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ABSTRACT

We introduce a generalized notion of homogeneous strict polynomial functors defined over
a superalgebra, A. In particular, we define two closely related families of categories PdA and
Pd(A,a) which generalize the categories Pd of classical homogeneous strict polynomial functors

studied by Friedlander and Suslin and the categories Pol
(I)
d,k and Pol

(II)
d,k of homogeneous strict

polynomial superfunctors defined by Axtell. In particular, we exhibit equivalences between
the categories PdA, Pd(A,a) and the categories of left supermodules for generalized Schur algebras

SA(m|n, d), TAa (n, d), respectively (the latter of which were introduced by Kleshchev and
Muth). Moreover, we establish a relationship between webs for gln(A) and these generalized
strict polynomial functors in the form of a faithful (and full under certain assumptions on
k) functor from the category of gln(A)-webs to P(A,a).
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0. Introduction

Schur-Weyl duality (named for Issai Schur and Herman Weyl) is a classic and famous ex-
ample of a phenomenon in representation theory in which the irreducible representations of
two different algebraic objects are related to one another via an explicit construction. Specif-
ically, Schur-Weyl duality relates the representation theory of the general linear group and
the symmetric group. There are several formulations, and we provide one such formulation
which uses the general linear Lie algebra.

Let k be an infinite field. Let V = kn denote column vectors of height n. Then gl(V ) =
gln(k) acts on the left of V via matrix multiplication, and therefore by using the coproduct
for gln(k), on the left of V ⊗d. The symmetric group Sd acts on the right of V ⊗d via place
permutation, and it is easy to see that these two actions commute. In particular, these
commuting actions give rise to representations from the universal enveloping algebra of
gl(V ) and from the group algebra of Sd

U (gl(V ))
ρ−→ Endk

(
V ⊗d

) σ←− kSd

such that

ρ (U (gl(V ))) ⊂ EndkSd
(
V ⊗d

)
σ (kSd) ⊂ EndU(gl(V ))

(
V ⊗d

)
.

Schur-Weyl duality tells us that we can say something stronger. We really have

ρ (U (gl(V ))) = EndkSd
(
V ⊗d

)
σ (kSd) = EndU(gl(V ))

(
V ⊗d

)
,

so the image of each algebra under its representation equals the full centralizer algebra for
the other action. See [Gre07] for a classical discussion. This gives a strong correspondence
between representations of these objects. If k has characteristic 0, we can formulate this
correspondence as follows: There is a decomposition of V ⊗d (as (U(gln(k)),kSd)-bimodules)

V ⊗d ∼=
⊕
λ`d

SλV ⊗ Vλ

where the sum ranges over all partitions λ of d, the Vλ are all irreducible representations of
Sd (the Specht modules), and SλV := HomkSd

(
Vλ, V

⊗d) is an irreducible module for GLn(k)
or is zero (zero whenever the number of parts of lambda is greater than n).

Now one may ask themselves what class of irreducible modules the SλV account for. These
are precisely the irreducible polynomial representations of degree d of GLn(k). A concrete
definition of a finite-dimensional degree d polynomial representation of GLn(k) is as follows.
Let V be a finite-dimensional k-representation of GLn(k). If one chooses a k-basis for V , the
action of any g ∈ GLn(k) on V can be written as a matrix. If there exists a k-basis of V
such that this matrix has entries that are homogeneous degree d polynomials in the original
entries of g, then V is said to be a homogeneous degree d polynomial representation.

For example, Consider GL2(k) and g =

(
a b
c d

)
. If we let {e1, e2} be a basis for k2, then

the symmetric square S2(k2) has {e1e1, e1e2, e2e2} as a basis (where e1 ⊗ e2 and e2 ⊗ e1

both correspond to e1e2). We leave it as an exercise to the reader to work out that g acts
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on S2(k2) via

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

. Thus, S2(k2) is a homogeneous degree 2 polynomial

representation of GL2(k).
These homogeneous polynomial representations can be looked at in another way. Notice

that Schur-Weyl duality gives us a surjection

U (gl(V ))� EndkSd
(
V ⊗d

)
=: S(n, d)

where S(n, d) is the Schur algebra which was named and whose use was emphasized in Green’s
monograph [Gre07]. Let Pol(n, d) denote the category of finite-dimensional homogeneous
degree d polynomial representations of GLn(k). Let S(n,d)mod denote the category of left
modules for S(n, d). There is an equivalence of categories

Pol(n, d) ∼= S(n,d)mod

[Gre07]. So studying modules for the Schur algebra is equivalent to studying polynomial
representations of degree d.

Now for any n and d, certain constructions always yield polynomial representations. For
example, (kn)⊗d, Sd(kn), and

∧d (kn) all give (homogeneous degree d) polynomial representa-

tions of GLn(k). We can view ⊗d, Sd, and
∧d as functors between, say, the category of finite-

dimensional k-vector spaces and itself. Moreover, notice that such a functor F ∈ {⊗d, Sd,
∧d}

has the property that for any objects V,W the induced map

FV,W : Homk(V,W )→ Homk(FV, FW )

is a homogeneous polynomial mapping (in the sense that one can choose bases of V and
W and of FV and FW such that a matrix m ∈ Homk(V,W ) is sent to a matrix Fm ∈
Homk(FV, FW ) which has entries that are homogeneous degree d polynomials in the entries
of the original matrix m). So maybe studying functors with such a property is a good way
to study homogeneous polynomial representations.

Call such a functor (one from the category of finite vector spaces to itself such that
all induced maps on morphism spaces are homogeneous degree d polynomial mappings) a
homogeneous degree d polynomial functor 1. Denote the category of homogeneous degree d
polynomial functors by Fd and the category of finite-dimensional kSd-modules by kSdmod.
Then

Fd ∼= kSdmod

when k is a field of characteristic 0 (see, for example, Appendix A of Chapter I in [Mac95]).
For n > d, we have kSdmod ∼= S(n,d)mod (see Section 6 of [Gre07]) so that we can write

Fd ∼= S(n,d)mod,

and we see that studying the category of homogeneous degree d polynomial functors is
equivalent to studying modules for S(n, d), for k a field of characteristic 0. What about for
more general fields?

1 This notion of polynomial functor is in line with the notion of polynomality that Eilenberg and MacLane
introduced in [EM54]. There are other constructions in the literature that carry the name ‘polynomial functor’
which are not related to this notion. See [GK13] and references therein for a taste of this.

2



In [FS97], Friedlander and Suslin introduced the category of strict homogeneous degree d
polynomial functors, Pd, and showed that for n > d, evaluation at kn gives an equivalence of
categories

Pd ∼= S(n,d)mod.

In this sense, P :=
⊕
d>0

Pd encompasses all constructions which yield modules for S(n, d), and

hence polynomial representations. It is important to emphasize that they work over k an
arbitrary field (in [SFB97], the results are extended to unital commutative rings). When k is
an infinite characteristic 0 field, this recovers the result above from [Mac95]. However, there
is a difference between the category Fd and Pd when k is a finite field. In general, Pd will not
be equivalent to kSdmod. See [AR17] for a nice exposition on the relationship between Pd,

S(n,d)mod, kSdmod, and the so-called Schur functor. The difference between Fd and Pd boils
down to the fact that strict polynomial functors require the induced linear maps to be strict
polynomial instead of just polynomial - See Appendix A for a more detailed discussion.

What makes the category Pd, and hence P, desireable is that cohomology calculations are
easier than in Fd (see [Pir00] for a readable technical discussion). Morally, when studying
modules for the Schur algebra, there is an explicit dependence on n and d. But a homogeneous
polynomial functor only depends on d, and the category P gathers all homogeneous degree
d polynomial functors together which allows one to take advantage of independence from n
to perform cohomological calculations. Friedlander and Suslin use P in this way to show in
[FS97] that the cohomology ring of any finite k-group scheme is a finitely generated k-algebra.

So from our point of view, Schur-Weyl duality and [Mac95, FS97] provide good reasons to
study modules for the Schur algebra and that a good way to do so is via strict polynomial
functors. Now Schur-Weyl duality has many generalizations. For some examples, see [DDH05,
Jim86, BR87, Ser85] and the references therein. We will focus on ‘super’ generalizations.

Specifically, for this thesis, we want to handle two extra features. One is to work in the
‘super’ setting, and the other is to replace Sd with a certain (super) algebra A oSd which
we will define later in the thesis. By the ‘super’ setting, we mean that we work with Z2-
graded k-modules (which we call k-supermodules). So each module V can be written in
homogenous components V = V0 ⊕ V1 where we say elements in V0 are even (or have parity
0) and elements in V1 are odd (or have parity 1). The parity of an element is denoted
x ∈ {0, 1}. Morphisms between Z2-graded k-modules are just k-linear maps, but we also have
Homk(V,W ) = Homk(V,W )0 ⊕ Homk(V,W )1 where Homk(V,W )0 consists of maps which
preserve grading (so the parity of f(x) is equal to the parity of x for f ∈ Homk(V,W )0 and
x a homogenous element of V ) and Homk(V,W )1 consists of maps which reverse grading (so
the parity of f(x) is equal to the parity of x plus 1 for f ∈ Homk(V,W )1 and x a homogenous
element of V ).

Let km|n denote the k-supermodule which has a homogeneous basis of m-many even ele-
ments and n-many odd elements. One can think of this module as column vectors of height
m+n with a basis given by (0 · · · 0 1 0 · · · 0)> where the even basis elements are those column
vectors with 1 in the the first m-many slots, and the odd basis elements are those column
vectors with 1 in the last n-many slots.

A superalgebra A is a k-supermodule, A = A0 ⊕ A1, along with a bilinear multiplication
A × A → A such that AiAj ⊂ Ai+j for i, j ∈ Z2. There is a super version of Lie algebras
which uses analogous axioms to the usual definition, but with an extra sign that appears
which is dependent on the parity of elements involved (we discuss this in detail later in the
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thesis). We have gl(km|n) = Endk(km|n) being a Lie superalgebra under the supercommutator
bracket for Endk(km|n) which is defined as [x, y] := xy− (−1)x·yyx for homogeneous elements
x, y (and extended k-linearly to non-homogeneous elements). We can also take the universal
enveloping algebra of this Lie superalgebra, U (gl(V )).

We have the following super versions of Schur-Weyl duality [BR87, Ser85]: Let V = km|n.
There are commuting actions giving rise to representations

U (gl(V ))
ρ−→ Endk

(
V ⊗d

) σ←− kSd

such that
U (gl(V ))� EndkSd

(
V ⊗d

)
,

where now Sd acts on V ⊗d via signed place permutation which we define in detail later in
the thesis.

When m = n, there exists an odd involution c ∈ Endk (V ), and one can define the type Q
Lie superalgebra

q(n) := {x ∈ gl(V ) | [x, c] = 0}.
Restricting the representations from above gives Sergeev Duality: Let V = kn|n. The repre-
sentations

U (q(n))
ρ−→ Endk

(
V ⊗d

) σ←− C(1) oSd

are such that
U (q(n))� EndC(1)oSd

(
V ⊗d

)
,

where C(1) = k[c]/〈c2− 1〉 is the Clifford (super)algebra on one odd generator, and C(1) oSd

is the wreath product (super)algebra (which we define in detail later in the thesis) called the
Sergeev superalgebra.

There are analogs of the Schur algebra appearing in both dualities. For V = km|n,
EndkSd

(
V ⊗d

)
is the Schur superalgebra S(m|n, d) studied in [BR87, Ser85, Don01], etc.

And EndC(1)oSd
(
V ⊗d

)
is the Schur superalgebra of type Q, Q(n, d), studied in [Ser85, BK02]

etc.
In [Axt13], Axtell considered two super variations of the classical strict polynomial func-

tors: Pol
(I)
d and Pol

(II)
d . He proved that for m,n > d, evaluation at km|n and C(1)n gives

equivalences

Pol
(I)
d
∼= S(m|n,d)smod and Pol

(II)
d
∼= Q(n,d)smod,

respectively (where Asmod denotes the category of left supermodules for a superalgebra A).

Using Pol
(I)
d , Drupieski proved in [Dru16] that the cohomology ring of any finite k-supergroup

scheme is a finitely generated k-algebra. Thus, we have generalizations of two of the main
theorems from [FS97] to the super setting.

Axtell’s constructions take advantage of the similar structure of these two generalizations
of the Schur algebra. Notice that we can view super Schur-Weyl duality as having glm|n(k)

and k oSd acting on (km|n)⊗d, these actions commute, and

S(m|n, d) = EndkoSd

((
km|n

)⊗d) ∼= (Endk(km|n)⊗d
)Sd

.

Moreover, we have q(n) ∼= gln(C(1)) as Lie superalgebras, and (kn|n)⊗d ∼= (C(1)n)⊗d as
supermodules. So gln(C(1)) and C(1) oSd both act on (C(1)n)⊗d, these actions commute, and
by Sergeev duality,

Q(n, d) ∼= EndC(1)oSd

(
(C(1)n)⊗d

)
∼=
(
EndC(1)(C(1)n)⊗d

)Sd .
4



So Axtell focused on taking certain superalgebras A and taking the corresponding super
Schur algebra for A as being wreath product endomorphisms of the d-fold tensor product of

some number of copies of the algebra. Pol
(I)
d uses A = k and Pol

(II)
d uses A = C(1).

Now taking this further, if we let A be any superalgebra and let V = An, then gl(V ) =
gln(A) acts on the left of V ⊗d, A oSd acts on the right of V ⊗d, and these actions commute. So
there are (at least) two natural candidates for a generalized Schur algebra corresponding to A.
One could either take the image of U(gl(V )) inside Endk(V

⊗d) or can take EndAoSd
(
(An)⊗d

)
.

A Schur-Weyl type result would ensure that these two choices agreed, but they don’t have
to, in general. We opt for the latter choice and define

SA(n, d) := EndAoSd
(
(An)⊗d

) ∼= (EndA(An)⊗d
)Sd

which is the generalized Schur algebra studied by Evseev, Kleshchev, Muth, etc. [EK17,
EK18, KM20]. In fact, we can extend this definition slightly:

SA(m|n, d) := EndAoSd
(
(Am|n)⊗d

) ∼= (EndA(Am|n)⊗d
)Sd

where Am|n := Am ⊕ (ΠA)n, and ΠA is the k-supermodule which has the same underlying
k-module structure as A but with all parities reversed (called the parity shift of A).

It is natural to ask at this point if there are generalized polynomial functors which cor-
respond to these generalized Schur algebras. Answering this question affirmatively is the
purpose of this thesis. We will introduce two flavors of generalized polynomial functors. The
first we will call strict polynomial superfunctors which will correspond to SA(m|n, d). We
include ‘super’ in the name since, even if we take A to be completely even, the parity shifts
present ensure a non-trivial Z2-grading, so this really is unavoidably super.

The second flavor we call generalized strict polynomial functors because they correspond
to the generalized Schur algebra TAa (n, d) ⊂ SA(n, d) from [KM20]. We exclude ‘super’ from
the name since there will be no parity shifts and so, for example, choosing A = k to be
completely even reduces to the classical non-super case of S(n, d). Note that we work with
the more subtly defined TAa (n, d) instead of SA(n, d). See [KM20] for a discussion of why
this subalgebra is, from various viewpoints, the ‘correct’ generalization of the Schur algebra.
What’s more, taking a = A0 recovers SA(n, d), so we lose no information by choosing this
algebra.

This is the reason, however, we must introduce two separate (yet closely related) versions
of polynomial functors. It is our opinion that when studying superalgebras and their modules,
it is most natural to include parity shifts of the algebra. There is a clear way to include parity
shifts of A in the definition of SA(n, d) which gives us SA(m|n, d). However, TAa (n, d) doesn’t
allow parity shifts of A, and it is an open question to appropriately define TAa (m|n, d) so
that it does. Hence our two separate treatments. The reader will only notice a difference in
proof technique in lemma 6.7.

It is also worth noting that in [Mac80], MacDonald gives a more general treatment of
the result mentioned above in [Mac95]. He defines polynomial functors over a (non-super)
k-algebra A and obtains an equivalence with wreath product modules for k an infinite char-
acteristic 0 field. See Appendix C for a discussion on how MacDonald’s construction relates
to our generalized strict polynomial functors.

The structure of the thesis is as follows: Sections 1 through 5 give constructions needed
for defining our polynomial functor categories and proving our main results. Section 6 and
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its subsections introduce our categories, prove equivalence statements that relate these cat-
egories to the corresponding generalized Schur algebra, and explore some of the structure of
these categories. Finally, section 7 and its subsections explore the relationship between our
generalized polynomial functors and the category of webs for gln(A). Appendix A explores
the difference between strict and non-strict polynomial functors, Appendix B discusses the
use of free vs projective A-supermodules in the definitions of our generalized functors, and
Appendix C explores the relationship between [Mac80] and our generalized strict polynomial
functors.

1. Superalgebras and Supermodules

Here we discuss the required preliminaries regarding superalgebras and their supermodules.

1.1. Basics of Superalgebras and Their Supermodules

We are interested in unital superalgebras, A, over a commutative domain, k, which is
not characteristic 2. By this, we mean that A is a k-module (both left and right since k is
commutative), has a direct sum decomposition A = A0⊕A1 where A0, A1 are free k-modules,
and comes equipped with a bilinear multiplication A × A → A such that AiAj ⊂ Ai+j for
i, j ∈ Z2 (i.e. A is Z2-graded). Here, the parity of an element x ∈ Ai is denoted x := i.
Anything with parity 0 is called even, and anything with parity 1 is called odd.

A right A-supermodule, M , is a right module in the usual sense, along with a direct sum
decomposition (as free k-modules) M = M0 ⊕M1 such that MiAj ⊂Mi+j for i, j ∈ Z2. For
every supermodule M , we have a parity operator Π which is the identity on the underlying
space, but which reverses the parity of all elements of M . We denote this new module ΠM .
The action of A on ΠM is the same as on M . So in particular, ΠA is a right A-supermodule
via right multiplication.

Given any k-supermodules V and W , we have V ⊕W is a k-supermodule where (V ⊕W )0 =
V0 ⊕W0 and (V ⊕W )1 = V1 ⊕W1. Moreover, V ⊗W = V ⊗k W is a k-supermodule where
(V ⊗W )0 = (V0⊗W0)⊕ (V1⊗W1) and (V ⊗W )1 = (V0⊗W1)⊕ (V1⊗W0). This generalizes
to any finite tensor product of k-supermodules. Unless otherwise stated, all tensor products
are over k.

Given two superalgebras A,B, we view A ⊗ B as a superalgebra where multiplication is
given by

(a1 ⊗ b1)(a2 ⊗ b2) := (−1)b1·a2a1a2 ⊗ b1b2,

where a1, a2 ∈ A and b1, b2 ∈ B are homogeneous. The definition is then extended k-linearly
to non-homogeneous elements. We employ this technique of defining things on homogenous
elements and extending linearly many times in this thesis and won’t mention it explicitly
again.

A homomorphism ϕ : V → W between right A-supermodules is a k-linear map such that

ϕ(va) = ϕ(v)a

for v ∈ V and a ∈ A. The space of right A-supermodule homomorphisms HomA(V,W ) has
a Z2-grading HomA(V,W ) = HomA(V,W )0 ⊕ HomA(V,W )1 where HomA(V,W )0 consists

of maps which preserve grading (so ϕ(v) = v for ϕ ∈ HomA(V,W )0 and v a homogenous

element of V ) and HomA(V,W )1 consists of maps which reverse grading (so ϕ(v) = v+ 1 for
ϕ ∈ HomA(V,W )1 and v a homogenous element of V ). Then smodA denotes the category of
right A-supermodules.
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We can similarly define the category Asmod of left A-supermodules where a homogeneous
homomorphism ϕ : V → W of left A-supermodules is a k-linear map which either preserves
parity (even) or reverses parity (odd) and is such that

ϕ(av) = (−1)ϕ·aaϕ(v)

for a ∈ A homogeneous and v ∈ V . An arbitrary homomorphism of left A-supermodules is
a sum of homogeneous ones.

By a free finitely-generated (or ‘finite’ for brevity) right A-supermodule, M , we mean that
there is an even isomorphism (as A-supermodules, where the action on the latter space is by
right multiplication in A)

M ∼=

(
m⊕
i

A

)
⊕

(
n⊕
j

ΠA

)
.

We denote this latter space by Am|n. In practice, this just means that having a free finite
right A-supermodule means we can find a homogeneous finite rank A-basis for our module
M , where we have m-many even basis elements and n-many odd basis elements. Note that
A⊕m = Am = Am|0.

Example 1.1. Consider a free A-supermodule V which has an A-basis {v1, v2, v3} where v1

and v2 are both even, and v3 is odd. This means that any element x ∈ V can be uniquely
expressed as an A-linear combination of elements from {v1, v2, v3}.

On the other hand, consider A⊕A⊕ΠA as an A-supermodule under right multiplication.
That is, (a, b, c)d := (ad, bd, cd) for a, b, d ∈ A and c ∈ ΠA. Notice that every (a, b, c) can be
written uniquely as (1A, 0, 0)a+ (0, 1A, 0)b+ (0, 0, 1ΠA)c.

So, identifying v1 7→ (1A, 0, 0), v2 7→ (0, 1A, 0), and v3 7→ (0, 0, 1ΠA) gives an isomorphism
V ∼= A⊕A⊕ΠA as A-supermodules. Note that, for example, the parity of (0, 0, 1ΠA) is odd
since the parity of 1A is even, and this matches the parity of v3.

Remark 1.2. We have a natural isomorphism Mm2+n2,m1+n1(A) ∼= HomA(Am1|n1 , Am2|n2)
where the former space denotes (m2 + n2) × (m1 + n1) matrices with entries in A. Here,
we consider Am1|n1 as column vectors of height m1 + n1 (similarly for Am2|n2), and a matrix
M is associated to the map given by multiplication on the left by M .

Explicitly, it is easy to see that a matrix M determines a right A-homomorphism Am1|n1 →
Am2|n2 since acting on an input corresponds to scaling each entry of the input column vector
on the right, and acting on an output also corresponds to scaling entries on the right.

Conversely, given f ∈ HomA(Am1|n1 , Am2|n2), let fj denote the restriction of f to the jth

summand of Am1|n1 . Then f =
m1+n1∑
j=1

fj. Let πi denote projection onto the ith summand of

Am2|n2 . Let fij denote the map πi ◦ fj. Note that fij is an A-map of one of the following
forms: A → A, A → ΠA, ΠA → A, or ΠA → ΠA. This depends on the indices i and j, for
example, if 0 6 j 6 m1 and m2 +1 6 i 6 m2 +n2, then fij : A→ ΠA. Regardless of whether
fij lands in A or ΠA, fij is determined by its value on 1A ∈ A = ΠA. So, forgetting parity
for a moment, fij(1A) is an element in A. Notice that the ith coordinate of f(x) is given by∑

j fij(x). It then follows that f determines a matrix in Mm2+n2,m1+n1(A) whose ij entry is

given by fij(1A).
Denote the A-basis elements of Am1|n1 and Am2|n2 by xj and yi, respectively. Let ϕaij in

HomA(Am1|n1 , Am2|n2) denote the map xk 7→ δjk(yi)a. Then xk and yi are column vectors
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with a 1A in the kth and ith positions, respectively, and zeros elsewhere, and ϕaij is the matrix
with zeros everywhere except for an a in the ij position (like a matrix unit but with an
element a instead of 1A). It follows that, for the f mentioned in the previous paragraph,

f =
∑

ij ϕ
fij(1A)
ij .

In this thesis, we will constantly make use of the fact that any A-map, f , between free
finite right A-supermodules can be identified with a matrix in this way (after fixing A-bases
for the source and target modules), that is, f =

∑
ij ϕ

aij
ij for aij ∈ A. Notice that for a

homogeneous, the parity of ϕaij is xj + yi + a. This means that a homogeneous map f can
be written as a matrix where each entry is homogeneous (the parity of which depends on its
position in the matrix as well as the parity of the map f).

For square matrices, we denote Mm|n(A) := Mm+n,m+n(A) ∼= EndA(Am|n).

Next, we recall that for V,W right supermodules for superalgebras A,B, respectively,
V ⊗W is a right A⊗B-supermodule with action on homogeneous elements given by

(v ⊗ w).(a⊗ b) := (−1)w·ava⊗ wb. (1)

The analogous left action works for V,W left supermodules, as well.
Moreover, if ϕ ∈ HomA(V1,W1) and ψ ∈ HomB(V2,W2), then we may define ϕ � ψ ∈

HomA⊗B(V1 ⊗ V2,W1 ⊗W2) via

ϕ� ψ(v1 ⊗ v2) := (−1)ψ·v1ϕ(v1)⊗ ψ(v2). (2)

Note that this same formula holds for left supermodules, as well.
As in (1), for finite free right A-supermodules V,W we have a right A⊗A action on V ⊗W

given by

(x⊗ y).(a1 ⊗ a2) := (−1)y·a1x.a1 ⊗ y.a2.

This extends in the obvious way for finite tensor products of finite free right A-supermodules.
For example, V ⊗W ⊗X is a right A⊗ A⊗ A-supermodule with action

(v ⊗ w ⊗ x).(a1 ⊗ a2 ⊗ a3) := (−1)a1(w+x)+a2·xv.a1 ⊗ w.a2 ⊗ x.a3.

Let us set some notation that will aid us in keeping track of signs. Let HA denote the
set of homogeneous elements of A and HV denote the homogeneous elements of a free finite
right A-supermodule, V . Let ~v ∈ Hd

V and ~x ∈ Hd
A. Define

s(~v → ~x) :=
d−1∑
i=1

d∑
j=i+1

xi · vj. (3)

Remark 1.3. This sign is constructed so that we have

(v1 ⊗ · · · ⊗ vd).(x1 ⊗ · · · ⊗ xd) = (−1)s(~v→~x)v1x1 ⊗ · · · ⊗ vdxd.

From now on, when it is clear from context, we will abuse notation and not explicitly make
a distinction between v1 ⊗ · · · ⊗ vd and the corresponding tuple ~v.

Moreover, we can extend this definition to other situations, as well. For example, if ~ϕ is a
tuple of homogeneous A-maps from V to a free finite right A-supermodule W , we have

(ϕ1 � · · ·� ϕd)(v1 ⊗ · · · ⊗ vd) = (−1)s(~ϕ→~v)ϕ1(v1)⊗ · · · ⊗ ϕd(vd).
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Next, note that for any k-supermodule V , Sd acts on V ⊗d on the right via

(v1 ⊗ · · · ⊗ vd).ti := (−1)vi·vi+1v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vd, (4)

where ti is the simple transposition swapping i and i+ 1.
From this, one can deduce that for a general element σ ∈ Sd, we have

(v1 ⊗ · · · ⊗ vd).σ = (−1)s(~v,σ)vσ(1) ⊗ · · · ⊗ vσ(d),

where
s(~v, σ) := #{(k, `) ∈ [1, d]2 | k < `, σ−1(k) > σ−1(`), vk = 1 = v`}, (5)

and ~v = (v1, . . . , vd).

Remark 1.4. It’s easy to see that s(~v, στ) = s(~v, σ)+s(~vσ, τ) for all ~v ∈ Hd
V and all σ, τ ∈ Sd.

Now we should analyze how the parity shift of supermodules plays with tensor product.
Before summarizing this in the next lemma, we set some notation. First of all, we will denote
by πx ∈ ΠA the element x ∈ A but thought of with the opposite parity. So πx = x + 1.
Similarly, denote by π(x ⊗ y) ∈ Π(A ⊗ A) the element x ⊗ y in A ⊗ A but thought of
with the opposite parity. Then for example, the element x ⊗ πy ∈ A ⊗ ΠA denotes that
x ∈ A has the usual parity, and πy has the opposite parity of y ∈ A. So πy = y + 1,
x⊗ πy = x+ πy = x+ y + 1, and π(x⊗ y) = x⊗ y + 1 = x+ y + 1.

Now note that for a, b, x, y ∈ A homogeneous, we have A ⊗ A acting on Π(A ⊗ A) via
π(x⊗ y).(a⊗ b) = (−1)a·yπ(xa⊗ yb) since the action on the parity shift of a module is the
same as that on the original (so we just use the usual multiplication rule on A⊗A except we
view the resulting element in Π(A⊗A)). Moreover, in A⊗ΠA, we have (x⊗ πy).(a⊗ b) =
(−1)a·πyxa⊗ (πy)b = (−1)a(y+1)xa⊗ π(yb). Notice that the partiy of the resulting elements
in each space are the same, but the elements themselves differ potentially by a sign.

Lemma 1.5. Let {Ai | 1 6 i 6 n} be an ordered collection of free right A-supermodules
such that each Ai = ΠpiA where pi ∈ {0, 1}, Π0A := A, and Π1A := ΠA. Suppose the action
on each Ai is given by right multiplication and that there are an even number of Ai = Π1A.

Define a map Φ~p :
n⊗
i=1

A →
n⊗
i=1

Ai on homogeneous pure tensors (which implies that each

component is a homogeneous element of the corresponding A) via

v1 ⊗ · · · ⊗ vn 7→ (−1)

n−1∑
i=1

vi·αi
v′1 ⊗ · · · ⊗ v′n,

where

αi :=

{
0 if there are an even number of Aj = Π1A for j ∈ {i+ 1, . . . , n}
1 if there are an odd number of Aj = Π1A for j ∈ {i+ 1, . . . , n}

,

~p = (p1, . . . , pn) ∈ {0, 1}n, and v′i is either vi or πvi depending on whether Ai = Π0A or
Ai = Π1A, respectively.

Then Φ~p is an even isomorphism of right A⊗n-supermodules.

Proof. First, we have v′i = vi + pi. From this, it is obvious that Φ~p is an even map (pre-
serves grading) since there are only an even number of Ai = Π1A, and so it follows that
v1 ⊗ · · · ⊗ vn = v′1 ⊗ · · · ⊗ v′n. Moreover, it is obvious that Φ~p is a bijection since the under-
lying set of elements of each module are the same set, and Φ~p takes a homogeneous pure
tensor to ± itself.
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All that remains to be checked is that Φ~p is an A⊗n-map. It suffices to check this for
homogeneous pure tensors since Φ~p is defined to be k-linear.

For each i, let vi ∈ A be homogeneous, and let a1 ⊗ · · · ⊗ ad ∈ A⊗n be a homogeneous
pure tensor (so each aj ∈ A is homogeneous). Notice that each v′i ∈ Ai is also homogeneous.
Then on one hand, we have

Φ~p((v1 ⊗ · · · ⊗ vn)(a1 ⊗ · · · ⊗ an)) = Φ~p

(
(−1)s(~v→~a)v1a1 ⊗ · · · ⊗ vnan

)
= (−1)s(~v→~a)Φ~p (v1a1 ⊗ · · · ⊗ vnan)

= (−1)
s(~v→~a)+

n−1∑
i=1

viai·αi
(v1a1)′ ⊗ · · · ⊗ (vnan)′. (6)

On the other hand, we have

Φ~p(v1 ⊗ · · · ⊗ vn)(a1 ⊗ · · · ⊗ an) = (−1)

n−1∑
i=1

vi·αi
(v′1 ⊗ · · · ⊗ v′n)(a1 ⊗ · · · ⊗ an)

= (−1)
s(~v′→~a)+

n−1∑
i=1

vi·αi
(v′1a1)⊗ · · · ⊗ (v′nan). (7)

Once we show that (6) = (7), we will have our result. To this end, first notice that (viai)
′

is equal to viai if Ai = Π0A or is equal to π(viai) if Ai = Π1A. On the other hand, v′iai is
equal to viai if Ai = Π0A or is equal to (πvi)ai if Ai = Π1A. Since π(viai) = (πvi)ai, we see
that the pure tensors in (6) and (7) are the same. This means we just need to check that the
signs are the same.

Notice (by our definition of αj) that

aj(v′j+1 + · · ·+ v′n) = aj((vj+1 + pj+1) + · · ·+ (vn + pn))

= aj(vj+1 + · · ·+ vn) + aj(pj+1 + · · ·+ pn)

= aj(vj+1 + · · ·+ vn) + aj · αj.

It follows that s(~v′ → ~a) = s(~v → ~a) +
n−1∑
i=1

ai · αi. Since vjaj = vj + aj, it follows that

(6) = (7), as desired. �

Lemma 1.6. Let {Ai | 1 6 i 6 n} be an ordered collection of free right A-supermodules
such that each Ai = ΠpiA where pi ∈ {0, 1}, Π0A := A, and Π1A := ΠA. Suppose the action
on each Ai is given by right multiplication and that there are an odd number of Ai = Π1A.

Define a map Φπ
~p : Π

(
n⊗
i=1

A

)
→

n⊗
i=1

Ai on homogeneous pure tensors (which implies that

each component is a homogeneous element of the corresponding A) via

π(v1 ⊗ · · · ⊗ vn) 7→ (−1)

n−1∑
i=1

vi·αi
v′1 ⊗ · · · ⊗ v′n,

where

αi :=

{
0 if there are an even number of Aj = Π1A for j ∈ {i+ 1, . . . , n}
1 if there are an odd number of Aj = Π1A for j ∈ {i+ 1, . . . , n}

,

~p = (p1, . . . , pn) ∈ {0, 1}n, and v′i is either vi or πvi depending on whether Ai = Π0A or
Ai = Π1A, respectively.

Then Φπ
~p is an even isomorphism of right A⊗n-supermodules.
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Proof. The proof is almost identical to that of lemma 1.5, except that here, Φπ
~n is grading-

preserving since there are an odd number of Ai = Π1A. �

Example 1.7. Consider Φπ
(1,0,1,1) : Π(A⊗A⊗A⊗A)→ ΠA⊗A⊗ΠA⊗ΠA. Then (suppressing

⊗ notation):

Φπ
(1,0,1,1)(π(v1v2v3v4)(a1a2a3a4)) = Φπ

(1,0,1,1)

(
(−1)s(~v→~a)(v1a1)(v2a2)(v3a3)(v4a4)

)
= (−1)s(~v→~a)Φπ

(1,0,1,1) ((v1a1)(v2a2)(v3a3)(v4a4))

= (−1)s(~v→~a)+v3a3π(v1a1)(v2a2)π(v3a3)π(v4a4)

versus

Φπ
(1,0,1,1)(π(v1v2v3v4))(a1a2a3a4) = (−1)v3((πv1)(v2)(πv3)(πv4))(a1a2a3a4)

= (−1)γ+v3([πv1]a1)(v2a2)([πv3]a3)([πv4]a4)

where

γ = a1(v2 + πv3 + πv4) + a2(πv3 + πv4) + a3 · πv4

= a1(v2 + (v3 + 1) + (v4 + 1)) + a2((v3 + 1) + (v4 + 1)) + a3(v4 + 1)

= a1(v2 + v3 + v4) + a2(v3 + v4) + a3 · v4 + a3

= s(~v → ~a) + a3.

So we have s(~v → ~a) + v3a3 = s(~v → ~a) + v3 + a3 = γ + v3, and we see that Φπ
(1,0,1,1) is an

A⊗4-map.

Proposition 1.8. Let V1, . . . , Vd be finite free right A-supermodules. Identify each Vk ∼=
Amk|nk for some nonnegative integers mk, nk. This amounts to choosing for each Vk a corre-
sponding homogeneous A-basis {vkt | 1 6 t 6 mk + nk}. Then V1 ⊗ · · · ⊗ Vd is a free right
A⊗d-supermodule with basis {v~t} where v~t = v1t1

⊗v2t2
⊗· · ·⊗vdtd . Here, v~t = v1t1

+ · · ·+vdtd .

Proof. Let’s begin by setting some notation. Let A0 = A and A1 = ΠA. For ~i ∈ {0, 1}d, let

A
~i = Ai1 ⊗ · · · ⊗ Aid (so that each A

~i is a length d tensor product of modules with each

component being either A or ΠA). For~i ∈ {0, 1}d, let α~i = (αi1)(αi2) · · · (αid) be the product
of integers where

αij =

{
mj if Aij = A

nj if Aij = ΠA
=

{
mj if ij = 0

nj if ij = 1
.

Let {0, 1}dE denote the subset of {0, 1}d consisting of tuples that only have an even number
of components containing a 1. Let {0, 1}dO denote the subset of {0, 1}d consisting of tuples
that only have an odd number of components containing a 1 (so {0, 1}d = {0, 1}dO t{0, 1}dE).
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Then (by distributivity of tensor and direct sum) we have

V1 ⊗ · · · ⊗ Vd ∼= Am1|n1 ⊗ · · · ⊗ Amd|nd

=
⊕

~i∈{0,1}d

( α~i⊕
k=1

A
~i

)

∼=
⊕

~i∈{0,1}dE

( α~i⊕
k=1

A⊗d

)
⊕

⊕
~j∈{0,1}dO

( α~j⊕
k=1

Π
(
A⊗d

))

=
M⊕
i=1

A⊗d ⊕
N⊕
j=1

Π
(
A⊗d

)
, (8)

where M,N are (probably large) integers which are easy to figure out, but unnecessary to
write down. Moreover, the isomorphism in the third line above comes from applying the
appropriate inverses of module isomorphisms from lemmas 1.5 and 1.6 to each summand. In

particular, for a given ~i, you must apply (Φ~i)
−1 if ~i ∈ {0, 1}dE and

(
Φπ
~i

)−1

if ~i ∈ {0, 1}dO.

Now, by definition, we see that V1⊗· · ·⊗Vd is a finite free right A⊗d-supermodule since it
is isomorphic to a finite direct sum of copies of A⊗d and Π

(
A⊗d

)
. Furthermore, if one chases

the maps involved, it is easy to see that the image of our claimed basis is (up to signs) the

canonical basis for
M⊕
i=1

A⊗d ⊕
N⊕
j=1

Π
(
A⊗d

)
. �

Example 1.9. Let’s trace through the calculations in proposition 1.8 in the case where we
are tensoring together two free modules:

V ⊗W ∼= Am1|n1 ⊗ Am2|n2

=

(
m1⊕
i=1

A⊕
n1⊕
j=1

ΠA

)
⊗

(
m2⊕
k=1

A⊕
n2⊕
`=1

ΠA

)

=

(
m1·m2⊕
a=1

A⊗ A

)
⊕

(
m1·n2⊕
b=1

A⊗ ΠA

)
⊕

(
n1·m2⊕
c=1

ΠA⊗ A

)
⊕

(
n1·n2⊕
d=1

ΠA⊗ ΠA

)

=

(α(0,0)⊕
a=1

A(0,0)

)
⊕

(α(0,1)⊕
b=1

A(0,1)

)
⊕

(α(1,0)⊕
c=1

A(1,0)

)
⊕

(α(1,1)⊕
d=1

A(1,1)

)

=
⊕

~i∈{0,1}2

( α~i⊕
k=1

A
~i

)

∼=

(
m1·m2⊕
a=1

A⊗ A

)
⊕

(
m1·n2⊕
b=1

Π(A⊗ A)

)
⊕

(
n1·m2⊕
c=1

Π(A⊗ A)

)
⊕

(
n1·n2⊕
d=1

A⊗ A

)
In practice, you wouldn’t need to write the red lines in the calculation above, but we’ve

included them for comparison to the second line of equation (8). The isomorphism in the
third line of (8) corresponds to going from the third line above to the sixth line above. Here,
it is easy to see how to apply the inverses of isomorphisms from lemmas 1.5 and 1.6. In our
example, you apply the identity map to the terms from the first chunk (corresponding to~i =
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(0, 0)), you apply the map
(

Φπ
(0,1)

)−1

to the terms from the second chunk (corresponding to

~i = (0, 1)), you apply the map
(

Φπ
(1,0)

)−1

to the terms from the third chunk (corresponding to

~i = (0, 1)), and you apply the map
(
Φ(1,1)

)−1
to the terms from the final chunk (corresponding

to ~i = (1, 1)). Moreover, in this example, M = m1m2 + n1n2 and N = m1n2 + n1m2.

Lemma 1.10. Let A be a superalgebra and V,W be finite free right A-supermodules. Then

Φ : HomA(V,W )⊗d → HomA⊗d(V
⊗d,W⊗d)

given by
f1 ⊗ · · · ⊗ fd 7→ f1 � · · ·� fd

is an even isomorphism of k-supermodules.

Proof. First of all, each space is clearly a k-module in the obvious way. To see that Φ is even,
suppose f1 ⊗ · · · ⊗ fd ∈ HomA(V,W )⊗d is homogeneous. This means that each component
fi ∈ HomA(V,W ) is a homogeneous map, and f1 ⊗ · · · ⊗ fd = f1 + · · ·+ fd. Now consider a
homogeneous pure tensor v1 ⊗ · · · ⊗ vd ∈ V ⊗d. Again, each vi ∈ V is homogeneous, and we

have (f1 � · · ·� fd)(v1 ⊗ · · · ⊗ vd) = (−1)s(
~f→~v)f1(v1)⊗ · · · ⊗ fd(vd). We see that

f1(v1)⊗ · · · ⊗ fd(vd) = f1(v1) + · · ·+ fd(vd)

= f1 + v1 + · · ·+ fd + vd

= (f1 + · · ·+ fd) + (v1 + · · ·+ vd),

and it follows that Φ(f1 ⊗ · · · ⊗ fd) = f1 ⊗ · · · ⊗ fd.
Now, to show that Φ is an isomorphism, we will construct a (k-linear) inverse map Ψ. Note

that since Φ is defined to be k-linear, once we have our inverse, we have the isomorphism as
k-modules. We wish to define Ψ on some special elements of HomA⊗d(V

⊗d,W⊗d). In order
to do this, choose isomorphisms V ∼= Am1|n1 and W ∼= Am2|n2 which are compatible with

isomorphisms V ⊗d ∼=
(
A⊗d

)M1|N1 and W⊗d ∼=
(
A⊗d

)M2|N2 , which is possible by proposition
1.8. This is equivalent to choosing homogeneous A-bases {vj} for V and {wi} for W and
then getting pure tensors of these basis elements as homogeneous A⊗d-bases for V ⊗d and
W⊗d. In particular, we denote by v~j = vj1 ⊗ · · · ⊗ vjd a A⊗d-basis element of V ⊗d (similarly

for W⊗d).
Then by remark 1.2, we can view both HomA(V,W ) and HomA⊗d(V

⊗d,W⊗d) as matrices
indexed by the appropriate bases just described. In particular, every f ∈ HomA(V,W ) can
be written as f =

∑
i,j

ϕ
aij
ij for some aij ∈ A where the ϕaij are as in remark 1.2. Extending

this notation, we let ϕ
a~i~j
~i~j
∈ HomA⊗d(V

⊗d,W⊗d) for a~i~j ∈ A⊗d denote the map v~k 7→ δ~j~kw~ia~i~j.

Now, note that any g ∈ HomA⊗d(V
⊗d,W⊗d) can first be written as a sum of homogeneous

maps g = g0 + g1 (where we’ve absorbed the k-coefficients into the maps g1 and g2). Again

by remark 1.2 and using our notation from above, for k ∈ {0, 1}, gk =
∑
~i,~j

ϕ
ak~i~j
~i~j

where each ak~i~j

is a homogeneous element of A⊗d. Now it is true that ak~i~j need not be a pure tensor. However,

each of these elements can be written as a sum of homogeneous pure tensors. Since there are
finitely many ak~i~j and each can be written as a finite sum of homogeneous pure tensors, there

is a largest number of pure tensors that appears among all expansions. Let this number be
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ζ. Then each expansion into sums of pure tensors can be writte as ak~i~j =
ζ∑
z=1

(
ak~i~j

)
z

where

possibly some of the
(
ak~i~j

)
z

are zero. So we have gk =
ζ∑
z=1

(∑
~i,~j

ϕ

(
ak~i~j

)
z

~i~j

)
.

Thinking of matrices, this procedure is equivalent to taking the matrix for g and first
writing it as a sum of two homogeneous matrices g = g0+g1. Then we take each homogeneous
matrix and expand each of its homogeneous entries into a sum of homogeneous pure tensors.
There is an entry which has the largest number of terms (which is ζ). Then each entry can
be expanded into ζ-many terms (with some being zero). Then we write this matrix as a sum
of ζ-many matrices in the obvious way, where now each matrix has entries consisting solely
of homogeneous pure tensors from A⊗d.

We will define Ψ on these special elements and then extend linearly. Specifically, let’s
define Ψ on elements of the form ϕa~i~j where a = a1 ⊗ · · · ⊗ ad is a homogeneous pure tensor

in A⊗d via

Ψ(ϕa~i~j) = (−1)
s
(
ϕa~i~j
→v~j

)
+s(w~i→a)

ϕa1
i1j1
⊗ · · · ⊗ ϕadidjd , (9)

where we’ve abused notation and think of ϕa~i~j as the tuple (ϕa1
i1j1
, . . . , ϕadidjd), v~j as the tuple

(vj1 , . . . , vjd), w~i as the tuple (wi1 , . . . , wid), and a as the tuple (a1, . . . , ad). Explicitly, we
have

s
(
ϕa~i~j → v~j

)
=

d−1∑
r=1

vjr

(
d∑

t=r+1

ϕatitjt

)
=

d−1∑
r=1

vjr

(
d∑

t=r+1

wit + vjt + at

)
,

and

s(w~i → a) =
d−1∑
r=1

ar

(
d∑

t=r+1

wit

)
.

But, there is a well-definedness issue coming from the fact that there may be multiple ways
to write a homogeneous a ∈ A⊗d as a sum of (homogeneous) pure tensors.

To ensure that we really can define Ψ just on these special elements as in (9), we just need
to check the following middle-linearity conditions:

• Ψ
(
ϕ

(a1,...,ak+a′k,...,ad)

~i~j

)
= Ψ

(
ϕ

(a1,...,ak,...,ad)
~i~j

)
+ Ψ

(
ϕ

(a1,...,a′k,...,ad)

~i~j

)
for each slot, and

• Ψ
(
ϕ

(a1,...,akα,ak+1,...,ad)
~i~j

)
= Ψ

(
ϕ

(a1,...,ak,αak+1,...,ad
~i~j

)
for each appropriate slot for α ∈ k.
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For the first bullet point, we have Ψ
(
ϕ

(a1,...,ak+a′k,...,ad)

~i~j

)

= (−1)
s

(
ϕ

(a1,...,ak+a′k,...,ad)

~i~j
→v~j

)
+s(w~i→(a1,...,ak+a′k,...,ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕak+a′k

ikjk
⊗ · · · ⊗ ϕadidjd

= (−1)
s

(
ϕ

(a1,...,ak+a′k,...ad)

~i~j
→v~j

)
+s(w~i→(a1,...,ak+a′k,...ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕakikjk ⊗ · · · ⊗ ϕ

ad
idjd

+ (−1)
s

(
ϕ

(a1,...,ak+a′k,...ad)

~i~j
→v~j

)
+s(w~i→(a1,...,ak+a′k,...ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕa

′
k
ikjk
⊗ · · · ⊗ ϕadidjd

= (−1)
s
(
ϕ

(a1,...,ak,...ad)

~i~j
→v~j

)
+s(w~i→(a1,...,ak,...ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕakikjk ⊗ · · · ⊗ ϕ

ad
idjd

+ (−1)
s

(
ϕ

(a1,...,a
′
k,...ad)

~i~j
→v~j

)
+s(w~i→(a1,...,a′k,...ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕa

′
k
ikjk
⊗ · · · ⊗ ϕadidjd

= Ψ
(
ϕ

(a1,...,ak,...,ad)
~i~j

)
+ Ψ

(
ϕ

(a1,...,a′k,...,ad)

~i~j

)
,

where the second equality follows from the obvious fact that ϕb+cij = ϕbij + ϕcij for b, c ∈ A,

and the third equality comes from the fact that ak + a′k = ak = a′k since the element ak + a′k
is homogeneous.

For the second bullet point, we have Ψ
(
ϕ

(a1,...,akα,ak+1,...ad)
~i~j

)
= (−1)

s
(
ϕ

(a1,...,akα,...,ad)

~i~j
→v~j

)
+s(w~i→(a1,...,akα,...,ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕakαikjk

⊗ · · · ⊗ ϕadidjd

= (−1)
s
(
ϕ

(a1,...,akα,...,ad)

~i~j
→v~j

)
+s(w~i→(a1,...,akα,...,ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕakikjkα⊗ · · · ⊗ ϕ

ad
idjd

= (−1)
s
(
ϕ

(a1,...,akα,...,ad)

~i~j
→v~j

)
+s(w~i→(a1,...,akα,...,ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕakikjk ⊗ αϕ

ak+1

ik+1jk+1
⊗ · · · ⊗ ϕadidjd

= (−1)
s
(
ϕ

(a1,...,akα,...,ad)

~i~j
→v~j

)
+s(w~i→(a1,...,akα,...,ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕakikjk ⊗ ϕ

αak+1

ik+1jk+1
⊗ · · · ⊗ ϕadidjd

= (−1)
s

(
ϕ

(a1,...,αak+1,...,ad)

~i~j
→v~j

)
+s(w~i→(a1,...,αak+1,...,ad))

ϕa1
i1j1
⊗ · · · ⊗ ϕαak+1

ik+1jk+1
⊗ · · · ⊗ ϕadidjd

= Ψ
(
ϕ

(a1,...,ak,αak+1,...ad)
~i~j

)
,

where the second and fourth equalities come from the easy fact that αϕaij = ϕαaij = ϕaαij =
ϕaijα, the third equality comes from the fact that our tensors are over k so the α can go
between slots, and the fifth equality comes from the fact that αa = a = aα for all a ∈ A and
α ∈ k. Thus, we see that Ψ is well-defined. Now we just need to check that Ψ is actually the
inverse to Φ.

So first, consider ϕa1⊗···⊗ad
~i~j

∈ HomA⊗d(V
⊗d,W⊗d) for each ak ∈ A homogeneous (by our

above discussion, it suffices to consider such an element). Then

(Φ ◦Ψ)
(
ϕa1⊗···⊗ad
~i~j

)
= Φ

(
(−1)

s
(
ϕ
a1⊗···⊗ad
~i~j

→v~j
)

+s(w~i→(a1,...,ad))
ϕa1
i1j1
⊗ · · · ⊗ ϕadidjd

)
= (−1)

s
(
ϕ
a1⊗···⊗ad
~i~j

→v~j
)

+s(w~i→(a1,...,ad))
ϕa1
i1j1
� · · ·� ϕadidjd . (10)
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Now to analyze the map in (10), we can just feed in A⊗d-basis elements of V ⊗d. In particular,
we have

(
ϕa1
i1j1
� · · ·� ϕadidjd

) (
v~k
)

= (−1)
s
(
ϕ
a1⊗···⊗ad
~i~j

→v~k
) (
ϕa1
i1j1

(vk1)⊗ · · · ⊗ ϕadidjd(vkd)
)

= δ~j~k(−1)
s
(
ϕ
a1⊗···⊗ad
~i~j

→v~k
)
wi1a1 ⊗ · · · ⊗ widad

= δ~j~k(−1)
s
(
ϕ
a1⊗···⊗ad
~i~j

→v~k
)

+s(w~i→(a1,...,ad))
(wi1 ⊗ · · · ⊗ wid)(a1 ⊗ · · · ⊗ ad), (11)

which gives zero unless ~j = ~k. Thus, it follows that (Φ ◦Ψ)
(
ϕa1⊗···⊗ad
~i~j

)
= ϕa1⊗···⊗ad

~i~j
(notice

that the signs cancel since we work mod 2). Thus, Φ◦Ψ is the identity on HomA⊗d(V
⊗d,W⊗d)

as desired.
To see the other direction, we first note that it suffices to consider elements of the form

ϕa1
i1j1
⊗ · · · ⊗ ϕadidjd ∈ HomA(V,W )⊗d where the ak ∈ A are homogeneous. This is because we

can consider homogeneous elements (all of whose component maps are homogeneous) and
then given any such f1 ⊗ · · · ⊗ fd ∈ HomA(V,W )⊗d, each fk can be uniquely written (as a
matrix) in the form

∑
ij

ϕ
aij
ij for homogeneous aij ∈ A. Then we expand and get a large sum

of elements of the form ϕa1
i1j1
⊗· · ·⊗ϕadidjd . Since this process is unique, it suffice to just check

on these nice elements.
So, we have

(Ψ ◦ Φ)
(
ϕa1
i1j1
⊗ · · · ⊗ ϕadidjd

)
= Ψ

(
ϕa1
i1j1
� · · ·� ϕadidjd

)
= Ψ

(
(−1)

s
(
ϕ
a1⊗···⊗ad
~i~j

→v~j
)

+s(w~i→(a1···ad))
ϕ

(a1⊗···⊗ad)
~i~j

)
= ϕa1

i1j1
⊗ · · · ⊗ ϕadidjd ,

where the second equality follows from (11), and the third equality comes from the fact that
the signs cancel since we work mod 2. Thus, Ψ ◦Φ is the identity on HomA(V,W )⊗d, and we
see that Ψ really is an inverse to Φ. Thus, we have our desired isomorphism. �

1.2. A gln(A) Action

Let V = An. Recall that gl(V ) = gln(A) is the Lie superalgebra of n × n matrices with
entries in A whose Lie bracket is given by

[x, y] := xy − (−1)x·yyx

for x, y homogeneous elements of Mn(A). For any a ∈ A, let Ea
ij ∈ gln(A) denote the usual

elementary matrix but with a a instead of a 1 in the ij entry (as a map An → An, Ea
ij = ϕaij,

but we’ve used a different name to emphasize that we think of this as a matrix). This element
has parity a. For any x ∈ A, let vxk ∈ V denote the column vector of height n which has x in
the kth position and zeros elsewhere. If x is homogeneous, then we have

Ea
ijv

x
k = δjkv

ax
i , (12)

which has parity a+ x.
This yields a natural left action of gln(A) on An given by usual matrix multiplication that

one can easily check makes An into a left gln(A)-supermodule.
Using the coproduct for gln(A), we get an action on (An)⊗d. This plays well with the right

action of Sd on (An)⊗d given by signed place permutation as in (4), as we will see below.
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Let {vi} denote the A-basis for An and B denote the k-basis for A. For x ∈ B, let vxi
denote the column vector with x in the ith position and zeros elsewhere. Then {vxi | x ∈ B}
is a k-basis for An, and pure tensors of these form a k-basis for (An)⊗d.

Proposition 1.11. (An)⊗d is a (gln(A),Sd)-bisupermodule, and these actions commute.

Proof. It suffices to check this on a k-basis element vx1
r1
⊗ · · · ⊗ vxdrd of (An)⊗d where each

xi ∈ B. Similarly, since {Eb
ij | b ∈ B} spans gln(A), and the simple transpositions tk span

Sd, it suffices to consider these elements, too.
A general term from

(
Eb
ij.(v

x1
r1
⊗ · · · ⊗ vxdrd )

)
.tk looks like

(−1)b(x1+···+xs−1)
(
vx1
r1
⊗ · · · ⊗ vxs−1

rs−1
⊗ Eb

ijv
xs
rs ⊗ v

xs+1
rs+1
⊗ · · · ⊗ vxdrd

)
.tk (13)

for some 1 6 s 6 d. We will focus on the interesting case when s = k and leave the other
calculations to the reader.

In this case, notice that
(
vx1
r1
⊗ · · · ⊗ vxs−1

rs−1
⊗ Eb

ijv
xs
rs ⊗ v

xs+1
rs+1
⊗ · · · ⊗ vxdrd

)
.tk equals

δj,rk

(
vx1
r1
⊗ · · · ⊗ vxk−1

rk−1
⊗ vbxki ⊗ vxk+1

rk+1
⊗ · · · ⊗ vxdrd

)
.tk,

which equals

δj,rk(−1)(b+xk)xk+1

(
vx1
r1
⊗ · · · ⊗ vxk−1

rk−1
⊗ vxk+1

rk+1
⊗ vbxki ⊗ · · · ⊗ vxdrd

)
.

So in this setting, (13) becomes

δj,rk(−1)b(x1+···+xk−1)+(b+xk)xk+1

(
vx1
r1
⊗ · · · ⊗ vxk−1

rk−1
⊗ vxk+1

rk+1
⊗ vbxki ⊗ · · · ⊗ vxdrd

)
. (14)

The relevant corresponding term from Eb
ij.
(
(vx1
r1
· · · vxdrd ).tk

)
is the following:

δj,rk

(
(−1)xk·xk+1+b(x1+···+xk−1+xk+1)vx1

r1
⊗ · · · ⊗ vxk−1

rk−1
⊗ vxk+1

rk+1
⊗ vbxki ⊗ · · · ⊗ vxdrd

)
. (15)

It is clear that (14) = (15), and our result follows. �

1.3. The Opposite Superalgebra

Given any superalgebra A, one may form its opposite superalgebra Asop as follows. As
a Z2-graded free k-supermodule, Asop = A so that Asop

0 = A0 and Asop
1 = A1. The only

difference is in the multiplication. Let • denote the multiplication in Asop. Then we have

x • y := (−1)x·yyx

where yx is the product in A.

Proposition 1.12. There exist well-defined covariant functors ( )sop : smodA → Asopsmod
and ( )sop : Asmod→ smodAsop.

Proof. First of all, if M is any right A-supermodule, we can define a left Asop-supermodule
structure on M via

a.m := (−1)a·mma (16)

where ma denotes the right action of a on m. The only axiom which may not be immediately
obvious is associativity, so we check that here. Let a, b be homogeneous elements of A and
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m a homogeneous element of M . Then

(a • b).m = (−1)a·b(ba).m = (−1)a·b+ba·mm(ba)

= (−1)a·b+b·m+a·m(mb)a, (17)

whereas

a.(b.m) = a.
(

(−1)b·mmb
)

= (−1)b·m+a·mb(mb)a

= (−1)b·m+a·m+a·b(mb)a. (18)

Since (17) = (18), we have what we wanetd.
So the functor ( )sop sends an object M to the left supermodule defined in (16) which we

will denote M sop. The functor is the identity on morphisms. To check that this makes sense,
suppose f is a right A-supermodule homomorphism from M → N . Then

f(a.m) = f
(
(−1)a·mma

)
= (−1)a·mf(m)a

= (−1)a·m+a·f(m)a.f(m)

= (−1)a·fa.f(m), (19)

where the second line comes from f being a right A-map, and the last line comes from
f(m) = f +m. Hence, f really is a left Asop-map. Composition and identites obviously work
out, so we have ( )sop : smodA → Asopsmod.

Now if M is a left A-supermodule, then M sop is the right Asop-supermodule with action
given by

m.a := (−1)m·aam, (20)

where am denotes the left action of a on m. Analogous computations to those above show
that ( )sop : Asmod→ smodAsop is also well-defined. �

Proposition 1.13. ( )sop : smodA → Asopsmod and ( )sop : Asmod→ smodAsop are equiva-
lences of categories.

Proof. It is obvious that (Asop)sop = A, and it is immediate that the following diagram
commutes:

smodA Asopsmod smodA Asopsmod
( )sop

id

( )sop

id

( )sop

Hence smodA ∼= Asopsmod. Similarly, Asmod ∼= smodAsop . �

Next, we want to work with square matrices with entries in A and Asop. Let X ∗Y denote
the product in Mn(Asop) (which is usual matrix multiplication, but the multiplication of
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entries happens in Asop). Precisely, if X = (xij) and Y = (yij), we have

(X ∗ Y )rs =
n∑
t=1

xrt • yts.

Let XT denote the transpose of a matrix X.

Lemma 1.14. For X, Y ∈Mn(A), we have

(XY )T = (−1)X·Y Y T ∗XT

and
(X ∗ Y )T = (−1)X·Y Y TXT.

Proof. Let X = (xij) and Y = (yij). We have

(XY )rs =
n∑
t=1

xrtyts

so that

(XY )Trs =
n∑
t=1

xstytr. (21)

On the other hand, we have

(Y T ∗XT)rs =
n∑
t=1

yTrt • xTts

=
n∑
t=1

ytr • xst

=
n∑
t=1

(−1)ytr·xstxstytr

= (−1)Y ·X
n∑
t=1

xstytr, (22)

where the last line follows from the fact that a homogeneous matrix has all of its entries
being homogeneous of the same parity. Comparing (21) and (22), we have our first identity.
The second identity is proved with similar calculations. �

Next, we’ll consider gln(Asop) which is a Lie superalgebra with the usual supercommutator
bracket but where the individual matrix multiplications are taking place in Mn(Asop) so that
we have

[X, Y ] := X ∗ Y − (−1)X·Y Y ∗X.

Proposition 1.15. There exist well-defined functors T : smodgln(A) → gln(Asop)smod and
T : gln(A)smod→ smodgln(Asop).

Proof. Given M a right gln(A) module, M can be equipped with the following left gln(Asop)
action:

X.m := (−1)m·XmXT, (23)
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where mXT denotes the right action of the element XT on m. To see that this is actually a
Lie superalgebra action, note that

[X, Y ].m = (X ∗ Y − (−1)X·Y Y ∗X).m

= (−1)(X+Y )·mm(X ∗ Y − (−1)X·Y Y ∗X)T

= (−1)(X+Y )·mm((−1)X·Y Y TXT −XTY T)

= (−1)(X+Y )·m+X·Y (mY T)XT − (−1)(X+Y )·m(mXT)Y T, (24)

where the second line comes from the fact that [X, Y ] = X + Y whether viewed over A or
Asop, and the third line follows from lemma 1.14.

On the other hand, we have

X.(Y.m)− (−1)X·Y Y.(X.m) = X.((−1)Y ·mmY T)− (−1)X·Y Y.((−1)X·mmXT)

= (−1)Y ·m+X(m+Y )(mY T)XT − (−1)X·Y+X·m+Y (m+X)(mXT)Y T

(25)

where the second line comes from the fact that the parity of the transpose is clearly the
parity of the original matrix. Since (24) = (25), we have our result. Then TM is the left
gln(Asop) module with action as above.

The same calculation as (19) shows that T is the identity on homs and that this makes
sense.

Now for any left gln(A) module M , define a right gln(Asop) action via

m.X := (−1)m·XXTm. (26)

Analogous calculations as above show that this action gives a right gln(Asop) module TM . �

Proposition 1.16. T : smodgln(A) → gln(Asop)smod and T : gln(A)smod → smodgln(Asop) are
equivalences of categories.

Proof. Since (Asop)sop = A, it is immediate that the following diagram commutes:

smodgln(A) gln(Asop)smod smodgln(A) gln(Asop)smodT

id

T

id

T

Hence smodgln(A)
∼= gln(Asop)smod. Similarly, gln(A)smod ∼= smodgln(Asop). �

Remark 1.17. Let Vn denote the right gln(Asop) module which is row vectors whose entries
are in Asop with the action given by matrix multiplication on the right. Let An denote the
left gln(A) module which is column vectors with entries in A and action given by left matrix
multiplication.

There is a canonical k-module isomorphism t : Vn → An. We claim that t(T Vn) = An as
left gln(A) modules, that is, Vn can be identified with An under T .

To see this claim, first consider the right action on Vn. Let X be a homogeneous element of
gln(Asop) and ~v = (v1, . . . , vn) be a homogeneous element of Vn. Note that the rth component
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of ~vX is
n∑
t=1

vt • xtr.

Then on T Vn, X acts as X.~v = (−1)~v·X~vXT whose rth component is

(−1)~v·X
n∑
t=1

vt • xrt = (−1)~v·X
n∑
t=1

(−1)vt·xrtxrtvt

= (−1)~v·X
n∑
t=1

(−1)~v·Xxrtvt

=
n∑
t=1

xrtvt,

which is clearly the rth component of X

v1
...
vn

, so we have our claim. Note that the second

line above follows from the fact that ~v being homogeneous means each of its entries are
homogeneous of the same degree.

Moreover, say f : Vn →M is a map of right gln(Asop) modules. Then as a (free) k-module
map, f is determined by its values on a k-basis for Vn. Letting B be a k-basis for A, we have
{vbi | b ∈ B} being a k-basis for Vn. Since T is identity on morphisms, f is unchanged as a
map T Vn → TM . Let {wbi} be a k-basis for An (so the map t above identifies vbi with wbi ).
Let f ′ : An → TM be given by f ′(wbi ) = f(vbi ). Then under our identification, the functor
T sends Vn to An and maps f : Vn → M to maps f ′ : An → TM . From this point on, we
will not make a distinction between the map f and f ′.

2. More Sd-actions

Lemma 2.1. Let V be a right finite free A-supermodule so that V ⊗d is a right A⊗d-supermodule
as in (1). For any v ∈ V ⊗d, a ∈ A⊗d, and σ ∈ Sd, we have

(v.a).σ = (v.σ).(a.σ).

Proof. Without loss of generality, we show this for σ = ti a simple transposition and homo-
geneous elements. So [(v1 ⊗ · · · ⊗ vd).(a1 ⊗ · · · ⊗ ad)].ti

= (−1)s(~v→~a)(v1.a1 ⊗ · · · ⊗ vd.ad).ti
= (−1)s(~v→~a)+vi.ai·vi+1.ai+1v1.a1 ⊗ · · · ⊗ vi+1.ai+1 ⊗ vi.ai ⊗ · · · ⊗ vd.ad. (27)

On the other hand, we have [(v1 ⊗ · · · ⊗ vd).ti].[(a1 ⊗ · · · ⊗ ad).ti]

=
[
(−1)vi·vi+1v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vd

]
.
[
(−1)ai·ai+1a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ ad

]
= (−1)vi·vi+1+ai·ai+1+s(~vti→~ati)v1.a1 ⊗ · · · ⊗ vi+1.ai+1 ⊗ vi.ai ⊗ · · · ⊗ vd.ad. (28)

Notice that s(~vti → ~ati) equals

a1(v2 +· · ·+ vd) +· · ·+ ai+1(vi + vi+2 +· · ·+ vd) + ai(vi+2 +· · ·+ vd) +· · ·+ ad−1vd.

21



It follows that s(~vti → ~ati) = s(~v → ~a)− ai · vi+1 + ai+1 · vi. Moreover, we have

vi.ai · vi+1.ai+1 = (vi + ai)(vi+1 + ai+1)

= vi · vi+1 + vi · ai+1 + ai · vi+1 + ai · ai+1,

and it follows that (27)=(28), as required. �

Definition 2.2. The wreath product A oSd is the superalgebra which as a k-supermodule
is kSd ⊗ A⊗d (where kSd is concentrated in degree 0) with multiplication given by

(σ ⊗ a)(σ′ ⊗ a′) = σσ′ ⊗ (aσ′)a′

for any σ ∈ Sd and a ∈ A⊗d. We identify kSd with kSd ⊗ 1 and A⊗d with 1⊗ A⊗d.

Then for any right A-supermodule V , V ⊗d is a right A oSd-supermodule via

v.(σ ⊗ a) := (v.σ).a (29)

for v ∈ V ⊗d, a ∈ A⊗d, σ ∈ Sd. To see this is well-defined, it suffices to check the multiplication
relation for A oSd since the Sd and A⊗d actions are already well-defined. So note that

(v.(σ1 ⊗ a1)).(σ2 ⊗ a2) = ((v.σ1).a1).(σ2 ⊗ a2)

= [((v.σ1).a1).σ2].a2

= [((v.σ1).σ2).(a1.σ2)].a2, (30)

where this last equality follows from lemma 2.1 (since v.σ1 ∈ V ⊗d). On the other hand,

v.(σ1σ2 ⊗ (a1.σ2)a2) = (v.σ1σ2).[(a1.σ2)a2]

= ((v.σ1).σ2).[(a1.σ2)a2]

= [((v.σ1).σ2).(a1.σ2)].a2, (31)

where the last two lines hold because of the well-definedness of the Sd and A⊗d actions,
respectively. So (30)=(31), as desired.

Now we define a right action of Sd on HomA⊗d(V
⊗d,W⊗d) as follows: For σ ∈ Sd and

ϕ ∈ HomA⊗d(V
⊗d,W⊗d), define

ϕ.σ := ϕσ where ϕσ(v) := (ϕ(v.σ−1)).σ ∀v ∈ V ⊗d (32)

Clearly, 1 ∈ Sd acts as identity, and for σ, α ∈ Sd, we have

(ϕσ)α (v) =
(
ϕσ(v.α−1)

)
.α

=
(
ϕ
(
(v.α−1).σ−1

)
.σ
)
.α

=
(
ϕ
(
(v.(α−1σ−1)

)
.σ
)
.α

=
(
ϕ
(
(v.(σα)−1)

)
.σ
)
.α

= ϕ
(
(v.(σα)−1)

)
.(σα)

= ϕσα(v).

This shows our action is well-defined.

Remark 2.3. Notice that a map f ∈ HomA⊗d(V
⊗d,W⊗d) is invariant under the Sd action

from (32) if and only if f(v.σ) = f(v).σ for all σ ∈ Sd and v ∈ V ⊗d.
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Lemma 2.4. For V,W finite free right A-supermodules, we have

HomA(V,W )⊗d ∼= HomA⊗d(V
⊗d,W⊗d)

as Sd-supermodules.

Proof. By lemma 1.10, we have the isomorphism as k-supermodules. Denote this isomorphism
Φ. Then we wish to show Φ is also an Sd-map. We will show this on homogeneous pure
tensors and generators (simple transpositions) of Sd. Let fj ∈ HomA(V,W ) and vj ∈ V for
1 6 j 6 d. We wish to show that acting by ti then applying Φ is the same as applying Φ
then acting by ti. The former is as follows (we omit the ⊗ and � symbols for brevity):

[(f1 · · · fd).ti] (v1 · · · vd) = (−1)fi·fi+1(f1 · · · fi+1fi · · · fd)(v1 · · · vd)

= (−1)fi·fi+1+s(~fti→~v)f1(v1) · · · fi+1(vi)fi(vi+1) · · · fd(vd). (33)

The latter is given by

(f1 · · · fd)ti(v1 · · · vd) =
[
(f1 · · · fd)

(
(v1 · · · vd).t−1

i

)]
.ti

=
[
(f1 · · · fd)

(
(−1)vi·vi+1v1 · · · vi+1vi · · · vd

)]
.ti

=
[
(−1)vi·vi+1+s(~f→~vti)f1(v1) · · · fi(vi+1)fi+1(vi) · · · fd(vd)

]
.ti

= (−1)vi·vi+1+s(~f→~vti)+fi+1(vi)·fi(vi+1)f1(v1) · · · fi+1(vi)fi(vi+1) · · · fd(vd).
(34)

Notice that

s(~fti → ~v) = fd(v1 + · · ·+vd−1)+ · · ·+fi(v1 + · · ·+vi−1 +vi)+fi+1(v1 + · · ·+vi−1)+ · · ·+f2 ·v1

and

s(~f → ~vti) = fd(v1+· · ·+vd−1)+· · ·+fi+1(v1+· · ·+vi−1+vi+1)+fi(v1+· · ·+vi−1)+· · ·+f2·v1,

so we see that s(~f → ~vti) = s(~fti → ~v)− fi · vi + fi+1 · vi+1. Hence (working mod 2),

vi · vi+1 + s(~f → ~vti) + fi+1(vi) · fi(vi+1) = vi · vi+1 + s(~f → ~vti) + (fi+1 + vi)(fi + vi+1)

= s(~f → ~vti) + fi+1 · fi + fi+1 · vi+1 + vi · fi
= s(~fti → ~v) + fi+1 · fi.

Thus, (33)=(34), as required. �

3. Category of Divided Powers

For a superalgebra A, let V denote the category of finite free right A-supermodules (in-
cluding parity shifts). Recall that for a k-supermodule V , the dth divided powers of V is the

k-supermodule Γd(V ) :=
(
V ⊗d

)Sd , the space of Sd-invariants, where Sd acts on V ⊗d as in
(4).

Definition 3.1. Let ΓdV denote the category of dth divided powers whose objects are
the same as those for V and whose morphism spaces are defined to be

HomΓdV(V,W ) := Γd HomA(V,W ).

In order to define composition, we make use of the following:
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Lemma 3.2. For V,W in V, there is an isomorphism

Γd HomA(V,W ) ∼= HomAoSd(V
⊗d,W⊗d)

Proof. Recall that A o Sd acts on V ⊗d and W⊗d by (29). By definition, Γd HomA(V,W ) =(
HomA(V,W )⊗d

)Sd . By lemma 2.4, HomA(V,W )⊗d ∼= HomA⊗d(V
⊗d,W⊗d) as Sd-supermodules.

Therefore, Γd HomA(V,W ) ∼=
(
HomA⊗d(V

⊗d,W⊗d)
)Sd . We claim that(

HomA⊗d(V
⊗d,W⊗d)

)Sd = HomAoSd(V
⊗d,W⊗d).

To see this, first suppose ϕ ∈
(
HomA⊗d(V

⊗d,W⊗d)
)Sd . Then for v ∈ V ⊗d and σ⊗a ∈ A oSd,

ϕ(v.(σ ⊗ a)) = ϕ((v.σ).a)

= ϕ(v.σ).a

=
[(
ϕσ
−1

(v)
)
.σ
]
.a

= [ϕ(v).σ] .a

= ϕ(v).(σ ⊗ a).

Hence ϕ ∈ HomAoSd(V
⊗d,W⊗d). The second equality follows since ϕ is a A⊗d-map. The third

equality holds since ϕσ
−1

(v) = ϕ(v.σ).σ−1 which implies
(
ϕσ
−1

(v)
)
.σ = ϕ(v.σ) (recall this

action is given by (32)). The fourth equality follows since ϕ is invariant under the Sd-action,

so that ϕσ
−1

= ϕ.
Next, suppose ϕ ∈ HomAoSd(V

⊗d,W⊗d). Then for σ ∈ Sd and v ∈ V ⊗d, we have σ ⊗ 1 ∈
A oSd, and so

ϕσ(v) = ϕ(v.σ−1).σ

= ϕ(v.(σ−1 ⊗ 1)).σ

=
(
ϕ(v).(σ−1 ⊗ 1)

)
.σ

=
(
ϕ(v).(σ−1 ⊗ 1)

)
.(σ ⊗ 1)

= ϕ(v).
(
(σ−1 ⊗ 1)(σ ⊗ 1)

)
= ϕ(v).

(
σ−1σ ⊗ (1.σ)1

)
= ϕ(v). (1⊗ 1)

= ϕ(v).

Thus, ϕ ∈
(
HomA⊗d(V

⊗d,W⊗d)
)Sd . The third equality follows from ϕ being a A oSd-map.

The fifth equality comes from the well-definedness of the A oSd-action (see section 2). We’ve
shown our claim, and hence the desired result. �

Using this isomorphism, composition in smodAoSd induces the composition in ΓdV.

Definition 3.3. Define the Schur superalgebra over A to be

SA(m|n, d) :=
(
Mm|n(A)⊗d

)Sd ∼= (EndA(Am|n)⊗d
)Sd

.

Remark 3.4. It follows from the definition and lemma 3.2 that SA(m|n, d) ∼= EndΓdV(Am|n) ∼=
EndAoSd

(
(Am|n)⊗d

)
.
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4. Generalized Schur Algebras & Schurified Categories

For this section, we follow the work of [KM20] but extend definitions and results for non-
square matrices. We’ll want to consider k-bases for the superalgebra A and its supermodules.

Suppose Vi for 1 6 i 6 d are free k-supermodules with homogeneous k-bases {xij | j ∈ Ji}
for some index sets Ji. Then {x1

j1
⊗ x2

j2
⊗ · · · ⊗ xdjd | ~j ∈

⊕d
i=1 Ji} is a homogeneous k-basis

for V1 ⊗ · · · ⊗ Vd.
In the special case where each Vi = V with homogeneous k-basis {xj | j ∈ J}, we have

{x~j := xj1 ⊗ · · · ⊗ xjd | ~j ∈ Jd} as a homogeneous k-basis for V ⊗d.

Now consider V a free k-supermodule with homogeneous basis B. For ~b ∈ Bd, let v~b :=
b1 ⊗ · · · ⊗ bd ∈ V ⊗d (which is a homogeneous k-basis element). Note that Sd acts on the

right of Bd via (unsigned) place permutation, so for σ ∈ Sd, we have ~bσ = (bσ(1), . . . , bσ(d))

and so v~b.σ = (−1)s(
~b,σ)v~bσ.

Moreover, let

R(B, d) := {~b ∈ Bd | for k < `, bk = b` only if bk = 0 = b`}. (35)

So the set R(B, d) indexes the k-basis elements of V ⊗d which do not have any repeated odd
components. Note that R(B, d) ⊂ Bd is Sd-invariant, so it makes sense to talk about the
orbits R(B, d)/Sd.

Let R~b denote the set of shortest coset representatives of Stab(~b)\Sd. Then {~bσ | σ ∈ R~b}
is the set of distinct elements in the orbit of ~b. Define

ṽ~b :=
∑
σ∈R~b

v~b.σ =
∑
σ∈R~b

(−1)s(
~b,σ)v~bσ. (36)

In other terms, we have ṽ~b = ˜(b1 ⊗ · · · ⊗ bd) =
∑
σ∈R~b

(−1)s(
~b,σ)bσ(1) ⊗ · · · ⊗ bσ(d) is a certain

signed sum of all distinct permutations of the basis element v~b.

Lemma 4.1. Suppose V is a free k-supermodule with homogeneous k-basis B. Let Ω(B, d)
denote a set of orbit representatives for R(B, d)/Sd. Then{

ṽ~b

∣∣∣~b ∈ Ω(B, d)
}

is a homogeneous k-basis for
(
V ⊗d

)Sd.
Proof. There are two obvious steps to the proof. First, we must show that these elements
span. Second, we must show that they are linearly independent. The second point is easily

seen. For a given~b, the sum ṽ~b ranges over distinct elements of the orbit of~b. This means that
each term in the sum ṽ~b is a distinct k-basis element of V ⊗d. Moreover, since our proposed
basis set is indexed by orbits of R(B, d), two distinct elements ṽ~b 6= ṽ~c must share no common

summands since ~b and ~c are in separate disjoint orbits. Therefore any finite sum of the ṽ~b is
just a larger finite sum of distinct k-basis elements of V ⊗d, and so it follows that any finite
collection of the ṽ~b is linearly independent. So we have our second step.

Now we just need to tackle spanning. Choose f ∈
(
V ⊗d

)Sd . In particular, f ∈ V ⊗d so it
can be written as a linear combination of k-basis elements f =

∑
~b∈Bd

α~bv~b where α~b ∈ k (and
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all but finitely many are nonzero). Since f ∈
(
V ⊗d

)Sd , this means for all σ ∈ Sd, f.σ = f .
In particular, we have

f.σ =

∑
~b∈Bd

α~bv~b

σ

=
∑
~b∈Bd

α~b
(
v~b
)
σ

=
∑
~b∈Bd

(−1)s(
~b,σ)α~bv~bσ. (37)

Now since σ is a bijection, we can reindex the sum for f :

f =
∑
~b∈Bd

α~bv~b

=
∑
~b∈Bd

α~bσv~bσ. (38)

Since (37) = (38), the fact that these sums range over basis elements implies that

α~bσ = (−1)s(
~b,σ)α~b (39)

for all ~b ∈ Bd and σ ∈ Sd.
So (39) relates the coefficient corresponding to a given ~b ∈ Bd with the coefficients corre-

sponding to tuples in the orbit of ~b. In particular, α~bσ = ±α~b for all σ. The only interesting

case is when ~bτ = ~b and s(~b, τ) = 1 mod 2 for some τ . For in this case, we would have
α~b = α~bτ = −α~b. Since char(k) 6= 2 and k is a domain, this would imply that α~b = 0. We
would like to characterize when this happens.

Given ~b ∈ Bd, two things can happen. Case 1 is that Stab(~b) = {id}. Then there are no

elements of Sd which fix ~b, so α~b can be anything in k. Notice that this also means ~b has
no repeated entries (odd or even), for otherwise there would be an appropriate transposition

fixing ~b.

Case 2 is that there exists some non-identity element τ ∈ Stab(~b). If s(~b, τ) = 0 mod 2,

this does not imply α~b = 0. So in particular, if every element which fixes ~b has this property,

then we still have that α~b can be anything in k. So the only issue is when s(~b, τ) = 1 mod

2. We claim that the existance of a non-identity element τ ∈ Stab(~b) such that s(~b, τ) = 1

mod 2 is equivalent to the condition that ~b has at least one repeated odd entry.

To see this claim, first suppose that ~b has at least one repeated odd entry. That is, for
some 1 6 k < ` 6 d, we have bk = b`. Let τ = (k `) be the transposition which only swaps

the k and ` positions. Then clearly ~bτ = ~b. Moreover, one can easily check that (working
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modulo 2)

s(~b, τ) = b`(bk+1 + · · ·+ b`−1) + b` · bk + bk+1 · bk + · · ·+ b`−1 · bk
= b`(bk+1 + · · ·+ b`−1) + bk(bk+1 + · · ·+ b`−1) + b` · bk
= (b` + bk)(bk+1 + · · ·+ b`−1) + b` · bk
= (1 + 1)(bk+1 + · · ·+ b`−1) + 1 · 1
= 1 mod 2. (40)

So we have one implication.

To see the reverse implication, suppose that ~b has no repeated odd entries. If there are

no non-identity elements in Stab(~b), then the condition we want holds. If there is some non-

identity τ ∈ Stab(~b), then we just need to show that s(~b, τ) = 0 mod 2. So say we have

τ 6= id such that ~bτ = ~b. Since ~b has no repeated odd entries, the only way this can hold is if

τ fixes k for all odd bk. So the only entries of ~b which get shuffled by τ are even. Since s(~b, τ)
counts the number of odd entries which have passed over other odd entries, it must be that

s(~b, τ) = 0 as desired.

To summarize, we’ve shown that for f =
∑
~b∈Bd

α~bv~b ∈
(
V ⊗d

)Sd , the coefficient α~b = 0 when-

ever ~b has repeated odd entries. Moreover, given ~b, the coefficients α~bσ are all determined,

so the only possible nonzero coefficients correspond to ~b ∈ R(B, d). Hence we can group our
sum as

f =
∑
~b∈Bd

α~bv~b =
∑

~b∈Ω(B,d)

∑
σ∈R~b

α~bσv~bσ


=

∑
~b∈Ω(B,d)

∑
σ∈R~b

(−1)s(
~b,σ)α~bv~bσ


=

∑
~b∈Ω(B,d)

α~b

∑
σ∈R~b

(−1)s(
~b,σ)v~bσ


=

∑
~b∈Ω(B,d)

α~bṽ~b.

In particular, we see that
{
ṽ~b

∣∣∣~b ∈ Ω(B, d)
}

spans
(
V ⊗d

)Sd as desired. �

Remark 4.2. Note that for two different elements ~b,~c ∈ Bd in the same Sd-orbit, we have

ṽ~b = ±ṽ~c.
So a different choice of orbit representatives Ω(B, d) yields ± the k-basis from lemma 4.1.

Next, we consider a free k-superalgebra A as before. If we assume our supermodules
are of the form Am|0 = Am for some m, remark 1.2 says we have a natural isomorphism
Mm,n(A) ∼= HomA(An, Am), and for any a ∈ A, we let ϕars denote the matrix with a in the
r, s entry and zeros elsewhere (In [KM20], this was denoted ξar,s).
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Definition 4.3. Fix a (unital) k-subalgebra a ⊂ A0 such that a and A/a are both free as
k-modules. Such a pair (A, a) is called a (unital) good pair.

Now choose a unital good pair and fix a k-module complement, c, of a in A0 along with
k-bases Ba, Bc, and B1 for a, c, and A1, respectively. So B0 = Ba t Bc is a k-basis for A0

and B = B0 tB1 is a homogeneous k-basis for A.
Since we aren’t considering parity shifts, ϕars = a, and Mm,n(A) inherits a (free) k-

supermodule structure, and moreover, we have that

Cm,n := {ϕbrs | 1 6 s 6 n, 1 6 r 6 m, b ∈ B} (41)

is a homogeneous k-basis for Mm,n(A).
We will now introduce some notation which generalizes important objects defined in

[KM20]. For any set P consisting of homogeneous elements of A, and letting [s, t] :=
{s, s+ 1, . . . , t}, define TriP (m,n; d) to be the set

{(~p, ~r, ~s) ∈ P d × [1,m]d × [1, n]d | for k 6= `, (pk, rk, sk) = (p`, r`, s`) only if pk = 0 = p`}.
(42)

Notice that any element of (Cm,n)⊗d uniquely determines a triple (~b, ~r, ~s) ∈ Bd × [1,m]d ×
[1, n]d. Then a point in R(Cm,n, d) also determines a triple (~b, ~r, ~s). This triple corresponds to
an element of TriB(m,n; d). Then recalling notation (35), we see that TriB(m,n; d) indexes
the k-basis elements of Mm,n(A)⊗d which do not have any repeated odd components.

Now TriP (m,n; d) is Sd-invariant (under the diagonal action) so it makes sense to talk
about orbits. Moreover, for (~p, ~r, ~s) ∈ TriP (m,n; d), we denote the stabilizer of this element
by

S~p,~r,~s := {σ ∈ Sd | (~p, ~r, ~s)σ = (~p, ~r, ~s)}. (43)

Let ~p,~r,~sD denote a set of shortest coset representatives for S~p,~r,~s\Sd. Then {(~p, ~r, ~s)σ | σ ∈
~p,~r,~sD} is the set of distinct elements in the orbit [(~p, ~r, ~s)].

Considering the right Sd-action from (4) on Mm,n(A)⊗d, we see that for a1, . . . , ad ∈ A
homogeneous, 1 6 s1, . . . , sd 6 n, 1 6 r1, . . . , rd 6 m, and σ ∈ Sd, that(

ϕa1
r1s1
⊗ · · · ⊗ ϕadrdsd

)σ
= (−1)s(~a,σ)ϕaσ1

rσ1sσ1
⊗ · · · ⊗ ϕaσdrσdsσd

.

Definition 4.4. We define the A-Schur space SA(m,n; d) to be the space of invariants

SA(m,n; d) :=
(
Mm,n(A)⊗d

)Sd
∼=
(
HomA(An, Am)⊗d

)Sd ,
which is no more than Γd(Mm,n(A)) ∼= Γd(HomA(An, Am)).

Remark 4.5. Notice that whenever m = n, Mn(A) := Mn,n(A) is naturally a k-superalgebra
with product given by matrix multiplication (composition if working with EndA(An)). In
this case, we have SA(n, d) := SA(n, n; d) is a k-superalgebra which we call the A-Schur
algebra. This is the algebra considered in [KM20]. Moreover, notice that SA(m|0, d) from
definition 3.3 equals SA(m, d).

For free finite right A-supermodules V ∼= An and W ∼= Am, it makes sense to de-
note SA(V,W ; d) := Γd(HomA(V,W )). In particular, if V = An and W = Am, we have
SA(V,W ; d) = SA(An, Am; d) = SA(m,n; d).
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For (~a, ~r, ~s) ∈ Ad × [1,m]d × [1, n]d, define

ϕ(~a,~r,~s) := ϕa1
r1s1
⊗ · · · ⊗ ϕadrdsd ∈Mm,n(A)⊗d.

Let H be the set of all nonzero homogeneous elements of A. For (~a, ~r, ~s) ∈ TriH(m,n; d),
define

ϕ̃(~a,~r,~s) :=
∑

σ∈~a,~r,~sD

ϕ(~a,~r,~s).σ

=
∑

σ∈~a,~r,~sD

(−1)s(~a,σ)ϕaσ1
rσ1sσ1

⊗ · · · ⊗ ϕaσdrσdsσd

in the same vein as (36). Note that ϕ̃(~a,~r,~s) is analagous to the element ξar,s from [KM20]
defined in their equation (3.2). In fact, they are equal when we have m = n.

Then it follows immediately from lemma 4.1 that we have

Corollary 4.6. Suppose A is a free k-superalgebra with homogeneous k-basis B. Choose a
set of orbit representatives Ω(B,m, n; d) for TriB(m,n; d)/Sd. Then{

ϕ̃(~b,~r,~s)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d)
}

is a homogeneous k-basis for SA(m,n; d) =
(
Mm,n(A)⊗d

)Sd.
We need some more notation. Let (~b, ~r, ~s) ∈ TriB(m,n; d). For b ∈ B, r ∈ [1,m], and

s ∈ [1, n], let

[~b, ~r, ~s]br,s := #{k ∈ [1, d] | (bk, rk, sk) = (b, r, s)}. (44)

So [~b, ~r, ~s]br,s counts the number of components of ϕ(~b,~r,~s) which equal a given element ϕbrs.

Define

[~b, ~r, ~s]! :=
∏
b∈B

r∈[1,m]
s∈[1,n]

[~b, ~r, ~s]br,s! =
∏
b∈B0
r∈[1,m]
s∈[1,n]

[~b, ~r, ~s]br,s!, (45)

where the equality comes from the fact that [~b, ~r, ~s]br,s 6> 1 whenever b ∈ B1 since (~b, ~r, ~s)
contains no repeated odd entries. Moreover, this product is always finite since only finitely

many [~b, ~r, ~s]br,s can ever be greater than 1. One last observation is that |S~b,~r,~s| = [~b, ~r, ~s]!.
Define

[~b, ~r, ~s]!a :=
∏
b∈Ba
r∈[1,m]
s∈[1,n]

[~b, ~r, ~s]br,s!, (46)

and

[~b, ~r, ~s]!c :=
∏
b∈Bc
r∈[1,m]
s∈[1,n]

[~b, ~r, ~s]br,s!, (47)

and

η̃(~b,~r,~s)
:= [~b, ~r, ~s]!cϕ̃(~b,~r,~s). (48)

This element is analogous to the ηbr,s defined in [KM20].
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Definition 4.7. We define the generalized A-Schur space TAa (m,n; d) to be the k-
submodule of SA(m,n; d) given by

TAa (m,n; d) := spank

(
η̃(~b,~r,~s) | (~b, ~r, ~s) ∈ TriB(m,n; d)

)
.

Remark 4.8. As in remark 4.5 with the A-Schur space, if V = An and W = Am are free
finite right A-supermodules, then we denote TAa (V,W ; d) := TAa (m,n; d).

It is clear that we have the following:

Corollary 4.9. Suppose A, B, and Ω(B,m, n; d) are as in corollary 4.6. Then{
η̃(~b,~r,~s)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d)
}

is a homogeneous k-basis for TAa (m,n; d).

Remark 4.10. First of all, notice that when a = A0 we have c = ∅ and so [~b, ~r, ~s]!c = 1.
It follows that TAA0

(m,n; d) = SA(m,n; d). Second, for any allowable choice of a, we have

Sa(m,n; d) ⊂ TAa (m,n; d) since the tuples (~b, ~r, ~s) which index elements of Sa(m,n; d) have

no bk ∈ c so that [~b, ~r, ~s]!c = 1 for all of these elements. Similarly, we have SA1(m,n; d) ⊂
TAa (m,n; d).

Note that when m = n, our TAa (m,n; d) is equal to the TAa (n; d) in [KM20], which is
a k-subsuperalgebra of SA(n, d) which is independent of basis. This means (among other
things) that TAa (n; d) is closed under multiplication (composition when thinking of morphisms
An → An). We’d like similar results in our non-square setting. Specifically, the first thing we
want is for the composition map

TAa (k,m; d)⊗ TAa (m,n; d)→ TAa (k, n; d)

to be well-defined.

Remark 4.11. This can be shown by essentially the same argument used in Proposition 3.12
from [KM20] which shows that TAa (n, n; d) is a k-subalgebra of SA(n, n; d). This argument
boils down to showing that a certain coefficient divides a product of certain integers. The
difference is that all values considered in [KM20] correspond to square matrices - in our
setting, each of these values can be generalized by allowing for non-square matrices, but all
of the arguments involved still go through without issue. The relevant result from [KM20]
is Corollary 3.7 which relies on their Proposition 3.6 and Lemma 2.11. However, since these
computations are rather involved, we will choose to argue by embedding the non-square case
into the square case:

First, fix m,n, d. Let N := max(m,n). Then we have an embedding

ι : Mm,n(A) ↪→MN(A)

given by

ϕaij 7→ ϕaij, (49)

where 1 6 i 6 m 6 N and 1 6 j 6 n 6 N . So this embedding sticks an m× n matrix into
the upper left corner of an N × N matrix with zeros outside of this corner. Note that this
embedding works for any N ′ > max(m,n).

Moreover, we know that matrix multiplication is bilinear, where for ϕ ∈ Mm,n(A) and
ψ ∈ Mk,m(A), we have ψϕ ∈ Mk,m(A). It is easy to see that ι(ψϕ) = ι(ψ)ι(ϕ) where we
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embed into Mmax(m,n,k)(A). So under this embedding, we can keep track of the composition
of nonsquare matrices in terms of the composition of square matrices.

This induces an embedding

ιd : Mm,n(A)⊗d ↪→MN(A)⊗d

given by

ϕ(~a,~i,~j) 7→ ϕ(~a,~i,~j).

It is almost immediate that ιd is not just a map as supermodules, but also as right Sd-
modules. Therefore, it induces a map

SA(m,n; d) =
(
Mm,n(d)⊗d

)Sd ↪→ (
MN(d)⊗d

)Sd = SA(N,N ; d).

Notice that each k-basis element ϕ̃(~a,~r,~s) ∈ SA(m,n; d) (where ~r ∈ [1,m]d and ~s ∈ [1, n]d)
is sent to a k-basis element, ϕ̃(~a,~r,~s) of SA(N,N ; d) (where now we view ~r ∈ [1, N ]d and
~s ∈ [1, N ]d by appending zeros where necessary). Since ιd is k-linear, it follows that ιd

actually induces a map

TAa (m,n; d) ↪→ TAa (N,N ; d.)

In particular, given some η̃(~b,~r,~s) ∈ TAa (m,n; d), we know that η̃(~b,~r,~s) = [~b, ~r, ~s]!cϕ̃(~b,~r,~s) where

[~b, ~r, ~s]!c =
∏
b∈Bc
r∈[1,m]
s∈[1,n]

[~b, ~r, ~s]br,s!. Now for some η̃(~a,~p,~q) ∈ TAa (N,N ; d), we have η̃(~a,~p,~q) = [~a, ~p, ~q]!cϕ̃(~a,~p,~q)

where [~a, ~p, ~q]!c =
∏
a∈Bc

p,q∈[1,N ]

[~a, ~p, ~q]ap,q!. It is clear that if we had ~p ∈ [1,m]d and ~q ∈ [1, n]d, that

[~a, ~p, ~q]!c =
∏
a∈Bc
p∈[1,m]
q∈[1,n]

[~a, ~p, ~q]ap,q!. So ιd really does send things to the correct elements.

To summarize, we have the following commuting square:

TAa (m,n; d) SA(m,n; d)

TAa (N,N ; d) SA(N,N ; d)

ιd ιd .

Proposition 4.12. The composition map

TAa (k,m; d)⊗ TAa (m,n; d)→ TAa (k, n; d)

is a well-defined even map of k-supermodules.

Proof. Let η̃(~a,~p,~q) ∈ TAa (k,m; d) and η̃(~c,~u,~v) ∈ TAa (m,n; d). Let M = max(k,m, n). Then
under the ιd embedding, we view η̃(~a,~p,~q) and η̃(~c,~u,~v) as both sitting in TAa (M,M ; d).

Then this composition map is really multiplication within SA(M,M ; d) so is clearly even
and k-bilinear. So the only thing to check is that the target of this map really is TAa (k, n; d).

It is shown in Proposition 3.12 of [KM20] that η̃(~a,~p,~q)η̃(~c,~u,~v) is some linear combination
of elements of the form η̃(~b,~r,~s) where, in particular, ~r ∼ ~p and ~s ∼ ~v (with respect to the

Sd-action). This means that the only terms which contribute to this linear combination are
those with ~r ∈ [1, k]d and ~s ∈ [1, n]d. It follows that this linear combination (which we view
as living in TAa (M,M ; d)) really sits in TAa (k, n; d). �
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The second thing we want is that TAa (m,n; d) is independent of the choice of basis B =
Ba t Bc t B1 for A and that it only depends on the choice of subalgebra a. Before showing
this, we need some more setup (we folllow [KM20] section 4 for this).

Definition 4.13. For d, e ∈ N, let (d,e)D be the set of shortest coset representatives for
(Sd ×Se)\Sd+e. Given ϕ1 ∈Mn(A)⊗d and ϕ2 ∈Mn(A)⊗e, define

ϕ1 ∗ ϕ2 :=
∑

σ∈(d,e)D

(ϕ1 ⊗ ϕ2) .σ.

Note that
⊕
d>0

Mn(A)⊗d is an associative supercommutative superalgebra under this ∗-

product. Let

Yn := spank(ϕ
b
rs | r, s ∈ [1, n], b ∈ Bc tB1) ⊂Mn(A)

and

Ym,n := spank(ϕ
b
rs | r ∈ [1,m], s ∈ [1, n], b ∈ Bc tB1) ⊂Mm,n(A).

Note that for N = max(m,n), we can view Ym,n ⊂ YN in light of the embedding ι in (49).
For any set M ⊂Mn(A), define

StardM := M ∗ · · · ∗M︸ ︷︷ ︸
d terms

.

Lemma 4.2 from [KM20] shows that SA(n, n; d)∗SA(n, n; e) ⊂ SA(n, n; d+e) and TAa (n, n; d)∗
TAa (n, n; e) ⊂ TAa (n, n; d + e). Furthermore, if one analyzes the tuples and coefficients in-
volved in this lemma, it is easy to see that SA(m,n; d) ∗ SA(m,n; e) ⊂ SA(m,n; d + e) and
TAa (m,n; d)∗TAa (m,n; e) ⊂ TAa (m,n; d+e) (where in order to make sense of the ∗-product, we
are utilizing the ι embedding from (49)). It follows that Stard Yn ⊂ TAa (n, n; d). Then viewing
Ym,n ⊂ YN , we can make sense out of Stard Ym,n and say that Stard Ym,n ⊂ TAa (m,n; d) ⊂
TAa (N,N ; d).

The following generalizes lemma 4.9 from [KM20]:

Lemma 4.14. We have

TAa (m,n; d) =
d⊕
e=0

Sa(m,n; d− e) ∗ Stare Ym,n.

Proof. From remark 4.10, we know that Sa(m,n; d−e) ⊂ TAa (m,n; d−e). We’ve also already
observed that Stare Ym,n ⊂ TAa (m,n; e). So it follows that the right hand side is included in
the left hand side.

For the reverse containment, note that it is shown in the proof of lemma 4.9 of [KM20]
that for η̃(~b,~r,~s) ∈ TAa (N,N ; e), we have

η̃(~b,~r,~s) = ±

 ∗b∈Ba
r∈[1,N ]
s∈[1,N ]

(
ϕbrs
)⊗[~b,~r,~s]br,s

 ∗
 ∗b∈BatB1

r∈[1,N ]
s∈[1,N ]

(
ϕbrs
)⊗[~b,~r,~s]br,s

 , (50)

where this first term is in Sa(N,N ; d− e), and the second term is in Stare YN (these contain-
ments follow from lemma 4.6 in [KM20]).
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Now observe that if (~b, ~r, ~s) is such that ~r ∈ [1,m]d ⊂ [1, N ]d and ~s ∈ [1, n]d ⊂ [1, N ]d,

then [~b, ~r, ~s]br,s = 0 whenever r 6∈ [1,m] and s 6∈ [1, n]. This type of tuple corresponds to an

element η̃(~b,~r,~s) ∈ TAa (m,n; e) ⊂ TAa (N,N ; e), and for such an element, (50) becomes

η̃(~b,~r,~s) = ±

 ∗b∈Ba
r∈[1,m]
s∈[1,n]

(
ϕbrs
)⊗[~b,~r,~s]br,s

 ∗
 ∗b∈BatB1

r∈[1,m]
s∈[1,n]

(
ϕbrs
)⊗[~b,~r,~s]br,s


with the first term in Sa(m,n; d− e) and the second term in Stare Ym,n. �

Proposition 4.15. The space TAa (m,n; d) is independent of the choice of basis B = Ba t
Bc tB1 for (A, a) and only depends on the choice of subalgebra a.

Proof. The proof is almost the same as that of Proposition 4.11 from [KM20]. Let B = Ba t
BctB1 and B′ = B′atB′ctB′1 be two distinct choices of (A, a)-bases. Let Ym,n = spank(ϕ

b
rs |

r ∈ [1,m], s ∈ [1, n], b ∈ Bc tB1) and Y ′m,n = spank(ϕ
b
rs | r ∈ [1,m], s ∈ [1, n], b ∈ B′c tB′1).

Notice that B′c ⊂ spank(Ba t Bc) and B′1 ⊂ spank(B1), so any element in Stare Y ′m,n
can be expanded in the basis B into a sum of elements of the form ϕa1

r1s1
∗ · · · ∗ ϕaerese with

ai ∈ Ba tBc tB1. That is,

Stare Y ′m,n ⊂
e⊕

f=0

Stare−f Ym,n ∗ Starf Y a
m,n, (51)

where Y a
m,n = spank(ϕ

b
rs | r ∈ [1,m], s ∈ [1, n], b ∈ Ba).

Letting ′TAa (m,n; d) be defined using basis B′, we know from lemma 4.14 that

′TAa (m,n; d) =
d⊕
e=0

Sa(m,n; d− e) ∗ Stare Y ′m,n.

Then using (51), we have

′TAa (m,n; d) =
d⊕
e=0

Sa(m,n; d− e) ∗

(
e⊕

f=0

Stare−f Ym,n ∗ Starf Y a
m,n

)
.

Since Sa(m,n; d − e) ⊂ TAa (m,n; d − e), Stare−f Ym,n ⊂ TAa (m,n; e − f), and Starf Y a
m,n ⊂

TAa (m,n; f), it follows that ′TAa (m,n; d) ⊂ TAa (m,n; d). Similarly, TAa (m,n; d) ⊂ ′TAa (m,n; d),
completing the proof. �

Let A be a superalgebra over k and choose a ⊂ A0 so that (A, a) forms a unital good pair.

Definition 4.16. Let TA
a (d) denote the dth Schurified category of free finite unshifted

right A-supermodules whose objects are finite free unshifted right A-supermodules, that
is, are of the form V = An, and whose morphism sets are defined to be

HomTAa (d)(A
n, Am) := TAa (m,n; d).

Remark 4.17. Only allowing objects V = An means we are working with free unshifted
A-supermodules with a distinguished choice of even A-basis. We’ve defined TAa (m,n; d) in
terms of matrices with entries in A, so it’s necessary to have these bases specified. It may be
interesting to define TAa (m,n; d) independently of the A-bases so that one can make sense of
the space for free supermodules of the form V ∼= An, however, we won’t do so in this thesis.
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Remark 4.18. If we have a = A0, then TAa (m,n; d) = SA(m,n; d) = Γd(Mm,n(A)) ∼=
Γd HomA(An, Am). So in this case, TA

a (d) is just the dth divided powers category ΓdV where V
is the category of finite free unshifted right A-supermodules of the form V = An. In certain
contexts, we may also denote the category by SA(d).

Remark 4.19. For d = 0, note that Mm,n(A)⊗0 := k so that SA(m,n; 0) = k. It follows that
TAa (m,n; 0) = k, as well. Thus TA

a (0) = SA(0) is the category whose objects are finite free
unshifted right A-supermodules and whose morphism spaces always equal k.

5. Categories Enriched over smodk

The definitions in this section are inspired by those in [BE17] (which deals with k a field
of characteristic not 2).

Let smodk denote the category of all (not necessarily finite-dimensional) k-supermodules.
A supercategory C is an smodk-enriched category meaning the morphism spaces in C are
k-supermodules and composition in C is bilinear and even - that is, composition induces a
map

HomC(V,W )⊗ HomC(U, V )→ HomC(U,W )

which is an even linear map. Sometimes we use the following notation for morphism spaces:

C(V,W ) := HomC(V,W ).

For a supercategory C, we let Cev denote the even underlying category which has the same
objects as C but only the even morphisms. Since Cev only involves even morphisms, it makes
sense to ask whether or not this category is abelian. We say that a supercategory C is abelian
if Cev is abelian in the usual sense.

A superfunctor F : C→ D between supercategories is a covariant functor such that for
every V,W ∈ C, the induced map

FV,W : HomC(V,W )→ HomD(F (V ), F (W ))

is an even k-linear map. F is full if FV,W is surjective for every pair V,W , and F is faithful
if FV,W is injective for every pair V,W . F is called fully faithful if FV,W is both injective
and surjective. F is called essentially surjective if for every object Y in D, there exists an
object X in C such that D is isomorphic to FX via an even morphism.

A supernatural transformation η : F → G between two superfunctors F,G : C→ D is
a family of morphisms ηX = η0

X + η1
X ∈ HomD(F (X), G(X)) for X an object in C such that

ηpX = p and

ηpY ◦ F (f) = (−1)f ·pG(f) ◦ ηpX
for p ∈ Z2 and f ∈ HomC(X, Y ).

Note that the supernatural transformation η decomposes as a sum of homogeneous su-
pernatural transformations η0 + η1 where (ηp)X = ηpX making the space SNat(F,G) of all
supernatural transformations from F to G into a k-supermodule.

A superfunctor F : C → D between supercategories is an superequivalence (or equiv-
alence) if there is a superfunctor G : D → C such that F ◦ G and G ◦ F are isomorphic to
identities via even supernatural transformations.

Remark 5.1. Having a fully faithful essentially surjective functor between non-super cat-
egories is equivalent to having an equivalence between those categories. See, for example,
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Theorem 1.59 of [Rie16]. It’s easy to see that this extends to our supercategory setting since
all of the relevent maps in our definitions are even.

Fix a superalgebra A. Define the parity shift functor Π : smodA → smodA by sending
a supermodule V to ΠV which has the same underlying k-supermodule structure but with
opposite Z2-grading. The right A-action is the same as that in V . On morphisms f : V → W ,

we have Π(f) = (−1)ff (so for even maps, Πf acts the same as f did, and on odd maps, it
acts by the negative).

Note that we may apply the parity shift to smodk, and we denote

km|n := km ⊕ (Πk)n.

We remark also that we are most interested in the case of right supermodules, but for left
supermodules, Π : Asmod→ Asmod sends V to ΠV but with a new action defined (in terms
of the old action) by a.v := (−1)aav.

Proposition 5.2. Let A be a superalgebra and consider Asmod. Then for every M ∈ Asmod,
we have a natural (odd) isomorphism

Hom
Asmod(A,M) ∼= Hom

Asmod(ΠA,M).

Proof. Let e : A → ΠA be the odd linear map which is the identity on the underlying
k-supermodule. Then e−1 : ΠA → A is also the odd linear map which is identity on the
underlying k-supermodule.

Define ϕ : Hom
Asmod(A,M) → Hom

Asmod(ΠA,M) via f 7→ f ◦ e−1. To see that ϕ(f) is
actually an A-map, let a, x ∈ A and f ∈ Hom

Asmod(A,M) be homogeneous. We have

ϕ(f)(a.x) = ϕ(f)
(
(−1)aax

)
= (f ◦ e−1)

(
(−1)aax

)
= (−1)af(e−1(ax))

= (−1)af(ax)

= (−1)a+a·faf(x)

= (−1)a(1+f)af(x)

= (−1)a·ϕ(f)af(e−1(x))

= (−1)a·ϕ(f)aϕ(f)(x),

where the fifth equality comes from the fact that f is a A-map, and the second-to-last
equality comes from the fact that ϕ(f) = f ◦ e−1 = f + 1.
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Let ψ : Hom
Asmod(ΠA,M) → Hom

Asmod(A,M) be given by g 7→ g ◦ e. To see that ψ is
well-defined, let a, x ∈ A and g ∈ Hom

Asmod(ΠA,M) be homogeneous. We have

aψ(g)(x) = a(g ◦ e)(x)

= ag(x)

= (−1)a·gg(a.x)

= (−1)a·g+ag(ax)

= (−1)a·ψ(g)(g ◦ e)(ax)

= (−1)a·ψ(g)ψ(g)(ax),

where the third equality follows from g being an A-map, and the fifth equality follows from
the fact that ψ(g) = g ◦ e = g + 1. It is obvious that ϕ and ψ are mutually inverse, and
hence we have our isomorphism. �

Now given a supercategory C, we consider the category

C-smod := sFunk(C, smodk)

of superfunctors between C and smodk. It consists of superfunctors as objects and supernat-
ural transformations as morphisms. By our previous definitions, we observe that C-smod is
a supercategory (with HomC-smod(F,G) = SNat(F,G)).

Proposition 5.3. For each object X in C there is a superfunctor

evC
X : C-smod→ EndC(X)smod

given by evaluation at X.

Proof. Given F in C-smod, why is it that F (X) is a left EndC(X)-supermodule? Well, first
note that F induces an even linear map FX,X : HomC(X,X)→ Homk(F (X), F (X)), that is,
EndC(X)→ Endk(F (X)).

So for f ∈ EndC(X) and y ∈ F (X), we define f.y := F (f)(y). Moreover, for f, g ∈
EndC(X) and y ∈ F (X), we have f.(g.y) = f.(Fg(y)) = Ff(Fg(y)). On the other hand,
since F respects composition, we have (fg).y = F (fg)(y) = (FfFg)(y) = Ff(Fg(y)).
Finally, F sends the identity to the identity which means 1.y = y, and we see that we really
do have a EndC(X)-action on F (X).

What about morphisms? Suppose η ∈ HomC-smod(F,G). Then evC
X sends η to its section

at X, ηX : F (X) → G(X). We wish to see that ηX is a EndC(X)-map. That is, we wish to
show that for every y ∈ F (X) and every f ∈ EndC(X),

ηX(f.y) = (−1)ηX ·ff.(ηX(y)).

Note that ηX(f.y) = ηX(Ff(y)) and f.(ηX(y)) = Gf(ηX(y)). Since η is a supernatural

transformation, we know ηX ◦ Ff = (−1)η·fGf ◦ ηX which exactly gives ηX(Ff(y)) =

(−1)ηX ·fGf(ηX(y)), as desired. That composition and identity are respected is obvious. �

Next, notice that Π : smodk → smodk is superfunctor. Then Π ◦ : C-smod → C-smod
is a superfunctor. Specifically, given F ∈ C-smod, denote (Π ◦ )(F ) by ΠF the functor
which sends an object X in C to Π(F (X)) and sends a morphism f : X → Y in C to the

linear map (−1)F (f)F (f) (which equals (−1)fF (f) since F is even). Also, a morphism η ∈
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HomC-smod(F,G) gets sent to the supernatural transformation Πη which has ΠηpX = Π(ηpX)
as its homogeneous components.

Furthermore, for V in C, if we let idΠV→V : ΠV → V be the odd linear map which is
the identity on the underlying k-supermodule, we get an induced odd supernatural trans-
formation idΠF→F : ΠF → F for any F in C-smod (which has idΠF (V )→F (V ) as its sections).
Similarly, we have an odd supernatural transformation idF→ΠF : F → ΠF . These are clearly
isomorphisms.

Proposition 5.4. Let C be a supercategory and consider C-smod. Then for every F,G in
C-smod, we have an odd natural isomorphism

HomC-smod(F,G) ∼= HomC-smod(ΠF,G) via η 7→ η ◦ idΠF→F

Proof. The discussion immediately preceeding this proposition shows that this map is well-
defined. An inverse to this map is given by ρ 7→ ρ ◦ idF→ΠF : F → ΠF . �

Denote by hX := HomC(X, ) the obvious functor in C-smod.

Proposition 5.5. Let C be a supercategory and consider C-smod. Then for every object X
in C and every F in C-smod, we have a natural isomorphism

HomC-smod(h
X , F )1

∼= HomC-smod(h
X ,ΠF )0.

Proof. We will construct mutually inverse maps ϕ and ψ as follows. First, for any object
Y in C, and for any object F in C-smod, let eY : F (Y ) → ΠF (Y ) denote the linear map
which is just the identity on the underlying k-supermodule. Note that we use the same
notation regardless of which functor F we are talking about, and also that eY is always an
odd map. It follows that the eY define an odd homogeneous supernatural transformation
e ∈ HomC-smod(F,ΠF )1 for any object F in C-smod.

To verify this claim, note that given any y ∈ F (Y ) and f : Y → Z, we have

[(ΠF )(f)] ◦ [eY (y)] = [(−1)fF (f)] ◦ [eY (y)]

= [(−1)fF (f)](y)

= (−1)fF (f)(y).

On the other hand,

eZ ◦ [F (f)(y)] = F (f)(y),

and we have our claim.
Now define ϕ : HomC-smod(h

X , F )1 → HomC-smod(h
X ,ΠF )0 via η 7→ e ◦ η. Define ψ :

HomC-smod(h
X ,ΠF )0 → HomC-smod(h

X , F )1 via ν 7→ e ◦ ν.
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To see that ϕ is well-defined, note that

[(ΠF )(f)] ◦ [eY ◦ ηY ] = [(ΠF )(f) ◦ eY ] ◦ ηY
= [(−1)feZ ◦ F (f)] ◦ ηY
= (−1)feZ ◦ [F (f) ◦ ηY ]

= (−1)feZ ◦ [(−1)f ·ηηZ ◦ hX(f)]

= (−1)feZ ◦ [(−1)f ·1ηZ ◦ hX(f)]

= (−1)f+f [eZ ◦ ηZ ] ◦ hX(f)

= [eZ ◦ ηZ ] ◦ hX(f),

so indeed we see that e ◦ η is an even supernatural transformation from hX to ΠF .
Similarly, to see that ψ is well-defined, note that Π ◦ Π is the identity, so

[F (f)] ◦ [eY ◦ ψY ] = [(−1)feZ ◦ ΠF (f)] ◦ ψY
= (−1)feZ ◦ [ΠF (f) ◦ ψY ]

= (−1)feZ ◦ [ψZ ◦ hX(f)]

= (−1)f [eZ ◦ ψZ ] ◦ hX(f),

and hence e ◦ ψ is an odd supernatural transformation from hX to F .
That φ and ψ are mutually inverse follows from the fact that Π ◦ Π is the identity. �

Lemma 5.6 (Yoneda). Let C be a supercategory. For every object X in C and every F in
C-smod, we have an isomorphism

HomC-smod(h
X , F ) ∼= F (X)

which is natural (with respect to even morphisms) in both X and F .

Proof. Define Φ : HomC-smod(h
X , F )0 → F (X)0 via η 7→ ηX(idX). Define Ψ : F (X)0 →

HomC-smod(h
X , F )0 via v 7→ ψv the supernatural transformation whose section is defined by

ψvY (f) := F (f)(v) for f ∈ HomC(X, Y ).
Note that idX is an even element of HomC(X,X) and since η ∈ HomC-smod(h

X , F )0, it
follows that η 7→ ηX(idX) ∈ F (X)0 under Φ, hence, it is well-defined. Next, note that for
f ∈ HomC(X, Y ) and g ∈ HomC(Y, Z),

[F (g) ◦ ψvY ](f) = F (g) ◦ [F (f)(v)]

= F (gf)(v).

On the other hand, we have

[ψvY ◦ hX(g)](f) = ψvY ◦ [g ◦ f ]

= F (gf)(v).
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Hence ψv is an even supernatural transformation, and we see that Ψ is well-defined. Now we
check that these maps are mutually inverse:

[Φ ◦Ψ](v) = Φ(ψv)

= ψvX(idX)

= F (idX)(v)

= idF (X)(v)

= v

and

[Ψ ◦ Φ](η) = Ψ ◦ [ηX(idX)]

= ψηX(idX),

where ψηX(idX) has sections given by:

ψ
ηX(idX)
Y (f) = F (f) ◦ [ηX(idX)]

= [F (f) ◦ ηX ](idX)

= [ηY ◦ hX(f)](idX)

= ηY ◦ [f ◦ idX ]

= ηY (f).

Therefore, ψηX(idX) is the same supernatural transformation as η. We’ve just established
HomC-smod(h

X , F )0
∼= F (X)0.

Now by Proposition 5.5, we know that HomC-smod(h
X , F )1

∼= HomC-smod(h
X ,ΠF )0. By the

result just proven, HomC-smod(h
X ,ΠF )0

∼= (ΠF )(X)0. But (ΠF )(X)0 = (Π ◦ )(F (X)0) ∼=
F (X)1. It follows that we have our full isomorphism HomC-smod(h

X , F ) ∼= F (X).
To see that Φ is natural in F , suppose ν : F → G is an (even) supernatural transformation.

Then ν ◦ : HomC-smod(h
X , F ) → HomC-smod(h

X , G) since the composition of (even) super-
natural transformations is again a (even) supernatural transformation. Then (νP ◦ Φ)(η) =
νP (ηP (idP )). On the other hand, (Φ ◦ (ν ◦ ))(η) = Φ(ν ◦ η) = (ν ◦ η)P (idP ) = νP (ηP (idP )).
Hence, the following diagram commutes:

HomC-smod(h
X , F ) F (X)

HomC-smod(h
X , G) G(X)

Φ

ν◦ νX

Φ

.

To see that Φ is functorial in X, let f ∈ HomC(X1, X2) and g ∈ HomC(Y1, Y2) be even.
Then the associativity of composition implies that the following square commutes:

HomC(X2, Y1) HomC(X2, Y2)

HomC(X1, Y1) HomC(X1, Y2)

g◦

◦f ◦f

g◦

.

From this we see easily that for an even η ∈ HomC-smod(h
X1 , F ) the following diagram

commutes:
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HomC(X2, Y1) HomC(X2, Y2)

HomC(X1, Y1) HomC(X1, Y2)

F (Y1) F (Y2)

g◦

◦f ◦f

ηY1

g◦

ηY2

Fg

.

Moreover, this means η ◦ ( ◦ f) ∈ HomC-smod(h
X2 , F ). So f : X1 → X2 induces a map

f ∗ : HomC-smod(h
X1 , F )→ HomC-smod(h

X2 , F ).
Note that (Φ ◦ f ∗)(η) = [η ◦ ( ◦ f)]X2(idX2) = ηX2(f). On the other hand, using the above

diagram, we see that (Ff ◦ Φ)(η) = Ff(ηX1(idX1)) = [ηX2 ◦ (f ◦ )](idX1) = ηX2(f). Hence
the following diagram commutes

HomC-smod(h
X1 , F ) F (X1)

HomC-smod(h
X2 , F ) F (X2)

Φ

f∗ Ff

Φ

,

and we have our desired result. �

Remark 5.7. Note that smodk is a symmetric monoidal supercategory under the usual tensor
product of k-modules where the braiding is the super flip map

x⊗ y 7→ (−1)x·yy ⊗ x,
and where composition of morphisms is defined as

(f ⊗ g) ◦ (h⊗ k) = (−1)g·h(f ◦ h)⊗ (g ◦ k).

Then using this monoidal structure, one can introduce an operation � which makes
the category sCat of all supercategories monoidal. For any supercategories C and D, we can
form a supercategory C �D whose objects are ordered pairs of objects (X, Y ) where X and
Y are objects of C and D, respectively, and whose morphism spaces are defined as

HomC�D((W,X), (Y, Z)) := HomC(W,Y )⊗ HomD(X,Z).

Composition is given by the formula above. The unit object I is the supercategory with one
object whose morphism space is k concentrated in degree 0.

6. Generalized Strict Polynomial Functors & Strict Polynomial
Superfunctors

Let k be a commutative domain which is not characteristic 2. Let A be a unital (free) k-
superalgebra. Let V denote the category of free finite right A-supermodules including parity
shifts, so that an object looks like V ∼= Am|n. Let V denote the category of free finite right
A-supermodules without parity shifts (unshifted), so an object looks like V = An. Then we
have V, V , ΓdV, and ΓdV all being supercategories. Moreover, it follows from definitions and
proposition 4.12 that for any unital good pair (A, a), TA

a (d) is a supercategory.
There are two flavors of generalized strict polynomial functors we wish to introduce. The

differences are whether or not we consider parity shifts of supermodules and which morphisms
we allow. In what follows, these differences are only apparent in the proof of lemma 6.7.
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Definition 6.1. A homogeneous generalized strict polynomial functor over (A,a)
of degree d is a superfunctor

F : TA
a (d)→ smodk.

Such a functor is called a generalized strict polynomial functor because of its connection
with generalized Schur (super)algebras. We emphasize ‘general’ in the name and not ‘super’
since taking A to be concentrated in even degree still yields an interesting generalized Schur
algebra which is not Z2-graded.

Definition 6.2. A homogeneous strict polynomial superfunctor over A of degree
d is a superfunctor

F : ΓdV→ smodk.

Such a functor is called a strict polynomial superfunctor since the main emphasis here is
to consider free A-supermodules with even and odd A-basis elements. In particular, even if
A is concentrated in degree 0, the corresponding Schur superalgebra (see definition 3.3) will
usually be a superalgebra.

Definition 6.3. Let Pd(A,a) denote the (super)category of degree d homogeneous generalized

strict polynomial functors over (A, a) whose morphisms are supernatural transformations.
That is,

Pd(A,a) := TA
a (d)-smod.

Then the category P(A,a) of arbitrary generalized strict polynomial functors over (A, a) is
defined to be

P(A,a) :=
⊕
d∈N

Pd(A,a).

Definition 6.4. Let PdA denote the (super)category of degree d homogeneous strict polyno-
mial superfunctors over A whose morphisms are supernatural transformations. That is,

PdA := ΓdV-smod.

Then the category PA of arbitrary strict polynomial superfunctors over A is defined to be

PA :=
⊕
d∈N

PdA.

It follows from remark 4.18 that

Pd(A,A0) = ΓdV-smod.

In this way, one can recover P(A,A0) from PA by restricting to V . However, for a 6= A0, there
is no way to do this.

Note that (smodk)ev, the category with the same objects as smodk but only even mor-
phisms, is an abelian category. Since kernels, cokernels, products and coproducts can be
computed pointwise in (smodk)ev, it follows that (P(A,a))ev and (PA)ev are also abelian. Thus
the supercategories P(A,a) and PA are abelian.

Remark 6.5. Define

evdV : Pd(A,a) → End
TAa (d)

(V )smod
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to be evaluation at V . Notice that evdV = evC
V from proposition 5.3 for C = TA

a (d). Then
proposition 5.3 implies that evdV is well-defined. So in particular, for V = An,

evdAn : Pd(A,a) → End
TAa (d)

(An)smod = TAa (n,n;d)smod.

Similarly, evaluation at V ,
evdV : PdA → End

ΓdV
(V )smod,

is well-defined. In particular, by remark 3.4,

evdAm|n : PdA → End
ΓdV

(Am|n)smod = SA(m|n,d)smod.

6.1. Equivalences with SA(m|n,d)smod and TAa (n,n;d)smod

The proof technique used in this section follows a general framework that shows when
the functor from proposition 5.3 induces an equivalence of (super)categories. We follow and
expand upon this framework found in Appendix A of [Axt13] which in turn is a super-
generalization of the non-super result from Appendix A of [Tou13]. To be explicit, we go
through the proofs in detail for our specific supercategories P(A,a),PA.

Let P ∈ {P(A,a),PA}. An object being projective is a property concerning even morphisms,
so we say that F in P is projective if F is a projective object in Pev. Since Pev is abelian, an
object F in Pev being projective is equivalent to HomP(F, ) : Pev → (smodk)ev being exact.
Note that for η : Q → R a supernatural transformation, HomP(F, )(η) = η ◦ . It follows
that if η is an even morphsim, then η ◦ is an even linear map, so that HomP(F, ) : Pev →
(smodk)ev makes sense for any F in P .

We also make use of the following equivalent definition of F being a projective object
in Pev: An epimorphism ρ : H → G in Pev is an (even) epi supernatural transformation
ρ : H → G, by which we mean that every section ρX : H(X)→ G(X) is an (even) surjection
in smodk. Then given objects G,H in Pev and an (even) morphism η : F → G and (even)
epimorphism ρ : H → G, F is projective iff there exists a lift η̃ : F → H such that ρη̃ = η.

Lemma 6.6. Let (Pd, Cd) ∈ {(Pd(A,a),T
A
a (d)), (PdA,Γ

dV)}. For any d and any object P in Cd,
hd,P := HomCd(P, ) is a projective object in Pd.

Proof. Let F,G in Pd. Let η : F → G be an even epi supernatural transformation. This
means for every X ∈ Cd, the section ηX : F (X) → G(X) is an (even) surjection. Then the
naturality of the Yoneda isomorphism (lemma 5.6) gives a commutative diagram

HomPd(h
d,P , F ) F (P )

HomPd(h
d,P , G) G(P )

∼=

η◦ ηP

∼=

,

and since ηP is surjective, we see that η ◦ must also be surjective. This means that given a
morphism ψ : hd,P → G and an epimorphism η : F → G, that there exists some ν : hd,P → F
such that ψ = η ◦ ν. This is the definition of hd,P being a projective object. Since we are
working in an abelian category, this is equivalent to HomPd(h

d,P , ) being right exact (and
hence exact). �

Lemma 6.7. Let m,n > d. Let (C, X) ∈ {(TA
a (d), An), (ΓdV, Am|n)}. For all V,W in C, the

map induced by composition

HomC(X,W )⊗ HomC(V,X)→ HomC(V,W )
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is surjective.

Proof. We will provide two slightly different proofs for TA
a (d) and ΓdV. For TA

a (d), we work
with k-bases. This technique is possible for ΓdV, as well, but the indexing becomes much
more cumbersome. Hence, we choose to work with A-bases for this case which we believe is
much more readable. It also better highlights the role that parity shifts of A play.

We’ll start with TA
a (d). Let V and W be objects of TA

a (d) so that V = A` and W = Ak

for some `, k ∈ Z>0. So then we see the map in question is really

TAa (k, n; d)⊗ TAa (n, `; d)→ TAa (k, `; d).

First, we choose a k-basis B = Ba t Bc t B1 for A such that Ba contains 1A. Let η̃(~b,~r,~s) be

a k-basis element of TAa (k, `; d) as in corollary 4.9. Then to show this map is surjective, we
need to find elements of TAa (k, n; d) and TAa (n, `; d) which compose to give η̃(~b,~r,~s).

Recall that

ϕ̃(~b,~r,~s)
:=

∑
σ∈~b,~r,~sD

ϕ(~b,~r,~s).σ

=
∑

σ∈~b,~r,~sD

(−1)s(
~b,σ)ϕbσ1

rσ1sσ1
⊗ · · · ⊗ ϕbσdrσdsσd .

Note that for ~1A = (1A, . . . , 1A) ∈ Bd and for any ~p ∈ [1, k]d and ~q ∈ [1, n]d we have

(~1A, ~p, ~q) ∈ TriB(k, n; d). Therefore, η̃(~1A,~r,~q)
is a k-basis element of TAa (k, n; d) for any ~q ∈

[1, n]d.

Now we claim that it is possible to choose ~i ∈ [1, n]d such that S~b,~r,~s = S ~1A,~r,~i
= S~b,~i,~s. To

see this, first notice that for any tuple (~h, ~u,~v) ∈ Bd × [1, t1]d × [1, t2]d (for any t1, t2 > 1),

we have S~h,~u,~v = S~h ∩ S~u ∩ S~v. So we need to be able to choose ~i ∈ [1, n]d such that its

stabilizer under the Sd action is equal to the smallest of the stabilizers of ~b, ~r, ~s. The worst
case scenario is when S~b,~r,~s = {1}. Therefore, we just need to be able to choose distinct

entries for ~i which is possible since we’ve assumed that n > d.
So for this chosen ~i, we have η̃(~1A,~r,~i)

is a k-basis element of TAa (k, n; d). Moreover, it is

easy to see that η̃(~b,~i,~s) is a k-basis element of TAa (n, `; d). Notice that [~1A, ~r,~i]
!
c = 1 so that

η̃(~1A,~r,~i)
= ϕ̃(~1A,~r,~i)

. Also, note that since we’ve chosen~i to have the appropriate stabilizer, we

have [~b,~i, ~s]!c = [~b, ~r, ~s]!c. Thus, we have

η̃(~1A,~r,~i)
η̃(~b,~i,~s) = [~b, ~r, ~s]!cϕ̃(~1A,~r,~i)

ϕ̃(~b,~i,~s)

= [~b, ~r, ~s]!c

 ∑
σ∈~1A,~r,~iD

ϕ1A
rσ1iσ1

⊗· · ·⊗ϕ1A
rσdiσd

 ∑
τ∈~b,~i,~sD

(−1)s(
~b,τ)ϕbτ1

iτ1sτ1
⊗· · ·⊗ϕbτdiτdsτd


= [~b, ~r, ~s]!c

∑
σ∈~1A,~r,~iD

∑
τ∈~b,~i,~sD

(−1)s(
~b,τ)ϕ1A

rσ1iσ1
ϕbτ1
iτ1sτ1

⊗ · · · ⊗ ϕ1A
rσdiσd

ϕbτdiτdsτd , (52)

where the second line follows since s( ~1A, σ) = 0 for all σ, and there is no extra sign appearing
in the third line since 1A is even.

Now since S~b,~r,~s = S~1A,~r,~i
= S~b,~i,~s, each sum above ranges over the same set of elements of

Sd. Moreover, since these elements give distinct elements of the orbit, we see that iσj = iτj
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for each j ∈ [1, d] only when σ = τ . Then it follows that we have

(52) = [~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD

(−1)s(
~b,τ)ϕ1Abσ1

rσ1sσ1
⊗ · · · ⊗ ϕ1Abσd

rσdsσd

= [~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD

(−1)s(
~b,τ)ϕbσ1

rσ1sσ1
⊗ · · · ⊗ ϕbσdrσdsσd

= [~b, ~r, ~s]!cϕ̃(~b,~r,~s)

= η̃(~b,~r,~s),

as desired. Note that being able to choose the appropriately sized stabilizer allows us to
avoid getting too few or too many terms in our morphisms.

Now we handle ΓdV. For V,W,Am|n in ΓdV, Let {vk}, {w`}, {ei} be A-bases for V,W,Am|n,
respectively. We need to consider the Sd-action on the morphism spaces in question. We
view our morphism spaces HomΓdV(V,W ), for example, as HomA⊗d(V

⊗d,W⊗d)Sd instead of(
HomA(V,W )⊗d

)Sd which is possible as observed in the proof of lemma 3.2.

First, we must introduce some notation. Let v~r = vr1 ⊗ · · · ⊗ vrd ∈ V ⊗d. Then v~rσ =
(−1)s(v~r,σ)v~rσ. Similarly for the other modules.

Now for f ∈ HomA⊗d(V
⊗d,W⊗d)Sd to be invariant under the Sd-action, we need f(v~r.σ) =

f(v~r)σ for each basis element v~r and each σ. So, as in remark 1.2 and lemma 1.10, write f as
a matrix so that f =

∑
~̀,~k

γ
a~̀~k
~̀~k

(where γ
a~̀~k
~̀~k

is the map v~j 7→ δ~k~jw~̀a~̀~k). On one hand, we have∑
~̀,~k

γ
a~̀~k
~̀~k

 (v~r.σ) =
∑
~̀,~k

(
γ
a~̀~k
~̀~k

)
(v~r.σ)

=
∑
~̀,~k

(
γ
a~̀~k
~̀~k

) (
(−1)s(v~r,σ)v~rσ

)
=
∑
~̀

(−1)s(v~r,σ)w~̀a~̀,~rσ

=
∑
~̀

(−1)s(v~r,σ)w~̀σa~̀σ,~rσ (53)

with the last line coming from reindexing the sum, which is possible since σ is a bijection.
On the other hand,∑

~̀,~k

γ
a~̀~k
~̀~k

 (v~r)

σ =

∑
~̀

w~̀a~̀~r

σ

=
∑
~̀

(w~̀.σ)(a~̀~r.σ)

=
∑
~̀

(−1)s(w~̀,σ)w~̀σ(a~̀~r.σ). (54)

Since we must have (53)=(54), and since the w~̀σ are A-basis elements, it must be that

a~̀σ,~rσ = (−1)s(w~̀,σ)+s(v~r,σ)(a~̀,~r).σ, (55)
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which holds for all admittable tuples ~̀ and ~r and all σ ∈ Sd. Notice that this can impose
restrictions on what a~̀,~r can be.

Let {~s, ~r} denote the orbit of the pair of tuples ~s, ~r under the Sd action given by (~s, ~r)σ :=
(~sσ, ~rσ). Let O denote the set of such orbits. Then relation (55) tells us that we may write
f as

f =
∑
{~̀,~k}∈O

∑
σ∈Sd

(~pσ,~qσ)=(~̀,~k)

γ
(b~̀~k.σ)

~̀σ,~kσ
(−1)s(w~̀,σ)+s(v~k,σ) (56)

where we group the terms by Sd-orbit so that the inner sum runs over all permutations which
give distinct elements of the given orbit. We have similar equations for the other morphism
spaces, as well.

In particular, for g ∈ HomA⊗d

(
V ⊗d,

(
Am|n

)⊗d)Sd
, the relation from (55) becomes

b~iσ,~kσ = (−1)s(e~i,σ)+s(v~k,σ)(b~i,~k).σ (57)

so that we can write

g =
∑
{~i,~k}∈O

∑
σ∈Sd

(~pσ,~qσ)=(~i,~k)

ψ
(b~i~k.σ)

~iσ,~kσ
(−1)s(e~i,σ)+s(v~k,σ).

For h ∈ HomA⊗d

((
Am|n

)⊗d
,W⊗d

)Sd
, the relation from (55) becomes

c~̀σ,~iσ = (−1)s(w~̀,σ)+s(e~i,σ)(c~̀,~i).σ (58)

so that we can write

h =
∑
{~̀,~i}∈O

∑
σ∈Sd

(~pσ,~qσ)=(~̀,~i)

ϕ
(c~̀~i.σ)

~̀σ,~iσ
(−1)s(w~̀,σ)+s(e~i,σ).

Notice from (56) that each element of HomA⊗d(V
⊗d,W⊗d)Sd is determined by |O|-many

elements of A⊗d. Therefore, to surject onto a given f ∈ HomA⊗d(V
⊗d,W⊗d)Sd with our

composition map, it is enough to hit every∑
σ∈Sd

(~pσ,~qσ)=(~̀,~k)

γ
(a~̀~k.σ)

~̀σ,~kσ
(−1)s(w~̀,σ)+s(v~k,σ)

for a given initial seed {~̀, ~k} ∈ O and corresponding a~̀,~k ∈ A⊗d (for we can then take a

linear combination of compositions to surject onto a general element).
In order to do this, there are two main steps. First, we need to ensure that we can cover

each term in the sum regardless of how many terms there are (i.e. regardless of how small the

stabilizer of {~̀, ~k} is). This means we need enough freedom to choose a tuple~i corresponding

to a basis element of Am|n with the appropriate sized stabilizer. Specifically, given a {~̀, ~k} ∈
O and corresponding a~̀,~k ∈ B⊗d, choose a ~i (corresponding to e~i of (Am|n)⊗d) such that

StabSd

(
~i
)

= StabSd

(
(~̀, ~k)

)
(which is possible since m+n > d - this ensures that there are

enough distinct basis elements of Am|n so that we can find a tuple~i which has trivial stabilizer,

if necessary). Also notice then that StabSd

(
(~̀,~i)

)
= StabSd

(
(~̀, ~k)

)
= StabSd

(
(~i,~k)

)
.
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The next step requires us to choose the entries of our matrices in a nice way to ensure we
get the correct final entries. Basically, we need enough even and odd basis elements of Am|n

to do so. In particular, we would like to let c~̀~i = 1 in A⊗d. Now looking at (58), this is only

possible if we can also choose ~i from above so that s(w~̀, σ) = s(e~i, σ) for all σ. To see this

claim, notice that if there are any τ such that ~̀τ = ~̀, then since ~i has the same stabilizer,
we have ~iτ = ~i. But then c~̀τ,~iτ = c~̀,~i, and so we must have c~̀,~i = (−1)s(w~̀,τ)+s(e~i,τ)(c~̀,~i)τ . If

we want c~̀,~i = 1, then (c~̀,~i)τ = c~̀,~i = 1, and we must have 1 = (−1)s(w~̀,τ)+s(e~i,τ)1. Note that

if the stabilizer of ~̀ is trivial, then this is a non-issue, but it could be that ~̀ is fixed by the
entire symmetric group.

The only way to ensure s(w~̀, σ) = s(e~i, σ) for all σ is to choose ~i so that it corresponds

to a basis element of
(
Am|n

)⊗d
which has the same number of even (and odd) components

as the element in W⊗d corresponding to ~̀. This is always possible so long as m,n > d (just
having m,n > 1 ensures you can get the correct number of even and odd components, but
we also need the option to make all of these distinct to ensure we get the correct number of
terms).

So, choosing the appropriate~i so that we can set c~̀~i = 1, we have c~̀σ,~iσ = (−1)s(w~̀,σ)+s(e~i,σ) =

(−1)s(w~̀,σ)+s(w~̀,σ) = 1 so that

H =
∑
σ∈Sd

(~pσ,~qσ)=(~̀,~i)

ϕ1
~̀σ,~iσ

is an element of HomA⊗d((A
m|n)⊗d,W⊗d)Sd . In terms of matrices, this is like choosing a

sparse matrix which has only the identity of A⊗d as entries (which correspond to the orbit

of initial seed (~̀,~i)).
For the other matrix, we want to be able to use entries that align exactly with the entries

of the target matrix. In particular, for the same fixed ~i, we want b~iσ,~kσ = a~̀σ,~kσ for all σ.

Looking at relations (55) and (57), we see that this is possible since we’ve already ensured
that s(e~i, σ) = s(w~̀, σ) for all σ.

So, simply letting b~i~k = a~̀~k, we see that

G =
∑
τ∈Sd

(~xτ,~yτ)=(~i,~k)

ψ
(a~̀~k.τ)

~iτ,~kτ
(−1)s(w~̀,τ)+s(v~k,τ)

is an element of HomA⊗d(V
⊗d, (Am|n)⊗d)Sd . Then

H ◦G =

 ∑
σ∈Sd

(~pσ,~qσ)=(~̀,~i)

ϕ1
~̀σ,~iσ


 ∑

τ∈Sd
(~xτ,~yτ)=(~i,~k)

ψ
(a~̀~k.τ)

~iτ,~kτ
(−1)s(w~̀,τ)+s(v~k,τ)


=

∑
σ∈Sd

(~pσ,~qσ)=(~̀,~i)

∑
τ∈Sd

(~xτ,~yτ)=(~i,~k)

ϕ1
~̀σ,~iσ

ψ
(a~̀~k.τ)

~iτ,~kτ
(−1)s(w~̀,τ)+s(v~k,τ). (59)

Since ϕ1
~̀σ,~iσ

ψ
(a~̀~k.τ)

~iτ,~kτ
= δ~iσ,~iτγ

(a~̀~k.τ)

~̀σ,~kτ
, the only way for this term in (59) to give something nonzero

is if ~iσ =~iτ for some σ, τ . But each sum ranges over only those elements of Sd which yield
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distinct elements of the orbit of ~i. So ~iσ =~iτ only when σ = τ . Thus, we have

(59) =
∑
σ∈Sd

(~pσ,~qσ)=(~̀,~i)

γ
(a~̀~k.σ)

~̀σ,~kσ
(−1)s(w~̀,σ)+s(v~k,σ)

=
∑
σ∈Sd

(~pσ,~qσ)=(~̀,~k)

γ
(a~̀~k.σ)

~̀σ,~kσ
(−1)s(w~̀,σ)+s(v~k,σ), (60)

where the last equality follows from the fact that StabSd

(
(~̀,~i)

)
= StabSd

(
(~̀, ~k)

)
. There-

fore, we see that our composition map is surjective, as desired. �

Lemma 6.8. Let m,n > d. Let (P , C, Z) ∈ {(Pd(A,a),T
A
a (d), An), (PdA,Γ

dV, Am|n)}. For all F
in P and V in C, the canonical map

HomC(Z, V )⊗ F (Z)→ F (V ), f ⊗ x 7→ Ff(x)

is surjective.

Proof. Let IdV d ∈ HomC(V, V ) denote the identity map (note that for C = TA
a (d) we have

IdV d =
r∑
i=1

η̃( ~1A,(i,...,i),(i,...,i))
where V = Ar).

By lemma 6.7, we may write IdV d =
∑
i∈I
αi⊗βi for some index set I with αi ∈ HomC(Z, V )

and βi ∈ HomC(V, Z). Let y ∈ F (V ). Then Fβi(y) ∈ F (Z), and under the canonical map,
we have ∑

i∈I

αi ⊗ Fβi(y) 7→
∑
i∈I

Fαi (Fβi(y))

=
∑
i∈I

F (αi ◦ βi)(y)

= F

(∑
i∈I

αi ◦ βi

)
(y)

= F (IdV d) (y)

= IdFV (y)

= y,

where the first equality follows from the fact that F respects compositions, the second equal-
ity follows from the fact that F is a k-linear functor, and the fourth equality follows from
the fact that F sends the identity to the identity. �

Lemma 6.9. Let m,n > d. Let (P , C, X) ∈ {(Pd(A,a),T
A
a (d), An), (PdA,Γ

dV, Am|n)}. Then

{hd,X ,Πhd,X} is a projective generator of (P)ev where hd,X = HomC(X, ).

We denote hd,A
n

by hd,n and denote hd,A
m|n

by hd,m|n.

Proof. By lemma 6.6, we know that hd,X is a projective object in P . To see that Πhd,X is
also projective, suppose we have a supernatural transformation ν : Πhd,X → G and an epi
supernatural transformation η : F → G for F,G in P (which we take to mean each section
is an epimorphism in smodk). Recall the supernatural transformation e : hd,X → Πhd,X
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from proposition 5.5. Then ν ◦ e is a supernatural transformation from hd,X to G. Since
hd,X is projective, there exists a supernatural transformation ν ◦ e from hd,X to F such that
η ◦ ν ◦ e = ν ◦ e. Notice that ν ◦ e ◦ e−1 is a supernatural transformation from Πhd,X → F
(where e−1 has sections given by e−1

Y ) such that ν = η ◦ (ν ◦ e ◦ e−1). It folllows that Πhd,X

is projective.

F

hd,X Πhd,X G

η

ν◦e

e ν

ν◦e◦e−1

Now for any F in P , hd,X ⊗ F (X) is in P where V in C is mapped to the k-supermodule
hd,X(V )⊗F (X), and a morphism f ∈ HomC(V,W ) is sent to the linear map hd,X(f)⊗ idF (X).

Next, note that the canonical map from lemma 6.8 gives rise to an even supernatural
transformation

µ : hd,X ⊗ F (X)→ F

whose sections are given by the canonical map: µV : hd,X(V )⊗ F (X) → F (V ). To see that
this is the case, consider g ⊗ x ∈ hd,X(V ) ⊗ F (X) and f ∈ HomC(V,W ). Then recall that

µV (g ⊗ x) = Fg(x) and Fg(x) = Fg + x = g + x since F is even on morphisms. But
g + x = g ⊗ x and we see that µV preserves parity hence is even. Furthermore, we have[

µW ◦
(
hd,X(f)⊗ idF (X)

)]
(g ⊗ x) = µW ((f ◦ g)⊗ x)

= F (f ◦ g)(x)

and

[Ff ◦ µV ] (g ⊗ x) = Ff (Fg(x))

= F (f ◦ g)(x).

Hence the following diagram commutes

hd,X(V )⊗ F (X) hd,X(W )⊗ F (X)

F (V ) F (W )

hd,X(f)⊗idF (X)

µV µW

Ff

,

and we see that µ really is a (even) supernatural transformation. Moreover, since each µV is
surjective by lemma 6.8, we have that µ is an epi supernatural transformation.

Now since F (X) is some (possibly infinitely generated) k-supermodule, there exists an
even k-linear surjection

φF : kI|J � F (X)

for the free k-supermodule kI|J :=

(⊕
I

k
)
⊕
(⊕

J

Πk
)

for some index sets I and J .

We claim that φF induces an even epi supernatural transformation

ΦF : hd,X ⊗ kI|J → hd,X ⊗ F (X) with sections (ΦF )V = Idhd,X(V )⊗φF .

Indeed, it’s easy to verify that for every f ∈ HomC(V,W ), the following diagram commutes
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hd,X(V )⊗ kI|J hd,X(W )⊗ kI|J

hd,X(V )⊗ F (X) hd,X(W )⊗ F (X)

hd,X(f)⊗idkI|J=(f◦ )⊗idkI|J

(ΦF )V (ΦF )W

hd,X(f)⊗idF (X)=(f◦ )⊗idF (X)

and that each Idhd,X(V )⊗φF is surjective since φF is.
Next, we mention that for F,G in P , we may form F ⊕ G,F ⊗ G in P as expected.

For V,W in C, V maps to F (V ) ⊕ G(V ) and F (V ) ⊗ G(V ), respectively. A morphism
f ∈ HomC(V,W ) is sent the linear maps Ff ⊕ Gf and Ff ⊗ Gf , respectively, where each
map acts componentwise, as expected. These notions extend to arbitrary index sets. Now for

any V in C, hd,X(V )⊗ kI|J = hd,X(V )⊗
(⊕

I

k⊕
⊕
J

Πk
)

which is canonically isomorphic to

the k-supermodule

(⊕
I

hd,X(V )⊗ k
)
⊕
(⊕

J

hd,X(V )⊗ Πk
)

. Similar calculations as above

show that this isomorphism induces the sections of an (even) supernatural isomorphism

hd,X ⊗ kI|J ∼=

(⊕
I

hd,X ⊗ k

)
⊕

(⊕
J

hd,X ⊗ Πk

)
.

Furthermore, hd,X(V )⊗ k is canonically isomorphic to hd,X(V ) and hd,X(V )⊗Πk is canoni-
cally isomorphic to Πhd,X(V ), and therefore hd,X ⊗ k is supernaturally isomorphic to hd,X ,
and hd,X ⊗Πk is supernaturally isomorphic to Πhd,X , all via even morphisms. Therefore, we
have

hd,X ⊗ kI|J ∼=

(⊕
I

hd,X

)
⊕

(⊕
J

Πhd,X

)
.

Composing this supernatural isomorphism with ΦF yields an even epi supernatural trans-
formation (⊕

I

hd,X

)
⊕

(⊕
J

Πhd,X

)
� hd,X ⊗ F (X). (61)

Thus, given any F in P , by our observations above, composing the epi supernatural transfor-
mation from (61) with the epi supernatural transformation µ yields an even epi supernatural
transformation (⊕

I

hd,X

)
⊕

(⊕
J

Πhd,X

)
� F.

That is, {hd,X ,Πhd,X} is a generator of (P)ev. �

Theorem 6.10. Let m,n > d. Let (P , C, X) ∈ {(Pd(A,a),T
A
a (d), An), (PdA,Γ

dV, Am|n)}. For

brevity, we let E = EndC(X) (So for C = TA
a (d), we have E = TAa (n, n; d) and for C = ΓdV,

we have E = SA(m|n, d)). Then evaluation at X gives an equivalence of categories

P ∼= Esmod.

Proof. Remark 6.5 explains why evdX : P → Esmod makes sense. By remark 5.1, it suffices
to show that this functor is fully faithful and essentially surjective. To show fully faithful, it
suffices to show HomP(G,F ) ∼= HomE(G(X), F (X)) as k-supermodules for any F,G in P .
To this end, Notice that the diagram below left commutes:
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HomP(hd,X , F ) F (X)

HomE(E , F (X))

∼=

evdX ∼=

η ηX (IdX)

ηX

where the top arrow corresponds to the Yoneda isomorphism, the vertical arrow corresponds
to the map induced by evaluation, and the diagonal arrow is the canonical isomorphism

HomE(E , F (X)) ∼= F (X) via f 7→ f(1E) = f(IdX).

The diagram above right shows what happens on a given element.
Hence the map induced by evaluation actually gives an isomorphism HomP(hd,X , F ) ∼=

HomE(E , F (X)). Moreover, proposition 5.4 gives HomP(hd,X , F ) ∼= HomP(Πhd,X , F ), and
proposition 5.2 gives HomE(E , F (X)) ∼= HomE(ΠE , F (X)). Therefore, HomP(Πhd,X , F ) ∼=
HomE(ΠE , F (X)). This, along with the proof of lemma 6.9 and with general facts about how
Hom interacts with direct sums and products, gives the following for any index sets I, J :

HomP(hd,X ⊗ kI|J , F ) ∼= HomP

(
hd,X ⊗

[(⊕
I

k

)
⊕

(⊕
J

Πk

)]
, F

)

∼= HomP

((⊕
I

hd,X ⊗ k

)
⊕

(⊕
J

hd,X ⊗ Πk

)
, F

)

∼= HomP

((⊕
I

hd,X

)
⊕

(⊕
J

Πhd,X

)
, F

)

∼=

(∏
I

HomP(hd,X , F )

)
×

(∏
J

HomP(Πhd,X , F )

)

∼=

(∏
I

HomE(E , F (X))

)
×

(∏
J

HomE(ΠE , F (X))

)

∼= HomE

((⊕
I

E

)
⊕

(⊕
J

ΠE

)
, F (X)

)

∼= HomE

((⊕
I

E ⊗ k

)
⊕

(⊕
J

E ⊗ Πk

)
, F (X)

)
∼= HomE

(
E ⊗ kI|J , F (X)

)
. (62)

By lemma 6.9, there is an even epi supernatural transformation hd,X ⊗ kI1|J1 → G for
some index sets I1, J1. Since this morphism is even, it makes sense to talk about its kernel.
More precisely, for each V in C, the section of this supernatural transformation is an even
surjection hd,X(V ) ⊗ kI1|J1 → G(V ). Therefore, we may compute its kernel. The kernels of
these sections lift to a kernel of the supernatural transformation, say K. Then again by
lemma 6.9, there is an even epi supernatural transformation hd,X ⊗ kI2|J2 → K for some
index sets I2, J2. This gives rise to the exact sequence

hd,X ⊗ kI2|J2 hd,X ⊗ kI1|J1 G 0 . (63)
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Applying the left-exact contravariant functor HomP( , F ) yields the following exact se-
quence:

HomP(hd,X ⊗ kI2|J2 , F ) HomP(hd,X ⊗ kI1|J1 , F ) HomP(G,F ) 0 . (64)

Evaluating at X turns sequence (63) into the exact sequence

hd,X(X)⊗ kI2|J2 hd,X(X)⊗ kI1|J1 G(X) 0 ,

which may be written as

E ⊗ kI2|J2 E ⊗ kI1|J1 G(X) 0 . (65)

Applying the left-exact contravariant functor HomE( , F (X)) to (65) yields the following
exact sequence:

HomE(E ⊗ kI2|J2 , F (X)) HomE(E ⊗ kI1|J1 , F (X)) HomE(G(X), F (X)) 0 .

Finally, evaluation at X gives rise to the commutative diagram

HomP(hd,X ⊗ kI2|J2 , F ) HomP(hd,X ⊗ kI1|J1 , F ) HomP(G,F ) 0

HomE(E ⊗ kI2|J2 , F (X)) HomE(E ⊗ kI1|J1 , F (X)) HomE(G(X), F (X)) 0

.

Here, the leftmost vertical arrow and the middle vertical arrow are isomorphisms by (62).
We wish to show that the rightmost vertical arrow is an isomorphism. To this end, first
suppose that η ∈ HomP(G,F ) is mapped to zero under the evaluation map. Then we have
the following section of our diagram:

η

0 0

.

Since the middle vertical arrow is an isomorphism, we have

0 η

0 0

.

Since the diagram commutes, we see that η 7→ 0 under the middle horizontal arrow in the
top row. But this map is injective, and hence it must be that η = 0. Thus, we have that the
rightmost vertical arrow is injective.

Next, suppose f ∈ HomE(G(X), F (X)). Then we have the following section of the diagram:

0 f ′ f .

Since the leftmost and middle vertical arrows are isomorphisms, and since the leftmost square
commutes, we have
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0 η′

0 f ′ f

.

So we see that η′ ∈ HomP(hd,X ⊗ kI1|J1 , F ) is in the kernel of the leftmost horizontal map in
the top row. Since that row is exact in this place, there must be an element η ∈ HomP(G,F )
such that

0 η′ η

0 f ′ f

.

Since the middle square in our diagram commutes, we have

η′ η

f ′ g

for some g ∈ HomE(G(X), F (X)). But the middle horizontal arrow in the bottom row of the
diagram is injective, and hence since f and g both map to f ′ under this map, f = g. Thus,
we’ve found an element η ∈ HomP(G,F ) which maps to f , so the rightmost vertical arrow
is surjective. Thus, we have the isomorphism we were looking for, and we see that evdX is
fully-faithful.

Next, we wish to see that evdX is essentially surjective. In order to do so, we first observe
that for any V in C, hd,X(V ) = HomC(X, V ) is a right E-supermodule. For f ∈ hd,X(V ) and
x ∈ E = EndC(X), we define f.x := f ◦ x. Since composition in C is well-defined, so is the
action. Moreover, for y ∈ E , note that

f.(xy) = f ◦ (x ◦ y)

= (f ◦ x) ◦ y
= (f.x).y

so we really do have an action (clearly 1 ∈ E acts as the identity). Therefore, it makes sense
to write hd,X(V )⊗E M for any V in C and M in Esmod.

Consider the functor hd,X ⊗E M ∈ P . Then evaluation at X gives hd,X(X) ⊗E M =
E ⊗E M ∼= M . Hence, evdX is essentially surjective. �

6.2. Tensor Product of Generalized Strict Polynomial Functors

In this section, we work out in detail what it means to take the tensor product of two
generalized strict polynomial functors. One should hopefully see how the argument goes for
strict polynomial superfunctors, as well. The first step in understanding this is to understand

the space
(
HomA(An, Am)⊗(d+e)

)Sd×Se where we’ve canonically identified Sd × Se with a
subgroup of Sd+e. We know that{

ϕ̃(~b,~r,~s)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d+ e)
}
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gives a homogeneous k-basis for
(
HomA(An, Am)⊗(d+e)

)Sd+e where Ω(B,m, n; d+ e) is a set

of orbit representatives for TriB(m,n; d+e)/Sd+e. It’s easy to see that a simple modification
of the proof of this fact yields ∑

ρ∈~b,~r,~sE

(−1)s(
~b,ρ)ϕbρ1rρ1sρ1 ⊗ · · · ⊗ ϕ

bρ(d+e)
rρ(d+e)sρ(d+e)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d× e)


as a homogeneous k-basis for

(
HomA(An, Am)⊗(d+e)

)Sd×Se where
~b,~r,~sE is the set of shortest

coset representatives for StabSd×Se(
~b, ~r, ~s)\Sd ×Se and where Ω(B,m, n; d × e) is a set of

orbit representatives for TriB(m,n; d+ e)/Sd ×Se.
Moreover, one can place a total order on B which will induce a total order (lexicographic

order) on TriB(m,n; d+ e). It follows that

{(~b, ~r, ~s) ∈ TriB(m,n; d+ e) | (~b, ~r, ~s) 6 (~b, ~r, ~s)σ ∀σ ∈ Sd+e}

is a set of representatives for TriB(m,n; d+ e)/Sd+e. Similarly,

{(~b, ~r, ~s) ∈ TriB(m,n; d+ e) | (~b, ~r, ~s) 6 (~b, ~r, ~s)σ ∀σ ∈ Sd ×Se}

is a set of representatives for TriB(m,n; d + e)/Sd ×Se. So from now on, we will consider
our initial seeds to be from these sets of representatives. In particular, this means that any
repeated componets in a seed must appear sequentially.

It will be helpful to understand the natural inclusion(
HomA(An, Am)⊗(d+e)

)Sd+e ⊂ (HomA(An, Am)⊗(d+e)
)Sd×Se

.

The next lemma demonstrates that a k-basis element of
(
HomA(An, Am)⊗(d+e)

)Sd+e is sent

to a sum of k-basis elements of
(
HomA(An, Am)⊗(d+e)

)Sd×Se where the sum is indexed by

permutations of our initial seed (~b, ~r, ~s) which respect the lexicographic order in the first d
slots and the last e slots. For example, if d = 3 and e = 2 and the initial word looked like
CCDEE, then CEECD is such a permutation, but ECCDE is not.

Define
~b,~r,~sDd,e ⊂

~b,~r,~sD to be the set

~b,~r,~sDd,e :=

{
τ ∈ ~b,~r,~sD

∣∣∣ (bτi, rτi, sτi) 6 (bτ(i+1), rτ(i+1), sτ(i+1)) for 1 6 i 6 d− 1,
(bτj, rτj, sτj) 6 (bτ(j+1), rτ(j+1), sτ(j+1)) for d+ 1 6 j 6 d+ e− 1

}
.

Remark 6.11. Later, we’ll need to understand the relationship between
~b,~r,~sDd,e and

~b,~r,~sDe,d.
Let ζ ∈ Sd+e be the permutation which swaps the first d-many and last e-many entries,
keeping the same relative order (so ζ takes d+1 to 1, d+2 to 2, etc. and takes 1 to e+1, . . . ,

and d to d + e). Then it is obvious that
~b,~r,~sDe,d =

~b,~r,~sDd,eζ. That is, for every τ ∈ ~b,~r,~sDd,e,

it is clear that τζ ∈ ~b,~r,~sDe,d and that this gives a bijection.
Furthermore,

(bτ1, bτ2, . . . , bτ(d)) = (bζτ(e+1), . . . , bζτ(e+d))

and

(bτ(d+1), . . . , bτ(d+e)) = (bζτ1, . . . , bζτ(e)),

and similarly for ~r and ~s.
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Lemma 6.12. Let ϕ̃(~b,~r,~s) ∈
(
HomA(An, Am)⊗(d+e)

)Sd+e be such that (~b, ~r, ~s) is in lexico-

graphic order as discussed above. Then the inclusion(
HomA(An, Am)⊗(d+e)

)Sd+e ⊂ (HomA(An, Am)⊗(d+e)
)Sd×Se

sends

ϕ̃(~b,~r,~s) 7→
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

∑
ρ∈~bτ,~rτ,~sτE

(−1)s(
~bτ,ρ)ϕbτρ1rτρ1sτρ1

⊗ · · · ⊗ ϕbτρ(d+e)rτρ(d+e)sτρ(d+e) ,

which by remark 1.4 is equal to∑
τ∈~b,~r,~sDd,e

∑
ρ∈~bτ,~rτ,~sτE

(−1)s(
~b,τρ)ϕbτρ1rτρ1sτρ1

⊗ · · · ⊗ ϕbτρ(d+e)rτρ(d+e)sτρ(d+e) .

Proof. First of all, given a τ and ρ from the double summation, τρ clearly corresponds to
some term in ϕ̃(~b,~r,~s).

On the other hand, given σ from ϕ̃(~b,~r,~s), there exists some γ ∈ Sd+e such that

(bσγi, rσγi, sσγi) 6 (bσγ(i+1), rσγ(i+1), sσγ(i+1)) for 1 6 i 6 d− 1

and
(bσγj, rσγj, sσγj) 6 (bσγ(j+1), rσγ(j+1), sσγ(j+1)) for d+ 1 6 j 6 d+ e− 1.

Then letting τ = σγ and ρ = γ−1, we see that the σ term of ϕ̃(~b,~r,~s) corresponds to the τ, ρ

term of the double sum. Clearly, this gives a one-to-one correspondence between the terms
of the two expressions. �

Remark 6.13. There is a canonical isomorphism of k-supermodules(
HomA(An, Am)⊗(d+e)

)Sd×Se ∼= (HomA(An, Am)⊗d
)Sd ⊗ (HomA(An, Am)⊗e

)Se
as follows: Consider a k-basis element∑

ρ∈~b,~r,~sE

(−1)s(
~b,ρ)ϕbρ1rρ1sρ1 ⊗ · · · ⊗ ϕ

bρ(d+e)
rρ(d+e)sρ(d+e)

of
(
HomA(An, Am)⊗(d+e)

)Sd×Se . For each ρ ∈ ~b,~r,~sE , we have that ρ is identified with some

(α, β) ∈ Sd×Se. Let ~b′ ∈ Bd be such that b′i = bi for 1 6 i 6 d, and let ~b′′ ∈ Be be such that

b′′j = bd+j for 1 6 j 6 e. Similarly for ~r′, ~r′′, ~s′, ~s′′. Then we have (~b, ~r, ~s) = (~b′~b′′, ~r′~r′′, ~s′~s′′).

Moreover, we have α ∈ ~b′,~r′,~s′D and β ∈ ~b′′,~r′′,~s′′D . Conversely, any (α, β) ∈ ~b′,~r′,~s′D ×~b′′,~r′′,~s′′D

determines some ρ ∈ ~b,~r,~sE .

So for a given ρ ∈ ~b,~r,~sE , we can write (−1)s(
~b,ρ)ϕ

bρ1
rρ1sρ1 ⊗ · · · ⊗ ϕ

bρ(d+e)
rρ(d+e)sρ(d+e) as

(−1)s(
~b′,α)+s(~b′′,β)ϕ

b′α1

r′α1s
′
α1
⊗ · · · ⊗ ϕb

′
αd

r′αds
′
αd
⊗ ϕb

′′
β1

r′′β1s
′′
β1
⊗ · · · ⊗ ϕb

′′
βe

r′′βes
′′
βe
,

and it follows that ∑
ρ∈~b,~r,~sE

(−1)s(
~b,ρ)ϕbρ1rρ1sρ1 ⊗ · · · ⊗ ϕ

bρ(d+e)
rρ(d+e)sρ(d+e)

is equal to ∑
α∈~b′,~r′,~s′D

(−1)s(
~b′,α)ϕ

b′α1

r′α1s
′
α1
⊗ · · · ⊗ ϕb

′
αd

r′αds
′
αd

⊗
 ∑
β∈~b′′,~r′′,~s′′D

(−1)s(
~b′′,β)ϕ

b′′β1

r′′β1s
′′
β1
⊗ · · · ⊗ ϕb

′′
βe

r′′βes
′′
βe

 ,
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which is equal to the k basis element

ϕ̃(~b′,~r′,~s′) ⊗ ϕ̃(~b′′,~r′′,~s′′)

of
(
HomA(An, Am)⊗d

)Sd ⊗ (HomA(An, Am)⊗e)
Se .

This remark along with lemma 6.12 imply the following (where we use the notation from
remark 4.5 for supermodules An, Am):

Corollary 6.14. We have an inclusion of categories SA(d+ e) ↪→ SA(d)⊗ SA(e) induced by
the sequence of maps

HomSA(d+e)(A
n, Am) = SA(m,n; d+ e)

=
(
HomA(An, Am)⊗(d+e)

)S(d+e)

⊂
(
HomA(An, Am)⊗(d+e)

)Sd×Se
∼=
(
HomA(An, Am)⊗d

)Sd ⊗ (HomA(An, Am)⊗e
)Se

= SA(An, Am; d)⊗ SA(An, Am; e)

= HomSA(d)(A
n, Am)⊗ HomSA(e)(A

n, Am), (66)

which send a k basis element ϕ̃(~b,~r,~s) to the sum of k-basis elments∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)ϕ̃(~bτ ′,~rτ ′,~sτ ′) ⊗ ϕ̃(~bτ ′′,~r′′,~sτ ′′).

We are actually interested in TA
a (d + e). One can still apply this chain of maps to an

element η̃(~b,~r,~s) ∈ TAa (m,n; d+ e) and end up in SA(m,n; d)⊗SA(m,n; e). But we would like

to say that we actually land in TAa (m,n; d)⊗ TAa (m,n; e).

Proposition 6.15. The chain of maps from (66) induces

TA
a (d+ e) ↪→ TA

a (d)⊗ TA
a (e).

Proof. We have η̃(~b,~r,~s) = [~b, ~r, ~s]!cϕ̃(~b,~r,~s) which the chain of maps in (66) identifies with

[~b, ~r, ~s]!c
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)ϕ̃(~bτ ′,~rτ ′,~sτ ′) ⊗ ϕ̃(~bτ ′′,~r′′,~sτ ′′).

Now consider all (x, y, z) that contribute to [~b, ~r, ~s]!c, that is, such that x ∈ c, y ∈ [1,m],

z ∈ [1, n], and [~b, ~r, ~s]xy,z! 6= 0!. Suppose there are p-many tuples. Enumerate them (x1, y1, z1),

. . . , (xp, yp, zp). Suppose [~b, ~r, ~s]xiyi,zi ! = qi! (so ϕxiyizi appears qi-many times in ϕ(~b,~r,~s)). Then

[~b, ~r, ~s]!c =

p∏
i=1

[~b, ~r, ~s]xiyi,zi !

=

p∏
i=1

qi!.

Now for a given τ ∈ ~b,~r,~sDd,e, say (xi, yi, si) appears kτ,i-many times in (~bτ ′, ~rτ ′, ~sτ ′)

and (qi − kτ,i)-many times in (~bτ ′′, ~rτ ′′, ~sτ ′′) (for appropriate values of kτ,i). That means
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[~bτ ′, ~rτ ′, ~sτ ′]xiyi,zi ! = kτ,i! and [~bτ ′′, ~rτ ′′, ~sτ ′′]xiyi,zi ! = (qi − kτ,i)!. It follows that [~bτ ′, ~rτ ′, ~sτ ′]!c =
p∏
i=1

kτ,i! and [~bτ ′′, ~rτ ′′, ~sτ ′′]!c =
p∏
i=1

(qi − kτ,i)!. Finally, it follows that

[~b, ~r, ~s]!c
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)ϕ̃(~bτ ′,~rτ ′,~sτ ′) ⊗ ϕ̃(~bτ ′′,~r′′,~sτ ′′)

is equal to
p∏
i=1

qi!
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)ϕ̃(~bτ ′,~rτ ′,~sτ ′) ⊗ ϕ̃(~bτ ′′,~r′′,~sτ ′′)

which equals ∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

p∏
i=1

qi!ϕ̃(~bτ ′,~rτ ′,~sτ ′) ⊗ ϕ̃(~bτ ′′,~r′′,~sτ ′′)

which equals∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

p∏
i=1

(
qi
kτ,i

) p∏
i=1

kτ,i!

p∏
i=1

(qi − kτ,i)!ϕ̃(~bτ ′,~rτ ′,~sτ ′) ⊗ ϕ̃(~bτ ′′,~r′′,~sτ ′′)

which equals∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

p∏
i=1

(
qi
kτ,i

)
[~bτ ′, ~rτ ′, ~sτ ′]!c[

~bτ ′′, ~rτ ′′, ~sτ ′′]!cϕ̃(~bτ ′,~rτ ′,~sτ ′) ⊗ ϕ̃(~bτ ′′,~r′′,~sτ ′′)

which equals ∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

p∏
i=1

(
qi
kτ,i

)
η̃(~bτ ′,~rτ ′,~sτ ′) ⊗ η̃(~bτ ′′,~r′′,~sτ ′′)

which lives in TA
a (m,n; d)⊗ TA

a (m,n; e), as desired. �

Remark 6.16. For generalized polynomial functors F in Pd(A,a) and G in Pe(A,a), F ⊗ G is a

generalized polynomial functor in Pd+e
(A,a) which sends an object V to F (V ) ⊗ G(V ). Now

F ⊗G must take a morphism from TAa (d+ e) to a k-linear map. F and G only know how to
handle morphisms from the d and e spaces, respectively. But proposition 6.15 allows us to
handle this issue in the following way:

(F ⊗G)(η̃(~b,~r,~s)) :=
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

p∏
i=1

(
qi
kτ,i

)
F (η̃(~bτ ′,~rτ ′,~sτ ′))�G(η̃(~bτ ′′,~r′′,~sτ ′′)).

It is often easier in practice to work with this equivalent formulation:

[~b, ~r, ~s]!c
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)F (ϕ̃(~bτ ′,~rτ ′,~sτ ′))�G(ϕ̃(~bτ ′′,~r′′,~sτ ′′)).

We will make use of this throughout the rest of the thesis.

Proposition 6.17. The tensor product of generalized polynomial functors described above
makes P(A,a) into a monoidal supercategory.
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Proof. We will show the result working with generalized polynomial functors of homogeneous
degree. It is clear how to extend if one has direct sums of such functors using the fact that,
by definition, our tensor product of polynomial functors distributes over our formal direct
sum:

(F ⊕G)⊗H = (F ⊗H)⊕ (G⊗H).

First, consider the supercategory P(A,a) � P(A,a) (as in remark 5.7). Then define the super-
functor ⊗ : P(A,a) � P(A,a) → P(A,a) in the following way: On objects, we have

(F,G) 7→ F ⊗G,

and for a morphism α⊗β ∈ HomP(A,a)
(E,G)⊗HomP(A,a)

(F,H), we have that ( ⊗ )(α⊗β)
is the supernatural transformation E ⊗ F → G⊗H whose sections at V are given by

αV � βV .

In order to check that these sections actually define a supernatural transformation, we will
suppose E,F,G,H are homogeneous. In particular, we can assume E and G are of degrees
d and that F and H are of degree e. Now for any free finite right A-supermodules V,W , we
must check the following:

(αW � βW ) ◦ (E ⊗ F )(η̃(~b,~r,~s)) = (−1)
~b·α⊗β(G⊗H)(η̃(~b,~r,~s)) ◦ (αV � βV ).

Well, using remark 6.16, we have (αW � βW ) ◦ (E ⊗ F )(η̃(~b,~r,~s))

= (αW � βW ) ◦

 ∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

p∏
i=1

(
qi
kτ,i

)
E(η̃(~bτ ′,~rτ ′,~sτ ′))� F (η̃(~bτ ′′,~r′′,~sτ ′′))


=

∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)+βW ·~bτ ′

p∏
i=1

(
qi
kτ,i

)(
αW ◦ E(η̃(~bτ ′,~rτ ′,~sτ ′))

)
�
(
βW ◦ F (η̃(~bτ ′′,~r′′,~sτ ′′))

)
,

(67)

where the extra sign in the second line follows from the fact that

E(η̃(~bτ ′,~rτ ′,~sτ ′)) = η̃(~bτ ′,~rτ ′,~sτ ′) = ~bτ ′

(and by ~b, for example, we mean b1 ⊗ · · · ⊗ bd = b1 + · · ·+ bd).
Now since α ∈ HomP(A,a)

(E,G) and β ∈ HomP(A,a)
(F,H), we know that

αW ◦ E(η̃(~bτ ′,~rτ ′,~sτ ′)) = (−1)α·
~bτ ′G(η̃(~bτ ′,~rτ ′,~sτ ′)) ◦ αV

and

βW ◦ F (η̃(~bτ ′′,~r′′,~sτ ′′)) = (−1)β·
~bτ ′′H(η̃(~bτ ′′,~r′′,~sτ ′′)) ◦ βV .

So we can write (67) as∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)+βW ·~bτ ′+α·~bτ ′+β·~bτ ′′

p∏
i=1

(
qi
kτ,i

)(
G(η̃(~bτ ′,~rτ ′,~sτ ′)) ◦ αV

)
�
(
H(η̃(~bτ ′′,~r′′,~sτ ′′)) ◦ βV

)
.

(68)
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Now on the other hand, we have (−1)
~b·α⊗β(G⊗H)(η̃(~b,~r,~s)) ◦ (αV � βV )

=

 ∑
τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)+~b·α⊗β

p∏
i=1

(
qi
kτ,i

)
G(η̃(~bτ ′,~rτ ′,~sτ ′))�H(η̃(~bτ ′′,~r′′,~sτ ′′))

 ◦ (αV � βV )

=
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)+~b·α⊗β+~bτ ′′·αV

p∏
i=1

(
qi
kτ,i

)(
G(η̃(~bτ ′,~rτ ′,~sτ ′)) ◦ αV

)
�
(
H(η̃(~bτ ′′,~r′′,~sτ ′′)) ◦ βV

)
.

(69)

So we see that (68) and (69) agree up to signs. To check that the signs also match, note that

(−1)s(
~b,τ)+~b·α⊗β+~bτ ′′·αV = (−1)s(

~b,τ)+~b·α+~b·β+~bτ ′′·α

= (−1)s(
~b,τ)+~b·β+~bτ ′·α

= (−1)s(
~b,τ)+βW ·~bτ ′+α·~bτ ′+β·~bτ ′′ ,

where the second line follows from the fact that (−1)
~b·α = (−1)

~bτ ·α = (−1)
~bτ ′·α+~bτ ′′·α, and

the third line follows from the similar fact that (−1)
~b·β = (−1)

~bτ ·β = (−1)
~bτ ′·β+~bτ ′′·β. Thus,

(68) = (69) as desired.
Next, we will define our identity object I in P0

(A,a) ⊂ P(A,a). By remark 4.19, we need I to

be a functor which takes a free finite right A-supermodule V to some k-supermodule I(V )
and takes a morphism β ∈ HomTAa (0)(V,W ) = k to a k-map I(β) ∈ Homk(I(V ), I(W ). So
let

I(V ) := k and
I(β) : k→ k

x 7→ βx
. (70)

Next, we need to define an even supernatural isomorphism α : ( ⊗ )⊗ → ⊗ ( ⊗ )
where we view each of ( ⊗ )⊗ and ⊗( ⊗ ) as superfunctors P(A,a)�P(A,a)�P(A,a) → P(A,a).
So α should have sections αE,F,G which are themselves even supernatural transformations
(E ⊗ F )⊗G→ E ⊗ (F ⊗G). So define the section at V of a given αE,F,G to be the (even)
associator for smodk:

(x⊗ y)⊗ z 7→ x⊗ (y ⊗ z).

We should check that these make αE,F,G into an even supernatural transformation. Suppose
E,F,G are homogeneous of degrees a, b, c, respectively. Then for η̃(~b,~r,~s) ∈ TAa (V,W ; a+b+c),

we must check that

αE,F,GW ◦ [(E ⊗ F )⊗G](η̃(~b,~r,~s)) = [E ⊗ (F ⊗G)](η̃(~b,~r,~s)) ◦ αE,F,GV . (71)

Using the formula from remark 6.16, we see that [(E ⊗ F )⊗G](η̃(~b,~r,~s)) is [~b, ~r, ~s]!c times the

following:∑
τ∈~b,~r,~sDa+b,c

(−1)s(
~b,τ)(E ⊗ F )(η̃(~bτ ′,~rτ ′,~sτ ′))�G(η̃(~bτ ′′,~r′′,~sτ ′′))

=
∑

τ∈~b,~r,~sDa+b,c

ρ∈~bτ ′,~rτ ′,~sτ ′Da,b

(−1)s(
~b,τ)+s(~bτ ′,ρ)

(
E(η̃((~bτ ′)ρ′,(~rτ ′)ρ′,(~sτ ′)ρ′))�F (η̃((~bτ ′)ρ′′,(~rτ ′)ρ′′,(~sτ ′)ρ′′))

)
�G(η̃(~bτ ′′,~r′′,~sτ ′′)).
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On the other hand, we have [E ⊗ (F ⊗G)](η̃(~b,~r,~s)) is [~b, ~r, ~s]!c times the following:∑
σ∈~b,~r,~sDa,b+c

(−1)s(
~b,σ)E(η̃(~bσ′,~rσ′,~sσ′))� (F ⊗G)(η̃(~bσ′′,~rσ′′,~sσ′′))

=
∑

σ∈~b,~r,~sDa,b+c
κ∈~bσ′′,~rσ′′,~sσ′′Db,c

(−1)s(
~b,σ)+s(~bσ′′,κ)E(η̃(~bσ′,~rσ′,~sσ′))�

(
F (η̃((~bσ′′)κ′,(~rσ′′)κ′,(~sσ′′)κ′))�G(η̃((~bσ′′)κ′′,(~rσ′′)κ′′,(~sσ′′)κ′′))

)

Now because the sections of αE,F,G are the associator for smodk, checking (71) is equivalent
to showing that∑

τ∈~b,~r,~sDa+b,c

ρ∈~bτ ′,~rτ ′,~sτ ′Da,b

(−1)s(
~b,τ)+s(~bτ ′,ρ)E(η̃((~bτ ′)ρ′,(~rτ ′)ρ′,(~sτ ′)ρ′))�F (η̃((~bτ ′)ρ′′,(~rτ ′)ρ′′,(~sτ ′)ρ′′))�G(η̃(~bτ ′′,~r′′,~sτ ′′))

(72)

is equal to∑
σ∈~b,~r,~sDa,b+c

κ∈~bσ′′,~rσ′′,~sσ′′Db,c

(−1)s(
~b,σ)+s(~bσ′′,κ)E(η̃(~bσ′,~rσ′,~sσ′))�F (η̃((~bσ′′)κ′,(~rσ′′)κ′,(~sσ′′)κ′))�G(η̃((~bσ′′)κ′′,(~rσ′′)κ′′,(~sσ′′)κ′′)).

(73)

In order to show this, we will consider the set
~b,~r,~sDa,b,c ⊂

~b,~r,~sD defined to be

~b,~r,~sDa,b,c :=

τ ∈~b,~r,~sD
∣∣∣∣∣ (bτi, rτi, sτi)6(bτ(i+1), rτ(i+1), sτ(i+1)) for 16 i6a− 1,

(bτj, rτj, sτj)6(bτ(j+1), rτ(j+1), sτ(j+1)) for a+ 16j6a+ b− 1,
(bτk, rτk, sτk)6(bτ(k+1), rτ(k+1), sτ(k+1)) for a+b+16k6a+b+c−1


Each summand from (72) is indexed by a choice of τ ∈ ~b,~r,~sDa+b,c and ρ ∈ ~bτ ′,~rτ ′,~sτ ′Da,b. For

such a choice, first note that we can view ρ as actually acting on (~bτ, ~rτ, ~sτ) by having ρ fix
the last c-many components (se we view ρ ∈ Sa+b+c instead of as being in Sa+b). Then the

sign (−1)s(
~bτ ′,ρ) from (72) can be written as (−1)s(

~bτ,ρ). Then it’s clear that τρ ∈ ~b,~r,~sDa,b,c

and that (−1)s(
~b,τ)+s(~bτ,ρ) = (−1)s(

~b,τρ). On the other hand, given some ν ∈ ~b,~r,~sDa,b,c, we

can associate a unique element ν∗ ∈ ~b,~r,~sDa+b,c such that the last c-many components of

(~b, ~r, ~s)ν∗ are the same as the last c-many of (~b, ~r, ~s)ν. Then there is a unique element

ν∗∗ ∈ ~b,~r,~sDa,b,c such that ν∗∗ fixes the last c-many components of (~b, ~r, ~s)ν∗ and such that

the first a-many components of ((~b, ~r, ~s)ν∗)ν∗∗ are the same as the first a-many components

of (~b, ~r, ~s)ν (take ν∗∗ = (ν∗)−1ν). So we have ν = ν∗ν∗∗. But ν∗∗ can be viewed as an element

of (~bν∗)′,(~rν∗)′,(~sν∗)′Da,b, and we have that (ν∗, ν∗∗) corresponds to a summand of (72).
Moreover, it is clear that this process determines a one-to-one correspondence between

pairs which index the sum (72) and elements of
~b,~r,~sDa,b,c (where (τ, ρ) is associated to τρ).

Thus, we may rewrite (72) as∑
ν∈~b,~r,~sDa,b,c

(−1)s(
~b,ν)E(η̃~bν′,~rν′,~sν′)� F (η̃~bν′′,~rν′′,~sν′′)�G(η̃~bν′′′,~rν′′′,~sν′′′) (74)
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where by, ~bν ′′′ for example, we mean ~bν ′′′ is a length c tuple whose entries are the same as

the last c-many entries of ~bν.
Similarly for (73), we can associate a pair (σ, κ) which indexes a summand to an element

σκ ∈ ~b,~r,~sDa,b,c which gives a one-to-one correspondence (to go the other way, first collect the
appropriate first a-many components, then shuffle the remaining components). So we may
rewrite (73) as ∑

ν∈~b,~r,~sDa,b,c

(−1)s(
~b,ν)E(η̃~bν′,~rν′,~sν′)� F (η̃~bν′′,~rν′′,~sν′′)�G(η̃~bν′′′,~rν′′′,~sν′′′),

which is exactly (74). Thus (72) = (73) as desired.
So now we appropriately defined sections of α, and we need to check that these make α

into an even supernatural transformation. This boils down to checking the following:

αF,G,H ◦ (η1 � η2)� η3 = η1 � (η2 � η3) ◦ αC,D,E (75)

where it suffices to take C,F in Px(A,a), D,G in Py(A,a), E,H in Pz(A,a), and η1 ⊗ η2 ⊗ η3 ∈
HomP(A,a)

(C,F )⊗ HomP(A,a)
(D,G)⊗ HomP(A,a)

(E,H).

This means we must check that for any V , the sections at V of both sides of (75) are equal.
This is a calculation in smodk which holds there since smodk is monoidal (and our monoidal
structure is defined pointwise in terms of the monoidal structure of smodk). It also follows
from the smodk structure that the sections of α are isomorphisms, so α is a supernatural
isomorphism.

Next we need even supernatural isomorphisms ` : I ⊗ → and r : ⊗ I → . First,
we will define the sections of `. Given any F in P(A,a), define `F : I ⊗ F → F to be the
supernatural transformation whose sections at V are `F V : k⊗ F (V )→ F (V ) given by

β ⊗ x 7→ βx.

This is easily seen to define an even supernatural transformation. Now to check that the
sections `F make ` a supernatural transformation, we must check

`G ◦ id⊗γ = γ ◦ `F (76)

for F,G in P(A,a) and γ ∈ HomP(A,a)
(F,G). But again, this means we must check that for any

V , the sections at V of both sides of (76) are equal. This is easy to see (and again follows
from the monoidal structure of smodk). It also follows that the sections of ` are isomorphisms,
so ` is a supernatural isomorphism, as desired.

The situation for r : ⊗I → is similar. We have rF : F ⊗I → F being the supernatural
transformation whose sections at V are rF V : F (V )⊗ k→ F (V ) given by

x⊗ β 7→ xβ = βx.

The arguments that show r is a supernatural isomorphism are analagous to those used for `.
Now we just need to show that these definitions adhere to the coherence conditions

analagous to those for monoidal (non-super)categories. But these coherence conditions amount
to showing that some compositions of supernatural transformations are equal, which is all
computed pointwise at each section of these morphisms. These computations all take place
in smodk, and we know the relations hold there. Thus, the coherence conditions are satisfied,
and we are done. �
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We claim that P(A,a) is also symmetric monoidal, induced by the super flip map

m⊗ n 7→ (−1)m·nn⊗m.

Proposition 6.18. P(A,a) is a symmetric monoidal supercategory.

Proof. As for proposition 6.17, it suffices to check this for homogeneous generalized polyno-
mial functors. So we need to check that for any F in Pd(A,a) and G in Pe(A,a), F ⊗G in Pd+e

(A,a) is

supernaturally isomorphic to G⊗F in both F and G. In particular, we need a supernatural
isomorphism, which we will call flipF,G : F ⊗ G → G ⊗ F . So, for any V = An, define the
section of flipF,G at V to be flipF,GV : (F ⊗G)(V )→ (G⊗ F )(V ) via

uf ⊗ ug 7→ (−1)uf ·ugug ⊗ uf ,

where uf , ug are homogeneous elements of F (V ) and G(V ), respectively.
The flip is obviously even and whose sections yield isomorphisms of k-supermodules. To

check that it is a supernatural transformation, recall that
{
η̃(~b,~r,~s)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d)
}

gives a k-basis for TAa (m,n; d) (= TAa (V,W ; d) for V = An andW = Am). Since the naturality
condition in this case is a matter of k-linear maps commuting, it suffices to compute on
homogeneous elements uf ∈ F (V ) and ug ∈ G(V ) and η̃(~b,~r,~s) ∈ TAa (m,n; d+ e).

First, applying (F ⊗G)(η̃(~b,~r,~s)) to uf ⊗ ug ∈ F (V )⊗G(V ) gives (using the formulation as

in remark 6.16)

[~b, ~r, ~s]!c
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)F (ϕ̃((~bτ)′,(~rτ)′,(~sτ)′))�G(ϕ̃((~bτ)′′,(~rτ)′′,(~sτ)′′))(uf ⊗ ug), (77)

which equals

[~b, ~r, ~s]!c
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)+(~bτ)′′·ufF (ϕ̃((~bτ)′,(~rτ)′,(~sτ)′))(uf )⊗G(ϕ̃((~bτ)′′,(~rτ)′′,(~sτ)′′))(ug) (78)

since G is even and since ϕ̃((~bτ)′′,(~rτ)′′,(~sτ)′′) = ((~bτ)′′, (~rτ)′′, (~sτ)′′) = (~bτ)′′. Then applying the

flip to equation (78) gives [~b, ~r, ~s]!c times the following:∑
τ∈~b,~r,~sDd,e

(−1)
s(~b,τ)+(~bτ)′′·uf+

(
(~bτ)′+uf

)(
(~bτ)′′+ug

)
G(ϕ̃((~bτ)′′,(~rτ)′′,(~sτ)′′))(ug)⊗F (ϕ̃((~bτ)′,(~rτ)′,(~sτ)′))(uf ),

(79)

where the extra signs appear as written because of similar reasoning as in the previous
paragraph.

On the other hand, if we first apply the flip to uf ⊗ ug to get (−1)uf ·ugug ⊗ uf and then
apply (G⊗ F )(η̃(~b,~r,~s)), we get

[~b, ~r, ~s]!c
∑

ρ∈~b,~r,~sDe,d

(−1)s(
~b,ρ)+uf ·ugG(ϕ̃((~bρ)′,(~rρ)′,(~sρ)′))� F (ϕ̃((~bρ)′′,(~rρ)′′,(~sρ)′′))(ug ⊗ uf ), (80)

where note that here, our prime and double-prime notation on the vectors refer to taking
the first e-many and last d-many entries (which is reversed from above). Then (80) is equal
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to

[~b, ~r, ~s]!c
∑

ρ∈~b,~r,~sDe,d

(−1)s(
~b,ρ)+uf ·ug+(~bρ)′′·ugG(ϕ̃((~bρ)′,(~rρ)′,(~sρ)′))(ug)⊗ F (ϕ̃((~bρ)′′,(~rρ)′′,(~sρ)′′))(uf ).

(81)

Now by remark 6.11 (and using ζ as in the remark), we can reindex (81) to get

[~b, ~r, ~s]!c
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τζ)+uf ·ug+(~bτζ)′′·ugG(ϕ̃((~bτζ)′,(~rτζ)′,(~sτζ)′))(ug)⊗F (ϕ̃((~bτζ)′′,(~rτζ)′′,(~sτζ)′′))(uf ).

(82)

Again by remark 6.11, we know that

G(ϕ̃((~bτζ)′,(~rτζ)′,(~sτζ)′))(ug)⊗ F (ϕ̃((~bτζ)′′,(~rτζ)′′,(~sτζ)′′))(uf )

equals
G(ϕ̃((~bτ)′′,(~rτ)′′,(~sτ)′′))(ug)⊗ F (ϕ̃((~bτ)′,(~rτ)′,(~sτ)′))(uf ),

so the terms in equations (79) and (82) match, up to signs. So, let’s match the signs. From
(79), we have

(−1)
s(~b,τ)+(~bτ)′′·uf+

(
(~bτ)′+uf

)(
(~bτ)′′+ug

)
= (−1)s(

~b,τ)+(~bτ)′′·uf+(~bτ)′·(~bτ)′′+(~bτ)′·ug+uf ·(~bτ)′′+uf ·ug

= (−1)s(
~b,τ)+(~bτ)′·(~bτ)′′+(~bτ)′·ug+uf ·ug

= (−1)s(
~b,τ)+s(~bτ,ζ)+(~bτ)′·ug+uf ·ug

= (−1)s(
~b,τ)+s(~bτ,ζ)+(~bτζ)′′·ug+uf ·ug

= (−1)s(
~b,τζ)+(~bτζ)′′·ug+uf ·ug ,

which is precisely the sign from the corresponding term in (82). Thus, we have (79) = (82)
as desired.

It just remains to show that flip is natural in both arguments. This amounts to showing

flipE,G ◦ id⊗η = η ⊗ id ◦flipE,F

for η ∈ HomPe
(A,a)

(F,G) and

flipF,G ◦ β ⊗ id = id⊗β ◦ flipE,G

for β ∈ HomPd
(A,a)

(E,F ). These both need to hold at every section V which is a calculation

taking place in smodk which we know holds since smodk is symmetric monoidal under the
flip map. �

6.3. The Superfunctor Sd

We claim that the prototypical examples of classical strict polynomial functors such as
⊗d,

∧d, Sd, and Γd all have analogs for the categories Pd(A,a) and PdA. In this subsection, we

will analyze Sd in full detail since it will play such an important role in what follows. In
particular, we work with Pd(A,a), but one should be able to see how the argument goes for PdA,
as well.

First, we will define the generalized strict polynomial functor Sd in Pd(A,a) for any unital

superalgebra good pair (A, a). Let U be a free finite right A-supermodule. Then in particular,
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U is a k-supermodule, and the tensor algebra makes sense, T (U) :=
⊕
i=0

U⊗i. This object is

a k-supermodule inheriting it’s Z2-grading from that of U . Moreover, it is a k-superalgebra
under the product ⊗. It also has an obvious Z-grading by degree (the number of tensors in
a given summand), and we denote T d(U) := U⊗d its (Z-)degree d part.

Consider the ideal J := 〈x ⊗ y − (−1)x·yy ⊗ x〉 ⊂ T (U) where x, y are homogeneous
elements of U . We define S(U) := T (U)/J as a quotient k-superalgebra. Since the ideal
J is homogeneous (with respect to the Z-grading), we get Sd(U) = T d(U)/J and S(U) =⊕
i=0

Si(U). Note that it is also homogeneous with respect to our Z2-grading so that S(U) (and

each Sd(U)) is a k-supermodule. The parity of a coset in S(U) (or Sd(U)) is the parity of
the representative.

Abusing notation, we have Sd in Pd(A,a) send U to the k-supermodule Sd(U) just defined.

Now we need to see what Sd does to a morphism.

Recall that our morphisms live in TAa (m,n; d) ⊂ SA(m,n; d) ∼=
(
HomA(An, Am)⊗d

)Sd . We
need some lemmas before we proceed.

Let H denote the set of homogeneous elements of A. Let ~b, ~x ∈ Hd. Then we say

~bx := (b1x1, b2x2, . . . , bdxd).

For any σ ∈ Sd, we have ~bσ = (bσ1, . . . , bσd) so that

~bσx := (bσ1x1, . . . , bσdxd).

Lemma 6.19. For ~b, ~x ∈ Hd+e, ~r ∈ [1,m]d+e, and ~s ∈ [1, n]d+e, let ~b′ = (b1, . . . , bd),
~b′′ = (bd+1, . . . , bd+e), ~x′ = (x1, . . . , xd), ~x′′ = (xd+1, . . . , xd+e), ~r′ = (r1, . . . , rd), ~r′′ =
(rd+1, . . . , rd+e), ~s′ = (s1, . . . , sd), and ~s′′ = (sd+1, . . . , sd+e). Then

(−1)ϕ(~b′′,~r′′,~s′′)·~x′+s(~b
′→~x′)+s(~b′′→~x′′) = (−1)s(

~b→~x).

Proof. Well

ϕ(~b′′,~r′′,~s′′) · ~x′ =
(
ϕ
bd+1
rd+1sd+1 + · · ·+ ϕ

bd+e
rd+esd+e

)
(x1 + · · ·+ xd)

=
(
bd+1 + · · ·+ bd+e

)
(x1 + · · ·+ xd)

=
d∑
i=1

e∑
j=1

xi · bd+j,

which implies

(−1)ϕ(~b′′,~r′′,~s′′)·~x′+s(~b
′→~x′)+s(~b′′→~x′′) = (−1)

(
d∑
i=1

e∑
j=1

xi·bd+j

)
+

(
d−1∑
i=1

d∑
j=i+1

xi·bj

)
+

(
e−1∑
i=1

e∑
j=i+1

xd+i·bd+j

)

= (−1)

d+e−1∑
i=1

d+e∑
j=i+1

xi·bj

= (−1)s(
~b→~x),

as desired. �

From this, it is easy to see the following:
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Corollary 6.20. For V = An, we have an A-basis for V , {v1, . . . , vn}. Now for b ∈ B, if we
let vbi denote the element vi.b (so vbi corresponds to a column vector of height n with zeros
everywhere except for a b in the ith slot), we see that {vbi | b ∈ B, i ∈ [1, n]} is a k-basis for

V . For ~b, ~x ∈ Bd+e, ~r ∈ [1,m]d+e, and ~s ∈ [1, n]d+e, we have that(
ϕb1r1s1 � · · ·� ϕ

bd
rdsd

)
�
(
ϕbd+1
rd+1sd+1

� · · ·� ϕbd+erd+esd+e

)
(vx1
s1
⊗ · · · ⊗ vxdsd )⊗ (vxd+1

sd+1
⊗ · · · ⊗ vxd+esd+e

)

is equal to

(−1)s(
~b→~x)vb1x1

r1
⊗ · · · ⊗ vbd+exd+erd+e

.

Lemma 6.21. For any ~b, ~x ∈ Hd and for any simple transposition ti ∈ Sd,

(−1)s(
~b→~x)+s( ~bx,ti) = (−1)s(

~b,ti)+s(~x,ti)+s(~bti→~xti).

Proof. In this case, it is easy to see that

(−1)s(
~bx,ti) = (−1)bixi·bi+1xi+1

= (−1)(bi+xi)·(bi+1+xi+1)

= (−1)bi·bi+1+bi·xi+1+xi·bi+1+xi·xi+1

so that the left hand side of our desired equality is

(−1)s(
~b→~x)+s( ~bx,ti) = (−1)

(
d−1∑
r=1

d∑
s=r+1

xr·bs

)
+bi·bi+1+bi·xi+1+xi·bi+1+xi·xi+1

. (83)

It is similarly easy to see that

(−1)s(
~b,ti)+s(~x,ti) = (−1)bi·bi+1+xi·xi+1 .

Notice further that

(−1)s(
~bti→~xti) = (−1)

(
d−1∑
r=1

d∑
s=r+1

xr·bs

)
−xi·bi+1+xi+1·bi

= (−1)

(
d−1∑
r=1

d∑
s=r+1

xr·bs

)
+xi·bi+1+xi+1·bi

,

where this last equality follows since the calculation essentially takes place modulo 2, so
adding 0 or 1 is equivalent to subtracting 0 or 1, respectively.

So our desired right hand side is

(−1)s(
~b,ti)+s(~x,ti)+s(~bti→~xti) = (−1)

bi·bi+1+xi·xi+1+

(
d−1∑
r=1

d∑
s=r+1

xr·bs

)
+xi·bi+1+xi+1·bi

. (84)

Now it is clear that (83) = (84), and we are done. �

Lemma 6.22. Suppose that for every ~b, ~x ∈ Hd, σ, τ ∈ Sd are such that

(−1)s(
~b→~x)+s( ~bx,σ) = (−1)s(

~b,σ)+s(~x,σ)+s(~bσ→~xσ)

and
(−1)s(

~b→~x)+s( ~bx,τ) = (−1)s(
~b,τ)+s(~x,τ)+s(~bτ→~xτ).

Then for every ~b and ~x,

(−1)s(
~b→~x)+s( ~bx,στ) = (−1)s(

~b,στ)+s(~x,στ)+s(~b(στ)→~x(στ)).
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Proof. We have

(−1)s(
~b→~x)+s( ~bx,στ) = (−1)s(

~b→~x)+s( ~bx,σ)+s( ~bxσ,τ)

= (−1)s(
~b,σ)+s(~x,σ)+s(~bσ→~xσ)+s( ~bxσ,τ)

= (−1)s(
~b,σ)+s(~x,σ)+s(~bσ→~xσ)+s(

−−−−−→
(bσ)(xσ),τ)

= (−1)s(
~b,σ)+s(~x,σ)+s(~bσ,τ)+s(~xσ,τ)+s((~bσ)τ→(~xσ)τ)

= (−1)s(
~b,στ)+s(~x,στ)+s(~b(στ)→~x(στ)),

where the first equality follows from expanding the second term using remark 1.4, the second
equality follows from our hypothesis applied to the first two terms, the fourth equality follows
from applying our hypothesis to the last two terms, and the final equality follows from using
remark 1.4 to collapse terms. �

Corollary 6.23. For every ~b, ~x ∈ Hd and every σ ∈ Sd, we have

(−1)s(
~b→~x)+s( ~bx,σ) = (−1)s(

~b,σ)+s(~x,σ)+s(~bσ→~xσ).

Proof. By lemma 6.21, we know this equality holds for all simple transpositions. For a given
σ ∈ Sd, σ can be written as a product of simple transpositions. Then one may iteratively
use lemma 6.22 to obtain the desired result. �

For a chosen basis B = Ba t Bc t BA1 of our good pair, and for V = An and W = Am,

recall that
{
ϕ̃(~b,~r,~s)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d)
}

gives a homogeneous k-basis for SA(V,W ; d) =

SA(m,n; d) where

ϕ̃(~b,~r,~s) =
∑

σ∈~b,~r,~sD

(−1)s(
~b,σ)ϕbσ1

rσ1sσ1
⊗ · · · ⊗ ϕbσdrσdsσd .

Then
{
η̃(~b,~r,~s)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d)
}

gives us a homogeneous k-basis for TAa (V,W ; d)=

TAa (m,n; d) where

η̃(~b,~r,~s) = [~b, ~r, ~s]!cϕ̃(~b,~r,~s).

So, a general element in TAa (V,W ; d) can be written as a finite k-linear combination of the
η̃(~b,~r,~s). Since generalized polynomial functors induce even k-linear maps between morphism

spaces, it suffices to consider only the η̃(~b,~r,~s).

It follows from lemma 2.4 that we have SA(V,W ; d) ∼= HomA⊗d(V
⊗d,W⊗d)Sd via∑

α~ifi1 ⊗ · · · ⊗ fid 7→
∑

α~ifi1 � · · ·� fid .

Since η̃(~b,~r,~s) ∈ TAa (V,W ; d) ⊂ SA(V,W ; d), we can consider the image of this element under

the aforementioned map. Call this η̃′
(~b,~r,~s)

. Explicitly,

η̃′
(~b,~r,~s)

= [~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD

(−1)s(
~b,σ)ϕbσ1

rσ1sσ1
� · · ·� ϕbσdrσdsσd .

So η̃′
(~b,~r,~s)

is, in particular, a k-linear map from T d(V )→ T d(W ). What we need is a map from

Sd(V )→ Sd(W ). Well first, note that the degree d part of the ideal 〈x⊗ y− (−1)x·yy⊗x〉 ⊂
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T (V ) can be written as

spank{ui1⊗ui2⊗· · ·⊗uid− (−1)uij ·uij+1utj(i1)⊗utj(i2)⊗· · ·⊗utj(id) | 1 6 j 6 d−1, uik ∈ V }

which is equal to

Id(V ) := spank{ui1 ⊗ · · · ⊗ uid − (ui1 ⊗ · · · ⊗ uid).tj | 1 6 j 6 d− 1, uik ∈ V },

where tj ∈ Sd is a simple transposition. Similarly for T (W ). By the universal property of
quotients, we get the induced map below (which by an abuse of notation we again refer to
as η̃′

(~b,~r,~s)
)

T d(V ) T d(W )

Sd(V ) Sd(W )

η̃′
(~b,~r,~s)

p p

η̃′
(~b,~r,~s)

(85)

so long as Id(V ) is in the kernel of pη̃′
(~b,~r,~s)

. To see that this is the case, first note that

η̃′
(~b,~r,~s)

(ui1⊗· · ·⊗uid − (ui1⊗· · ·⊗uid).tj) = η̃′
(~b,~r,~s)

(ui1⊗· · ·⊗uid)− η̃′(~b,~r,~s)((ui1⊗· · ·⊗uid).tj)

= η̃′
(~b,~r,~s)

(ui1⊗· · ·⊗uid)− η̃′(~b,~r,~s)(ui1⊗· · ·⊗uid).tj.
(86)

Now η̃′
(~b,~r,~s)

(ui1 ⊗ · · · ⊗ uid) is some linear combination of pure tensors in T d(W ), and since

the tj acts linearly, it follows that (86) is in Id(W ). Thus, p maps this element to 0 in Sd(W ),
and our desired result follows. This induced map is where the functor Sd sends the morphism
η̃′

(~b,~r,~s)
. In other words,

Sd(η̃(~b,~r,~s))[u1 · · ·ud] =
[
η̃′

(~b,~r,~s)
(u1 · · ·ud)

]
, (87)

and we have the functor Sd defined.
Let’s take a short digression.

Remark 6.24. It follows from proposition 1.11 that the gln(A) action on T d(An) descends to
an action on Sd(An). To see this, note that acting by x ∈ gln(A) gives a linear map from
T d(An) → T d(An). The fact that this action commutes with the Sd action implies that a
similar calculation as in (86) holds, and we have our claim.

Speaking of gln(A), we note that remark 1.17 extends to symmetric powers of those mod-
ules in question. Let smodSgln(Asop) denote the full monoidal subcategory of right gln(Asop) su-

permodules tensor-generated by the objects Sd(Vn). Let gln(A)smodS denote the full monoidal
subcategory of left gln(A) supermodules tensor-generated by the objects Sd(An). It follows
from proposition 1.16 and remark 1.17 that we have:

Proposition 6.25. T restricts to an equivalence of categories smodSgln(Asop)
∼= gln(A)smodS .

Returning from our digression, we will be interested later in the functor Sd ⊗ Se for some
d, e. From remark 6.16, we can identify Sd ⊗ Se as a functor sitting in Pd+e

(A,a) which sends V
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to (Sd ⊗ Se)(V ) = Sd(V )⊗ Se(V ) and on morphisms

(Sd ⊗ Se)(η̃(~b,~r,~s)) :=
∑

τ∈~b,~r,~sDd,e

(−1)s(
~b,τ)

p∏
i=1

(
qi
kτ,i

)
Sd(η̃(~bτ ′,~rτ ′,~sτ ′))� S

e(η̃(~bτ ′′,~r′′,~sτ ′′)).

When actually doing calculations, it is often much easier to view (Sd ⊗ Se)(η̃(~b,~r,~s)) as

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD

(−1)s(
~b,σ)(ϕbσ1

rσ1sσ1
� · · ·� ϕbσdrσdsσd)� (ϕ

bσ(d+1)
rσ(d+1)sσ(d+1) � · · ·� ϕ

bσ(d+e)
rσ(d+e)sσ(d+e)).

We will make use of this throughout the rest of the thesis.

7. Connection Between P(A,a) and gln(A)-Webs

In this section, we will establish a connection between generalized strict polynomial func-
tors and webs for gln(A) as defined in [DKMZ22] (which we will denote Web(A,a)).

7.1. The category Web(A,a)

In this subsection, we will briefly summarize enough of [DKMZ22] for the reader to get a
feel for the category Web(A,a).

Remark 7.1. The web category WebA,a is defined in section 3.1 of [DKMZ22] in terms of
small k-linear supercatgories A and subcategories a which form a ‘good pair’. As described
in section 2.2 of [DKMZ22], small k-linear supercategories A are in one-to-one correspon-
dence with locally unital k-superalgebras A. So WebA,a describes webs for locally unital
superalgebras which come along with a distinguished system of orthogonal idempotents I.
In particular, Ob(A) = I, and for our thesis, we’re considering unital superalgebras, so we
can take I = {1A} which corresponds to a small k-linear supercategory A with a single
object. Then a good pair (A,a) corresponds to a unital good pair (A, a) as we defined in
definition 4.3, and as described in section 1.2 of [DKMZ22], WebA,a corresponds to webs
defined for the unital good pair (A, a). The effect this has is that we can ignore the idem-
potents in the diagrams of definition 3.1.1 of [DKMZ22]. This is the category we will call
Web(A,a) from now on.

That said, our theory of generalized strict polynomial functors can work with locally unital
superalgebras, as well. The only place where the unit of A is essential is in the proof of lemma
6.7 where we force the entries of certain matrices to be 1A. Since the matrices involved have
finite size, there are only finitely many relevant idempotents from I. Then one can replace
1A with the sum of these relevant idempotents, and the result still goes through.

Definition 7.2. Let A be a k-superalgebra and (A, a) be a unital good pair. Then Web(A,a)

is the monoidal supercategory generated by the following objects subject to the following
relations:

The objects will be tuples of nonnegative integers with concatenation of words providing
the monoidal product. In paticular, the objects of Web(A,a) are given by

Ob(Web(A,a)) = {~x := (x1, . . . , xt) ∈ Zt>0 | t ∈ Z>0}

with 0 indicating the unit object.
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The generating morphisms of Web(A,a) are given by the diagrams2:

k `

k + ` `k

k + `

` k

k `

y

m

m

(88)

for k, ` ∈ Z>0, m ∈ Z>0,

{
y ∈ A if m = 1

y ∈ a if m > 1
, where diagrams are to be read from bottom to

top. We call these morphisms split, merge, crossing, and coupon respectively. Morphisms
in Web(A,a) are then k-linear combinations of diagrams built by repeated concatenation of
generating diagrams, subject to a fairly simple set of local relations found in definition 3.1.1
of [DKMZ22].

For example, a typical morphism in Web(A,a)((2, 1, 3, 4, 2), (5, 1, 6)) looks like:

2 1

12

3 4 2

y

3

y′

5

3

1 6

2 4

(89)

where y ∈ a and y′ ∈ A.
Splits, merges and crossings have parity 0, and the parity of the y coupon is y. We say

a strand labeled by k has thickness k. We refer to strands of thickness 1 as thin strands,
otherwise we call them thick. We emphasize that thick strands may only be decorated by
coupons in the (even) subalgebra a, whereas thin strands may be decorated with arbitrary
coupons in A. Going forward, we will use the following conventions:

• Strands of thickness 0 (and any coupons thereon) are to be deleted;
• Diagrams containing a strand of negative thickness are to be read as zero.

The language we’ve used thus far implies that the category Web(A,a) is related to gln(A)

in some way. We explain this next. Let smodSgln(A) denote the full subsupercategory of right

gln(A)-supermodules tensor-generated by Sd(Vn), for various d, where Vn is the free left A-
supermodule of rank n viewed as row vectors. Theorem 5.5.1 of [DKMZ22] establishes a
family of monoidal superfunctors Gn : Web(A,a) → smodSgln(A). These functors are asymptot-
ically locally faithful, which means the following: For any objects ~x, ~y, there exists N > 0

2Since we’re working with unital superalgebras, it’s actually redundant to include the crossing diagram
and the related relations. We include it here, however, because it corresponds to an important morphism we
will describe below and is necessary for the locally-unital case.
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such that the map between morphism spaces induced by Gn is injective (faithful) for all
n > N .

Moreover, when k is a characteristic 0 field, the Gn are also asymptotically locally full.
In fact, under certain additional assumptions on A, the Gn are full by corollary 6.6.3 and
proposition 9.3.2 of [DKMZ22]. So in this way, (A, a)-webs describe morphisms between
gln(A)-modules of the form Sd1(Vn)⊗ · · · ⊗ Sdm(Vn).

We can describe the functor Gn explicitly. First, as described in [DKMZ22], note that
for any objects M,N in smodk, the superalgebra S(M) has the obvious associative product
∇ : S(M) ⊗ S(M) → S(M), coassociative coproduct ∆ : S(M) → S(M) ⊗ S(M), and
projections pd : S(M)→ Sd(M) and inclusions ιd : Sd(M)→ S(M) for all d ∈ Z>0.

Consider the maps

M spld,ed+e : Sd+e(M)→ Sd(M)⊗ Se(M) via M spld,ed+e := (pd ⊗ pe) ◦∆ ◦ ιd+e, (90)

M merd+e
d,e : Sd(M)⊗ Se(M)→ Sd+e(M) via M merd+e

d,e := pd+e ◦ ∇ ◦ (ιd ⊗ ιe), (91)

τM,N : M ⊗N → N ⊗M via m⊗ n 7→ (−1)m·nn⊗m, (92)

and for y ∈ A,

Lyd : Sd(Vn)→ Sd(Vn) via

{
vxr 7→ vyxr if d = 1

vx1
r1
· · · vxdrd 7→ vyx1

r1
· · · vyxdrd

if d > 1 and y ∈ a
. (93)

These are all even homomorphisms of right gln(A)-supermodules. Then the monoidal functor
Gn sends an object d of Web(A,a) to Sd(Vn) and sends the generating diagrams split, merge,

crossing, and y-coupon, to the maps Vn spld,ed+e, Vn merd+e
d,e , τSd(V n),Se(V n), and Lyd, respectively.

Theorem 5.5.1 of [DKMZ22] shows that Gn preserves the defining relations of Web(A,a), so
is well-defined. The relations in Web(A,a) are essentially constructed so that this is the case.
For example, one defining relation of Web(A,a) is the following merge associativity :

k ` m

k + `

k + `+m

` mk

= `+m

k + `+m

. (94)

One wants to check, then, that

Vn merk+`+m
k+`,m ◦(Vn merk+`

k,` ⊗ id) = Vn merk+`+m
k,`+m ◦(id⊗Vn mer`+m`,m ).

This follows almost immediately from the fact that the multiplication in S(Vn) is associative
(and note that because this multiplication is associative, you’d want this to be reflected in
the relations for Web(A,a) if Gn is to be (fully) faithful).
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Another defining relation of Web(A,a) is the so-called knothole relation:

`k

k + `

k + `

k + `

k + `

=

(
k + `
`

)

. (95)

Then one wants to check that

Vn merk+`
k,` ◦Vn splk,`k+` =

(
k + `
`

)
id .

We’ll check this for a small example (k = 2 = `) to give the reader a feel for how it goes. We’ll
simplify things and choose a homogeneous element wxyz ∈ S4(Vn) such that each w, x, y, z
are even elements of Vn. Then Vn mer4

2,2 ◦Vn spl2,24 (wxyz) is equal to3

Vn mer4
2,2 (wx⊗ yz + wy ⊗ xz + wz ⊗ xy + xy ⊗ wz + xz ⊗ wy + yz ⊗ wx)

which equals

6(wxyz) =

(
4
2

)
wxyz

in S4(Vn), as desired.
The core idea of the remainder of this section is that under appropriate assumptions,

Web(A,a) is equivalent to a subcategory of P(A,a). In order to establish this claim, we will
make use of the functors Gn : Web(A,a) → smodgln(A). So we first want to relate P(A,a) with
gln(A)-supermodules.

7.2. P(A,a) and gln(A)-Supermodules

By theorem 6.10, we know that evaluation at An gives an equivalence of categories Pd(A,a)
∼=

TAa (n,n;d)smod whenever n > d. We wish to establish here that we can view evaluation as
instead landing us in the category gln(A)smod.

In order to make this precise, fix some F in Pd(A,a) and a homogeneous x ∈ gln(A). It is

essentially automatic that gln(A) ∼= EndA(An) as superspaces (where this later space is the
space of all right A-supermodule endomorphisms of An). Then we can associate to x the

element x′ ∈ EndSA(d)(A
n) =

(
EndA(An)⊗d

)Sd given by

x′ :=
d∑
i=1

1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1, (96)

where in each term of this summand, x is in the ith slot, and we’ve denoted by 1 the map
idAn ∈ EndA(An). Notice that for x homogeneous, each summand in x′ has parity equal to
x since 1 = 0, and there are no sign issues. Thus, x′ = x.

3Note that Vn splk,`k+` is, after identifying An ∼= Vn, the k-map defined by the section of ςk,`k+` defined in

proposition 7.7 below.
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Of course, what we actually want is for x′ to be in EndTAa (d)(A
n) = TAa (n, n; d). To see

that this is the case, first note that x′ can be written as a k-linear combination of the ϕ̃(~b,~r,~s)

which comprise the k-basis for SA(n, n; d). To actually achieve this, one would expand each
summand of x′.

Precisely, first choose a basis Ba of a which contains 1A and so that (A, a) is a unital good
pair. Moreover, we will assume that the entries xrs of x are in the k-basis B of A.

Then note that

1 =
n∑
i=1

ϕ1A
ii

and
x =

∑
r,s∈[1,n]

ϕxrsrs .

So expanding a given term 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1 of x′ yields sums of elements of the
form

ϕ1A
i1i1
⊗ · · · ⊗ ϕ1A

ik−1ik−1
⊗ ϕxikjkikjk

⊗ ϕ1A
ik+1ik+1

⊗ · · · ⊗ ϕ1A
idid
.

Such a term will contribute to the basis element ϕ̃(~b,~r,~s) where ~b = (1A, . . . , xikjk , . . . , 1A),

~r = (i1, . . . , id), and ~s = (i1, . . . , ik−1, jk, ik+1, . . . , id). Since xikjk is the only element with the

potential to be in c, it follows that [~b, ~r, ~s]!c = 1. Therefore, ϕ̃(~b,~r,~s) = η̃(~b,~r,~s) in this case. It

follows that the expansion of x′ into the k-basis of SA(n, n; d) is actually also an expansion
into the k-basis of TAa (n, n; d), and hence x′ ∈ TAa (n, n; d), as desired.

Proposition 7.3. For n > d and every F in Pd(A,a), the map ρF : gln(A) → Endk(F (An))

given by ρF (x) = F (x′) is a homomorphism of Lie superalgebras. Therefore, F (An) is a left
gln(A)-supermodule.

Proof. First of all, the target of ρF makes sense since, by definition, F knows how to take
morphisms x′ ∈ EndTAa (d)(A

n) to morphisms F (x′) ∈ Endk(F (An)). To see that ρF is a
Lie superalgebra homomorphism, we must check that it respects the supercommutator. So,
choose any homogeneous x, y ∈ gln(A). Then on one hand, (suppressing the ⊗ symbol) we
have

[x, y]′ =
(
xy − (−1)x·yyx

)′
=

d∑
i=1

1 · · ·
(
xy − (−1)x·yyx

)
· · ·1

=

(
d∑
i=1

1 · · ·xy · · ·1

)
− (−1)x·y

(
d∑
j=1

1 · · · yx · · ·1

)
. (97)

On the other hand, we have

[x′, y′] = x′y′ − (−1)x
′·y′y′x′

= x′y′ − (−1)x·yy′x′

=

(
d∑
p=1

1 · · · x · · ·1

)(
d∑
q=1

1 · · · y · · ·1

)
− (−1)x·y

(
d∑
r=1

1 · · · y · · ·1

)(
d∑
s=1

1 · · · x · · ·1

)
(98)
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Now consider the product (1 · · ·x · · ·1)(1 · · · y · · ·1) where x is in the ith slot and y is in
the jth slot. Since 1 = 0, we pick up a sign of (−1)x·y only when x passes over y, which
happens for 1 6 j 6 i− 1. In general, we have

(1 · · ·x · · ·1)(1 · · · y · · ·1)


(−1)x·y(1 · · · y · · ·x · · ·1) if 1 6 j 6 i− 1

1 · · ·xy · · ·1 if j = i

1 · · ·x · · · y · · ·1 if i+ 1 6 j 6 d

. (99)

So

x′y′ =

(
d∑
p=1

1 · · ·x · · ·1

)(
d∑
q=1

1 · · · y · · ·1

)

=
d∑
p=1

[
(−1)x·y

(
p−1∑
q=1

1 · · · y · · ·x · · ·1

)
+ (1 · · ·xy · · ·1) +

(
d∑

q=p+1

1 · · ·x · · · y · · ·1

)]
,

where x is in the pth slot, and y is in the qth slot (so in particular, the middle term above
has xy in the p = q slot). So we can write

x′y′ =
d∑
p=1

(1 · · · xy · · ·1)

+
d∑
p=1

[
(−1)x·y

(
p−1∑
q=1

1 · · · y · · ·x · · ·1

)
+

(
d∑

q=p+1

1 · · ·x · · · y · · ·1

)]
, (100)

and then

y′x′ =

(
d∑
r=1

1 · · · y · · ·1

)(
d∑
s=1

1 · · ·x · · ·1

)

=
d∑
r=1

[
(−1)x·y

(
r−1∑
s=1

1 · · ·x · · · y · · ·1

)
+ (1 · · · yx · · ·1) +

(
d∑

s=r+1

1 · · · y · · · x · · ·1

)]
,

(101)

where y is in the rth slot, and x is in the sth slot (so in particular, the middle term above
has yx in the r = s slot).

Note that (101) is indexed such that the position of y is chosen first, then the position
of x. To better match (100), let us switch the order of the sums in (101) so that we first
choose the position of x (which will correspond to s) and then the position of y (which will
correspond to r). We have

y′x′ =
d∑
s=1

[
s−1∑
r=1

(1 · · · y · · · x · · ·1) + (1 · · · yx · · ·1) + (−1)x·y

(
d∑

r=s+1

1 · · ·x · · · y · · ·1

)]

=
d∑
s=1

(1 · · · yx · · ·1)

+
d∑
s=1

[
s−1∑
r=1

(1 · · · y · · ·x · · ·1) + (−1)x·y

(
d∑

r=s+1

1 · · · x · · · y · · ·1

)]
. (102)
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Since we work modulo 2 when computing parity, we have −(−1)x·y(−1)x·y = −1, so it follows
that

−(−1)x·yy′x′ = −(−1)x·y
d∑
s=1

(1 · · · yx · · ·1)

+
d∑
s=1

[
−(−1)x·y

s−1∑
r=1

(1 · · · y · · ·x · · ·1)−

(
d∑

r=s+1

1 · · ·x · · · y · · ·1

)]
. (103)

So finally, lining up our terms from (100) and (103) (and remembering that p and s corre-
spond to the x position, and q and r correspond to the y position), we see that (98) = (97).
That is, [x, y]′ = [x′, y′].

It follows then, that

ρF ([x, y]) = F ([x, y]′)

= F ([x′, y′])

= F (x′y′ − (−1)x·yy′x′)

= F (x′)F (y′)− (−1)x·yF (y′)F (x′)

= ρF (x)ρF (y)− (−1)x·yρF (y)ρF (x)

= ρF (x)ρF (y)− (−1)ρF (x)·ρF (y)ρF (y)ρF (x)

= [ρF (x), ρF (y)],

where the second to last equality follows from the fact that ρF (x) = F (x′) which has parity

equal to x since F is even and x′ = x, as mentioned above. Then ρF is even, so ρF (x) = x.
Similarly for y. So we have our desired result. �

Now suppose for F,G in Pd(A,a) we have a homogeneous supernatural transformation η :

F → G. In particular, if we have homogeneous x ∈ gln(A), this means ηAn ◦ F (x′) =

(−1)η·x
′
G(x′)◦ηAn . But this is equivalent to having ηAn◦ρF (x) = (−1)η·ρF (x)ρG(x)◦ηAn which

exactly means ηAn is a homomorphism of gln(A)-supermodules. Thus, we have the following
result (that composition and identity are respected follows from η being a supernatural
transformation):

Proposition 7.4. For n > d, evaluation at An gives a functor evAn : Pd(A,a) → gln(A)smod

where gln(A)smod denotes the category of left supermodules for gln(A).

We can now think about sections of natural transformations not just as k-maps (or even
TAa (n, n; d)-maps), but under the appropriate conditions, as gln(A)-maps. This will be helpful
in what follows.

7.3. Merge Morphism

We know from remark 6.24 that Sd(An) is a left gln(A)-supermodule. Our aim is to define
a certain morphism in Pd(A,a) whose sections are gln(A)-supermodule maps.

Proposition 7.5. For Sd ⊗ Se, Sd+e in Pd+e
(A,a), the map µd+e

d,e : Sd ⊗ Se → Sd+e is an even

supernatural transformation whose sections (µd+e
d,e )V : (Sd ⊗ Se)(V )→ Sd+e(V ) are given by

multiplication inside S(V ). We call this the merge morphism.
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Proof. We should check that this definition makes sense. First of all, for x ∈ Sd(V ) and
y ∈ Se(V ), (µd+e

d,e )V (x⊗ y) just multiplies these elements inside S(V ) (by concatenating the

representatives), resulting in an element which lives in Sd+e(V ).
Next, consider an element [ui1 · · ·uia ] ⊗ [uj1 · · ·ujb ] ∈ Sa(V ) ⊗ Sb(V ). By this notation,

we mean, for example, that ui1 · · ·uia is a pure tensor in T a(V ) (where we’ve supressed the
⊗ notation) with each uik being a homogeneous element of V , and [ui1 · · ·uia ] denotes the
corresponding coset in Sd(V ). The parity of [ui1 · · ·uia ] is ui1 + · · · + uia , and similarly for
[uj1 · · ·ujb ]. Then the parity of [ui1 · · ·uia ]⊗ [uj1 · · ·ujb ] is (ui1 + · · ·+ uia) + (uj1 + · · ·+ ujb)
which is precisely the parity of [ui1 · · ·uiauj1 · · ·ujb ] ∈ Sd+e(V ). Hence each section of µd+e

d,e

is an even map, so µd+e
d,e is even.

What remains to be seen is that µd+e
d,e is actually a supernatural transformation. To check

this, first note that since V = An, we have an A-basis for V , {v1, . . . , vn}. Now for b ∈ B,
if we let vbi denote the element vi.b (so vbi corresponds to a column vector of height n with
zeros everywhere except for a b in the ith slot), we see that {vbi | b ∈ B, i ∈ [1, n]} is

a k-basis for V . Moreover, recall that
{
η̃(~b,~r,~s)

∣∣∣ (~b, ~r, ~s) ∈ Ω(B,m, n; d)
}

gives a k-basis for

TAa (m,n; d) (= TAa (V,W ; d) for W = Am). Since the naturality condition in this case is
a matter of k-linear maps commuting (remember our sections are even, so we really do
get a commuting square), the previous observations imply that it suffices to compute on
[vx1
t1 · · · v

xd
td

] ⊗ [v
xd+1

td+1
· · · vxd+etd+e

] ∈ Sd(V ) ⊗ Se(V ) (where ~x ∈ Bd+e and ~t ∈ [1, n]d+e) and

η̃(~b,~r,~s) ∈ TAa (m,n; d+ e).

First of all, it is clear that either path of our desired square yields 0 if ~t 6∼ ~s. So, we
will further assume that ~t = ~sγ for some γ ∈ Sd+e. Then applying (Sd ⊗ Se)(η̃(~b,~r,~s)) to

[vx1
t1 · · · v

xd
td

]⊗ [v
xd+1

td+1
· · · vxd+etd+e

] is equivalent to applying the morphism

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD

(−1)s(
~b,σ)ϕbσ1

rσ1sσ1
· · ·ϕbσdrσdsσd � ϕ

bσ(d+1)
rσ(d+1)sσ(d+1)· · ·ϕ

bσ(d+e)
rσ(d+e)sσ(d+e)

to [vx1
t1 · · · v

xd
td

]⊗ [v
xd+1

td+1
· · · vxd+etd+e

] which equals

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)

[
vbσ1x1
rσ1
· · · vbσdxdrσd

]
⊗
[
v
bσ(d+1)xd+1
rσ(d+1) · · · vbσ(d+e)xd+e

rσ(d+e)

]
(104)

by corollary 6.20. Now applying the merge to (104) gives

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)

[
vbσ1x1
rσ1

· · · vbσ(d+e)xd+e
rσ(d+e)

]
. (105)

On the other hand, first applying merge to [vx1
t1 · · · v

xd
td

]⊗ [v
xd+1

td+1
· · · vxd+etd+e

] gives [vx1
t1 · · · v

xd+e
td+e

].

Then applying Sd+e(η̃(~b,~r,~s)) gives

[~b, ~r, ~s]!c

 ∑
σ∈~b,~r,~sD

(−1)s(
~b,σ)
(
ϕbσ1
rσ1sσ1

· · ·ϕbσ(d+e)
rσ(d+e)sσ(d+e)

)(
vx1
sγ1
· · · vxd+esγ(d+e)

)
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which equals

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)

[
vbσ1x1
rσ1

· · · vbσ(d+e)xd+e
rσ(d+e)

]
. (106)

Since (105) = (106), we have our result. �

Proposition 7.6. For any d, e, the section (µd+e
d,e )An : (Sd ⊗ Se)(An)→ Sd+e(An) is a map

of gln(A)-supermodules.

Proof. First, of all, by remark 6.24, the objects in question are actually gln(A)-supermodules.
We consider a homogeneous element [ui1 · · ·uid ] ⊗ [uj1 · · ·uje ] ∈ Sd(An) ⊗ Se(An). Now let
x ∈ gln(A) be homogeneous. Then

x([ui1 · · ·uid ]⊗ [uj1 · · ·uje ]) = x[ui1 · · ·uid ]⊗ [uj1 · · ·uje ] + (−1)α[ui1 · · ·uid ]⊗ x[uj1 · · ·uje ]

=
d∑
r=1

(−1)θr [ui1 · · ·xuir · · ·uid ]⊗ [uj1 · · ·uje ]

+ (−1)α[ui1 · · ·uid ]⊗
e∑
s=1

(−1)ηs [uj1 · · ·xujs · · ·uje ], (107)

where α = x(ui1 + · · ·+ uid), θr = x(ui1 + · · ·+ uir−1), and ηs = x(uj1 + · · ·+ ujs−1).
So if we take the merge of (107), we get

(µd+e
d,e )An (x([ui1 · · ·uid ]⊗ [uj1 · · ·uje ])) =

d∑
r=1

(−1)θr [ui1 · · ·xuir · · ·uiduj1 · · ·uje ]

+
e∑
s=1

(−1)ηs+α[ui1 · · ·uiduj1 · · · xujs · · ·uje ]. (108)

On the other hand,

x
(
(µd+e

d,e )An([ui1 · · ·uid ]⊗ [uj1 · · ·uje ])
)

= x ([ui1 · · ·uiduj1 · · ·uje ]))

=
d∑
t=1

(−1)κt [ui1 · · ·xuit · · ·uiduj1 · · ·uje ]

+
e∑

t′=1

(−1)κ
′
t′ [ui1 · · ·uiduj1 · · ·xujt′ · · ·uje ], (109)

where the t ranges through i1 to id and t′ ranges through j1 to je. We have that κt =
x(ui1 + · · ·+ uit−1) and κ′t′ = x(ui1 + · · ·+ uid + uj1 + · · ·+ ujt′−1

).
We want (108) = (109) which will follow so long as θr = κr for all 1 6 r 6 d and ηs+α = κ′s

for all 1 6 s 6 e. Luckily, this is immediate. �

7.4. Split Morphism

Let’s keep the train rolling.
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Proposition 7.7. For Sd ⊗ Sa, Sd+e in Pd+e
(A,a), the map ςd,ed+e : Sd+e → Sd ⊗ Se is an even

supernatural transformation whose sections (ςd,ed+e)V : Sd+e(V )→ (Sd ⊗ Se)(V ) are given by

[u1 · · ·ud+e] 7→
∑

PtQ=[1,d+e]

(−1)ε(P,Q)[up1 · · ·upd ]⊗ [uq1 · · ·uqe ].

Here, [u1 · · ·ud+e] is as in the proof of proposition 7.5 where each ui is a homogeneous element
of V , P = {p1 < · · · < pd}, Q = {q1 < · · · < qe}, and

ε(P,Q) = #{(p, q) ∈ P ×Q | p > q, up = uq = 1}.

We call this the split morphism.

Proof. First, we check that ςd,ed+e is even. To so, we need to know that each section (ςd,ed+e)V is

an even map. So, consider [u1 · · ·ud+e] ∈ Sd+e(V ) where each ui is a homogeneous element in

V . Now given any P,Q as in the formula for (ςd,ed+e)V , the parity of [up1 · · ·upd ]⊗ [uq1 · · ·uqe ]
is (up1 + · · ·+ upd) + (uq1 + · · ·+ uqe) which equals u1 + · · ·+ ud+e since P tQ = [1, d+ e].

Therefore, each summand in (ςd,ed+e)V ([u1 · · ·ud+e]) has the same parity as [u1 · · ·ud+e]. Hence

[u1 · · ·ud+e] = (ςd,ed+e)V ([u1 · · ·ud+e]), and we indeed see that our map is even.

What remains to be seen is that ςd,ed+e is actually a supernatural transformation. To check

this, let {v1, . . . , vn} be an A-basis for V = An so that {vbi | b ∈ B, i ∈ [1, n]} is a k-basis
for V . Since the naturality condition in this case is a matter of k-linear maps commuting
(remember our sections are even, so we really do get a commuting square), the previous
observations imply that it suffices to compute on [vx1

t1 · · · v
xd+e
td+e

] ∈ Sd+e(V ) (where ~x ∈ Bd+e

and ~t ∈ [1, n]d+e) and η̃(~b,~r,~s) ∈ TAa (m,n; d+ e).

First of all, it is clear that either path of our desired square yields 0 if ~t 6∼ ~s. So, we will
further assume that ~t = ~sγ for some γ ∈ Sd+e. Then

Sd+e
(
η̃(~b,~r,~s)

)(
[vx1
t1 · · · v

xd+e
td+e

]
)

= Sd+e
(
η̃(~b,~r,~s)

)(
[vx1
sγ1
· · · vxd+esγ(d+e)

]
)

=
[
η̃(~b,~r,~s)

(
vx1
sγ1
· · · vxd+esγ(d+e)

)]
= [~b, ~r, ~s]!c

 ∑
σ∈~b,~r,~sD

(−1)s(
~b,σ)ϕbσ1

rσ1sσ1
· · ·ϕbσ(d+e)

rσ(d+e)sσ(d+e)

(
vx1
sγ1
· · · vxd+esγ(d+e)

)
= [~b, ~r, ~s]!c

∑
σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)

[
vbσ1x1
rσ1

· · · vbσ(d+e)xd+e
rσ(d+e)

]
. (110)

Then applying the split gives

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)

(∑
P,Q

(−1)ε(P,Q)
[
v
bσ(p1)xp1
rσ(p1) · · · vbσ(pd)xpd

rσ(pd)

]
⊗
[
v
bσ(q1)xq1
rσ(q1) · · · vbσ(qe)xqe

rσ(qe)

])

(111)

Now notice that we can associate to a choice of P and Q a unique permutation τP,Q ∈ Sd+e.
Explicity, we have τP,Q(i) = pi for i ∈ [1, d] and τP,Q(d + j) = qj for j ∈ [1, e]. To shorten
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notation, we will denote by SP,Q the set of all such τP,Q . Then we may write the inner sum

in (111),
∑
P,Q

(−1)ε(P,Q)
[
v
bσ(p1)xp1
rσ(p1) · · · vbσ(pd)xpd

rσ(pd)

]
⊗
[
v
bσ(q1)xq1
rσ(q1) · · · vbσ(qe)xqe

rσ(qe)

]
, as

∑
τ∈SP,Q

(−1)s(
−−→
bσx,τ)

[
v
bσ(τ1)xτ1
rσ(τ1) · · · vbσ(τd)xτd

rσ(τd)

]
⊗
[
v
bσ(τ(d+1))xτ(d+1)
rσ(τ(d+1)) · · · vbσ(τ(d+e))xτ(d+e)

rσ(τ(d+e))

]
(112)

so that

(111) = [~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)(112).

On the other hand, we have

(ςd,ed+e)V
([
vx1
t1 · · · v

xd+e
td+e

])
= (ςd,ed+e)V

([
vx1
sγ1
· · · vxd+esγ(d+e)

])
=

∑
τ∈SP,Q

(−1)s(~x,τ)
[
vxτ1
sγ(τ1)

· · · vxτdsγ(τd)

]
⊗
[
v
xτ(d+1)
sγ(τ(d+1)) · · · v

xτ(d+e)
sγ(τ(d+e))

]
.

(113)

Now applying Sd ⊗ Se
(
η̃(~b,~r,~s)

)
to a summand

[
vxτ1
sγ(τ1)

· · · vxτdsγ(τd)

]
⊗
[
v
xτ(d+1)
sγ(τ(d+1)) · · · v

xτ(d+e)
sγ(τ(d+e))

]
in

(113) gives the following:

[~b, ~r, ~s]!c
∑

α∈~b,~r,~sD
~sα=~s(γτ)

(−1)s(
~b,α)+s(~bα→~xτ)

[
vbα1xτ1
rα1

· · · vbαdxτdrαd

]
⊗
[
v
bα(d+1)xτ(d+1)
rα(d+1) · · · vbα(d+e)xτ(d+e)

rα(d+e)

]
(114)

by corollary 6.20. Therefore,

Sd ⊗ Se
(
η̃(~b,~r,~s)

)
(113) =

∑
τ∈SP,Q

(−1)s(~x,τ)(114).

So we just need to show that

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)(112) =

∑
τ∈SP,Q

(−1)s(~x,τ)(114).

First, we claim that each side of this equation consists of the same number of terms. This
amounts to showing #{σ | ~sσ = ~sγ} = #{α | ~sα = ~s(γτ)}. Consider the set map from the
first set to the second given by σ 7→ στ . This is easily seen to be a bijection with inverse
given by α 7→ ατ−1.

This actually also tells us how the terms from each side match up - the σ, τ term from the
left matches the τ, στ term from the right. Explicitly, since each α ∈ {α | ~sα = ~s(γτ)} can
be written as α = στ for some σ ∈ {σ | ~sσ = ~sγ}, we can reindex the summation in (114)
so that (114) equals

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,στ)+s(~b(στ)→~xτ)

[
v
b(στ)1xτ1
r(στ)1 · · · vb(στ)dxτd

r(στ)d

]
⊗
[
v
b(στ)(d+1)xτ(d+1)
r(στ)(d+1) · · · vb(στ)(d+e)xτ(d+e)

r(στ)(d+e)

]
(115)
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So now we want

[~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)(112) =

∑
τ∈SP,Q

(−1)s(~x,τ)(115).

It is clear that we have this equality up to signs. So to finish our claim, we still need to show
that the signs match. Explicitly, we need

(−1)s(
~b,σ)+s(~bσ→~x)+s(

−−→
bσx,τ) = (−1)s(~x,τ)+s(~b,στ)+s(~b(στ)→~xτ)

for each appropriate choice of σ and τ . Well we have

(−1)s(
~b,σ)+s(~bσ→~x)+s(

−−→
bσx,τ) = (−1)s(

~b,σ)+s(~bσ,τ)+s(~x,τ)+s((~bσ)τ→~xτ)

= (−1)s(
~b,στ)+s(~x,τ)+s((~bσ)τ→~xτ),

where the first equality comes from applying corollary 6.23 to the last two terms, and the
second equality follows from collapsing the first two terms using remark 1.4. �

Proposition 7.8. For any d, e, the section (ςd,ed+e)An : Sd+e(An) → (Sd ⊗ Se)(An) is a map
of gln(A)-supermodules.

Proof. Let’s consider a homogeneous element [u1 · · ·ud+e] ∈ Sd+e(An) and a homogeneous
x ∈ gln(A). Then

x.[u1 · · ·ud+e] =
d+e∑
r=1

(−1)αr [u1 · · ·xur · · ·ud+e] (116)

where αr = x(u1 + · · ·+ ur−1).
Now we will introduce new notation to simplify our calculation. Let

r~v := (u1, . . . , xur, . . . ud+e)

so that rvi = ui when i 6= r and rvr = xur. Then Applying (ςd,ed+e)An to (116) gives

d+e∑
r=1

(−1)αr

 ∑
PtQ=[1,d+e]

(−1)ε
′(P,Q)[rvp1 · · · rvpd ]⊗ [rvq1 · · · rvqe ]

 . (117)

On the other hand, we have x.(ςd,ed+e)An ([u1 · · ·ud+e]) is equal to∑
PtQ=[1,d+e]

(−1)ε(P,Q)
(
x[up1 · · ·upd ]⊗ [uq1 · · ·uqe ] + (−1)β(P,Q)[up1 · · ·upd ]⊗ x[uq1 · · ·uqe ]

)
which equals ∑

PtQ=[1,d+e]

(−1)ε(P,Q) (x[up1 · · ·upd ]⊗ [uq1 · · ·uqe ])

+
∑

PtQ=[1,d+e]

(−1)ε(P,Q)+β(P,Q) ([up1 · · ·upd ]⊗ x[uq1 · · ·uqe ]) . (118)

Now the first chunk of (118) is equal to∑
PtQ=[1,d+e]

(−1)ε(P,Q)

(
d∑
s=1

(−1)x(up1+···+ups−1 )[up1 · · ·xups · · ·upd ]⊗ [uq1 · · ·uqe ]

)
, (119)
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and the second chunk of (118) is equal to∑
PtQ=[1,d+e]

(−1)ε(P,Q)+β(P,Q)

(
e∑
t=1

(−1)x(uq1+···+uqt−1 )[up1 · · ·upd ]⊗ [uq1 · · · xuqt · · ·uqe ]

)
.

(120)

This expansion makes it clear that (117) and (118) have the same number of terms. Now we
will match these terms, proving the desired result.

A term from (119) is a choice of sets P,Q and a value of s giving

(−1)ε(P,Q)(−1)x(up1+···+ups−1 )[up1 · · ·xups · · ·upd ]⊗ [uq1 · · ·uqe ],

which in our notation from above is equal to

(−1)ε(P,Q)(−1)x(psvp1+···+psvps−1 )[psvp1 · · · psvps · · · psvpd ]⊗ [psvq1 · · · psvqe ]. (121)

This corresponds to the r = ps, P,Q term from (117):

(−1)αps (−1)ε
′(P,Q)[psvp1 · · · psvpd ]⊗ [psvq1 · · · psvqe ]. (122)

We just need to make sure that the signs from (121) and (122) match. To do so, we first
note that for the element [u1 · · ·ud+e], we have

(−1)ε(P,Q) = (−1)#{(p,q)∈P×Q|p>q, up=uq=1}

= (−1)

∑
p∈P

up·
 ∑
q∈Q
q<p

uq



.

Now for the term in (122), ε′(P,Q) comes from the term [u1 · · ·xur · · ·ud+e] where r = ps
belongs to P . So it only differs from ε(P,Q) at the xur term. In particular, we have

(−1)ε
′(P,Q) = (−1)

∑
p∈P
p 6=ps

up·
 ∑
q∈Q
q<p

uq


+xups

 ∑
q∈Q
q<ps

uq



= (−1)

∑
p∈P
p 6=ps

up·
 ∑
q∈Q
q<p

uq


+(x+ups )

 ∑
q∈Q
q<ps

uq



= (−1)

ε(P,Q)+x

 ∑
q∈Q
q<ps

uq


.

Now notice that the sign from (121) is equal to

(−1)ε(P,Q)+x(up1+···+ups−1 ), (123)

and the sign from (122) is equal to

(−1)ε
′(P,Q)+αps = (−1)

ε(P,Q)+x

( ∑
q<ps

uq

)
+x(u1+···+ups−1)

. (124)
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Since P is ordered, we know that {p1, . . . , ps−1} ⊂ {1, . . . , ps − 1}. Moreover, {1, . . . , ps −
1}r {p1, . . . , ps−1} ⊂ Q, and these elements in Q are the only elements which are less than
ps. So they solely contribute to

∑
q<ps

uq. To summarize, we have (since we work mod 2) that

(−1)
ε(P,Q)+x

( ∑
q<ps

uq

)
+x(u1+···+ups−1)

= (−1)ε(P,Q)+x(up1+···+ups−1 ),

and thus (123) = (124), as desired.
Now a term from (120) is a choice of sets P,Q and a value of t giving

(−1)ε(P,Q)+β(P,Q)(−1)x(uq1+···+uqt−1 )[up1 · · ·upd ]⊗ [uq1 · · ·xuqt · · ·uqe ],

which in our notation from above is equal to

(−1)ε(P,Q)+β(P,Q)(−1)x(qtvq1+···+qtvqt−1 )[qtvp1 · · · qtvpd ]⊗ [qtvq1 · · · qtvqt · · · qtvqe ]. (125)

This corresponds to the r = qt, P,Q term from (117):

(−1)αqt (−1)ε
′(P,Q)[qtvp1 · · · qtvpd ]⊗ [qtvq1 · · · qtvqe ]. (126)

We just need to make sure that the signs from (125) and (126) match.
Now for the term in (126), ε′(P,Q) comes from the term [u1 · · ·xur · · ·ud+e] where r = qt

belongs to Q. So it only differs from εP,Q at the xur term. In particular, we have

(−1)ε
′(P,Q) = (−1)

∑
p∈P

up·
 ∑
q∈Qr{qt}

q<p

uq


+

∑
p∈P
p>qt

up·xuqt

= (−1)

∑
p∈P

up·
 ∑
q∈Qr{qt}

q<p

uq


+

∑
p∈P
p>qt

up(x+uqt )

= (−1)

ε(P,Q)+
∑
p∈P
p>qt

up·x

.

Now notice that the sign from (125) is equal to

(−1)ε(P,Q)+x(up1+···+upd )+x(uq1+···+uqt−1 ), (127)

and the sign from (126) is equal to

(−1)ε
′(P,Q)+αqt = (−1)

ε(P,Q)+x

( ∑
p>qt

up

)
+x(u1+···+uqt−1)

. (128)

Since Q is ordered, {q1, . . . , qt−1} ⊂ {1, . . . , qt−1}. Moreover, {1, . . . , qt−1}r{q1, . . . , qt−1} ⊂
P , and these elements in P are the only such elements which are less than qt. So these,
along with the elements of p which are larger than qt make up all of P . That is, P =
({1, . . . , qt − 1}r {q1, . . . , qt−1}) ∪ {p ∈ P | p > qt}. To summarize, we have (since we work
mod 2) that

(−1)
ε(P,Q)+x

( ∑
p>qt

up

)
+x(u1+···+uqt−1)

= (−1)ε(P,Q)+x(up1+···+upd )+x(uq1+···+uqt−1 ),

and thus (127) = (128), as desired. �
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7.5. Crossing Morphism

Recall from propositions 6.17 and 6.18 that P(A,a) is symmetric monoidal. For the functors
Sd, Se, we will give the flip map a special notation and call it the crossing morphism. Let
τd,e : Sd ⊗ Se → Se ⊗ Sd be the supernatural transformation flipSd,Se from propositon 6.18.

Proposition 7.9. For any d, e, the section (τd,e)An : (Sd ⊗ Se)(An) → (Se ⊗ Sd)(An) is a
map of gln(A)-supermodules.

Proof. First, of all, by remark 6.24, the objects in question are actually gln(A)-supermodules.
We consider a homogeneous element [ui1 · · ·uid ] ⊗ [uj1 · · ·uje ] ∈ Sd(An) ⊗ Se(An). Now let
x ∈ gln(A) be homogeneous. Then

x([ui1 · · ·uid ]⊗ [uj1 · · ·uje ]) = x[ui1 · · ·uid ]⊗ [uj1 · · ·uje ] + (−1)α[ui1 · · ·uid ]⊗ x[uj1 · · ·uje ]

=
d∑
r=1

(−1)θr [ui1 · · ·xuir · · ·uid ]⊗ [uj1 · · ·uje ]

+
e∑
s=1

(−1)ηs+α[ui1 · · ·uid ]⊗ [uj1 · · ·xujs · · ·uje ], (129)

where α = x(ui1 + · · ·+ uid), θr = x(ui1 + · · ·+ uir−1), and ηs = x(uj1 + · · ·+ ujs−1).
So if we apply the crossing to (129), we get

d∑
r=1

(−1)θr+(uj1+···+uje )(ui1+···+xuir+···+uid )[uj1 · · ·uje ]⊗ [ui1 · · ·xuir · · ·uid ]

+
e∑
s=1

(−1)ηs+α+(uj1+···+xujs+···+uje )(ui1+···+uid )[uj1 · · ·xujs · · ·uje ]⊗ [ui1 · · ·uid ]

=
d∑
r=1

(−1)θr+(uj1+···+uje )(ui1+···+xuir+···+uid )[uj1 · · ·uje ]⊗ [ui1 · · ·xuir · · ·uid ]

+
e∑
s=1

(−1)ηs+(uj1+···+ujs+···+uje )(ui1+···+uid )[uj1 · · ·xujs · · ·uje ]⊗ [ui1 · · ·uid ], (130)

where the sign simplifies in the last term since xujs = x + ujs , and we can work mod 2 for
signs.

On the other hand ,

x((τd,e)An([ui1 · · ·uid ]⊗[uj1 · · ·uje ])) = (−1)(ui1+···+uid )(uj1+···+uje )x ([uj1 · · ·uje ]⊗[ui1 · · ·uid ]))

which is equal to

e∑
s=1

(−1)ηs+(ui1+···+uid )(uj1+···+uje )[uj1 · · ·xujs · · ·uje ]⊗ [ui1 · · ·uid ]

+
d∑
r=1

(−1)θr+x(uj1+···+uje )+(ui1+···+uid )(uj1+···+uje )[uj1 · · ·uje ]⊗ [ui1 · · · xuir · · ·uid ]. (131)

Since (130) = (131), we are done. �
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7.6. Coupon Morphism

Let V = An have A-basis {v1, . . . , vn} so that {vbi | b ∈ B} is a k-basis for V . For S1 in
P1

(A,a), any y, x ∈ B, and any n > 0, define the k-linear map

(κy1)V : S1(V )→ S1(V ) via vxr 7→ (−1)x·yvxyr

whose parity is that of y.
For Sd in Pd(A,a) (with d > 1), any y ∈ a, any ~x ∈ Bd, and any n > 0, define the (even)

linear map

(κyd)V : Sd(V )→ Sd(V ) via [vx1
r1
· · · vxdrd ] 7→ [vx1y

r1
· · · vxdyrd

].

Note that there are no sign issues with d > 1 since y must be even in this case. So (κyd)V is
an even linear endomorphism of Sd(V ) for any finite free right A supermodule V and any
d > 1. For d = 1 it has parity y.

Proposition 7.10. The coupon morphism κyd : Sd → Sd is a supernatural transformation
whose sections are given by the (κyd)V maps above. The parity of κyd is the parity of the
element y ∈ A.

Proof. It suffices to check naturality on an element [vx1
t1 · · · v

xd
td

] ∈ Sd(V ) for V = An, xi ∈ B,
ti ∈ [1, n] and for the coupon element y to be homogeneous. Consider η̃(~b,~r,~s) ∈ TAa (V,W ; d)

for W = Am. Then either path in the naturality square yields 0 whenever ~t 6∼ ~s. So, we may
assume ~t = ~sγ for some γ ∈ Sd. In this case, for d > 2, we have

(κyd)W

(
Sd(η̃(~b,~r,~s))[v

x1
t1 · · · v

xd
td

]
)

= [~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x) (κyd)W

[
vbσ1x1
rσ1

· · · vbσdxdrσd

]
= [~b, ~r, ~s]!c

∑
σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→~x)

[
vbσ1x1y
rσ1

· · · vbσdxdyrσd

]
. (132)

On the other hand, we have

Sd(η̃(~b,~r,~s))
(
(κyd)V [vx1

t1 · · · v
xd
td

]
)

= Sd(η̃(~b,~r,~s))[v
x1y
t1 · · · v

xdy
td

]

= [~b, ~r, ~s]!c
∑

σ∈~b,~r,~sD
~sσ=~sγ

(−1)s(
~b,σ)+s(~bσ→ ~xy)

[
vbσ1x1y
rσ1

· · · vbσdxdyrσd

]
. (133)

Now notice that for d > 2, we must have y ∈ a so that y = 0. This means xiy = xi for all

i ∈ [1, d]. Therefore s(~bσ → ~xy) = s(~bσ → ~x), and it is obvious that (132) = (133) showing
that κyd is an even supernatural transformation.

For d = 1, (132) degenerates to

(κyd)W
(
ϕbrs(v

x
s )
)

= (κyd)W (vbxr ) = (−1)y(b+x)vbxyr ,

and (133) degenerates to

ϕbrs ((κyd)V (vxs )) = (−1)y·xϕbrs (vxys ) = (−1)y·xvbxyr .

These two differ by a sign of (−1)y·b = (−1)κ
y
d·η̃(b,r,s) which exactly means κyd is a supernatural

transformation of parity y. �
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Proposition 7.11. For any d, the section (κyd)An : Sd(An) → Sd(An) is a map of gln(A)-
supermodules.

Proof. Let’s consider a k-basis element [vx1
r1
· · · vxdrd ] ∈ Sd(An) and some Eh

ij ∈ gln(A) with
h ∈ A homogeneous. Then for d > 1, we have (suppressing the ⊗ symbol)

(κyd)An
(
Eh
ij[v

x1
r1
· · · vxdrd ]

)
= (κyd)An

(
d∑
s=1

(−1)h(x1+···+xs−1)[vx1
r1
· · ·Eh

ijv
xs
rs · · · v

xd
rd

]

)

= (κyd)An

(
d∑
s=1

(−1)h(x1+···+xs−1)δjrs [v
x1
r1
· · · vhxsi · · · vxdrd ]

)

=
d∑
s=1

(−1)h(x1+···+xs−1)δjrs [v
x1y
r1
· · · vhxsyi · · · vxdyrd

] (134)

and

Eh
ij(κ

y
d)An [vx1

r1
· · · vxdrd ] = Eh

ij[v
x1y
r1
· · · vxdyrd

]

=
d∑
s=1

(−1)h(x1y+···+xs−1y)[vx1y
r1
· · ·Eh

ijv
xsy
rs · · · v

xdy
rd

]

=
d∑
s=1

(−1)h(x1+···+xs−1)δjrs [v
x1y
r1
· · · vhxsyi · · · vxdyrd

], (135)

where the sign simplifies in this last equality since y = 0 whenever d > 1. Since (134) = (135),
we have our result when d > 1. When d = 1, we have

(κyd)An
(
Eh
ijv

x
r

)
= (κyd)An

(
δjrv

hx
i

)
= δjr(−1)y·hxvhxyi

= δjr(−1)y(h+x)vhxyi

= (−1)y(h+x)Eh
ijv

xy
r

= (−1)y·hEh
ij(κ

y
d)An (vxr )

which gives the desired result. �

7.7. The Functor F : Web(Asop,asop) → P(A,a)

We’d like to establish the relationship between the category Web(A,a) from [DKMZ22] and
P(A,a) in the form of a functor. But there is a subtle discrepency between right and left.
Recall that the category Web(A,a) describes morphisms between the right gln(A) modules
tensor-generated by Sd(Vn), for various n and d, where Vn is the free left A-supermodule
of rank n viewed as row vectors. In our setting, we have right A-supermodules with a left
gln(A) action where we view An as column vectors. Our claim is that P(A,a) corresponds to
Web(Asop,asop).

Proposition 7.12. There is a well-defined monoidal functor F : Web(Asop,asop) → P(A,a)

which sends an object d of Web(Asop,asop) to the polynomial superfunctor Sd in Pd(A,a) ⊂ P(A,a)

and does the obvious on morphisms: it sends the merge diagram to our merge morphism from

83



7.3, the split diagram to our split morphism from 7.4, the crossing diagram to our crossing
morphism from 7.5, and the coupon diagram to our coupon morphism from 7.6.

Proof. Consider the maps Vn spld,ed+e, Vn merd+e
d,e , and τSdVn,SeVn from [DKMZ22] as we defined

above in section 7.1. Remember that here, Vn is row vectors with entries in Asop. But we can
identify this as a k-supermodule with An as discussed in remark 1.17. And so as k-maps, they
are exactly the same as the sections at An of ςd,ed+e, µ

d+e
d,e , and τd,e, respectively. It is shown

in [DKMZ22] that Vn spld,ed+e, Vn merd+e
d,e , and τSdVn,SeVn correspond to the split, merge, and

crossing diagrams, respectively, and satisfy the appropriate defining relations of Web(Asop,asop)

for any n. Hence ςd,ed+e, µ
d+e
d,e , and τd,e satisfy the same relations.

Now recall the linear map Lxd : Sd(Vn)→ Sd(Vn) from [DKMZ22]. It is such that

vz1r1 · · · v
zd
rd
7→ vx•z1r1

· · · vx•zdrd
.

When d = 1, we have
vzi 7→ vx•zi = (−1)x·zvzxi ,

and when d > 1, we have

vz1r1 · · · v
zd
rd
7→ vx•z1r1

· · · vx•zdrd
= vz1xr1

· · · vzdxrd
,

where there is no extra sign since x must be even. But after our identification Vn ∼= An as
k-supermodules, we see that Lxd is equivalent to the section at An of our coupon morphism,
κxd.

Since it is shown in [DKMZ22] that Lxd satisfies all the relations involving the coupon
diagram for all n, it follows that our coupon morphism satisfies the same relations, and we
are done. �

Remark 7.13. Consider the monoidal superfunctors Gn : Web(Asop,asop) → smodSgln(Asop) from
[DKMZ22]. In light of proposition 1.16 and remark 1.17, and viewing the target of Gn as
being smodgln(Asop), we have the following commuting square for all n:

Web(Asop,asop) smodgln(Asop)

P(A,a) gln(A)smod

Gn

F T

evAn

. (136)

Proposition 7.14. The functor F : Web(Asop,asop) → P(A,a) is faithful.

Proof. We wish to show that for any objects ~x, ~y in the web category, the induced map
F : Web(Asop,asop)(~x, ~y) → P(A,a)(S

~x, S~y) is injective. Note that any web from ~x to ~y has the
property that

∑
xi =

∑
yj. Call this value N . Proposition 6.6.1 from [DKMZ22] shows that

GN induces an injection Web(Asop,asop)(~x, ~y) ↪→ smodglN (Asop)(S
~x(VN), S~y(VN)). Since T is an

equivalence, the square in (136) yields

Web(Asop,asop)(~x, ~y) smodglN (Asop)(S
~x(VN), S~y(VN))

P(A,a)(S
~x, S~y) glN (A)smod(S~x(AN), S~y(AN))

GN

F T

ev
AN

.

It follows that F induces an injection Web(Asop,asop)(~x, ~y) ↪→ P(A,a)(S
~x, S~y), as desired. �
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It’s natural to ask when F is full. Our only restriction is on k:

Proposition 7.15. The functor F : Web(Asop,asop) → P(A,a) is full whenever k is an alge-
braically closed field of characteristic 0.

Proof. We wish to show that for any objects ~x, ~y in the web category, the induced map
F : Web(Asop,asop)(~x, ~y) → P(A,a)(S

~x, S~y) is surjective. Well any web from ~x to ~y has the
property that

∑
xi =

∑
yj. Call this value N . It follows that F actually lands in the degree

N part of P(A,a), that is, we have

F : Web(Asop,asop)(~x, ~y)→ PN(A,a)(S
~x, S~y).

The functor GN : Web(Asop,asop) → smodSglN (Asop) is not full, in general. However, by section

5.3 of [EK17], the map ρAN,N from proposition 9.3.1 of [DKMZ22] is surjective4. Thus, by
proposition 9.2.1 of [DKMZ22], the induced map

GN : Web(Asop,asop)(~x, ~y)→ smodglN (Asop)(S
~x(VN), S~y(VN))

is surjective. Since GN is also faithful, this map is an isomorphism on morphism spaces.
Similarly, T induces an isomorphism, and since F is faithful by proposition 7.14, we have
the commuting square:

Web(Asop,asop)(~x, ~y) smodglN (Asop)(S
~x(VN), S~y(VN))

PN(A,a)(S
~x, S~y) glN (A)smod(S~x(AN), S~y(AN)).

GN

F T

ev
AN

.

Now suppose η ∈ PN(A,a)(S
~x, S~y). Then evAN (η) = ηAN ∈ glN (A)smod(S~x(AN), S~y(AN)). Since

T is an isomorphism, there is a (unique) element y ∈ smodglN (Asop)(S
~x(VN), S~y(VN)) such

that T (y) = ηAN . Similarly, there is a unique element y′ ∈ Web(Asop,asop)(~x, ~y) such that
GN(y′) = y, and hence T GN(y′) = ηAN . But this means we also have evANF (y′) = ηAN . If
we can show that evAN is injective, it will follow that F (y′) = η and hence F is surjective.

To this end, note that evAN can also be thought of as a functor PN(A,a) → TAa (N,N ;N)smod
which is an equivalence by theorem 6.10. So, in particular, evAN induces an isomorphism

evAN : PN(A,a)(S
~x, S~y)→ TAa (N,N ;N)smod(S~x(AN), S~y(AN))

via η 7→ ηAN . We emphasize that the image of η under this isomorphism is the same exact
k-map as the ηAN of interest above. So if η is nonzero, the map

evAN : PN(A,a)(S
~x, S~y)→ glN (A)smod(S~x(AN), S~y(AN))

sends η to a nonzero map ηAN , so it is injective, as desired. �

Remark 7.16. We’ve established a faithful (and sometimes full) functor F : Web(Asop,asop) →
P(A,a). Now Web(Asop,asop) is not an abelian category, but P(A,a) is. So it is a natural ques-
tion to ask whether P(A,a) can be thought of as an ‘abelianization’ or ‘abelian envelope’ of
Web(Asop,asop).

There are different notions of what this term should mean depending on the setting and
application in mind. See [BEAEO20, BVHP20, Cou21, Fre66, Pre11] and references therein.

4See also section 11.2 of [DKMZ22], and keep in mind that for k a field of characteristic 0, TA
a (n, n; d) =

SA(n, n; d).
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But as a starting point, anything called an abelian envelope should satisfy an appropriate
universal property of the following basic form: Let C be a (super) category. The pair

(C′, F : C→ C′),

where C′ is abelian and F is a (super) functor, is an abelian envelope of C if for any abelian
(super) category D and (super) functorG : C→ D, there exists a (unique up to (super)natural
equivalence) (super)functor G′ : C′ → D such that G′F = G.

There should also be some adjectives describing the functors involved. For example, one
could require F to be faithful or full (or both). Often, one would want G′ to be right-exact or
exact. Conditions can be put on G, as well, and one may also want these functors to respect
extra structure such as a monoidal product. All of these choices would potentially change
the (super)category C′.

Question zero should be when does an abelian envelope exist? Freyd studied this problem
in [Fre66] and constructed a category which is now referred to as the free abelian category or
Freyd’s free abelain category. See [Pre11] for a modern treatment. In particular, the following
is shown in [Pre11]:

Let C be a (non-super) skeletally small preadditive category. A free abelian category on C
is a functor C→ Ab(C) where Ab(C) is abelian and has the universal property that for every
additive functor C → D where D is abelian, there is an extension to an exact functor from
Ab(C)→ D, and there is, up to natural equivalence, just one such exact functor. Moreover,
if C is a small preadditive category, then Ab(C) exists and can be realized as (C-mod)-mod.

So (ignoring super vs non-super) Ab(Web(Asop,asop)) should exist (after taking the additive
closure of Web(Asop,asop)).

Moreover, in [BEAEO20], remark 4.4 and theorem 4.10 (see also example 13.1 of [DKMZ22])
assert that the category of classical strict polynomial functors P is the abelian envelope of
Web(k,k) in the following sense: any functor F : Web(k,k) → D to an abelian category D fac-
tors through the embedding Web(k,k) → P to induce a right-exact functor P → D, which is
monoidal in case F is monoidal.

An interesting question is whether this generalizes to our super setting. What is the
appropriate setting in which P(A,a) can be thought of as an abelian envelope of Web(Asop,asop),
or at least how does it relate to Ab(Web(Asop,asop)) defined above?

Appendix A. Strict vs Non-Strict Polynomial Functors

This section deals with the classical non-super setting. First, we’d like to mention that
[FFPS03] has great exposition on the importance and uses of polynomial functors and on
the differences between what we call polynomial functors and strict polynomial functors.
[Pir00] also contains a nice discussion on this last point as well as a comparison between the
cohomology theory involving the category of functors F : veck → Veck and the category of
strict polynomial functors.

In this appendix, we’ll mostly follow [Kra13] (at times verbatim) to highlight the difference
between polynomial functors and strict polynomial functors. We reproduce and expand on
details here instead of directing the reader to [Kra13] in order to keep this thesis more
self-contained. We will use definitions from [Bou03].

For now, let k be a commutative ring. We will begin by recalling some standard isomor-
phisms in the category of finitely generated projective k-modules, modfgp

k . For V in modfgp
k ,
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let V ∗ := Homk(V, k). Then for V,W in modfgp
k , we have

V ∗ ⊗W ∼= Homk(V,W ) via f ⊗ w 7→ (v 7→ f(v)w) . (137)

For V in modfgp
k , the symmetric group on d letters, Sd, acts on V ⊗d via place permutation.

Let Γd(V ) :=
(
V ⊗d

)Sd be the k-submodule of V ⊗d consisting of elements invariant under the

Sd action. The maximal quotient of V ⊗d on which Sd acts trivially is denoted Sd(V ). We
have (

Γd(V )
)∗ ∼= Sd (V ∗) . (138)

Moreover, Sd(V ) is in modfgp
k whenever V is (and hence Γd(V ) is).

Now let k be a field. As defined in Chapter 4 section 5.9 of [Bou03] we have the following5:

Definition A.1. A homogeneous polynomial mapping of degree d between k-vector spaces
V and W is a set map f : V → W with the following property: there exists a basis {vi}i∈I of
V and a family of elements {wν | ν ∈ NI , |ν| :=

∑
i νi = d} in W such that for all (λi) ∈ kI ,

f

(∑
i∈I

λivi

)
=
∑
ν∈NI
|ν|=d

λνwν ,

where λν := λν1
1 λ

ν2
2 · · ·λ

ν|I|
|I| . So under f , coefficients transform as homogeneous degree d

polynomials. This agrees with the notion of polynomial mapping used in [Mac80].

Let Pold(V,W ) denote the space of homogeneous polynomial mappings of degree d from
V to W . By proposition 13 in Chapter 4 section 5.9 of [Bou03], f ∈ Pold(V,W ) is equivalent
to the existence of a k-linear map h : Γd(V )→ W such that

h(x⊗ · · · ⊗ x) = f(x)

for all x ∈ V (clearly x⊗ · · ·⊗x is invariant under the Sd action so is an element of Γd(V )).
This determines a surjective k-linear map

Homk(Γ
d(V ),W )� Pold(V,W ). (139)

By proposition 16 in Chapter 4 section 5.9 of [Bou03], when k is infinite, the above map
defines an isomorphism. However, when k is finite, this need not be true. In fact, if k has
less than d elements, the map will have nontrivial kernel. This means that an element of
Homk(Γ

d(V ),W ) need not be determined by its corresponding set map V → W . We’ll
demonstrate this (and another issue) with an example.

Example A.2. For now, let k be some field - we will consider a specific field in a moment.
Let V = k2 have basis {v1, v2} and W = k have basis {w1}. Define

v0 := v1 ⊗ v1 ⊗ v1

v1 := v1 ⊗ v1 ⊗ v2 + v1 ⊗ v2 ⊗ v1 + v2 ⊗ v1 ⊗ v1

v2 := v1 ⊗ v2 ⊗ v2 + v2 ⊗ v1 ⊗ v2 + v2 ⊗ v2 ⊗ v1

v3 := v2 ⊗ v2 ⊗ v2

5The definition is actually given for k-modules for k any commutative ring, but we give an equivalent
formulation in terms of vector space bases for k a field.
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so that {v0,v1,v2,v3} forms a k-basis for Γ3V . Then for any a, b ∈ k, we have that a given
h ∈ Homk(Γ

3(V ),W ) is such that

h((av1 + bv2)⊗ (av1 + bv2)⊗ (av1 + bv2)) = h(a3v0 + a2bv1 + ab2v2 + b3v3).

Now if we let h be the map defined by 
v0 7→ 0

v1 7→ w1

v2 7→ w1

v3 7→ 0

then
h((av1 + bv2)⊗ (av1 + bv2)⊗ (av1 + bv2)) = (a2b+ ab2)w1,

so under (139), the corresponding element f in Pol3(V,W ) is the map

av1 + bv2 7→ (a2b+ ab2)w1.

Now if k contains at least 3 elements, this map is not the zero map. However, if k = Z/2Z,
then a2 = a and b2 = b so that a2b + ab2 = 2ab = 0. So in this case, the nontrivial element
h ∈ Homk(Γ

3(V ),W ) is sent to the zero map, and we see that (139) has nontrivial kernel.

We still have an issue even when k has at least d elements.

Example A.3. For now, let k be some field. Let V = k2 have basis {v1, v2} and W = k
have basis {w1}. Then we can define a map f : V → W via

av1 + bv2 7→ (a2 + b2)w1,

which seems like it should be a homogeneous degree 2 polynomial mapping. And indeed, if
we let h ∈ Homk(Γ

2(V ),W ) be defined by
v1 ⊗ v1 7→ w1

v1 ⊗ v2 + v2 ⊗ v1 7→ 0

v2 ⊗ v2 7→ 0

,

then h is the corresponding map under (139) making f a homogeneous degree 2 polynomial
mapping.

However, if we focus on k = Z/2Z, then a2 + b2 = a+ b so that f can also be written as

av1 + bv2 7→ (a+ b)w1,

which feels like it should be a degree 1 homogeneous polynomial mapping. And indeed there
is a corresponding element of Homk(Γ

1(V ),W ) = Homk(V,W ) determined by{
v1 7→ w1

v2 7→ w1

.

So f is both a degree 1 and degree 2 homogeneous polynomial mapping, and there is no
canonical choice for which is the ‘correct’ degree.

These two examples demonstrate that the notion of a homogeneous polynomial mapping
may not be strong enough. This leads us to the definition of a homogeneous degree d strict
polynomial mapping (or a homogeneous polynomial law of degree d as it’s called in [Bou03]
- See exercises 9 and 10 of Chapter 4 section 5). Such a mapping is defined in terms of
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natural transformations between certain functors, but by exercise 10 of Chapter 4 section 5
in [Bou03], the space of homogeneous degree d strict polynomial mappings from V to W is
isomorphic to Homk(Γ

dV,W ).
By isomorphisms (137) and (138), we have

Homk(Γ
d(V ),W ) ∼=

(
Γd(V )

)∗ ⊗W ∼= Sd(V ∗)⊗W
so that we can equivalently characterize a homogeneous degree d strict polynomial map as
an element of Sd(V ∗)⊗W .

Next we analyze the original definition of a homogeneous degree d strict polynomial functor
given in [FS97]. First of all, they define a homogeneous degree d strict6 polynomial map
between finite k-vector spaces V and W as an element of the space Sd(V ∗) ⊗W . Then we
have:

Definition A.4. A homogeneous degree d strict polynomial functor T : veck → veck consists
of the following data:

• A function which assigns to each V in veck a new vector space TV in veck.
• A function which assigns a homogeneous degree d strict polynomial map TV,W from

Homk(V,W ) to Homk(TV, TW ) (that is, TV,W ∈ Sd(Homk(V,W )∗)⊗Homk(TV, TW )).

which are subject to the following conditions (the usual conditions that make T a functor):

• For each V in veck, TV,V (1V ) = 1TV .
• For U, V,W in veck, the following diagram of (homogeneous) strict polynomial maps

commutes:

Homk(V,W )× Homk(U, V ) Homk(U,W )

Homk(TV, TW )× Homk(TU, TV ) Homk(TU, TW )

TV,W×TU,V TU,W .

Now let Γdveck be the category whose objects are the same as those of veck but whose
morphism spaces are defined as

HomΓdveck(V,W ) := Γd Homk(V,W ).

Then the data from definition A.4 is equivalent to having a k-linear functor T : Γdveck →
veck. This is because T obviously sends a finite k-vector space, V , to a new finite k-vector
space, TV , and the induced map on morphisms is a k-linear map

TV,W : HomΓdveck(V,W ) = Γd Homk(V,W )→ Homk(TV, TW )

so that TV,W is homogeneous strict polynomial of degree d, which means TV,W is an element
of Sd(Homk(V,W )∗) ⊗ Homk(TV, TW ). This illustrates why our definitions 6.1 and 6.2 are
generalizations of strict polynomial functors.

It follows from our discussion above that every homogeneous strict polynomial functor T
determines a homogeneous polynomial mapping Homk(V,W ) → Homk(TV, TW ) for every
pair of vector spaces V,W . Moreover, when k is infinite, such a functor is determined by
this data. But when k is finite, it is not in general. This illustrates the difference between
the strict polynomial functors from [FS97] and the polynomial functors from [Mac80] and
[Mac95].

6They actually don’t use the term ‘strict’ in this part of the definition, but we will do so here to avoid
confusion.
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Appendix B. Projective vs Free A-supermodules

In this thesis, we’ve chosen to work with finitely generated free right A-supermodules of
the form V ∼= Am|n or W = Ar. A large reason for this, other than the ease of computation,
is that for general unital good pairs (A, a), the category TA

a (d) is essentially built from the
viewpoint that objects are of the form V = Am|0, and there is no obvious way to circumvent
this. However, for the case when a = A0, we can alter our viewpoint.

Recall that in this situation, we have category equivalences TA
a (d) ∼= SA(d) ∼= ΓdV where

V denotes the supercategory of free finitely generated unshifted right A-supermodules of the
form V = Am|0. Then generalized polynomial functors are of the form ΓdV → smodk. One
could feasably replace V with the category V ′ of finite free unshifted right A-supermodules
of the form V ∼= An since SA(V,W ; d) = Γd HomA(V,W ) makes sense.

Strict polynomial superfunctors are of the form ΓdV→ smodk where V denotes the super-
category of finite free right A-supermodules of the form A ∼= Am|n.

For various reasons, one may be interested in working with finitely generated projective A-
supermodules instead of free supermodules. In this section, we explore when the two starting
points yield equivalent formulations of our generalized functors.

Our goal is to show that the supercategory of superfunctors ΓdV → smodk is equivalent

to the supercategory of superfunctors ΓdV̂ → smodk where V̂ denotes the supercategory of
all finitely generated projective right A-supermodules. This will then obviously translate for
V ′.

We begin with some definitions. Let C be a category.

Definition B.1. An idempotent e in C is an element of HomC(X,X) for some object X
such that

e2 = e.

The idempotent e is a split idempotent (or e ‘splits’) if there exists an object Y (which
we call the underlying object of the splitting) in C and morphisms ρ : X → Y , ι : Y → X
such that

ρι = idY and ιρ = e.

Lemma B.2. Any two splittings of an idempotent e : X → X in C are isomorphic. That is,
if ρ : X → Y , ι : Y → X are such that

ρι = idY and ιρ = e,

and ρ′ : X → Y ′, ι′ : Y ′ → X are such that

ρ′ι′ = idY ′ and ι′ρ′ = e,

then Y is isomorphic to Y ′.

Proof. First of all, note that ρι′ : Y ′ → Y and ρ′ι : Y → Y ′. Then by assumption, we have

(ρι′)(ρ′ι) = ρ(ι′ρ′)ι

= ρ(e)ι

= ρ(ιρ)ι

= (ρι)(ρι)

= (idY )(idY )

= idY
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and

(ρ′ι)(ρι′) = ρ′(ιρ)ι′

= ρ′(e)ι′

= ρ′(ι′ρ′)ι′

= (ρ′ι′)(ρ′ι′)

= (idY ′)(idY ′)

= idY ′ .

Therefore, Y ∼= Y ′. �

Definition B.3. The Karoubi envelope of a category C, Kar(C) (also called the idempotent
completion of C), is defined as follows:

The objects of Kar(C) are pairs (X, e) where e : X → X is an idempotent in C. A morphism
ϕ : (X, e)→ (Y, f) is a morphism ϕ : X → Y in C such that the following diagram commutes
in C:

X X

Y Y

e

ϕ
ϕ

ϕ

f

. (140)

The identity morphism on (X, e) is

id(X,e) = e : (X, e)→ (X, e).

Now we’ll justify the term ‘idempotent completion’.

Lemma B.4. Kar(C) is the universal enlargement of C such that every idempotent splits.
That is, there exists a fully faithful embedding

E : C→ Kar(C),

every idempotent in Kar(C) splits, and Kar(C) satisfies the following universal property: For
any functor F : C → D where every idempotent in D splits, there exists a (unique up to
natural isomorphism) functor F ′ : Kar(C)→ D such that F ′ ◦ E = F .

Proof. First, we’ll show every idempotent ϕ : (X, e)→ (X, e) splits in Kar(C): By definition,
ϕ : X → X is a morphism in C such that eϕ = ϕ = ϕe. From this, it is easy to see that we
can define a map ρ : (X, e) → (X,ϕ) given by ϕ : X → X and a map ι : (X,ϕ) → (X, e)
given by ϕ : X → X. Since ϕ is also an idempotent in C, it is easy to check that ρι = id(X,ϕ)

and ιρ = ϕ.
Next, the embedding

E : C→ Kar(C) via X 7→ (X, idX),

where morphisms are mapped to themselves (they trivially satisfy (140)), is clearly fully
faithful.

Given any idempotent e : X → X in C, we have E(e) : E(X)→ E(X) being an idempotent
in Kar(C). By the above observation, E(e) splits. Specifically, we have ρ : (X, idX)→ (X, e)
given by e : X → X and a map ι : (X, e) → (X, idX) given by e : X → X such that
ρι = id(X,e) and ιρ = E(e). In this way, the idempotent e : X → X is formally split in
Kar(C).
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Next, suppose D is a category in which every idempotent splits. Choose a splitting for
every idempotent d : D → D in D. That is, choose an underlying object Dd with maps
ρd : D → Dd, ιd : Dd → D such that ρdιd = idDd and ιdρd = d (we always split the identity
by D and the identity maps).

Then define F ′ : Kar(C)→ D as follows: On objects

F ′(X, e) := F (X)F (e),

and on morphisms φ : (X, e)→ (Y, f),

F ′(φ) := ρF (f)F (φ)ιF (e).

To see that F ′ respects the identity, first recall that id(X,e) = e in Kar(C). Then we have

F ′(id(X,e)) = F ′(e)

= ρF (e)F (e)ιF (e)

= ρF (e)(ιF (e)ρF (e))ιF (e)

= (ρF (e)ιF (e))(ρF (e)ιF (e))

= (idF (X)F (e)
)(idF (X)F (e)

)

= idF (X)F (e)

= idF ′(X,e),

as desired.
To check that it respects composition, say ψ : (Y, f)→ (Z, g), and note that

F ′(ψφ) = ρF (g)F (ψφ)ιF (e)

= ρF (g)F (ψfφ)ιF (e)

= ρF (g)F (ψ)F (f)F (φ)ιF (e)

= ρF (g)F (ψ)ιF (f)ρF (f)F (φ)ιF (e)

= F ′(ψ)F ′(φ),

where the second equality follows from the fact that ψf = ψ and fφ = φ by definition. Thus,
F ′ is well-defined and, moreover, it is easy to see that F ′ ◦ E = F .

Now, F ′ depends on our choices of splittings in D. For example, F ′(X, e) is mapped to our
choice of underlying object of the splitting of F (e) (which we denoted F (X)F (e)). Suppose we
chose different splittings in D and defined an analogous functor F ∗ using these. By lemma
B.2, a different choice of splitting of F (e) would yield an isomorphic underlying object. It’s
easy to check that these isomorphisms define the sections of a natural isomorphism F ′ → F ∗,
so that F ′ is indeed unique up to natural isomorphism. �

It is well known that if C is a category of finitely generated free modules over a ring or
algebra, then Kar(C) is equivalent to the category of finitely generated projective modules
for that ring or algebra.

We would like to define what it means to take the Karoubi envelope of a supercategory so
that we have an analogous equivalence between the envelope of free supermodules and the
category of projective supermodules. Let’s first define what it means to be projective in a
supercategory.
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Definition B.5. Let C be a supercategory. An object P in C is projective if it is a projective
object in Cev. Precisely, this means that given even morphisms f : P → X and g : Y → X
such that g is an epimorphism, there exists an even lift of f , f̃ : P → Y , such that gf̃ = f .

We are most interested in the case when C = smodA for a superalgebra A over a commu-
tative domain k which is not characteristic 2. In this setting, note that smodA is abelian (in
the sense that (smodA)ev is abelian), and we have the following:

Lemma B.6. The following are equivalent for an object P in the category C = smodA:

(1) P is projective.
(2) The superfunctor HomC(P, ) : Cev → (smodk)ev is exact.

Proof. Let’s begin by analyzing condition (2). This means that given any short exact sequence

0 X Y Z 0a b

in Cev, applying HomC(P, ) yields a short exact sequence

0 HomC(P,X) HomC(P, Y ) HomC(P,Z) 0
a◦ b◦

in (smodk)ev. Well, suppose σ ∈ HomC(P,X) is nonzero. Then there exists an element t ∈ P
such that σ(t) 6= 0. Since a is injective, it follows that a(σ(t)) 6= 0, and therefore a ◦ is
injective. This gives exactness in the first place. Exactness in the middle place means the
image of a◦ is equal to the kernel of b◦ , or equivalently that (b◦ )◦(a◦ ) = 0. This follows
from the fact that b ◦ a = 0. Thus far, we’ve used no assumptions about P - we’ve shown
that the functor HomC(P, ) is always left exact. Therefore, HomC(P, ) is exact precisely
when it is right exact, or when our above sequence is exact in the third place.

Now we show that (1) is equivalent to (2). We’ve just shown above that (2) is equivalent to
the above diagram being exact in the third place. This is equivalent to b ◦ being surjective.
This means that given t ∈ HomC(P,Z), there exists a morphism t̃ : P → Y such that t = bt̃.
Since we already know that b : Y → Z is surjective, this condition is equivalent to (1). �

Lemma B.7. If P is a projective object in the category C = smodA, then every short exact
sequence (of even morphisms)

0 X Y P 0a b

splits. That is, there exists a section of b, an even morphism c : P → Y such that bc = idP .
Moreover, if we let e := cb, we have

Y = ker(b)⊕ im(e) ∼= X ⊕ P.

Proof. Consider the short exact sequence in the lemma statement. The map b : Y → P is
surjective. Therefore, if P is projective, there is a lift c : P → Y of the identity on P so that
bc = idP .

Next, note that since b and e are even, ker(b), im(e) are both subobjects of Y . Now let
y ∈ Y . Note that

b(y − e(y)) = b(y)− bcb(y) = b(y)− b(y) = 0

so y− e(y) ∈ ker(b). By exactness, there exists a unique (since a is injective) element x ∈ X
such that

a(x) = y − e(y),
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which means
y = a(x) + e(y).

The uniqueness of this decomposition shows that Y = im(a)⊕ im(e) = ker(b)⊕ im(e). Now
note that since bc = idP , it must be that c is injective, hence is an isomorphism onto its
image. That is, P ∼= e(Y ). Similarly, X ∼= a(X), and we have our result. �

Now we can define what it means to take the Karoubi envelope of a supercategory.

Definition B.8. Let C be a supercategory. The super Karoubi envelope, sKar(C), of C
is the supercategory whose objects are pairs (X, e) where X is an object of C and e : C → C
is an even idempotent in C. A morphism ϕ : (X, e)→ (Y, f) is a morphism ϕ : X → Y in C
such that the following diagram commutes in C:

X X

Y Y

e

ϕ
ϕ

ϕ

f

. (141)

The identity morphism on (X, e) is

id(X,e) = e : (X, e)→ (X, e).

Remark B.9. Note that since we only consider even idempotents, no signs are introduced in
condition (141) regardless of the parity of ϕ. A good reason to only consider even idempotents
is that in our motivating example of C = smodA, summands of objects only correspond
to such morphisms. The image of a mixed degree idempotent, for example, will not be a
subsupermodule of the target object, and hence cannot be a summand. We are particularly
interested in summands of free objects which will correspond to projective objects.

Finally, the construction of sKar(C) differs from that of Kar(Cev) only in that sKar(C) allows
for odd (and non-homogeneous) morphisms where Kar(Cev) allows for only even morphisms.

Lemma B.10. sKar(C) is the universal enlargement of C such that every idempotent splits
via even morphisms. That is, there exists a fully faithful embedding

E : C→ sKar(C),

every idempotent in sKar(C) splits via even morphisms, and sKar(C) satisfies the following
universal property: For any superfunctor F : C → D where every idempotent in D splits
via even morphisms, there exists a (unique up to supernatural isomorphism) superfunctor
F ′ : sKar(C)→ D such that F ′ ◦ E = F .

Proof. First, we note that since we’re only concerned with idempotents splitting via even
morphisms, lemma B.2 holds in this super setting. Moreover, since F and E induce even maps
on morphism spaces, and since our idempotents are even, the same proof of lemma B.4 applies
here. In particular, lemma B.2 (applied to the super setting) will induce the appropriate
even supernatural isomorphism needed for the ‘unique up to supernatural isomorphism’
statement. �

Let A be a superalgebra over a commutative domain k which is not characteristic 2. As
in the beginning of this section, let V denote the supercategory of finitely generated free

right A-supermodules of the form A ∼= Am|n, and let V̂ denote the supercategory of finitely
generated projective right A-supermodules.
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Lemma B.11. The identity functor is a fully faithful embedding of supercategories

V ↪→ V̂.

Proof. Since both categories are full subcategories of smodA, we just need to show that any
finitely generated free A-supermodule, X, is also projective. Suppose we have (in smodA)
even A-maps ϕ : X → P and ψ : P ′ → P where ψ is surjective. Well X has a finite A-basis
B, and ϕ is determined by its values on B. Since ψ is surjective, each element ϕ(b) ∈ P (for
b ∈ B) has a preimage in P ′ under ψ, ϕ(b)′. Then we can define an even A-map ϕ̃ : X → P ′

via b 7→ ϕ(b)′. It’s easy to see that ψϕ̃ = ϕ. So X is projective. �

Lemma B.12. The superfunctor

E : sKar(V)→ V̂ via

{
(X, e) 7→ eX

(ϕ : (X, e)→ (Y, f)) 7→ (ϕ|eX : eX → fY )

gives an equivalence of categories (where ϕ|eX denotes the restriction of the map ϕ : X → Y
to eX ⊂ X).

Proof. First of all, let’s check that E (X, e) = eX really is a finitely generated projective
A-supermodule. Well, it is clearly a finitely generated right A-supermodule since X is, and
those properties are respected by even A-maps. Moreover, since e and idX −e are both even,
im(idX −e), im(e) are both sub-supermodules of X.

To see that eX is projective, let’s first see that eX is a direct summand of X (viewed in
smodA). Given x ∈ X, we have

x = (idX −e)(x) + e(x)

so that x ∈ im(idX −e) ∪ im(e). Now if x′ ∈ im(e), there exists some x′′ ∈ X such that
x′ = e(x′′). But if x′ ∈ im(idX −e), then there is some x′′′ ∈ X such that x′ = x′′′ − e(x′′′).
Then we have

e(x′′) = x′′′ − e(x′′′),
and applying e to both sides gives

e(x′′) = e(x′′′)− e(x′′′) = 0

since e2 = e. Thus, x′ = e(x′′) = 0 so im(idX −e)∩im(e) = {0}. Therefore, X = im(idX −e)⊕
im(e), so we have that eX is a summand of X. Notice that e acts as the projection map
from X onto the summand eX. Denote the associated inclusion map by iX .

Now we show that eX is projective. Suppose we have even A-maps ϕ : eX → P and
ψ : P ′ → P where ψ is surjective. Well then ϕ ◦ e : X → P is an A-map, and since free
objects are projective by lemma B.11, there is a lift ϕ̃e : X → P ′ such that ψ ◦ ϕ̃e = ϕe.
If iX : eX → X is the inclusion map, we have ψ(ϕ̃e)i = (ϕe)i = ϕ since ei = ideX . Thus
(ϕ̃e)i : eX → P ′ is a lift of ϕ, and we see that eX is projective.

Next, we should show that E (ϕ : (X, e)→ (Y, f)) is actually an A-map between eX → fY .
Well, the fact that ϕ satisfies condition (141) implies that ϕ|eX : eX → fY . Moreover, recall
that id(X,e) = e. So e|eX : eX → eX, and since e2 = e, it acts as the identity on eX. Finally,
it is easy to see that these restrictions respect composition so that E (ψϕ) = E (ψ)E (ϕ). So
E really is a superfunctor (the restriction preserves parity).

Now we’ll check that E is fully faithful. So we need to show that, for any objects (X, e), (Y, f)
in sKar(V), the induced map on morphism spaces

E(X,e),(Y,f) : HomsKar(V)((X, e), (Y, f))→ HomV̂(eX, fX)
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is an isomorphism of k-supermodules. First of all, let ϕ ∈ HomsKar(V)((X, e), (Y, f)). Since
E (ϕ) is just the restriction of ϕ to eX, it is obvious that E (ϕ) = 0 only when ϕ = 0. So
E(X,e),(Y,f) is injective.

To see that E(X,e),(Y,f) is surjective, let ψ ∈ HomV̂(eX, fX). Then (iY ψe) : X → Y is
an A-map that satisfies condition (141). To see this, note that (iY ψe)e = (iY ψe) since e
is an idempotent. Next, we know from above that any element in X may be written as
e(x) + (idX −e)(x) for some x ∈ X. Then

[f(iY ψe)](e(x) + (idX −e)(x)) = [fiY ψ](e2(x) + (e− e2)(x))

= [fiY ψ](e(x))

= ψ(e(x))

= iY (ψ(e(x)))

= (iY ψe)(e(x))

= (iY ψe)(e(x) + (idX −e)(x)),

so we have our condition met. By construction, we have E (iY ψe) = ψ, so E(X,e),(Y,f) is
surjective.

Since we’ve seen that E is fully faithful, once we show that it is essentially surjective, we

will have our equivalence (by remark 5.1). To this end, choose some object P ∈ V̂. Since P
is finitely generated, it has some finite generating set G of cardinality m|n. Then there’s a
canonical even surjective A-map ρ : Am|n → P . Let K = ker(ρ). Then the inclusion of K
into Am|n yields the following short exact sequence:

0 K Am|n P 0
ρ

.

By lemma B.7, this sequence splits via a section c : P → Am|n, and we have P ∼= (cρ)Am|n

for cρ an idempotent. Thus, E (Am|n, cρ) ∼= P , and we have our claim. �

Now we’re ready to show the main result of this section.

Proposition B.13. There is an equivalence of supercategories

ΓdV-smod ∼= ΓdsKar(V)-smod.

Proof. First, note that ΓdsKar(V) has objects (X, e) where X is an object in V and e : X → X
is an idempotent in V. A morphism φ : (X, e)→ (Y, f) is an element of

Γd HomsKar(V)((X, e), (Y, f)) = (HomsKar(V)((X, e), (Y, f))⊗d)Sd .

So in particular, φ is an element of HomsKar(V)((X, e), (Y, f))⊗d and can be written as∑
i∈I

αiφ
i
1 ⊗ · · · ⊗ φid (142)

where I is some finite index set, each αi ∈ k, and each ϕij satisfies condition (141).

Similarly, a morphism γ : X → Y in ΓdV can be written as∑
k∈K

βkγ
k
1 ⊗ · · · ⊗ γkd (143)

where the only condition on the γk` is that they are A-maps.
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For any object X in V, we have idX being an idempotent so that (X, idX) is an object
of ΓdsKar(V). Moreover, any morphism γ : X → Y in ΓdV looks like (143) where each γk`
obviously satisfies idY γ

k
` = γk` = γk` idX . Therefore, γ is actually a morphism γ : (X, idX)→

(Y, idY ). This defines a superfunctor

I : ΓdV→ ΓdsKar(V) via

{
X 7→ (X, idX)

(γ : X → Y ) 7→ (γ : (X, idX)→ (Y, idY ))
.

That I respects the identity and composition is clear. It’s also obvious that this is a fully
faithful functor.

Next, consider an object F in ΓdV-smod. So F is a superfunctor F : ΓdV → smodk. We’d
like to define a superfunctor

F̃ : ΓdsKar(V)→ smodk

such that F̃ ◦I = F .
To this end, let X be an object of V and e : X → X be an idempotent. Then since e

is an idempotent, it follows that e⊗d is an element of both Γd HomsKar(V)((X, e), (X, e)) and
Γd HomV(X,X). Therefore, it makes sense to define

F̃ (X, e) := im(Fe⊗d).

Also, given any morphism φ : (X, e)→ (Y, f) in ΓdsKar(V), it is obvious that φ also defines
a morphism φ : X → Y in ΓdV. So on morphisms, we have

F̃ φ := Fφ.

Now we’ll check that this is a well-defined superfunctor. First, let’s see that F̃ φ : im(Fe⊗d)→
im(Ff⊗d). Let v ∈ im(Fe⊗d) so that there is some w ∈ FX such that Fe⊗d(w) = v. Then
for ϕ as in (142), we have

F̃ φ(v) = Fφ(v) = Fφ(Fe⊗d(w))

= F (φe⊗d)(w)

= F

((∑
i∈I

αiφ
i
1 ⊗ · · · ⊗ φid

)(
e⊗d
))

(w)

= F

(∑
i∈I

αi(φ
i
1e)⊗ · · · ⊗ (φide)

)
(w)

= F

(∑
i∈I

αi(fφ
i
1)⊗ · · · ⊗ (fφid)

)
(w)

= F

((
f⊗d
)(∑

i∈I

αiφ
i
1 ⊗ · · · ⊗ φid

))
(w)

= Ff⊗d (Fφ(w)) .

In particular, F̃ φ(v) ∈ im(Ff⊗d).
Next, to see that F̃ id(X,e) = idF̃ (X,e), first note that id(X,e) = e⊗d in ΓdsKar(V). Moreover,

we know from above that F̃ id(X,e) : im(Fe⊗d) → im(Fe⊗d). So let v ∈ im(Fe⊗d) so that
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there is some w ∈ FX such that Fe⊗d(w) = v. Then

F̃ id(X,e)(v) = F̃ e⊗d(v) = Fe⊗d(v)

= Fe⊗d(Fe⊗d(w))

= F (e⊗de⊗d)(w)

= F (e⊗d)(w)

= v,

where the fourth line follows from e being an even idempotent. Therefore, F̃ id(X,e) =

idim(Fe⊗d) = idF̃ (X,e) as desired. That F̃ respects composition follows from the fact that

F does. It should be obvious that we have F̃ ◦I = F for any F in ΓdV-smod.
Now we give a superfunctor

Φ : ΓdV-smod→ ΓdsKar(V)-smod via F 7→ F̃ .

On morphisms η : F → G, Φη is the supernatural transformation F̃ → G̃ whose section at
(X, e) is ηX . We should check that this makes sense. It will boil down to knowing that for
any idempotent e : X → X, a given section ηX : im(Fe⊗d) → im(Ge⊗d). To see this, we
know that since η is a supernatural transformation, for e⊗d : X → X in ΓdV, we have

ηX ◦ Fe⊗d = Ge⊗d ◦ ηX ,

where no signs are present since e⊗d is even. Now suppose that v ∈ im(Fe⊗d) so that there
is some w ∈ FX such that Fe⊗d(w) = v. Then it follows that

ηX(v) = ηX
(
Fe⊗d(w)

)
= Ge⊗d(ηX(w)).

Now for a given morphism ϕ : X → Y in ΓdV, we have

(Φη)(Y,f) ◦ ΦF (φ) = ηY ◦ F̃ φ
= ηY ◦ Fφ

= (−1)φ·ηGφ ◦ ηX
= (−1)φ·ηG̃φ ◦ ηX
= (−1)φ·ηΦG(φ) ◦ (Φη)(X,e),

so Φη really is a supernatural transformation. Since Φ on a supernatural transformation is
just the restriction of that transformation, Φ respects the identity and composition, so is
well-defined.

Now we’ll define a superfunctor

Ψ : ΓdsKar(V)-smod→ ΓdV-smod via Ψ := ◦I .

In this way, we view Ψ as restriction to the full subcategory I
(
ΓdV

)
. So given T in

ΓdsKar(V)-smod, ΨT is the functor which sends an X in ΓdV to TI (X) = T (X, idX) and
sends a morphism φ : X → Y in ΓdV to the morphism Tφ : T (X, idX) → T (Y, idY ) (which
makes sense since the same map φ determines a morphism φ : (X, idX) → (Y, idY )). For a
morphism η : T → T ′ in ΓdsKar(V)-smod, Ψη is the supernatural transformation in ΓdV-smod
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whose section at X is given by η(X,idX). Ψ obviously respects identity and composition, so
it’s a well-defined superfunctor.

Now given F in ΓdV-smod, we have ΨΦ(F ) = Ψ(F̃ ) = F̃ ◦I = F . Given a supernatural
transformation η : F → G in ΓdV-smod, Φ(η) is the supernatural transformation whose
section at (X, e) is ηX for any idempotent e. In particular, the section of Φ(η) at (X, idX) is
ηX . Then Ψ(Φ(η)) is the supernatural transformation whose section at X is Φ(η)(X,idX) = ηX .
Thus, ΨΦ = idΓdV-smod.

Now we claim ΦΨ ∼= idΓdsKar(V)-smod. Once we show this, we are finished. To this end, we
will construct an even supernatural transformation

η : idΓdsKar(V)-smod → ΦΨ

whose section at T is the supernatural transformation ηT : idΓdsKar(V)-smod(T ) → ΦΨ(T )

whose section at (X, e) is the morphism Te⊗d. Let’s unpack this.

First, we have ΦΨ(T ) = ˜(T ◦I ) and

˜(T ◦I )(X, e) = im((T ◦I )e⊗d) = im(Te⊗d).

Moreover, for a supernatural transformation σ : T → U in ΓdsKar(V)-smod, chasing through
the definitions, one sees that ΦΨ(σ) is the supernatural transformation whose section at
(X, e) is σ(X,idX) : im(Te⊗d)→ im(Ue⊗d).

Now given a morphism σ : T → U in ΓdsKar(V)-smod, we want to show that

ηU ◦ idΓdsKar(V)-smod(σ) = ΦΨ(σ) ◦ ηT .
This equation holds precisely if it holds for each section at a given (X, e), that is, if

(ηU)(X,e) ◦ (idΓdsKar(V)-smod(σ))(X,e) = (ΦΨ(σ))(X,e) ◦ (ηT )(X,e). (144)

Well by our above observations, (144) is equivalent to

Ue⊗d ◦ σ(X,e) = σ(X,idX) ◦ Te⊗d. (145)

Equation (145) holds since σ : T → U is a supernatural transformation, so η does define a
supernatural transformation. Moreover, note that since e⊗d : (X, e)→ (X, e) is the identity
morphism in ΓdsKar(V), Te⊗d = idT (X,e) for any T in ΓdsKar(V). Then it follows that each
section of ηT at (X, e) is an isomorphism (the identity), and hence each section ηT is a
supernatural isomorphism. Thus, η is a supernatural isomorphism, and we are done. �

Remark B.14. Lemma B.12 and proposition B.13 show that ΓdV-smod ∼= ΓdV̂-smod. This
means that defining the category of strict polynomial superfunctors over finitely generated
free right A-supermodules is equivalent to defining them instead over finitely generated
projective right A-supermodules.

Appendix C. MacDonald’s Polynomial Functors vs Generalized Strict
Polynomial Functors

In this section, we sketch the results in [Mac80] and discuss how they relate to our gen-
eralized strict polynomial functors. In the introduction, for k an infinite field, we defined a
homogeneous degree d polynomial functor T to be a functor T : veck → veck such that for
all objects V,W the induced k-linear map

TV,W : Homk(V,W )→ Homk(TV, TW )
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is a homogeneous degree d polynomial mapping (as defined in definition A.1). The goal of
[Mac80] is to consider a polynomial functor between more general k-linear categories than
just veck.

Let A,B be k-linear categories. A homogeneous degree d polynomial functor T : A→ B is
a covariant functor such that for all objects V,W in A, the induced k-linear map

TV,W : HomA(V,W )→ HomB(TV, TW )

is a homogeneous degree d polynomial mapping.
The result in [Mac80] that is relevant for us considers the following conditions: k is an

infinite field of characteristic 0, A is a k-algebra, A is taken to be the category Amodfgp of
finitely generated projective left A-modules, and B is taken to be veck. Let FdA denote the
category of homogeneous degree d polynomial functors T : Amodfgp → veck. Then MacDonald
shows that

FdA
∼= modAoSd . (146)

First, let’s see how this generalizes the result mentioned in the introduction from [Mac95].
Taking A = k, we have A oSd

∼= kSd. Moreover, in this setting, kSd is a semisimple algebra,
and it follows that kSd

∼= (kSd)
op. Therefore,

modkSd
∼= mod(kSd)op

∼= kSdmod

so that modAoSd
∼= kSdmod, and (146) can be written as

Fd := Fdk
∼= kSdmod,

which is how we stated the result from [Mac95]. We also explained in the introduction
how this relates to the [FS97] result concerning strict polynomial functors. So one can view
the [Mac80] result as a generalization of the [FS97] result (when k is an infinite field of
characteristic 0) by defining the functors over an algebra A.

Our generalized strict polynomial functors Pd(A,a) do something similar by defining strict
polynomial functors over a superalgebra A for k a commutative unital domain of character-
istic not equal to 2. So how does Pd(A,a) relate to FdA?

First of all, take k to be an infinite field of characteristic 0 and our unital good pair (A, a)
such that A = A0 is completely even and a = A. It follows from definitions and theorem 6.10
that

Pd(A,a) = Pd(A,A)
∼= SA(n,d)smod

whenever n > d. Since A is even, all objects in play are inherently even (as are morphisms),
so we really have

Pd(A,A)
∼= SA(n,d)mod.

Now when n > d, it’s proven in lemma 5.15 of [EK17] that there is a (super)algebra isomor-
phism

ξωS
A(n, d)ξω ∼= A oSd,

where ξω is a specific idempotent in SA(n, d). Now for the case of A being even, the general
setting of section 6.2 of [Gre07] applies, and in particular, one can deduce that for n > d,

ξωSA(n,d)ξωmod ∼= SA(n,d)mod

so that

AoSdmod ∼= SA(n,d)mod.
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Finally, lemma 10.7 of [DKMZ22] shows that7

(Asop) oSd
∼= (A oSd)

sop,

which in particular implies that (taking A = A0)

(Aop) oSd
∼= (A oSd)

op.

Putting all of this together, for A = A0 = a and n > d, we have

Pd(A,A)
∼= SA(n,d)mod
∼= AoSdmod
∼= mod(AoSd)op

∼= mod(Aop)oSd
∼= FdAop .

In this way, our generalized strict polynomial functors encompass the [Mac80] result.

7Their convention for defining the wreath product A o Sd is that Sd acts on the left of A⊗d so as a

k-supermodule, A oSd = A⊗d ⊗Sd with product (~a ⊗ σ)(~b ⊗ τ) = ~aσ(~b) ⊗ στ . However, it is obvious how
to adapt their proof for our ‘right-handed’ version of the wreath product.
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