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Abstract 

Interdependent critical infrastructure systems represent substantial financial investments 

and are vital to maintain a basic level of social and economic well-being, making them attractive 

targets for malevolent actors. Many of these systems carry multiple products, each with unique 

needs and importance to different stakeholders. Tri-level optimization models have been 

proposed to capture the scale of a system’s resilience, representing the optimal actions taken by a 

defender to harden the system, by an attacker to interdict the system, and then by the defender to 

assign work crews for restoration, all under a limited budget. However, most prior work focuses 

on networks with a single product. This work extends a tri-level protection-interdiction-

restoration model from a single commodity to multiple commodities, solving the model with a 

Benders’ decomposition and set covering decomposition. We propose a method to limit unmet 

weighted demand across commodities, taking into account unique interdependencies between 

network components and commodity-specific capacity requirements. An optimal solution is 

found iteratively by alternately fixing protection and interdiction variables. This work is 

illustrated with a case study of interdependent Swedish power and railway systems. Results 

demonstrate the convergent behavior of the master and subproblems, the value of network 

hardening, and the non-uniform network recovery trajectory. The proposed model is easily 

adapted to different commodity types, attack and defense budgets, crew availability, and 

commodity weights.
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Chapter 1: Introduction and Motivation 

The resilience of critical infrastructure systems is vital to maintain a basic level of social 

and economic well-being in the event of partial damage or complete loss of function. Critical 

infrastructure systems (CIS), as defined by the United States of Homeland Security are systems, 

networks, or assets whose incapacitation or destruction “would have a debilitating effect on 

security, national economic security, national public health or safety,” – for example, the defense 

industrial base, transportation systems, the energy grid, and wastewater systems [1]. Any critical 

infrastructure system is a major financial investment and the loss of even a few components from 

random failures or deliberate attack can have catastrophic consequences [2]. Interdependencies 

between these systems may increase overall efficiency, but may also increase the likelihood of 

cascading failures or aggravate damage consequences [3]. Some systems may carry multiple 

products, each with unique values, needs, and importance [4], [5]. There is great value, then, in 

increasing the resilience of these systems through decreased vulnerability to attack or loss, as 

well as rapid recovery following a disruption. However, under budgetary, time, and political 

constraints, system managers and operators must make decisions regarding the allocation of 

resources between components in these key infrastructure systems, both of hardening resources 

to minimize disruption and of restoration resources.  

 Defining, measuring, and improving the resilience of critical infrastructure systems is an 

increasingly popular topic in the literature, and thus has many definitions, often overlapping with 

other network qualities such as “robustness, fault-tolerance, flexibility, survivability, and agility, 

among others” [6]. Ouyang provides guidance for developing a useful definition of system 

resilience, stating that a definition must specify resilience to a certain type of disruption, as well 

as noting that system resilience is mainly affected by system robustness, or the performance 
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immediately after an attack or disruption [7]. Others, referring to transportation resilience, claim 

that resilience includes both proactive and reactive aspects; or planning for resilient systems and 

protecting against system disruption [8]. Dinh et al. adds non-engineering factors as elements of 

resilience, including administrative procedures and early detection abilities [9]. Vugrin et al. 

separates these factors into three segments: absorptive, adaptive, and restorative capacities [10]. 

Perhaps the most relevant definition is that provided by Haimes and others that defines resilience 

as the ability the system to withstand, adapt to, and recover in a timely manner from the effects 

of a disruption [11] [12] [13] [6]. Henry and Ramirez-Marquez represent this concept using a 

time-dependent function, as shown in Figure 1. For the purposes of this paper, resilience will be 

defined using Haimes’ definition.  

 

Figure 1. System performance following a disruptive event. Adapted from [14] 

 Tri-level optimization models are a powerful way to capture and enhance the full scope 

of a system’s resilience. These models represent the set of optimal decisions made by (i) a 

defender to prepare a network for disruption, (ii) an attacker to maximize disruption, and (iii) by 

the defender to return to a specified level of pre-disruption function as rapidly as possible [15], 

[16]. These three phases are typically referred to as protection, interdiction, and restoration. 
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These models may also be referred to as defender-attacker-defender models and are a logical and 

realistic extension of bi-level defender-attacker models that do not consider recoverability. Each 

phase of the protection-interdiction-restoration typically has other accompanying analysis. The 

protection phase often involves consideration of node criticality, centrality, or topographic 

features [7], [17], [18]. The interdiction phase is heavily reliant on the attack type, such as 

whether it is committed by a malevolent actor or by a natural disaster [19]. Maximizing damage 

may be only one goal among several (i.e. terror, intimidation) [20]. Depending on the model 

type, the attacker may choose between several different attack scenarios, strategies, or intensities 

[13], [21], [22]. Restoration typically only considers a return to some level of system capability 

in  the short term, disregarding long term effects [23]. There are methods and algorithms to 

determine the set or order of components that must be restored as well as general models to 

determine component importance before a disruption [14], [24], [25]. Considerably fewer models 

include restoration and recoverability in their optimization [26]. Tri-level optimization is also 

computationally complex and may specific solution algorithms or metaheuristics to solve [20], 

[22], [27], [28]. Models for networks and systems with multiple products or commodities may be 

even more complex and are less represented in the literature [29].  

 To enhance network resilience, we propose a tri-level optimization method that includes 

protection, interdiction, and restoration decisions for a multi-commodity network. This becomes 

a multi-objective optimization problem with  a simple economic measure used to weight the 

various objectives (unmet demand of each commodity). The rest of this paper is organized as 

follows. In Chapter 2 we discuss tri-level optimization models and solution algorithms in the 

current literature, with a focus on multi-commodity optimization. In Chapter 3, the notation and 

details of the proposed model are presented as well as the computational solution method. In 
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Chapter 4, an illustrative example is provided to test the model and computational results are 

discussed. Concluding remarks and potential extensions are provided in Chapter 5.  
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Chapter 2: Literature Review 

 Current research in the area of tri-level optimization includes work related to the 

allocation of protective resources, analysis of the attacker strategies, and techniques to maximize 

recoverability. Variations on a basic model exist for unique system interdependencies, multi-

commodity systems, and computationally complex problems. There are many proposed 

protection-interdiction models developed for critical infrastructure systems. Murray, Matisziw, 

and Grubesic place interdiction problems into four categories, regardless of application: 

simulation, shortest path, network attributes, and system flow models [30]. Others categorize the 

models by goal: performance evaluation, design, mitigation, and recovery models [31].  

Brown et al. propose both bi- and tri-level models in a homeland security context using 

mixed-integer linear programming, which is a special case of a static Stackelberg game [32]. 

Similarly, Israeli and Wood model bi-level attacker-defender interactions as a shortest-path 

problem also using mixed-integer programming [18], [33]. Bell et al. adapt Wood’s defender-

attacker-defender approach for a road blockage scenario using the increase in travel cost as an 

element of the objective function to harden particular routes [21]. Some models may choose how 

much to allocate for defense instead of making the binary decision to defend or not. Ramirez-

Marquez, Rocco, and Levitin found that equal resource allocation is optimal for situations with 

homogenous component vulnerability [20]. In the attack phase, models may either aggregate 

attacks to find a robust defense strategy or find unique solutions for each attack strategy [13].  

González and others modify the restoration phase by exploiting colocation efficiencies following 

a natural disaster [31]. Other models choose not to develop optimal protection, interdiction, and 

restoration decisions in favor of identifying the bounds for best and worst-case impacts on 

system flow [30].  



6 

 

 Fewer models have been directly developed for multi-commodity networks. A particular 

challenge of multi-commodity models is the changing importance of components in a system 

between commodities, both in the protection and the restoration stages. Much of the research 

surrounding multi-commodity networks exists for disaster recovery scenarios, in which the 

multiple commodities only exist in the interdiction phase, rather than the protection and 

interdiction phases. Jin, Lu, Sun, and Yin developed a tri-level multi-commodity optimization 

model for an urban rail transit attack scenario in which commuter evacuation is modeled as a 

multi-commodity flow problem in the third level [22]. McCarter et al. uses the Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS) to address trade-offs between 

various attack scenarios and cost in a rail transportation network [17]. Other authors simply treat 

all commodities as equal and maximize or minimize the total network flow [27]. Commodities 

may also be weighted using some sort of normalizing metric, like economic impact, cost or 

weighted unsatisfied demand [5], [22], [34]. Regardless of the method, multi-commodity 

networks are substantially more computationally complex and cannot be solved by the simplex 

method or the maximum flow minimum cut theorem [29].  

 Solution methods for tri-level optimization problems typically fall into two categories, 

evolutionary metaheuristic search algorithms and decomposition-based approaches. Ahmad et al. 

employs a genetic algorithm to generate optimal attacks for the interdictor [27]. Qiao et al. also 

uses a genetic algorithm in a water supply context for a bi-level protection-interdiction problem 

[28]. Ramirez-Marquez, Rocco, and Levitin note that a continuous probabilistic solution 

discovery algorithm may also explore regions of the solution space in an effective manner [20]. 

Variable neighborhood search metaheuristics have also been used [22]. For decomposition, the 

variation of Benders’ decomposition algorithm proposed by Israeli and Wood has been used 
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extensively for network interdiction [18], [33], [35]. This method iteratively solves smaller bi-

level problems to avoid the challenge of dualizing a potentially nonlinear problem and to exploit 

the interaction between the attacker and the defender in the smaller problems [16]. The model is 

adaptable enough to solve for a variety of network types and is computationally efficient [26], 

[36]. Covering decomposition is also a popular strategy to produce exact solutions [16], [33], 

[37] 

 With the previous contributions in mind, we propose an extension of the well-known 

interdiction model to improve the resilience of a multi-commodity system under intelligent 

attack through improvements to pre-interdiction hardening and post-disruption restoration. The 

proposed model will use set covering decomposition with Benders’ decomposition with a 

weighting measure to account for the importance of the unique commodities.  
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Chapter 3: Multi-Commodity Protection-Interdiction-Restoration Model  

 This paper is concerned with enhancing the overall resilience of multi-commodity critical 

infrastructure systems under threat of intelligent directed attack. The problem is modeled as a 

defender-attack-defender series of nested optimization decisions. The problem has three distinct 

stages. In the first stage, the defender allocates protective resources to specific components to 

harden the system through the addition of greater capacity or greater redundancy. Essentially, the 

defender seeks to minimize disruption. In the second stage, the intelligent attacker attempts to 

maximize disruption to the network by reducing the capacity of selected components in an 

efficient manner. Both the attacker and the defender have specific, limited budgets and full 

knowledge of the protection and interdiction costs of the system. In the third and final stage, the 

defender seeks to minimize the time to restore the system through selection of the sequence of 

components to repair. There is a specific and constant number of work crews available to 

perform restoration activities. The problem formulation is then a min-max-min optimization 

problem. However, the supply, demand, and flow capacity for each node may vary by 

component, adding another layer of complexity to the decisions in each stage. A particular node 

may be critical for one commodity, and unimportant for another, which forces both the attacker 

and the defender to assess the value of that component across commodities.  

This section introduces the proposed tri-level optimization model for improving 

resilience for multi-commodity systems. The formulation draws heavily from prior work by 

Ghorbani-Renani et al. [26]. First, the assumptions for the model will be presented, followed by 

the notation that will be used throughout the remainder of this text. Then the unique objective 

function, constraints, and solution method are presented in the following sections.  
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3.1. Modeling Assumptions 

The proposed model operates under the following assumptions: 

• Not all components are eligible for protection and interdiction. Only a subset of nodes 

and links are eligible for protection and interdiction.  

• Each node has a known supply capacity, demand capacity, or flow capacity for each 

commodity. A node may be both a supply node and a demand node for different 

products.  

• There is a known cost to protecting or interdicting each node. There are also known 

budgets for both the attacker and the defender to use for interdiction and protection, 

respectively. The protection cost does not vary by commodity.  

• Each component can be fully protected so that it is completely resistant to interdiction. If 

a protected node is attacked there is no loss of flow.   

• In the restoration stage, a work crew may only work on one component at a time. A 

component may not be only partially restored.  

• Restoration requires at least one complete time unit to be completed. 

• Each component has a specific restoration rate, λ, that is a function of the loss of capacity 

and specific component characteristics. This rate represents the proportion of restoration 

per unit of time by a single work crew and is not a function of the commodities on that 

component.  

• Directed infrastructure networks are physically dependent so that “child” nodes rely on 

“parent” nodes to be fully operational.  

• All commodities are continuous units.  

• All the commodities on the network are known to both the attacker and the defender. 
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3.2. Notation 

 The network is an undirected graph G = (N, A) where N is the set of nodes, and A is the 

set of links. Commodities are represented by 𝑔 ∈ 𝐺. There is a set K of interdependent networks, 

each containing a smaller set of nodes Nk  so that ∪𝑘∀𝐾=  𝑁𝑘. We use 𝑁𝑘 to represent the set of 

all nodes across commodities for a particular network. Similarly, there is a set of nodes Ak so 

∪𝑘∀𝐾=  𝐴𝑘. There are supply nodes (𝑁+𝑔
𝑘 ⊆ 𝑁𝑔

𝑘), demand nodes (𝑁−𝑔
𝑘 ⊆ 𝑁𝑔

𝑘), and transshipment 

nodes (𝑁=𝑔
𝑘 ⊆ 𝑁𝑔

𝑘\{𝑁+𝑔
𝑘 , 𝑁−𝑔

𝑘 }) for each commodity. And since we assume that not every node is 

eligible for protection and interdiction, we have smaller sets 𝐴′ and 𝑁′ that can be protected or 

interdicted for 𝑘 ∈ 𝐾 where 𝑁′𝑘 ⊆ 𝑁𝑘 and 𝐴′𝑘 ⊆ 𝐴𝑘. This represents the realistic scenario in 

which some components may be physically inaccessible, prohibitively expensive to attack or 

defend, or relatively unimportant to both parties. There are also interdependencies between nodes 

across networks 𝑘 ∈ 𝐾. We use Ψ to indicate interdependencies, where ((𝑖, 𝑘), (𝑖,̅ �̅�)) ∈ Ψ 

means that node 𝑖 ∈ 𝑁𝑘 in 𝑘 ∈ 𝐾 depends on node 𝑖̅ ∈ 𝑁�̅� in network �̅� ∈ 𝐾. Additionally, 𝑁𝑘 ∩

 𝑁�̅� =  ∅, 𝐴𝑘 ∩ 𝐴�̅� =  ∅ and ∀ 𝑘, �̅� ∈ 𝐾: 𝑘 ≠ 𝑘.̅ Another set Rk represents the work crews 

available to each network 𝑘 ∈ 𝐾. Time periods are represented by index 𝑡 ∈ 𝑇. Table 1 provides 

the remaining model parameters and Table 2 contains the model decision variables.  

Table 1. Model parameters 

ε An arbitrarily small positive number in (0,1) 

M An arbitrarily large positive number greater than time needed for recovery 

BP Total budget available for protector 

BI Total budget available for interdictor 

𝑪𝑷𝒊𝒋
𝒌  Cost of protecting link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾 
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𝑪𝑷𝒊
𝒌 Cost of protecting node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 

𝑪𝑰𝒊
𝒌 Cost of interdicting link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾 

𝑪𝑰𝒊
𝒌 Cost of interdicting node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 

𝒔𝒊𝒈
𝒌  Amount of supply in node 𝑖 ∈ 𝑁+

𝑘 in network 𝑘 ∈ 𝐾 of commodity g ∈ 𝐺 

𝒅𝒊𝒈
𝒌  Amount of demand in node 𝑖 ∈ 𝑁−

𝑘 in network 𝑘 ∈ 𝐾 for commodity  𝑔 ∈ 𝐺 

𝝀𝒊
𝒌 Restoration rate of node 𝑖 ∈ 𝑁′𝑘

 in network 𝑘 ∈ 𝐾 

𝝀𝒊𝒋
𝒌  Restoration rate of link (𝑖, 𝑗) ∈ 𝐴′𝑘

 in network 𝑘 ∈ 𝐾 

𝒖𝒊𝒋𝒈
𝒌  Capacity of link (𝑖, 𝑗) ∈ 𝐴𝑘 in network 𝑘 ∈ 𝐾 for commodity 𝑔 ∈ 𝐺 

𝒘𝒊𝒕𝒈
𝒌  Weight assigned to node 𝑖 ⊆  𝑁−𝑔

𝑘  in network 𝑘 ∈ 𝐾 at time 𝑡 ∈ 𝑇 for 

commodity 𝑔 ∈ 𝐺 

 

Table 2. Model decision variables 

𝒎𝒊𝒕𝒈
𝒌  Amount of demand met at node 𝒊 ⊆ 𝑵−𝒈

𝒌  in network 𝒌 ∈ 𝑲 at time 𝒕 ∈ 𝑻 of 

commodity  𝒈 ∈ 𝑮, continuous 

𝒙𝒊𝒋𝒕𝒈
𝒌  Flow on link (𝑖, 𝑗) ∈ 𝐴𝑙

𝑘 in network 𝑘 ∈ 𝐾 at time 𝑡 ∈ 𝑇 of commodity  𝑔 ∈ 𝐺, 

continuous 

𝒚𝒊𝒋
𝒌  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾is protected, binary  

𝒚𝒊
𝒌 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is protected, binary  

𝒛𝒊𝒋
𝒌  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾is interdicted, binary  

𝒛𝒊
𝒌 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is interdicted, binary  

𝒇𝒊𝒋
𝒌  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾is disrupted, binary  
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𝒇𝒊
𝒌 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is disrupted, binary  

𝜶𝒊𝒋
𝒌  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾is operational, binary  

𝜶𝒊
𝒌 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is operational, binary  

𝜶′𝒊𝒋𝒕
𝒌𝒓 Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾 is restored by work crew 𝑟 ∈

𝑅𝑘 at time 𝑡 ∈ 𝑇, binary  

𝜶′𝒊𝒕
𝒌𝒓 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is restored by work crew 𝑟 ∈

𝑅𝑘 at time 𝑡 ∈ 𝑇, binary  

𝜷𝒊𝒋𝒕
𝒌  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘 in network 𝑘 ∈ 𝐾 is reactivated at time 𝑡 ∈ 𝑇, 

binary  

𝜷𝒊𝒕
𝒌  Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is reactivated at time 𝑡 ∈ 𝑇, 

binary  

 

3.3. Objective Function  

 As discussed previously, this proposed optimization model seeks to minimize the time 

needed for restoration following a maximally effective attack on a network protected in such a 

way as to minimize disruption. To do this, we consider the weighted unmet demand across all 

time periods and commodities, where the defender minimizes unmet demand, the attacker 

maximizes it, and the defender minimizes again by restoring in an optimal sequence. Let te be the 

time of the disruption. Let 𝑚𝑖𝑡𝑔
𝑘  represent the demand being fulfilled at time t of commodity g on 

network k at node i. Similarly, 𝑑𝑖𝑔
𝑘  represents the amount of demand for a commodity g before 

the disruption at time te. We provide a weighting parameter to allow decision-makers to account 

for the importance of specific nodes and commodities: 𝑤𝑖𝑡𝑔
𝑘 . Let network performance at time t 

be represented by φ(t) = 1 – ζ(t) . Therefore, ζ(t) represents the proportion of unmet demand.  
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𝜁𝑀−1(𝑡) = 1 − ( 

∑ ∑ ∑ 𝑤𝑖𝑡𝑔
𝑘 𝑚𝑖𝑡𝑔

𝑘
𝑔∈𝐺𝑖∈𝑁−

𝑘𝑘∈𝐾

∑ ∑ ∑ 𝑤𝑖𝑡𝑔
𝑘 𝑑𝑖𝑔

𝑘
𝑔∈𝐺𝑖∈𝑁−

𝑘𝑘∈𝐾

) 
∀ 𝑡 ∈ 𝑇 (3.1) 

So, the proposed objective function for the defender minimizes this proportion of unmet demand 

for a specified time horizon under a worst-case attack strategy. This is defined in Eq. (3.2) as a 

min-max-min optimization objective. Note that this tri-level problem cannot be solved outright, 

but a solution method is provided in Section 3.5.  

 𝜉𝑀−1=  min
𝑦

max
𝑧

min
𝑚,𝑥,𝑓,𝛼,𝛽

∑ 𝜁𝑀−1(𝑡)

𝑡∈𝑇

 
 (3.2) 

3.4. Constraints 

 The model can be represented as a sequence of decisions by the defender, the interdictor, 

and the defender again. For the first stage, protection, the defender has some budget to protect 

the network in any way possible. Actual methods of defense are beyond the scope of this work, 

but could generally be considered as hardening the components to vulnerability (physical, 

informational, logical, etc.) in a way that addresses the network’s specific interdependencies and 

goals, or through the addition of redundancy by adding systems in parallel [38]. But in this 

model stage, constraints are all related to the defender’s budget and eligibility of nodes and links 

to defend. The defender’s defense strategy must cost less than the budget (3.3) and they may 

only defend eligible nodes (3.4-3.5). 

 ∑ ∑ 𝐶𝑃𝑖𝑗
𝑘𝑦𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴′𝑘

+ ∑ ∑ 𝐶𝑃𝑖
𝑘𝑦𝑖

𝑘

𝑖∈𝑁′𝑘

≤ 𝐵𝑃 

𝑘∈𝐾

 

𝑘∈𝐾

 
 (3.3) 

 𝑦𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.4) 

 𝑦𝑖
𝑘 ∈ {0,1}  ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.5) 

There are similar constraints for the next stage, the attacker’s. The attacker’s strike must cost less 

than their budget (Constraint 3.6) and only involve eligible nodes and links (Constraints 3.7-3.8).  
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 ∑ ∑ 𝐶𝐼𝑖𝑗
𝑘 𝑧𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴′𝑘

+ ∑ ∑ 𝐶𝐼𝑖
𝑘𝑧𝑖

𝑘

𝑖∈𝑁′𝑘

≤ 𝐵𝐼 

𝑘∈𝐾

 

𝑘∈𝐾

 
 (3.6) 

 𝑧𝑖𝑗
𝑘 ∈ {0,1}  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.7) 

 𝑧𝑖
𝑘 ∈ {0,1}  ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.8) 

The final stage of the model, restoration, has the most constraints. This stage assesses the 

damage done based on the interactions of the players in the previous stages, assigns work crews, 

and aims to restore the network to pre-disruption levels in minimum time. Constraints 3.9 – 3.14 

determine the failure and operational status of links and nodes in the network. A value of 1 

indicates that a node is operational throughout this formulation.  

 1 +  𝑦𝑖𝑗
𝑘 −  𝑧𝑖𝑗

𝑘 ≥ 𝑓𝑖𝑗
𝑘 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.9) 

 1 + 𝑦𝑖
𝑘 − 𝑧𝑖

𝑘 ≥ 𝑓𝑖
𝑘 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.10) 

 𝛼𝑖𝑗
𝑘 ≤ 1 − 𝑓𝑖𝑗

𝑘 ∀ 𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴′𝑘 (3.11) 

 𝛼𝑖𝑗
𝑘 + 𝑓𝑖𝑗

𝑘 ≥ 𝜀 ∀ 𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴′𝑘 (3.12) 

 𝛼𝑖
𝑘 ≤ 1 − 𝑓𝑖

𝑘 ∀ 𝑘 ∈ 𝐾, ∀ 𝑖 ∈ 𝑁′𝑘 (3.13) 

 𝛼𝑖
𝑘 + 𝑓𝑖

𝑘 ≥ 𝜀 ∀ 𝑘 ∈ 𝐾, ∀ 𝑖 ∈ 𝑁′𝑘 (3.14) 

Only nodes that have lost function can be restored. Constraints 3.15 and 3.16 limit restoration to 

nodes that have been interdicted or those that lost their parent nodes.  

 𝛼𝑖𝑗
𝑘 ≤ 1 − 𝛽𝑖𝑗𝑡

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 ,  

∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇 

(3.15) 

 𝛼𝑖
𝑘 ≤ 1 − 𝛽𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁′𝑘 ,  

∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇 

(3.16) 

Nodes cannot be functional until after at least one period of time has passed (Constraints 3.17 

and 3.18). 



15 

 

 𝛽𝑖𝑗1
𝑘 = 0 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.17) 

 𝛽𝑖1
𝑘 = 0 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.18) 

The following constraints create a flow balance of commodities at each node or link for each 

network at a point in time (Constraints 3.19-3.26). Supply nodes must ship less than or equal to 

their supply, transshipment nodes must have equal inflow and outflow, and demand nodes may 

have some measure of unmet demand (3.19-3.22). Constraints 3.23-3.26 limit the capacity of 

each link and ensure that only operational links carry product.  

 ∑ 𝑥𝑖𝑗𝑡𝑔
𝑘 − ∑ 𝑥𝑗𝑖𝑡𝑔

𝑘 ≤  𝑠𝑖𝑔
𝑘  

(𝑗,𝑖)∈𝐴𝑘

 

(𝑖,𝑗)∈𝐴𝑘

 ∀ 𝑖 ∈ 𝑁+𝑔
𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.19) 

 ∑ 𝑥𝑖𝑗𝑡𝑔
𝑘 − ∑ 𝑥𝑗𝑖𝑡𝑔

𝑘 = 0 

(𝑗,𝑖)∈𝐴𝑘

 

(𝑖,𝑗)∈𝐴𝑘

 ∀ 𝑖 ∈ 𝑁=𝑔
𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.20) 

 ∑ 𝑥𝑖𝑗𝑡𝑔
𝑘 − ∑ 𝑥𝑗𝑖𝑡𝑔

𝑘 = −𝑚𝑖𝑡𝑔
𝑘

(𝑗,𝑖)∈𝐴𝑘

 

(𝑖,𝑗)∈𝐴𝑘

 ∀ 𝑖 ∈ 𝑁−𝑔
𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.21) 

 𝑚𝑖𝑡𝑔
𝑘 ≤  𝑑𝑖𝑔

𝑘  ∀ 𝑖 ∈ 𝑁−𝑔
𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.22) 

 𝑥𝑖𝑗𝑡𝑔
𝑘 ≤  𝑢𝑖𝑗𝑔

𝑘  ∀(𝑖, 𝑗) ∈ 𝐴𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.23) 

 𝑥𝑖𝑗𝑡𝑔
𝑘 ≤  𝑢𝑖𝑗𝑔

𝑘 (𝛼𝑖𝑗
𝑘 + 𝛽𝑖𝑗𝑡

𝑘 ) ∀(𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.24) 

 𝑥𝑖𝑗𝑡𝑔
𝑘 ≤  𝑢𝑖𝑗𝑔

𝑘 (𝛼𝑖
𝑘 + 𝛽𝑖𝑡

𝑘 ) ∀(𝑖, 𝑗) ∈ 𝐴𝑘 , 

∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.25) 
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 𝑥𝑖𝑗𝑡𝑔
𝑘 ≤  𝑢𝑖𝑗𝑔

𝑘 (𝛼𝑗
𝑘 + 𝛽𝑗𝑡

𝑘 ) ∀(𝑖, 𝑗) ∈ 𝐴𝑘 , 

∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑔 ∈ 𝐺 

(3.26) 

Constraints 3.27 and 3.28 ensure that restoration of a link and node are completed in contiguous 

time periods (i.e. without interruption), respectively.  

 

∑ 𝛼′𝑖𝑗𝑠
𝑘𝑟 ≤ 𝑀(1 − (𝛼′

𝑖𝑗(𝑡+1)
𝑘𝑟

− 𝑎′
𝑖𝑗𝑡
𝑘𝑟

))

𝑡

𝑠=1

 
∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈  𝑅𝑘 

(3.27) 

 

∑ 𝛼′𝑖𝑠
𝑘𝑟 ≤ 𝑀(1 − (𝛼′

𝑖(𝑡+1)
𝑘𝑟

− 𝑎′
𝑖𝑡
𝑘𝑟

))

𝑡

𝑠=1

 
∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈  𝑅𝑘 

(3.28) 

The restoration time of a link is calculated using Constraints 3.29-3.30, and the restoration time 

for a node is calculated similarly (Constraint 3.31-3.32).  

 
∑ ∑ 𝛼′𝑖𝑗𝑡

𝑘𝑟 ≥  
𝑓𝑖𝑗

𝑘

𝜆𝑖𝑗
𝑘 − 𝑀𝛼𝑖𝑗

𝑘

𝑡∈𝑇𝑟∈𝑅𝑘

 
∀ (𝑖, 𝑗) ∈ 𝐴′𝑘, ∀ 𝑘 ∈ 𝐾 (3.29) 

 
∑ ∑ 𝛼′𝑖𝑗𝑡

𝑘𝑟 < (
𝑓𝑖𝑗

𝑘

𝜆𝑖𝑗
𝑘 + 1) +  𝑀𝛼𝑖𝑗

𝑘

𝑡∈𝑇𝑟∈𝑅𝑘

 
∀ (𝑖, 𝑗) ∈ 𝐴′𝑘, ∀ 𝑘 ∈ 𝐾 (3.30) 

 
∑ ∑ 𝛼′𝑖𝑡

𝑘𝑟 ≥  
𝑓𝑖

𝑘

𝜆𝑖
𝑘 − 𝑀𝛼𝑖

𝑘

𝑡∈𝑇𝑟∈𝑅𝑘

 
∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.31) 

 
∑ ∑ 𝛼′𝑖𝑡

𝑘𝑟 < (
𝑓𝑖

𝑘

𝜆𝑖
𝑘 + 1) +  𝑀𝛼𝑖

𝑘

𝑡∈𝑇𝑟∈𝑅𝑘

 
∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (3.32) 

The following constraints label a link or node as “reactivated” once restoration is complete.  

 ∑ ∑ 𝑎′𝑖𝑗𝑠
𝑘𝑟𝑡−1

𝑠=1𝑟∈𝑅𝑘

(
𝑓𝑖𝑗

𝑘

𝜆𝑖𝑗
𝑘 )

≥  𝛽𝑖𝑗𝑡
𝑘  

∀ (𝑖, 𝑗) ∈ 𝐴′𝑘
, ∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇 | 𝑡 ≠ 1  

(3.33) 
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 ∑ ∑ 𝑎′𝑖𝑠
𝑘𝑟𝑡−1

𝑠=1𝑟∈𝑅𝑘

(
𝑓𝑖

𝑘

𝜆𝑖
𝑘 )

≥  𝛽𝑖𝑡
𝑘  

∀ 𝑖 ∈ 𝑁′𝑘
, ∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇 | 𝑡 ≠ 1  

(3.34) 

The problem is constrained so that only one specific work crew may operate on a interdicted and 

disrupted component once a crew has been assigned (Constraint 3.35-3.36). Only one crew can 

work on a component at a time, and a crew can only work on one component (Constraints 3.37-

3.39).  

 ∑ ∑ 𝑎′𝑖𝑗𝑡
𝑘𝑠 ≤ 𝑀(1 − 𝛼′

𝑖𝑗𝑡
𝑘𝑟

)

𝑡∈𝑇𝑠∈𝑅𝑘

 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘
, ∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅𝑘  

(3.35) 

 ∑ ∑ 𝑎′𝑖𝑡
𝑘𝑠 ≤ 𝑀(1 − 𝛼′

𝑖𝑡
𝑘𝑟

)

𝑡∈𝑇𝑠∈𝑅𝑘

 ∀ 𝑖 ∈ 𝑁′𝑘
, ∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅𝑘 

(3.36) 

 
∑ 𝑎′𝑖𝑗𝑡

𝑘𝑟 ≤ 1

𝑠≠𝑟

𝑟∈𝑅𝑘

 
∀ (𝑖, 𝑗) ∈ 𝐴′𝑘

, ∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇 

(3.37) 

 

∑ 𝑎′𝑖𝑡
𝑘𝑟 ≤ 1

𝑟∈𝑅𝑘

 
∀ 𝑖 ∈ 𝑁′𝑘

, ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇 

(3.38) 

 ∑ 𝛼′𝑖𝑗𝑡
𝑘𝑟

(𝑖,𝑗)∈𝐴′𝑘

+ ∑ 𝛼′𝑖𝑡
𝑘𝑟

𝑖∈𝑁′𝑘

≤ 1   ∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅𝑘 

(3.39) 

The interdependency between the components and the networks is critical. There is only flow 

through a link if the parent nodes in one of the other networks 𝑘 ∈ 𝐾 is operational.  
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 𝑥𝑖𝑗𝑡𝑔
𝑘 ≤ 𝑢𝑖𝑗𝑔

𝑘 (𝛼𝑖̅
�̅� + 𝛽𝑖�̅�

�̅� ) ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘
, ∀ 𝑔

∈ 𝐺, ∀ 𝑖̅

∈ 𝑁′�̅�
 | ((𝑖, 𝑘), (𝑖,̅ �̅�))  

∈ Ψ 𝑜𝑟 ((𝑗, 𝑘), (𝑖,̅ �̅�))

∈ Ψ, ∀ 𝑘, �̅� ∈ 𝐾, ∀ 

∈ 𝑇, ∀𝑔 ∈ 𝐺   

(3.40) 

The remaining constraints are regarding the positive or binary nature of the decision variables.  

 𝑚𝑖𝑡𝑔
𝑘 ≥ 0 ∀ 𝑖 ∈ 𝑁−

𝑘, ∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇 

(3.41) 

 𝑥𝑖𝑗𝑡𝑔
𝑘 ≥ 0 ∀ (𝑖, 𝑗) ∈ 𝐴𝑘 ,  

∀ 𝑘 ∈ 𝐾,  

∀ 𝑡 ∈ 𝑇 

(3.42) 

 𝑦𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘

,  

∀ 𝑘 ∈ 𝐾 

(3.43) 

 𝑦𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘, ∀ 𝑘 ∈ 𝐾 (3.44) 

 𝑧𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 ,  

∀ 𝑘 ∈ 𝐾 

(3.45) 

 𝑧𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘, ∀ 𝑘 ∈ 𝐾 (3.46) 

 𝑓𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 ,  

∀ 𝑘 ∈ 𝐾 

(3.47) 

 𝑓𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘, ∀ 𝑘 ∈ 𝐾 (3.48) 

 𝛼𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 ,  (3.49) 
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∀ 𝑘 ∈ 𝐾 

 𝛼𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘, ∀ 𝑘 ∈ 𝐾 (3.50) 

 𝛼′𝑖𝑗𝑡
𝑘𝑟 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 ,  

∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅𝑘 

(3.51) 

 𝛼′𝑖𝑡
𝑘𝑟 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅𝑘 

(3.52) 

 𝛽𝑖𝑗𝑡
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 ,  

∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇 

(3.53) 

 𝛽𝑖𝑡
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾, 

∀ 𝑡 ∈ 𝑇 

(3.54) 

3.5. Decomposition Solution Approach 

 Decomposition is a common approach to solving multi-level problems [7], [16], [18], 

[37], [39]. This is an iterative method in which the main problem is decomposed into two smaller 

problems. For this multi-commodity problem, we will use a set covering decomposition 

approach for the interdiction level rather than using the dual because the Karush-Kuhn-Tucker 

sufficient condition is not met [26]. Ghorbani et al. proposed a modified covering decomposition 

problem that maximized the number of protected and interdicted components (subject to some 

budget), making the model an optimization one rather than a feasibility problem [26]. This 

substantially reduces computing time by limiting the number of combinations tested, making this 

an appropriate solution for a multi-commodity problem in which the additional set of 

commodities could substantially increase the size of the solution set.  
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 The solution algorithm in this paper decomposes the tri-level model into two smaller 

problems: a master problem in which the interdicted nodes are fixed, and a subproblem where 

the protected nodes are fixed. Solving each of these smaller problems produces two objective 

values, and the algorithm iterates between the two smaller problems until the difference between 

the master and subproblem reaches a sufficiently small value, producing a final solution.  

 The master problem fixes the attack decision variables, determining the optimal 

protection plan y as the result of this min-min formulation (minimize unmet demand and 

minimize recovery time). This relaxed problem produces the smaller value for the model since 

the attacker’s fixed decision seeks to maximize the unmet demand – essentially, how little unmet 

demand can the defender allow in response to this attack?  

 𝜉𝑀−1=  min
𝑦

min
𝑚,𝑥,𝑓,𝛼,𝛽

∑ 𝜁𝑀−1(𝑡)

𝑡∈𝑇

   (3.55) 

 ∑ ∑ 𝐶𝑃𝑖
𝑘𝑦𝑖

𝑘 +  ∑ ∑ 𝐶𝑃𝑖𝑗
𝑘𝑦𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴′𝑘𝑘∈𝐾

≤ 𝐵𝑃

𝑖∈𝑁′𝑘𝑘∈𝐾

 
 (3.56) 

 𝑦𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘

, ∀ 𝑘 ∈ 𝐾 (3.57) 

 𝑦𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘

, ∀ 𝑘 ∈ 𝐾 (3.38) 

 1 +  𝑦𝑖𝑗
𝑘 − �̂�𝑖𝑗

𝑘 ≥ 𝑓𝑖𝑗
𝑘 ∀ 𝑘 ∈ 𝐾, ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 (3.59) 

 1 +  𝑦𝑖
𝑘 − �̂�𝑖

𝑘 ≥ 𝑓𝑖
𝑘 ∀ 𝑘 ∈ 𝐾, ∀ 𝑖 ∈ 𝑁′𝑘 (3.60) 

 Constraints (3.11) – (3.54)   

 Similarly, the subproblem uses the defender’s optimal strategy, y, to produce the 

interdiction plan z. This is a max-min relaxed problem that produces the higher objective value 

for the model. The protector wants to minimize the unmet demand, representing the worst-case 

scenario for the defender. Essentially, how much unmet demand can the attacker create in 

response to the existing protection plan? 
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 𝜉𝑀−1=  max
𝑧

min
𝑚,𝑥,𝑓,𝛼,𝛽

∑ 𝜁𝑀−1(𝑡)

𝑡∈𝑇

   (3.61) 

 ∑ ∑ 𝐶𝐼𝑖𝑗
𝑘 𝑧𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴′𝑘

+ ∑ ∑ 𝐶𝐼𝑖
𝑘𝑧𝑖

𝑘

𝑖∈𝑁′𝑘

≤ 𝐵𝐼 

𝑘∈𝐾

 

𝑘∈𝐾

 
 (3.62) 

 𝑧𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘

, ∀ 𝑘 ∈ 𝐾 (3.63) 

 𝑧𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘

, ∀ 𝑘 ∈ 𝐾 (3.64) 

 1 +  �̂�𝑖𝑗
𝑘 −  𝑧𝑖𝑗

𝑘 ≥ 𝑓𝑖𝑗
𝑘 ∀ 𝑘 ∈ 𝐾, ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 (3.65) 

 1 +  �̂�𝑖
𝑘 −  𝑧𝑖

𝑘 ≥ 𝑓𝑖
𝑘 ∀ 𝑘 ∈ 𝐾, ∀ 𝑖 ∈ 𝑁′𝑘 (3.66) 

 Constraints (3.11) – (3.54)   

 Note that both of the smaller problems above have two levels, making them unable to be 

solved directly with a commercial optimization software. So, they must be turned into single-

level optimization models using Benders’ decomposition and set covering decomposition. 

Benders’ decomposition is used to address the master problem and set covering decomposition 

addresses the subproblem. Using set covering for both smaller problems has been identified as a 

computationally inefficient method [40]. For Benders decomposition, this solution approach uses 

a set of defined attack plans, indexed by iteration. The new set of decision variables for that 

attacker plan creates corresponding constraints for the master to use in that iteration [26]. By 

solving the master problem, we create the inputs for the subproblem to then find the best attacker 

decision variables. We refer the reader to Zeng and Zhao (2013), Yuan et al., and Ghorbani-

Renani (2021) for more information [37], [40], [41] 

The subproblem (or interdictor problem) uses set covering decomposition. It is a 

feasibility-seeking problem in which at least one component must be interdicted, subject to the 

budget. The inequality is unique from previous inequalities. Eventually, the attacker cannot 

satisfy all the inequalities and the attacker algorithm terminates with a best-case attack plan in 
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response to the existing protection plan. This is essentially a brute-force method that forces the 

attacking algorithm to try all possible combinations of attacks that work with the budget, 

ultimately selecting the most destructive attack, calculated by passing each plan to the restoration 

function to find the objective value. With the optimal attack plan, we return to the master 

problem to repeat this iterative process (indexed by c). For each c, the attacker has a best plan in 

response to the existing protection scenario; however, the master problem will keep expanding 

with the new attack scenarios [37]. Iterative algorithms such as this have convergent behavior 

[41]. Since both the protection and interdiction plans are known, the restoration level can be 

solved with these two inputs as a simple minimization problem. This is best explained by the 

following pseudocode (Table 3).  

Let objSP , objMP, and objRL represent the objective values for the subproblem, master 

problem, and restoration level, respectively. IL represents the feasibility-seeking interdiction 

level. 𝑃𝑐 stores the best interdictor solution by comparing objRL. Again, c is the iteration counter. 

The results is 𝑧∗, 𝑦∗, or the final protection and interdiction decisions. It is possible that the 

algorithm may fail to converge quickly enough. The user may choose to add additional 

constraints on the number of iterations or the minimum cut size if the computational time is 

significant, as well.  
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Table 3. Pseudocode of solution algorithm 

Step 1 Input 𝑜𝑏𝑗𝑀𝑃  - ∞, 𝑜𝑏𝑗𝑆𝑃 +∞, �̂�𝑐  0, 𝑃𝑐  - ∞ in c  0 

Step 2 

Step 3 

While 
𝑜𝑏𝑗𝑆𝑃−𝑜𝑏𝑗𝑀𝑃

𝑜𝑏𝑗𝑀𝑃
> 𝜀 do 

    Solve Master Problem and return objMP and protection decision �̂� 

Step 4      �̂�∗ ←  �̂�, 𝑜𝑏𝑗𝑀𝑃 ← 𝑜𝑏𝑗𝑀𝑃,, 𝑐 ← 𝑐 + 1, 

Step 5     If attacker budget can attack all vulnerable components (𝐴′𝑘
∪ 𝑁′𝑘

) then 

Step 6          �̂�𝑐 ← 1 

Step 7          Solve RL for objMP 

Step 8           𝑃𝑐  ← 𝑜𝑏𝑗𝑅𝐿 and go to Step 15 

Step 9 

Step 10 

 

Step 11 

Step 12 

    While IL is feasible do 

         Add the following constraint: 

           ∑ ∑ 𝑧𝑖𝑗
𝑘 +  ∑ ∑ 𝑧𝑖

𝑘 ≥ 1

𝑖∈𝑁′𝑘|𝑧𝑖
𝑘=0𝑘∈𝐾

 

(𝑖,𝑗)∈𝐴′𝑘|𝑧𝑖𝑗
𝑘 =0𝑘∈𝐾

 

         Solve IL, produce �̂� 

         Solve RL, produce objRL 

Step 13 

Step 14 

Step 15 

Step 16 

Step 17 

Step 18 

Step 19 

Step 20 

         If objRL >  𝑃𝑐 then  

              �̂�𝑐 ← �̂�, 𝑃𝑐  ← 𝑜𝑏𝑗𝑅𝐿  

     𝑜𝑏𝑗𝑆𝑃 ← 𝑃𝑐   

     𝑜𝑏𝑗𝑆𝑃  ← 𝑜𝑏𝑗𝑆𝑃 

     Return �̂�𝒄 

     Update MP by creating new decision variables and constraints 

𝑧∗ ← �̂�𝑐 

Return 𝑧∗, 𝑦∗ with objective value objSP 

 

We approach the convergence of the master and subproblems in a unique way. While 

many papers assign an upper bound, or UB, as the value of the minimum of the previous upper 

bound and the subproblem, we instead choose to not to use an upper bound (or lower bound, as 

well), and instead return the value of the objective value of the subproblem, or the best attack 

against the current defense Y. We use Yao’s et al.’s approach in which the values of two bi-level 

problems converge, not two bounds [16]. Like the method proposed in this paper, Yao’s work 

has a min-min master problem that seeks to minimize the unmet demand (for a power network, 

as well), and a max-min subproblem that aims to maximize unmet demand. In both cases, the 
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current best attack plan or defense plan in response to the prior iteration’s defense or attack 

(respectively) is returned along with the objective value of the unmet demand. This is the same 

general structure as the method presented in this paper, in which plans are passed back and forth 

(the only key difference is that Benders’ decomposition is used to solve one of the bi-level 

problems here). So, for this work the convergence is between objSP and objMP, without regard to 

previous iterations. Furthermore, this change avoids a dilemma presented in Israeli and Wood’s 

influential 2002 paper, in which an algorithm terminates due to a “lower bound and quasi-upper 

bound match,” but where the returned solution is incorrect [33]. Additionally, they propose a 

covering decomposition algorithm in which there is no additional minimization limit on the 

upper bound: “the master problem is solved for any feasible solution with objective value greater 

than the current lower bound. The algorithm iterates until no such solution exists; at that point, 

the best solution found must be optimal” [18]. This suggests that the limits some algorithms 

place by using bounds is not inherently necessary. Furthermore, Brown, Carlyle, and Salmerón 

note that it is possible to perform Bender’s decomposition with tri-level optimization “whose 

only constraints consist of super-valid inequalities,” and no limits on the values the “bounds” 

take [2]. Zeng and Zhao assert that iterative algorithms of this nature converge to optimal 

solutions [41].  Essentially, the objective values for the decomposed bi-level problems converge 

without artificial limits on what their value is represented as.  

 The algorithm is highly sensitive to the number of nodes or links that are eligible for 

protection or interdiction, as this determines the number of potential attack and defense strategy 

combinations. Computational time should increase significantly as the number of components in 

this subset increases, and this number is the primary influence on the algorithm runtime. 
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Chapter 4: Illustrative Example 

4.1. Structure of the Systems 

 In this section, we will illustrate the method provided in the previous chapters with an 

example from the Swedish power and railway systems. This data set has been studied previously 

by Johansson and others for a variety of network flow analyses and component criticality 

problems [17], [25], [42], [43]. The system consists of an electrified railway network and a 

connected power network. The railway system is made of up 1363 stations connected by 2898 

links of varying capacities. Trains carry eleven unique commodities that represent over 64,000 

kilotons of freight and represent a significant share (98%) of the Swedish rail economy (Table 6) 

[25]. Each link has a specific capacity for each commodity. Although it would be interesting to 

examine the relationship between the national power grid and the entire railway system, the 

railway data set is simply too large to perform Benders’ decomposition in a reasonable time. 

Ghorbani-Renani notes in her dissertation that “exact solution methods for solving interdiction 

models typically have limitations from modeling and computational complexity perspectives . . . 

[and the] computational difficulty of optimizing interdiction models thwarts the decision maker 

from effectively applying such models to moderate or large-scaled systems” [26]. Therefore, we 

used k-means clustering to produce geographical subsets of the railway network. We selected a 

cluster with a structure presented in Table 3 with 105 nodes. The data set is a representative 

sample of the overall network.  

The power network provides only a single product (megawatts of electricity) and 

connects 119 nodes using 374 lines. There are limited physical interdependencies between the 

power and the railway systems, at only three points. The railway system depends on the power 

system. For the railway system, a station may be both a supply node and a demand node, 
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depending on the commodities shipped. For the power system, some nodes both generated power 

and had a load, so their respective supply and demand is simply the difference between the two 

so that a node is either a supply, demand, or transshipment node. The general structure of the two 

networks is presented in Table 3 and is represented geographically in Figures 2 and 3. For 

purposes of the railway network, we count supply nodes as those that produce any amount of any 

product, demand nodes as those that require any amount of any product, and transshipment nodes 

as those that have carrying capacity for any product.   

Table 4. Railway subset and power system structures 

Network Nodes Supply 

Nodes 

Demand 

Nodes 

Transshipment 

Nodes 

Edges Commodities 

Railway 105 81 79 105 214 11 

Power 119 32 83 4 388 1 

 

 The railway system carries eleven commodities, although not every node produces or 

demands every commodity. There are is also unequal demand for each commodity.  

                                             

Figure 2. Locations of all Swedish railway stations (left) and subset (right) 
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Figure 3. Location of Swedish power stations 

4.2. Model Parameters 

For this example, we assume that only nodes (and not links) are eligible for protection 

and interdiction (i.e. 𝐴′𝑘 =  ∅). We make this assumption for several reasons. First, it reduces 

the computation time for this multi-commodity example. For networks of this size, the problem 

requires substantial computing time and limiting the eligible components to nodes reduces the 

computational time while still maintaining much of the problem complexity through the included 

interdependencies and link capacities. Additionally, for a real-life example the point on a link at 

which an attack occurs can have substantial effects on the disruption and recovery. For a problem 

like this in which links represent physical structures that span hundreds of kilometers – so 

relative distance from recovery work crews matters. Essentially, an attack that occurs in the 

middle of a long link can be more disruptive than one that occurs close to a node, even though 

mathematically they represent the same attack. For this problem, to determine the subset of 
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nodes that are eligible for attack we use the degree of each node, assuming that these nodes are 

somewhat important and accessible. To calculate the degree we only account for the number of 

connections between nodes in the same network, not between networks. This is a topological 

approach that is well-represented in the literature as a measure of node criticality [26], [44], [45]. 

We will only consider nodes with a degree greater than four for the railway system and greater 

than ten for the power system (Table 5). This produced twenty nodes. However, as the 

computational time grows exponentially with the number of components in the subset, the time 

was simply too long, so the subset had to be narrowed further. For the railway data set, the 

within those thirteen nodes, the top half with the greatest flow (absolute value of supply and 

demand) were kept, selecting six. This keeps the problem at a small enough size – 13 – to 

compute and ensures that only critical nodes are interdicted.  

Table 5. Nodes in railway subset and power systems 

Network Nodes Avg. Degree Nodes with 

Degree > 6 

Nodes with 

Degree > 8 

Nodes with 

Degree >10 

Railway 105 4.07 13 0 0 

Power 119 6.29 45 28 7 

 

While this data set has been used extensively by other authors, protection and interdiction 

costs for either network have not been created and will be generated specifically for this thesis. 

For the railway system, protection and interdiction costs for nodes were generated using a tiered 

random number generation system with a uniform distribution  based on the degree of the node. 

The bounds for the costs are presented in Table 6. Acceptability rates (or epsilon) for nodes are 

generated using a uniform distribution on [0.1, 0.2] ; and performance rates are equal to 0.5 for 

nodes, meaning that all components will take two time periods to recover. 
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Table 6. Protection and interdiction cost generation parameters 

Degree Range for Protection Costs Range for Interdiction Costs 

[6,10) U[20, 30] ϵ ℤ U[40, 50] ϵ ℤ 

[10,14) U[30, 40] ϵ ℤ U[50, 60] ϵ ℤ 

[14,18) U[40, 50] ϵ ℤ U[60, 70] ϵ ℤ 

 

 We also needed to generate relative weights for the importance of each commodity, at 

each node, at each time. We assume that the weights are held constant over time, again to 

emulate a real-life scenario and to improve computational speed. We will use a weighting 

schema by commodity. For the power network, with its single commodity, all node-commodity-

time combinations have a weight of 0.5. For the railway system, commodities are weighted by 

the percentage of the Swedish rail economy (in tens of megatons) that they occupy and held 

constant across all nodes for that commodity. If the demand for that commodity is zero, the 

weight is zero. The values are adapted from work by Whitman et al. but scaled down by a factor 

of 105
  to make the magnitude of values across the networks similar [25]. We choose not to 

further vary the weight by the demand at each node, because demand does not always correlate 

with criticality. See Table 7 for the weighting in the railway system. 

Table 7. Railway commodity weights 

Commodity (g) Index Commodity Name Weight  

1 Agriculture, forest, fishing 0.1388 

2 Ore 0.4361 

3 Food, beverages, tobacco 0.0133 

4 Wood, cork, pulp, paper 0.0953 

5 Petroleum products 0.0225 

6 Chemicals, rubber, plastics 0.0202 

7 Fabricated metal products 0.0747 

8 Transport equipment 0.0145 

9 Return materials and recycling 0.0244 

10 Equipment for transportation 0.0157 

11 Unidentifiable goods 0.1445 
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 The final parameters are fairly straightforward. There is one work crew for each network, 

so two work crews total. We set our maximum recovery time at 10 units – all nodes must be back 

to operational status by this time. The convergence ratio is set at 0.025 (i.e. ε = 0.025), meaning 

the algorithm will terminate when the master problem and subproblem produce objective values 

with a difference divided by the master problem that is less than this value.  Let M have a value 

of 12.  

 To solve each instance, we used Python 3.8.5 with Gurobi 9.1.1. on a 64-bit Intel ® 

Core™ i7-8565U CPU @ 1.80GHz laptop.  

4.3. Results 

 Now, we provide the optimal protection-interdiction-restoration scenarios for the 

Swedish power and railway systems. In this section, we will discuss the gameplay behavior, the 

computational time and complexity of this problem, the results for many budget combinations, 

the convergence behavior of the Benders’ algorithm, and the recovery with a focus on 

commodity-specific recovery.  

4.3.1. Protector-Interdictor Gameplay 

 We begin with the protector-interdictor interactions from a scenario in which the players 

have similar budgets. This will demonstrate the behavior of the Benders’ cuts and the 

Stackelberg nature of the interaction between the attacker and the defender. Table 8 provides the 

component selections for the defender, the attacker, and the difference between the master 

problem and the subproblem (which decreases gradually until it is smaller than the terminating 

condition). In this table, the notation (k,i) refers to node i in network k, where 𝑖 ∈ 𝑁′𝑘 and 𝑘 ∈ 𝐾. 

Recall that k = 1 for the railway network and k = 2 for the power network.  
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 In each iteration, the defender responds to the most disruptive attack plan found in the 

prior iteration. In response, the defender then develops a new attack plan while still subject to its 

budget. As the algorithm iterates, the difference between the subproblem and master problem 

decreases. After iteration six, the algorithm takes one more iteration to simply output the optimal 

protection and attack plans. We can also see that node (1,149) is always protected as soon as 

possible, indicating that this is a critical node. The subproblem objective value decreases 

significantly once that node is hardened.  

Table 8. Protector-interdictor gameplay for BP = 60, BI = 150  

Step Protected Components Interdicted Components 𝑜𝑏𝑗𝑀𝑃 𝑜𝑏𝑗𝑆𝑃 

1 N/A (1,99), (1,130), (1,149) 0.077 0.785 

2 (1,99), (1,149) (1,78), (1,115), (1,130) 0.143 0.481 

3 (1,130), (1,149)) (1,78), (1,99), (1,113) 0.172 0.328 

4 (1,78), (1,149) (1,99), (1,115), (1,130) 0.266 0.490 

5 (1,130), (1,149) (1,78), (1,99), (1,113) 0.231 0.327 

6 (1,130), (1,149) (1,78), (1,99), (1,113) 0.326 0.327 

 

4.3.2. Component Selections by Budget Scenario 

 The number and selection of components is dependent on the budgets available to the 

players, as well as the difference between the budgets. By varying the budgets available to the 

defender and the attacker, we can assess the relative importance of each eligible node to the 

network as well as examine some factors that may lead to the selection of each node, while 

considering that some nodes may be critical to one commodity and unimportant to another. 

Budget is one way to perform a sensitivity analysis. Table 9 provides the component selections 

(k,i) for twelve combinations of protector budget (BP) and interdictor budget (BI). Y* represents 
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the defender’s selections and Z* represents the attacker’s selections. Recall that the maximum 

budget range required to protect a component is 50 and 70 to interdict a component.  

Table 9. Component selections by budget scenario 

BP BI = 50 BI=100 BI = 150 BI = 200 

0 Y*: None 

Z*: (1,149) 

Y*: None 

Z*: (1,99), (1,149) 

Y*: None 

Z*: (1,99), (1,130), 

(1,149) 

Y*: None 

Z*: (1,78), (1,115), 

(1,130), (1,149) 

30 Y*: (1,149) 

Z*: (1,99) 

Y*: (1,149) 

Z*: (1,99), (1,130) 

Y*: (1,149) 

Z*: (1,99), (1,115), 

(1,130) 

Y*: (1,149) 

Z*: (1,78), (1,99), 

(1,115), (1,130) 

60 Y*: (1,99), (1,149) 

Z*: (1,130) 

Y*: (1,99), (1,149) 

Z*: (1,115), (1,130) 

Y*: (1,130), (1,149) 

Z*: (1,78), (1,99), 

(1,113) 

Y*: (1,130), (1,149), 

Z*: (1,78), (1,99), 

(1,113), (2,19)  

90 Y*: (1,99), (1,130), 

(1,149) 

Z*: (1,78) 

Y*: (1,99), (1,130), 

(1,149) 

Z*: (1,78), (1,113) 

Y*: (1,99), (1,130), 

(1,149) 

Z*: (2,45), (2,110) 

Y*: (1,78), (1,99), 

(1,149) 

Z*: (2,19), (2,45), 

(2,70), 

 

 The first row of the table, in which the defender does not have a protection budget, 

indicates what nodes are the highest priority for attack, since the attacker may choose whatever 

components they wish subject to the budget. Note that node (1,149) appears in every selection 

combination in this table, but this row is the only one in which the attacker may interdict it. This 

indicates that (1,149) is a very high-value component for the defender. This node has the largest 

total flow across commodities (absolute value of supply plus demand) and largest average flow 

of any of the eligible nodes; and has the greatest flow of commodity (1,2) – the ore that received 

the heaviest weighting. This node is a demand node for seven commodities and only a supply 

node for one commodity, making it a significant contributor to unmet demand if interdicted. The 

other three nodes that appear most frequently, (1,78), (1,99), and (1,130) are the top three 

eligible nodes for both overall expected flow and flow of ore. In an example in which the 

weighting was more evenly distributed, there may be more variation in the selection of 
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components. This provides a possible extension for this research. Additionally, because all of the 

repair times for the components were constant, this factor would not influence component 

selection. If restoration times were not equal, we may see a preference for different components.  

 Also note that the majority of selected components come from the railway network, and 

power nodes are only attacked when the defender has a high budget. There is likely several 

reasons for this. First, the railway network has lower protection and interdiction costs, due to the 

smaller degree of these nodes. The railway network has an average protection cost of 23.33 and 

interdiction cost of 43.33. The power network has an average protection cost of 40.14 and an 

average interdiction cost of 61.86. While the average expected flow of the eligible power 

network nodes are greater than that of the eligible railway network nodes (234.83 and 196.47, 

respectively), this is skewed by one node in the power network subset with a substantially larger 

flow. When we compare the median expected flow across commodities of the railway network 

(157.36) and the power network (24.28), railway nodes are generally selected because they 

provide a greater “bang for one’s buck” due to the greater flow and larger cost. Additionally, the 

power network is more interconnected, whereas the railway system is connected in more of a 

linear fashion, where a disruption to a node in the middle could have severe impacts. This agrees 

with prior work by Svegrup and Johansson with this data set that stated that the national railway 

system is more vulnerable to disruption than the power system [42].  

4.3.3. Budget and Objective Value 

 The budget affects the objective value, which recall is a measure of the weighted unmet 

demand over time. As the defender’s budget grows, the final objective value decreases, 

indicating that the system will suffer less from the optimal attack – the system is more resilient to 

disruption. But as the attacker budget increases, for a given defender budget, the objective value 
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increases, as the attacker may interdict more components and cause more disruption. But as the 

protector budget is greater (or the difference between the attacker and defender budget is 

smaller), this effect is smaller. This is shown in both Table 10 and in the decreasing vertical 

distance between lines as BP increases in Figure 4. This suggests that even small improvements 

to the protector budget may have significant effects on the system resilience, but increased 

budget may provide diminishing returns. Note that because this is an unbalanced system with 

some initial unmet demand, the objective value shown is relative to the objective value in a 

steady-state case with no protection or interdiction. This value is approximately 0.077 (rather 

than 0.0 for a balanced case) and thus all objective values were divided by 0.077 for these 

figures.  This normalizes the results for scenarios that recover earlier or later.  

Table 10. Relative objective value for given budget combination 

BP  BI = 50 BI = 100 BI = 150 BI = 200 

0 4.61 7.29 10.16 12.89 

30 2.29 4.16 6.35 8.80 

60 1.86 3.37 4.24 5.18 

90 1.77 2.14 2.91 5.14 
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Figure 4. Graph of objective value for given budget combination 

4.3.4. Budget and Computational Time 

 There are two keys factors that affect the computational time of this algorithm. The first, 

which will not be examined in this paper, is the size of the eligible subset of nodes and links that 

may be protected or interdicted. As the algorithm tests all feasible attack combinations and then 

all feasible protection combinations, this is essentially a knapsack problem, in which 

combinations that fall under the “weight” (budget) take on binary values. If there are more 

eligible nodes or links in the subset, the number of combinations increases exponentially. This 

has been identified in the literature as one of the key factors that limits the use of these 

techniques [8], [36], [46]. As the budget increases, the number of potential combinations of 

protected or interdicted components increases exponentially. So, if there are more eligible 

components, this effect on computational time will be even greater. As the budget increases, the 

computational time increases exponentially.  
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Figure 5. Computational time units under different budget combinations 

To scale up this methodology for a larger data set ore one in which the eligible subset and 

the budget allow for the protection or interdiction of many nodes, a metaheuristic would likely 

have to be used within the subproblem to find an optimal attack plan faster or make larger cuts. 

Another possible alternative to improve the computational time comes from experimental 

validation. If early tests for small budgets reveal that a specific component is always protected 

(such as (1,149) in this instance), a constraint requiring that the attacker cannot interdict that 

component could speed up the set covering.  

4.3.5. Convergence Behavior 

 In this section we will examine the convergence of the bilevel problems for all budget 

scenarios (Figure 6), as well as the convergence of the objective value by commodity (Figures 7 

- 9). In the following (Figure 6), we can see that as the interdictor’s budget increases, the initial 

subproblem objective value increases as well. The second iteration typically provides the greatest 

decrease in that value, as after that the attacker typically responds to a protection plan that 

protects the same node, (1,149). As the total budget increases, the number of iterations increased 

0

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
U

n
it

s

Attacker Budget

BP = 0

BP = 30

BP = 60

BP = 90



37 

 

as well. The scenarios with the greatest number of iterations are the ones in which the respective 

budgets allow the protector and the interdictor to select the same number of components. The 

increased “gameplay” of these cases is shown by the non-uniform increases and decreases of the 

master and subproblems. The key rule for the convergence is that the final objective value is in 

between or equal to the initial objective values of the master problem and subproblem.  

 

Figure 6. Scaled convergence behavior for all budget scenarios 

 We may also examine the convergent behavior by commodity. Unlike the overall 

objective value, the objective value by commodity does not have to constantly increase or 

decrease. The only rule is that the final objective value by commodity must be greater than or 

equal to the initial lower objective value of the master problem. The contribution to 𝑜𝑏𝑗𝑆𝑃 may 

increase even greater than its value in the first iteration, as the attacker prioritizes new 

commodities once the more heavily weighted commodities are hardened. This occurs with 

commodity (2,1) in Figure 9, as the objective value for the railway commodities decreases in 

both iterations but at the expense of the power network. The objective values may even cross 
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before terminating. Given that each component has a different relationship to each commodity, 

and a different relationship between components by commodity, this is not surprising. The 

convergence and attack and defense plans are based on the aggregate objective values, not by 

commodity. An attacker or defender may scarifice one commodity to better protect or attak 

another that is either more heavily weighted or with greater flow.  

 

Figure 7. Convergence behavior by commodity for BP = 90, BI = 100 
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Figure 8. Convergence behavior by commodity for BP = 30, BI = 150 

 

Figure 9. Convergence behavior by commodity for BP = 60, BI = 200 

4.3.6. Network Recovery Trajectory 

 Finally, we will examine the network performance recovery trajectory, with a focus on 

the recovery by commodity. Again, system performance is relative to the performance at time t = 
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0, which does have unmet demand. Recovery trajectories are provided for three cases with higher 

attacker budgets. Not all commodities recover at an equal rate, because not all are impacted 

equally by the optimal attack plan. Recall that the recovery rate for all nodes is 0.5, meaning that 

each impacted node on a given network will take 2 time units to recover. Figures 10 - 12 show 

the unweighted network performance by commodity. Note the immediate drop in performance  

after the attack is carried out at time t = 1. he unweighted network performance by commodity. 

Note the immediate drop in performance after the attack is carried out at time t = 1. 

 

 

Figure 10. Network performance trajectory by commodity for BP = 0, BI = 200 
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Figure 11. Network performance trajectory by commodity for BP = 30, BI = 200 

 

Figure 12. Network performance trajectory by commodity for BP = 60, BI = 200 

 The system recovery does not improve uniformly across commodities, as interdicted 

nodes have different importance levels across commodities. The relationship between the nodes 

(parent and child) also is commodity-dependent. Therefore, some commodities will recover 
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faster than others. Commodities (1,4), (1,5), and (1,7) consistently took longer to recover than 

others. There are several potential reasons for this. First, these commodities are weighted less 

heavily than others. So, when the recovery is sequenced, nodes that represent heavier unmet 

demand for other products (such as node (1,149)) will be repaired first, even if they do not 

improve the system performance for Commodities (1,4), (1,5), and (1,7). Note that Commodity 

(1,2) generally recovers quickest, because nodes that carry more of this product (such as (1,149)) 

are repaired first. Second, it is possible that the supply and demand nodes for these unimportant 

commodities are poorly connected with few supply and demand nodes, and the loss of even a 

few nodes greatly limits the connection between them.  

As the protector’s budget increase, the initial drop in the network performance decreases, 

since they are able to protect either more or more critical nodes. This is particularly noticeable 

for Commodity (1,2), which was weighted most heavily and is the focus of both attack and 

defense strategies. As stated previously, increasing the protection budget decreases the 

vulnerability of the system. The scenario with the greatest protection budget (Figure 11) also 

recovers the fastest, as in this scenario the attacker chose to attack the power network. This 

means that the railway network faced comparatively less damage and could recover faster, since 

the power network has its own work crew that may work simultaneously with the crew on the 

railway network. For the interdictor, the selection of attack targets must balance an increase in 

recovery time (by targeting one network k at the cost of others) with an increase in initial unmet 

demand (perhaps by targeting key nodes across all networks).  
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Chapter 5: Conclusion 

 Protecting critical infrastructure systems from potentially devastating attacks is a core 

motivation for developing better tri-level optimization models. The introduction of multi-

commodity models such as this one greatly expands the scope of the sorts of networks that may 

be modeled with tri-level optimization. While more work has been done on bi-level models, tri-

level models like the one proposed here better captures the full scale of a system’s resilience, as 

they include recoverability – which in many cases is very limited by finances or worker 

availability. This work is innovative for considering multiple commodities in the protection, 

interdiction, and restoration phases of the model, as well as using both Benders’ decomposition 

and set covering decomposition with multiple commodities to solve the proposed model.  

 This study focuses on tri-level optimization for multi-commodity systems and uses 

Benders’ decomposition with a set covering algorithm to model the gameplay between the 

attacker and the defender. This proposed model considers the relative supply and demand for 

each commodity across networks, the weighted importance of each commodity, the link capacity 

by commodity, and the recovery rate in order to minimize the unmet demand after interdiction 

over a specified time horizon. Protection and interdiction decisions are made in an iterative 

manner from a designated subset of components in the system.  

 The model was tested on a Swedish system. The dataset included a geographically 

clustered subset of railway stations with eleven commodities and the Swedish power system with 

a single commodity. The illustrative example demonstrated the importance of the weighting 

metric to protection and interdiction decisions. The objective value increases as the attacker’s 

budget increases, but the increase can be limited by small additions to the protector budget. The 

computational time of this algorithm is primarily a function of the number of eligible 
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components and the budget. While the values of the master and subproblem converge across 

components, by component the objective values do not have the same behavior and do not 

constantly increase or decrease. Furthermore, the recovery is not uniform across commodities.  

 There are several directions that future work could take. First, while this paper only 

examined one weighting scheme, future work may include more sophisticated commodity 

weighting schema that measure the relative importance of a commodity to a particular node, 

perhaps using an economic or production metric. Additionally, this work was limited by the 

computational time. The size of the subset of eligible nodes as well as the size of the entire 

system could be increased through the use of a metaheuristic in the max-min subproblem. A 

metaheuristic could provide high-quality solutions while substantially reducing the computing 

time. One final extension of this work could be the implementation of partial protection. In the 

existing model, protection and interdiction decisions are binary. Future work could allow partial 

protection decisions, making the decision not only which components to protect, but also how 

much. These extensions could enhance the usefulness and applicability of the proposed multi-

commodity model.  
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