Ox2ddad7f2c2d7f25eefbd2d8a2135874f4205f7e5a7c44edebd9bf2be83125¢cc3",
to: null,

transactionIndex: 1,

v: "ex41"
value: @

Figure 26. Sorted mining (increasing) order transaction postings

Stratified: In the stratified sampling algorithm, the transactions are stratified based on a variable
and one transaction is sampled from each group. In this demonstration, the transactions are
grouped based on the gas fee and one transaction is sampled from each group. The following
screenshots in Figure 27 demonstrate the stratified algorithm where the transactions below 30000
of gas are posted in one block while the transactions above a certain range are posted in another

block.

All the different types of sampling techniques that were proposed were implemented using the

Ethereum open source.
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[> web3.eth.getTransaction("@x51fbf889adel17? 0elbl7 f2c6194f57cf4b")
{

blockHash: "0x5a43975fa27319a2644834dacee7e8de12104d7fdb17e6521602285271770827",

blockNumber: 3,

from: "@x38d2d9ab6205bef356326e834b22b0887a2bdacs",

gas: 3000000,

gasPrice: 1000000000,

hash: “Bx51fbfBa?ade17ec035ed2b335669ec95460e1b17bd8bsdc%bf20619Af57cflab"

input: 8 0 16000 3480156100255760006000fd5b50610021
480156100115760006000fd5b506004361061005c5760003560e01c806360fe47b1146100625780636d4ce63c146100¢
b9578063e5aa3d58146100d75761005c565b60006000Td5b61008600480360360208110156100795760006000Fd5b8:
05b610099610111565b6040518082815260200191505060405180910390135b6100b7610123565b005b6100c161013e!
f35b6100dfé10147565bé940518082815268288191505060405188919390f 80600060005081 166
0610120565b90565b6001 1 5b6001 505481565
c0d58b941133022d917d1bde22e9c7d75b1c07774ed8d97d39¢cb64736T6c63430006020033",

nonce: 1,

r: "0xb003a5e4117e8994510db99f0af9a83f2df2447e2fcf88c71315e8e6e110b9d5",

s: "0x1221cle9c23d9383a2c1f8550a4a484f713bc9211898c49b4fd@as3d38c6ab2a",

to: null,

transactionIndex: 1,

v: "@x41",

value: @

web3.eth.getTransaction("@xe6926c5bb9f58e@fel5a7bf1a20dee69153a6d96e3eeb601847dd6c77e72a2464")

~v

blockHash: "0x5a43975fa27319a2644834dacee7e8de12104d7fdb17e6521602285271770827",

blockNumber: 3,

from: "0x38d2d9ab6205bef356326e834b22b0887a2bdacs",

gas: 2000000,

gasPrice: 1000000000,

hash: Ox56926c5bb9f5850f515a7bflaZOd3569153a6d96e3956018-’o7dd6c77e72a2464"

input: 34801561001b5760006000fd5b50610021565b61010a806100306
d5b506004361060405760003560e01c806360Te47b11460465780636d4ce63c146072578063e5aa3d5814608e576040
5760006000Td5b81019080803590602001909291 b by 180828152602001915
15260200191 180910390135b b b
3lcc49063d6!:6c1b999f6359381f7614b11¢d53b22eb7ecba97f4dafccc769764736f6063£30006910033"

nonce: 0,

r: "0xf8aab21e91397079243a8b84e75a6e0cb8efclfe2c7984779df9570e9c9dal3c8",

s: "Ox704c2e36616785e982a5684fb5da51367fakee830b261661242542882¢3¢9199",

to: null,

transactionIndex: 9,

v: "ex41",

value: ©

web3.eth.getTransaction("@x197dcé43ebd2c1964d3c257be4b171916e9012e1c65209alce85018a66e891d9")

~V

blockHash: "@x55aefé17e@3afabafdce@391ae350ff6978ae4430acf45279d4fcce@85efd7af",

blockNumber: 4,

from: "@x38d2d9ab6205bef356326e834b22b0887a2bdac5",

gas: 5000000,

gasPrice: 1000000000,

hash: "@x197dcé43ebd2c1964d3c257be4b171916e9012e1c65209alce85018ab6e89Fd9",

input: 2d6001600 480156100255760006000fd5b5061002
480156100115760006000fd5b506004361061005c5760003560501c806360f9A7h1146100625780636dkc363c146100
de578063e5aa3d58146100fc5761005c565b60006000fd5b610081600480360360208110156100795760006000Td5b8
05b61009961014c565b6040518082815260200191505060405180910390f35b6100dc600480360360208110156100¢6

505061015 100e661017' b 18082815260200191505060405180910390135b61010461017e565b6
1 6001 1 1. 1
014 1 by 1 81! 8156fea2646970667358221
20dféec1d2796d5254ce73f64736T6c63430006020033",
nonce: 2,
r: "0x7e5adb387df7ba7006ffcaf3a95df3f74e5a54af5b1839cd200 35ed1",

s: "0x52067d3e47413fbc42b6598e173e0485b0dc746a1a3574183a0472209ded1af",
to: null,

transactionIndex: 0,

v: "@x42",

value: @

web3.eth.getTransaction("@xfa6075330b18ccO1ddd2f7facsbc2a4fb9bclab5d5566d3105b2f08fc019F743")

~V

blockHash: "@x55aef617e@3afabafdce839lae350ff6978aest430acfs5279d4fcced85efd7af",

blockNumber: 4,

from: "@x38d2d9ab6205bef356326e834b22b0887a2bdacs",

gas: 4000000,

gasPrice: 1000000000,

hash: GxfaéB75336b18cc61dddZf7fackbc234fb9bc1365d556663165b2fBSchl9f743"

input: 3486156166255760606089fd5b5061602
A80156106115760906009fd5b50680k36106166505768003560eBlc80634f2be91f1461606257866368feA7b11A6106
b9578063e5aa3d58146100d75761 fd5b61006a6100f 10099600480360360208110156
190505050610110565b005b6100a3610120565b6040518082815260200191505060405180910390135b6100c1610132
35b6100df61013b565b6040518082815260200191505060405180910390f 6001 0160016

00060005054905061012F565b90565b6001 81565, 8156ea26469706673

954093191e443b2de52afdfdabb464736F6c63430006020033"

nonce: 3,

r: "0xdeab90d9cd3214debsd3acf8bleac53b8abf2169638fa78d5b43313534F72¢cch" ,

s: "0x598305619b8FdB642cF1a53662899919¢10025dcac184b46b591143dc085512" ,

to: null,

transactionIndex: 1,

v: "Ox4l1",

value: @
}

Figure 27. Stratified mining order transaction postings
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CHAPTER VI

HYBRID CHAIN

There are few disadvantages of a public blockchain and permissioned blockchain as well. To
mitigate the individual disadvantages of these two types of blockchain, a hybrid chain is
proposed. The proposed hybrid chain model supposedly undermines the disadvantages in both the
different types of blockchain by combining the two together to form a new system a transaction
could be posted in both a public and permissioned blockchain depending on the type of the
transaction. A theoretical approach on the feasibility of the Hybrid chain is developed using a
Markovian queueing model on top of the single-tuple model [32, 34] to create a double-tuple
model. The proposed double-tuple VBASBS queueing model for the hybrid chain has a total of
(n + 1)? states i.e., from Py 4 to B, »,, unlike in a single-tuple queuing model which is known to

hold (n + 1) states. The states in the double-tuple VBASBS model are defined as follows:

(i,): i the number of slots in the blockchain-0, j the number of slots in blockchain-1
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The state transition probabilities are defined as follows:
t((i,)) = (i,k)) = (k — )Ag, where j < k and k < n.
t((n) > (1,0)) = po

t((n.)) = (0.)) = m

t((i,)) = (k,j)) = (k — DAy, where i < kand k <n

The transitions for the state model are given by

t((0,)) > (k) = (k=) A (43)
where j < k and k < n.
t((i, n) - (i, 0)) = Ug (44)
t((i,) - (k)) =k — DA (45)
t((nj) - (0,)) =m (46)

where i < kand k < n.

The total number of states in the entire model are (n + 1)?, which are denoted as P; ;, where 0 <

Jo
i,j < n. The balance equations for the proposed state transition model are shown below. The

steady state equations are obtained using Steady state probability *

Y.(all outgoing transitions) = Y.(steady satte probabilities * incoming transition)

STEADY STATE PROBABILITIES

Equation 47 shows the steady state equation for Py o as follows.
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PO,O((/‘{O + ZAO + 3&0 + -4+ nAO) + (/11 + 2/‘11 + 311 + -+ nll))
47)
= UoPon + U1Pnyp

Poo(Ao(1+2+3++n)+4(1+2+3++n)) = pPon+ t1Pnyo

Po,o((l +2+3+--+n)(; + /10)) = UoPon + U1Pny

nn+1)
Poo T(M +20) | = toPon + H1Pnyo

t((n,j) - (0,])) =t
Steady state equation for Py ; is given in Equation 48 as follows.

PO,l((/‘lO + 2/‘{0 + 310 + b + (n - 1)10) + (/11 + 2/11 + 3/‘{1 + b + n/‘{l)) = ,uan’1 + AOPO,O

Pyq (/10(1 +243++m-D)+A4Q+2+3+ ---+n)) = W Ppy + APgp

nn—1) nn+1)
Po1 (Ao <T> + 4 <T>) = U Pp1+ A5Pop (48)

The steady state equations shown below are for the first row of the states in the state model,

which can be generalized as follows.

PO,l'((/‘{O + 210 + 3&0 + -+ (n - l)){o) + (/‘{1 + 2&1 + 3&1 + -+ n){l)) = #1Pn,i

Poi(Ao(1+2+3+ -+ =)+ 4,1 +2+3+-+n))

= P+ APy i1 + 24Py ;-2 + -+ idoPy

(n-D(n-i+1) (n+1) )
Py, (Ao (%) + A4 (n nz )) = P+ AP i1 + 240Pgi—2 + -+ Pyl

The steady state equation for the last value state in the first row, which is Py ,is given as follows:
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PO,n((/ll + 2/‘{1 + 3&1 + A + nll)) = ,u]_Pn'n + /10P0,n—1 + ZAOPO,‘H.—Z + b + nA()P0,0

PO,n(Al(l + 2 + 3 + b + n)) = l.lan,n + /10P0,n—1 + ZAOPO,H—Z + b + nA()PO‘O

nn+1)
Pondq <T> = WByn + A0Pop-1+ 240Popn—2 + -+ APy

The steady state equations for the second row (P o — Py ), are shown below, starting with Py o:

Pl,O((AO + ZAO + 310 + 4/10 + b + (Tl - 1)/10 + n/‘lo)

+ (Al + 2&1 + 311 + 4'/11 + b + (Tl - 2)/11 + (n - 1)&1)) = ,LLOPOIn + MIPO,O

PLO(AO(1+2+3+4+---+(n—1)+n)+/11(1+2+3+4+---+(n—2)+(n—1)))

= UoPon + 11Poyp

nn+1) nn—1)
Piol 4o — + 4 — )= UoPon + 11Pop

nn+1) nn-—1)
Piol 4o — + 4 — )= UoPon + 11Pop

The generalized steady state equation for any state in row 2 are shown in below mentioned

Equations:

Pl,i((AO + 210 + 3/10 + A + (Tl - l)/‘{o) + (Al + 2/11 + 3&1 + A + (n - 1)/11))

= WPy + AgPoi—1 + 240Py ;5 + -+ APy

P1_1(/10(1+2+3+--~+(n—i))+/11(1+2+3+---+(n—1)))

= Py + AgPoi—1 + 240Py 2 + -+ APy
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- (/10 <(n - i)(r; —i+ 1)) ‘a <n(n2— 1)))

= WPy + AgPoi—1 + 24Py 5 + -+ APy

nn+1) nn-—1) ]
Py | 2o — + 4 — )|= 1Py + AgPoi—1 + 229Ppi—2 + -+ iAoPyp

Given n rows and columns in the state model, there will be a total of (n + 1)? equations. The
final equation is where all the steady state probabilities sum up to one.

ZPL"]' = 1

n
1=0 j=0

The coefficients of all the equations are calculated based on the value of row and column values
of each state. The coefficients are then input to Matlab in the form of a ((n + 1)% + 1) by

(n + 1)?, which represents matrix A in equation Ax = B. ‘x’ represents the steady state values
matrix of dimensions (n + 1)? by 1, which are Py, Py 1 ... Py, P1 o) -+ Piyy e Pyn- The matrix ‘B’
is the product of ‘A’ and ‘x’, which is of dimensions ((n + 1)? + 1) by 1. The entire column of
‘B’ is zeros except for the very last part. The equations are then solved using the linsolve function
in Matlab [14]. The results of the linsolve function are the steady state probabilities and the
values are used to obtain the values of Ly, , Lo, Wy,, Wy, , Lo, L1, Wy, Wy, by which a few
performances, such as the transaction execution time (e.g., Wy 0> Wo,» Wo, W;) and the block
spatial requirement (e.g., Lq,, Lo, Lo, L1), are analyzed under various assumptions on the
transaction arrival and service (i.e., block posting process) through extensive numerical methods
on Matlab. The values of specific variables obtained from solving the steady state equations, are

plotted against different values of n, with a total of 8 graphs shown in Figures 1 - 8.
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Variable L, which is the average number of transactions in the public chain, is obtained by
using the formula in Equation 28. Figures 1 and 2 demonstrate the validity of the proposed
VBASBS double-tuple queueing model. Under the assumptions on the arrival rates (44/4;) and
service times (Kq/11 ), these two figures show a monotonically increasing trends of the average
number of slots in a block as a representation of the number of transactions in both public and
permissioned chain in a normalized manner as expected. The average number of slots ultimately
represents the population in the block on average, no matter how many transactions they belong
to. In fact, each state P; ; represents a transaction with i number of slots in the permissioned chain
and j number of slots in the public chain and its steady state probability represents the normalized
likelihood of the number of transactions of size (i + j). As a result, the almost linearity is
achieved in the Figures 1 and 2. The graphs shown might look exactly linear, but the data points
show slight irregularity in the linearity. For example, the data points forn = 15,16,17 are

13.6213, 14.6208 and 15.6203, which indicate very slight change in the linearity.

ANALYSIS

Observations drawn from the simulation results in Figures 1 and 2 are such that as the size of the
block increases, the average number of slots in the mined transactions to be posted in the block
increases. The higher the number of slots, the more linear increase in the values of both Ly and
Ly, , as the value of n contributes to determining the final value of L. Further, notice that L,
grows monotonically without a sign of saturation and it is speculated that the monotonicity is
expected as the block is modeled to be purged as soon as the number of slots in the mined
transactions in both permissioned and public to be posted as soon as the block hits n, which does
not lose any generality from the stand point of a queue of mined transactions to be posted on a

block as is the underlying assumption of the proposed VBASBS model; and lastly, notice that as
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the arrival rate has very little impact on the growth rate of Ly and Ly, as all three plots drawn

against different values of 44/4; have the same consistency and linearity.
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Figure 1: Ly, vsn

The value of Ly, , which is the average number of transactions (or slots) in the permission-less

chain, is obtained by using the following formula.
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As the proposed VBASBS double-tuple queueing model has been validated in the simulation
shown in Figures 1 and 2 without loss of intuition, Figures 3 and 4 demonstrate the average
number of transactions in the transaction pool waiting for mining selection and are determined

using formulae in Equations 30 and 31. The only difference between Ly / Lo, and Lg / L1 being

”i / ui respectively, which is the reason why the Figures 1, 2 and Figures 3, 4 share a similar
0 1

linearity pattern. The values of Lg / Ly are slightly higher than the values of Ly / Lg,, which is as

expected because the values of 1, / 1, are ranged between 0 and 1.

1
LO = /10W0 = LQO +—
Ho

106



Lo vs n
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L1 vs n
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As mentioned for the previous figures, the curves in Figures 3 and 4 are also not perfectly linear.
Figures 5 and 6 demonstrate the average waiting time of the mined transactions (or slots) for
posting on the block, which is proportional to Ly, in a monotonic manner. It is looked into that
for a given size of the block, the waiting time increases as the arrival rate decreases and also as
the value of n increases. Both the figures demonstrate that as the value of 45/ A, is reduced, the
rate at which the waiting time increases is sped up significantly. This is observed in Figure 5,
where the topmost curve has a higher slope and with a lower value of 4,4, and in Figure 6, where
the topmost curve has the highest slope but has the lowest value of 1,, which is used to calculate

for that particular graph.
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Figures 7 and 8 demonstrate the waiting time of the pending transactions (in terms of slots) in the
transactions pool for the mining selection for the block in both permission-less and permissioned

chains. The waiting time in Figure 7 is observed to be the summation of Wy, & with the reciprocal
of fy, and likewise, the waiting time observed in Figure 8 is the summation of Wy, and the
reciprocal of ;. Thereby, the following graphs of W, and W, have a slight increase in values

compared to Wy and Wy, .
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W1 vs h
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Figure 8. W; vs n

1
Wl = WQ1 +—
M1

Another model related to the hybrid chain is proposed which focuses on the dependability of the
state the transaction is in. The hybrid chain proposed in this research is an attempt to model and
design a dependable interface between heterogeneous chains, in particular, between the private
and the non-private chains such as between Hyperledger and Ethereum main net. The
dependability in the hybrid chain is primarily determined by the likelihood for a transaction
declared to be private to stay private, or vice versa. A set of random variables (e.g., the rate for a
transaction to be declared private or public, respectively; the rate for a transaction, no matter

which state it is currently in, to switch its state to private or public and stays in the same state in a
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dependable manner, respectively; and the rate for a transaction, no matter which state it is
currently in, to switch its state to private or public yet switches to the other state in an
undependable manner, respectively) are identified in order to track the state transitions of the
transaction with respect to the dependability. The ultimate goal of the proposed hybrid chain is to
establish a theoretical foundation to realize a dependable interoperability across heterogeneous
blockchains and thereby realizing a seamless inter-chain and multi-chain synergy. Another
proposed hybrid chain model consisting of the states expressed from the standpoint of a
transaction’s life cycle in steady state. Note that the dependability in the following context is
defined by the state of a transaction 100% reliable and secured as desired and defined, or

undependable otherwise.

P,,, : the state in which a transaction (or a sequence of transactions as part of a batch of
computations to be carried out as a whole, and of which an instance of a transaction of concern at
an instant of time) is declared private (v) and stays private (v) in a dependable manner. Notice that
implicitly this state tracks the dependability of a transaction along with P, likewise, and the
undependability tracked by P,, and P;,, to be described in the following. Therefore, the
dependability in this research concerns across private (e.g., Hyperledger) and public (non-private,
e.g., Ethereum), and is the probability for an instance of transaction at an instant of time to be
declared (i.e., either code or data or both) private (or public) and to stay private (or public),

respectively.

P, : the state in which a transaction is declared private (v) but switches public (b) in an
undependable manner. The undependability in this research also concerns across private (e.g.,
Hyperledger) and public (non-private, e.g., Ethereum), and is the probability for an instance of
transaction at an instant of time to be declared (i.e., either code or data or both) private (or public)
and to stay private (or public), respectively. The private chain is managed with permission in

general and the public chain without, and hence the undependability of concern, in other words, is
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that a transaction that is supposed to be accessed and executed with permission, has got
compromised or failed functionally ending up being accessed and executed without permission,

or vice versa.

Py, : the state in which a transaction is declared public (b) and switches private (v) in an
undependable manner. In practice, P,;, might seem to be more of devastation than Py,,, however,
in fact, Py, could also be a devastation such that any code or data that were supposed to be
accessed and executed without a permission unexpectedly and at the worst time, has got blocked

requiring a permission due to any compromise or functional failure.

Py, : the state in which a transaction is declared public (b) and stays public () in a dependable
manner. Note that across the border between the private and the public, an interface needs to be
placed in order to provide a seamless context switching back and forth from private to public or
vice versa such that a private transaction supposed to switch its declaration to public prior to
entering the public domain, or vice versa, in order to ensure the dependability, which is clearly

distinguished from the context switching due to any undependable causes.

The random variables employed to express the state transition probabilities are as follows.

qv, qp: the rate for a transaction to be in a private state (v) and public () at an instant of time,
respectively. Note that these random variables can take an effect no matter which state the
transaction is currently in, instead, what matters is which state the transaction currently is

attempting to switch into.

qyvy: the rate for a transaction to maintain its state within private (vv). This is a random variable

required for a dependable state transition from the private state and stay in the private state.

qpp: the rate for a transaction to stay its state within public (bb). This is a random variable
required for a dependable state transition from the public state and stay in the public state.
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qup: the rate for a transaction to switch its state from private to public (vb). This is a random

variable required for an undependable state transition from the private state to the public state.

qpy: the rate for a transaction to switch its state from public to private (bv). This is a random

variable required for an undependable state transition from the public state to the private state.

The state transition probabilities (i.e., t(P;, P}): state transition probability from P; to P;) are

defined as follows.

t(Pyy, Pyy) = ququy, this state transition tracks and implies the sustainability of the dependability
of a private-transaction by staying in the private state such that if a transaction is currently
dependable in the private state (i.e., at the rate of q,,) and it continues to stay in the private state
(i.e., at the rate of q,,,), which is itself considered to be the most critical requirement of
dependability in the specific context of the hybrid chain in this research; then it contributes to the
steady state probability of P, in a positive manner. Note that q,, and q,,, are assumed to be two

independent random variables.

t(Pyy, Pyp) = ququp, this state transition tracks and implies the rate to switch the state of a
transaction from the private state to the public state in an undependable manner such that if a
transaction is currently dependable in the private state (i.e., at the rate of q,,) yet it switches its
state to the public (i.e., at the rate of g, ) which is not the state transition as commanded, in other
words, in an undependable manner; then it contributes to the steady state probability of P, in a
positive manner while to P,,, in a negative manner. Note that q,, and g, are assumed to be two

independent random variables.

t(Pyy, Pyy) = qpQqpy, this state transition tracks and implies the rate to switch state of a
transaction from the public state to the private state in an undependable manner such that if a

transaction is currently dependable in the public state (i.e., at the rate of q;) yet it switches its
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state to the private (i.e., at the rate of q;,,) which is not the state transition as commanded, in other
words, in an undependable manner; then it contributes to the steady state probability of Py, in a
positive manner while to P,,, in a negative manner. Note that g;, and q;,, are assumed to be two

independent random variables.

t(Pyy, Pop) = qpqpp. this state transition tracks and implies the rate to switch the state of a
transaction from the private state to the public state in a dependable manner (note that in fact, it
does not matter which state the transaction is in but which state the transaction is attempting to be
in) such that a transaction was dependable in the private state and then commanded to switch its
state to the public no matter which state the transaction was in (i.e., at the rate of g, or q,, and gy,
in this particular state transition) and it continues to stay in the public state (i.e., at the rate of
qpp); then it contributes to the steady state probability of Py, in a positive manner while to B, in

a negative manner. Note that g, and g, are assumed to be two independent random variables.

t(Ppy, Pyy) = quqwy, this state transition tracks and implies the rate to switch the state of a
transaction from an undependable private state (e.g., Py, in this particular state transition) to the
dependable private state (e.g., B, in this particular state transition) such that a transaction was in
an undependable private state and then commanded to switch its state to the dependable private
state no matter which state the transaction was in (i.e., at the rate of g,,) and it continues to stay in
the private state (i.e., at the rate of q,,,); then it contributes to the steady state probability of P,, in
a positive manner while to Pp,, in a negative manner. Note that q,, and q,,,, are assumed to be two

independent random variables.

t(Ppy, Pup) = quQqup, this state transition tracks and implies the rate to switch the state of a

transaction from an undependable private state (e.g., Py, in this particular state transition) to the
undependable public state (e.g., P, in this particular state transition) such that a transaction was
in an undependable private state and then commanded to switch its state to the private state (i.e.,

116



at the rate of g,,) yet it switches to the public state in an undependable manner (i.e., at the rate of
quvp); then it contributes to the steady state probability of P, in a positive manner while to Py, in

a negative manner. Note that g, and q,,, are assumed to be two independent random variables.

t(Ppy, Ppy) = qpQqpyp, this state transition tracks and implies the rate for a transaction to stay in an

undependable private state (e.g., Py, in this particular state transition) such that a transaction was

commanded to be in the public state (i.e., at the rate of q5) yet it switches to the private state in an
undependable manner (i.e., at the rate of qy,,,); then it contributes to the steady state probability of
Py, in a positive manner in a self-transition. Note that q; and g, are assumed to be two

independent random variables.

t(Pypw, Pop) = qQpqpp- this state transition tracks and implies the rate to switch the state of a
transaction from an undependable private state (e.g., Py, in this particular state transition) to the
dependable public state (e.g., Pyp, in this particular state transition) such that a transaction was in
an undependable private state and then commanded to switch its state to the dependable private
state (i.e., at the rate of g;) and it continues to stay in the public state (i.c., at the rate of g );
then it contributes to the steady state probability of Py}, in a positive manner while to Py, in a

negative manner. Note that g, and qp,;, are assumed to be two independent random variables.

t(Pyp, Pyy) = quqwy, this state transition tracks and implies the rate to switch the state of a
transaction from an undependable public state (e.g., P, in this particular state transition) to the
dependable private state (e.g., B, in this particular state transition) such that a transaction was in
an undependable public state and then commanded to switch its state to the dependable private
state (i.e., at the rate of g,) and it continues to stay in the private state (i.e., at the rate of q,,;,);
then it contributes to the steady state probability of P,, in a positive manner while to P, in a

negative manner. Note that g, and q,,, are assumed to be two independent random variables.
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t(Pyp, Pyp) = quQqup, this state transition tracks and implies the rate for a transaction to stay in an
undependable public state (e.g., P, in this particular state transition) such that a transaction was
commanded to be in the private state (i.e., at the rate of q,,) yet it switches to the public state in an
undependable manner (i.e., at the rate of q,); then it contributes to the steady state probability of
P,p, in a positive manner in a self-transition. Note that q,, and q,,;, are assumed to be two

independent random variables.

t(Pyp, Ppy) = qpqpw, this state transition tracks and implies the rate to switch the state of a
transaction from an undependable public state (e.g., P, in this particular state transition) to the
undependable private state (e.g., Py, in this particular state transition) such that a transaction was
in an undependable public state and then commanded to switch its state to the public state (i.e., at
the rate of qp) yet it switches to the private state in an undependable manner (i.e., at the rate of
qpy); then it contributes to the steady state probability of P, in a positive manner while to P, in

a negative manner. Note that g, and q,,, are assumed to be two independent random variables.

t(Pyp, Pop) = qpqpp, this state transition tracks and implies the rate to switch the state of a
transaction from an undependable public state (e.g., P, in this particular state transition) to the
dependable public state (e.g., Pyp, in this particular state transition) such that a transaction was in
an undependable public state and then commanded to switch its state to the dependable public
state (i.e., at the rate of g;) and it continues to stay in the public state (i.c., at the rate of g );
then it contributes to the steady state probability of Py}, in a positive manner while to P, in a

negative manner. Note that g, and gy, are assumed to be two independent random variables.

t(Ppp, Pyy) = quQquy, this state transition tracks and implies the rate to switch the state of a
transaction from the public state to the private state in a dependable manner such that a
transaction was dependable in the public state and then commanded to switch its state to the

private state (i.e., at the rate of q,,) and it continues to stay in the private state (i.e., at the rate of
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qvv); then it contributes to the steady state probability of P, in a positive manner while to Py, in

a negative manner. Note that q,, and q,,, are assumed to be two independent random variables.

t(Ppp, Pyp) = ququp, this state transition tracks and implies the rate to switch the state of a
transaction from the dependable public state (e.g., Ppp, in this particular state transition) to the
public state in an undependable manner (e.g., P,,;, in this particular state transition) such that a
transaction was dependable in the public state and then commanded to switch its state to the
private state (i.e., at the rate of q,,) yet it switches to the public state in an undependable manner
(i.e., at the rate of q,,;,); then it contributes to the steady state probability of P, in a positive
manner while to Pp;, in a negative manner. Note that q,, and g, are assumed to be two

independent random variables.

t(Ppp, Ppy) = qpqpy, this state transition tracks and implies the rate to switch the state of a
transaction from the dependable public state (e.g., Ppp, in this particular state transition) to the
private state in an undependable manner (e.g., Py, in this particular state transition) such that a
transaction was dependable in the public state and then commanded to stay its state in the public
state (i.e., at the rate of g;) yet it switches to the private state in an undependable manner (i.e., at
the rate of qp,,); then it contributes to the steady state probability of Py, in a positive manner
while to Py, in a negative manner. Note that g, and q,,, are assumed to be two independent

random variables.

t(Ppp, Ppp) = quqpp, this state transition tracks and implies the sustainability of the dependability
of a public-transaction by staying in the public state such that if a transaction is currently
dependable in the public state (i.e., at the rate of g, ) and it continues to stay in the public state
(i.e., at the rate of qpp); then it contributes to the steady state probability of Py, in a positive
manner. Note that g, and qp, are assumed to be two independent random variables. The steady

state equations for the slim chain model are as follows.
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Py (qvvv + 9uqvb + 9p9pv + bqpp) = PvQuv = (Pup + Py + Ppp)ququy
Py (quqv + 9uqvw + 96960 + bqpv) = PopQus = (Pow + Py + Ppp)ququp
Py (qpqpy + Qwvw + Qwlvp + Gbqpp) = PovQpy = (Poy + Pup + Pop)qnqpw
Ppy(qnqpb + 909w + 4vqup + 46qbv) = PopQuy = (Bow + Pup + Pou)qnqnp
Poy + Pyp + Ppy + Ppp =1
The solutions for the above steady state equations for the slim chain model are as follows.

1
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Based on the solutions of the proposed hybrid chain model, the following four graphs are plotted
in order to demonstrate the expected dependability [4] (i.e., B,,,) versus various yet primary

variables such as q,, and q,,,,; and another expected dependability (i.e., Pyp) versus the variables
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such as g, and qp;,. Note that, in fact, the overall dependability of interest is the sum of P,,, and

Py, in the proposed hybrid model.

The graphs on P,,versus q, shown in Figure 9 are plotted in order to demonstrate the effect of q,,
of a transaction on the steady state probability for the transaction to be in state P,,, at high or
medium (e.g., .9 or .5, respectively) of g, at high or medium (e.g., .9 or .5, respectively) of q,,,
and qpp, and at medium or low (e.g., .5 or .1, respectively) of g, and qp,,, where the plots with
A =9, Qv Gop =9, Qo Gpy =1 (i€, (:9,.9,.1)), 45 = 9, 4w, Gop =5, Gun qpw =

.5 (i. e, (.9,.5, .5)), b = 5,900, @p =9, Qup, oy = -1 (i. e.,(.5,.9, .1)), and q, = .5,
Qvv» b = -5, Qubr Qpy = -5 (i. e, (.5,.5, .5)), reveal that B, increases as q,, increases across
any combination of values of other variables, i.e., @y, Quv, Qpb, Qub, Qv S €Xpected; in
comparison between (.9,.9,.1) and (.5, .9, .1), dropping qp,from high (.9) to medium (.5) did not
degrade P,,, as much throughout the entire range of q,,, and further notice that in the range of low
q, (e.g.,.0t0.2), (.9,.9,.1) even outperformed (.5, .9, .1) under the proposed hybrid chain model;
likewise, in comparison between (.9,.5,.5) and (. 5,.5,.5), dropping g, from high (.9) to medium
(.5) did even improve P, slightly throughout the entire range of q,, except when (.9,.5,.5) and
(.5,.5,.5) briefly glide closely on each other without reversing their B,,, values; also, it has to be
admitted that the spike ups of (.5, .9, .1) and (.5,.5,.5) are not expected and will be looked into

for verification both theoretically and experimentally;
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Figure 9. P,,versus q,

P,,versus q,,, below are plotted in order to demonstrate the effect of q,, of a transaction on the
steady state probability for the transaction to be in state P, at high or medium (e.g., .9 or .5,
respectively) of q,, and g, at high or medium (e.g., .9 or .5, respectively) of g5, and at medium
or low (e.g., .5 or .1, respectively) of q,, and qp,,, where the plots with q,,, q, = .9,qp, = .9,
Qup Qpy = -1 (i.e., (.9, .9,.1)), Q99 = 9, qvp =5 Qup,qpy = .5 (i.e., (. 9,.5,.5)), Qv qp =
5.4 =9, QubGpw =-1 (i-e.,(5,9,.1)), and gy, q = .5, qpp =5, qQub, Gpw =

5 (i. e, (.5,.5, .5)), reveal that P, increases as g, increases across any combination of values
of other variables, i.e., qy,, Qb, Qbp, Quvb, by aS €Xpected; in comparison between (.9,.9,.1) and (.5,
.9, .1), dropping q,, g5 from high (.9) to medium (.5) did degrade P,, as expected throughout the

entire range of g, and widened towards 1.0; likewise, in comparison between (.9,.5,.5) and
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(.5,.5,.5), dropping q,, q, from high (.9) to medium (.5) did degrade P,,, as expected throughout

the entire range of q,,, and widened towards .5 then attempting to narrow back towards 1.0;
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Figure 10. P, versus q,,,

Pypversus qp, below are plotted in order to demonstrate the effect of q,, of a transaction on the
steady state probability for the transaction to be in state Py, at high or medium (e.g., .9 or .5,
respectively) of q,,, at high or medium (e.g., .9 or .5, respectively) of q,,, and q,;, and at medium
or low (e.g., .5 or .1, respectively) of q,p, and qp,,, where the plots with q, = .9, @y, qpp = -9,
Qupy Aoy = -1 (i.e., (.9, .9,.1)), Q= 9, 9w qpp =5, Qup, qpy = .5 (i.e., (. 9,.5,.5)),q,, =
5.qv0 @ =9, Qupr Gpy =1 (ie.,(.5,9,.1)), and q, = .5, Quu, qop = -5, Gup, Qov =

5 (i. e, (.5,.5, .5)), reveal that reveal that P, increases as q;, increases in the early or low range

(up to .1 to .2) then turns downward throughout across any combination of values of other
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variables, i.e., Gy, Quv, Qbb, Qubr b, and those concavities will be looked into for verification both
theoretically and experimentally since they appear to be scientifically significant potentially to
provide a foundation for a theoretical optimality of the proposed hybrid chain; in comparison
between (.9,.9,.1) and (.5, .9, .1), dropping g, from high (.9) to medium (.5) did never degrade Py
throughout the entire range of g, instead, Py,;, was improved and widening towards around .2
then narrows back throughout towards 1.0., which will trigger a serious investigation both
theoretically and experimentally to explain this pattern of dependability behavior of the proposed
hybrid chain; likewise, in comparison between (.9,.5,.5) and (.5, .5, .5), similar pattern of Py,

with respect to q, was observed with the concavity formed around the slightly earlier or lower
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Figure 11. Py versus qp
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and P,,versus q,p below are plotted in order to demonstrate the effect of q,, of a transaction on
the steady state probability for the transaction to be in state P, at high or medium (e.g., .9 or .5,
respectively) of g, and gy, at high or medium (e.g., .9 or .5, respectively) of q,,,,, and at medium
or low (e.g., .5 or .1, respectively) of q,, and qy,,, where the plots with q,,,q, = .9,q,, = .9,
Qup Qpy = -1 (i.e., (.9, .9,.1)), Q9 = 9, quy =5, Qub,qpy =5 (i.e., (. 9,.5,.5)),q1,, qp =
5. 4w =9, qun @y =1 (i-e.,(.5,.9,.1)), and gy, qp = 5, Guy =5, Gup, Gpw =

5 (i. e, (.5,.5, .5)), reveal that reveal that reveal that Py, increases as qp; increases in the early
or low range (up to .2 to .3) then turns downward throughout across any combination of values of
other variables, i.e., qy,, 9p, Qv Qub, Gpv»> and those concavities will be looked into for verification
as well both theoretically and experimentally; in comparison between (.9,.9,.1) and (.5, .9, .1),
dropping q,, qpfrom high (.9) to medium (.5) did in fact improved Py, in a significant manner
throughout the entire range of g, finding the widest gap in between at around .3; likewise, in
comparison between (.9,.5,.5) and (.5, .5, .5), similar pattern of Py, with respect to g, was

observed with the concavity formed around the slightly delayed or higher qpy.
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Figure 12. B, versus qpp

The hybrid chain is being proposed with a similar architecture compared to that of slim chain.
However, there will be two major differences between them such that IPFS in slim chain will be
replaced with other blockchains that will have compatibility with the current blockchain (e.g., a
paired hybrid chains of private and main nets); the transaction to be added to the blockchain will
be holding a special string variable to determine which blockchain the transaction is being added;
and if any errors are encountered while adding to the secondary blockchain, the transaction will
stay on the secondary blockchain rather than coming back to the primary blockchain unlike the
slim chain, where the transaction from IPFS will be returned back to the blockchain in case of any

€1Tor.
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IMPLEMENTATION

This section covers the basic control flow of the proposed hybrid mode and Figure 9 shows the

detailed flowchart of the proposed hybrid model that was put into simulation using Ethereum to

replicate a permission-less blockchain and Hyperledger to replicate for permissioned blockchain.

Each major change in the control flow is numbered and described in detail.

L.

The transaction to be added to the blockchain, the source of this transaction is either from
a mobile application / HTML request from the user. This section is also responsible to
determined which blockchain the transaction will be added to, public or permissioned.
After it is determined to be added to the secondary blockchain like, Ethereum or Bitcoin,
the transaction details are sent to the appropriate blockchain for further processing.

If the user that has initiated the transaction does not have a public ID in the secondary
blockchain, a new one is created on his behalf.

The transaction details are added to the secondary blockchain (mostly monetary
transactions).

Any errors on processing this transaction are handled internally in the secondary
blockchains, without the primary blockchain waiting for an acknowledgement.

Upon successful transaction posting in the secondary blockchain, the hashcode is
returned back to the sever, which then also adds the hashcode to the appropriate user that
initiated the transaction.

Hash code returned from the secondary blockchain is received at this time of the flow.
The hash code is then added to the primary blockchain also to keep a track for later
purposes.

The transaction (along with the hashcode from the secondary blockchain) is then added to

the primary blockchain.
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10. If the transaction (mostly a user modification) is intended to be posted to primary
blockchain (permissioned), then the transaction is directly placed in the permissioned

given that the transactions satisfies all for its validity.

A crypto payment system is developed as a testbed to demonstrate the effectiveness and
efficiency of the proposed hybrid chain such that a basic and simple demo has been built across
both HTML and mobile (Android) application, wherein the user has the choice to make a
transaction. The transaction is then moved to the primary or secondary blockchain depending on

the type of transaction initiated by the user. The developed front-end application consisted of:

1. Making a payment in terms of Ether (crypto currency for Ethereum), resulting in a
transaction to be initiated in Ethereum (public/secondary blockchain).
2. Modifying user personal information, which would have a transaction recorded in the

primary (permissioned) blockchain upon successful request.
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Figure 13. Hybrid chain flowchart

The following is a practical implementation of the hybrid chain using Ethereum for public

blockchain and Hyperledger for permissioned blockchain:

Figure 14 describes the details of the HTML page that the user will be interacting to make a

payment or modify information.
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William Jones

Amount (in USD) 209.78
Amount (in Ether) 0.8741

Deploy Contract | Get Contract Balance

Figure 14. HTML enabled page to demonstrate a payment

Figure 15 details the backend information after the user as made a payment request from the

HTML page, while Figure 16 shows the user information stored in Hyperledger’s backend.

willian
Jones
6.8741
willian
Jones.
6.8741
USER650

POST /server| 28035680 ms - -

Wallet path: abric-samples/fabcar/javascript/wallet
Wallet path: abric-samples/fabcar/javascript/wallet
Wallet path: abric-samples/fabcar/javascript/wallet
An identity for the admin user "admin® already exists in the wallet

An identity for the user "appUser” already exists in the wallet
Transaction has been submitted
Contract deploying onto Ethereun
POST /serverCalls/deployContract 206 1.316 ms - -
defaultAccount:
STORAGE_ABI: [
{

inputs: [ [Object] ],

name: 'deposit’',

outputs: [,

stateMutability: 'payable’,

type: *function’

» B mQ
& Yl € >

L |

Tem % 2 Favorites

Figure 15. Details of the user logged in backend

"Key": "USER650",
"Record": {
"address": "USA",
"amount": "@.8741",
"docType": "user",
"firstName": "William",
"lastName": "Jones"

"Key": "USER686",
"Record": {
"address": "USA",

"Key": "USER870",

"Record": {
"addre
"amoun
"docTy.

WEL ot

Figure 16. User information in Permissioned chain
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G inputs: [],
"y name: 'getBalance’',
- 3 outputs: [ [Object] 1,
i stateMutability: 'view',
» _ type: 'function'
it }
¥
defaultAccount: 0xf2D7E17241494DeB20E2AF70F63bc18E87F4e7EC
StorageContract.options: {

from: '0Oxf2D7E17241494DeB20E2Af70F63bc18E87F4e7EC’,

gas: 4000000,

gasPrice: '20000000°',

data: undefined,

address: [Getter/Setter],

jsonInterface: [Getter/Setter]
}
Transaction Hash: 0xc93f3534d541c5décd2efaa7ca70c2b77930a64b809c452c4a61e1737ab82eab
0x1944680a44BFC8d47fDF34F5769FB0340A174CD6

é 0x1944680a44BFC8d47fDF34F5769FB0340A174CD6

% Payment process call in server

; Amount in Ether 874100000000000000

* POST /serverCalls/processPayment 200 1.644 ms - -

£ defaultAccount: 0xf2D7E17241494DeB20E2Af70F63bc18E87F4e7EC

r% Transaction Hash: 0x16fblfd427343cd9cd46476ebf4582498af0691f7cc32dd63bbc4a85b7afae956
L

Figure 17. Payment recorded by user in backend

transactionIndex: 0,
v "y
value: ©

web3.eth.getTransactionReceipt("0xc93f3534d541c5décd2efaaZca70c2b7] 1e173 ")

~V

blockHash: "0x72778660405
blockNumber: 298,
contractAddress: "0x1944680a44bfc8d47Fdf34T5769Fb0340:
cumulativeGasUsed: 114775,

from: "@xf2d7e17241494deb20e2af70f63bc
gasUsed: 114775,

logs: [1,
logsBloom: "8x

a667f62ede.

868d2d26522378e6361130:

87f4e7ec",

root: "0 39af985de? fe5afe9aet .,
to: null,
transactionHash: "0xc93f3534d541c5d6cd2efaa
transactionIndex: ©
}
> web3.eth.getTransaction("@x16fb1fd4273 76ebf: 06917 7afae956")
{
blockHash: "0xc07650fcd56f6c 161e fefe 2ff907085e20¢ obb1feso

blockNumbe:
from: "@xf2d7e
gas: 4000000,
gasPrice: 20000000,

299,

7241494deb20e2af70f63bc18e87 f4e7ec",

hash: 6b1fd427343cd9cdb6476ebf4582498a10691F7C "
inpu’ "ex",

nonce: 18,

r: "0xcSee@a2362

vi o "ex41",
value: 874100000000000000

>

Figure 18. The payment transaction in Ethereum console

Figures 17 and 18 show the transaction details of the user payment recorded in the backend as
well as in Ethereum. The amount of .8741Ether is posted from HTML through the user account
and the same amount is reflected in the transaction value as well. The ether is transferred to the

smart contract in Ethereum rather than to another public address.
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G T inputs: [],
L% name: 'getBalance',
- 5 outputs: [ [Object] 1,
a stateMutability: 'view',
A _ type: 'function’
= }
LI
defaultAccount: 0xf2D7E17241494DeB20E2AT70F63bCc18E87F4e7EC
StorageContract.options: {

from: 'Oxf2D7E17241494DeB2@E2Af70F63bc18EB7F4e7EC’,

gas: 4000000,

gasPrice: '20000000',

data: undefined,

address: [Getter/Setter],

jsonInterface: [Getter/Setter]
+
Transaction Hash: @xc93f3534d541c5décd2efaa7ca70c2b77930a64b809c452c4ablel737ab82eab
0x1944680a44BFC8d47fDF34F5769FB0O340A174CD6

g 0x1944680a44BFC8d47fDF34F5769FBO340A174CD6

% Payment process call in server

& Amount in Ether 874100000000000000]

* POST /serverCalls/processPayment 200 1.644 ms - -

€ defaultAccount: 0xf2D7E17241494DeB2BE2Af70F63bc18EB7F4e7EC

S Transaction Hash: 0x16fb1fd427343cd9cd46476ebf4582498af0691F7cc32ddé3bbc4sB85b7afae956

iZTODO B 4:Run O 6: Problems 3 5: Debug Terminal TypeScript 3.9.5

Figure 19. The same amount recorded in backend

The payment amount captured in the backend of the server and shown on the HTML page and the

one posted on Ethereum are equal and is shown in Figure 19.
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CONCLUSION

The proposed research has established the capability to balance the load of computation across
on- and off-chains in order to take advantage of the synergistic cost and performance benefits
from both on- and off-chains in a dependable manner along with the proposed dependability
monitoring system based on the novel checkpoint-and-rollback protocol in order to coordinate
the, otherwise, intrinsically centralized off-chain transactions of concern in a decentralized
manner mitigating the potential loss of dependability otherwise; a dependable crypto computing
capability under stringent real-time requirement in order to address and resolve the speed issue of
the otherwise saturating blockchain performance today or in the near future; a slim chain in order
to address and resolve the scalability issue of blockchain-based crypto computing; and a hybrid
chain in order to address and resolve a need for transactions across private and main nets in
particular; and various rigorous yet novel dependability models have been built and demonstrated
to establish a sound theoretical foundation ultimately for optimal, dependable and high

performance crypto computing.
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A dependability model for each proposed crypto solution has been identified and defined along
with various performance variables, and has ultimately provided a theoretical yet practical
understanding of each crypto solution. A practical solution has been developed as well for each of
the four different crypto solutions using Ethereum and Hyperledger as two of the bases for public
and permissioned blockchains. A theoretical and a practical model has been developed to evaluate
the dependability of the crypto system in a quantitative manner with respect to the proposed
checkpoint and rollback algorithm, slim chain, real-time and hybrid-chain models. This research
has presented a work on how to assure the dependability of a crypto system built across on and
off the blockchain by using the proposed checkpoint and rollback algorithm in an adaptive
manner, proposed an implementation of a new storage mechanism in blockchain facilitated by
IPFS known as slim-chain, has proposed an analytical approach how to design and realize a
crypto computing (Ethereum blockchain-based) under stringent real-time requirement and
proposed a hybrid chain based on the one as proposed in [34], and a variable bulk arrival and
static bulk service (VBASBS) of double-tuple queueing model also has been developed to

provide a quantitative tool to measure its performance as the dependability model.

134



REFERENCES

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

[2] Chris Dannen. Introducing Ethereum and Solidity: Foundations of Cryptocurrency
and Blockchain Programming for Beginners

[3] Thomas Renner, Johannes Muller, Odej Kao, Endolith. A Blockchain based
Framework to Enhance Data Retention in Cloud Storages 26th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (2018).

[4] Diego Vegros, Jaime Saenz. Peer-To-Peer Networks and Internet Policies New York:
Nova Science Publishers, Inc., 2010Author, F.: Contribution title. In: 9th International
Proceedings on Proceedings, pp. 12. Publisher, Location (2010)

[5] Uwe M. Borghoff Catalogue of Distributed File/Operating Systems Berlin
Heidelberg: Springer-Verlag, (1992)

[6] Vitalik Buterin. A Next Generation Smart Contract & Decentralized Application
Platform, Ethereum White Paper

[7] Israel Koren and C. Mani Krishna Fault-Tolerant Systems. San Francisco, CA:
Morgan Kaufmann Publishers, (2007)

[8] Pouria Pirzadeh, Michael Carey, Till Westmann, A performance study of big data
analytics platforms IEEE International Conference on Big Data, 2017

[9] Mrunal Sogodekar, Shikha Pandey, Isha Tupkari, Amit Manekar Big data analytics:
hadoop and tools IEEE Bombay Section Symposium, 2016

135



[10] Sheldon M. Ross Introduction to Probability Models 11 Edition (Elsevier, Academic
Press, Taiwan, 2014).

[11] Barry W. Johnson. Design and Analysis of Fault Tolerant Digital Systems (Addison-
Wesley Publishing Company, 1986

[12] Morgen E. Peck Blockchains: How They Work and Why Theyll Change the World

[13] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler The Hadoop
Distributed File System

[14] H. Subramanian Decentralized Blockchain-Based Electronic Marketplaces

[15] Dejan Vujii, Dijana Jagodi, Sinia Rani, Blockchain technology, bitcoin,
and Ethereum: A brief overview

[16] Sara Rouhani, Ralph Deters, “Performance Analysis of Ethereum Transactions in
private blockchain” 2017 8th IEEE International Conference on Software Engineering
and Service Science (ICSESS)

[17] Mrs. Anamika Chauhan , Om Prakash Malviya , Madhav Verma, Tejinder Singh
Mor, “Blockchain and Scalability”, 2018 IEEE International Conference on Software
Quality, Reliability and Security Companion

[18] Hiroki Kuzuno, Christian Karam “Blockchain explorer: An analytical process and
investigation environment for bitcoin” 2017 APWG Symposium on Electronic Crime
Research (eCrime).

[19] Tiana Laurence, Blockchain For Dummies-For Dummies

[20] Ethereum: A Super Decentralized Generalized transaction ledger,
http://gavwood.com/paper.pdf

[21] Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz, An Binh
Tran, Paul Rimba, “On Availability for Blockchain-Based Systems”, 2017 IEEE 36th
Symposium on Reliable Distributed Systems (SRDS).

[22] Morgen E. Peck (September 2017) Blockchains: How They Work and Why They’1l
Change the World. Last accessed: March 2019. [Online].

[23] Abhilash Kancharla, Jongho Seol, Nicole Park, Indy Park, Nohpill Park; Dependable
Industrial Crypto Computing, 28th International Symposium on Industrial Electronics
(IEEE-ISIE 2019) during June 11-14, 2019 in Vancouver, Canada

136



[24] Marcello Cinque, Christian Esposito “How to Assess the Dependability of
Applications on Top of the Blockchain: Novel Research Challenges” 2018 14th European
Dependable Computing Conference (EDCC)

[25] F. Lombardi, L. Aniello, S. De Angelis, A. Margheri, V. Sassone” A Blockchain-
based Infrastructure for Reliable and Cost-effective loT-aided Smart Grids

[26] Qi Zhang, Petr Novotny, Salman Baset, Donna Dillenberger, Artem Barger, Yacov
Manevich “LedgerGuard: Improving Blockchain Ledger Dependability”
https://www.researchgate.net/publication/324939637 LedgerGuard Improving Blockch
ain_Ledger DependabilityLast Accessed: April 2019 [Online]

[27] Jongho Seol, Abhilash Kancharla, Nicole Park, Nohpill Park, Indy Nohjin Park “The
Dependability of Crypto Linked Off-chain File Systems in Backend Blockchain
Analytics Engine” International Journal of Networked and Distributed Computing Vol 6,
Dec 2018.

[28] How to Check the Reliability of a Blockchain Project [Online] Last Accessed:
March 2019 https://coinjournal.net/sponsored-story-how-to-check-the-reliability-of-a-
blockchain-project/

[29] Abhilash Kancharla, Nohpill Park; A Realtime Crypto Computing and Block-
Dependability, IEEE SC2 2019 - Kaohsiung, Taiwan, Nov. 18-21, 2019, The 9th IEEE
International Symposium on Cloud and Service Computing, Kaohsiung, Taiwan, Nov.
18-21, 2019

[30] Abhilash Kancharla, Seol Jongho, Nohpill Park, Hyeyoung Kim; Slim Chain and
Dependability, The 2nd ACM International Symposium on Blockchain and Secure
Critical Infrastructure (BSCI 2020)

[31] Abhilash Kancharla, Nohpill Park, Zuqiang Ke, Hyeyoung Kim; Hybrid Chain and
Dependability, The 2nd ACM International Symposium on Blockchain andSecure
Critical Infrastructure (BSCI 2020)

[32] Seol Jongho, Abhilash Kancharla, Nohpill Park, Hyeyoung Kim, Zuqgiang Ke; A
Variable Bulk Arrival and Static Bulk Service Queueing Model for Blockchain, The 2nd

ACM International Symposium on Blockchain and Secure Critical Infrastructure (BSCI
2020)

[33] Abhilash Kancharla, Nohpill Park, Indy Park; Transaction Sampling Algorithms for
Realtime Crypto Block Dependability, International Journal of Big Data and Intelligence

[34] Abhilash Kancharla, Nohpill Park, Hyeyoung Kim; A Realtime Chain and Variable
Bulk Arrival and Variable Bulk Service (VBAVBS) Model with A_F, MDPI, Applied
Science, Electrical, Electronics and Communications Engineering

137



APPENDIX A

The pseudo code used for checkpoint and rollback algorithm is as below:
Initialize current checkpoint interval;
while (1) {

if ((new _checkpoint t - last checkpoint t) <=
current checkpoint interval) {

current checkpoint interval = new checkpoint t -
last checkpoint t;

}

else{
if (dependable count >= threshold count))

++current checkpoint interval;

138



APPENDIX B

The steady state equations for the proposed slim chain model are given as follows:

Pon(cdon + cdon + ¢') = Pogpi (49)

Pon(c+c') = Popcdon + Posyi (50)
Pors(i'(r+7'dopp) +i'r'dysr 4 0) = Popc' + Popsi't'dosy (51)
Popr(i'r'dyps +i'r +i'r"dopp + 1) = Pync’ + Popsi'r'dy s (52)
Pon + Poy + Pogs + Py = 1 (53)

Equation 49 can be simplified as follows:

[
Pon = P,

off (cdpy +cdp, + ¢') (54)

Substituting the value of P,,, from above equation into Equation 51, we get:
Poff(i'(r + T,doff) + I:’T"d(’)ff + l) = PonC’ + Polffl,T’doff

. . . ic’ .
Poff(l’(r + r,doff) + l,T’d(,)ff + l) = Poff (Cdon n Cd’on n C’) + P(;ffl,r’doff

!

ic
P i"(fr+7r'd +i'r'd s +i— =P . .i'r'd
off < ( off) of f Cdon + cdo + C,)> offL T Qo

I:’T"doff

Posr = Péff( ic ) (55)

1 ! Flaal A7 P
i (r+rd0ff)+1r dopr +1 Ccd. T cdl, T )
Substituting the value of P, s¢ into the initial equations resulted in the final solution for the steady

state probabilities.
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Q2

cdy, +cdp, +C'
forr =g,

Bon =

cdy, + cd), + c’) )
: i

1 1
Po,n = E(Cdon + Q-(CdonC, + ;

1

11 ,  Cdop +cdo, +C'
Poff’:aa<6'donc + i

Qr=i'r'dopp +i'r+i'r"dosp +1i—ic’

icd,.c' +cd,,c' cd,, +cd. +c"\[2i'r'd,
0, =1+ cdy, +—22 on +< on * ~“on )( °ff+1>

Q1 l Q1

140



APPENDIX C

The balance equations for VBAVBS with A are as follows.

U U 2 2
= —DP, +——P <
(A+24+32+ 4 nA+ APy =P+ —— P+ ——Ps + n—(n—
A=) Ve = u(ip b, L p 4 !
2 F O_H<n P Tp—12"n-2"3 n—(mn-2)

and
P0+P1+P2+"'+Pn=1

P; can be expressed as follows.

(42204304 4 (1= DA+ 25 +—) P = Ay

Aln —1)(n —2) K
( 2 +AF +m Pl =/1P0
An—1D(Mn-2) u
( 2 +AF +m Pl =/1P0

An—1)(n—2) w o\
Pl—/1< > +Ar+—] Po

P, can be expressed as follows.

(A+22+32+ ---+(n—2)A+AF+ﬁ)P2=/1P1+2/1P0

An—-2)(n—-3
((n ;(n )+AF+%>132=,1(P1+2P0)
-1
p, = A(Mn - Zg(n —-3) +a, +%> (P, + 2Py)
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A(n—2)(n-3 -
Pz=/1< (n ;(n )+AF+%> (Q1Py + 2Py)

P, = 2q(Q1Py + 2Py)
P, = 2q,(Q1 + 2)P,
P, = Q,Py

P3 can be expressed as follows.

(A+22+32+ ---+(n—3)A+AF+$)P3 — AP, + 24P, + 3P,

An-3)(n—4

Similarly, P;, 0 < i < n can be expressed as follows.

U

(A+22432+ -+ (- DA+ + m) Py = APi_q + 2APi_y + -+ + iAP,

An-Dn—-i+1
< ( )(2 )+/—1F+%>Pi=/‘1(Pi—1+2Pi—2+'”+iP0)

Lastly, P, can be expressed as follows.
(AF + M)Pn = /‘an—l + 2/1PTL—2 + -+ n/1P0
(AF + .U)Pn = A(Py-q1 + 2Py + -+ nPy)

Solving the balance equations, the generalized expression for P; can be expressed as follows.

i

i-1 k-1
Po=ai'Po|) ) Z[ﬂq{ll k
=1 |k=1li=1

where,
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An—Dn—-i+1) g\
_1_
i _< 2 M ——

L (A =D —i+ D2+ 20—+ 1) +2p\
! _< 2(n—i+1) )

1 2n—i+1)
G = imn—Dm—i+ D2+ 2,(n—i+ 1+ 24
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