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selected based on my geological insight. (a) Coherence, (b) GLCM contrast, (c) GLCM 
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deviation. The selected candidate attributes show different responses when comparing the 
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A 3D Kuwahara filter (Qi et al., 2016) is applied to smooth the internal response and sharpen 

the edges of the salt diapir to improve the discrimination between salt and the nonsalt seismic 
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Figure 2.7. Histograms of the validation data set (a) before and (b) after robust scaling. The 

shape of the distributions is maintained after robust scaling. Distributions of the candidate 
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contrast, total energy, and dip deviation attributes. The ideal smoothing parameter is given 

by r = 0.1. For r ≥ 0.1, the training (ET) and validation (EV) errors are high, possibly implying 

underfitting. When r = 0.05, there is a rapid decrease in ET and increase in EV, suggesting 
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with coherent migration artifacts (the blue arrows), low-amplitude discontinuities related to 

normal faults (the yellow arrow), and missing or noisy data in the edges of the survey (the 

red rectangle) tend to be misclassified as salt (the purple facies). Note that salt diapir 2, 

which is used as a test data set, is also correctly classified as salt seismic facies by the 

algorithm (purple facies; the red arrow). PNN facies probability volume (c) along inline 391, 

and (d) at time slice t = 1.78 s. The extracted purple facies (salt diapirs 1 and 2) show very 
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facies. (a) Case 1 using original seismic attributes, (b) case 2 applying Kuwahara filtering, 

and (c) case 3 adding band-limited random noise to the entire survey. In general, the ML 
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model shows high probabilities for MTDs, salt, and conformal sediments with no dimming 

in the probabilities for correctly classified facies possibly indicating that facies are being 

classified with similar confidence by the algorithm in all cases. However, results obtained 

after applying Kuwahara filtering show less noise and less misclassifications inside and 

around salt diapirs compared to cases 1 and 3. ..................................................................125 

Figure 3.16. Geobody extraction of target seismic facies MTDs, salt, and conformal 

sediments using the seismic facies prediction associated with case 2 and probabilities higher 

than 70% for each facies. I can isolate the target seismic facies accurately throughout the 

study area. Dipping conformal reflectors close to the edges of the salt are being misclassified 

as salt or MTDs facies (the red arrows), whereas gaps inside the salt diapirs can be 

misclassified as MTD or conformal sediments (the yellow arrows). .................................126 

Figure 3.17. The SHAP force plot for voxel of interest A along vertical section GG’. Voxel 

A is located inside a salt diapir and was misclassified as MTD by the algorithm with a 45% 

probability. (a) For MTD, the voxel starts with a base value of 33%. Considering the effect 

of the candidate seismic attributes in the model, I note that the total energy, dip deviation, 

spectral bandwidth, and coherence increase the probability of having MTD, whereas GLCM 

entropy and covariance of dip and energy gradient push down the probability to the final 

45%. (b) For salt, the coherence, dip deviation, and covariance of dip and energy gradient 

attributes increase the probability, whereas the total energy and spectral bandwidth are 

pushing the probability down from the base value of 33% to the final 13%. (c) For conformal 

sediments, the GLCM entropy, covariance of dip and energy gradient, energy deviation, total 

energy, and reflector convergence push the probability up, whereas the dip deviation and 
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coherence attributes decrease the probability to 42%. Please note that the attribute values are 

shown without scaling for interpretational purposes. ........................................................127 

Figure 3.18. The SHAP force plot along line GG’. (a-b) Voxel B and C are associated with 

high-amplitude seismic multiples, but they were misclassified by the algorithm as conformal 

sediments and MTD with 82 and 99% probabilities, respectively. For voxel B, GLCM 

contrast, total energy, spectral bandwidth, GLCM entropy, energy deviation, and coherence 

increase the probability from the base value of 33% to 83%, whereas the remaining attributes 

show a composite impact of 0.1% that decrease the probability to the final 82%. Voxel C 

starts a base value of 33%. Then, the covariance of dip and energy gradient (not shown 

automatically in the SHAP force plot due to its small impact in the classification), coherence, 

GLCM entropy, energy deviation, GLCM contrast, spectral bandwidth, dip deviation, and 

total energy push the probability up to 99.1%, whereas the reflector convergence attribute 

(also not shown automatically in the SHAP force plot due to its small impact) decreases the 

probability to its final 99%. (c) Voxel D associated with dipping conformal sediments close 

to the edges of the salt was misclassified as MTD. For the MTD seismic facies, GLCM 

contrast, spectral bandwidth, coherence, GLCM entropy, dip deviation, and total energy 

pushing the probability up, whereas energy deviation pushes down the probability to its final 

76%. (d) For the conformal sediments facies, total energy, covariance of dip and energy 

gradient, energy deviation, and spectral bandwidth push the probability up, whereas dip 

deviation, GLCM entropy, and coherence decrease the probability to its final 18%. .......128 

Figure 3.19. The SHAP values corendered with the seismic amplitudes along line GG’ for 

the total energy, dip deviation, and energy deviation attributes for MTDs, salt, and conformal 
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sediments. Note that positive SHAP values increase the probability and are characterized by 

the red colors, whereas negative SHAP values are associated with the blue colors and 

decrease the probability. (a-c) Total energy attribute. In general, the ML model correctly 

distinguishes between the target seismic facies. However, high-amplitude conformal 

sediments and reflectors with lower amplitude, lower seismic quality around the diapirs 

increase the probability of having MTDs (the white arrows). Some dipping reflectors and 

noisy areas close to the diapirs increase the probability of a voxel being classified as salt (the 

orange arrows), whereas overlap between conformal sediments and MTD is visible (the 

yellow arrows). (d-f) Dip deviation attribute. Overlap between MTD and salt is visible. In 

addition, MTDs still show overlap with the reflectors surrounding the diapirs (g-i) Energy 

deviation attribute. Salt diapirs show a strong overlap with the flat, high-amplitude 

conformal sediments located inside the mini-basins. Finally, using the dip and energy 

deviation attributes, dipping reflectors decrease the probability of having conformal 

sediments. ...........................................................................................................................129 

Figure 3.20. The SHAP values corendered with the seismic amplitudes along line GG’ for 

the (a-c) coherence, (d-f) covariance of dip and energy gradient, and (g-i) GLCM contrast 

attributes for MTDs, salt, and conformal sediments. For the MTD seismic facies, overlap 

with the lower amplitude dipping reflectors surrounding the salt is still visible. In addition, 

the salt diapirs and MTD show overlap when considering the covariance of dip and energy 

attribute. For the salt seismic facies, salt diapirs tend to be isolated correctly by the model. 

However, overlap between the diapirs and the MTDs and dipping conformal reflectors exists 

when considering the coherence attribute, but using the GLCM contrast attribute, the overlap 
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with the MTDs tends to decrease. Finally, for the conformal sediments, some overlap with 

the salt seismic facies is visible when considering the GLCM contrast attribute. In addition, 

the flat high-amplitude reflectors are not making an impact in the classification when 

considering the covariance of dip and energy gradient. .....................................................130 

Figure 3.21. The SHAP values corendered with the seismic amplitudes along line GG’ for 

the (a-c) spectral bandwidth, (d-f) GLCM entropy, and (g-i) reflector convergence attributes 

for MTDs, salt, and conformal sediments. Note that the reflector convergence attribute does 

not have a large impact in the classification and does not have clear trends to differentiate 

between the target seismic facies. Overlap between MTDs and the conformal sediments is 

visible for the spectral bandwidth attribute, whereas the GLCM entropy attribute shows 

some overlap between the salt diapirs and MTDs. For the salt seismic facies, noisy areas 

close to the edges of the survey and dipping reflectors increase the probability of voxels 

being classified as salt. Finally, for conformal sediments, slight overlap with MTDs and salt 

is seen when using the spectral bandwidth attribute. Considering the GLCM entropy 

attribute, dipping conformal reflectors characterized by lower amplitudes decrease the 

probability of having conformal sediments........................................................................131 

Figure 3.A-1. Adding band-limited noise to the seismic volume. (a) The estimated AWGN 

𝑁(𝜇,𝜎) shows a flat spectrum, and it is characterized by frequencies larger than 80 Hz. (b) 

Ormsby filter 𝑂(𝑡) applied to 𝑁(𝜇,𝜎) with corner frequencies 𝑓1 = 5 Hz, 𝑓2 = 10 Hz, 𝑓3 = 60 

Hz and 𝑓4 = 80 Hz, duration of T=500 ms, and sampling interval ∆𝑡 = 4 ms. (c) Band-limited 

noise 𝑁 and target S/N = 2. Note that the estimated AWGN does not show amplitudes for 

frequencies larger than 80 Hz. ...........................................................................................132 
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Figure 3.S1. The SHAP dependence plot for energy deviation. (a-c) For MTD, two trends 

are still increasing the probability of having MTDs: (1) values of energy deviation larger 

than approximately 2.5 with lower values of total energy, higher values of spectral 

bandwidth, and low to high values of GLCM contrast and (2) voxels showing energy 

deviation larger than 2.5 with higher values of total energy, lower values of spectral 

bandwidth, and low to high values of GLCM contrast. (d-e) For the salt seismic facies, values 

of energy deviation smaller than 2.5 for cases 1 and 2 and smaller than approximately 4 

when adding band-limited noise, and low values of coherence are pushing towards salt. 

However, some values characterized by low energy deviation, high coherence and some 

voxels showing energy deviation larger than 2.5 are also increasing the probability of a voxel 

being classified as salt. (g-i) Finally, for conformal sediments, two well-defined trends are 

still visible: (1) values of energy deviation smaller than approximately 2.5 and high values 

of total energy, coherence, and GLCM contrast and (2) values of energy deviation larger 

than 2.5 with low values of total energy, coherence, and GLCM contrast. .......................133 

Figure 3.S2. The SHAP dependence plot for coherence. (a-c) In the MTD seismic facies, 

values of coherence smaller than approximately 0.9 and high values of total energy are 

pushing towards MTD seismic facies, whereas values of coherence smaller than 0.9 and low 

total energy increase the probability of having MTD, but the latter offers less impact in the 

classification with SHAP values closer to zero. In contrast, for cases 2 and 3, I note that 

values of coherence between 0.35-0.45 to approximately 0.9 and low to high values of total 

energy are pushing towards MTD, whereas now values of coherence lower than 

approximately 0.35-0.45 are, in general, decreasing the probability. (d-f) For salt, the 
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distribution of SHAP values is changing for cases 2 and 3. For cases 1 and 2, voxels showing 

values of coherence lower than approximately 0.85 and low to high values of covariance of 

dip and energy gradient are increasing the probability of having salt. For case 3 a better-

defined trend for the salt seismic facies is visible with values of coherence smaller than 0.3 

and low to high values of covariance of dip and energy gradient increasing the probability. 

(g-i) For conformal sediments, two trends for this seismic facies are still seen. For case 1, 

values of coherence smaller than 0.85 with higher values of covariance of dip and energy 

gradient and values of coherence larger than 0.85 with low values of covariance of dip and 

energy gradient are increasing the probability of a voxel being classified as conformal 

reflectors. When applying Kuwahara filtering, values of coherence smaller than 0.45 with 

low to high values of covariance of dip and energy gradient, and values of coherence larger 

than 0.85 with low values of covariance of dip and energy gradient are pushing towards the 

conformal sediments. Finally, when the input data are contaminated with band-limited noise, 

the first trend is characterized by values of coherence smaller than 0.4 and high values of 

covariance of dip and energy gradient, whereas the second trend is associated with values of 

coherence larger than 0.4 and lower covariance of dip and energy gradient. ....................134 

Figure 3.S3. The SHAP dependence plot for covariance of dip and energy gradient. (a-c) 

For the MTD seismic facies, two trends are still visible: (1) voxels characterized by 

covariance of dip and energy gradient lower than approximately 0.15 with higher total 

energy and GLCM entropy, and lower dip deviation and (2) voxels associated with 

covariance of dip and energy gradient larger than 0.15 with lower total energy, and higher 

GLCM entropy and dip deviation are increasing the probability of having MTDs. (d-f) For 
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the salt seismic facies, values of and covariance of dip and energy gradient smaller than 0.15-

0.2 with lower values of coherence are pushing towards salt. However, some values larger 

than 0.15-0.2 also increase the probability for this seismic facies. (g-i) Finally, for the 

conformal sediments, two well-defined tends increasing the probability of a voxel being 

classified as conformal reflectors are seen: (1) values of covariance of dip and energy 

gradient smaller than 0.1-0.2 and higher values of coherence and (2) values of covariance of 

dip and energy gradient larger than 0.1-0.2 with lower values of coherence. ...................135 

Figure 3.S4. The SHAP dependence plot for GLCM contrast. (a-c) For MTD, two trends 

are still visible, but there is some vertical overlap between them for cases 1 and 2. For these 

cases, values of GLCM contrast lower than approximately 90 and low to high values of 

covariance of dip and energy gradient and total energy are pushing towards MTDs. In 

contrast, for case 3, there is more vertical separation between the trends in which values of 

GLCM contrast smaller than 140 and low to high values of dip deviation are increasing the 

probability. (d-f) In cases 1 and 2 for the salt seismic facies, values of GLCM contrast larger 

than approximately 75-80 and low to high values of covariance of dip and energy gradient 

are increasing the probability of having salt. Moreover, when adding band-limited AWGN, 

a better definition of the trend for this seismic facies is seen in which values of GLCM 

contrast larger than approximately 140 with lower total energy are increasing the probability. 

(g-i) For the conformal sediments facies, two trends that are pushing towards this facies are 

still seen. For cases 1 and 2, the first trend is characterized by values of GLCM contrast 

lower than approximately 75-80 and lower values of energy deviation and covariance of dip 

and energy gradient, whereas the second trend show values of GLCM contrast larger than 
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75-80 and higher values of energy deviation and covariance of dip and energy gradient. For 

case 3, a similar trend than case 2 is seen, but now the threshold for the GLCM contrast is 

increasing to approximately 110. .......................................................................................136 

Figure 3.S5. The SHAP dependence plot for spectral bandwidth. When applying Kuwahara 

filtering the spectral information is compressed and clustered for all facies. (a-c) For MTD, 

frequencies lower than 70 Hz with low to high values of energy deviation are increasing the 

probability in case 1, while applying Kawahara filtering, frequencies lower than 65 Hz and 

low to high values of energy deviation are increasing the probability of having MTDs. (d-f) 

For the salt seismic facies, frequencies larger than 70 Hz and high dip deviation tend to push 

towards this seismic facies. Moreover, for case 2, frequencies larger than 65 Hz and high 

values of dip deviation increase the probability of having salt. (g-i) Finally, for conformal 

sediments, an overlap with the MTD facies is visible with frequencies between 40 and 65 

Hz and low to high values of covariance of dip and energy gradient increasing the probability 

of having a voxel classified as conformal sediments. For case 2, two well-defined trends 

push towards the conformal sediments facies: (1) frequencies between 60 to 70 Hz with high 

values of covariance of dip and energy gradient and (2) frequencies lower than 60 Hz and 

low values of covariance of dip and energy gradient. Note that in the presence of strong 

noise, all trends and impact are lost when using the spectral bandwidth attribute with 

frequencies pushing towards SHAP values close to zero. .................................................137 

Figure 3.S6. The SHAP dependence plot for GLCM entropy. Trends are not that well-

defined compared to other attributes and MTDs and conformal sediments show overlap 

between them (a-c) For the MTD seismic facies, values of GLCM entropy larger than 0.5 
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with high values of total energy increase the probability (d-f) For salt, values of GLCM 

entropy larger than 0.5 with low to high values of covariance of dip and energy deviation 

are increasing the probability for cases 1 and 2 (g-i) Finally, for conformal sediments, values 

of GLCM entropy smaller than 0.5 with high values of total energy are increasing the 

probability. Note that some voxels characterized by GLCM entropy larger than 0.5 and lower 

total energy can also increase the probability of having MTD or conformal sediments. 

Moreover, applying Kuwahara filtering, trends for these seismic facies remain very similar 

to considering case 1, but the data look more compressed and clustered, making the trends 

better defined. Finally, similar to the spectral bandwidth attribute, trends using the GLCM 

entropy are lost in the presence of strong noise. ................................................................138 

Figure 3.S7. SHAP dependence plot for reflector convergence. Using the original data, there 

is a strong overlap between facies and analyzing possible trends for this attribute is a 

challenging task. However, applying Kuwahara filtering or adding band-limited AWGN, 

these trends become slightly better defined for all seismic facies. However, some overlap 

between seismic facies still exists. (a-c) For MTD seismic facies, values of reflector 

convergence larger than approximately 0.25-0.3 with high values of covariance of dip and 

energy gradient have higher impact in the classification and increase the probability. 

However, some values characterized by reflector convergence lower than 0.25-0.3 and lower 

values of covariance of dip and energy gradient also increase the probability for this facies. 

(d-f) For salt, voxels characterized by reflector convergence lower than 0.3 and low values 

of coherence and high values of dip deviation increase the probability. (g-i) For the 

conformal sediments facies, two trends increasing the probability are seen: (1) values of 
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reflector convergence larger than approximately 0.2 with low values of coherence and total 

energy, and (2) values of reflector convergence smaller than 0.2 and higher values of 

coherence and total energy. ................................................................................................139 

Figure 4.1. The 3D Blake Ridge seismic volume. (a) Representative vertical section along 

inline 41. (b) Phantom horizon ranging from 4.5 to 5.5 s generated after picking the sea floor 

reflector. I bracket the seismic geologic features of interest (the yellow rectangle) and discard 

areas characterized by lower signal-to-noise ratio (S/N) with little interpretational value.

 ............................................................................................................................................177 

Figure 4.2. Seismic response of target seismic facies. (a) Along inline 41. Four main seismic 

facies are visible. The BSR cross-cuts strata and it is characterized by a leading negative 

high-amplitude reflector (the white arrows). Above the BSR, I observe high-amplitude (the 

yellow arrows), chaotic to sigmoid, low-amplitude reflectors whereas reflectors close to the 

sea floor are associated with high-amplitude, high frequency seismic response. Below the 

BSRs, high-amplitude discontinuous reflectors are seen (the orange arrows). (b) Idealized 

model of the gas hydrate environment in the Blake Ridge. The GHSZ is characterized by 

favorable pressure and temperature conditions for gas hydrate development and represents 

the region from the BSR up to the sea floor. The BSR tends to be parallel to the sea floor, 

whereas trapped free gas underlies the BSR. .....................................................................178 

Figure 4.3. PCA for attribute selection and SOM for unsupervised seismic facies workflow.  

To delineate the BSR and differentiate it from other seismic facies in the Blake Ridge, I 

select a suite of spectral and geometric seismic attributes. To determine meaningful seismic 

attributes, I pick a suite of polygons enclosing the four target seismic facies and analyze 
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three training data selection strategies for PCA (1) unbiased training data using all samples 

in the 3D seismic volume, (2) biased training data using samples associated with the BSR 

seismic facies, and (3) biased training data using same number of samples per each of the 

four seismic facies. Furthermore, I also apply Z-score normalization to remove scale 

dependency between seismic attributes. Next, I compute the correlation matrix C, calculate 

the eigenvectors and eigenvalues. Then, I select seismic attributes associated with high 

impact in the eigenvectors. Finally, using the selected attributes as input for SOM, I perform 

an unsupervised seismic facies analysis for each case in my analysis to delineate and isolate 

the BSRs. ............................................................................................................................179 

Figure 4.4. Seismic attributes along inline 41. (a) GLCM entropy, (b) total energy, (c) peak 

frequency, (d) peak magnitude, (e) GLCM contrast, (f) dip deviation, and (g) coherence. The 

BSRs show lower GLCM contrast, GLCM entropy, and high total energy, coherence, and 

peak magnitude. The continuous BSR towards the southwest is characterized by low values 

of dip deviation and peak frequency of approximately 60 Hz. The discontinuous BSRs 

towards the northeast are characterized by higher dip deviation, whereas they cannot be 

correctly interpreted using the peak frequency attribute. ...................................................180 

Figure 4.5. Training data sets definitions (a-e) The training data consist of manually picked 

polygons enclosing the BSRs (purple polygons), high-amplitude, high frequency reflectors 

(blue polygons), chaotic to sigmoid, low-amplitude reflectors (green polygons), and high-

amplitude, discontinuous reflectors associated with trapped free gas below the BSRs (red 

polygons). ...........................................................................................................................181 
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Figure 4.6. Cartoons showing the relation between choice of training data and eigenvectors 

v1 and v2. Red circles represent attribute values a1 and a2 for voxels associated with the target 

facies, whereas blue circles represent values associated with all other facies. (a) The first 

eigenvector v1 best represents the data as a whole when the training data are selected to 

statistically represent all the data but does not discriminate between the blue and red seismic 

facies. (b) The first eigenvector v1 represents a better discriminator between the seismic 

facies when the training data are balanced (~15 voxels representing each facies in this 

image). Note that the center of the crossplot has shifted such the mean value of the training 

data in the two images is at the origin of the a1 and a2 axes. Finally, increasing the number 

of input attributes or selecting different attributes might improve the differentiation between 

the seismic facies................................................................................................................182 

Figure 4.7. Eigenvector 1 for the three training data selection strategies. (a) using all samples 

in the seismic volume as training data (case 1). I observe that the total energy attribute shows 

the highest contribution followed by the peak magnitude, coherence, GLCM contrast, dip 

deviation, GLCM entropy, and peak frequency. (b) using training data considering only 

voxels associated with the BSR (case 2). The total energy still shows the highest 

contribution, whereas coherence becomes the second most important attributes, followed by 

the GLCM entropy, the peak magnitude, GLCM contrast, dip deviation, and peak frequency. 

(c) using a balanced training data considering the four target seismic facies (case 3). The 

most meaningful attributes are given by the total energy, coherence, peak magnitude, and 

GLCM entropy. ..................................................................................................................183 
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Figure 4.8. Eigenvector 2 for the three training data selection strategies. (a) using all samples 

in the seismic volume as training data (case 1). The highest contribution is associated with 

the GLCM entropy, whereas the second most important attributes is given by the GLCM 

contrast, followed by the peak frequency, total energy, peak magnitude, coherence, and dip 

deviation. (b) using training data considering only voxels associated with the BSR (case 2). 

The highest contribution is given by the peak magnitude, followed by the GLCM contrast, 

and total energy seismic attributes. (c) using a balanced training data considering the four 

target seismic facies (case 3). The dip deviation attribute shows the highest impact, followed 

by the peak frequency, and peak magnitude. .....................................................................184 

Figure 4.9. Eigenvector 3 for the three training data selection strategies. (a) using all samples 

in the seismic volume as training data (case 1). Dip deviation shows the highest contribution, 

followed by the peak frequency, and peak magnitude. (b) using training data considering 

only voxels associated with the BSR (case 2). The most important attribute is given by the 

peak frequency, whereas the dip deviation is the second most important attribute, followed 

by the GLCM contrast, peak magnitude total energy, coherence, and GLCM entropy. (c) 

using a balanced training data considering the four target seismic facies (case 3). The peak 

frequency has the highest impact followed by the GLCM contrast, peak magnitude, GLCM 

entropy, total energy, coherence, and dip deviation attributes. ..........................................185 

Figure 4.10. SOM facies prediction corendered with the seismic amplitude along inline 61 

for cases 1a, 1b, and 1c. (a) For case 1a, I consider the total energy, peak magnitude and 

coherence attributes as input. The more discontinuous BSR towards the northeast and the 

more continuous BSR towards the southwest are characterized by a purple-reddish facies 
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(the white arrows). However, some discontinuities close to the edges of the continuous BSR 

are visible (the blue arrows). The high-amplitude, high frequency reflectors close to the sea 

floor (red rectangle) and the high-amplitude discontinuous reflectors associated with trapped 

free gas below the BSR (the red arrows) tend to also be characterized by purple facies. 

However, some reflectors below the BSRs can be characterized by dark blue-yellow facies 

associated with of lower-amplitude, more discontinuous reflectors (the orange arrows). (b) 

For case 1b, the BSRs are characterized by purple facies (the white arrows), whereas the 

edges of the more continuous BSR are better delineated (the blue arrows). (c) For case 1c, I 

use as input for SOM the total energy, coherence, peak magnitude, and GLCM entropy 

attributes. The BSRs are characterized by purple seismic facies (the white arrows). 

Moreover, case 1c provides better delineation than case 1a of the edges of the continuous 

BSR towards the southwest, and less overlap between seismic facies than case 1b (the red 

rectangle). ...........................................................................................................................186 

Figure 4.11. SOM facies prediction corendered with the seismic amplitude along inline 61 

for cases 2a, 2b, and 2c. (a) For case 1b, the BSR towards the southwest is characterized by 

green seismic facies (the white arrows). However, the classification looks noisier which 

makes the interpretation of the more discontinuous BSRs towards the northeast challenging. 

Furthermore, there is an increase in the overlap between the target seismic facies. (b) For 

case 2b, the BSRs are characterized by purple seismic facies (the white arrows). Also, I 

observe some dipping reflectors (the yellow arrows) and high-amplitude reflectors close to 

the sea floor (the red rectangle) being classified as purple seismic facies. The trapped free 

gas underlying the BSRs tend to be classified as a combination of purple facies (the red 
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arrows) and dark blue-yellow facies (the orange arrows) by the algorithm. (c) For case 2c, 

the BSRs are still correctly classified as purple seismic facies (the white arrows). I also 

observe that some dipping reflectors (the yellow arrows) and high-amplitude, high frequency 

reflectors (the red rectangle) above the BSRs are also characterized by purple seismic facies. 

Finally, the trapped free gas below the BSR still shows some overlap with the BSR seismic 

facies (the red arrows), whereas dark-blue-red facies represents area potentially associated 

with changes in the amplitude and frequency (the orange arrows). ...................................187 

Figure 4.12. SOM facies prediction corendered with the seismic amplitude along inline 61 

for cases 3a, 3b, and 3c. (a) Case 3a offers the same results than case 1c because the same 

input attributes, dip deviation, peak frequency and peak magnitude, are used for SOM. (b) 

For case 3b, the classification appears noisier similar to case 1b. The continuous BSRs 

towards the southwest is defined as green seismic facies (the white arrows). However, 

correct identification of the surrounding geologic features such as the discontinuous BSRs 

and trapped free gas is challenging. (c) For case 3c, the BSRs are still characterized by purple 

seismic facies (the white arrows). However, the edges of the BSRs towards the southwest 

appear more discontinuous than in previous results (the blue arrows). Finally, overlap 

between the BSR and surrounding seismic facies is still visible. ......................................188 
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in the Blake Ridge seismic volume. For SOM, I select a maximum of three or four seismic 

attributes characterized by highest impact in the first three eigenvectors for cases 1, 2, and 

3. .........................................................................................................................................190 
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Abstract 
 

Understanding how to correctly select a group of input seismic attributes is critical 

to perform a robust machine learning (ML)-based seismic facies analysis. However, due to 

the large number of seismic attributes enhancing different geologic features in the seismic 

volume and the fact that some of these attributes might offer redundant or irrelevant 

information, interpreters usually ask which the most optimal attributes are for their facies 

analysis and how the selected attributes might impact their results. In this dissertation, I 

evaluate three different strategies to address these challenges. In my first application, I 

introduce a novel technique called exhaustive probabilistic neural network (PNN), which 

combines an exhaustive search algorithm with a PNN to evaluate all possible combinations 

of seismic attributes and select the combination that best differentiates the target salt and 

nonsalt seismic facies in a 3D Eugene Island seismic volume located in the Gulf of Mexico. 

From seven candidate input attributes, the exhaustive PNN removed irrelevant attributes and 

found that a smaller group of four seismic attributes composed of the coherence, GLCM 

contrast, total energy, and dip deviation provided the most accurate result.  

As a second approach, I apply Shapley additive explanations (SHAP) to understand 

how changes in the quality of the input seismic attributes might impact the predictions made 

by a random forest architecture trained to differentiate between mass transport deposits 

(MTDs), salt, and conformal siliciclastic sediments in the Gulf of Mexico. I found that the 

seismic attribute importance is dynamic and can change based on the facies analyzed and 

the quality of the input seismic amplitude and attributes data. Furthermore, I found that, the 

ML architecture learns a set of rules in multiattribute space to differentiate between the three 
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facies, where seismic attributes measuring variations in energy and dip contribute most to 

the classification.  

My third attribute selection workflow was based on the well-established use of 

principal component analysis (PCA). Here, my goal was to choose the best attributes for use 

in unsupervised gas hydrate facies analysis in a seismic volume located in the Blake Ridge, 

offshore South Carolina, USA. For attribute selection, I apply PCA considering three 

training data selection strategies. I found that using a balanced training data set - composed 

of the same number of samples per seismic facies – offered the best identification of the gas 

hydrate bottom-simulating reflectors (BSRs) and reduced the overlap with surrounding 

facies. A weakness of this workflow is due to PCA measuring the impact of individual 

seismic attributes instead of the optimal attribute combination, with the total number of 

attributes used subjective rather than quantitative. I use the selected attributes as input for 

self-organizing maps (SOM) classification. 

After this evaluation, I find that the exhaustive PNN technique offers a robust 

implementation to quantitatively select the most optimal seismic attribute combination to 

perform a supervised seismic facies analysis, whereas SHAP provides the best insight not 

only into which attributes provide the highest individual importance in the classification, but 

also as to what attribute (e.g., anomalously high or low) value offers the best discrimination 

between the target facies, providing better insight into not only how the ML model works, 

but also in the underlying seismic expression of the geology.  
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Chapter 1: Introduction 
 

Machine learning (ML) and seismic attributes have been increasingly applied by 

geoscientists to discover patterns in their data and identify geologic features of interest as a 

means to perform a more complete and faster reservoir characterization (Roy et al., 2014; 

Zhao et al., 2015; Di et al. 2017, 2019; Lubo-Robles and Marfurt, 2019; Wu et al., 2019). 

For ML-based seismic facies analysis, seismic attributes have become common 

inputs. Following Chopra and Marfurt (2007), a seismic attribute consists of any measure 

computed from a seismic amplitude volume that successfully enhances geologic features in 

a depositional environment. However, since the introduction of complex trace attributes by 

Taner et al. (1979), the number of attributes has exploded where many of them provide 

redundant and irrelevant information (Barnes, 2007), making an integrated analysis of these 

measurements difficult for all but the most experienced seismic interpreters (Roden et al., 

2015)  

Therefore, determining the most optimal seismic attribute combination to use as 

input into a ML algorithm to distinguish among seismic facies continues to be a challenging 

task. Such a choice requires not only a substantial understanding on what seismic attributes 

measure and how they respond to the seismic expression of stratigraphic and structural 

features of interest but also as to how changes in the input attributes might impact the results 

obtained from the ML models. 

This dissertation aims to address the challenges stated above, and is structured as 

follows: 
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In Chapter 2, I introduce a novel technique called exhaustive probabilistic neural 

network (PNN), which couples a PNN with an exhaustive search algorithm to test all 

possible combinations of seismic attributes and select the most optimal attribute combination 

to perform a supervised seismic facies classification to distinguish between salt and nonsalt 

seismic facies in a Gulf of Mexico seismic amplitude volume.  

 In Chapter 3, I train a random forest model to distinguish between mass transport 

deposits, salt, and conformal sediments in the Gulf of Mexico and apply Shapley additive 

explanations (SHAP) to understand how perturbations made to the input seismic attributes 

such as applying a Kuwahara filter or adding band-limited noise affect the model predictions. 

Moreover, by corendering the SHAP values with the seismic amplitude volume, I perform 

an in-context interpretation to evaluate how changes in the geology impact the model 

classification.  

In Chapter 4, I use a suite of geometric and spectral attributes as input into self-

organizing maps (SOM) to perform an unsupervised seismic facies analysis as a means to 

identify bottom simulating reflectors (BSRs) and surrounding facies in a seismic volume 

located in the Blake Ridge, offshore South Carolina, USA where the attributes are selected 

using those that contribute most to the first several principal components. Because my 

objective is to differentiate specific target seismic facies, I evaluate the use of three different 

training data sets: (1) using all seismic data samples found in the entire 3D seismic volume, 

(2) using biased training data that are extracted from polygons only enclosing the BSRs, and 

(3) using biased training data considering four main seismic facies including the BSRs, 

chaotic to sigmoid reflectors, low-amplitude reflectors, high-amplitude, high frequency 
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reflectors, and trapped free gas. Finally, in Chapter 5, I summarize the major conclusions 

based on the results obtained in Chapters 2, 3 and 4 in the dissertation.      
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Chapter 2: Exhaustive probabilistic neural network for 

attribute selection and supervised seismic facies 

classification* 
 

* This study is published on the Interpretation journal as 

Lubo-Robles, D., T. Ha, S. Lakshmivarahan, K. J. Marfurt, and M. J. Pranter, 2021, Exhaustive 

probabilistic neural network for attribute selection and supervised seismic facies 

classification: Interpretation, 9, no. 2, T421-T441, doi: 10.1190/INT-2020-0102.1 

 

Abstract 

Machine learning (ML) algorithms, such as principal component analysis, 

independent component analysis, self-organizing maps, and artificial neural networks, have 

been used by geoscientists to not only accelerate the interpretation of their data, but also to 

provide a more quantitative estimate of the likelihood that any voxel belongs to a given 

facies. Identifying the best combination of attributes needed to perform either supervised or 

unsupervised ML tasks continues to be the most-asked question by interpreters. In the past 

decades, stepwise regression and genetic algorithms have been used together with supervised 

learning algorithms to select the best number and combination of attributes. For reasons of 

computational efficiency, these techniques do not test all of the seismic attribute 

combinations, potentially leading to a suboptimal classification. In this study, I have 

developed an exhaustive probabilistic neural network (PNN) algorithm that exploits the 

PNN’s capacity in exploring nonlinear relationships to obtain the optimal attribute subset 

that best differentiates target seismic facies of interest. I determine the efficacy of my 

proposed workflow in differentiating salt from nonsalt seismic facies in a Eugene Island 

seismic survey, offshore Louisiana. I find that from seven input candidate attributes, the 
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exhaustive PNN is capable of removing irrelevant attributes by selecting a smaller subset of 

four seismic attributes. The enhanced classification using fewer attributes also reduces the 

computational cost. I then use the resulting facies probability volumes to construct the 3D 

distribution of the salt diapir geobodies embedded in a stratigraphic matrix. 

Introduction 

The past two decades have seen an increasing use of unsupervised and supervised 

machine learning (ML) techniques for geophysical applications such as fault detection (Di 

et al., 2017, 2019; Wu et al., 2019), seismic facies analysis (Roy et al., 2014; Zhao et al., 

2015; Amin et al., 2017; Long et al., 2018; Wrona et al., 2018), and prediction of well log 

properties based on seismic attributes (Hampson et al., 2001; Dorrington and Link, 2004). 

For seismic facies classification, interpreters select a suite of seismic attributes as input to 

define a multivariate classification task. Common attributes used for classification include 

the same geometric, instantaneous, spectral, textural, and geomechanical attributes that 

human interpreters have found to be useful. 

In supervised learning, the goal is to differentiate one or more interpreter-defined 

target seismic facies from each other and from an undifferentiated background. In 

unsupervised learning the goal is to provide a relatively unbiased classification of the 

dominant facies which may or may not have geologic significance. However, whether the 

interpreter is performing an unsupervised or supervised seismic facies classification, the 

choice of attributes and the selection of training data strongly bias the results. Moreover, 

selecting the best attribute combination to distinguish different target facies requires 
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significant understanding of not only geologic processes and the seismic expression of 

structural and stratigraphic patterns, but also of the features measured by seismic attributes.   

There are three other challenges in using ML for seismic facies analysis: (1) the 

Hughes (1968) phenomenon in which the classification performance of a ML algorithm 

decreases after reaching a certain number of input features, (2) the overwhelming number of 

attributes that limit the interpreter’s ability to interact with all the information available 

(Roden et al., 2015), and (3) the presence of redundant and irrelevant attributes that do not 

provide any additional information and create confusion for human interpreters (Barnes, 

2007), and, at best, increased cost for ML algorithms. 

A partial solution is dimensionality reduction. Principal component analysis (PCA) 

and independent component analysis are simple projection techniques that find the 

statistically most important features (Guo et al., 2009; Qi and Castagna, 2013; Chopra and 

Marfurt, 2014; Honorio et al., 2014; Roden et al., 2015; Lubo-Robles and Marfurt, 2019). 

Generative topographic maps (GTM) and self-organizing maps are unsupervised learning 

algorithms in which a multidimensional data set is projected into a lower dimensional space 

to extract the most valuable information from the data (Roy et al., 2014; Roden et al., 2015; 

Zhao et al. 2015; Qi et al., 2016; Zhao et al., 2018). If one allows a large number of classes 

(colors), the classification is approximately continuous, with the final “categorical” 

classification defining specific seismic facies provided by the human interpreter. Once the 

major facies have been mapped and their attribute sensitivity are quantified, a smaller suite 

of attributes or linear combinations of attributes can be used for supervised learning. 
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Considerably more progress has been made in predicting continuous variables from 

seismic attribute data. Working with seismic attributes and well-log data, Hampson et al. 

(2001) use stepwise multilinear regression to choose the best number and collection of 

seismic attributes to predict a desired well-log property. Dorrington and Link (2004) 

generalize this approach by using a genetic algorithm together with a multilayer feedforward 

network to select seismic attributes for porosity prediction. Support vector machine (SVM) 

algorithms define weights to be applied to the different attributes to achieve the desired 

separation between seismic facies. In their work, Chang-kai and Wen-kai (2010) use those 

attributes with larger SVM weights to construct a smaller subset of attributes to differentiate 

reservoir from nonreservoir seismic facies. Amin et al. (2017) use information theory to rank 

the seismic attributes and determine the optimal attribute subset for salt-dome detection. 

Wang et al. (2015) combine a rough sets algorithm with PCA to reduce the number 

of attributes used as input for porosity prediction. Finally, Galvis et al. (2017) first use a 

relevancy filter to discard attributes showing high correlation and then apply a wrapper 

forward method selection based on k-means to select the optimal combination of attributes 

to identify surface waves in multicomponent common-shot gathers. 

 One key limitation to these workflows is that they do not test all the possible 

combinations of input features; thus, they can miss important relationships existing between 

the attributes. Recently, Qi et al. (2020) evaluate all possible combinations of seismic 

attributes to differentiate among salt, mass-transport deposits (MTDs) and conformal 

sediments using a semisupervised learning technique consisting of applying Gaussian 

mixture models (GMMs) and Bhattacharyya distance to measure the similarity between two 
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GMMs per facies and select the optimal combination associated with the maximum average 

cumulative distance, and then GTM is applied to perform an unsupervised seismic facies 

classification. 

In this study, I propose to perform an exhaustive search in which all possible 2M - 1 

combinations are tested, where M represents the number of input seismic attributes. Because 

testing all possible combinations of attributes is computationally expensive and the 

algorithm’s complexity is proportional to the number of input attributes,  I use a supervised 

ML technique called the probabilistic neural network (PNN), which is based on well-

established Gaussian statistics and allows for a more robust probability density function 

(PDF) estimation based on Parzen windows and Bayes’s criteria to provide simple, fast, and 

repeatable training in which only the smoothing parameter r requires optimization.  

By coupling an exhaustive search algorithm with the PNN, I can explore nonlinear 

relationships between seismic attributes and seismic facies. The goal of my “exhaustive 

PNN” is to test all possible combination of seismic attributes, reject irrelevant and redundant 

attributes, provide the optimal combination to distinguish salt from siliciclastic seismic 

facies, and perform a supervised seismic facies classification. 

 I begin my paper with a summary of the mechanics of PNN applied to seismic facies 

classification. I then describe my exhaustive search algorithm to create different subsets of 

seismic attributes that are then provided to a PNN to measure their performance. After 

selection of the best combination, I apply a first-order gradient optimization technique called 

Adam to further improve the performance of the neural network. 
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Next, I apply my algorithm to the Eugene Island 3D seismic survey located in the 

Gulf of Mexico. To differentiate the low-amplitude, discontinuous reflectors associated with 

salt diapirs from the high-amplitude, parallel reflectors associated with the surrounding 

conformal sedimentary layers, I use discontinuity, texture, and nonparallelism attributes. I 

also manually define the target facies of the training and validation data sets to represent salt 

diapirs and conformal reflectors. Given the optimal combination of seismic attributes, I 

perform a supervised seismic facies classification and analyze whether the proposed 

workflow can determine the best combination of seismic attributes for the desired 

classification task. An appendix provides mathematical details explaining how the algorithm 

works.  

Geologic background 

The Eugene Island minibasin is a giant Plio-Pleistocene oil and gas field located 

offshore Louisiana in the outer continental shelf of the Gulf of Mexico (Alexander and 

Flemings, 1995; Joshi and Appold, 2016). Following Alexander and Flemings (1995), the 

Eugene Island minibasin evolution can be described in three phases.  

The first phase of evolution is characterized by the deposition of distal deltaic sands, 

bathyal and prodelta shales, and turbidites on top of a salt sheet. This sediment loading 

caused the salt sheet to migrate outward laterally, creating new accommodation space in the 

area (Alexander and Flemings 1995; Joshi and Appold, 2016). The second phase is related 

to high sediment accumulation rates due to salt withdrawal and is characterized by lowstand 

deltas associated with deposition of mud and sand sequences (Alexander and Flemings, 

1995; Joshi and Appold, 2016). Finally, the third phase is associated with fluvial deposits 
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and a decrease of salt withdrawal in which little accommodation space was further developed 

(Alexander and Flemings, 1995; Joshi and Appold, 2016).  

Data set 

The Eugene Island seismic survey is located in the Gulf of Mexico, offshore 

Louisiana, and it has an area of approximately 306 km2. For this study, the seismic volume 

consists of 700 inlines and 700 crosslines with a bin size of 82.5 x 82.5 ft and record length 

of 3 s. 

Figure 2.1a shows a representative vertical slice along inline 521 through the seismic 

amplitude volume. I observe a salt diapir (salt diapir 1; the red arrow) associated with salt 

withdrawal during the prodelta and proximal deltaic phases of deposition (Alexander and 

Flemings, 1995; Joshi and Appold, 2016) surrounded by high-amplitude, laterally 

continuous conformal reflectors. In general, salt diapir 1 is characterized by low-amplitude, 

discontinuous reflectors. However, crossing coherent migration artifacts (the blue arrow) 

associated with the high P-wave velocity and geometry of the salt (Jones and Davison, 2014) 

are seen inside salt diapir 1.  

Also, I show a time slice at t = 2 s through the seismic amplitudes in the Eugene 

Island survey (Figure 2.1b). Besides salt diapir 1, I observe the presence of another salt diapir 

(salt diapir 2) that is also characterized by low-amplitude, discontinuous reflectors. 
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Methods 

PNN 

The PNN is a type of feedforward neural network widely used in classification tasks. 

To classify a given voxel, the PNN uses Parzen windows and Bayes’s criteria to estimate its 

PDF and assigns it to the class in which the PDF is largest (Specht, 1990; Masters, 1995; 

Hajmeer and Basheer, 2002). Several kernels can be used during the Parzen window 

estimation; however, the most common kernel used is the Gaussian function due to its high 

performance and simple computation (Masters, 1995). I begin by subdividing my volume 

into three parts: (1) labeled training data used to define several of the necessary parameters 

for the model, (2) labeled validation data used to test my algorithm’s performance during 

the learning phase, and (3) the remainder of the volume representing test/unseen data to be 

classified by the trained PNN. In my application, both the training and validation data are 

generated by the human interpreter drawing polygons around facies of interest. In addition, 

another approach to assess the effectiveness of the model when classifying previously 

unseen data can be defining a test dataset by picking polygons for the seismic facies of 

interest but using salt diapir 2 and its surrounding conformal sediments instead of performing 

the seismic facies classification in the whole volume. The mth attribute at a training sample 

n, anm, defines a component of a seismic attribute vector an. Given my training data 

composed of a set of training seismic attributes vectors a, the average estimated PDF 𝑔𝑘(𝐱) 

is given by:  

𝑔𝑘(𝐱) =
1

𝑁𝑘
∑ exp

[− ∑
(𝑥𝑚−𝑎𝑛𝑚)2

𝑟2
𝑀
𝑚=1 ]𝑁𝑘

𝑛=1 ,                                                                      (1) 
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where Nk is the number of training samples associated with the kth class defined by the 

training data, M is the number of input attributes, x is a validation seismic attribute vector, 

and r is a smoothing parameter that requires careful selection through training.  

The PNN architecture consists of four layers (1) the input layer, (2) the pattern layer, 

(3) the summation layer, and (4) the output layer (Specht, 1990; Masters, 1995) (Figure 

2.2a). In the input layer, an unknown input sample is selected to be classified into a particular 

class. Second, in the pattern layer, the PNN starts by computing the difference between the 

validation and the training attributes (Figure 2.2b). This difference is then input into the 

Gaussian activation function in equation 1 (Masters, 1995). In the summation layer, the PNN 

calculates the average estimated density function 𝑔𝑘(𝐱) for each class. Finally, in the output 

layer (Figure 2.2b), the PNN assigns the unknown sample to class q where 

𝑔𝑞(𝐱)  ≥  𝑔𝑘(𝐱) 𝑘 = 1,2, … , 𝐾.                           (2) 

PNN also provides confidence estimates of the classification (Masters, 1995) given by 

𝑃𝑘(𝐱) =

1

𝑁𝑘
∑ 𝛿𝑛𝑘exp

[− ∑
(𝑥𝑚−𝑎𝑛𝑚)2

𝑟2
𝑀
𝑚=1 ]𝑁𝑘

𝑛=1

∑ [
1

𝑁𝑘
∑ 𝛿𝑛𝑘exp

[− ∑
(𝑥𝑚−𝑎𝑛𝑚)2

𝑟2
𝑀
𝑚=1 ]𝑁𝑘

𝑛=1 ]𝐾
𝑘=1

 ,                                         (3) 

where Pk represents the normalized probabilities given by the estimated PDF of each class k 

, 𝑔𝑘(𝐱), divided by the sum of all the density functions of all K classes. The Kronecker delta 

𝛿𝑛𝑘 is equal to one if the training case n belongs to class k, and it is zero otherwise. 
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PNN training 

To optimize the smoothing parameter r, I sweep over a range of values for r, and 

select the one associated with the minimum continuous error function 𝑒𝑘(𝐱) defined by 

Masters (1995) as 

𝑒𝑘(𝑥) =  [1 − 𝑃𝑘(𝑥)]2 +  ∑ [𝑃𝑗(𝑥)]2
𝑗≠𝑘 ,                (4) 

Because I am interested in the error of all the samples, I define the global error as   

𝐸 =  
1

𝐻
∑ 𝑒𝑘(𝐱ℎ)𝐻

ℎ=1 ,                               (5) 

where H is the number of validation samples. 

 A limitation of the sweeping over values of the smoothing parameter r is that it uses 

the same value for each seismic attribute. To adapt the selection of r for each attribute, I use 

an adaptive learning rate first-order gradient stochastic optimization algorithm called Adam, 

which computes the first and second moments of the gradient of E with respect to the 

smoothing parameter r (Kingma and Ba, 2015). For more information on the mathematical 

details of the Adam procedure, please refer to Appendix A. 

Exhaustive PNN workflow  

I present a novel technique called exhaustive PNN, which uses a PNN-based 

architecture and a voxel-type classification for the model generation to automatically 

determine the best suite of seismic attributes for performing a supervised seismic facies 

classification. 
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The first step in the exhaustive PNN workflow (Figure 2.3) consists of selecting a 

suite of candidate seismic attributes using my geological insight. Using M = 7 candidate 

input attributes, the total number of combinations is 2M – 1 = 127. Then, I apply a 3D 

Kuwahara filter to block and smooth the seismic attributes, preconditioning them for 

subsequent classification (Qi et al., 2016). Second, a group of polygons for each facies is 

selected to create the training and validation data sets used for the model generation. In this 

application, supervised data labeled by the interpreter represents 0.0093% of the seismic 

volume after picking the polygons for each seismic facies on seven coarsely spaced inlines. 

Then, these data were split into two parts, with 80% of the voxels belonging to the training 

data, and the remaining 20% of the voxels belonging to the validation data set. 

In addition, to avoid any bias related to different units between the input candidate 

attributes, an attribute scaling scheme is required. In general, seismic attributes are 

characterized by super-Gaussian distributions (Walden 1985; Honorio et al., 2014; Lubo-

Robles and Marfurt, 2019), whereas other attributes such as Sobel filter similarity, and 

spectral magnitude components show a Poisson distribution. Therefore, instead of using a 

Z-score normalization in which a Gaussian distribution is assumed, I scale my data using 

estimators that are robust in the presence of outliers (Huber, 1981) and do not assume 

knowledge of the distribution. In this study, I perform a robust scaling, in which the data are 

centered using the median and scaled using the interquartile range (IQR) given by the 

difference between the 75th and 25th percentiles. The robust scaling percentiles are 

computed from the training data and are used to scale the training and validation data sets.  
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I define an initial seismic attribute combination and smoothing parameter r to 

initialize the exhaustive PNN algorithm. To select the best smoothing parameter r, I sweep 

through values ranging from 0.05 ≤ r ≤ 3.5 with an interval Δr = 0.05 and I use equation 5 

to compute the validation EV(r) and training ET(r) errors. These errors are stored, and a new 

seismic attribute combination is defined. A smoothing parameter r is computed for each of 

the 127 possible attribute combinations, which are ranked based on their validation error 

(EV), and then I interpret these results and select the optimal combination of seismic 

attributes and smoothing parameter r that provides the smallest validation error, while 

maintaining a balanced bias-variance trade-off.  

In PNN, the training data set is used to construct the pattern layers (or a weighted 

combination of attributes) that will later be “learned” by the algorithm in the training step. 

The validation error (EV) is computed when considering the validation data set in the input 

layer, whereas the training error (ET) is calculated when comparing the training data set with 

itself. 

At this point, my exhaustive search algorithm only allows training of the neural 

network using the same smoothing parameter r for each seismic attribute. To relax this 

restriction, I can implement an optional step that further minimizes the validation error on 

the best combination by using the Adam optimization technique (Kingma and Ba, 2015) 

(Appendix A). Once trained and validated, I apply the PNN classifier to the optimum set of 

attributes and compute the probability of each class. 
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Bias-variance trade-off 

In ML, interpreters face a bias-variance trade-off in which they need to create a 

model that provides an accurate prediction of the data at hand, but that is general enough to 

classify new data (Briscoe and Feldman, 2011; Goodfellow et al., 2016). 

Briscoe and Feldman (2011) find that high-variance models are associated with 

overfitting whereby the classifiers fit the training data very well but loose generalization 

performance. In contrast, high-bias models cannot capture correctly the patterns found in the 

training data, thus leading to underfitting. 

To find a balanced bias-variance trade-off, I analyze the relationship between the 

classifier’s error when evaluating my training and validation data sets. In general, 

underfitting is associated with relatively high training and validation errors, whereas 

overfitting is characterized by a gap between the training and validation errors in which the 

former decreases during training, but the latter increases after finding a minimum value 

associated with the best generalization performance (Jabbar and Khan, 2015; Goodfellow et 

al., 2016). 

Candidate seismic attributes 

Seismic attributes are powerful tools that allow interpreters to better visualize 

geologic features of interest as well as to quantify reservoir properties such as continuity and 

morphology to study the structural and depositional setting of a particular environment 

(Chopra and Marfurt, 2007). 
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To perform the supervised seismic facies classification to differentiate between salt 

and nonsalt facies in the Eugene Island seismic volume, I evaluate seven candidate seismic 

attributes selected based on my geologic insight and past experience: coherence, gray-level 

cooccurrence matrix (GLCM) contrast, GLCM dissimilarity, total energy, energy deviation, 

covariance of dip and energy gradient, and dip deviation. These seven candidate attributes 

serve as input to my exhaustive PNN algorithm with the goal of finding the best subset 

combination of the seven seismic attributes and the corresponding smoothing parameter r. 

The coherence attribute provides a measure of similarity between neighborhood 

traces, and it is widely use by seismic interpreters in order to map discontinuities in the 

seismic data such as faults and channels edges (Chopra and Marfurt, 2007; Li and Lu, 2014) 

as well as low-energy, discontinuous reflectors associated with salt and shale diapirs (Chopra 

and Marfurt, 2007). The total energy attribute measures the sum of the energy of the 

neighborhood analytic traces in which geologic features associated with low-amplitude, 

chaotic reflectors are characterized by low coherent energy.  

GLCM or texture attributes analyze lateral and vertical changes in seismic 

amplitudes, allowing the delineation of geologic features that are characterized by 

complicated patterns or textures (Haralick et al., 1973; Angelo et al., 2009). In this paper, I 

compute two GLCM attributes: GLCM contrast, which calculates the local intensity 

variation between data samples (Chopra and Marfurt, 2007; Di and Gao, 2017), and GLCM 

dissimilarity, which also measures the intensity variation between samples but is less 

sensitive to outliers than GLCM contrast. 
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Nonparallelism attributes (Qi and Marfurt, 2019) provide the standard deviation of 

structural dip and amplitude gradients within an analysis window. The energy gradient 

measures how the seismic energy varies laterally along the structural dip, whereas the dip 

deviation attribute computes changes from parallel to chaotic reflections. The covariance of 

dip and energy seismic attribute is sensitive to highly chaotic, rotated, and high-amplitude 

deformed reflectors. Conformal sediments are characterized by similar dips in an analysis 

window, MTD and karst collapse exhibit greater variability, whereas the “reflectors” within 

salt are a mix of coherent and random noise, giving rise to rapidly changing dips and 

amplitude gradients. 

In Figure 2.4, I show the 3D Kuwahara-filtered seismic attributes along inline 521. I 

note that the selected candidate attributes show different responses when comparing the salt 

diapir (the red arrow) against the more coherent, higher amplitude background geology. 

Moreover, I observe that applying a Kuwahara filter using 3D overlapping oblique 

cylindrical windows aligned with the average structural dip smooths the internal seismic 

response of salt diapir 1 and sharpens its edges, thus improving the discrimination between 

salt and the nonsalt seismic facies.   

Definition of training and validation datasets 

To generate a PNN model to isolate the salt diapirs present in the Eugene Island data 

set from the background geology, I need to define my training and validation data sets. As 

training data, I pick a suite of polygons for inline 501 to 551 at 10-line intervals (Figure 2.5a-

2.5f) to extract the voxels of the salt (the purple polygon) and nonsalt (the green polygon) 

seismic facies from the seven seismic attributes used as input in the exhaustive PNN 
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workflow. For the validation data set, I only pick a suite of polygons enclosing the salt (the 

purple polygon) and nonsalt (the green polygons) facies along inline 451 (Figure 2.5g). 

These training and validation data sets consist of approximately 28,500 and 5500 voxels, 

respectively, thus maintaining an approximate 80%-20% splitting ratio for training the PNN. 

Note that the training and validation sets are generated only for salt diapir 1 to leave 

salt diapir 2 as testing data (Figure 2.1) to evaluate the performance of the PNN when 

classifying new unlabeled (unseen) data. In addition, no time slices are used when generating 

these data sets to avoid any data leakage from the validation to the training data set. In 

practice, I suggest using those inlines that best exhibit the variability in the data volume.   

Results 

Attribute selection to discriminate salt from the background geology in the Eugene Island 

seismic volume using exhaustive PNN 

After I select the candidate seismic attributes to be used as input in the exhaustive 

PNN algorithm (Figure 2.4) and generate the training and validation data sets defining the 

salt and nonsalt seismic facies (Figure 2.5). I apply a robust scaling to change the units of 

the seismic attributes to a common scale to avoid any bias that can affect the prediction 

accuracy of the model.   

In Figure 2.6, I show the histograms of the training data set before (Figure 2.6a) and 

after (Figure 2.6b) applying robust scaling to all of the input features. I observe that the shape 

of the distributions is maintained after scaling and that all input features have similar range. 

Moreover, input features such as the coherence, GLCM contrast, GLCM dissimilarity, 
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covariance dip and energy, and dip deviation are characterized by a bimodal distribution, 

whereas the total energy and energy deviation are associated with a skewed distribution. 

Applying the robust scaling results in a better scaling scheme than a Z-score normalization 

that assumes a normal distribution of the data. 

Observe that the shape of the distributions is maintained after applying the robust 

scaling percentiles computed from the training data set to the validation samples (Figure 

2.7). Also note that the candidate attributes for the training and validation data sets show 

very similar distribution meaning that I am capturing the same intrinsic patterns on both data 

sets, which the PNN “learns” to distinguish between salt and nonsalt seismic facies in the 

Eugene Island seismic survey. 

When running the exhaustive PNN algorithm using seven input candidate attributes, 

I test 127 different combinations between the attributes. I then store the ideal smoothing 

parameter r associated with the best validation (EV) and training (ET) errors to make a low 

bias-low-variance model able to generalize when classifying the remaining unlabeled data. 

Also, in this application, I compute a suite of evaluation measures given by the accuracy, 

precision, recall, specificity, and the area under the received operating characteristic (ROC) 

curve to further assess the performance of the combinations (Lachiche and Flach, 2003; 

Fawcett, 2004; Sokolova et al., 2006; Sokolova and Lapalme, 2009).  

Performance evaluation metrics are constructed from the confusion matrix in which 

correctly classified and misclassified samples for each class are stored and divided into true-

positive, true-negative, false-positive, and false-negative categories (Sokolova et al., 2006; 
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Sokolova and Lapalme, 2009). In this study, the positive and negative classes are associated 

with the salt and nonsalt seismic facies, respectively. 

Following Sokolova et al. (2006) and Sokolova and Lapalme (2009), the accuracy 

estimates the global performance of the classifier without considering a specific class, 

whereas precision and recall compute how often the model correctly classified the positive 

class. Precision is defined as the ratio of true positives to the total number of samples 

predicted as positive, and recall is calculated as the true positives divided by the total number 

of samples actually belonging to the positive class. Finally, specificity determines the 

efficacy of the model in identifying the negative class and is computed as the fraction of true 

negatives to the sum of true negatives and false positives (Sokolova et al., 2006; Sokolova 

and Lapalme, 2009). 

The ROC curve is another technique for studying the performance of a classifier in 

which the relationship between the recall (true-positive rate) and the specificity (true-

negative rate) is analyzed at different probability thresholds (Lachiche and Flach, 2003; 

Fawcett, 2004; Sokolova et al., 2006). Computing the area under the ROC curve (AUC) 

provides an estimate of the average performance of the ROC curve into a single value. In 

general, AUC values range from 0.5 (random guessing; bad performance) to 1.0 (excellent 

performance) (Fawcett, 2004). 

In Table 2.1, I show the best five combinations of seismic attributes obtained after 

running and analyzing the results from the exhaustive PNN algorithm testing a suite of 

smoothing parameters ranging from 0.05 ≤ r ≤ 3.5 with Δr=0.05. I note that these 

combinations of attributes show values of accuracy, precision, recall, specificity, and AUC 
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above 98% representing excellent performance when distinguishing between salt and nonsalt 

seismic facies. 

Also, the minimum validation error (EV) in combinations 1, 2, and 4 was obtained 

using a smoothing parameter r = 0.1, whereas combinations 3 and 5 obtained a better 

performance when using a smoothing parameter of r =  0.15 because there is an increase in 

the gap between the training and validation errors associated with overfitting of the model 

when using smaller values of r.  

When analyzing combinations 1, 2, and 3, I select combination 1, which is composed 

of the coherence, GLCM contrast, total energy, and dip deviation attributes, and I select 

smoothing parameter r = 0.1 as the best combination for differentiating between salt and 

nonsalt seismic facies in the Eugene Island seismic survey because, using only four seismic 

attributes, it provides the minimum validation (EV) error and a balanced bias-variance trade-

off. Moreover, this combination shows excellent performance during the classification 

associated with high values of accuracy, precision, recall, specificity, and AUC.  

In Figure 2.8a, I show the learning curve associated with combination 1. I observe 

that using values of r > 0.1 results in relatively high training (ET) and validation (EV) errors 

possibly associated with the model underfitting the data. In contrast, when the smoothing 

parameter is equal to r = 0.05, ET and EV change from 0.01223 and 0.01689 to 0.00324 and 

0.02032 respectively. This rapid decrease in ET and increase in EV indicates that the model 

is overfitting the data leading to a decrease in performance when classifying new unseen 

data. In Figure 2.8b, I show the ROC curve for combination 1, where the diagonal blue line 

represents a random guess classifier that does not have information to distinguish between 
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facies (Fawcett, 2004). I note that combination 1 shows a high true-positive rate, a low false-

positive rate, and an AUC close to 1.0, indicating that the model can correctly differentiate 

between salt from nonsalt seismic facies. 

In Figure 2.9, I show the results obtained after applying the exhaustive PNN using 

the coherence, GLCM contrast, total energy, and dip deviation attributes, and smoothing 

parameter r equal to 0.1 to the Eugene Island survey. The PNN facies prediction corendered 

with the seismic amplitude along inline 391 (Figure 2.9a), shows that, in general, the neural 

network classifies correctly between salt (purple facies; red arrow) and nonsalt seismic facies 

(the green facies). 

 However, some salt classification gaps associated with coherent migration artifacts 

are visible inside salt diapir 1 (the blue arrows). These features are not classified as salt 

because they have a different seismic pattern that is closer to those of valid reflections from 

the conformal sediments. In contrast, some low-amplitude discontinuities related to normal 

faults in the area (the yellow arrow) and missing or noisy data in the edges of the survey 

with little interpretational value (the red rectangle) are misclassified as salt (the purple 

facies). The data quality plays an important role in voxel-by-voxel classification algorithms. 

In contrast, a human interpreter would be able to put such features in their proper geologic 

and/or seismic data quality context (Posamentier and Kolla, 2003). 

Figure 2.9b shows the PNN facies prediction corendered with the seismic amplitude 

volume along time slice t = 1.78 s. Note that the salt diapir 1 (the red arrow) is correctly 

classified by the exhaustive PNN algorithm. In addition, salt diapir 2 used as a test data set 
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is also correctly classified by the proposed algorithm as salt facies (purple facies; the red 

arrow).  

Finally, in Figure 2.9c and 2.9d, I examine the PNN salt probability volume along 

inline 391 and time slice t = 1.78 s. I observe that the extracted purple facies in salt diapir 1 

and salt diapir 2 are classified as salt with very high probabilities meaning that the proposed 

algorithm has high performance when distinguishing between the salt and the surrounding 

geology. 

Correlation analysis 

To analyze the relationship between the candidate attributes, I evaluate their 

correlation heatmap using the training and validation data sets (Figures 2.10 and 2.11). To 

quantitatively assess their correlation, I examine the Pearson’s and Spearman’s rank 

correlations. The Pearson (1984) correlation measures the linear dependence between the 

features, whereas the Spearman (1904) rank correlation evaluates linear or nonlinear positive 

and negative relationships using a monotonic function. From Figures 2.10 and 2.11, I analyze 

the correlations between attribute pairs associated with combination 1 (the green rectangles). 

The absolute Pearson’s correlation and Spearman’s rank correlations vary from 0.44 to 0.95 

and 0.63 and 0.97, respectively, in the training data set, whereas, in the validation data set, 

the absolute Pearson’s correlation varies from 0.52 to 0.95 and the Spearman’s rank 

correlation ranges from 0.73 to 0.97. I also note that the coherence attribute has a high 

correlation with GLCM contrast and dip deviation.  

In Figures 2.10 and 2.11, I also note that GLCM contrast and GLCM dissimilarity 

show a very high average Pearson’s and rank correlations of 0.99 making them almost 
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perfectly correlated. I note that when the exhaustive PNN uses them together (Table 2.1, 

combination 2) the validation error (Ev) of the neural network increases.  

According to Guyon and Elisseeff (2003), redundant attributes are characterized by 

a perfect correlation; thus, adding them to an ML architecture should not provide any 

additional information. However, if two attributes show a very high correlation, they can 

complement each other to provide better class separation. Guyon and Elisseeff (2003) 

suggest that irrelevant attributes by themselves can be more valuable if they are combined 

with others. Therefore, I hypothesize that highly correlated attributes can complement each 

other because the performance of the classifier increases when they are used together. Kim 

et al. (2019) find that using correlated attributes provided superior classifications in noisier 

parts of the data. 

To test my hypothesis, I analyze the facies predictions using two highly correlated 

attributes - dip deviation and coherence, which show absolute Pearson’s and rank 

correlations of 0.9 and 0.65, respectively. Mathematically, I know these two attributes are 

independent, with coherence mapping lateral changes in waveform, and dip deviation 

measuring lateral and vertical changes in dip. For the two seismic facies used in my training 

data – salt and conformal sediments - these two attributes are statistically correlated. To test 

whether using both attributes is useful, I compute the seismic facies volume using only the 

dip deviation and then I compare this volume with the results obtained using dip deviation 

and coherence together.  

From the exhaustive PNN workflow, I determined that the optimal smoothing 

parameter r when using only dip deviation is r = 0.05 because it provides the lowest Ev = 
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0.1046, whereas when using the combination of dip deviation and coherence, the optimal r 

is equal to 0.2 with a validation error of EV = 0.029, which represents a 72% decrease in the 

validation error compared to the result obtained using only the dip deviation as input 

attribute. Moreover, when using only the dip deviation as input, the accuracy, precision, 

recall, specificity, and AUC of the classification are equal to 0.937, 0.894, 0.997, 0.872, and 

0.9475, respectively, whereas while using the dip deviation and coherence I obtain accuracy 

= 0.983, precision = 0.979, recall = 0.988, specificity = 0.9781, and AUC = 0.9971. 

Therefore, the latter combination shows an increase in the accuracy, precision, specificity, 

and AUC of the results. 

In Figure 2.12a, I analyze the PNN facies prediction corendered with the seismic 

amplitude along inline 391 using the dip deviation as the input attribute and a smoothing 

parameter of r = 0.05. I note that the neural network does a good job of classifying the salt 

and nonsalt seismic facies. However, there are several gaps inside salt diapir 1 (the blue 

arrows) that were misclassified as nonsalt seismic facies by the algorithm. In addition, areas 

near normal faults (the yellow arrow) and noisy data (the red rectangle) are misclassified as 

salt. 

Figure 2.12b shows the PNN facies prediction for the same line using the 

combination of dip deviation and coherence attributes and smoothing parameter r = 0.2. 

Misclassifications within the salt are reduced to one large gap (the blue arrow) corresponding 

to the coherent noise indicated by the blue arrow in Figure 2.1, whereas outside the salt, 

misclassifications associated with normal faults (the yellow arrow) and noisy areas near the 

edges of the seismic volume (the red rectangle) are diminished.  
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In Figure 2.13a and 2.13b, I compare the PNN facies prediction using only the dip 

deviation against the facies prediction volume using dip deviation and coherence at time 

slice t = 1.78 s. I observe that when using two seismic attributes, there is a better delineation 

of the edges of the salt diapir 1 (the blue arrows). However, on both examples, the model 

tends to overestimate the size of the salt diapirs by classifying some of the surrounding 

conformal sediments as salt. Finally, salt diapir 2 looks better defined internally (the yellow 

arrows) when using the dip deviation and coherence as input attributes. 

Although the dip deviation and coherence show a high correlation between each 

other, I observe in Figures 2.12 and 2.13 that these attributes complement each other 

resulting in better class separation in the multiattribute space when differentiating between 

salt and nonsalt seismic facies in the Eugene Island seismic survey.    

Facies prediction using an optimal subset versus all candidate seismic attributes 

To further assess the effectiveness of the exhaustive PNN workflow, I compare the 

facies prediction volume when taking all the candidate seismic attributes and the subset of 

attributes composed of the coherence, GLCM contrast, total energy, and dip deviation as 

input in the neural network for performing the seismic facies classification. 

In Figure 2.14, I show the learning curve when using all of the candidate attributes 

as input. I note that for r > 0.45, the model shows high training (ET) and validation (EV) 

errors possibly associated with underfitting, whereas when using values of r < 0.45, there is 

a large gap between the training (ET) and validation (EV) errors indicating that the model is 

overfitting the data. I hypothesize that the increasing gap between these errors might be 
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associated with the Hughes phenomenon (Hughes, 1968) due to the increasing number of 

attributes used as input.  

To perform an unbiased comparison, I consider two possible cases when computing 

the seismic facies volume using all seven candidate seismic attributes. Case 1 consists of 

selecting the smallest validation error giving by Ev = 0.01977 and r = 0.2 without 

considering the large gap existing between the validation and training errors. Case 2 tries to 

minimize the gap between the training and validation errors. Here, I select r = 0.45 as the 

optimal smoothing parameter because it provides training and validation errors that are 

closer to each other (EV = 0.02325 and ET = 0.02322).  

In both cases, I note that there is an increase in the validation error ranging from 14.6 

to 27.4% and a decrease in the accuracy, precision, recall, and specificity compared to the 

results obtained using the exhaustive PNN attribute subset. 

In Figure 2.15, I show the comparison of the PNN facies prediction volumes 

corendered with the seismic amplitude along inline 391 considering case 1 (Figure 2.15a), 

case 2 (Figure 2.15b), and the exhaustive PNN attribute subset (Figure 2.15c). In general, I 

note that salt diapir 1 shows a similar internal response and only minor changes in the edge 

definition (the blue arrows). Therefore, including more attributes do not provide any 

significant change or improvement in the facies prediction. However, cases 1 and 2 show an 

increase of voxels associated with normal faults (the yellow arrows) and seismic noise (the 

red rectangle), being misclassified as salt seismic facies compared to the results obtained 

using the exhaustive PNN attribute subset.  



 

29 
 

Analyzing the PNN facies prediction corendered with the seismic amplitude volume 

at t = 1.78 s for case 1, case 2, and the attribute subset selected using the exhaustive PNN 

workflow (Figure 2.16), I still observe that salt diapir 1 does not show any significant change 

when including more attributes as input in the algorithm. However, when studying salt diapir 

2, which is used as test data set to assess the performance of the model when classifying 

unseen data, I note that the result obtained using the exhaustive PNN attribute subset (Figure 

2.16c) displays a better internal result compare to the facies volumes obtained in cases 1 and 

2 (Figures 2.16a and 2.16b) in which salt diapir 2 has more gaps possibly associated with 

coherent migration artifacts being misclassified as nonsalt seismic facies (the yellow 

arrows). 

Finally, from the results obtained after applying the exhaustive PNN algorithm, I 

note that from seven input candidate attributes, a suite of four seismic attributes composed 

of coherence, GLCM contrast, total energy, and dip deviation are the best combination to 

distinguish between salt and nonsalt seismic facies. I can quantitatively show that this 

combination generates a more robust, simpler, less computationally expensive model that 

avoids the Hughes (1968) phenomenon while removing irrelevant attributes that do not 

contribute to making a better model.   

Application of the Adam optimization technique 

To overcome the limitation associated with the exhaustive search algorithm in which 

a fixed smoothing parameter r is used, I implement an optional step in the exhaustive PNN 

workflow that consists of applying the Adam optimization technique to find a distinct 

smoothing parameter for each seismic attribute for further improving the performance of the 
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neural network when using the best combination of attributes given by the coherence, GLCM 

contrast, total energy, and dip deviation. 

Adam is a computationally efficient first-order gradient stochastic optimization 

technique that computes adaptive learning rates from the first and second moments of the 

gradients. Therefore, it provides robust results when facing large data sets, noisy or sparse 

gradients, and nonstationary problems (Kingma and Ba, 2015).      

For selecting a suite of smoothing parameters r’s to be used as starting point in the 

Adam optimization technique, I implement a random initialization approach to guarantee 

symmetry-breaking during training with values ranging from 0.05 to 0.15 because from the 

exhaustive search algorithm I determine that a smoothing parameter close to 0.1 is providing 

the highest accuracy (Figure 2.8). 

Figure 2.17 shows the validation error at different iterations during the 

implementation of the Adam algorithm. I observe that the minimum validation error (EV) 

obtained is equal to 0.01627 associated with iteration 15th and smoothing parameters equal 

to 0.065, 0.075, 0.104, 0.222, respectively. This new EV is smaller than the EV using a fixed 

smoothing parameter of 0.1 for all seismic attributes in combination 1. Moreover, I note an 

improvement in the performance evaluation metrics after implementing Adam. 

Finally, I also compute the training error (ET) using the new suite of smoothing 

parameters at iteration 15 (Figure 2.17). I observe that ET is equal to 0.01266; thus, it 

guarantees that I am obtaining a balanced bias-variance trade-off model after implementing 

Adam. 
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In Figure 2.18, I show the results when applying the exhaustive PNN using different 

smoothing parameters for each seismic attribute in combination 1 after implementing Adam 

along inline 391. I note that the neural network is still correctly classifying between the salt 

(purple facies; red arrow) and the background geology (the green facies). Moreover, the 

flanks of the salt diapir (the orange arrows) are better delineated than the results obtained 

when using a fixed smoothing parameter (Figure 2.18a). In addition, low-amplitude 

discontinuities related to normal faults are no longer classified as salt when applying Adam 

(the yellow arrow). However, gaps associated with coherent migration artifacts inside salt 

diapir 1 and noisy data in the edges of the survey are still misclassified by the algorithm. 

 In Figure 2.18b, I examine the PNN facies prediction after applying Adam 

corendered with the seismic amplitude volume along time slice 1.78 s. I observe that both 

salt diapirs are still correctly classified by the proposed workflow. Moreover, salt diapir 2, 

which is used as test data, looks better defined than when using the same smoothing 

parameter for each seismic attribute in combination 1. 

 Finally, analyzing the PNN salt probability volume along inline 391 (Figure 2.18c) 

and time slice 1.78 s (Figure 2.18d), I observe that the purple facies associated with salt 

diapir 1 shows an internal increase in the probabilities (the green arrow), whereas salt diapir 

2 still show high probabilities during the classification; thus, by applying Adam in the 

exhaustive PNN algorithm I can improve the performance of my model when differentiating 

between salt and nonsalt seismic facies in the Eugene Island seismic volume.   
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Geobody extraction 

 To obtain a 3D distribution of the salt diapirs present in the Eugene Island seismic 

survey and isolate them from the surrounding conformal reflectors, I perform a geobody 

extraction (Meyer et al., 2001) to model and extract the voxels from my PNN facies 

prediction and PNN salt probability volumes computed using the optimal combination of 

attributes given by coherence, GLCM contrast, total energy, and dip deviation and a suite of 

smoothing parameters for each of these attributes after applying Adam.  

 In Figure 2.19, I show the 3D salt mapping using as criterion voxels characterized by 

salt facies with probabilities higher than 75%. I note that I am able to extract with high 

accuracy the salt diapirs 1 and 2 (purples facies; the red arrows) from the surrounding 

geology. I also observe that salt diapir 2, which is used as testing data set in this study, shows 

some gaps (the blue arrow), which I hypothesize are associated with misclassified salt facies 

as background geology or salt voxels that show probabilities lower than 75% due to the 

presence of crossing coherent migration artifacts. Salt diapir 1 is well defined internally with 

salt voxels being classified with very high confidence (Figure 2.18c) by the exhaustive PNN 

algorithm.  

Computational effort 

 The Eugene Island data volume used in this study consisted of 700 inlines, 700 

crosslines, and 750 vertical samples, giving a total of 367.5 million voxels. The polygons 

constructed on the seven inlines provided 28,500 training and 5500 validation voxels. Using 

60 processors on an Intel workstation, the time for the exhaustive search algorithm to find 
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the best of 127 attribute combinations was 23.5 min. After training found the best 

combination to be four attributes, the final classification took 2.6 h. 

Conclusion 

 Application of exhaustive PNN to a 3D Gulf of Mexico seismic survey proved to be a 

powerful tool in selecting the optimal combination of seismic attributes to perform a 

supervised seismic facies classification to distinguish between salt and nonsalt seismic 

facies. Coupling an exhaustive search algorithm together with a PNN, I determine that from 

seven input candidate attributes, the best combination is given by using only four attributes 

composed of the coherence, GLCM contrast, total energy, and dip deviation with a 

smoothing parameter r of 0.1. Moreover, applying a first-order gradient optimization 

technique called Adam, I can further improve the performance of the proposed algorithm by 

finding different smoothing parameters for each of the seismic attributes while maintaining 

a balanced bias-variance trade-off. Because a high correlation between attributes does not 

necessarily imply that they are redundant, and they might complement each other providing 

better class separation, I found that my proposed workflow can generate a simpler, more 

robust, less computationally expensive model by removing irrelevant attributes while 

maintaining attributes that can complement each other. Furthermore, the occurrence of the 

Hughes phenomenon is reduced after performing the attribute selection workflow. Finally, 

a geobody extraction is conducted to delineate the 3D distribution of the salt diapirs and 

isolate them from nonsalt seismic facies. Using the seismic classification results obtained 

from Adam and looking for voxels characterized by salt facies with probabilities higher than 

75%, I extract salt diapirs 1 and 2 (the purples facies) from the surrounding geology with 
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high accuracy. In general, salt diapir 2, used as test data set in this study, is well-defined 

although some gaps are visible possibly related to misclassification or low confidence values 

due to the presence of crossing coherent migration artifacts. Salt diapir 1 is better internally 

defined than salt diapir 2 because salt voxels are classified with higher confidence by the 

exhaustive PNN algorithm. 
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Appendix A 

Preprocessing for the exhaustive PNN algorithm 

Seismic attributes often have different units of measurement and ranges of values. 

For example, coherence ranges from 0 to 1, whereas the seismic envelope may range 

between 0 and +10000, thereby requiring normalization to balance their contribution to any 

subsequent classification. Following Walden (1985), Honorio et al. (2014), and Lubo-Robles 

and Marfurt (2019), I know that, in general, seismic attributes are characterized by super-

Gaussian distributions whereas other attributes such as coherence and spectral magnitude 

components show a Poisson distribution about 0, or for coherence, bias towards 1. In this 
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paper, I perform a simple, but robust scaling that avoids knowledge of the detailed 

distribution and is resistant to the presence of outliers given by: 

𝑎𝑚
𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑎𝑚−𝑞2𝑚

𝑞3𝑚−𝑞1𝑚

,                (A1) 

where each attribute is centered about their median 𝑞2, and is scaled by the IQR given by 

the difference between 𝑞3 and 𝑞1, which are the 75th and 25th percentiles. The robust scaling 

percentiles are computed from the training data and are used to scale the training, validation, 

and testing data sets. 

The PNN algorithm for finding different smoothing parameters 

To find a different smoothing parameter r for each seismic attribute, I need to 

compute the derivatives of the continuous error function with respect to the smoothing 

parameters (Masters, 1995). Then, using these derivatives together with a first-order 

optimization technique such as Adam, I update the smoothing parameters to minimize the 

error. 

Masters (1995) computes the derivative of the error function for a single sample in 

the validation. In this study, I am interested in minimizing the global error E. Therefore, I 

generalize Masters (1995) to compute the derivative of the global continuous error E given 

by  

𝜕𝐸

𝜕𝑟𝑖
=

1

𝐻
∑ {2[𝑃𝑘(𝑥) − 1][

𝜕𝑃𝑘(𝑥)

𝜕𝑟𝑖
] +  2 ∑ [𝑃𝑗(𝑥)

𝜕𝑃𝑗(𝑥)

𝜕𝑟𝑖
]𝑗≠𝑘 }𝐻

ℎ=1 ,                                            (A2) 

where 
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𝑠𝑐𝑎𝑙𝑒𝑑)2

𝑟𝑖
2

𝑀
𝑚=1𝑁𝑘

𝑛=1 ]𝐾

 

(A3) 

where P represents the normalized probabilities given by the estimated density function of 

each class k divided by the sum of all the density functions of all classes, K represent the 

total number of classes, H the number of samples in the validation data set, and 𝛿𝑛𝑘 is the 

Kronecker delta function. 

Then, following Kingma and Ba (2015) and using the derivative of the continuous 

error functions 
𝜕𝐸

𝜕𝑟𝑖
, I apply the first-order gradient stochastic optimization algorithm called 

Adam that uses adaptive learning rates by computing the first and second moments of the 

gradients. The learning rule is given by:  

𝑟𝑖
+ = 𝑟𝑖 −  

𝛼 𝑚̂𝑡

√𝑣̂𝑡 + 𝑒
⁄                  (A4) 

where, t is the current iteration of a user-defined total number of iterations T, 𝑟𝑖
+ is the 

updated smoothing parameter for each attribute, 𝑟𝑖 is the smoothing parameter of the 

previous iteration, and  𝑚̂𝑡 and 𝑣̂𝑡 are the bias-corrected first and second moment estimation 

of the gradient 
𝜕𝐸

𝜕𝑟𝑖
 (equation A2). The Adam algorithm also uses hyperparameters for the 

step size 𝛼 and a small constant 𝑒 to avoid division by zero.   

With this background, the bias-corrected first and second moment estimation 

(Kingma and Ba, 2015) are given by  
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𝑚̂𝑡 =  
[𝛽1𝑚𝑡−1 + (1 − 𝛽1)

𝜕𝐸

𝜕𝑟𝑖𝑡
]

(1 − 𝛽1
𝑡)

⁄             (A5) 

and,  

𝑣̂𝑡 =  
[𝛽2𝑣𝑡−1 + (1 − 𝛽2)

𝜕𝐸

𝜕𝑟𝑖𝑡

2
]

(1 − 𝛽2
𝑡)

⁄
                             (A6) 

where 𝛽1 and 𝛽2 are also hyperparameters for the Adam algorithm. In the first iteration, t = 

0, 𝑚𝑡, and 𝑣𝑡 are initialized to zero. According to Kingma and Ba (2015), good default values 

for the hyperparameters are 𝛽1 = 0.9, 𝛽2 = 0.999, 𝛼 = 0.001, and 𝑒= 10−8. However, in this 

paper, I use a step size 𝛼 = 0.01, which results in faster convergence with a reduced number 

of iterations, T, needed to decrease the validation error EV. 
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Chapter 2 Figures 

 

Figure 2.1. Eugene Island seismic survey. (a) Vertical slice along inline 521. Salt diapir 1 is 

characterized by low-amplitude, discontinuous reflectors. Crossing coherent migration 

artifacts (the blue arrow) are also visible inside salt diapir 1. (b) Representative time slice at 

t = 2 s. Another salt diapir (salt diapir 2) also characterized by low-amplitude, discontinuous 

reflectors is visible in the seismic survey. 
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Figure 2.2. PNN framework (a). The PNN is composed of four layers: (1) input layer, (2) 
pattern layer, (3) summation layer, and (4) output layer. (b) First, an unlabeled sample x is 

selected for classification. The PNN computes the difference between the input sample and 

the training attributes a and applies a Gaussian activation function. Finally, the average 

estimated density function 𝑔𝑘(𝒙) for each class is computed, and the unlabeled sample x is 

assigned to the class where 𝑔𝑘(𝒙) is maximum. 
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Figure 2.3. Exhaustive PNN workflow. First, I select a suite of candidate seismic attributes 

based on my geological insight and experience. Also, a 3D Kuwahara filter is applied to 

block and smooth the seismic attributes’ response (Qi et al., 2016). Next, I generate the 

training and validation data sets by manually selecting a suite of polygons enclosing each 

target seismic facies. Moreover, a robust scaling scheme is applied to avoid any bias 

associated with different units between the seismic attributes. Then, I perform an exhaustive 

search and test all possible combination of seismic attributes with smoothing parameter r 

ranging from 0.05 to 3.5 and Δr = 0.05. These combinations are ranked based on their 

validation error (EV), and the best combination of seismic attribute and smoothing parameter 

r is given by the smallest EV while maintaining a balanced bias-variance trade-off. As an 

optional step, a first-order gradient optimization technique called Adam (Kingma and Ba, 

2015) can be applied to the best combination to relax the fixed smoothing parameter r 

condition imposed by the exhaustive search algorithm and further minimize the validation 

error. Finally, using the exhaustive PNN attribute subset, I perform my supervised seismic 

facies classification, and I compute the probability of each class, which measures the 

confidence in the classification. 
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Figure 2.4. Candidate attributes to be used as input in the exhaustive search algorithm 

selected based on my geological insight. (a) Coherence, (b) GLCM contrast, (c) GLCM 

dissimilarity, (d) total energy, (e) energy deviation, (f) covariance dip and energy, (g) dip 

deviation. The selected candidate attributes show different responses when comparing the 

salt diapir (the red arrow) against the more coherent, higher amplitude background geology. 

A 3D Kuwahara filter (Qi et al., 2016) is applied to smooth the internal response and sharpen 

the edges of the salt diapir to improve the discrimination between salt and the nonsalt seismic 

facies during classification. 
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Figure 2.5. Training and validation data sets definition. (a-f) The training data sets consists 

of a suite of manually picked polygons from inline 501 to 551 with a 10 inline interval 

enclosing the salt (the purple polygons) and nonsalt seismic facies (the green polygons). (g) 

Validation data set enclosing the target facies along inline 451. 
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Figure 2.6. Histograms of the training data set (a) before and (b) after robust scaling. The 

shape of the distributions is maintained after scaling. Candidate attributes show non-

Gaussian distributions. Therefore, a robust scaling scheme represents a better approach than 

Z-score normalization. 
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Figure 2.7. Histograms of the validation data set (a) before and (b) after robust scaling. The 
shape of the distributions is maintained after robust scaling. Distributions of the candidate 

seismic attributes in the training and validation data sets are very similar; thus, the same 

intrinsic patterns are captured on both data sets. 
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Figure 2.8. (a) Learning curve of combination 1 composed of the coherence, GLCM 

contrast, total energy, and dip deviation attributes. The ideal smoothing parameter is given 

by r = 0.1. For r ≥ 0.1, the training (ET) and validation (EV) errors are high, possibly implying 

underfitting. When r = 0.05, there is a rapid decrease in ET and increase in EV, suggesting 

overfitting. (b) ROC curve for combination 1. The diagonal blue line represents a random 

guess classifier that does not distinguish between facies correctly (Fawcett, 2004). 

Combination 1 shows an AUC close to 1.0 and high true-positive and low false-positive 

rates implying that the classifier can correctly distinguish salt from the background geology. 
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Figure 2.9. PNN facies prediction corendered with the seismic amplitude (a) along inline 
391, and (b) at time slice t = 1.78 s. The PNN correctly distinguishes between salt (purple 

facies; red arrow) and nonsalt seismic facies (the green facies). Also, some voxels associated 

with coherent migration artifacts (the blue arrows), low-amplitude discontinuities related to 

normal faults (the yellow arrow), and missing or noisy data in the edges of the survey (the 

red rectangle) tend to be misclassified as salt (the purple facies). Note that salt diapir 2, 

which is used as a test data set, is also correctly classified as salt seismic facies by the 

algorithm (purple facies; the red arrow). PNN facies probability volume (c) along inline 391, 

and (d) at time slice t = 1.78 s. The extracted purple facies (salt diapirs 1 and 2) show very 

high probabilities associated with a high performance by the model when differentiating 

between salt and nonsalt seismic facies. 

 

 

 

 

 



 

51 
 

 

Figure 2.10. Correlation heat map of the training data set. The absolute Pearson’s and rank 

correlations vary from 0.44 to 0.95 and 0.63 and 0.97, respectively, in combination 1. Note 

that the coherence attribute has a high correlation with the GLCM contrast and dip deviation. 

Following Guyon and Elisseeff (2003), I hypothesize that high correlated attributes can 

complement each other because using them together improves the performance of the neural 

networks when differentiating between salt and nonsalt seismic facies. 
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Figure 2.11. Correlation heat map of the validation data set. The absolute Pearson’s 

correlation varies from 0.52 to 0.95, and the Spearman’s rank correlation ranges from 0.73 

to 0.97 in combination 1. Similar to the correlations obtained from the training data set, the 

coherence still shows a high correlation with the GLCM contrast and the dip deviation 

seismic attributes. 
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Figure 2.12. PNN facies prediction corendered with the seismic amplitude along inline 391 
using (a) dip deviation and (b) dip deviation and coherence as input attributes. In general, 

the PNN correctly classifies between salt and nonsalt seismic facies. Voxels associated with 

coherent noise (the blue arrows), normal faults (the yellow arrows), and noisy areas (the red 

rectangle) that tend to be misclassified as salt are diminished when using the combination of 

dip deviation and coherence as input compared to the results obtained when using only dip 

deviation. Note that, although dip deviation and coherence have a high correlation, they 

complement each other, which results in a better seismic facies classification. 
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Figure 2.13. PNN facies prediction corendered with the seismic amplitude at time slice t = 
1.78 s using (a) dip deviation and (b) dip deviation and coherence as input attributes. When 

using dip deviation and coherence as input, salt diapir 2 shows a better internal definition 

(the yellow arrows), whereas salt diapir 1 has a better delineation of its edges (the blue 

arrows). Note that on both examples, the size of the salt diapirs is overestimated because the 

models tend to classify some conformal sediments as the salt seismic facies. 
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Figure 2.14. Learning curve when using all of the candidate attributes as input. For r > 0.45, 

the model shows high training (ET) and validation (EV) errors possibly implying underfitting, 

while for r < 0.45, there is a large gap between the errors leading to overfitting possibly 

related to the Hughes phenomenon (Hughes, 1968). Two cases are generated for analysis: 

case 1, which is associated with the smallest validation error (EV), and case 2, which 

minimizes the gap between the training and validation errors. 
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Figure 2.15. PNN facies prediction volumes corendered with the seismic amplitude along 

inline 391 for (a) case 1, (b) case 2, and (c) exhaustive PNN attribute subset used as input. 

Note that including more attributes do not show any significant change or improvement in 

the seismic facies classification (the blue arrows). Moreover, when using the exhaustive 

PNN attribute subset as input, I observe less voxels related to seismic noise (the red 

rectangle) and normal faults (the yellow arrows) being misclassified as salt. 
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Figure 2.16. PNN facies prediction corendered with the seismic amplitude volume at time 

slice t = 1.78 s for (a) case 1, (b) case 2, and (c) exhaustive PNN attribute subset. Note that 

the results obtained using the exhaustive PNN attribute subset shows a better internal 

definition of salt diapir 2, whereas salt diapir 1 does not show any significant change or 

improvement if more attributes are included. Therefore, using the exhaustive PNN 

algorithm, I can remove irrelevant attributes and generate a more robust, simpler classifier 

to perform my seismic facies classification. 
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Figure 2.17. Validation error during the implementation of the Adam algorithm. The 
minimum validation error EV = 0.01627 is obtained at iteration 15th and smoothing 

parameters r’s equal to 0.065, 0.075, 0.104, 0.222. Note that by relaxing the fixed smoothing 

parameter condition, there is a decrease in the validation error (EV) and an increase in the 

evaluation metrics of the model. Finally, at iteration 15th, ET = 0.01266, which guarantees a 

balanced bias-variance trade-off. 
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Figure 2.18. PNN facies prediction using Adam corendered with the seismic amplitude (a) 
along inline 391 and (b) at time slice t = 1.78 s. The PNN is still correctly classifying between 

salt (purple facies; the red arrow) and nonsalt seismic facies (the green facies). Flanks of salt 

diapir 1 are better delineated, whereas salt diapir 2, which is used as test data set, is correctly 

classified and has better definition compared to the results obtained using a fixed smoothing 

parameter r for each seismic attribute in combination 1. However, some voxels associated 

with coherent noise (the blue arrows) and seismic noise towards the edges of the survey (the 

red rectangle) are still being misclassified as salt. PNN facies probability volume using 

Adam (c) along inline 391 and (d) at time slice 1.78 s. Salt diapir 1 shows an internal increase 

in the probabilities (the green arrow), whereas salt diapir 2 still shows high probabilities 

during the classification. 
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Figure 2.19. Geobody generation extracting salt facies from the PNN facies prediction 

volume with probabilities higher than 75% obtained from the PNN salt probability volume. 

Salt diapirs 1 and 2 (purples facies; the red arrows) are extracted with high accuracy from 

the surrounding conformal reflectors. However, salt diapir 2, which is used as test data set 

to assess the performance of the classifier, shows some gaps (the blue arrow) possibly related 

to salt facies misclassified as background geology or salt voxels that show probabilities 

lower than 75%. 
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Chapter 2 Tables 

 

Table 2.1. The best five combinations of seismic attributes obtained after running and 

interpreting the results from the exhaustive PNN algorithm testing a suite of smoothing 

parameters ranging from 0.05 ≤ r ≤ 3.5 with Δr = 0.05. These combinations show 

performance evaluation metrics above 98% associated with excellent classifiers. I select 

combination 1 composed of coherence, GLCM contrast, total energy, and dip deviation 

attributes, and I select smoothing parameter r = 0.1 as the best combination because it has 

the minimum validation error (EV), a balanced bias-variance trade-off, and excellent 

performance evaluation metrics. 
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Chapter 3: Quantifying the sensitivity of seismic facies 

classification to seismic attribute selection: An 

explainable machine-learning study* 
 

* This study is published on the Interpretation journal as 

Lubo-Robles, D., D. Devegowda, V. Jayaram, H. Bedle, K. J. Marfurt, and M. J. Pranter, 2022, 

Quantifying the sensitivity of seismic facies classification to seismic attribute selection: An 

explainable machine-learning study: Interpretation, 10, no. 3, doi: 10.1190/INT-2021-

0173.1. 

 

Abstract 

During the past two decades, geoscientists have used machine learning (ML) to 

produce a more quantitative reservoir characterization and discover hidden patterns in their 

data. However, as the complexity of these models increases, the sensitivity of their results 

to the choice of the input data becomes more challenging. Measuring how the model uses 

the input data to perform either a classification or regression task provides an understanding 

of the data-to-geology relationships which indicates how confident I am in the prediction. 

To provide such insight, the ML community has developed local interpretable model-

agnostic explanations (LIME) and Shapley additive explanations (SHAP) tools. In this 

study, I train a random forest architecture using a suite of seismic attributes as input to 

differentiate among mass transport deposits (MTDs), salt, and conformal siliciclastic 

sediments in a Gulf of Mexico data set. I apply SHAP to understand how the model uses the 

input seismic attributes to identify target seismic facies and examine in what manner 

variations in the input, such as adding band-limited random noise or applying a Kuwahara 

filter, impact the model predictions. During my global analysis, I find that the attribute 
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importance is dynamic, and it changes based on the quality of the seismic attributes and the 

seismic facies analyzed. For my data volume and target facies, attributes measuring changes 

in dip and energy show the largest importance for all cases in my sensitivity analysis. I note 

that to discriminate between the seismic facies, the ML architecture learns a “set of rules” in 

multiattribute space, and that overlap among MTDs, salt, and conformal sediments might 

exist based on the seismic attribute analyzed. Finally, using SHAP at a voxel scale, I 

understand why certain areas of interest were misclassified by the algorithm and perform an 

in-context interpretation to analyze how changes in the geology impacted the model 

predictions.  

Introduction 

Advances in machine-learning (ML) techniques have been increasingly exploited for 

better reservoir characterization including analyzing changes in seismic facies, predict well-

log properties, and detecting faults among other tasks (Hampson et al., 2001; Dorrington and 

Link, 2004; Roy et al., 2014; Roden et al., 2015; Zhao et al., 2015; Lubo-Robles and Marfurt 

2019; Lubo-Robles et al., 2021; Wu et al., 2019; Qi et al., 2020). Although the applications 

are promising, ML still lacks interpretability. Specifically, one should be able to identify 

features or attributes that are significant and, more importantly, address the degree to which 

the output is sensitive to various input attributes. 

One of the key questions in interactive and ML interpretation is which combination 

of attributes is best to differentiate one seismic facies from another. There have been a few 

studies that have addressed the optimal subset of seismic attributes to perform seismic facies 

classification. Dimensionality reduction using principal component analysis (PCA) and 
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independent component analysis allows identification of a lower-dimensional statistically 

representative set of features in the data (Guo et al. 2009; Honorio et al. 2014; Roden et al. 

2015; Lubo-Robles and Marfurt, 2019). Another approach by Chang-kai and Wen-kai 

(2010) uses support vector machine (SVM) to define weights to each input seismic attribute 

to generate a smaller subset of attributes useful to identify reservoir facies in their study area.  

Using information theory, Amin et al. (2017) determine optimal attributes to use as 

input to detect salt domes, whereas Wang et al. (2015) apply PCA and joint rough sets to 

select the optimal attributes for porosity estimation. Kim et al. (2019) apply a suite of filters, 

wrappers, and embedded attribute selection techniques to determine relevant attributes and 

reject redundant attributes to increase the performance of the seismic facies classification 

and reduce its computational cost. Qi et al. (2020) develop a semisupervised approach 

consisting of applying Gaussian mixture models (GMM) and Bhattacharyya distance to 

determine the optimal combination of seismic attributes that maximizes the separation 

between seismic facies. Then, Qi et al. (2020) use this optimal subset as input into a 

generative topographic mapping (GTM) algorithm to perform a seismic facies classification. 

Lubo-Robles et al. (2021) couple an exhaustive search algorithm with a probabilistic neural 

network (PNN) to test all possible combinations of attributes, reject irrelevant attributes, 

reduce computational cost, and determine the optimal combination of seismic attributes to 

differentiate between salt and the background siliciclastic sediments in a Gulf of Mexico 

data set.  

However, finding statistically representative features in the data or determining the 

set of optimal seismic attributes to use as input for seismic facies classification generally 
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does not map the inputs to the outputs in a manner that allows for easy interpretation of the 

predictive strength of each of the inputs. To overcome this limitation, local interpretable 

model-agnostic explanations (LIME), partial dependency plots, individual conditional 

expectations, and permutation feature importance have been developed in the ML 

community to get insight and interpret how ML models work (Ribeiro et al., 2016; Molnar, 

2021) 

Recently, Lundberg and Lee (2017) introduce a new approach, Shapley additive 

explanations (SHAP), based on Shapley values from game theory that provides local and 

global explanations for the model and represents the only explainable ML method with a 

unique solution and properties such as local accuracy, missingness, and consistency 

throughout the whole data set. 

In the oil and gas industry, researchers have started applying SHAP to better 

understand unconventional reservoirs. Lerza et al. (2020) and Qian et al. (2020) use SHAP 

to identify which are the most important parameters impacting the estimated ultimate 

recovery (EUR) of the Vaca Muerta Formation and the Wolfcamp A Formation in the 

Neuquén Basin (northern Patagonia, Argentina) and Permian Delaware Basin, respectively. 

Cross et al. (2020c) apply PCA to reduce dimensionality of their input data and SHAP to 

derive the rock quality index (RQI) and analyze changes in the oil and water production 

(Cross et al., 2020a, 2020b), whereas Sathaye et al. (2020) apply SHAP to study how features 

such as proppant per fluid, fluid per foot, geologic components, and well spacing and timing 

parameters impact the production streams over time. Tran et al. (2020) use real-time drilling 
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data to infer formation properties and use SHAP values to interpret the relationship between 

the input drilling variables and the mechanical properties of the formation.  

However, to the best of my knowledge, the use of SHAP values in the context of 

seismic facies classification is lacking in published literature. This paper demonstrates the 

use of SHAP values to study the impact of a suite of candidate seismic attributes in the 

prediction of seismic facies. The objectives of this research can be summarized as follows: 

(1) develop a random forest model for seismic facies classification to identify MTDs, salt, 

and the background conformal sediments in a Gulf of Mexico data set; (2) apply SHAP to 

understand the contribution of each of the seismic attributes in the predictions; (3) compute 

the global importance for each candidate seismic attribute; (4) perform a sensitivity analysis 

to the addition of band-limited noise or application of a Kuwahara filter for preconditioning 

the input seismic attributes for subsequent classification; and (5) use SHAP values to 

perform an in-context interpretation to study how variations in the seismic response affect 

the model’s facies predictions.  

I begin my paper with a summary of the SHAP implementation. I also describe the 

candidate seismic attributes selected as input for classification and generate three different 

cases for my sensitivity analysis consisting of (1) original seismic attributes, (2) the same 

attributes after Kuwahara median filtering to block and smooth their response, and (3) the 

same attributes computed from the seismic data with an additive 2:1 signal-to-noise level. 

Then, I manually define my training and validation data sets to define three seismic facies, 

irregular discontinuous reflectors, chaotic reflectors, and high-amplitude continuous 
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reflectors that represent MTDs, salt, and conformal sediments and perform a hyperparameter 

search to train and improve the accuracy of the model for classifying these seismic facies.  

Then, I apply SHAP to understand and explain the global and local behavior of the 

model when distinguishing between the target seismic facies in a Gulf of Mexico data set. 

Finally, by corendering the SHAP values with the seismic amplitude volume, I perform an 

in-context interpretation to understand how changes in the geology, which are associated 

with changes in the seismic response, are related to the SHAP values and the model 

prediction. Appendix A provides mathematical details of adding band-limited random noise 

to the seismic volume.  

Methods 

Data set and seismic response of target facies 

The 3D seismic survey is from the Gulf of Mexico, offshore Louisiana and covers 

an area of approximately 8000 km2 (3089 mi2) (Qi et al., 2016). The prestack time migrated 

volume was acquired by PGS, and it is characterized by a bin size of 37.5 x 25 m, sampling 

interval of 4 ms, and record length of 2 s (Qi et al., 2016, 2020; Kim et al., 2019). For my 

analysis, I crop the seismic volume into a subvolume consisting of 350 inlines, 841 

crosslines, and same record length. 

In Figure 3.1, I show the seismic amplitude volume along time slice at  t=1 .3s. I note 

the presence of lower amplitude chaotic seismic reflectors as compared with the surrounding 

sediments that are interpreted as two salt diapirs (the orange arrows). Moreover, the green 

rectangle encloses six equally spaced lines used to define my training and validation data 
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sets, whereas the vertical section GG’ represents a test line used to interpret how my tree-

based architecture generalizes in the presence of previously unseen, unlabeled data. 

Furthermore, I analyze the amplitude spectrum of my seismic data set (Figure 3.1b). I 

observe that the volume is characterized by a bandwidth of approximately 77.5 Hz with 

frequencies ranging from 2.5 Hz to 80 Hz. 

Then, to interpret the seismic responses associated with my target seismic facies, I 

study the seismic amplitude volume along vertical section AA’ and generate a suite of 

magnified vertical sections enclosing the seismic facies (Figure 3.2). I observe the presence 

of salt diapirs 1 and 2 together with irregular discontinuous reflectors interpreted as a suite 

of mass transport deposits (MTDs) (the green arrows). Moreover, these geologic features are 

enclosed by high-amplitude continuous reflectors interpreted as conformal sediments with 

highly variable dip depending on their proximity to the salt diapirs.  

Magnifying salt diapir 1 (the orange rectangle), I note that it is characterized by low-

amplitude, chaotic reflectors due to the presence of random incoherent noise. In addition, I 

observe the presence of crossing coherent noise (the yellow arrow) associated with migration 

artifacts due to the geometry of the salt and its higher P-wave velocity as compared with the 

surrounding formations (Jones and Davison, 2014).  

Analyzing a magnified vertical section along one of the MTDs (the green rectangle), 

the MTDs tend to be highly heterogenous and characterized by intercalations of higher 

amplitude reflectors likely associated with more coherent rotated blocks (the red arrow) and 

more discontinuous, chaotic, lower amplitude reflectors, perhaps related to more shaley 

intervals (the blue arrow).  
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Finally, I study the seismic response of the conformal sediments (background 

formations). Magnified vertical section 1 (the purple rectangle) shows that, in general, 

conformal sediments are characterized by high-amplitude, coherent reflectors. However, 

analyzing magnified vertical section 2 (purple rectangle 2), I note a rapid change in 

amplitude and dips of these conformal sediments due to proximity of the salt., where they 

are characterized by a decrease in the quality of the seismic image and lower seismic 

amplitudes. Furthermore, I note the presence of low-frequency noise possibly associated 

with migration artifacts due to the proximity to the salt diapirs (the purple arrows). 

SHAP 

For linear or linearized inverse problems, geophysicists use approximations to the 

Hessian matrix to determine the sensitivity of an output prediction to an input parameter. To 

address a similar problem for ML, Lundberg and Lee (2017) developed the SHAP technique 

to determine why a specific ML model makes a certain prediction (Lundberg et al., 2018a). 

SHAP estimates the Shapley values from cooperative game theory, thereby assigning 

each attribute an importance value based on its impact in the model prediction when the 

feature is present or not during the SHAP estimation (Lundberg and Lee, 2017; Lundberg et 

al., 2018a, 2020; Molnar, 2021). To explain complex models, SHAP uses a linear additive 

feature attribute method as a simpler explanation model: 

𝑓(𝑎) = 𝑔(𝑎′) =  ∅0 +  ∑ ∅𝑗𝑎𝑗
′𝐽

𝑗=1                (1) 

where, 𝑓(𝑎) is the original ML model, 𝑔(𝑎′)is the simpler linear explanation model, J is the 

number of simplified input seismic attributes, ∅𝑗 are the SHAP values measured across all 
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possible input permutations, 𝑎𝑗
′ is the simplified input vector that indicates if a particular 

seismic attribute is present or not during the estimation, and ∅0 is the base value, which is 

computed when no input attribute is considered in the model prediction (Lundberg and Lee, 

2017; Lundberg et al., 2018a; Molnar, 2021). 

Workflow 

To analyze how a tree-based architecture uses a suite of volumetric seismic attributes 

to perform a seismic facies classification to distinguish between the three target facies of 

interest, measure the importance of each seismic attribute, and conduct a sensitivity analysis 

to evaluate how the interpretability of the ML architecture changes under different 

perturbations made to the input attributes, I apply SHAP to a random forest architecture 

considering three different cases. The cases are: (1) case 1 uses as input the seismic attributes 

computed from my original seismic volume; (2) case 2 applies a 3D Kuwahara filter (Qi et 

al., 2016; Lubo-Robles et al., 2021) to the original seismic attributes to precondition the 

attributes for classification by removing noise, smooth the internal response of the seismic 

facies, and sharpen the edges; and (3) case 3 adds band-limited additive white Gaussian noise 

(AWGN) with a target signal-to-noise ratio (S/N) of 2 to the seismic volume and recomputes 

the seismic attributes while maintaining the same parameters used to compute the attributes 

in case 1 (Figure 3.3). 

To differentiate between chaotic facies, irregular discontinuous, and parallel to 

subparallel continuous reflectors, seismic attributes that measure changes in continuity, 

morphology, frequency, and reflector dip and energy should be analyzed. Therefore, I select 

coherence, total energy, gray-level co-occurrence matrix (GLCM) entropy, reflector 
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convergence, spectral bandwidth, GLCM contrast, and nonparallelism attributes such as dip 

deviation, energy deviation, and covariance of dip and energy gradient as input attributes for 

my ML model.  

Then, I pick a suite of polygons on six coarsely spaced lines enclosing each of the 

target seismic facies to make the training and validation data sets used for the model 

generation. In the learning phase of the classifier, these supervised data labeled by the 

interpreter were split into two parts, with approximately 80% of the voxels belonging to the 

training data set, and the remaining 20% of the voxels belonging to the validation data, which 

represent only 0.006% of the seismic volume.  

In addition, to remove scale dependency and because seismic attributes are 

characterized by Poisson or super-Gaussian distributions (Walden 1985; Honorio et al., 

2014; Lubo-Robles et al., 2021), I scale my data using a Min-Max scaler (Jain et al., 2005; 

Pedregosa et al., 2011) in which the scaling parameters are computed only from the training 

data and are used to scale the training and validation data sets. 

Next, considering only the original seismic attributes associated with case 1, I apply 

a random forest algorithm and fivefold cross validation using the training data set to 

determine the best hyperparameters for my model. Then, I train my random forest 

architecture and evaluate its accuracy on the validation data set. Furthermore, to perform an 

unbiased sensitivity analysis, I apply the same hyperparameters found to cases 2 and 3; thus, 

only the data input to the ML model is changing.  
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To compute the SHAP values to explain the outputs of my models, I apply a SHAP 

TreeExplainer implementation using the training data set (Lundberg and Lee, 2017; 

Lundberg et al., 2018a), which provides a fast and exact computation of the Shapley values 

for tree-based ML architectures. The SHAP global feature importance, SHAP local 

explanation summary plots, and SHAP dependence plots combine several local explanations 

for each prediction, thus providing a means to understand the global behavior of the model 

and determine the global importance of each seismic attribute (Lundberg et al., 2018a, 2020; 

Molnar, 2021).  

Finally, using the SHAP force plots, I can analyze how the ML model uses the 

seismic attributes during classification and study their impact on the model prediction at 

areas of interest in my seismic facies prediction. By computing the SHAP values throughout 

my seismic data set and corendering them with the seismic amplitude volume, I perform an 

in-context interpretation to understand how changes in geology associated with variations in 

the seismic response are related to the SHAP values and how they affect the facies 

predictions. 

Case 1: Original seismic attributes 

Seismic attributes provide the interpreter a means to perform a faster and more 

comprehensive reservoir characterization. Attributes quantify patterns in the seismic 

volume. When displayed and integrated with seismic geomorphology, these attributes allow 

a more complete understanding of the depositional environment (Posamentier and Kolla, 

2003; Chopra and Marfurt, 2007). For example, seismic attributes have been widely used as 
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input for ML architectures to classify seismic facies (Zhao et al, 2015, 2016; Qi et al. 2016; 

Lubo-Robles and Marfurt, 2019; Lubo-Robles et al. 2021). 

GLCM attributes are useful to analyze variations in the geomorphology of 

stratigraphic features characterized by distinct patterns or textures by statistically measuring 

vertical and lateral changes in the seismic amplitudes (Haralick et al., 1973; Angelo et al., 

2009, Matos et al., 2011; Zhao et al., 2016; Di and Gao, 2017; Qi et al., 2020). In this study, 

I evaluate GLCM entropy and GLCM contrast attributes, in which the former measures the 

level of disorder or randomness, and the latter computes changes in the intensity between 

seismic samples (Chopra and Alexeev, 2006; Chopra and Marfurt, 2007; Yenugu et al., 

2010; Di and Gao, 2017). 

The coherence attribute helps to differentiate between low energy chaotic reflectors 

and seismic discontinuities associated with salt and mud diapirs, faults, channels edges and 

seismic noise from the more homogenous background geology by measuring the similarity 

between traces inside a 3D analysis window moving throughout the seismic data set 

(Gersztenkorn and Marfurt, 1999; Chopra and Marfurt, 2007; Li and Lu, 2014). In addition, 

by measuring the energy associated with the sum of eigenvalues computed from the 

covariance matrix of the windowed seismic traces (Gersztenkorn and Marfurt, 1999), the 

total energy attribute is useful to isolate low energy chaotic reflectors from higher energy 

seismic responses.  

The reflector convergence attribute analyzes changes in the inline and crosslines 

components of the dip, providing a means to quantitatively identify stratigraphic features 
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such as angular unconformities, lateral changes in thickness, overbank deposits, and 

diapirism withdrawal (Marfurt and Rich, 2010; Chopra and Marfurt, 2013).  

Following Marfurt and Kirlin (2001), Sinha et al. (2005), and Chopra and Marfurt 

(2014), spectral-decomposition analysis can be used to study changes in stratigraphy, bed 

thickness, and porosity as well as to identify hydrocarbon-bearing formations. In this paper, 

I compute the spectral bandwidth attribute after applying continuous wavelet transform 

spectral decomposition which decomposes the seismic volume into different phase and 

magnitude components at different frequencies (Chopra and Marfurt, 2016). According to 

Zhang et al. (2008) and Qi et al. (2020), the spectral bandwidth represents a statistical 

measure of the spectrum that it is proportional to its standard deviation, offers a more robust 

estimate of the bandwidth than instantaneous bandwidth, and provides a means to isolate 

chaotic reflections from other seismic facies. 

Finally, I evaluate a suite of nonparallelism attributes, which computes statistical 

measures of the seismic traces within an analysis window to quantitatively estimate lateral 

variations in reflector dips and energy (Qi and Marfurt, 2019). The dip deviation and energy 

deviation attributes measure lateral changes in the dip and energy of the seismic reflections, 

respectively, and are very useful to distinguish between chaotic and parallel reflectors. 

Furthermore, the covariance of dip and energy gradient seismic attribute captures both, 

changes in dips and energy, and is used to isolate rotated, deformed, and chaotic seismic 

reflections (Qi and Marfurt, 2019). 

In Figure 3.4, I show the candidate seismic attributes along line AA’. I observe that 

the target seismic facies show different attribute responses. Salt diapirs are characterized by 
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lower coherence and higher entropy and contrast than the higher energy, more coherent 

background conformal sediments, whereas MTDs exhibit higher variability in their seismic 

response due to the presence of rotated blocks embedded in a discontinuous chaotic matrix. 

I also note faster changes in the energy, and dips and higher reflector convergence in seismic 

reflectors closer to the edges of the salt diapirs. Finally, due to the more noisy, “salt-and-

pepper” appearance of the salt, they are characterized by a broader bandwidth response than 

the other target seismic facies. 

Case 2: Applying Kuwahara filter to seismic attributes 

For case 2, I apply a 5 x 5 x 5 voxel 3D Kuwahara filter to my seismic attributes 

computed in case 1. Qi et al. (2016) report that the 3D Kuwahara median filter removed 

random noise, smoothed the internal response of the seismic facies, and sharpened their 

edges, which resulted in a better discrimination between seismic facies. The voxel-based 

filter uses an overlapping window surrounding each voxel in the input seismic attribute space 

and assigns the median value of the overlapping window characterized by the lowest mean-

normalized standard deviation.  

Analyzing the Kuwahara-filtered seismic attributes along line AA’ (Figure 3.5), I 

note that they show a strong reduction in the seismic noise, while maintaining the attribute 

responses observed in the original candidate seismic attributes in case 1. Furthermore, the 

target seismic facies show a “blocky” appearance with smoother internal responses and 

sharper edges. 
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Case 3: Adding band-limited random noise to seismic volume 

To perform my sensitivity analysis, I add band-limited AWGN with a target S/N to 

my seismic volume to interpret how the tree-based model behaves when the noise level of 

the input candidate seismic attributes increases, such as the signal is two times stronger than 

the noise (S/N=2). For more information on the mathematical details of adding band-limited 

AWGN to the seismic volume, please refer to Appendix A. 

In Figure 3.6, I show the seismic volume before (Figure 3.6a) and after (Figure 3.6b) 

adding random noise with a target S/N=2. As expected, I observe an increase in the salt-and-

pepper appearance throughout the whole seismic data set when adding random noise (Figure 

3.6b). Moreover, when computing the seismic attributes using the noise-contaminated 

volume (Figure 3.7) and the same parameters as case 1, I observe that some attributes such 

as coherence, total energy, GLCM entropy, and spectral bandwidth offer a poorer 

discrimination between seismic facies compared to the original candidate seismic attributes 

(Figure 3.4), possibly associated with the increasing noise in the more coherent, higher 

amplitude rotated blocks of the MTDs and the conformal sediments surrounding the salt 

diapirs. 

Definition of training and validation data sets 

To define my training data set, I pick a group of polygons enclosing my target seismic 

facies from line AA’ to EE’ (Figure 3.8). Voxels associated with low-amplitude chaotic 

reflectors (the orange polygons), mixture of chaotic and coherent components (the green 

polygons), and parallel, high-amplitude conformal reflectors (the purple polygons) are 

extracted from my nine candidate seismic attributes. For the validation data set, I extract the 
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seismic facies of interest only along line FF’ (Figure 3.8) to maintain a splitting ratio close 

to 80%-20% in which 7191 voxels belong to the training data set, whereas 1335 voxels are 

associated with the validation data set. 

I ensure balance in my data by randomly selecting the same number of voxels 

belonging to each facies on training and validation data sets. Therefore, in the training data 

set, 2397 voxels have been assigned to each seismic facies, whereas in the validation data 

set each facies has 445 samples. Note that the training and validation sets are generated only 

for a few lines in the data set to leave the rest of the seismic volume as new unseen, unlabeled 

data set for interpretation. 

Random forest and hyperparameter tuning 

A random forest is a nonparametric ML technique consisting of an ensemble of 

randomized decision trees used for classification and regressions tasks. For classification, 

the final prediction is made by voting for the most predominant class among all tree 

predictors, whereas for regression the final output is given by averaging the results obtained 

in each individual tree (Breiman, 2001; Scornet et al., 2015; Genuer et al., 2017). Following 

Breiman (2001), Biau et al. (2008), Scornet et al. (2015), and Genuer et al. (2017), random 

forest generates high performance models in which only a small number of hyperparameters 

require tuning to obtain accurate results that are robust against overfitting and in the presence 

of noise and outliers in the data. 

 In this paper, I optimize the hyperparameters of my random forest architecture using 

a random-search algorithm in which a suite of hyperparameters combinations is randomly 

sampled from an initial grid space, which provides a simple and efficient means to find the 



 

78 
 

optimal hyperparameters (Bergstra et al., 2011; Bergstra and Bengio, 2012). I also apply a 

fivefold cross validation technique in which the data are split in five different random groups, 

with four groups are used as training data and remaining group used as validation. This 

process is repeated five times, and the mean accuracy is computed to assess the model 

performance. 

I computed the mean accuracy after running 100 iterations of the random search 

algorithm, applying fivefold cross validation in each iteration and considering only the 

training data from case 1 associated with polygons manually picked from line AA’ to EE’ 

to extract voxels from the candidate seismic attributes computed using the original seismic 

amplitude volume. The mean accuracy ranges from a minimum of 86.08% to a maximum of 

87.12%. Therefore, because these hyperparameters provide the best results during my 

search, I use them for my final tree-based architecture.  

I now analyze the validation accuracy of my random forest model when evaluating 

my validation data set picked along line FF’ (Figure 3.8) for cases 1-3 (Table 3.1). Please, 

note that the same hyperparameters found during the hyperparameter search are used in cases 

2 and 3 to perform an unbiased sensitivity analysis in which only the input data for the 

random forest architecture are changing. I observe that applying Kuwahara filtering to the 

seismic attributes (case 2) provides the highest validation accuracy of 91.46%. Adding 

random noise with target S/N = 2 results in a decrease of the validation accuracy from 83.6%, 

associated with the original attributes (case 1), to 81.72%.  
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Results 

SHAP implementation 

Global interpretability: SHAP global feature importance and SHAP summary plots 

Following Lundberg et al. (2020), combining several local explanations of the model 

allows interpreters to analyze the importance of each input attribute in the classification. 

Attributes associated with high average SHAP values have a higher importance in the 

classification than attributes characterized by low average SHAP values (Lundberg et al., 

2020; Molnar, 2021). 

In Figure 3.9, I analyze the average SHAP values associated with each candidate 

seismic attribute for each case study in my sensitivity analysis. In terms of the overall 

importance, I note that the highest contribution to the classification when using the original 

data (case 1) (Figure 3.9a) is given by the total energy followed by the dip deviation, energy 

deviation, coherence, covariance of dip and energy gradient, GLCM contrast, spectral 

bandwidth, GLCM entropy, and reflector convergence. The attribute importance is almost 

identical with a few differences when using Kuwahara filtering (case 2) and adding band-

limited seismic noise to the data set (case 3), as shown in Figures 3.9b and 3.9c, respectively.  

Then, I examine the significance of each input feature to the classification for each 

of the facies (Figure 3.10). This is the unique and attractive feature of SHAP values, in that 

it allows the user to assess the contribution of each of the inputs toward each of the 

classes/labels. For MTD, I find that the attribute importance when using the original data as 
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input (case 1) is the same as the overall importance (Figure 3.9a) and that relative changes 

in the attribute importance remain similar for cases 2 (Figure 3.9b) and 3 (Figure 3.9c).  

When applying Kuwahara filtering, spectral bandwidth still becomes the third most 

important attribute for the classification. However, contrary to the overall importance, 

GLCM entropy is now the sixth most important attribute for the MTD seismic facies. 

However, when adding band-limited seismic noise, GLCM contrast becomes the fourth most 

important attribute, and the coherence shows larger impact than the covariance of dip and 

energy gradient attribute for the MTD seismic facies (Figure 3.10a).  

For salt, I now observe that the spectral bandwidth becomes the fifth more important 

feature when using the original seismic attributes for classification (Figure 3.10b). For case 

2, spectral bandwidth becomes the second most important attribute showing a large increase 

in its average SHAP value, whereas the reflector convergence attribute also shows a slight 

increase in its importance when applying Kuwahara filtering. For case 3, GLCM contrast 

shows a drastic increase in its importance, and it becomes the second most important 

attribute to identify salt seismic facies in the presence of strong noise.  

Finally, I analyze the attribute importance for the conformal sediments (Figure 

3.10c). Contrary to the MTD and salt seismic facies, dip deviation is now the most important 

attribute for all cases, followed by the total energy. In addition, for case 1, the coherence and 

GLCM entropy attributes become the third and sixth most important attribute, respectively, 

whereas energy deviation takes the fifth place to isolate the background geology from the 

other target seismic facies.  
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When considering the 3D-Kuwahara filtered seismic attributes as input, I observe 

that GLCM entropy and spectral bandwidth become the third and fifth most important 

attributes in the classification. I also note that the coherence slightly increases its average 

SHAP value. This behavior also is seen for the MTD seismic facies, whereas for the salt 

seismic facies coherence only increases its importance in the presence of noise. 

In the presence of strong noise (case 3), I observe that the coherence decreases its 

importance and becomes the sixth most important attribute, whereas the GLCM contrast 

now takes the fifth position. Furthermore, similar to the MTD and salt seismic facies, GLCM 

entropy and spectral bandwidth become the worst attributes for classification in the presence 

of strong noise. 

Then, to study how large or small values in attribute space affect how the ML model 

classifies certain voxels into a particular seismic facies, I analyze the SHAP summary plots 

(Figure 3.11), which illustrate attribute importance along with the sensitivity of the model 

classes to variations in the input attributes. 

Each dot in the plot represents an individual voxel of the training data set. The x-axis 

represents the SHAP value for each candidate seismic attribute, whereas the y-axis represents 

the attribute importance for each seismic facies in the classification (Lundberg et al., 2020; 

Molnar, 2021). The blue colors represent low values of the input attribute, whereas the red 

colors represent higher values. The position of each dot on the plot indicates its importance 

to the classification of the specific label. For example, when analyzing attribute significance 

for the MTD using the original set of seismic attributes, high values of total energy are 

associated with a high probability of the voxel being an MTD, whereas low values represent 
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a low chance of the voxel being an MTD. Conversely, high values of coherence are 

associated with a low chance of the voxel being an MTD. This information is provided in 

Figure 3.11 for all facies and all three cases considered, showing the power and utility of 

using SHAP values.  

For MTD, I observe that the attribute’s effects are similar for all cases. In general, 

high to medium values of total energy, high values of dip deviation, energy deviation, GLCM 

entropy, and low values of coherence, covariance of dip and energy gradient, GLCM 

contrast, and spectral bandwidth tend to increase the probability of having a MTD seismic 

facies. I also note that, in the presence of strong noise, it is more difficult to establish clear 

attribute’s effects for coherence, covariance of dip and energy gradient, spectral bandwidth, 

and GLCM entropy. In contrast, the reflector convergence, which initially does not have any 

effect when performing the classification using the original seismic attributes, shows a clear 

effect in the presence of noise given by high values of reflector convergence pushing toward 

the MTD seismic facies.  

Then, for the salt seismic facies, I note that the attribute’s effects still tend to be 

similar for all cases. I observe that high values of dip deviation, GLCM contrast, and spectral 

bandwidth, medium to high values of GLCM entropy, and low values of total energy, energy 

deviation, covariance of dip and energy gradient, and reflector convergence increase the 

probability of classifying a particular voxel as salt seismic facies. For cases 1 and 2, there 

are some voxels characterized by low and high coherence that are increasing the probability 

of having salt seismic facies.  
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However, in the presence of strong noise, the effect of the coherence attribute in the 

classification becomes better defined in which low values of coherence are being classified 

as salt, whereas high values are classified as not salt. Moreover, the spectral bandwidth and 

GLCM entropy attributes not longer show a clear effect in identifying salt seismic facies. 

Finally, for conformal sediments, I observe that low values of dip deviation and 

energy deviation, high values of coherence and covariance of dip and energy gradient, and 

medium values of spectral bandwidth increase the probability of having conformal 

sediments. Furthermore, voxels characterized by either high or low values of GLCM contrast 

are being classified as conformal sediments.  

In addition, I note that medium to high values of total energy are characterized by 

SHAP values close to zero, meaning that these values are making less impact when the ML 

model classifies conformal sediments, whereas some voxels characterized by low values of 

total energy and medium to high values of GLCM entropy tend to be classified as conformal 

sediments by the algorithm. Finally, as seen in the previous seismic facies when I add band-

limited noise to the data set (Figures 3.11c and 3.11f), GLCM entropy and spectral 

bandwidth still do not show a clear effect to identify conformal sediments. 

From the results obtained using the SHAP summary plots, I note that some attributes 

are common to more than one seismic facies. For example, dip deviation contributes in a 

similar manner to MTD and salt facies. However, the conformal sediments are related to the 

dip deviation in a different manner that helps to differentiate it from the two other seismic 

facies. Using energy deviation and some voxels characterized by low values of GLCM 

contrast, salt and conformal sediments show overlap between them, whereas the MTD 
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seismic facies is easily identify using these attributes. In contrast, MTD and conformal 

sediments show overlap in the seismic responses when using the spectral bandwidth 

attribute, but salt is clearly distinguished from the other facies when using this attribute.  

These commonalities between facies reinforce the idea that using multiple attributes 

as input represents a good approach for seismic facies classification because, a priori, the 

strength of the contribution of each attribute to the final classification is unknown and it 

allows to discriminate among seismic facies that might have similar seismic responses in 

some attributes but better differentiation when considering other attributes. 

Global interpretability: SHAP dependence plots 

Although the previous discussion indicated the role of each of the input attributes in 

the final classification, the discussion was provided in terms of low/high values of the input 

attributes. SHAP dependence plots for the candidate seismic attributes provide additional 

information (Lundberg et al. 2020; Lerza et al., 2020) in terms of the actual values of the 

inputs. 

In these plots, each dot represents a voxel from the training data set, the x-axis is 

associated with the attribute’s value, and the y-axis shows the impact of that voxel in the 

prediction. Voxels associated with positive SHAP values indicate an increase in the 

probability of having a particular seismic facies, whereas voxels characterized by negative 

SHAP values decrease this probability. Also, dispersion in the vertical axis is associated with 

interaction between the candidate seismic attributes in the model. Finally, the SHAP 

dependence plots are automatically color coded by a feature that might interact during 

classification with the attribute that is being plotted in the x-axis (Lundberg et al., 2020).  
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Considering three cases for the sensitivity analysis, three target seismic facies, and 

nine input seismic attributes, a total of 81 SHAP dependence plots are analyzed. In this 

paper, I show the SHAP dependence plots for the total energy and dip deviation attributes 

(Figures 3.12 and 3.13) because these have consistently shown large impact in the 

classification. Plots for the remaining input attributes and their interpretations can be found 

as supplemental information (Figures 3.S1-3.S7). In addition, because my main objective 

includes understanding how changes in the seismic attribute’s values increase the probability 

of the seismic facies during classification, I focus only on the positive SHAP values response 

in the SHAP dependence plots. 

In Figure 3.12, I analyze the dependence plots for the total energy attribute per 

seismic facies for all cases in my sensitivity analysis. Please note that the attribute’s values 

in the x-axis for all SHAP dependence plots are shown without scaling for interpretational 

purposes. Moreover, Kuwahara filtering is removing outliers in the data (the green arrows) 

in all the plots.  

 For MTD seismic facies (Figures 3.12a-3.12c), all plots are color coded by the dip 

deviation attribute. For positive SHAP values, I observe two trends: (1) values of total energy 

larger than approximately 400 and high dip deviation and (2) values of total energy larger 

than 400 and low dip deviation that push towards MTDs, meaning that these values increase 

the probability of a voxel being classified as MTD.  

For the salt seismic facies (Figures 3.12d-3.12f), I note that the SHAP dependence 

plots are color coded by different attributes. For cases 1 and 2, I observe that, in general, 

values of total energy lower than 400 with low coherence and high dip deviation increase 
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the probability of having salt seismic facies (Figures 3.12d and 3.12e). However, in the 

former case, some voxels characterized by total energy lower than 400 and higher coherence 

are also pushing towards salt. Finally, when the input data are contaminated with band-

limited noise, I note that values of total energy lower than approximately 500 and high values 

of GLCM contrast increase the probability of a certain voxel being classified as salt.  

Finally, for the conformal sediments facies (Figures 3.12g-3.12i), I observe that cases 

1 and 3 are color coded by dip deviation (Figures 3.12g and 3.12i), whereas case 2 (Figure 

3.12h) is color coded by coherence. Moreover, two trends are visible in all cases. The first 

trend shows that values of total energy lower than approximately 400-500 with high values 

of dip deviation and low values of coherence, whereas the second trend shows values of total 

energy larger than 400-500 with low values of dip deviation and high values of coherence, 

which increase the probability of a voxel being classified as conformal sediments.  

Then, I show the SHAP dependence plots for the dip deviation attribute per seismic 

facies for all cases (Figure 3.13). For MTD seismic facies, I note that cases 1 and 2 are color 

coded by the total energy (Figures 3.13a and 3.13b), whereas case 3 (Figure 3.13c) is color 

coded by GLCM contrast. In addition, I still observe two clear trends that are increasing the 

probability of having MTDs. The first trend shows larger impact in the classification, and it 

is characterized by values of dip deviation larger than approximately 2 with high values of 

total energy and low values of GLCM contrast. In contrast, the second trend has smaller 

impact, and it shows voxels with dip deviation larger than 2 and low values of total energy 

and high values of GLCM contrast.  
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Analyzing the salt seismic facies (Figures 3.13d-3.13f), all SHAP dependence plots 

are color coded by the total energy attribute. I observe that values of dip deviation larger 

than approximately 2.5 and lower values of total energy are pushing towards the salt seismic 

facies. However, some values characterized by higher total energy are also increasing the 

probability of having salt. Finally, in the SHAP dependence plots for the conformal 

sediments (Figures 3.13g-3.13i), case 1 is color coded by total energy, whereas cases 2 and 

3 are color coded by the coherence attribute. In addition, I still observe two trends that have 

different impact in the classification, but both are pushing toward the conformal sediments 

facies: (1) values of dip deviation lower than 2.5 and higher values total energy and 

coherence and (2) values of dip deviation between 2.5 and 4 with lower values of total energy 

and coherence. 

After analyzing all 81 SHAP dependence plots for all cases and facies in my analysis, 

I note that, to perform a seismic facies classification to distinguish among MTDs, salt, and 

conformal sediments, the ML model is “learning” a set of rules in multiattribute space.  

In Table 3.2, I summarize the set of rules generated by the model after analyzing the 

SHAP dependence plots and SHAP summary plots (Figure 3.11). After studying the changes 

in attribute values for conformal sediments, I observe two well-defined trends. The first trend 

is associated with lower values of total energy and coherence, and larger values of dip 

deviation, energy deviation, covariance of dip and energy gradient, GLCM contrast, spectral 

bandwidth, GLCM entropy, and reflector convergence, whereas the second trend shows a 

completely different response characterized by large values of total energy and coherence, 



 

88 
 

and lower values of dip deviation, energy deviation, covariance of dip and energy gradient, 

GLCM contrast, spectral bandwidth, GLCM entropy, and reflector convergence.    

Therefore, based on the attribute response seen for the conformal sediments, I 

hypothesize that the first trend is possibly associated with overlap between conformal 

sediments and the MTDs and salt seismic facies related to dipping conformal reflectors 

located close to the edges of the salt, which are characterized by rapid changes in dip and 

lower seismic energy due to a decrease in the quality of the seismic imaging, whereas the 

second trend might be related to flat, higher amplitude conformal sediments located between 

salt diapirs. 

In addition, after summarizing the set of rules for the MTDs, I observe that this facies 

is actually characterized by one well-defined trend of higher values of total energy, dip 

deviation, energy deviation, GLCM entropy, and lower values of coherence, covariance of 

dip and energy gradient, and GLCM contrast. Therefore, I believe that the second trend seen 

in the SHAP dependence plots and characterized by lower values of dip deviation, total 

energy, and higher values of GLCM contrast, spectral bandwidth, and covariance of dip and 

energy gradient might be associated with overlap between MTDs, which are composed of 

chaotic and coherent components, dipping and/or parallel conformal sediments, and salt 

seismic facies. 

Finally, I note that the SHAP dependence plots can be color coded by different 

seismic attributes possibly indicating that the interaction among input attributes changes 

based on the quality of the input data and the seismic facies analyzed. In this paper, I only 

study the composite SHAP values response to understand the behavior of the model when 
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performing the seismic facies classification. A complete computation of SHAP interaction 

values (Lundberg et al., 2020) and the study of the main effect of the attribute and its 

interaction with other features are needed to fully understand how the interaction between 

candidate attributes affects the seismic facies classification.  

Seismic facies predictions 

To further assess how changes in the quality of the candidate input attributes affect 

the classification in the presence of previously unseen/unlabeled data, I compare the seismic 

facies prediction volumes using the three trained random forest models for each case along 

line GG’, in which hyperparameters are the same for all models, and only the input data are 

changing to perform an unbiased comparison.  

In Figure 3.14, I show the random forest facies prediction corendered with the 

seismic amplitude along line GG’ for each case using all candidate seismic attributes. I 

observe that, in general, the ML model classifies correctly among MTDs (the green facies), 

salt (the orange facies), and conformal sediments (the purple facies). However, the result 

obtained after applying Kuwahara filtering to the input attributes (Figure 3.14b) shows a 

smoother facies response, sharper edges, and better classification of previously 

unseen/unlabeled data than using the original data (case 1) and adding band-limited noise 

(case 3), in which the facies predictions look noisier and show more misclassifications.  

I note that, for cases 1 and 3, there are more gaps, associated with coherent migration 

artifacts inside salt diapirs (the yellow arrows), being misclassified as MTDs or conformal 

sediments by the algorithm. Furthermore, noisy data in the edges of the seismic volume with 

little interpretational values are misclassified as salt seismic facies (the blue arrows) and this 
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misclassification becomes more prominent in case 3 because of the added band-limited 

noise.  

In addition, I observe that dipping conformal reflectors show some overlap with the 

MTD and salt seismic facies and that these reflectors are more prone to be misclassified as 

salt or MTDs (the red arrows) in cases 1 and 3 compared to the results obtained in case 2. 

Moreover, I observe that high-amplitude, parallel conformal reflectors tend to be well 

classified in all cases. However, overlaps with the MTD seismic facies are more prominent 

when adding band-limited AWGN or using the original attributes. Finally, high-amplitude, 

seismic multiples are being misclassified as MTDs and conformal sediments by the model 

in all cases (the white arrows). 

Then, analyzing the random forest facies prediction corendered with the seismic 

amplitude at time slice t = 1.3 s, I observe that case 2 still shows the best seismic facies map 

and performance when classifying unseen data. Moreover, I note that conformal sediments 

misclassified as salt or MTDs are still more prominent in cases 1 and 3.  

In Figure 3.15, I show the probability volumes for all seismic facies and cases along 

line GG’. I note that each seismic facies is classified with high probabilities meaning that 

my ML models show high performance when differentiating among MTDs, salt, and 

conformal sediments. Moreover, for correctly classified facies, I do not observe any 

dimming in the probabilities between cases possibly indicating that facies are being 

classified with similar confidence by the algorithm. However, similar to the facies 

predictions, probability volumes for cases 1 and 3 tend to be noisier and show more 
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misclassifications between the target facies mainly inside and around salt diapirs compared 

to the results obtained when using the Kuwahara-filtered seismic attributes as input. 

Finally, I perform a geobody extraction (Meyer et al., 2001) to isolate and study the 

3D distribution of the MTD, salt, and conformal sediments facies using only the seismic 

facies volume associated with case 2, because it provides the most optimal classification. In 

Figure 3.16, I show the 3D seismic facies mapping using as criteria voxels characterized by 

probabilities higher than 70% for each seismic facies. In general, I can accurately extract 

and isolate the target seismic facies thorough the study area. However, I observe that some 

voxels inside the salt diapirs are being misclassified as MTDs or conformal sediments (the 

yellow arrows). Furthermore, I still note that dipping conformal reflectors tend to be 

misclassified as salt or MTDs by the random forest algorithm (the red arrows).  

Although computing probabilities for each facies is a common tool to examine the 

performance of a ML algorithm in seismic classification tasks, this approach does not 

provide a means to understand how the model uses the candidate seismic attributes to obtain 

these probabilities and classify a voxel as a particular seismic facies. Therefore, to further 

understand my best model associated with case 2, I analyze the SHAP force plots in four 

voxels of interest that were misclassified by the algorithm. Furthermore, computing the 

SHAP values throughout my seismic volume, I perform an in-context interpretation and 

examine how variations in the seismic response affect the facies predictions.  

Local interpretability 

Following Lundberg at al. (2018b, 2020) and Molnar (2021), SHAP force plots allow 

the interpreter to study how the seismic attributes affect the model prediction at a particular 
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voxel, in which SHAP values are considered as “forces” that increase or decrease the 

probabilities for the target seismic facies. In SHAP force plots, prediction starts from the 

base value which is given by the average of all probabilities for each seismic facies present 

in the data set if none of the input attributes are known (Lundberg and Lee, 2017; Molnar, 

2021). In addition, positive SHAP values are associated with the red arrows that are 

increasing the probability, whereas the blue arrows are related to negative SHAP values that 

are decreasing the probability of having a particular seismic facies. Furthermore, the size of 

the arrow indicates the impact of a particular seismic attribute in the classification of the 

voxel. Finally, in this study, each seismic facies starts with a base probability of 33.3%. 

In Figures 3.17 and 3.18, I analyze the SHAP force plots in four voxels of interest A, 

B, C, and D using my best seismic facies classification volume associated with case 2 along 

line GG’. Considering voxel A (Figure 3.17), I observe that the voxel is located inside salt 

diapir 1 and that the algorithm misclassified it as MTD facies with a 45% probability, 

whereas the salt seismic facies and the conformal sediments facies have probabilities of 13% 

and 42%, respectively.  

Using the SHAP force plot at voxel A, I analyze how the algorithm use the seismic 

attributes to obtain the final probabilities for each seismic facies. For the MTD seismic facies 

(Figure 3.17a), I note that the voxel starts with a base value of having MTD of 33%. Then, 

considering the effect of the candidate seismic attributes in the model, I note that the 

attributes making the most impact for this voxel are the total energy = 704.12, dip deviation 

= 7.01, spectral bandwidth = 58 Hz, and coherence = 0.7, which are pushing the probability 
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up, whereas values of GLCM entropy = 0.52 and covariance of dip and energy gradient = 

0.77 push down the probability to the final 45%.  

Then, for the salt seismic facies (Figure 3.17b), I observe that the coherence, dip 

deviation, and covariance of dip and energy gradient attributes increase the probability, 

whereas the total energy and spectral bandwidth are pushing the probability down from the 

base value of 33% to the final 13%. Finally, for the conformal sediments (Figure 3.17c), the 

final probability of 42% is obtained by the dip deviation and coherence attributes pushing 

down, whereas the GLCM entropy, covariance of dip and energy gradient, energy deviation, 

total energy, and reflector convergence push the probability up.  

Comparing these attributes values with the multiattribute relationship described in 

Table 3.2, I note that, in general, the behavior seen in the SHAP force plots for voxel A, 

matches well the response seen for all attributes for each seismic facies, with only a few 

exceptions. In the MTD seismic facies, a value of GLCM entropy = 0.52 is actually 

decreasing the probability. However, this value is only slightly larger than my threshold. For 

the salt seismic facies, the covariance of dip and energy gradient which shows a value larger 

than 0.2 is increasing the probability. However, based on the SHAP dependence plot for the 

covariance of dip and energy gradient attribute and salt seismic facies (see supplemental 

information Figures 3.S1-3.S7), I know that some values larger than the threshold can 

increase the probability of having salt. Finally, I note that the classification for conformal 

sediments is more challenging because I have to consider that the attribute response for flat, 

high amplitude and dipping reflectors (possibly showing overlap with MTDs and salt seismic 

facies) are driving the classification for this seismic facies.  
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Then, I study voxels B and C, which are located inside the high-amplitude seismic 

multiples (Figures 3.18a and 3.18b). I observe that these voxels are being misclassified as 

conformal sediments and MTDs with very high probabilities of 82% and 99%, respectively. 

Analyzing the SHAP force plot for voxel B and only for the facies with the highest 

probability, I observe that a value of GLCM contrast = 31.48 increase the probability from 

the base value of 33.3% to 36.24%, total energy = 1305.18 increase this probability to 

40.75%, spectral bandwidth = 44.45 Hz to 45.41%, GLCM entropy = 0.5 to 55.92%, energy 

deviation = 1.11 to 68.73%, and coherence = 0.94 shows the largest impact in the 

classification for this voxel and increases the probability to 83%, then the remaining 

attributes show a composite small impact of 0.1% that decrease the probability to the final 

82%.  

Then, analyzing the SHAP force plot for MTD seismic facies at voxel C, starting 

from the base value of 33%, covariance of dip and energy gradient = 0.204 increases the 

probability to 33.92% (not shown automatically in the SHAP force plot due to its small 

impact in the classification), coherence = 0.68 to 38.37%, GLCM entropy = 0.53 to 42.91%, 

energy deviation = 3.46 to 47.64%, GLCM contrast = 52.43 to 52.91%, spectral bandwidth 

= 54.63 Hz to 62.22%, dip deviation = 5.31 to 76.58%, and, with the largest impact, total 

energy = 695.02 to a probability of  99.1%, whereas a value of reflector convergence =  0.104 

- also not shown automatically in the SHAP force plot due to its small impact – decreases 

the probability only 0.1% to its final 99%. 

When I compare the attribute responses at voxels B and C with Table 3.2, I note that 

the behaviors match completely the response seen for flat conformal sediments and the MTD 
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seismic facies, possibly explaining why these voxels have large probabilities of being 

classified as conformal sediments and MTDs, respectively, because responses associated 

with dipping reflectors or salt seismic facies are not involved.  

Finally, I study voxel D that should have been classified as conformal sediments 

because it is located inside dipping conformal reflectors surrounding the salt diapirs but was 

misclassified by the algorithm as MTDs. Analyzing the SHAP force plot for the MTD facies 

(Figure 3.18c), I note that values of GLCM contrast = 76.7, spectral bandwidth = 60.88 Hz., 

coherence = 0.51, GLCM entropy =0.54, dip deviation = 4.69, and total energy = 616.21 are 

pushing the probability up, whereas values of energy deviation = 10.25 push down the 

probability to its final 76%. In contrast, in the SHAP force plot for the conformal sediments 

(Figure 3.18d), total energy = 616.21, covariance of dip and energy gradient = 0.39, energy 

deviation = 10.25, and spectral bandwidth = 60.88 Hz increase the probability, whereas dip 

deviation = 4.69, GLCM entropy = 0.54, and coherence = 0.51 push the probability down to 

its final 18% of having conformal sediments. 

When I compare the attributes’ response at voxel D with Table 3.2, I observe that the 

response shows a large overlap between MTDs and conformal sediments. The GLCM 

contrast and total energy attributes match well with the MTD and parallel conformal 

sediments, and spectral bandwidth, coherence, GLCM entropy, dip deviation, energy 

deviation match with the response seen for MTDs and the trend 1 for conformal sediments, 

whereas covariance of dip and energy gradient matches trend 1 seen for conformal sediments 

and trend 2 for MTDs. 
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In-context interpretation using SHAP values 

By computing the SHAP values for all Kuwahara-filtered seismic attributes and 

target seismic facies and corendering them with the seismic amplitudes, I can interpret how 

the ML model “sees” the geology perform and perform an in-context interpretation to 

understand how changes in the seismic response affect the model prediction. 

In Figure 3.19, I show the SHAP values corendered with the seismic amplitudes 

along line GG’ for the total energy, dip deviation, and energy deviation attributes for MTDs, 

salt, and conformal sediments. Similar to the SHAP force plots, positive SHAP values 

increasing the probability are characterized by red colors, whereas negative SHAP values 

decreasing the probability are associated with the blue colors. Analyzing the total energy 

attribute for MTD seismic facies (Figure 3.19a), I observe that the ML algorithm is correctly 

identifying MTDs in the area. However, high-amplitude conformal sediments and reflectors 

with lower amplitudes, lower seismic quality surrounding the salt diapirs also increase the 

probability of having MTDs (the white arrows).  

For salt seismic facies (Figure 3.19b), although some dipping reflectors and noisy 

areas close to the edges of the salt are increasing the probability for this seismic facies (the 

orange arrows), the model is, in general, classifying the lower amplitude, chaotic salt diapirs 

correctly. Finally, the conformal sediments are being correctly isolated by the model (Figure 

3.19c). Nevertheless, overlap with MTDs is visible (the yellow arrows). 

Analyzing the SHAP values for the dip deviation (Figure 3.19d-3.19f) and energy 

deviation (Figure 3.19g-3.19i) attributes, I note that the MTD seismic facies still show 

overlap with lower amplitude, lower seismic quality reflectors around the salt diapirs. 
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However, in the dip deviation attribute, some overlap with the salt diapirs exists. For the salt 

seismic facies, the overlap with MTDs is still visible when using the dip deviation attribute. 

However, in the energy deviation attribute, the salt diapirs are now having a strong overlap 

with the flat, high-amplitude conformal sediments located inside the mini-basins. Finally, 

for the conformal sediments seismic facies, I observe that the ML model is correctly 

identifying the flat, high-amplitude reflectors and some dipping reflectors showing higher 

amplitudes. However, some dipping reflectors characterized by lower quality in the seismic 

imaging are now decreasing the probability for this seismic facies.  

 Then, I analyze the SHAP values corendered with the seismic amplitudes for the 

coherence, covariance of dip and energy gradient, and GLCM contrast attributes and the 

target seismic facies along line GG’ (Figure 3.20). I observe that the MTD seismic facies 

still show overlap with lower amplitude dipping reflectors when using these seismic 

attributes. Moreover, overlap with the salt diapirs is also visible, but only when using the 

covariance of dip and energy gradient attribute.  

For the salt seismic facies, I observe that the ML algorithm correctly isolates the salt 

diapirs in the study area. However, slight overlap with the MTD and dipping conformal 

reflectors exists when considering the coherence attribute, while, using the GLCM contrast 

attribute, the overlap with the MTDs decreases and it is mainly occurring only with the 

reflectors surrounding the salt diapirs. Finally, for the conformal sediments seismic facies, I 

observe that, using the coherence and GLCM contrast attributes, the model is identifying 

parallel and dipping conformal reflectors in the study area. However, some overlap with the 

salt seismic facies is visible when considering the latter attribute. In addition, when using 
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the covariance of dip and energy gradient, the ML algorithm only correctly classifies the 

dipping conformal sediments, whereas the flat high-amplitude reflectors are not making an 

impact in the classification. 

 Finally, I perform an in-context interpretation along line GG’ using the spectral 

bandwidth, GLCM entropy, and reflector convergence attributes (Figure 3.21). I observe 

that the reflector convergence attribute does not have a large impact in the classification and 

does not have clear trends in the study area beyond showing some overlap between the 

seismic facies. In contrast, I note that MTDs are correctly identified by the model but overlap 

with conformal sediments and salt diapirs still exist when using the spectral bandwidth and 

GLCM entropy attributes, respectively. In addition, the salt diapirs are correctly isolated 

from the rest of the seismic facies when using these seismic attributes. However, noisy areas 

close to the edges of the survey and dipping reflectors are slightly increasing the probability 

of being classified as salt. Finally, for the conformal sediments, I observe that they are 

correctly classified when using the spectral bandwidth attribute, although some overlap with 

MTDs and salt exists. However, when using the GLCM entropy attribute, only the flat high-

amplitude conformal sediments are being correctly identified by the ML model, whereas 

some dipping conformal reflectors characterized by lower amplitudes are now decreasing 

the probability.  

Discussion 

After applying SHAP to the cases proposed to perform my sensitivity analysis, I note 

that the attribute importance is dynamic, and changes based on the quality of the input data 

and the seismic facies analyzed. I find that a combination of attributes that measure changes 
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in energy and dips are the best features to discriminate among MTDs, salt, and conformal 

sediments.  

I observe that the total energy and dip deviation attributes are the most important 

seismic attributes during the seismic facies classification when applying Kuwahara filtering, 

although they show a decrease in their average SHAP values. When adding band-limited 

random noise, the total energy and dip deviation attributes are still the two most important. 

However, the difference between their average SHAP values is drastically reduced.  

The dip deviation attribute shows high robustness in the presence of noise (Figure 

3.9c). Because dip is almost always consistent with a seismic wavelet of a coherent reflector, 

there is little vertical dip deviation contribution except at unconformities and little lateral 

contribution except at faults, channel infill, and MTDs, whereas within salt, there are 

interference effects from crossing migrations ellipses characterized by high dip deviation.  

When adding noise, the previously coherent (but random) migration ellipses get 

buried in noise, pushing the dip deviation toward some statistical mean of the random noise 

and away from the estimates that were biased toward the overlapping/conflicting dip 

migration ellipses which makes the changes of dip within the salt diapirs more homogenous, 

thus improving their differentiation from the MTDs and the background conformal 

sediments. 

The total energy attribute exhibits anomalously low values for salt facies and shale-

on-shale reflectors, whereas the response for the MTDs is mixed, characterized by 

intercalations of high and low energy values. When adding band-limited noise to the entire 
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survey, the root-mean-square (rms) ratio between seismic facies is reduced which produces 

a reduction in the separation between seismic facies (Figures 3.4 and 3.7). 

 In contrast, when applying Kuwahara filtering, the mean-normalized standard 

deviation can be very large when analyzing small means in the data set. This behavior will 

favor windows with higher mean, which results in less low total energy values after filtering 

and more overlap between seismic facies (Figures 3.4 and 3.5). 

Finally, contrary to the results found when using the original data (Figure 3.9a), the 

spectral bandwidth and GLCM entropy attributes show a large increase in their importance 

when applying Kuwahara filtering (Figure 3.9b). For near coherent reflectors, the specular 

reflections from different migration trace pairs constructively interfere, increasing the 

amplitude, whereas aliased migration events and high frequency noise destructively 

interfere, such that their contribution is less than that of the specular reflections and the 

average bandwidth is moderate (Figures 3.4 and 3.5). 

 In contrast, the salt is characterized by aliased noise, and there are no specular 

reflections. Therefore, there is no constructive interference, and the computed spectral 

bandwidth represents bandwidth of the input traces, which is relatively high. When applying 

Kuwahara filtering, windows with a higher mean bandwidth are favored over those with a 

lower mean bandwidth and entropy, so that the salt facies (and the incoherent part of the 

MTDs) becomes higher bandwidth. In contrast, the specular reflections appear to be just 

smoothed and blocked. The same argument holds for GLCM entropy, in which high values 

of GLCM entropy are favored in chaotic areas, while more coherent facies are just smoothed 
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and blocked. This behavior results in better separation between the target seismic facies and 

an increase in the importance of these seismic attributes after filtering. 

Conclusion 

I successfully train and apply a multiattribute random forest classification algorithm 

to distinguish among MTDs, salt, and conformal siliciclastic sediments in a Gulf of Mexico 

data set and apply SHAP to understand how the model uses these input candidate seismic 

attributes to predict the target seismic facies when considering three different cases: (1) using 

original seismic attributes, (2) applying a Kuwahara median filter to remove noise and 

smooth the response of the input attributes for subsequent classification, and (3) adding 

band-limited random noise to the data set. Applying SHAP for global analysis, I determine 

that the attribute importance changes based on the seismic facies analyzed and the quality of 

the input data. For these three seismic facies, attributes measuring changes in energy and dip 

such as total energy and dip deviation show the largest importance in the classification for 

all cases. In the presence of band-limited random noise, the nonparallelism, GLCM contrast, 

and reflector convergence attributes offer greater robustness during the classification and are 

characterized by an increase in their importance. In contrast, when applying a Kuwahara 

filter for preconditioning the input data, I observe that now the spectral bandwidth and 

GLCM entropy attributes have the largest increase in their importance. I also find that to 

perform the classification, the ML model is learning a set of rules in multiattribute space for 

each seismic facies, in which the thresholds learned by the algorithm might vary depending 

on the quality of the seismic attributes. 
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For my data, I find significant overlap in the attribute expression of MTDs, salt, and 

flat or dipping conformal sediments; however, for different attributes, this overlap may be 

at different locations allowing multiattribute classification to maximize the distinction 

between the target seismic facies. In addition, using the seismic facies classifications for 

each case, I note that the results obtained when applying Kuwahara filtering offer a blockier, 

more geologically reasonable classification free of inclusions, smoother facies response, and 

better classification of previously unseen/unlabeled data. Applying SHAP for a local 

analysis, I analyze at a voxel scale how the model obtains a particular probability. I found 

that dipping parallel conformal sediments around the edges of the salt characterized by lower 

amplitudes and a lower S/N tend to be misclassified as MTDs by the algorithm. Coherent 

noise inside the salt diapirs can be misclassified either as MTDs or conformal sediments. 

Because the algorithm was not trained to differentiate high-amplitude seismic multiples from 

the remaining seismic facies, I observe that these tend to be misclassified as MTDs or 

conformal sediments because the seismic multiples have a similar seismic response. Finally, 

by corendering the SHAP values with the seismic amplitudes, I perform an in-context 

interpretation to analyze how changes in the seismic reflectors impact the classification. I 

conclude that, based on the seismic attribute analyzed, an overlap among MTDs, salt, and 

conformal sediments exists in the study area. 
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Appendix A 

Adding band-limited noise to the seismic volume 

Following Liu and Lin (2013), the amplitude of the AWGN is given by the Gaussian 

distribution: 

𝑁(𝜇, 𝜎) =  
1

√2𝜋𝜎2
𝑒𝑥𝑝

−[
(x−𝜇)2

2𝜎2⁄ ]
,                 (A-1) 

where 𝜇 is the mean, which is equal to zero and 𝜎2 is the variance of the distribution which 

is related to the power of the noise and requires careful estimation. 

 In addition, to generate random noise with a target noise level and estimate its 

standard deviation 𝜎, I analyze the relationship between the S/N and the rms amplitudes of 

the original seismic volume and the noise. The S/N in linear scale is given by:  

S/N =  
𝐴2

𝑟𝑚𝑠,𝑠𝑖𝑔𝑛𝑎𝑙

𝐴2
𝑟𝑚𝑠,𝑛𝑜𝑖𝑠𝑒

                (A-2) 

where 𝐴𝑟𝑚𝑠,𝑠𝑖𝑔𝑛𝑎𝑙 is assumed to be the rms amplitude of the original seismic volume (Figure 

3.1) and 𝐴𝑟𝑚𝑠,𝑛𝑜𝑖𝑠𝑒 is the rms amplitude of the noise to be generated. Therefore, because 𝜎2 

is related to the power of the noise, I approximate the standard deviation 𝜎 of the noise to: 

𝜎 =  𝐴𝑟𝑚𝑠,𝑛𝑜𝑖𝑠𝑒 =  
1

√𝑆/𝑁
 𝐴𝑟𝑚𝑠,𝑠𝑖𝑔𝑛𝑎𝑙             (A-3) 
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Moreover, because my seismic amplitude volume is band limited with an 

approximate bandwidth of 77.5 Hz (Figure 3.1b) and the estimated AWGN is characterized 

by flat spectrum with amplitudes seen in frequencies larger than 80 Hz (Figure 3.A-1a), I 

apply an Ormsby filter 𝑂(𝑡) to generate a band-limited random noise 𝑁 given by 

𝑁 = 𝑁 ∗ 𝑂(𝑡)                (A-4) 

where 

𝑂(𝑡) = 
𝑓1

2𝜋

𝑓2− 𝑓1
𝑆𝑖𝑛𝑐2(𝑓1𝑡) − 

𝑓2
2𝜋

𝑓2− 𝑓1
𝑆𝑖𝑛𝑐2(𝑓2𝑡) −

𝑓3
2𝜋

𝑓4− 𝑓3
𝑆𝑖𝑛𝑐2(𝑓3𝑡) +

𝑓4
2𝜋

𝑓4− 𝑓3
𝑆𝑖𝑛𝑐2(𝑓4𝑡)    (A-5) 

and 𝑓1,2,3,4  are the corner frequencies. In this study, I use the Ormsby filter with corner 

frequencies equal to 𝑓1  = 5 Hz, 𝑓2  = 10 Hz, 𝑓3 = 60 Hz, and 𝑓4  = 80 Hz, with a duration T = 

500 ms and sampling interval ∆𝑡 = 4 ms (Figure 3.A-1b).  

 Finally, I add the band-limited noise 𝑁  (Figure 3.A-1c) to the original seismic 

volume A as 

𝐴̂ = 𝐴 + 𝑁               (A-6) 

where 𝐴̂ represents the seismic amplitude volume contaminated with random noise and 

target S/N = 2. 
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Chapter 3 Figures 

 

Figure 3.1. The 3D seismic survey used in the study is located in the Gulf of Mexico, 

offshore Louisiana. (a) Seismic amplitude volumes at time slice t =1.3 s. Chaotic seismic 

reflectors seen in the area are interpreted as two salt diapirs (the orange arrows). Six equally 

spaced lines are used to generate the training and validation data sets (the green rectangle), 

and vertical section GG’ is used to analyze how the random forest architecture predicts in 

the presence of previously unseen data. (b) Amplitude spectrum of the seismic volume. The 

data set is characterized by frequencies ranging from 2.5 Hz to 80 Hz and seismic bandwidth 

of approximately 77.5 Hz. 
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Figure 3.2. Seismic response of target seismic facies MTD, salt, and conformal sediments 

using a suite of magnified vertical sections along AA’. Salt diapirs (the orange arrows) are 

characterized by low-amplitude chaotic reflectors associated with random coherent noise. In 

addition, crossing coherent noise is visible inside salt diapirs (the yellow arrow) related to 

migration artifacts due to higher P-wave velocities compared with the surrounding strata and 

the geometry of the salt (Jones and Davison, 2014). MTDs (the green arrows) tend to be 

highly heterogenous with intercalations of more coherent, rotated blocks (the red arrow) and 

lower amplitude, discontinuous, and chaotic reflectors possibly related to shaley intervals 

(the blue arrow). Finally, the conformal sediments or background formations are 

characterized by high-amplitude coherent reflectors (the purple rectangle 1). However, 

conformal sediments close to the edges of the salt show a rapid change in the amplitudes and 

dips and low-frequency noise (the purple arrows). These conformal sediments are 

characterized by lower seismic amplitudes and a reduction in the quality of the seismic image 

(the purple rectangle 2). 
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Figure 3.3. Sensitivity analysis, seismic facies classification, and application of SHAP 
values for model interpretation workflow. Three cases are generated to analyze how different 

perturbations made to the input attributes affect the classification: case 1 considers the 

seismic attributes computed from the original volume; case 2 applies a 3D Kuwahara filter 

(Qi et al., 2016; Lubo-Robles et al., 2021) to remove noise, sharpen the edges between 

seismic facies, and smooth their internal response; and case 3 adds band-limited AWGN 

with S/N = 2 to the entire survey and recomputes the seismic attributes using the same 

parameters as case 1. I select a suite of candidate seismic attributes based on my geologic 

insight and experience to differentiate between the target seismic facies. Then, I generate the 

training and validation data sets by manually picking a group of polygons enclosing each of 

the target seismic facies. Moreover, I apply a Min-Max scaler (Jain et al., 2005; Pedregosa 

et al., 2011) to remove scale dependency in the seismic attributes. Then, considering the 

seismic attributes from case 1, I perform a hyperparameter search and apply fivefold cross 

validation to find the most optimal hyperparameters to train a random forest architecture. 

The same hyperparameters are used for cases 2 and 3 to make an unbiased sensitivity 

analysis.  Finally, I apply a SHAP TreeExplainer (Lundberg and Lee, 2017; Lundberg et al., 

2018a) to compute the SHAP values and explain the outputs of the models. The SHAP global 

feature importance, SHAP local explanation summary plots, and SHAP dependence plots 

provide a means to determine the global importance of each seismic attribute and understand 

the global behavior of the model (Lundberg et al., 2018a, 2020; Molnar, 2021). Using SHAP 

force plots, I study how seismic attributes are used by the random forest model to perform a 

seismic facies prediction at voxels of interest in the study area. In addition, by corendering 

the SHAP values with the seismic amplitude volume, I analyze how variations in the seismic 

response might affect the facies predictions. 
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Figure 3.4. Original seismic attributes for case 1 along line AA’. (a) Coherence, (b) total 

energy, (c) GLCM entropy, (d) reflector convergence, (e) spectral bandwidth, (f) GLCM 

contrast, (g) dip deviation, (h) energy deviation, and (i) covariance of dip and energy 

gradient. I observe that the salt diapirs are characterized by lower coherence, and higher 

entropy, contrast, and spectral bandwidth than the higher energy, more coherent background 

conformal sediments. MTDs exhibit higher variability in their seismic response due to the 

presence of rotated blocks embedded in a discontinuous chaotic matrix. Finally, rapid 

changes in dips, energy, and reflector convergence are visible close to the edges of the salt 

diapirs. 
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Figure 3.5. Seismic attributes along line AA’ after applying Kuwahara filtering. (a) 

Coherence, (b) total energy, (c) GLCM entropy, (d) reflector convergence, (e) spectral 

bandwidth, (f) GLCM contrast, (g) dip deviation, (h) energy deviation, and (i) covariance of 

dip and energy gradient. Seismic noise has been strongly reduced by the Kuwahara filter in 

the entire survey. Moreover, the target seismic facies are blocked and show smoother internal 

response and sharper edges. 
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Figure 3.6. Seismic volume (a) before and (b) after adding band-limited AWGN with S/N 
= 2. As expected, an increase in the salt-and-pepper appearance in the entire seismic volume 

is seen when adding random noise. 
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Figure 3.7. Seismic attributes along line AA’ after adding band-limited random noise to the 

entire seismic volume. (a) Coherence, (b) total energy, (c) GLCM entropy, (d) reflector 

convergence, (e) spectral bandwidth, (f) GLCM contrast, (g) dip deviation, (h) energy 

deviation, and (i) covariance of dip and energy gradient. Due to the increasing noise in the 

MTDs and background geology, there is a poorer discrimination between seismic facies 

compared with the original candidate seismic attributes in case 1. 
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Figure 3.8. Training and validation data sets definitions. (a-e) The training data are 
generated by manually picking a suite of polygons enclosing the MTD (the green polygons), 

salt (the orange polygons), and conformal sediments (the purple polygons) seismic facies. 

(f) Validation data set along line FF’ enclosing the target seismic facies. 
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Figure 3.9. Average SHAP values for each candidate seismic attribute and each case study. 

The highest contribution to the classification is given by the total energy followed by the dip 

deviation, energy deviation, coherence, covariance of dip and energy gradient, GLCM 

contrast, spectral bandwidth, GLCM entropy, and reflector convergence when using the 

original data (case 1). Moreover, the attribute importance is very similar with a few 

differences when considering cases 2 and 3. 
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Figure 3.10. Importance of each seismic attribute to the classification for each seismic 

facies. For case 1, the MTD and salt facies show that the most important attributes are given 

by the total energy, followed by the dip deviation. However, for conformal sediments, dip 

deviation becomes the most important attribute followed by the total energy. For MTD, the 

attribute importance when considering case 1 is the same as the overall importance (Figure 

3.9a) and relative changes in the attribute importance remain similar for cases 2 (Figure 3.9b) 

and 3 (Figure 3.9c). For salt, spectral bandwidth becomes the second most important 

attribute for the classification when applying Kuwahara filtering, while the GLCM contrast 

shows a large increase in its importance in the presence of strong random noise (case 3). 

Finally, for conformal sediments, GLCM entropy and spectral bandwidth become the third 

and fifth most important attributes in the classification when analyzing case 2. Moreover, 

when adding band-limited noise, the GLCM contrast shows a slight increase in its 

importance and becomes the fifth most important attribute, whereas the coherence shows a 

decrease in its importance. 
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Figure 3.11. The SHAP summary plots. Each dot represents an individual voxel of the 

training data set. The y-axis is associated with the attribute importance for each seismic 

facies, whereas the x-axis represents the SHAP value for each seismic attribute in the 

classification (Lundberg et al., 2020; Molnar, 2021). I observe that the attribute’s effects are 

similar for all cases with only some differences. (a-c) For MTD, high to medium values of 

total energy, high values of dip deviation, energy deviation, and GLCM entropy, and low 

values of coherence, covariance of dip and energy gradient, GLCM contrast, and spectral 

bandwidth tend to increase the probability of having MTDs. (d-f) High values of dip 

deviation, GLCM contrast, and spectral bandwidth, and low values of total energy, energy 

deviation, coherence, covariance of dip and energy gradient, and reflector convergence 

increase the probability for the salt seismic facies. (g-i) Finally, for conformal sediments, 

low values of dip deviation and energy deviation, high values of coherence and covariance 

of dip and energy gradient, medium values of spectral bandwidth, and low to high values of 

GLCM contrast are increasing the probability. 
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Figure 3.12. The SHAP dependence plot for total energy. Kuwahara filtering removes 

outliers in the data (the green arrows). (a-c) Two trends increasing the probability of having 

MTDs are visible: (1) values of total energy larger than approximately 400 and high dip 

deviation and (2) values of total energy larger than 400 and low dip deviation. (d-f) Values 

of total energy lower than 400 with low coherence and high dip deviation increase the 

probability of having salt seismic facies for cases 1 and 2, whereas values of total energy 

lower than approximately 500 and high values of GLCM contrast are increasing the 

probability for this seismic facies in the presence of noise (case 3). (g-i) For conformal 

sediments, (1) values of total energy lower than approximately 400-500 with high values of 

dip deviation and low values of coherence and (2) values of total energy larger than 400-500 

with low values of dip deviation and high values of coherence are increasing the probability. 

Please note that the attribute’s values in the x-axis are shown without scaling for 

interpretational purposes. 
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Figure 3.13. The SHAP dependence plot for dip deviation. Kuwahara filtering removes 

outliers in the data (the green arrows). (a-c) For MTD seismic facies, the trends of (1) values 

of dip deviation larger than approximately 2 with high values of total energy and low values 

of GLCM contrast and (2) values of dip deviation larger than 2 and low values of total energy 

and high values of GLCM contrast are increasing the probability. (d-f) For the salt seismic 

facies, values of dip deviation larger than approximately 2.5 and lower values of total energy 

are increasing the probability of a voxel being classified as salt. Moreover, some voxels 

characterized by higher total energy also increase the probability. (g-i) Two trends increasing 

the probability of having conformal sediments are visible: (1) values of dip deviation lower 

than 2.5 and higher values total energy and coherence and (2) values of dip deviation 

between 2.5 and 4 with lower values of total energy and coherence. Please note that the 

attribute’s values in the x-axis are shown without scaling for interpretational purposes. 
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Figure 3.14. Random forest facies prediction corendered with the seismic amplitude along 

line GG’ and at time slice t = 1.3 s for (a) case 1 using original seismic attributes, (b) case 2 

applying Kuwahara filtering, and (c) case 3 adding band-limited random noise to the entire 

survey. In general, the ML model correctly classifies among MTDs (the green facies), salt 

(the orange facies), and conformal sediments (the purple facies). However, the results 

obtained for case 2 offer a smoother facies response, sharper edges, and better classification 

of previously unseen voxels compared to cases 1 and 3. Coherent migration artifacts inside 

salt diapirs (the yellow arrows) are misclassified as MTDs or conformal sediments, whereas 

noisy data in the edges of the survey (the blue arrows) tend to be misclassified as salt. Note 

that dipping conformal reflectors show some overlap with the MTD and salt seismic facies. 

These reflectors are more prone to be misclassified as salt or MTDs (the red arrows) in cases 

1 and 3. At time slice t = 1.3 s, case 2 still offers the most optimal facies prediction with less 

conformal sediments voxels being misclassified as MTDs or salt. 



 

125 
 

 

Figure 3.15. Random forest probability volumes along line GG’ for all cases and seismic 
facies. (a) Case 1 using original seismic attributes, (b) case 2 applying Kuwahara filtering, 

and (c) case 3 adding band-limited random noise to the entire survey. In general, the ML 

model shows high probabilities for MTDs, salt, and conformal sediments with no dimming 

in the probabilities for correctly classified facies possibly indicating that facies are being 

classified with similar confidence by the algorithm in all cases. However, results obtained 

after applying Kuwahara filtering show less noise and less misclassifications inside and 

around salt diapirs compared to cases 1 and 3.  
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Figure 3.16. Geobody extraction of target seismic facies MTDs, salt, and conformal 

sediments using the seismic facies prediction associated with case 2 and probabilities higher 

than 70% for each facies. I can isolate the target seismic facies accurately throughout the 

study area. Dipping conformal reflectors close to the edges of the salt are being misclassified 

as salt or MTDs facies (the red arrows), whereas gaps inside the salt diapirs can be 

misclassified as MTD or conformal sediments (the yellow arrows). 
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Figure 3.17. The SHAP force plot for voxel of interest A along vertical section GG’. Voxel 
A is located inside a salt diapir and was misclassified as MTD by the algorithm with a 45% 

probability. (a) For MTD, the voxel starts with a base value of 33%. Considering the effect 

of the candidate seismic attributes in the model, I note that the total energy, dip deviation, 

spectral bandwidth, and coherence increase the probability of having MTD, whereas GLCM 

entropy and covariance of dip and energy gradient push down the probability to the final 

45%. (b) For salt, the coherence, dip deviation, and covariance of dip and energy gradient 

attributes increase the probability, whereas the total energy and spectral bandwidth are 

pushing the probability down from the base value of 33% to the final 13%. (c) For conformal 

sediments, the GLCM entropy, covariance of dip and energy gradient, energy deviation, total 

energy, and reflector convergence push the probability up, whereas the dip deviation and 

coherence attributes decrease the probability to 42%. Please note that the attribute values are 

shown without scaling for interpretational purposes.  
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Figure 3.18. The SHAP force plot along line GG’. (a-b) Voxel B and C are associated with 
high-amplitude seismic multiples, but they were misclassified by the algorithm as conformal 

sediments and MTD with 82 and 99% probabilities, respectively. For voxel B, GLCM 

contrast, total energy, spectral bandwidth, GLCM entropy, energy deviation, and coherence 

increase the probability from the base value of 33% to 83%, whereas the remaining attributes 

show a composite impact of 0.1% that decrease the probability to the final 82%. Voxel C 

starts a base value of 33%. Then, the covariance of dip and energy gradient (not shown 

automatically in the SHAP force plot due to its small impact in the classification), coherence, 

GLCM entropy, energy deviation, GLCM contrast, spectral bandwidth, dip deviation, and 

total energy push the probability up to 99.1%, whereas the reflector convergence attribute 

(also not shown automatically in the SHAP force plot due to its small impact) decreases the 

probability to its final 99%. (c) Voxel D associated with dipping conformal sediments close 

to the edges of the salt was misclassified as MTD. For the MTD seismic facies, GLCM 

contrast, spectral bandwidth, coherence, GLCM entropy, dip deviation, and total energy 

pushing the probability up, whereas energy deviation pushes down the probability to its final 

76%. (d) For the conformal sediments facies, total energy, covariance of dip and energy 

gradient, energy deviation, and spectral bandwidth push the probability up, whereas dip 

deviation, GLCM entropy, and coherence decrease the probability to its final 18%. 
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Figure 3.19. The SHAP values corendered with the seismic amplitudes along line GG’ for 

the total energy, dip deviation, and energy deviation attributes for MTDs, salt, and conformal 

sediments. Note that positive SHAP values increase the probability and are characterized by 

the red colors, whereas negative SHAP values are associated with the blue colors and 

decrease the probability. (a-c) Total energy attribute. In general, the ML model correctly 

distinguishes between the target seismic facies. However, high-amplitude conformal 

sediments and reflectors with lower amplitude, lower seismic quality around the diapirs 

increase the probability of having MTDs (the white arrows). Some dipping reflectors and 

noisy areas close to the diapirs increase the probability of a voxel being classified as salt (the 

orange arrows), whereas overlap between conformal sediments and MTD is visible (the 

yellow arrows). (d-f) Dip deviation attribute. Overlap between MTD and salt is visible. In 

addition, MTDs still show overlap with the reflectors surrounding the diapirs (g-i) Energy 

deviation attribute. Salt diapirs show a strong overlap with the flat, high-amplitude 

conformal sediments located inside the mini-basins. Finally, using the dip and energy 

deviation attributes, dipping reflectors decrease the probability of having conformal 

sediments. 
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Figure 3.20. The SHAP values corendered with the seismic amplitudes along line GG’ for 
the (a-c) coherence, (d-f) covariance of dip and energy gradient, and (g-i) GLCM contrast 

attributes for MTDs, salt, and conformal sediments. For the MTD seismic facies, overlap 

with the lower amplitude dipping reflectors surrounding the salt is still visible. In addition, 

the salt diapirs and MTD show overlap when considering the covariance of dip and energy 

attribute. For the salt seismic facies, salt diapirs tend to be isolated correctly by the model. 

However, overlap between the diapirs and the MTDs and dipping conformal reflectors exists 

when considering the coherence attribute, but using the GLCM contrast attribute, the overlap 

with the MTDs tends to decrease. Finally, for the conformal sediments, some overlap with 

the salt seismic facies is visible when considering the GLCM contrast attribute. In addition, 

the flat high-amplitude reflectors are not making an impact in the classification when 

considering the covariance of dip and energy gradient. 
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Figure 3.21. The SHAP values corendered with the seismic amplitudes along line GG’ for 
the (a-c) spectral bandwidth, (d-f) GLCM entropy, and (g-i) reflector convergence attributes 

for MTDs, salt, and conformal sediments. Note that the reflector convergence attribute does 

not have a large impact in the classification and does not have clear trends to differentiate 

between the target seismic facies. Overlap between MTDs and the conformal sediments is 

visible for the spectral bandwidth attribute, whereas the GLCM entropy attribute shows 

some overlap between the salt diapirs and MTDs. For the salt seismic facies, noisy areas 

close to the edges of the survey and dipping reflectors increase the probability of voxels 

being classified as salt. Finally, for conformal sediments, slight overlap with MTDs and salt 

is seen when using the spectral bandwidth attribute. Considering the GLCM entropy 

attribute, dipping conformal reflectors characterized by lower amplitudes decrease the 

probability of having conformal sediments.  
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Figure 3.A-1. Adding band-limited noise to the seismic volume. (a) The estimated AWGN 

𝑁(𝜇,𝜎) shows a flat spectrum, and it is characterized by frequencies larger than 80 Hz. (b) 

Ormsby filter 𝑂(𝑡) applied to 𝑁(𝜇,𝜎) with corner frequencies 𝑓1 = 5 Hz, 𝑓2 = 10 Hz, 𝑓3 = 60 

Hz and 𝑓4 = 80 Hz, duration of T=500 ms, and sampling interval ∆𝑡 = 4 ms. (c) Band-limited 

noise 𝑁 and target S/N = 2. Note that the estimated AWGN does not show amplitudes for 

frequencies larger than 80 Hz. 
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Figure 3.S1. The SHAP dependence plot for energy deviation. (a-c) For MTD, two trends 
are still increasing the probability of having MTDs: (1) values of energy deviation larger 

than approximately 2.5 with lower values of total energy, higher values of spectral 

bandwidth, and low to high values of GLCM contrast and (2) voxels showing energy 

deviation larger than 2.5 with higher values of total energy, lower values of spectral 

bandwidth, and low to high values of GLCM contrast. (d-e) For the salt seismic facies, values 

of energy deviation smaller than 2.5 for cases 1 and 2 and smaller than approximately 4 

when adding band-limited noise, and low values of coherence are pushing towards salt. 

However, some values characterized by low energy deviation, high coherence and some 

voxels showing energy deviation larger than 2.5 are also increasing the probability of a voxel 

being classified as salt. (g-i) Finally, for conformal sediments, two well-defined trends are 

still visible: (1) values of energy deviation smaller than approximately 2.5 and high values 

of total energy, coherence, and GLCM contrast and (2) values of energy deviation larger 

than 2.5 with low values of total energy, coherence, and GLCM contrast. 
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Figure 3.S2. The SHAP dependence plot for coherence. (a-c) In the MTD seismic facies, 
values of coherence smaller than approximately 0.9 and high values of total energy are 

pushing towards MTD seismic facies, whereas values of coherence smaller than 0.9 and low 

total energy increase the probability of having MTD, but the latter offers less impact in the 

classification with SHAP values closer to zero. In contrast, for cases 2 and 3, I note that 

values of coherence between 0.35-0.45 to approximately 0.9 and low to high values of total 

energy are pushing towards MTD, whereas now values of coherence lower than 

approximately 0.35-0.45 are, in general, decreasing the probability. (d-f) For salt, the 

distribution of SHAP values is changing for cases 2 and 3. For cases 1 and 2, voxels showing 

values of coherence lower than approximately 0.85 and low to high values of covariance of 

dip and energy gradient are increasing the probability of having salt. For case 3 a better-

defined trend for the salt seismic facies is visible with values of coherence smaller than 0.3 

and low to high values of covariance of dip and energy gradient increasing the probability. 

(g-i) For conformal sediments, two trends for this seismic facies are still seen. For case 1, 

values of coherence smaller than 0.85 with higher values of covariance of dip and energy 

gradient and values of coherence larger than 0.85 with low values of covariance of dip and 

energy gradient are increasing the probability of a voxel being classified as conformal 

reflectors. When applying Kuwahara filtering, values of coherence smaller than 0.45 with 

low to high values of covariance of dip and energy gradient, and values of coherence larger 

than 0.85 with low values of covariance of dip and energy gradient are pushing towards the 

conformal sediments. Finally, when the input data are contaminated with band-limited noise, 

the first trend is characterized by values of coherence smaller than 0.4 and high values of 

covariance of dip and energy gradient, whereas the second trend is associated with values of 

coherence larger than 0.4 and lower covariance of dip and energy gradient. 
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Figure 3.S3. The SHAP dependence plot for covariance of dip and energy gradient. (a-c) 
For the MTD seismic facies, two trends are still visible: (1) voxels characterized by 

covariance of dip and energy gradient lower than approximately 0.15 with higher total 

energy and GLCM entropy, and lower dip deviation and (2) voxels associated with 

covariance of dip and energy gradient larger than 0.15 with lower total energy, and higher 

GLCM entropy and dip deviation are increasing the probability of having MTDs. (d-f) For 

the salt seismic facies, values of and covariance of dip and energy gradient smaller than 0.15-

0.2 with lower values of coherence are pushing towards salt. However, some values larger 

than 0.15-0.2 also increase the probability for this seismic facies. (g-i) Finally, for the 

conformal sediments, two well-defined tends increasing the probability of a voxel being 

classified as conformal reflectors are seen: (1) values of covariance of dip and energy 

gradient smaller than 0.1-0.2 and higher values of coherence and (2) values of covariance of 

dip and energy gradient larger than 0.1-0.2 with lower values of coherence.  
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Figure 3.S4. The SHAP dependence plot for GLCM contrast. (a-c) For MTD, two trends 

are still visible, but there is some vertical overlap between them for cases 1 and 2. For these 

cases, values of GLCM contrast lower than approximately 90 and low to high values of 

covariance of dip and energy gradient and total energy are pushing towards MTDs. In 

contrast, for case 3, there is more vertical separation between the trends in which values of 

GLCM contrast smaller than 140 and low to high values of dip deviation are increasing the 

probability. (d-f) In cases 1 and 2 for the salt seismic facies, values of GLCM contrast larger 

than approximately 75-80 and low to high values of covariance of dip and energy gradient 

are increasing the probability of having salt. Moreover, when adding band-limited AWGN, 

a better definition of the trend for this seismic facies is seen in which values of GLCM 

contrast larger than approximately 140 with lower total energy are increasing the probability. 

(g-i) For the conformal sediments facies, two trends that are pushing towards this facies are 

still seen. For cases 1 and 2, the first trend is characterized by values of GLCM contrast 

lower than approximately 75-80 and lower values of energy deviation and covariance of dip 

and energy gradient, whereas the second trend show values of GLCM contrast larger than 

75-80 and higher values of energy deviation and covariance of dip and energy gradient. For 

case 3, a similar trend than case 2 is seen, but now the threshold for the GLCM contrast is 

increasing to approximately 110. 
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Figure 3.S5. The SHAP dependence plot for spectral bandwidth. When applying Kuwahara 

filtering the spectral information is compressed and clustered for all facies. (a-c) For MTD, 

frequencies lower than 70 Hz with low to high values of energy deviation are increasing the 

probability in case 1, while applying Kawahara filtering, frequencies lower than 65 Hz and 

low to high values of energy deviation are increasing the probability of having MTDs. (d-f) 

For the salt seismic facies, frequencies larger than 70 Hz and high dip deviation tend to push 

towards this seismic facies. Moreover, for case 2, frequencies larger than 65 Hz and high 

values of dip deviation increase the probability of having salt. (g-i) Finally, for conformal 

sediments, an overlap with the MTD facies is visible with frequencies between 40 and 65 

Hz and low to high values of covariance of dip and energy gradient increasing the probability 

of having a voxel classified as conformal sediments. For case 2, two well-defined trends 

push towards the conformal sediments facies: (1) frequencies between 60 to 70 Hz with high 

values of covariance of dip and energy gradient and (2) frequencies lower than 60 Hz and 

low values of covariance of dip and energy gradient. Note that in the presence of strong 

noise, all trends and impact are lost when using the spectral bandwidth attribute with 

frequencies pushing towards SHAP values close to zero. 
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Figure 3.S6. The SHAP dependence plot for GLCM entropy. Trends are not that well-
defined compared to other attributes and MTDs and conformal sediments show overlap 

between them (a-c) For the MTD seismic facies, values of GLCM entropy larger than 0.5 

with high values of total energy increase the probability (d-f) For salt, values of GLCM 

entropy larger than 0.5 with low to high values of covariance of dip and energy deviation 

are increasing the probability for cases 1 and 2 (g-i) Finally, for conformal sediments, values 

of GLCM entropy smaller than 0.5 with high values of total energy are increasing the 

probability. Note that some voxels characterized by GLCM entropy larger than 0.5 and lower 

total energy can also increase the probability of having MTD or conformal sediments. 

Moreover, applying Kuwahara filtering, trends for these seismic facies remain very similar 

to considering case 1, but the data look more compressed and clustered, making the trends 

better defined. Finally, similar to the spectral bandwidth attribute, trends using the GLCM 

entropy are lost in the presence of strong noise. 
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Figure 3.S7. SHAP dependence plot for reflector convergence. Using the original data, there 

is a strong overlap between facies and analyzing possible trends for this attribute is a 

challenging task. However, applying Kuwahara filtering or adding band-limited AWGN, 

these trends become slightly better defined for all seismic facies. However, some overlap 

between seismic facies still exists. (a-c) For MTD seismic facies, values of reflector 

convergence larger than approximately 0.25-0.3 with high values of covariance of dip and 

energy gradient have higher impact in the classification and increase the probability. 

However, some values characterized by reflector convergence lower than 0.25-0.3 and lower 

values of covariance of dip and energy gradient also increase the probability for this facies. 

(d-f) For salt, voxels characterized by reflector convergence lower than 0.3 and low values 

of coherence and high values of dip deviation increase the probability. (g-i) For the 

conformal sediments facies, two trends increasing the probability are seen: (1) values of 

reflector convergence larger than approximately 0.2 with low values of coherence and total 

energy, and (2) values of reflector convergence smaller than 0.2 and higher values of 

coherence and total energy. 
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Chapter 3 Tables 

 

Table 3.1. Validation accuracy for cases 1, 2, and 3 using the data extracted from polygons 

manually picked along line FF’. The highest validation accuracy of 91.45% is obtained after 

applying Kuwahara filtering to the seismic attributes (case 2). The original seismic attributes 

(case 1) and adding random noise with S/N = 2 (case 3) offer validation accuracies of 83.6% 

and 81.72%, respectively. Note that the same hyperparameters for the random forest 

architecture are used for all cases. 
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Table 3.2. Multiattribute space rules learned by the ML model to distinguish among MTDs, 

salt, and conformal sediments obtained after analyzing all 81 SHAP dependence plots for all 

cases and seismic attributes. For conformal sediments, I observe two well-defined trends. 

The first trend is characterized by lower values of total energy and coherence, and larger 

values of dip deviation, energy deviation, covariance of dip and energy gradient, GLCM 

contrast, spectral bandwidth, GLCM entropy and reflector convergence, whereas the second 

trend shows a completely different response characterized by large values of total energy 

and coherence, and lower values of dip deviation, energy deviation, covariance of dip and 

energy gradient, GLCM contrast, spectral bandwidth, GLCM entropy, and reflector 

convergence, which are possibly associated with dipping conformal reflectors located close 

to the edges of the salt, and flat, higher amplitude conformal sediments located between salt 

diapirs, respectively. For MTD, one well-defined trend associated with higher values of total 

energy, dip deviation, energy deviation, GLCM entropy, and lower values of coherence, 

covariance of dip and energy gradient, and GLCM contrast is visible. The second trend also 

increasing the probability of having MTDs might be associated with overlap between this 

seismic facies and dipping and/or parallel conformal sediments and salt.  
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Chapter 4: Identification of bottom-simulating reflectors 

(BSRs) using seismic attributes and machine learning 
 

Abstract 

The impact of naturally abundant gas hydrates on climate is not completely 

understood. Moreover, mapping the lateral distribution and thickness of gas hydrates and 

associated free gas using even the best quality seismic surveys can be quite difficult. Because 

the stability of gas hydrates within the Gas Hydrate Stability Zone (GHSZ) is controlled by 

temperature and pressure, and because their impedance can be significantly different than 

those of the sedimentary matrix in which they occur, I often am able to identify a bottom 

simulating reflector (BSR) at the base of the GHSZ that cuts across the stratigraphic 

reflectors. For the same reason, when the stratigraphic reflectors are parallel to the ocean 

bottom, the BSR is easily confounded with a strong stratigraphic reflector.  Seismic attributes 

and machine learning (ML) applied to seismic facies analysis have been successful in 

quantitatively mapping patterns associated with karst collapse, mass transport complexes, 

and volcanic intrusions that are tedious for human interpreters to pick. These techniques 

enhance geologic features of interest and discover hidden relationships in the data, 

respectively. However, selecting an optimal combination of seismic attributes and training 

data to perform a robust seismic facies classification is highly dependent on the interpreter’s 

skills. In this study, I apply principal component analysis (PCA) to select a suite of geometric 

and spectral attributes to be used as input for self-organizing maps (SOM) to identify BSRs 

and surrounding facies in a seismic volume located in the Blake Ridge, offshore South 

Carolina, USA. PCA decomposes a multiattribute input into a suite of linear uncorrelated 
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components sorted by their variability. However, variability tends to have little relationship 

with geology. Therefore, I evaluate PCA as an attribute selection technique under three 

different training data selection strategies: 1) using unbiased training data extracted 

throughout a 3D grid spanning the entire data volume, 2) using biased training data that fall 

in BSR polygons defined by the interpreter, and 3) using biased training data that are 

extracted from polygons defined by the interpreter enclosing four main seismic patterns 

associated with the BSR;  high-amplitude, high frequency continuous reflectors; low-

amplitude, sigmoid to chaotic reflectors; and high-amplitude discontinuous reflectors. I 

found that combining geometric and spectral attributes such as total energy, coherence, 

GLCM entropy, and peak magnitude as input for SOM represents an effective method to 

detect BSRs. Moreover, significant overlap with clusters associated the BSRs and 

surrounding seismic facies might exist in the study area. However, using a smaller subset of 

samples representing the target four seismic facies when applying PCA to select input 

attributes for SOM offers optimal BSRs identification, whereas overlap between the BSRs 

and surrounding facies is reduced.   

Introduction 

Gas hydrates, which are mainly composed of methane and water, are abundant in 

nature and commonly occur in shallow subsurface oceanic settings in continental margins 

and permafrost, where low temperature and high-pressure settings contribute to their 

formation. However, the impact of gas hydrates in climate change is not completely 

understood. Geological mechanisms such as changes in sea level and sea floor erosion can 

produce variations in temperature and pressure potentially releasing methane to the ocean 
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and atmosphere (Lee et al., 1994; Kennett et al., 2000; Holbrook, 2002; Dickens, 2003; 

Davies et al., 2021).  

Although gas hydrates are naturally abundant, there is not a general technique for its 

detection in the subsurface. One way to identify the presence of gas hydrates consists of 

analyzing changes in seismic amplitude data to map bottom-simulating reflectors (BSRs). 

BSRs are usually characterized by high amplitude, phase-shifted reflectors parallel to the sea 

floor that delineate the base of the Gas Hydrate Stability Zone (GHSZ), which represents a 

region where pressure and temperature conditions are favorable for gas hydrate development 

(Lee et al., 1994; Shipboard Scientific Party, 1996; Hornback et al., 2003, 2008). However, 

neither all gas hydrates might produce BSRs at the base of the GHSZ neither all BSRs 

guarantee the presence of hydrates in the area (Kuramoto et al., 1992; Wood and Ruppel, 

2000; He et al., 2006).   

Shipley et al. (1979) identify BSRs on seismic data over continental slopes across 

North, Central, and South America, Yoo et al. (2013) integrate well and seismic data to map 

gas hydrates in the Ulleung Basin, East Sea. Plaza-Faverola et al. (2012) combined 

stratigraphic and structural analysis using pre-stack depth migrated seismic data to study gas 

hydrate concentrations and fluid flow in the southern Hikurangi margin, New Zealand. 

Seismic attributes are common tools in the exploration and development of 

hydrocarbon resources and are used to perform a more complete reservoir characterization 

by quantitively enhancing and differentiating the geologic features and reservoir properties 

in a depositional environment (Posamentier and Kolla, 2003; Chopra and Marfurt, 2007). 

Using full waveform inversion to compute a P-wave velocity model which is coupled with 
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the coherence attribute to be used as proxies for primary saturation and secondary porosity 

respectively, Jaiswal (2016) estimates the total hydrate saturation in the Krishna-Godavari 

Basin, offshore India.  Bedle (2019) uses rock physics modelling to estimate the amplitude 

variation with angle (AVA) responses to better delineate strong and weak BSRs, whereas 

Clairmont et al. (2021) use a sparse-spike decomposition algorithm to compute the quality 

factor as a means to study attenuation effects in seismic data to differentiate hydrates from 

free gas in the Pegasus Basin, New Zealand.  

Machine learning (ML) techniques have become widely popular for pattern 

recognition in the past two decades. For seismic facies identification, seismic attributes are 

common inputs to ML algorithms. Roy et al. (2014) compute a suite of seismic inversion 

volumes and apply generative topographic mapping to identify different rock types in a 

carbonate wash in the Veracruz Basin, southern Mexico. Chopra and Marfurt (2019) apply 

a suite unsupervised machine learning techniques to a multi-attribute seismic input to study 

the facies distribution in a channel system in a seismic volume from the Barents Sea. 

Recently, Lubo-Robles et al. (2022) train a random forest algorithm and apply Shapley 

additive explanations to quantify the sensitivity of a given facies to changes in the seismic 

attributes and understand how these variations affect the ML algorithm predictions to 

differentiate salt, mass transport deposits, and conformal siliciclastic sediments in a Gulf of 

Mexico seismic volume.  

In general, ML can be broken into supervised and unsupervised algorithms. A 

limitation of supervised algorithms is that if I lack adequate supervision data (or in my case, 

an understanding of the expression of gas hydrates) I run the risk of miscategorizing seismic 
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features not included in the training data. A limitation of unsupervised learning is that while 

the algorithm attempts to represent all the features in the data, it does so (typically) using a 

least-squares algorithm, such that features that represent less than 1% of the voxels in a 3D 

survey may be not be represented at all (Roden and Chen, 2017).  

To identify strong and weak BSRs in the Pegasus Basin, New Zealand, Chenin 

(2020) performs an unsupervised facies analysis using instantaneous and AVA attributes as 

input to self-organizing maps (SOM). However, to the best of my knowledge, there are no 

published studies in which modern geometric seismic attributes are combined with spectral 

attributes to perform an unsupervised classification and map BSRs. 

Moreover, selection of training data and optimal combination of seismic attributes to 

perform a robust seismic facies classification is a challenging task. In recent years, an 

increasing number of studies have been conducted to address this situation (Wang et al., 

2015; Amin et al., 2017; Kim et al., 2019; Qi et al., 2020; Lubo-Robles et al., 2021). Zhao 

and Marfurt (2017) analyze a suite of training data configurations for SOM to interpret the 

main geologic features present in a turbidite channel system in the Canterbury Basin, New 

Zealand. Roden et al. (2015) apply principal component analysis (PCA) to all data samples 

in a multi-dimensional input to generate a suite of principal components - sorted by their 

variability - as a means to analyze the ability of individual seismic attributes to differentiate 

features in the seismic data volume.  

Unfortunately, higher variability in PCA may have little relationship to geology (Guo 

et al., 2009; Roden et al., 2015). Lubo-Robles and Marfurt (2019) found that small-scale 

geologic features associated with lower reflectivity tend to be more difficult to interpret in 
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the first principal components than in subsequent components representing the remaining 

variability of the data.  

Although PCA and SOM are unsupervised classification algorithms, the selection of 

training data biases the result. If I use training data that statistically represents the entire 

seismic survey, it may underrepresent smaller, localized features of interest. I therefore 

hypothesize that training data that are biased towards the target BSR feature, or alternatively, 

equally represent the BSR to the background or a small suite of other geologic features will 

provide a superior classification result.  

I begin this study by describing the geological setting of the Blake Ridge, followed 

by the mechanics of PCA for attribute selection. Then, I compute a suite of candidate 

geometric and spectral attributes and apply PCA considering my three alternative training 

data selection strategies. I evaluate the classification using both PCA and SOM. I provide 

mathematical details on how to implement PCA for seismic attribute selection in the 

Appendix.    

Geologic background 

Gas hydrates are ice-like solids mainly composed of methane and water which can 

form within the Gas Hydrate Stability Zone (GHSZ), which is characterized by low 

temperature and high-pressure conditions and are common in permafrost and continental 

margins within sediments located at approximately several hundred meters beneath the sea 

floor (Lee et al., 1994; Shipboard Scientific Party, 1996; Collet and Ladd, 2000; Hornback 

et al., 2003, 2008). Because the pressure and temperature gradients are almost orthogonal to 
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the sea floor, hydrates form parallel to the sea floor where the abrupt change in impedance 

result on seismic data in a bottom-simulating reflector (BSR). However, if variations in 

seismic impedance are not strong enough, BSRs might not be observed in seismic data even 

if gas hydrates are present (Wood and Ruppel, 2000; He et al., 2006).   

The BSR is usually characterized by a high amplitude reflector that tends to follow 

the shape of the sea floor, cross-cutting stratigraphic reflectors, and show phase reversal 

from the sea floor (Shipboard Scientific Party, 1996; Holbrook et al., 2002; Hornback et al., 

2003, 2008). Moreover, when BSRs are generated due to the presence of gas hydrates, they 

delineate the base of the GHSZ. Above the BSRs, sediments contain hydrate and water in 

their pore space, whereas below the BSRs, sediments are filled with free gas because 

hydrates cannot remain stable due to changes in temperature and pressure (Shipley et al., 

1979; Lee et al., 1994; Shipboard Scientific Party, 1996; Hornback et al., 2003, 2008). 

The Blake Ridge is a large Tertiary to Quaternary contourite drift located off the 

coast of South Carolina, USA (Shipboard Scientific Party, 1996; Collet and Ladd, 2000; 

Hornback et al., 2003, 2008). Based on well data, the Blake Ridge is characterized by gas 

hydrates within the pore space of clay-rich hemipelagic sediments resulting in a relatively 

high amplitude, continuous BSR (Shipboard Scientific Party, 1996; Collet and Ladd, 2000; 

Hornback et al. 2003). 

In addition, according to Holbrook et al. (2002), Hornback et al. (2003, 2008), the 

Blake Ridge is a sediment-wave field, and its morphology is controlled by ocean currents in 

the Western Boundary Undercurrent (WBUC). Sediments deposited towards the east are 
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eroded by the WBUC, whereas eroded sediments redeposited on the western side of the 

ridge. 

Methods 

Data set and seismic response of main geologic features 

The 3D Blake Ridge seismic survey is located offshore South Carolina, USA and 

covers an area of approximately 350 km2 (135 mi2). The volume consists of 95 inlines and 

1306 crosslines with bin size of 75 x 37.5 m, sampling interval of 2 ms, and record length 

from 3.4s to 5.998s. In this study, I pick the sea floor seismic reflection and create a phantom 

horizon ranging from approximately 4.5 to 5.5s to bracket the seismic reflections associated 

with the main geologic features of interest (the yellow rectangle) and discard lower signal-

to-noise ratio (S/N) areas at increasing time that provide little interpretation value during the 

seismic attribute computation (Figure 4.1). 

Figure 4.2a shows a representative vertical section along inline 41. I observe four 

well-defined seismic reflection patterns: (1) The BSR characterized by strong leading 

negative amplitude cross-cutting strata (the white arrows). Moreover, it is highly continuous 

towards the southwest and becomes more discontinuous towards the northeast possibly 

associated with gas migration due to erosion affecting the sediment waves (Holbrook et al., 

2002; Hornback et al., 2008). Above the BSR, I observe (2) high-amplitude, high frequency 

continuous reflectors and (3) lower-amplitude, chaotic to sigmoid seismic reflections. In 

addition, some high-amplitude reflectors are visible (the yellow arrows). Finally, (4) I 

observe high-amplitude discontinuous reflectors underlying the BSRs (the orange arrows). 
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In Figure 4.2b, I show an idealized model of the gas hydrate environment in the Blake 

Ridge based on inline 41. The BSR tend to follow the shape of the sea floor, whereas the 

GHSZ encloses the region from the BSR up to the sea floor and it is associated with 

temperature and pressure conditions favorable for gas hydrate development. Finally, trapped 

free gas can be found below the BSRs. 

Principal component analysis (PCA) 

Seismic attributes can be correlated both through their mathematical implementation 

and through geology. Each additional candidate attribute adds another “dimension” to the 

problem. To reduce the dimensionality of my data volume I wish to remove those parts of 

the data that are highly correlated to the others. Principal component analysis (PCA) is a 

linear mathematical technique that constructs linear combinations of attributes that better 

represent the data. The first step is to compute and then remove the M-dimensional mean 

and normalize for differences in units and distribution of each attribute (Ha et al., 2021).  

After these adjustments, the first eigenvector is a straight line in N-dimensional space 

that least-squares fits the cloud of data. The M-dimensional data vectors projected onto the 

first eigenvector is called the first principal component of the data.  The corresponding first 

eigenvalue represents the energy of the first principal component. After subtracting the first 

principal component, the process is repeated, thereby decomposing the input into 

uncorrelated components sorted by their energy (Guo et al., 2009; Chopra and Marfurt, 2014; 

Roden et al., 2015; Zhao et al., 2015; Lubo-Robles and Marfurt, 2019).  

By construction, the principal components are ordered by the amount of energy 

represented (the eigenvalue). For this reason, the values represented by the first two principal 
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components is the best two-dimensional representation (i.e., represents the most energy) that 

I can generate. However, the best representation of all the data available may not be the best 

representation I can use to discriminate between a BSR and all of the other surrounding 

features in the seismic data volume (Figure 4.2).  

To use PCA to study the individual impact of attribute a on the jth eigenvector, 𝑺𝑗, I 

evaluate the squares of each coefficient in the eigenvectors 𝐯𝑚 

𝑆𝑗 = (𝑣1𝑗
2      𝑣2𝑗

2    …   𝑣𝑀𝑗
2 )                   (1) 

where, larger coefficients are associated with seismic attributes having more contribution to 

that particular eigenvector. However, Guo et al. (2009), Roden et al. (2015), and Lubo-

Robles and Marfurt (2019) noted that although higher variability may better represent the 

data mathematically, it may not help differentiate geologic features of interpretation interest 

from the overall response. For a mathematical explanation on how to implement PCA for 

seismic attribute selection, please refer to Appendix A. 

Self-organizing maps (SOM) 

SOM is an unsupervised machine learning technique (Kohonen, 1982) widely used 

for seismic facies identification (Roy et al. 2014; Roden et al. 2015; Zhao et al. 2016; Lubo-

Robles and Marfurt, 2017; Ha et al., 2021). Using a suite of seismic attributes, SOM first 

projects the multi-dimensional input onto a 2D manifold and corresponding latent space 

(Zhao et al., 2015, 2016). Zhao et al. (2015, 2016) initialize their SOM algorithm using the 

first two principal components from PCA analysis.  
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After initialization, the 2D manifold is deformed to generate a suite of clusters that 

best represents the input data distribution, with the corresponding latent space mapped onto 

a 2D color bar (Stecker and Uden, 2002) where similar colors are associated with similar 

seismic responses/facies (Zhao et al. 2017, 2018). For more information of SOM for seismic 

facies classification and its mathematical implementation, please refer to Zhao et al. (2015, 

2016). 

Workflow  

I select a suite of geometric and spectral candidate seismic attributes as input to 

evaluate meaningful input attribute combinations using PCA for three different types of 

training data. Given these attributes, I then perform an unsupervised facies classification to 

identify and differentiate the BSR from other target seismic facies in the Blake Ridge field.  

As training strategies for PCA, I evaluate three cases: 1) using all samples extracted 

throughout a 3D grid spanning the entire data volume, (2) using only samples that fall within 

interpreter-generated polygons about the BSR seismic facies, and (3) using an equal number 

of samples for each of the four seismic facies, within a larger number of interpreter-generated 

polygons (Figure 4.3). Because seismic attributes have different units and PCA assumes 

Gaussian statistics (Guo et al., 2009; Honorio et al., 2014: Lubo-Robles and Marfurt, 2019), 

I apply a Z-score normalization to remove scale dependency. Then, I calculate the correlation 

matrix C of the normalized training data set, compute the eigenvectors and eigenvalues, and 

select seismic attributes showing the highest contribution in the eigenvectors (equation 1) 

for all cases. 
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Finally, using the selected seismic attribute combinations for all cases, I apply SOM 

to perform an unsupervised seismic facies classification and evaluate which combinations 

produce better SOM facies maps to identify and isolate the BSRs in the Blake Ridge seismic 

volume. To make an unbiased analysis, I use the same SOM parameters for all cases where 

only the input attributes are changing. Following Zhao et al. (2015, 2018), I select 256 colors 

as initial number of clusters and allow the SOM algorithm to group them into a smaller 

subset for subsequent interpretation. Although PCA and SOM are unsupervised algorithms, 

they are still biased. Clearly, they are biased by the attribute selection. Second, they are 

biased by the training data used to generate the eigenvectors and subsequently, the deformed 

SOM manifold. 

Candidate seismic attributes 

Following Chopra and Marfurt (2007), seismic attributes are all measurements 

estimated from seismic data that successfully allow geoscientists to quantify and interpret 

seismic patterns associated with changes in seismic geomorphology, structural framework, 

depositional environment, and reservoir properties.  

 Contrary to instantaneous or complex attributes (Taner et al., 1979), which analyze 

the real and imaginary part of the seismic trace using a single-trace analysis to compute 

changes in the amplitude, frequency, and phase, modern geometric attributes use multi-trace 

analysis – usually defining a 3D window – to obtain more robust estimations of geological 

features. Common geometric attributes include similarity and energy between seismic traces, 

changes in dip and azimuth, and reflector curvature (Chopra and Marfurt, 2007).  
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Gray-Level Co-Occurrence Matrix (GLCM) or textural attributes estimate lateral and 

vertical variations in the seismic amplitudes as a means to enhance changes in the seismic 

geomorphology (Haralick et al., 1973; Angelo et al., 2009, Matos et al., 2011, Di and Gao, 

2017), whereas nonparallelism attributes (Qi and Marfurt, 2019) highlight lateral changes in 

the dip and energy of the seismic reflectors by computing different statistical measures. 

Because GLCM and nonparallelism attributes use a 3D analysis window for their 

computations, I consider these attributes to be part of the geometric attributes in this study. 

  Finally, by applying continuous wavelet transform (CWT) spectral decomposition, I 

analyze changes in the magnitude and phase components of the seismic data at different 

frequencies that can be related to variations in bed thickness and stratigraphy (Marfurt and 

Kirlin, 2001; Sinha et al., 2005; Chopra and Marfurt, 2007; Chopra and Marfurt, 2016).  

Performing seismic facies classifications to highlight different geologic features, 

Zhao et al. (2016), Lubo-Robles et al. (2021, 2022), Salazar Florez and Bedle (2022) found 

that attributes measuring changes in the energy, frequency, dip, and morphology of the 

reflectors proved to be successful inputs for ML algorithms. Therefore, in this study, I 

consider seven candidate seismic attributes, GLCM entropy, total energy, peak frequency, 

peak magnitude, GLCM contrast, dip deviation, and coherence as input to PCA to find 

optimal attribute combinations and SOM for seismic facies analysis.  

GLCM entropy and GLCM contrast: The GLCM entropy computes the level of disorder, 

whereas the GLCM contrast analyzes local variations in the intensity present in the seismic 

amplitudes (Chopra and Alexeev, 2006; Chopra and Marfurt, 2007; Yenugu et al., 2010; Di 

and Gao, 2017).  
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Total energy: Measures the energy inside a 3D window of seismic traces using eigenstructure 

analysis. This attribute is helpful to distinguish between strong and weak seismic reflectors 

(Gersztenkorn and Marfurt, 1999; Chopra and Marfurt, 2007). 

Peak frequency and peak magnitude: These spectral decomposition attributes compute 

statistical estimations of the seismic spectrum and provide a means to interpret the general 

sequence stratigraphy and depositional environment (Marfurt and Kirlin, 2001). The peak 

frequency and peak magnitude are given by the mode of the spectrum. The former is helpful 

to analyze changes in bed thickness, whereas the latter is associated with changes in 

impedance and tuning thickness (Chopra and Marfurt, 2007; Zhao et al., 2016).  

Dip deviation: Estimates lateral changes in the dip of the seismic reflector and it is useful to 

distinguish between parallel and chaotic reflectors (Qi and Marfurt, 2019). 

Coherence: Computes the similarity between seismic traces inside a moving 3D window to 

map seismic discontinuities and chaotic, low energy reflectors and differentiate them from 

higher amplitude, homogenous seismic responses (Gersztenkorn and Marfurt, 1999; Chopra 

and Marfurt, 2007; Li and Lu, 2014). 

In Figure 4.4, I show the seven candidate seismic attributes along inline 41. I observe 

that the BSRs are characterized by lower GLCM entropy, GLCM contrast and higher total 

energy, peak magnitude, and coherence. In addition, because the BSR cuts across dipping 

stratigraphic reflectors, attributes like dip deviation are useful. The continuous BSR towards 

the southwest shows lower dip deviation than the discontinuous BSRs in the northeastern 
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side. Also, I note that the former has a frequency of approximately 60 Hz, whereas the latter 

are not easily delineated using the peak frequency attribute.  

In Table 4.1, I summarize the seismic amplitude and attribute response of the four 

facies of interest present in the Blake Ridge data set (Figure 4.2). Above the BSR, I observe 

high-amplitude, high-frequency continuous reflectors close to the sea floor that are 

characterized by low GLCM entropy, GLCM contrast, dip deviation, and high coherence, 

total energy, peak magnitude, and peak frequency ranging from approximately 70 to 120 Hz. 

In addition, low-amplitude, chaotic to sigmoid reflections are characterized by low total 

energy, and peak magnitude, whereas the dip deviation shows higher values towards the 

northeast. Moreover, the GLCM entropy, peak frequency, GLCM contrast, and coherence 

attributes show high variability.  

Finally, the trapped free gas underlying the BSRs is mainly characterized by high-

amplitude discontinuous reflectors and high values of total energy, peak magnitude, and low 

dip deviation and coherence. However, some areas associated with lower values of total 

energy, and peak magnitude, and higher values coherence and dip deviation are also visible. 

Furthermore, the GLCM entropy, peak frequency, GLCM contrast show high variability. 

Definition of training data sets 

For the first training data set (case 1), I simply use all data samples in the input 

seismic data, using voxels from every inline, crossline, and vertical sample within the 

analysis window shown in Figure 4.2. Note that the simple process of restricting my analysis 

window to follow the water bottom biases my “unsupervised” learning PCA and SOM 

algorithms to better represent the gas hydrates. I then construct training data sets 2 and 3 by 
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defining polygons on inlines 30, 35, 40, 45, and 50 enclosing my four seismic facies of 

interest (Figure 4.5). Above the BSR, the blue polygons enclose samples characterized by 

high-amplitude, high-frequency continuous reflectors close to the sea floor, whereas the 

green polygons enclose voxels associated with chaotic to sigmoid and lower amplitude 

reflections. The BSRs show strong leading negative amplitude reflections (purple polygons). 

Finally, high-amplitude discontinuous reflections below the BSR are related to trapped free 

gas (red polygons). 

After picking the polygons, I extract the selected seismic voxels from my seven 

candidate seismic attributes (Figure 4.4). In this study, the training data for case 3 consist of 

3208 voxels, in which 802 voxels have been randomly selected for each seismic facies to 

balance the training data set. The training data for case 2 consists of 802 voxels only 

associated with the BSR seismic facies. 

In Figure 4.6, I show a cartoon explaining how the eigenvectors computed for PCA 

might be affected by different training data configurations. When the training data are 

selected to statistically represent all the data (case 1), the first eigenvector best represents 

the training data as a whole but does not serve as an optimum discriminator between the red 

and blue facies. However, when the training data are balanced (case 3), the first eigenvector 

serves as a much better discriminator between the two facies. Moreover, using different input 

attributes or increasing the dimensionality of the problem may further improve the 

discrimination between the two facies. 
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Results 

Seismic attribute selection using PCA 

To compare different strategies when choosing the most optimal seismic attributes 

using PCA to identify the BSR and distinguish it from other seismic facies in my data set, I 

analyze the first three eigenvectors for cases 1, 2, and 3 which contain 71.61%, 71.37%, and 

75.26% of the variability of the data, respectively. Figure 4.7a shows eigenvector 1 for case 

1 which represents 39.12% of the variability. For this eigenvector the highest contribution is 

given by the total energy attribute followed by the peak magnitude, coherence, GLCM 

contrast, dip deviation, GLCM entropy, and peak frequency. 

Next, I examine eigenvector 1 for case 2 for training data drawn only from the BSRs, 

which represents 34.89% of the variability (Figure 4.7b). I observe that the total energy is 

still the most important attribute but now coherence is the second most important attribute. 

The GLCM entropy attribute becomes the third most important attribute, followed by the 

peak magnitude, GLCM contrast, dip deviation, and peak frequency. 

Finally, using the balanced training data set containing the same number of voxels 

belonging to each of the four seismic facies (case 3), eigenvector 1 represents 42.56% of the 

variability of the data (Figure 4.7c). I note that a group of four attributes composed of the 

total energy, coherence, peak magnitude, and GLCM entropy have the highest contribution 

to this eigenvector. These attributes represent combination of the results seen in cases 1 and 

2.  
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Eigenvector 2 for all cases represents an average of 19% of the variability. I observe 

that for case 1 (Figure 4.8a), GLCM entropy shows the highest contribution followed by 

GLCM contrast, peak frequency, total energy, peak magnitude, coherence, and dip 

deviation. For case 2 (Figure 4.8b), the peak magnitude has the highest importance, whereas 

the GLCM contrast and the total energy attributes are the second and third most important 

attributes, respectively. Considering case 3 (Figure 4.8c), the dip deviation has the highest 

contribution to eigenvector 2 followed by the peak frequency and peak magnitude attributes, 

whereas the remaining seismic attributes show very little impact in this eigenvector. 

Finally, I examine eigenvector 3 representing an average of 15% of the variability of 

the data for all cases (Figure 4.9). Using all seismic attribute data samples (case 1), the three 

most important attributes are given by the dip deviation, peak frequency, and peak magnitude 

(Figure 4.9a) which is similar to the results seen for eigenvector 2 in case 3 (Figure 4.8c). 

When considering only the seismic voxels for the BSR facies (case 2), the peak frequency 

shows the highest contribution followed by the dip deviation, whereas GLCM contrast, peak 

magnitude, total energy, coherence, and GLCM entropy retain the remaining contribution 

(Figure 4.9b). For case 3, the seismic attributes showing higher importance are the peak 

frequency, GLCM contrast, and peak magnitude followed by the GLCM entropy, total 

energy, coherence, and dip deviation (Figure 4.9c). 

In Table 4.2, I summarize the seismic attribute combinations used for performing an 

unsupervised seismic facies classification to identify the BSR and the rest of my target 

seismic facies. Because SOM applies PCA to project the data onto a 2D latent space for 

subsequent clustering and using a large number of input attributes might cause the 2D 
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manifold to represent increased variability of the data less accurately (Zhao et al., 2015, 

2016), I select a maximum of three or four seismic attributes showing the highest importance 

as input for the ML algorithm. 

Unsupervised seismic facies analysis using SOM 

In Figure 4.10a, I analyze the SOM unsupervised facies classification corendered 

with the seismic amplitude volume along inline 61 (not used in the training for all three 

cases) considering the total energy, peak magnitude, and coherence as input (case 1a) 

because they show the highest contribution for eigenvector 1 in case 1 (Figure 4.7a and Table 

4.2). I observe that the more continuous BSR towards the southwest and the more 

discontinuous BSR towards the northeast of the study area are correctly identified and they 

are characterized by a purple-reddish facies (the white arrows). However, the former BSR 

shows some discontinuities close to its edges (the blue arrows). 

In addition, I note that high frequency, high-amplitude reflectors close to the sea floor 

are also being classified as purple facies and show overlap with the BSR (the red rectangle). 

Also, I observe that the trapped free gas below the BSR tends to be classified by a 

combination of purple (the red arrows) and dark blue-yellow facies (the orange arrows). The 

former facies represents voxels classified by the algorithm as BSR (the purple-reddish 

facies) because the free gas shows high amplitude in these areas, whereas the latter facies 

tends to be associated with a lower amplitude, more discontinuous seismic response below 

the BSR. 

Furthermore, these dark blue-yellow seismic facies are also visible in slightly more 

discontinuous reflectors close to the sea floor (the gray arrow). Therefore, I hypothesize that 
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this blue-yellow seismic facies might be capturing changes in the amplitude and frequency 

content. 

Studying the unsupervised classification along inline 61 for case 2a (Figure 4.10b), 

I note that the BSRs towards the southwest and northeast are characterized by purple seismic 

facies (the white arrows). The more continuous BSR towards the southwest is better 

identified by the algorithm than in case 1a (Figure 4.10a) because its definition towards the 

edges – characterized by lower reflectivity - has improved (the blue arrows). However, 

overlap between the BSR facies and reflectors closer to the sea floor increases (the red 

rectangle). Moreover, some dipping reflectors towards the northeast are also being classified 

as purple facies (the yellow arrows).  

Then, analyzing the trapped free gas below the BSR, I observe that is mainly 

characterized by purple facies (the red arrows) – showing overlap with the BSR- and dark 

blue-greenish facies (the orange arrows). Moreover, similar to the results in case 1a, these 

clusters (dark blue-green facies for case 2a) are also in more discontinuous areas within 

reflectors closer to the sea floor and might be associated with changes in the amplitude and 

frequency.  

Finally, I analyze the seismic facies classification corendered with the seismic 

amplitude along inline 61 for case 3a (Figure 4.10c), in which I use the total energy, 

coherence, peak magnitude, and GLCM entropy attributes as input (Table 4.2). I observe 

that the BSRs are correctly classified by the model (the white arrows). Moreover, this facies 

prediction offers a good tradeoff between the results obtained in cases 1a and 2a. Similar to 

case 2a, the BSR located in the southwestern side of the volume appears better defined 
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towards its edges (the blue arrows), whereas reflectors showing overlap with the BSR closer 

to the sea floor are reduced (red rectangle) – similar to the facies response seen in case 1a 

(Figure 4.10a). 

I also note that some dipping reflectors located towards the northeastern side of the 

volume are still being classified as purple facies (the yellow arrows). Finally, the trapped 

free gas below the BSR still tends to be characterized by purple facies (the red arrows) and 

dark blue – yellow clusters that might be related to changes in the amplitude and frequency 

(the orange arrows).  

Next, I evaluate the SOM facies classification results corendered with the seismic 

amplitude along inline 61 using the most optimal attribute combinations considering 

eigenvector 2 (cases 1b-3b; Table 4.2). Figure 4.11a shows the results for case 1b. I observe 

that this classification looks noisier than the results obtained in cases 1a-3a. Although the 

more continuous BSR towards the southwest is still correctly classified as green facies (the 

white arrows), the BSRs towards the northeastern side are more difficult to interpret.  

In addition, an increase in the overlap between seismic facies is visible. Reflectors 

closer to the sea floor (the red rectangle) are characterized by green facies, whereas lower 

amplitude, more discontinuous reflectors throughout the seismic volume are classified by a 

combination of green, purple, blue, and yellow facies. Also, trapped free gas below the BSR 

tend to be characterized by a combination of several clusters and its interpretation becomes 

more challenging. I hypothesize that the variability captured by eigenvector 2 in case 1 might 

be associated with lower S/N responses in my multiattribute input.  
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Then, I analyze the SOM results for case 2b (Figure 4.11b). I note that this seismic 

classification looks less noisy, more geological than case 1b. The BSRs towards the 

southwest and northeast are classified as purple facies (the white arrows). However, some 

dipping reflectors (the yellow arrows) and higher amplitude reflectors closer to the sea floor 

(the red rectangle) still show overlap with the BSRs (the purple facies). In addition, the 

trapped free gas below the BSR is still associated with purple facies (the red arrows) -

showing overlap with the BSRs – and dark blue-yellow facies that are still also visible in 

slightly more discontinuous, lower amplitude reflectors close to the sea floor (the orange 

arrows).  

In Figure 4.11c, I study the SOM facies classification along inline 61 for case 3b. 

Similar to the results obtained in case 2b, this classification looks more geological and less 

noisy than the results in case 1b. Towards the southwest, I still can correctly identify the 

center and the edges of the more continuous BSR (the white arrows), whereas in the 

northeastern side of the seismic volume, the more discontinuous BSRs are also being 

correctly classified by the algorithm and are characterized by a purple seismic facies (the 

white arrows). 

In addition, overlap between the BSRs and the reflectors closer to the sea floor is still 

visible (the red rectangle) and it increases compared to the classification for case 2b (Figure 

4.11b). The dipping reflectors towards the northeast (the yellow arrows) are still 

characterized by purple seismic facies. However, they look noisier, more discontinuous than 

in cases 2a, 2b, and 3a. In addition, the trapped free gas is still characterized by a combination 

of two or more seismic facies. The purple seismic facies showing overlap with the BSR (the 
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red arrows) and the dark blue – red facies associated with areas potentially associated with 

changes in the amplitude and frequency of the reflectors (the orange arrows).  

Finally, I study the unsupervised classifications corendered with the seismic 

amplitude along inline 61 using the selected attributes when considering eigenvector 3 for 

all cases (cases 1c-3c; Table 4.2). I observe that the seismic facies classification for case 1c 

offers identical results to case 3b because the same attributes dip deviation, peak frequency 

and peak magnitude show the highest contribution for both eigenvectors (Figure 4.12a).  

Then, I evaluate the SOM results along inline 61 for case 2c (Figure 4.12b). Similar 

to the case 1b, the classification appears noisy. The BSRs towards the southwest is partially 

identified as green seismic facies (the white arrows) but overlap with other facies throughout 

the study area has increased. Moreover, interpretation of the more discontinuous BSRs 

towards the northeast and the trapped free gas below the BSRs is challenging. I hypothesize 

that using only the seismic voxels associated with the BSR seismic facies (case 2) for PCA 

attribute selection, eigenvector 3 captures noisier, less geological components in my input.  

In Figure 4.12c, I study the seismic facies classification corendered with the seismic 

amplitude along inline 61 for case 3c. I note that the selected attributes from eigenvector 3, 

which represents a 14.6% variability of my balanced training data, still offer a geologically 

meaningful classification in which noisy components does not affect my interpretation of 

the geologic features of interest. The BSRs are still correctly classified as purple seismic 

facies (the white arrows). However, the edges of the southwestern BSR characterized by 

lower reflectivity appears slightly more discontinuous than in previous results (the blue 

arrow).  
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Moreover, overlap with the reflectors closer to the sea floor and other areas in my 

seismic volume is still visible and more prominent than in case 3a (red rectangle). The 

trapped free gas is still characterized by a combination of purple facies (the red arrows) – 

representing overlap with the BSR – and dark blue to yellow facies (the orange arrows). 

Discussion 

After considering three different strategies to select the training data to perform PCA 

for attribute selection and apply SOM for unsupervised seismic facies identification, I 

observe that combining geometric and spectral seismic attributes represents a powerful tool 

to characterize the continuous BSR towards the southwest, and more discontinuous BSRs 

towards the northeast in the Blake Ridge. Nevertheless, overlap between the BSR seismic 

facies, higher-amplitude reflectors closer to the sea floor, and trapped free gas is visible in 

the SOM facies map. 

Holbrook et al. (2002) and Hornback et al. (2008) suggest that the more 

discontinuous BSRs might be related to gas migration associated with sediment waves that 

have been affected by erosion. In my results, I note that SOM classifies some reflectors 

within the GHSZ as BSRs – mainly purple facies - and these clusters might be associated 

with possible migration pathways that can potentially release gas hydrates in the ocean and 

atmosphere. However, higher-amplitude anomalies inside the GHSZ might also be related 

to misclassifications by the algorithm – similar to the overlap seen between the BSRs and 

reflectors close to the sea floor - or diagenetic changes and variations in the environment of 

deposition (Hornback et al., 2008). 
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I also note that lower amplitude, and chaotic to sigmoid reflectors within the GHSZ 

possibly associated with amplitude blanking and eroded sediment waves (Hornback et al. 

2003; 2008) tend to be classified by a different set of clusters than the BSRs. According to 

Lee et al. (1994), Shipboard Scientific Party (1996), and Hornback et al. (2003), amplitude 

blanking is characterized by a decrease in the seismic amplitudes that can be related to 

hydrates filling the pore space. However, changes in the depositional environment or in the 

compaction of the sediments might also cause a reduction in the impedance contrast within 

the GHSZ (Lee et al. 1994; Hornback et al., 2003).  

Therefore, these clusters might aid seismic interpreters in better defining possibly 

areas where gas hydrates are present. However, other geological effects and changes in the 

seismic S/N cannot be discarded as possible causes for these variations in the SOM facies 

map. Finally, although high amplitude trapped free gas shows overlap with the BSRs seismic 

facies, other areas underlying the BSR are characterized by a different set of clusters that 

appear to capture regions of decrease amplitude and frequency content.  

In terms of using PCA for attribute selection, I observe that the lack of a quantitative 

measure to estimate how different attribute combinations – instead of individual attribute 

contributions – might impact the performance of the ML algorithm make the attribute 

selection subjective. Chenin (2020) selected eight attributes - representing more than 70% 

of the impact in the first three eigenvectors - to create combinations for SOM, whereas I 

limit myself to combinations using three or four attributes showing high contribution in the 

first three eigenvectors.  
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Nevertheless, I cannot rule out that the remaining four eigenvectors in my data, which 

retain an average variability of 27.25%, might also offer good attribute combinations for my 

facies analysis. Semisupervised and supervised techniques (Kim et al., 2019; Qi et al., 2020; 

Lubo-Robles et al., 2021) that quantitatively evaluate how different seismic attribute 

combinations affect the classification might offer a more robust approach to address this 

limitation.  

Also, similar to Gao et al. (2009) and Lubo-Robles and Marfurt (2019), I found that 

higher variability does not necessarily mean more geological results. For case 1, I observe 

that attribute combinations associated with eigenvectors 1 and 3 offer better definition of the 

BSRs and surrounding facies than attributes related to eigenvector 2 which represent noisier 

components in the seismic data set. However, training strategies for cases 2 and 3 tend to 

improve this limitation. For case 2, geologically feasible results are given by the first 2 

eigenvectors, whereas in case 3 attributes showing higher contribution in the first three 

eigenvectors provide good definition of the geologic features of interest. 

Conclusion 

In this study, I successfully apply SOM to map the BSRs and surrounding facies in 

a seismic volume located in the Blake Ridge and evaluate PCA as attribute selection 

technique under different training data selection strategies: (1) all samples in the volume, (2) 

samples only associated with the BSRs, and (3) balanced training data set considering four 

main target seismic facies seen in study area. I found that geometric seismic attributes 

measuring changes in similarity, energy, dip, and texture and spectral attributes that 

statistically summarize changes in the seismic spectrum represent an effective means to 



 

168 
 

highlight BSRs and confirm the presence of gas hydrates. Moreover, using different 

combinations of these attributes as input into SOM, I can correctly map continuous and 

discontinuous BSRs in the Blake Ridge. However, significant overlap between the SOM 

clusters for the BSR seismic facies, higher amplitude reflectors closer to the sea floor, and 

higher amplitude trapped free gas is visible in my data.  

In general, reflectors within the GHSZ tends to be characterized by a different suite 

of SOM clusters -potentially associated with eroded sediment waves and amplitude blanking 

-, whereas some higher amplitude reflectors within the GHSZ are also classified as BSRs by 

the ML algorithm and might represent potential pathways for gas hydrates to migrate out of 

the subsurface. However, changes in the geology or misclassifications by the algorithm 

cannot be discarded as possible reasons for the clusters seen in the GHSZ.  

Applying PCA for attribute selection, I found that using a balance training data set 

(case 3) offers a good tradeoff between BSRs identification, delineation of the edges of the 

continuous BSR associated with lower reflectivity, and reduction of overlap between the 

BSRs and the surrounding facies compared to using all seismic voxels (case 1) or only voxels 

associated with the BSR seismic facies (case 2). Moreover, all combinations of all attributes 

showing higher impact in the first three eigenvectors for case 3 – enclosing 75% of the input 

data variability - provide geologically feasible results, whereas the variability associated 

with eigenvectors 2 and 3 for cases 1 and 2, respectively, appear to be capturing seismic 

noise; thus, attribute combinations obtained from these eigenvectors provide SOM facies 

maps where geologic features of interest are difficult to interpret.  Finally, because using 

PCA I evaluate the impact of individual attributes in a group of eigenvectors sorted by their 
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variability instead of quantitatively estimate the effect of different attribute combinations, 

determining how many attributes or eigenvectors should be used for the facies analysis is 

highly subjective.   
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Appendix A 

PCA for attribute selection 

Seismic attributes tend to have different units. For example, the coherence attribute 

ranges from 0 to 1, whereas energy attributes might range from 0 to +1000. Also, because 

PCA assumes Gaussian statistics, I first apply a Z-score normalization to each of the M 

candidate seismic attributes 𝐚𝒎 subtracting the mean 𝜇𝑚 and divide by standard deviation 

𝜎𝑚 – to remove scale dependency between the input features. 

𝐚̂𝑚= 
𝐚𝑚− 𝜇𝑚

𝜎𝑚
                                                                          (A1) 

where, 𝐚̂ represents the Z-normalized data.  

Second, I compute the correlation matrix, C, from the normalized training data from 

M seismic attribute volumes as 
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𝐶𝑚𝑗 =
1

𝑁
∑ 𝑎̂𝑛𝑚𝑎̂𝑛𝑗

𝑁
𝑛=1                                                         (A2) 

where N is number of voxels in the training data   

Then, I compute the eigenvectors 𝐯𝑚 from the correlation matrix given by 

v𝑚 = {𝑣1𝑚    𝑣2𝑚   …  𝑣𝑀𝑚}                                                     (A3) 

The jth principal components, 𝑝𝑛𝑗 at voxel n is the projection of an M-dimensional 

data vector onto the jth M-dimensional eigenvector computed as 

 𝑝𝑛𝑗 =  𝐯𝑗𝐚̂𝑛 =  𝑣1𝑗𝑎̂1𝑛 + 𝑣2𝑗𝑎̂2𝑛 + ⋯ + 𝑣𝑀𝑗𝑎̂𝑀𝑛                             (A4) 

To study the individual impact of attribute a on the jth eigenvector, 𝑺𝑗, I evaluate the 

squares of each coefficient in the eigenvectors divided by the total energy in each 

eigenvector: 

𝑆𝑗 =
1

∑ 𝑣𝑚𝑗
2𝑀

𝑚=1
 (𝑣1𝑗

2      𝑣2𝑗
2    …   𝑣𝑀𝑗

2 )                                     (A5) 

However, by definition 

∑ 𝑣𝑚𝑗
2𝑀

𝑚=1 = 1               (A6) 

 Such that the impact of each seismic attribute for the jth eigenvector is given by 

𝑆𝑗 = (𝑣1𝑗
2      𝑣2𝑗

2    …   𝑣𝑀𝑗
2 )                             (A7) 
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Chapter 4 Figures 

 

Figure 4.1. The 3D Blake Ridge seismic volume. (a) Representative vertical section along 

inline 41. (b) Phantom horizon ranging from 4.5 to 5.5 s generated after picking the sea floor 

reflector. I bracket the seismic geologic features of interest (the yellow rectangle) and discard 

areas characterized by lower signal-to-noise ratio (S/N) with little interpretational value. 
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Figure 4.2. Seismic response of target seismic facies. (a) Along inline 41. Four main seismic 

facies are visible. The BSR cross-cuts strata and it is characterized by a leading negative 

high-amplitude reflector (the white arrows). Above the BSR, I observe high-amplitude (the 

yellow arrows), chaotic to sigmoid, low-amplitude reflectors whereas reflectors close to the 

sea floor are associated with high-amplitude, high frequency seismic response. Below the 

BSRs, high-amplitude discontinuous reflectors are seen (the orange arrows). (b) Idealized 

model of the gas hydrate environment in the Blake Ridge. The GHSZ is characterized by 

favorable pressure and temperature conditions for gas hydrate development and represents 

the region from the BSR up to the sea floor. The BSR tends to be parallel to the sea floor, 

whereas trapped free gas underlies the BSR. 
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Figure 4.3. PCA for attribute selection and SOM for unsupervised seismic facies workflow.  

To delineate the BSR and differentiate it from other seismic facies in the Blake Ridge, I 

select a suite of spectral and geometric seismic attributes. To determine meaningful seismic 

attributes, I pick a suite of polygons enclosing the four target seismic facies and analyze 

three training data selection strategies for PCA (1) unbiased training data using all samples 

in the 3D seismic volume, (2) biased training data using samples associated with the BSR 

seismic facies, and (3) biased training data using same number of samples per each of the 

four seismic facies. Furthermore, I also apply Z-score normalization to remove scale 

dependency between seismic attributes. Next, I compute the correlation matrix C, calculate 

the eigenvectors and eigenvalues. Then, I select seismic attributes associated with high 

impact in the eigenvectors. Finally, using the selected attributes as input for SOM, I perform 

an unsupervised seismic facies analysis for each case in my analysis to delineate and isolate 

the BSRs. 
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Figure 4.4. Seismic attributes along inline 41. (a) GLCM entropy, (b) total energy, (c) peak 

frequency, (d) peak magnitude, (e) GLCM contrast, (f) dip deviation, and (g) coherence. The 

BSRs show lower GLCM contrast, GLCM entropy, and high total energy, coherence, and 

peak magnitude. The continuous BSR towards the southwest is characterized by low values 

of dip deviation and peak frequency of approximately 60 Hz. The discontinuous BSRs 

towards the northeast are characterized by higher dip deviation, whereas they cannot be 

correctly interpreted using the peak frequency attribute. 
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Figure 4.5. Training data sets definitions (a-e) The training data consist of manually picked 

polygons enclosing the BSRs (purple polygons), high-amplitude, high frequency reflectors 

(blue polygons), chaotic to sigmoid, low-amplitude reflectors (green polygons), and high-

amplitude, discontinuous reflectors associated with trapped free gas below the BSRs (red 

polygons). 
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Figure 4.6. Cartoons showing the relation between choice of training data and eigenvectors 

v1 and v2. Red circles represent attribute values a1 and a2 for voxels associated with the target 

facies, whereas blue circles represent values associated with all other facies. (a) The first 

eigenvector v1 best represents the data as a whole when the training data are selected to 

statistically represent all the data but does not discriminate between the blue and red seismic 

facies. (b) The first eigenvector v1 represents a better discriminator between the seismic 

facies when the training data are balanced (~15 voxels representing each facies in this 

image). Note that the center of the crossplot has shifted such the mean value of the training 

data in the two images is at the origin of the a1 and a2 axes. Finally, increasing the number 

of input attributes or selecting different attributes might improve the differentiation between 

the seismic facies. 

 

 

 

 

 

 

 

 

 

 



 

183 
 

 

 

Figure 4.7. Eigenvector 1 for the three training data selection strategies. (a) using all samples 

in the seismic volume as training data (case 1). I observe that the total energy attribute shows 

the highest contribution followed by the peak magnitude, coherence, GLCM contrast, dip 

deviation, GLCM entropy, and peak frequency. (b) using training data considering only 

voxels associated with the BSR (case 2). The total energy still shows the highest 

contribution, whereas coherence becomes the second most important attributes, followed by 

the GLCM entropy, the peak magnitude, GLCM contrast, dip deviation, and peak frequency. 

(c) using a balanced training data considering the four target seismic facies (case 3). The 

most meaningful attributes are given by the total energy, coherence, peak magnitude, and 

GLCM entropy. 
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Figure 4.8. Eigenvector 2 for the three training data selection strategies. (a) using all samples 

in the seismic volume as training data (case 1). The highest contribution is associated with 

the GLCM entropy, whereas the second most important attributes is given by the GLCM 

contrast, followed by the peak frequency, total energy, peak magnitude, coherence, and dip 

deviation. (b) using training data considering only voxels associated with the BSR (case 2). 

The highest contribution is given by the peak magnitude, followed by the GLCM contrast, 

and total energy seismic attributes. (c) using a balanced training data considering the four 

target seismic facies (case 3). The dip deviation attribute shows the highest impact, followed 

by the peak frequency, and peak magnitude. 
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Figure 4.9. Eigenvector 3 for the three training data selection strategies. (a) using all samples 

in the seismic volume as training data (case 1). Dip deviation shows the highest contribution, 

followed by the peak frequency, and peak magnitude. (b) using training data considering 

only voxels associated with the BSR (case 2). The most important attribute is given by the 

peak frequency, whereas the dip deviation is the second most important attribute, followed 

by the GLCM contrast, peak magnitude total energy, coherence, and GLCM entropy. (c) 

using a balanced training data considering the four target seismic facies (case 3). The peak 

frequency has the highest impact followed by the GLCM contrast, peak magnitude, GLCM 

entropy, total energy, coherence, and dip deviation attributes. 
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Figure 4.10. SOM facies prediction corendered with the seismic amplitude along inline 61 

for cases 1a, 1b, and 1c. (a) For case 1a, I consider the total energy, peak magnitude and 

coherence attributes as input. The more discontinuous BSR towards the northeast and the 

more continuous BSR towards the southwest are characterized by a purple-reddish facies 

(the white arrows). However, some discontinuities close to the edges of the continuous BSR 

are visible (the blue arrows). The high-amplitude, high frequency reflectors close to the sea 

floor (red rectangle) and the high-amplitude discontinuous reflectors associated with trapped 

free gas below the BSR (the red arrows) tend to also be characterized by purple facies. 

However, some reflectors below the BSRs can be characterized by dark blue-yellow facies 

associated with of lower-amplitude, more discontinuous reflectors (the orange arrows). (b) 

For case 1b, the BSRs are characterized by purple facies (the white arrows), whereas the 

edges of the more continuous BSR are better delineated (the blue arrows). (c) For case 1c, I 

use as input for SOM the total energy, coherence, peak magnitude, and GLCM entropy 

attributes. The BSRs are characterized by purple seismic facies (the white arrows). 

Moreover, case 1c provides better delineation than case 1a of the edges of the continuous 

BSR towards the southwest, and less overlap between seismic facies than case 1b (the red 

rectangle).   
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Figure 4.11. SOM facies prediction corendered with the seismic amplitude along inline 61 

for cases 2a, 2b, and 2c. (a) For case 1b, the BSR towards the southwest is characterized by 

green seismic facies (the white arrows). However, the classification looks noisier which 

makes the interpretation of the more discontinuous BSRs towards the northeast challenging. 

Furthermore, there is an increase in the overlap between the target seismic facies. (b) For 

case 2b, the BSRs are characterized by purple seismic facies (the white arrows). Also, I 

observe some dipping reflectors (the yellow arrows) and high-amplitude reflectors close to 

the sea floor (the red rectangle) being classified as purple seismic facies. The trapped free 

gas underlying the BSRs tend to be classified as a combination of purple facies (the red 

arrows) and dark blue-yellow facies (the orange arrows) by the algorithm. (c) For case 2c, 

the BSRs are still correctly classified as purple seismic facies (the white arrows). I also 

observe that some dipping reflectors (the yellow arrows) and high-amplitude, high frequency 

reflectors (the red rectangle) above the BSRs are also characterized by purple seismic facies. 

Finally, the trapped free gas below the BSR still shows some overlap with the BSR seismic 

facies (the red arrows), whereas dark-blue-red facies represents area potentially associated 

with changes in the amplitude and frequency (the orange arrows). 
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Figure 4.12. SOM facies prediction corendered with the seismic amplitude along inline 61 

for cases 3a, 3b, and 3c. (a) Case 3a offers the same results than case 1c because the same 

input attributes, dip deviation, peak frequency and peak magnitude, are used for SOM. (b) 

For case 3b, the classification appears noisier similar to case 1b. The continuous BSRs 

towards the southwest is defined as green seismic facies (the white arrows). However, 

correct identification of the surrounding geologic features such as the discontinuous BSRs 

and trapped free gas is challenging. (c) For case 3c, the BSRs are still characterized by purple 

seismic facies (the white arrows). However, the edges of the BSRs towards the southwest 

appear more discontinuous than in previous results (the blue arrows). Finally, overlap 

between the BSR and surrounding seismic facies is still visible. 
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Chapter 4 Tables 

 

Table 4.1. Seismic amplitude and attribute response of the four target seismic facies in the 

Blake Ridge seismic volume. Above the BSR, the high-amplitude, high frequency reflectors 

close to the sea floor are associated with high coherence, total energy, peak magnitude, and 

low GLCM entropy, GLCM contrast, dip deviation and peak frequency ranging from 

approximately 70 to 120 Hz, whereas the low-amplitude, chaotic to sigmoid reflections show 

high variability for the GLCM entropy, peak frequency, GLCM contrast, and coherence 

attributes and low values of total energy, and peak magnitude. Below the BSR, the trapped 

free gas associated with high-amplitude discontinuous reflector in general shows high values 

of total energy, peak magnitude, and low dip deviation and coherence. However, some 

higher values of coherence and low values of total energy, peak magnitude, and dip deviation 

are seen. Finally, the GLCM entropy, peak frequency, GLCM contrast attributes are 

characterized by high variability. 
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Table 4.2. Selected seismic attributes to use as input for SOM to perform an unsupervised 

seismic facies analysis to identify BSRs and differentiate it from surrounding seismic facies 

in the Blake Ridge seismic volume. For SOM, I select a maximum of three or four seismic 

attributes characterized by highest impact in the first three eigenvectors for cases 1, 2, and 

3. 
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Chapter 5: Conclusions 
 

In this dissertation, I studied the importance of the choice of seismic attributes when 

using machine learning (ML) to perform a seismic facies analysis. I found that combining 

attributes measuring changes in the continuity, dip, energy, texture, and spectral seismic 

response represents a robust method to distinguish between salt, mass transport deposits 

(MTDs), and background conformal reflectors in the Gulf of Mexico, USA and to identify 

BSRs in the Blake Ridge, offshore South Carolina, USA. Also, I find that the overlap 

between the predicted facies increases or decreases depending on the seismic attributes used, 

the seismic data (and subsequent attribute) quality, or how the training data were selected. 

I introduced a novel technique which I call exhaustive probabilistic neural network 

(PNN) by coupling a PNN with an exhaustive search algorithm. This method tested all 

possible combinations of seismic attributes, selected the optimal combination to differentiate 

salt and nonsalt facies, and rejected irrelevant attributes. Furthermore, it demonstrated that 

redundant attributes could complement each other to provide better facies separation and 

reduced the Hughes phenomena which might cause a decrease in the performance of the 

PNN associated with increasing the number of input attributes. 

Applying Shapley additive explanations (SHAP) to a random forest model and 

adding band-limited random noise or using a Kuwahara filter to the input attributes, I found 

that the attribute importance changes based on their quality and the target facies analyzed. 

Moreover, I observed that the ML model is learning a set of rules in multiattribute space. 

Because MTDs, salt, and conformal siliciclastic sediments might show better or worse 
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discrimination depending on the seismic attribute analyzed, the use of multiattribute analysis 

offers a good approach to perform a facies classification because it maximizes the 

differentiation among seismic facies.  

 Finally, I evaluated the popular principal component analysis (PCA) to select the best 

seismic attributes. Although considered to be either a projection or unsupervised learning 

technique, I introduced a component of supervision (in actuality, bias) by comparing three 

different training data configurations. Once the best attributes for that training were selected, 

I applied self-organizing maps (SOM) to perform the final facies analysis and found that 

using the same number of samples per each target facies provides the best discrimination 

between localized anomalies of interest (such as the BSRs) and the surrounding (dominant) 

facies. Unfortunately, the absence of a quantitative metric to test alternative attribute 

combinations makes the selection technique less useful than the exhaustive PNN method. 

I hope this dissertation represents a guide to seismic interpreters to better select the 

input seismic attributes and better understand how these might impact their ML-based 

seismic facies analysis.  


