
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MULTI-SCALE MECHANICAL TESTING FOR ENGINEERING EDUCATION IN

VIRTUAL REALITY ENVIRONMENT

A THESIS

SUBMITTED TO THE GRADUATE FACILITY

In partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

GEORGE HUANG

Norman, Oklahoma

2022

MULTI-SCALE MECHANICAL TESTING FOR ENGINEERING EDUCATION IN

VIRTUAL REALITY ENVIRONMENT

A THESIS APPROVED FOR THE SCHOOL OF AEROSPACE AND MECHANICAL

ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Yingtao Liu, Chair

Dr. Zahed Siddique, Co-Chair

Dr. Chung-Hao Lee

© Copyright by GEORGE HUANG 2022

All Rights Reserved.

iv

Acknowledgements

I would first like to thank Dr. Yingtao Liu from the University of Oklahoma for providing

me the opportunity to pursue my master’s in mechanical engineering. His support and

guidance throughout the entirety of my graduate experience has given me invaluable

experiences and taught me skills that I would have never been learned had it not been for

this project. I greatly appreciate Dr. Liu’s advice and mentorship throughout the duration

of my project and thesis. I would also like to thank Dr. Zahed Siddique and Dr. Chung-

Hao Lee for providing guidance for my project. I greatly appreciate Dr. Liu, Dr. Siddique,

and Dr. Lee’s membership in my thesis committee. I also appreciate the support from the

National Science Foundation through the project entitled: Collaborative Research: Multi-

Scale Experimental Mechanics Education Module. The award number is 1712178.

I would also like to thank my fellow graduate students and lab members of Dr.

Liu’s lab including, Ryan Cowdrey, Blake Herren, Chris Billings, and Colin Bray for their

support and advice throughout my graduate school experience. I would like to thank my

work supervisors David Mays, Blake Yort, and Jonathan Harkness for their flexibility and

understanding of work-school balance and supporting my pursuit in higher education. I am

very grateful for the online resources that have taught me so much about virtual reality and

Unity. I would especially like to thank the YouTube channels Valem and Code Monkey

for their vast knowledge and guidance throughout this project. I also greatly appreciate the

help of Melody Moody, Logan Roys, Chris Billings, Lane Taylor, and Steven Zhao for

testing my program and providing constructive criticism towards improving the project.

v

I would finally like to thank all the people whom I love. I would like to thank my

mother, little brother Iain, little sister Hailey, and baby sister Summer as well as all my

other family members who wished me luck in my pursuit of a master’s degree. I would like

to thank my wonderful girlfriend for her support and the endless happiness she provides. I

would also like to thank my lifelong friends Melody Moody, Anne Marie Nguyen, Marie

Beausoleil, Rachel Selby, Josh Lee, Cody Rokitka, Dan Parades, and Kyle Lee, as well as

my newfound college friend Logan Roys. Their friendship and support in my life have

greatly impacted me and my aspirations as well as motivations in life and career.

vi

Dedication

I would like to dedicate this thesis to every mentor that I have had including my

teachers, professors, and especially my mother who has guided me throughout my life.

vii

Table of Contents

Acknowledgements .. iv

Dedication .. vi

Table of Contents .. vii

List of Figures ... x

Abstract ... xv

CHAPTER 1: INTRODUCTION ... 1

Section 1.1: Inspiration ... 1

Section 1.2: Virtual Labs .. 2

Section 1.3: Initial Research ... 3

Section 1.4: Continuation: Interactive VR .. 6

CHAPTER 2: CREATING THE VIRTUAL REALITY SIMULATION 17

Section 2.1: Equipment Setup and Program Downloads .. 17

Section 2.2: Unity Intro and General VR Settings .. 18

Section 2.3: VR without a Headset ... 24

Section 2.4: Virtual Hands and Input Animations .. 33

Section 2.5: Virtual Environment and Textures ... 40

Section 2.6: Colliders and Jelly Physics .. 48

Section 2.7: Object Interaction ... 51

viii

Section 2.8: Hinged Objects ... 52

Section 2.9: Snap Zones .. 56

Section 2.10: UI and Rays .. 58

Section 2.11: Changing Scenes ... 61

Section 2.12: Object Translation... 67

Section 2.13: Live Graph .. 69

Section 2.14: Remote Live Feed ... 78

Section 2.15: Gallery and Zoom ... 80

CHAPTER 3: SIMULATION TRIALS ... 83

Section 3.1: Trial and Feedback.. 83

Section 3.2: Navigation and UI Interaction through the Simulation 84

Section 3.3: Comfort and Entertainment .. 85

Section 3.4: Length and Memorability ... 86

Section 3.5: Education and Content .. 86

Section 3.6: Reflection and Utilization ... 88

CHAPTER 4: CONCLUSION ... 90

Section 4.1: Potential .. 90

Section 4.2: Conclusion .. 91

References ... 92

ix

Appendix A: Hand Presence Code ... 97

Appendix B: Jelly Mesh Code .. 100

Appendix C: Scene Traversal Code .. 102

Appendix D: Slider Object Translation Code ... 105

Appendix E: Percentage Value Code .. 106

Appendix F: Move Percentage Code .. 107

Appendix G: Live Graph Code ... 108

Appendix H: Zoomed Image .. 114

x

List of Figures

Figure 1: Previous Work – Virtual World .. 4

Figure 2: Fracture of Virtual Dog-Bone Sample .. 5

Figure 3: Stress vs Strain Graph Screen ... 5

Figure 4: Virtual Lab Environment... 7

Figure 5: Virtual Hands with Arrays .. 8

Figure 6: Interior of the SEM Chamber .. 9

Figure 7: Sample Inserted into Vice ... 10

Figure 8: UI Computer Button Interaction.. 10

Figure 9: Virtual Computer Log-in ... 11

Figure 10: Virtual Computer Home Screen .. 12

Figure 11: Virtual SEM Application Layout .. 13

Figure 12: SEM Application with User Interaction .. 13

Figure 13: Virtual Computer Gallery .. 14

Figure 14: Display Mode of Selected Image .. 15

Figure 15: Zoomed-In Display Mode of Selected Image ... 16

Figure 16: Blue New Project Button ... 19

Figure 17: Unity Version Dropdown .. 19

Figure 18: Create New Project Window ... 20

Figure 19: Sample Scene .. 20

Figure 20: Scenes Folder .. 21

Figure 21: Creating New Scene .. 22

xi

Figure 22: Blank New Scene .. 22

Figure 23: XR Interaction Toolkit in Package Manager ... 23

Figure 24: VR SDK list in Project Settings .. 25

Figure 25:HMDInfoManager Top Script [2] .. 26

Figure 26: Void Start Code Content [2] .. 26

Figure 27: VR Debug Code [2] ... 26

Figure 28: Output of the Console Debug .. 27

Figure 29: XR Rig in the Hierarchy .. 28

Figure 30: XR Input Actions Folder Path ... 28

Figure 31: Controller Inspector Panel ... 29

Figure 32: Preset Manager Under Project Settings ... 29

Figure 33: Updated XR Rig Inspector Panel .. 31

Figure 34: XR Device Simulator .. 32

Figure 35: Controller Debug Section of Appendix A Code [3] .. 34

Figure 36: Animation Association Section of Appendix A Code [3] 34

Figure 37: Redundancy Prevention Section of Appendix A Code [3] 35

Figure 38: Animator added to Model.. 37

Figure 39: Path to Animator Panel.. 38

Figure 40: Animator Panel .. 38

Figure 41: Motions and Positions of Blend Tree .. 39

Figure 42: Object Scaling Capabilities in Scene Panel ... 41

Figure 43: Object Scaling Capabilities in Inspection Panel .. 41

xii

Figure 44: Assembly Grouping ... 42

Figure 45: SEM Assembly .. 43

Figure 46: Eyewash Station Made in SolidWorks .. 43

Figure 47: SEM Model in SolidWorks ... 44

Figure 48: SEM Model imported into the Unity ... 45

Figure 49: Material Path ... 46

Figure 50: Direct Images and Complex Textures ... 46

Figure 51: Image Texture Limitation .. 47

Figure 52: Fully Modeled and Textured Virtual Room .. 48

Figure 53: Box Collider Component... 49

Figure 54: Rigid-Body Component .. 49

Figure 55: Jelly Mesh Section of Appendix B Code [5] ... 50

Figure 56: Jelly Physics Section of Appendix B Code ... 50

Figure 57: Jelly Properties in Inspector Panel .. 51

Figure 58: XR Grab Interactable Component ... 52

Figure 59: SEM Handled Door Assembly .. 53

Figure 60: XR Interactable Component of SEM Door ... 54

Figure 61: Hinge Joint Component ... 55

Figure 62: Hinge Joint Angular Limits ... 55

Figure 63: XR Socket Interactor Component ... 57

Figure 64: Material Transparency of Component ... 58

Figure 65: Canvas Component in Inspector.. 59

xiii

Figure 66: XR Interactor Line Visual ... 60

Figure 67: Scenes Folder .. 62

Figure 68: Keyword and Scene Association ... 64

Figure 69: Button Inspector with Script Attachment .. 65

Figure 70: Build Settings .. 66

Figure 71: Coordinate Parameter Section of Appendix D Code 67

Figure 72: Slider Listener Section of Appendix D Code .. 68

Figure 73: Percentage Display and Movement Script in Inspector 69

Figure 74: Object Translations in Virtual Lab .. 69

Figure 75: Graph Container Anchor Settings in Inspector ... 71

Figure 76: Point Variables from Code in Appendix G ... 72

Figure 77: Graphical Point List from Code in Appendix G.. 72

Figure 78: Point Creation and Destruction from Code in Appendix G 73

Figure 79: Anchor Point from Code in Appendix G... 73

Figure 80: Graph Container Boundary from Code in Appendix G 73

Figure 81: X Axis Values and Positions from Code in Appendix G 74

Figure 82: Y Axis Values and Positions from Code in Appendix G 74

Figure 83: Label Text from Code in Appendix G ... 75

Figure 84: X Direction Separators from Code in Appendix G ... 75

Figure 85: Y Direction Separators from Code in Appendix G ... 75

Figure 86: Slider Integration Section of Graph Code in Appendix G 76

Figure 87: Time Dependence Section of Code in Appendix G .. 78

xiv

Figure 88: Target Texture in Camera Inspector Panel .. 79

Figure 89: Completed Render Texture ... 80

Figure 90: Mouse Scroll Section of Code in Appendix H .. 82

Figure 91: Zoom Scaling Section of Code in Appendix H ... 82

Figure 92: Zoom Parameter Settings in Inspector .. 82

xv

Abstract

The year 2020 changed the state of the world with the introduction of the COVID

pandemic. With various restrictions placed to protect the health and safety of humanity,

life was greatly altered for everyone. As a student pursuing a higher education, the closure

of schools and labs greatly restricted the practical experiences normally experienced in

university due to the lockdown placed upon the populous. This lost experience inspired the

ideation of educational labs conducted through virtual reality. With the utilization of virtual

reality as a tool to educate students from a remote location, students could still experience

the full practical labs that have been physically restricted to them.

 The progression of this Thesis research included the initial previous project

revolving around the creation of a virtual dog bone sample tension test as well as the

continuation of the virtual reality (VR) lab possibilities through the creation of a user

interface (UI) based scanning electron microscope (SEM) sample compression test. User

testing of the SEM lab resulted in successful runs through the program and constructive

feedback on how the program could be improved as well as possible potentials for the

program to grow and potentially be utilized as a common educational tool for remote use.

1

CHAPTER 1: INTRODUCTION

Section 1.1: Inspiration

Amidst the global pandemic labeled COVID-19 that engulfed the entire world in

2020, life was changed in many aspects. The education system experienced a complete

transformation due to the rapidly spreading virus and the safety regulations placed to

protect the people. Students were locked in their homes and forbidden from commuting to

school. Teachers were barred from giving lectures in the standard teaching environment.

Both parties had to adapt to the new and unique situation with great difficulty and

perseverance to continue the education and growth of the people of the future.

A major component that allowed for this continuation to happen was the availability

of technology in the modern world. Programs, such as Zoom and Canvas, allowed for

teachers to give live lectures as well as upload recordings and files regardless of the

situations that occurred. The flexibility of the education system was key to keeping

schooling functional and effective. However, this was not without its downfalls.

In universities, many STEM majors involve labs for both teaching and research.

With the pandemic being unpredictable and highly dangerous, many buildings were shut

down and were barred of all entry, labs included. This caused great delays and difficulty in

the continuation of hands-on education. There were, of course, some solutions to this

particular issue such as a recorded lab made by the professor before-hand and uploaded

online for the students to see. There were also livestreamed labs and the resulting data

given to students to analyze. Although these were great solutions to the remote learning, a

2

more “hands-on” approach for students to experience live applications of what they have

learned in their studies through the use of Virtual Reality is proposed.

Section 1.2: Virtual Labs

Virtual reality (VR) allows for the user to simulate an event or situation using a

computer and program. By donning VR headset and gloves (controllers could also be used),

a student would be able to conduct a virtual experiment without the danger of close contact

with other people or even potential dangers that could arise from the experiment

themselves. With the proper coding of the simulation, many aspects of a live lab would be

able to be recreated for the student. These actions include, but were not limited to, putting

on the required safety gear for the lab, obtaining certain equipment from drawers and

cabinets, interacting with objects with realistic physics such as picking up objects and

pouring liquids, reactions, measuring, machine interaction, data collecting, and cleanup. A

great benefit to labs via VR would be the possibility of including mini lectures or careful

explanation of lab steps and the reasoning behind every action as the lab progresses.

Quizzes over what was learned could also be incorporated in between each mini lecture.

There were some issues with this idea though. The coding for the VR simulation

could be quite complex and take time to create. Each lab would need to be individually

created which would make it difficult depending on the teaching style of the teachers

differing. Another issue was the availability of the VR equipment not being standard in

students’ homes. The labs could also run with difficulty depending on the specifications of

the computer running the program.

3

A solution to this issue could be the creation of isolated and individual rooms

equipped with a computer that could run the program and the equipment set up. By creating

a strict schedule, students could remain isolated and use the equipment with time in

between for sanitation to be conducted. There was also the possibility of the university

buying and renting out laptops and equipment to students that were in the lab course. The

coding of the simulation could be a bit of an issue if it were being conducted from the

ground up but if there were a standard general program that could either be easily altered

or rearranged to suit unique labs, then the creation of the simulations should decrease in

difficulty. The creation of said general simulation was conducted and refined for this thesis.

Section 1.3: Initial Research

The project this thesis was based upon stemmed from work created by a student

from the University of Oklahoma named Aaron Craig. The virtual lab that Aaron created

was a dog bone sample tension test. This program was created using the program Unity

and represented the initial possibilities of a virtual lab. When ran, the user would initially

be in an enclosed space with a table with static sample dog-bones, a tension test machine,

and a screen.

4

Figure 1: Previous Work – Virtual World

With the start of the program, the machine would slowly apply a tensile force on

the dog bone sample while the graph would map out a predetermined set of points to

represent stress vs strain. The animation ends with the fracture of the dog bone indicated

both on the sample and the graph.

5

Figure 2: Fracture of Virtual Dog-Bone Sample

Figure 3: Stress vs Strain Graph Screen

6

Section 1.4: Continuation: Interactive VR

To continue the progression of the VR lab research, the program that was created

for this project expanded upon the previous work and was made to allow users more

involvement in the lab rather than just the visual experience. This project encompassed the

creation of a more user-involved virtual compression test lab. Summarizing the specific lab

that was used as a basis for this project, the study was on the analysis of a compressible

and conductive cube and the changes in conductivity with respect to compression of the

cube. The cube was analyzed in a scanning electron microscope (SEM) machine and

images were taken to witness the closing of the pores and correlation with the electrical

flow through the sample. The program that the simulation was being made on was called

Unity which was coded using the computer language C#. The VR aspect of the simulation

relates to Unity through VR simulation on the gaming company Steam. A walkthrough of

the lab through the user was as follows.

The user first dons the VR equipment and the program was started up. The first

scene that appears at the start of the program was a giant start button that finishes setting

up the virtual hands and their animations. Clicking on the start button opens the virtual lab

space that was modeled to look similar to a lab in the University of Oklahoma. In the lab,

there were cabinets, tables, a vent hood, 3D printers, a door, and an SEM machine in terms

of machinery and furniture.

7

Figure 4: Virtual Lab Environment

 Looking down, the user should be able to see two virtual hands with red arrays

shooting out of them if the controllers were held. The user would be able to control the

rotation and translation of their hands while performing two actions according to which

button they click: pinch and grab.

8

Figure 5: Virtual Hands with Arrays

The user would start off in front of the SEM machine with a table to the left of the

user and a computer to the right of the user. Atop the table on the left was the sample to be

analyzed in the lab. The sample was interactive and was meant to represent a conductive,

compressible cube of Polydimethylsiloxane (PDMS) with carbon nanofibers mixed in the

polymer block. Above the computer on the right was a giant button labeled “computer”.

The user would first grab the dark handle of the SEM machine and pull the chamber door

open. Inside the SEM machine was a chamber with a vice big enough for the sample.

9

Figure 6: Interior of the SEM Chamber

Once the door was open, the user would grab the sample from the table and place it into

the vice inside the SEM machine. The vice inside the SEM machine has a snap area that

would automatically pull the sample into the correct position so that consistency was

ensured.

10

Figure 7: Sample Inserted into Vice

With the sample inside the SEM machine, the chamber door of the SEM was then shut

closed. One of the arrays was then pointed at the computer button on the right and the pinch

action taken to move onto the next scene.

Figure 8: UI Computer Button Interaction

11

The user was then teleported to be in front of the computer so to minimize the walking

required by the user since VR glasses must sometimes be connected to the computer

through a cord. On the screen of the computer was a login screen. Clicking on log-in takes

the user to the homepage of the computer with an SEM application icon. Clicking on the

icons would then open the SEM application where the testing would be conducted.

Figure 9: Virtual Computer Log-in

12

Figure 10: Virtual Computer Home Screen

On the SEM application were three main components. On the left of the screen was a live

feed of what was occurring within the SEM chamber. To the right was a live-update graph

that would display the conductivity with respect to time. Below the graph was a slider that

would control the compression of the vice on the sample as well as display the compression

percentage of the sample.

13

Figure 11: Virtual SEM Application Layout

The user would move the slider bar to control the compression of the sample while taking

note of the changes in conductivity within the graph.

Figure 12: SEM Application with User Interaction

14

Once the user feels that adequate “testing” was complete, the user would then click on the

button on the top right corner of the screen using the array. This would change the screen

to display a gallery of the images that were taken during the test. The gallery consists of

two pages with a total of 16 images.

Figure 13: Virtual Computer Gallery

Clicking on the image would open the image in a display mode. In display mode, there

were left and right arrow buttons that allow the user to scroll through the images in the

gallery. On the top right of the image was a magnifying glass button.

15

Figure 14: Display Mode of Selected Image

Clicking on the magnifying glass image would open a zoomed in image of the image that

was being viewed. Using the arrays and the pinch action, the user would then pan through

the image to look at the closer details of the image being viewed.

16

Figure 15: Zoomed-In Display Mode of Selected Image

The user could go back to the gallery at any point using the button on the top left of the

screen. Once the images have all been viewed, the simulated lab was complete.

17

CHAPTER 2: CREATING THE VIRTUAL REALITY SIMULATION

Section 2.1: Equipment Setup and Program Downloads

As mentioned previously, this project came to be due to the appearance of the

COVID pandemic. With limited access to labs, projects were put on hold indefinitely. To

continue the pursuit of higher education while maintaining a realistic timeline towards

completion, the VR lab simulation project was taken on as a new research topic with a

focus on education through remote learning. Due to the spontaneity of the project, the

initial equipment available for this was limited. An Oculus Quest 2 was available due to

the previous work done by Aaron Craig, but his research was conducted on a personal

desktop computer that was already had proper specifications for VR due to hobby purposes.

With his graduation from the university, there were no available computers that had the

proper specifications to connects with the VR goggles and utilize them. Fortunately, it was

discovered that a VR game could still be created in Unity with a simulated VR headset

controlled using keyboard and mouse as well as a decent laptop. The laptop used in

undergraduate was used primarily for essays and 3D modelling using SolidWorks and ran

the Unity program without issue.

With the usable hardware setup complete, three main programs were necessary for

this project and the integration of VR: Unity Hub, Visual Studio, and Steam. Unity is a

game development engine and the main program that the virtual lab was created on. The

program allows for the creation of 2D and 3D simulations that could also be integrated

with VR. Unity Hub is the name of the program itself that encompasses all the projects

made using Unity. It was how new projects were created and how old projects were opened.

18

The Unity Hub was downloaded from the main Unity website. Once the download was

complete, the Unity version was selected as well as the add-ons that were desired. For this

project, Unity Version 20191.4.17f1 was used. The only add-on that was included in the

download was the Android build support. With the gaming engine downloaded, the coding

software was next. The coding language that was used in Unity was C#. A free and simple

to use source code editing software compatible with C# was Microsoft Visual Studio. The

version of Visual Studio used in this program was 1.65.2 and was downloaded from their

website. The last program that was required for VR utilization in Unity was Steam. Steam

is a video game distribution software and on their store was a free program called Steam

VR which connected the VR headset to the Unity program. Steam did require an account

creation, but everything was free. Once Steam was installed, the “Steam VR” program was

looked up in the store and downloaded onto the computer. With those three programs

downloaded, the development of the VR simulated lab could start.

Section 2.2: Unity Intro and General VR Settings

 To learn about the basics of creating a VR simulation, a great resource that was

used was the YouTube channel Valem. This channel provided the introductory tools

necessary to create VR games which were used and modified to create the unique lab

simulation this thesis was based upon. In the video titled “Introduction to VR in Unity-

PART 1: VR SETUP” [1], the settings in the Unity program were changed to allow for VR

compatibility. To start creating the simulation, a new project was created by opening the

Unity Hub and clicking the blue New Project Button as seen below.

19

Figure 16: Blue New Project Button

A dropdown should appear. Within this dropdown, the version that was previously

downloaded, 2019.4.19f1, should be selected.

Figure 17: Unity Version Dropdown

Once selected, a new window with different templates would appear. In this window, the

name of the project could be made as well as the save location of the project and all the

related files. For this particular project, the Universal Rendering Pipeline template was

used. Once all the settings had been chosen, the blue create button on the bottom left corner

would create the project.

20

Figure 18: Create New Project Window

Unity would then generate a sample scene that should look similar to the image below.

Figure 19: Sample Scene

21

In Figure 19 the area labeled 1 was the main scene window which displays what the virtual

world looks like and allows the users to move the view freely. The area labeled 2 was the

main camera window which shows what the user would see when the simulation was

started. The area labeled 3 was the Hierarchy window which shows all the objects that were

in the current scene’s virtual world. Area 4 holds all the assets, objects, and packages in

the entire project as a whole. Area 5 displays the contents of area 4 with a thumbnail. Area

6 was the inspector window and it shows the settings and allows the users to manipulate

the inner workings of the program and objects. Since the current scene was cluttered with

preset objects, a blank scene was desired to start the project. To create a new blank scene,

select the scenes folder underneath the assets folder in area 4 to change area 5 to the scenes

folder content.

Figure 20: Scenes Folder

22

In a blank space within the area 5, right click, move down to create, and scene was selected

as seen below.

Figure 21: Creating New Scene

Figure 22: Blank New Scene

23

The old sample scene was then deleted to avoid confusion and cluster of scenes in the

future. Now that the virtual workspace has been cleared, the VR configuration settings and

packages were worked on. The first step to integrating VR into unity was to install a

package titled XR interactive toolkit. To do this, first go to the window tab in the top ribbon

and click package manager. A window title Project Manager would show up. To see all

available packages, click the Advanced dropdown and select show preview packages.

Scroll down until the package was found and select install.

Figure 23: XR Interaction Toolkit in Package Manager

24

Section 2.3: VR without a Headset

 In the case where a virtual reality gear set was either unavailable or incompatible

with the available computer system, a mock VR system could be set up on Unity that allows

for the simulation of a VR gear-set with keyboard and mouse. Valem made a video

dedicated to setting up a mock VR Headset titled “How to Make a VR Game WITHOUT

a VR Headset” [2] which guided through allowing the possibility to continue this work

with limited equipment. To enable the package installed in Section 2.2, exit out of the

window and click on the edit tab in the ribbon. Select Project settings and click player on

the left. Click on the box next to where it says Virtual Reality Supported. Scroll down to

Virtual Reality SDKs. There should be a list that with Oculus and OpenVR in it. If they

were not there, click the little plus sign at the bottom of the list. Click on Oculus and Open

VR to add them. In addition, click on Mock HMD to add it to the list as well. This plug-in

was what allows the VR program to work without a VR headset. Make sure that the Mock

HMD was at the bottom of the list so that the program would still attempt to find a normal

VR headset in case one was ever used. To check if everything was working, click the play

button at the top. The screen should now display 2 separate screens to simulate the eyes of

the VR headset. Once this was verified, exit out of play mode by clicking the play button

again.

25

Figure 24: VR SDK list in Project Settings

Once the SDK list has been updated, the core of the simulation could be started. To further

check to see whether or not the Mock VR set was working or even to check if an actual

device was plugged in properly, a simple script would be needed. In area 4, right click in

the empty space underneath the SampleScene and select create empty. This would allow

us to create an empty coding script to manipulate. Rename this game object to HMD Info

Manager to keep things organized. With the HMD Info Manager selected, click add

component in the inspector window, type in HMDInfoManager, and double click new

script to open the script. If there was an error or difficulty with opening up the script, that

might mean that the right scripting program was not installed on the computer. If Visual

Studio Code was installed per section 2.1, there should be no issues. Once the script was

open, the first thing to do was be to type “using UnityEngine.XR;” underneath “using

UnityEngine;” at the top of the script.

26

Figure 25:HMDInfoManager Top Script [2]

Under Void Start, the following was typed in:

Figure 26: Void Start Code Content [2]

Where the top half Checks to see if the VR settings were working correctly and the bottom

half lists the name of the device being used. In the case that the device is not available, the

output should say Mock VR. The final code looked like this:

Figure 27: VR Debug Code [2]

27

The debug code was now complete. Save and exit out of the code. To verify this code

works, click play and then immediately exit out. In the project window on the right near

hierarchy, select the console tab next to the project tab. The output should look similar to

this:

Figure 28: Output of the Console Debug

From top to bottom, the code was stating that it attempted to find the Oculus 2 VR headset

but failed. The program then moved down the device list and looked for the Open VR

headset but failed. It moved down one last time to the Mock VR headset and found it to be

true. It then lists the name of the device use, which in this case was MockHMD. The list of

available devices was found in the Player setting as mentioned in a step above. This would

serve as a simple debugger for device plug-ins. To integrate the VR into the gameplay

itself, A mock headset and controller would need to be added into the Hierarchy. To do so,

28

right click in the blank space under hierarchy, hover over XR, and click Room Scale XR

Rig. This should create a new item in the hierarchy labelled XR Rig. In the dropdown of

XR Rig, there should be a camera offset which branches to main camera, left-hand

controller, and right-hand controller. This represents the VR headset and controllers in the

program.

Figure 29: XR Rig in the Hierarchy

If one of the controllers were clicked, it could be noticed in the inspector under XR

Controller that all the input actions were empty which meant that the mock VR system

wasn’t connected to the computer yet. Rather than setting it up, Unity has a premade action

set that makes the process a lot easier. Going back to the package manager, select XR

interactive Toolkit and select “import to Project” next to Default Input Actions. To enable

the preset input actions, go to the project window and find the folder titled “Default Input

Actions” using the path seen below.

Figure 30: XR Input Actions Folder Path

29

Highlight the item in the folder titled XRI Default Left Controller and select “Add to

ActionBasedController default” in the Inspector panel. Do this for the XRI Default Right

Controller as well. The Inspector panel should look like the following:

Figure 31: Controller Inspector Panel

Once they have been enabled, they must be labeled in the preset manager which could be

found in the project settings. Under the column labeled filter, type Right next to XRI

Default Right Controller and type Left under XRI Default Left Controller as seen here:

Figure 32: Preset Manager Under Project Settings

30

Exit out of the Project manager and look at the inspector panel with the controller

highlighted in the Hierarchy again. The default actions should still be empty. To update the

settings that were just changed, delete the XR rig from the hierarchy window and re-add it.

The inspector window should now have the input actions pre-populated under the

controller. To activate these actions with the XR rig itself, highlight XR rig, click Add

Component, type in Input Action Manager, and click the dropdown under Action Assets.

In the project window with the Default Input Actions folder still open, click and drag the

XRI Default Input Actions into the Action Assets. Still in the XR rig inspector panel, make

sure to set the position coordinates to (0,0,0). This would make creating the simulation a

lot smoother in terms of reference points later down the line. The inspector panel for XR

rig should now look like this:

31

Figure 33: Updated XR Rig Inspector Panel

The previous steps were just to set up the connection between the VR gear to the program.

However, in the case that a VR headset was not available, the program at this stage would

still not work due to the lack of hardware. In order to make the XR rig usable, a Mock VR

device simulator must be enabled. To do so, go back to the package manager. Under XR

Interactive Toolkit, click the “import into Project” button next to XR Device Simulator.

Exit out of the window and go the project panel on the right. In the search bar within the

panel, type in XR device simulator and drag the one with the blue box into the Hierarchy

as seen below.

32

Figure 34: XR Device Simulator

This device simulator would allow the VR simulated device to connect to the keyboard and

mouse so that the user could control the mock gear in the simulation. Each action could be

double clicked so that the keys could be tailored to the user’s preference. If the program

was started, the camera, aka headset, would be able to be moved around. To do so, right

click the mouse button and move it around to move the view around. It should be noticed

that there was a red line on the screen. That red line were two lines overlapping, one for

each hand. These two lines represent the user’s “hands” action line. These actions lines

must be aimed at an interactive object and a key must be pressed for it to work. It could

also be noted that the red lines were not attached to anything. Just to test the applicability

of a model to represent hands, exit out of the game and click on the dropdown for the XR

Rig in Hierarchy. Keep going down until the left and right controller objects appear. For

each one, right click, select 3D object, and cube. This would create cubes as the hands for

a temporary measure. Make sure to scale the cubes down to a more reasonable size and

33

once again, change the position of both to (0,0,0). With that, the VR Settings in the case of

both having and not having a VR headset was complete.

Section 2.4: Virtual Hands and Input Animations

 Now that the settings of the program allow for VR utilization, the next step was to

improve the realism of the virtual experience. If the program was run, the headset should

work correctly but the hands were currently represented by blocks. To improve the

immersion, hands that could be animated were ideal. Another video made by Valem titled

“Introduction to VR in Unity – PART 2: INPUT and HAND PRESENCE” [3], the method

of integrating controllable hands was taught.

 For the program to register the hand controllers when played, regardless of mock

or physical controllers, a code was needed to connect the two. To start, a new empty game

object was created in the hierarchy panel and named Hand Presence. With this game object

highlighted, in the inspector panel, the add component button was pressed. In the search

bar that appeared, HandPresence was typed in and a new script was created and added to

the assets. Clicking on the script name should open the script for modification. The script

that was created according to the video can be seen in Appendix A [3]. The main

components of the script include the controller debug, the animation association, and

redundancy prevention. The portion of the script that debugs the controller can be seen

below.

34

Figure 35: Controller Debug Section of Appendix A Code [3]

To make sure that the controllers were properly connected, the script first searches for them

and tries to match it with one of the controller models to see if the controller would work

with the program. The program would then spawn a hand model where the controllers

would be and apply the hand animation portion of the script to the models. The hand

animator portion of the script can be seen below.

Figure 36: Animation Association Section of Appendix A Code [3]

35

For this simulation, the animations that the hand model would need were pinching and

gripping. The animation section of the code sets the trigger button and the grip button on

the VR handset controllers available for model association and animation. Which will be

discussed later in this chapter section. The last portion of the code was the model

redundancy checker.

Figure 37: Redundancy Prevention Section of Appendix A Code [3]

36

This section ensures that the hand models and the controller models do not spawn at the

same time. This section also ensures that the hand animations only occur when the hand

model was being used in the program.

 After completing the script, the code now knew how to use the models and associate

handheld controller buttons to certain animations. The last step to complete the hand input

and animations was to import hand models and applying animations. The hand models

were provided by Valem in the comment section of his part 2 video [3]. Once the hand

models were downloaded, they were uploaded into the project folder and individually

moved into the controller prefabs list under the hand presence script in the inspector. In

Section 2.3, blocks were described to have been used as temporary hands visually for when

the program was started. The same steps were taken to replace the blocks with the hand

models that were imported. The game object created earlier was dragged into assets and

deleted from the hierarchy. This game object was then duplicated, with one being renamed

Hand Presence Left and the other Hand Presence Right. For each one, the respective

controller was associated with the respective game object to ensure that both were

independent of one another. Both game objects were then dragged from the assets to the

individual hands in the VR Rig in the hierarchy. This was to associate the hand presence

code with the VR hands. With this, the user now had hand models when running the

program.

 To associate animations with the hand models and buttons, an animator was needed.

Within the package that had the hand models included three poses that the hand models

could make: default, pinch, and grip. The first step to adding these poses to the model was

37

to add an animator to the assets by right clicking in the project asset window, going to

create, and clicking animator controller. Like the hand presence game object, a left and a

right animator was needed. Starting with the right hand, the animator was renamed Right

Hand Animator. This animator was then dragged into the controller line of the animator

box within the hand model inspector panel.

Figure 38: Animator added to Model

The model of the right hand was then modified so that they could change poses and become

animated. To do this, the animator was first selected. Then in the top ribbon, the window

button was dropped down, the animation side extension was opened, and the animator

button was clicked. This was to open the actual animator panel.

38

Figure 39: Path to Animator Panel

Figure 40: Animator Panel

Once the animator panel was opened, the next step was to create float parameters for the

buttons used on the controllers by clicking the plus button and renaming one to Grip and

another to Trigger. Having parameters, the blend tree was the next thing added to the

39

animator panel. Right clicking near the green entry box within the animator panel and

selecting Create State and Blend Tree. Double clicking on the Blend tree would then open

it up to allow for modification. In the inspector panel, the blend type was changed to 2D

Freeform Cartesian. The parameters in the inspector were then changed to Grip and Trigger

so that the animations added later could be associated with the parameters and controller

buttons. In the motion box in the inspector, the plus sign was clicked and 4 motion fields

were added. The positions of the motion fields were the changed to (0,0), (0,1), (1,0), (1,1).

In the animation sub folders within the Oculus Hands folder under assets, the different

poses of the hand model exist. From top to bottom, the poses added were default (labeled

take 001), right hand pinch, right hand fist, and right-hand fist as seen below.

Figure 41: Motions and Positions of Blend Tree

40

With that, the animation of the right hand was completed. For the left hand, the similar

steps were followed with the difference being the left-hand poses being used instead of the

right-hand poses. Once finished, testing the program produced two solid hand models that

move accordingly with the user’s controllers and the trigger button causing the hands to

pinch while the grip button causing the hands to grip.

Section 2.5: Virtual Environment and Textures

At this point, the setting modifications of the program for VR gear integration,

model association, and animation were complete. The next step of the project was to start

creating the virtual environment that the user would work in. Valem’s Part 1 video taught

the basics of adding objects to the program as well as simple texturing and coloring [1].

Since the SEM lab was conducted win an enclosed space, the first step to creating a virtual

environment was to create a room. To do so, walls, ceilings, and the floor were created

using in program planes. To create a plane, the left mouse was clicked in the hierarchy

panel with 3D object and plane being clicked. The floor plane was the first plane created.

To make sure the size of the plane was proportionate to the user, a cycle of running the

program and adjusting the scale of the object was conducted until the desired size was

obtained. Once the ideal size was reached, the plane was duplicated and raised to create a

ceiling. Four more planes were then created to connect the floor and ceiling while

encapsulating the space.

41

Figure 42: Object Scaling Capabilities in Scene Panel

Figure 43: Object Scaling Capabilities in Inspection Panel

When creating the simulation for the compression test in unity, many complicated

and simple objects were needed for both the test simulation itself as well as background

objects. When creating objects, it’s important to understand how simple or complex the

object desired is. For simple shapes such as spheres and cubes, creating the objects directly

inside of unity was ideal. Objects created within unity work a lot better with the unity

programming than objects created using 3D modeling software such as SolidWorks. To

insert a generic shaped object into unity, right click inside of the hierarchy panel, go down

to 3d object, and select the desired shape. Once the shape appears, the scale and position

of the object could be changed to whatever desired.

42

If protruding details or extensions to the shape was wanted, Valem taught that a 3d

object could be spawned directly connected to the original object [4]. To do so, right click

on the object created in the Hierarchy and click another 3d object. A dropdown should

appear on the original 3D shape with the new object within the dropdown. This means that

the two objects were now joined together to become a whole assembly. The objects could

be moved independently of each other if the sub-object was clicked on but if the original

object was selected, the whole assembly could be moved as a unit.

Figure 44: Assembly Grouping

An example of an assembly created in the simulation lab would be the SEM

Machine door. All involved objects were connected and could be translated to become the

object that was desired.

43

Figure 45: SEM Assembly

If a more complex object with exact dimensions or extruded cuts were needed, a more

advanced 3d modelling program would be needed. The one that was used for various

objects in the Compression Lab Simulation were created using SolidWorks.

Figure 46: Eyewash Station Made in SolidWorks

44

Once a SolidWorks model has been created, the object must be saved as a suitable

file-type before it could be imported into unity. The file-type that was used in this case was

3MF. Once saved, an online converted was used to convert the 3MF file into an Obj. file.

The new file could now be directly dragged into Area 5 of the unity program. There are,

however, 2 issues that arose from using SolidWorks. The conversion of file-types causes

the model to become less defined in terms of sharp edges and corners as seen below.

Figure 47: SEM Model in SolidWorks

45

Figure 48: SEM Model imported into the Unity

The scale of the inserted project would also most likely be extremely large, causing

the object to either appear missing in the viewing panel or a giant wall covering the panel.

The scale and position of the object would need to be adjust to the correct size. The position

should be simple. Since the XR Rig should be set at the (0,0,0) position, do so for the new

object as well so that it would be easily found once shrunk. For the simulated SEM lab

created for this project, the background object created were 3D printers, vent hood,

cabinets, tables, and a door. For the core items that the user interacted with, the objects

created were an SEM machine connected to a computer, door for the SEM chamber, a vice

within the SEM chamber, and a cube sample resting on a table.

To add realism and color to the unity project, textures should be added to the objects

inside of the simulation. There were two methods of doing so. The first method was used

46

if only simple colors were desired. To create a generic material, right click in the Project

panel, go to create, and click on material as seen below.

Figure 49: Material Path

Once the material has been created, change the color of the material in the inspector panel.

For a more complex blend of colors or direct images, save the image file to the computer

and drag the file from the file explorer directly into the project panel.

Figure 50: Direct Images and Complex Textures

47

To integrate either of these into the simulation, click and drag the material/image

from the project panel to the object in the simulation. Do note that the image would be

applied to all sides of the object. The only way to prevent this was by covering it up with

another panel.

Figure 51: Image Texture Limitation

The room and added objects could all be textured to create the desired environment that

allows for better immersion in the program when conducting the virtual experiment.

48

Figure 52: Fully Modeled and Textured Virtual Room

Section 2.6: Colliders and Jelly Physics

Regardless of the type of object added to the simulation, a certain setting was

needed for the object physics to work correctly. Realism was an important aspect of this

project since the simulation was meant to act as a virtual laboratory. In Velem’s Intro to

VR Video [1], he discussed different available options that would add realism to the

simulation. If the object was meant to be physically interactable with another object, then

a collider must be connected to an object. A collider stops objects from going through one

another. Colliders have many types and since this project worked with a cubed sample, a

box collider was used. To add a box collider to an object, highlight the object in the

Hierarchy. With the object highlighted, click on “add component” in the inspector panel

and type in box collider. Click on it and it would be added to the object. Since the sample

in the program initially rests on a table, the table was given a collider as well.

49

Figure 53: Box Collider Component

If simple gravity was needed for an object, another component would need to be

added. Highlighting the object and clicking add component in the inspector panel again,

add a Rigidbody component. This component adds mass, drag, and gravity to an object. It

was important to have an object with a Box Collider underneath these objects or else when

the program was started, the object with the Rigidbody would fall out of the world,

becoming unrecoverable unless the program was restarted.

Figure 54: Rigid-Body Component

50

Since the sample in the program would be compressed in a vice within the SEM

machine, a Jelly mechanic was added to the sample object so that texture deformation

would look more realistic. A video by Unity City titled “How to make Jelly Mech in unity

|| Softbody(tutorial)” [5] taught the necessary information for integrating jelly mechanics.

For the most part, jelly physics consists of a code that controls the motion of the objects in

a way that makes it seem jelly-like. The script that was used in this program can be seen in

Appendix B [5]. The main components of the code include the jelly mesh and the jelly

physics. The section that creates a jelly mesh on the object it applies to can be seen below.

Figure 55: Jelly Mesh Section of Appendix B Code [5]

The script grabs the original mesh of the applied object and replaces the static mesh with a

jelly mesh that was altered in the jelly physics section of the code.

Figure 56: Jelly Physics Section of Appendix B Code

51

This section of the code controls the transformation of the various vertexes within the mesh

of the objects and moves them within a bounded space so that the object could vibrate and

deform with a jelly-like quality. Once the code was complete, the last step was to drag the

code from the assets to the inspector panel of the object that would utilize jelly physics.

Figure 57: Jelly Properties in Inspector Panel

Section 2.7: Object Interaction

 Within the program, objects had physics but could not be interacted with by the

user. Object interaction was taught in Valem’s part 5 episode [6]. To make an object

grabbable, the object in question must first be selected in the hierarchy and the XR Grab

Interaction component added in the inspector. This makes the object interactable with the

XR rig connected to the VR gear.

52

Figure 58: XR Grab Interactable Component

Section 2.8: Hinged Objects

 As mentioned before, this project involves interacting with an SEM machine. To

make the experience as realistic as possible, an openable cover plate for the SEM machine

was included in the program. Valem’s Part 7 Introduction to VR video taught the basics of

creating hinges [7]. To create a working door, the first part was to create a door with an

interactable hand for the already modelled SEM machine. The door in this project was

made from two simple rectangles that were scaled and modified to look like a door. The

door itself was assembled within the SEM machine in the hierarchy and the handle

assembled within the door.

53

Figure 59: SEM Handled Door Assembly

Once the assembly has been created, the components of the inspection panel for these

objects were modified. All three of these objects were given the box collider component

so that they could interact with one another. The door itself had a few more components

that were needed to create the hinging physics. In addition to the box collider, the SEM

door needed a rigid body component, XR interactable component, and hinge joint

component in the inspector panel. The rigid body component gave the door rigid body

properties that would allow for it to swing and move more naturally. The XR interactable

component made the door interactable to the user. Since the door had a handle, the

interactable portion of the assembly had to be the handle only and not the entire door itself.

To ensure the distinction in the program, the XR Grab Interactable component was

modified. Under the colliders dropdown of the component, the handle box collider was

dragged into the element 0 line. This was to ensure that the handle was the only thing that

could be interacted with regarding the door.

54

Figure 60: XR Interactable Component of SEM Door

To ensure that the assembly had a pivot point between the door and the SEM machine, the

Hinge Joint component was necessary. With this component, an anchor could be set to any

axis and position relative to the object it was under so that the hinging ability of the object

was limited.

55

Figure 61: Hinge Joint Component

To prevent uncontrolled hinging of the door, an angular limitation could be set for the hinge

as well at the top of the component. This would ensure that the door doesn’t rotate through

the main assembly and break the immersion.

Figure 62: Hinge Joint Angular Limits

56

Section 2.9: Snap Zones

 For this program, a sample cube was interacted with and placed into the SEM

machine by the user. In order to ensure consistency with each run as well as consistency

with other scenes of this project, a snap zone was created. A snap zone was a space in the

VR simulation that would essentially absorb an object that was near it, transform the object

so that it was always in the same position, and hold the object suspended in the space until

the user removes the object. Valem’s 8th Introduction to VR video teaches the basics of

creating and utilizing a snap zone [8]. To start, a simple 3D sphere object was created and

placed into the simulation hierarchy. For organizational purposes, this object was renamed

Sphere Drop Zone. This sphere was moved to the desired location of the snap zone and the

sphere collider component was added to the inspector panel. The next component to be

added was the XR Socket Interactor. This component essentially makes the sphere

automatically grab objects within reach without the need for an XR rig. To make sure that

the object instantly grabs object within reach, the Trigger box must be checked in the

component of the inspector panel.

57

Figure 63: XR Socket Interactor Component

At this point of the chapter section, the spherical object was still the default color and could

be noticed by the user. To make the space transparent, a new material must be created in

the assets. Once created, the material was dragged directly onto the sphere in the main

camera panel so that it was applied. To make the material transparent, the rendering mode

of the of the material must be set to transparent. In addition, the alpha channel of the albedo

color wheel was lowered to increase transparency.

58

Figure 64: Material Transparency of Component

Once the desired material color has been decided, the snap zone was completed. The

objects would be snapped to the center of the zone which allows the creator to move it to

the desired location. In this project, the snap zone was placed within the SEM machine

within the created vice so that the sample cube would be in the correct orientation when

the virtual test was conducted.

Section 2.10: UI and Rays

 Other than objects, there were other things that the user could interact with. Various

UI, or user interfaces, utilized in the program included sliders and buttons. In Valem’s part

6 video, the integration of UI in Unity was taught [9]. In Unity, UI could only be placed on

59

UI canvas. This was created in the program by right clicking in the hierarchy, going down

to UI, and selecting canvas. This created not only the canvas but also an item titled

EventSystem which was what allows the user to interact with the UI. One important setting

in the inspector of the canvas was the render mode. The default render mode makes it so

that the canvas would be following the user’s eyes at all times, overlapping everything else

in the virtual world rather than staying in one place. To make the canvas and UI elements

stay where they were originally placed when the program was run, the render mode was

set to World Space and the main camera was dragged from the hierarchy to the event

camera slot.

Figure 65: Canvas Component in Inspector

With the canvas settings optimized, it could now be populated with UI. To do so, the canvas

object in the hierarchy was right clicked with the UI dropdown expanded. In here were the

available UI options, such as buttons, sliders, scroll bars, drop downs, etc., that could be

added the canvas. For this project, the two main UI utilized were buttons and sliders. The

buttons were primarily used to switch scenes which will be described in Section 2.11. The

slider was used to both control the compression of the vise within the SEM, detailed in

Section 2.12, and the live graph, expanded upon in Section 2.14.

60

To interact with these UI, the user does not have to virtually touch the items. In

Section 2.3 of the thesis, it was mentioned that there were two red lines protruding from

the user’s hands when the program was running. These lines were called rays and they

show what the user’s hands were pointing at and whether the user was hovering over

something interactable. By default, the XR rig hands would already have these rays when

added to the program. Whenever the ray was red, that means that the user was not pointing

at an interactable object. However, if the ray turns white, that means the item was

interactable, whether it be an object that could be picked up or a button that could be

pushed. These rays could be modified to fit the users need, such as changing the colors of

the rays or changing the line length or width of the rays. To modify these, the hand

controllers under the XR Rig in the hierarchy must be highlighted. In the inspection panel,

the parameters of the rays could be found and altered in the XR Interactor Line Visual

Component.

Figure 66: XR Interactor Line Visual

61

Section 2.11: Changing Scenes

In the program, many separate actions must be taken by the user to go through the

virtual lab. The easiest way to manage and control the progression of the user was by

implementing scenes which were essentially levels in the simulation that guide the user

towards the completion of the simulation. A video titled “START MENU in Unity” posted

by Brackeys introduced scenes and methods to implement them [10]. At the start, when a

new project was first made, a scene was already made. This was the first virtual space that

was worked in. All the scenes that would be used in the overall project would be in a folder

within the assets panel. To make a new scene, the right mouse button, create, and new

scene were selected in the scenes folder so that everything remained organized.

62

Figure 67: Scenes Folder

Clicking on the new scene would bring the main camera panel to a new, blank virtual world

that could be modified similar to the original scene. In this project, the user was inside of

the virtual classroom created throughout the entirety of the simulation with certain changes

that progressed the lab. Since the surroundings remained the same, the items in the original

hierarchy were copied and pasted over to the new scene hierarchy once the new scene

hierarchy was cleared of everything.

 Multiple scenes could be made with this method but traversing between them while

in the program required more work. Previously, in Section 2.10, it was mentioned that the

63

scenes could be changed by the user through UI buttons. To do so, there were three key

components that were needed in the program: a button, a code, and a build. First, the

method to creating a UI button was described in the previous section. A UI button was

necessary on the scenes that preceded another one so that the user could navigate through

the simulation. Of course, multiple buttons could be added to the scene to allow the user

choices should that capability be desired. This program utilized a mix between guided path

through most of the lab and a more open selection at the end of the simulation once the

gallery was reached which will be discussed in more detail in Section 2.15.

 The next component, the code, was essentially the set of options that the buttons

could be coded to. Every single scene that was desired in the overall program that should

or could be reached through a UI button was necessarily added to the code to make

traversing through the lab as a user possible. The script that was used in for this program

can be viewed in Appendix C [10]. The main and most important aspect of this code was

the association of a keyword with a scene name.

64

Figure 68: Keyword and Scene Association

For example, in the snippet of the code above, the public voids PlayGame, SEMClose, and

Computer were all codes that were thought up and created with the associated scene in

mind. The scene names, or the names given to the scene file in the scenes folder under

assets, were also made with the scene in mind such as 2.Sim, 3.SEM Close, and

4.Computer. The scene names were attached to the public voids in the code individually

while the public voids were attached to buttons in the inspector of the UI button itself. To

attach public voids to the buttons, the script must be created as a new component under the

canvas. Once the code was complete, the inspector of the UI button was modified. Clicking

on the plus sign of the button component in the inspector, an On Click action was created.

To associate the canvas code to the button, the canvas was dragged into the black space

65

within the On Click section. With this, the code was associated but the specific scene that

pushing the button would progress to had to be specified. To do so, the left dropdown in

the same section must have had Runtime Only so that the user could interact with it while

the program was running. The right dropdown brought up a list of things that included the

name of the script made for the scene changes. Under that, the public voids were available

to become associated with the button. The selection here sent the user to that scene if the

button was pressed.

Figure 69: Button Inspector with Script Attachment

66

While the buttons now have a scene attached to them and an entire script that lays out the

scenes of the entire program, the program did not associate all of the scenes as one whole

simulation yet. The scenes at this point were still separate entities from one another so

while the code does have all of the scene names, aside from the scene with the button, the

rest of the scenes were still invalid. In order to group the scenes all together into one single

simulation, a build was necessary. A build binds every scene together and allows for

interactions between the scenes. To create a build, build setting needed to be opened under

file in the top ribbon of the overall editing window. The following window should open:

Figure 70: Build Settings

This window encompasses all the scenes involved in the current build and overall

simulation. To add a scene to the build, the scene was dragged directly from the scenes

67

folder into the scenes in build section of the build settings. Once all the scenes were added,

the build button on the bottom right side of the window was pressed to confirm the build.

Throughout this project, the scene script and build setting were modified whenever a scene

was added to ensure everything worked smoothly and as intended.

Section 2.12: Object Translation

 In the testing portion of the virtual lab for this project, a sample was placed by the

user into a vice that could be controlled through a slider. To make this possible, the

translation of one of the clamps had to be directly associated with the UI slider. A forum

on StackOverflow titled “Change position of gameobjects with slider” taught how to lerp

objects between two points and allowed me to produce the code, as seen in Appendix D,

necessary to make this portion of the program work correctly [11]. There were two main

sections of the script that make the object translation via slider work as intended: the

coordinate parameters and the slider listener. The coordinate parameters allowed the user

to set two three-dimensional coordinates that the object it was applied to could move

between. This ensures that the objects would stay within the bounds and move with

precision according to the creator’s wishes.

Figure 71: Coordinate Parameter Section of Appendix D Code

68

The second section of the script, the slider listener, updates the position of the object the

code was applied to in real-time according to the state of the slider throughout the duration

of the scene.

Figure 72: Slider Listener Section of Appendix D Code

Once the script was completed as a component of the desired object’s inspector, the last

thing that was needed was to drag the desired slider from the assets to the slider box in the

script component which would then allow the user to move the object with the slider when

the program was running.

Another visual feature that was added to this scene was a percentage that would

indicate the total compression of the sample that would change as the user interacted with

the UI slider while also moving adjacent with the slider. The first step was to create a text

object in the assets panel and create two scripts in the inspector panel. A video by

Alexander Zotov taught how to display a percentage value associated with a UI slider.

Through this resource, the first script was created, as seen in Appendix E, that would

implement this feature into the program [12]. The second script, as seen in Appendix F,

was very similar to the script used to translate an object with a UI slider in that it included

coordinate parameters and had a listener that updated with the slider [11].

69

Figure 73: Percentage Display and Movement Script in Inspector

In this program, the slider was connected to the translation of the left vice clamp and the

percentage text as well as the value of the percentage text.

Figure 74: Object Translations in Virtual Lab

Section 2.13: Live Graph

One of the key components of the virtual SEM program was the live-updating graph

that displays the theoretical change in conductivity of the sample as the sample was

compressed and the pores within the sample start closing and contacting one another. The

70

main steps that were taken to implement this component into the program was to create the

graph panel, create axis separators, create axis labels, connect the slider, and allow for the

graph to update real-time. Each of these components consisted of a single code that

encompassed all aspects of the graph used in the program which can be seen in Appendix

G [13] [14] [15] [16].

The main resource that provided guidance on graph creation in Unity were a series

of videos uploaded onto YouTube by the User Code Monkey. In the first video titled “Unity

Tutorial – Create a Graph”, the basics of creating a static graph and graph panel were taught

[13]. To start, the visual components of the graph were made. The first step was to ensure

that there was a canvas in place of where the graph was to be placed. Once the canvas was

created and oriented, an empty game object was added under it in the hierarchy panel and

named window graph. Underneath the window graph, another empty game object named

background was created. A component was added in the inspector of the background game

object and changed to a generic color. Another game object was then added under the

window graph again and named graph container. Under the graph container, another

background was added. The sizes of the two backgrounds were changed as desired with

the window graph background always being slightly larger than the graph container

background. In the graph container inspector panel, the anchor for the object was placed in

the bottom left corner so that the graph has a clear starting reference point for later.

71

Figure 75: Graph Container Anchor Settings in Inspector

The initial visual aspects of the graph were complete at this point. The next stage

was to create a script that would plot the points desired to create a basic static graph that

would be modified to be dynamic later. In the window graph game object, a script named

window graph was created. The main components of the script regarding the initial setup

of the graph include creating points and setting boundaries. To create points, a variable was

72

needed for each point that was desired on the graph. For this project, fifteen points were to

be on the graph to represent data so that many variables were created as seen below.

Figure 76: Point Variables from Code in Appendix G

To modify the values of the points and minimize clutter in the code, a list was created to

encompass all the points.

Figure 77: Graphical Point List from Code in Appendix G

Though the points now exist, they must be placed on the graph. To do so, the points were

constrained within the bounds of the graph window and constantly created and destroyed

so that the graph could properly update the changes to the point value.

73

Figure 78: Point Creation and Destruction from Code in Appendix G

To bound the points, the parameters of the graph window must be set in the script as well

by using the previously set anchor point.

Figure 79: Anchor Point from Code in Appendix G

Figure 80: Graph Container Boundary from Code in Appendix G

74

Once the main graph panel was complete, the next step was to create axis separators

and axis labels to help organize the graph and allow for more precision in the visual aid. A

video by Code Monkey titled “Unity Tutorial – Create a Graph: Axis Separators” provided

guidance on how to add axis values and implement the separators into the graph created

[14]. In a video uploaded by Code Monkey titled “Unity Tutorial – Create a Graph: Axis

Labels”, the method of adding the labels was relayed [15]. For the axis values, the first step

was to create the first instance/template of the label on the graph as a reference. Out of the

script and in the hierarchy, two empty game objects were created under the graph container

and named LabelTemplateX and LabelTemplateY. A text component was added to both of

them, and the game objects were anchored to the bottom left side of the graph container.

In the script, the number of desired labels and their positions for both the X and Y axis

values must be called and created. For clarity on the weight of the values, the labels were

also scripted into the code.

Figure 81: X Axis Values and Positions from Code in Appendix G

Figure 82: Y Axis Values and Positions from Code in Appendix G

75

Figure 83: Label Text from Code in Appendix G

Starting the program at this point showed that both axes had labels and values spaced

evenly along both directions. To add separators that would aide with reading the graph with

more precision, the script was modified similarly to how the axis values were created.

Figure 84: X Direction Separators from Code in Appendix G

Figure 85: Y Direction Separators from Code in Appendix G

 Just as the axis labels needed a template, the axis separators needed one as well.

Back in the project editor, two new empty game objects were created under the graph

container in the hierarchy and named DashTemplateX and DashTemplateY with an image

component added to it. In Microsoft Paint, half of the default workspace was deleted and

the image converted into a png. Once done, the image file was then dragged into unity and

turned into a texture type of sprite. This was the sprite that was used in the image

component. In the inspector, the image component type was set to tiled so that the image

made a series of repeated and linked image giving off the dashed line appearance. The

76

dashed line was then dragged to fit across the graph container, either x or y direction

depending on which dash template was being worked on. The vertical line was moved to

the left-most side of the graph container while the horizontal line was moved to the bottom

of the graph container. The script would again create a series of copies that would fill the

graph container with set spaces between each instance.

With the graph panel, axis separators, and axis labels done, the foundations of the

graph were complete. To connect the graph to the slider bar so that the graph was UI

friendly, techniques learned from connecting the translation of an object to the slider was

used [11]. Although not the same code type was used for moving the graph points, a

variation of it was created instead. Previously, in Section 2.12: Object Translation, the

object attached to the script was lerped, or bounded, between two coordinate points and

was only allowed to translate between the two. For the graph, only the first plotted point

needs to be moved with the slider. Rather than lerping the graphical point, the direct value

of the slider was associated with the y-direction translation of the point and was

parameterized to fit within the graph panel by limiting the max and min value of the slider

value.

Figure 86: Slider Integration Section of Graph Code in Appendix G

Once the slider value has been associated with the first graphical point, the entire list was

updated with the new value.

77

The graph and the slider move in sync at this stage of the script, but the points of

the graph all move in unison rather than with respect to time. Moving the slider should

create wave patterns according to the interaction of the slider since the values were

snapshotted at a point in time and transferred to the next point. To implement this idea into

the graph, a forum that discussed the ways to make the script timed or delayed in terms of

execution was investigated [16]. To make an action or line of script delay for a set time,

an action called WaitForSeconds could be used before the script line. This would cause the

line to wait for as many seconds as inputted before executing the command. For this

project, each point after the first graphical point waited 2 seconds before taking on the

value of the point before it, thus making the graph more accurate and practical in its

functionality.

78

Figure 87: Time Dependence Section of Code in Appendix G

Section 2.14: Remote Live Feed

 With the connection of the slider bar on the computer to the transformation of the

vice and live graph, the virtual SEM functionality with UI interactive portion of the

program was complete. Since the compression of the sample was in the enclosed SEM

chamber, the user wouldn’t be able to view the vice in action when using the SEM program.

The graph and percentage display would be moving in accordance with the slider bar

moving but a live view of what was happening in the chamber was missing. To improve

the live interaction more, a camera texture or render texture was created on the computer

79

canvas. A render texture was similar to a normal texture except the image displayed was

the live feed from a separate camera. This texture type was useful for any displays that

needed to be remote. An online unity user manual provided guidance on how to achieve

this texture [17]. To create a render texture, the first step was to add a render texture into

the assets by right clicking, going to create, and clicking on render texture. In the hierarchy,

a new camera that would capture the live feed was created. The next step was to assign the

new render texture to the camera by adding it to the target texture section of the camera’s

inspector panel.

Figure 88: Target Texture in Camera Inspector Panel

80

To create the screen that would display this new live feed texture, a normal plane was added

and positioned in the scene. The render texture was then dragged onto the plane similar to

a normal texture. The panel would then display what the camera was pointed to in real time

whenever the program was started.

Figure 89: Completed Render Texture

Section 2.15: Gallery and Zoom

Completing the graph, the SEM application scene was complete. Since SEM

produce images when used in live labs, a gallery was created to show some real SEM

images of the lab this project was based on. This was done using many scenes and buttons

that would change the virtual screen to whichever image was clicked. To further enhance

the Gallery capabilities, a zoom feature was added the detail view of each image. Similar

81

to the gallery, a magnifying glass-shaped icon was placed on the detailed view that would

change the screen to essentially the same screen but with the image zoomed in. On the

zoomed scenes, the close-up images could be panned around by the user. In order to create

a close-up image that could be moved around, a new script was required. By learning from

a video uploaded by Jason Weimann titled “Unity3D – How to Zoom an Image / Create a

zoomable pannable sprite”, the script in Appendix H was created [18]. To start, a canvas

was required in the hierarchy. Within the canvas, an empty game object with a UI image

was created. In the assets, the desired image to become zoomable was added and turned

into a sprite by changing the texture type in the image’s inspector panel to sprite (2D and

UI). The sprite was then added into the source image slot in the inspector of the UI image.

Now that the sprite has become the image on the canvas, the size of it was enlarged to be

zoomed in. The issue that needed to be fixed was that the image was too large and the

viewable bounds needed to be restricted. In the game object, a Scroll Rect component was

added to the inspector as well as a Rect Mask 2D. At this point, the image was still enlarged

but the only part of the image that could be seen was within the Rect Mask 2D box created

which could be resized to the desired size. In the game object inspector, the image

underneath the game object must be dragged to the content of the scroll rect. In the Image

inspector, a new script was created which could again be seen in Appendix H. The main

purpose of the script was to allow the user to control the zoom of the image through the

use of a mouse wheel. This was geared more towards if the user does not have a VR headset

and had to use the mock XR rig created at the start of the project. The script itself enables

the use of a mouse wheel and also limits the zoom scale so that the image remains clear or

82

within the creator’s desired size. These parameters script was also made to allow for

parameter changes within the inspector.

Figure 90: Mouse Scroll Section of Code in Appendix H

Figure 91: Zoom Scaling Section of Code in Appendix H

Figure 92: Zoom Parameter Settings in Inspector

83

CHAPTER 3: SIMULATION TRIALS

Section 3.1: Trial and Feedback

 Once the program was complete and the user was able to run through the entire lab

as intended with no major setbacks nor crashes, the simulation trials were conducted. The

total number of volunteers that tested the program was five including Logan Roys,

Christopher Billings, Melody Moody, Lane Taylor, and Steven Zhao. When the testers first

come into the lab with the equipment setup, they were first given a run through of what to

expect. The basic instructions on how the VR headset worked was given as well since many

of the volunteers had not experienced virtual reality before. The testers were geared up and

immersed into the program. The users would then go through the program and explore as

desired while asking any questions they had.

Once the volunteers had reached the end of the program, they were sent a survey to

provide feedback on their experience testing the program. The survey consisted of ten

questions in total and were answered anonymously. The first nine questions had the format

of a nine-point linear scaling so the user may rate the questions based on their experience.

The questions that were presented to the user included asking about the difficulty of

learning how to use the controls to navigate through the simulation, the difficulty of

navigating through the program through the use of UI such as buttons and sliders, the

comfort of the experience, the entertainment factor of the simulation, the overall length of

time spent running through the simulation, the memorability of the experience, the amount

of new knowledge obtainable through the simulation, the difficulty of the content of the

84

lab, and the usefulness of the simulation in trying times such as during a pandemic. The

last question of the survey was open ended and inquired about any constructive criticisms

about the experience and elaborations on previous answers.

Section 3.2: Navigation and UI Interaction through the Simulation

 Navigating through the entirety of the simulation required knowledge on how to

use the VR gear correctly as well as being able to interact with the various UI, such as

buttons and slider, to progress through the lab to completion. When the testers were asked

about how difficult it was to learn the necessary controls to navigate thought the simulation,

all of them responded that the controller and gear were very easy to learn. However, the

question regarding the difficulty on navigating through the program using UI was sparser.

Two users deemed the UI either very easy or easy to use while two others found that it was

neither difficult nor easy. In contrast, the last user felt that it was quite difficult to use the

UI.

Two users were constructively critical and shared their troubles and suggestions for

improvement. One user responded that “The lagginess of the SEM menu was a little rough.

From what I understand the lag was coming from the plot on the right-hand side. Maybe

there is a way to plot this graph to have less lag”. Another user shared similar troubles and

wrote “The main issue was with the very visible lag at times particularly in the analysis

slider, this made it very hard to even click on buttons. Perhaps, it would be better to have

less elements loaded at once when moving sliders and instead have predetermined notches

at say every 10 or 20 percent completion”. Two other users shared their thoughts on the UI

85

in the program overall. One user stated that “The Program has a glitchy part but overall,

it was good. The Movements are smooth, but the buttons are a little hard to hit”, while

another wrote that “Overall, the experience was very positive, the UI was pretty easy other

than one scene which experienced some lag that made navigation a bit more difficult. Other

than this one instance, UI was incredibly user-friendly and intuitive”.

Section 3.3: Comfort and Entertainment

 When using VR for the first time, some users may experience nausea due to the

lack of experience in the virtual world. Depending on the quality of the game, nausea may

be more severe if a program was too shaky or inconsistent in movement. Of course, the

comfort and the entertainment factor of the simulation was important to keep the students

interested in the lab. When asked how comfortable the experience was, one student rated

the experience as very comfortable, three students rated the comfort of using the headset

to be overall comfortable, and one student rated it uncomfortable. When asked about how

entertaining the lab was, two users found the lab to be very entertaining, two users found

it to be entertaining, and the last user deemed it not very entertaining.

For the most part, the volunteers felt that the testing environment and simulation

were pleasant. One user commented on the VR gear and wrote “This was my first VR

experience, I thought I would get dizzy, but surprisingly not”. Two users commented on

the setting with one stating that “The setting is very well done and the motions are well

thought through so that everything is natural feeling which is a strong point for this

simulation”. The other user expressed that the “pictures of the OU campus and typical

86

warning signs throughout the VR added a touch of familiarity within the program that was

very fun”.

Section 3.4: Length and Memorability

 When creating the lab, balancing the content of the lab and the length of time

needed to complete the simulation was important. Retaining the student’s attention long

enough was always important. If the simulation was too long, students might get bored and

stop focusing on learning and remembering the content. If the simulation was too short, the

student might not get adequate experience when compared to the in-person lab.

Fortunately, most volunteers viewed the delicate balance of time and impact in a positive

light. When asked how the length of time to complete the lab felt, four users thought the

lab was just the right amount of time while one user thought it was a little short. When

asked about the memorability of the lab, four users felt that it was very memorable while

one user deemed it kind of memorable.

 Regarding the time spent in the virtual lab, one user commented, “felt like the length

of time in the lab was perfect, not too long to be overwhelming but not so short to be leaving

the user feeling like something was missing”. Another user commented on the memorability

of the lab, “The lab was very memorable especially the added aesthetics within the lab”.

Section 3.5: Education and Content

 Since this simulation was created with the purpose of educating students from a

remote place, obtaining feedback on the education potential and content difficulty were

crucial. When asked about how much was learned from the lab, three students stated that

87

they learned a great amount while one student learned a moderate amount and the last

student gained a small amount of knowledge. When inquiring about the difficulty of the

content of the lab such as the content and purpose, two students rated the simulation to be

very easy. Two other students rated it moderately easy while the last student deemed the

lab not too difficult nor too easy.

 When asked to expand on their answers, many of the volunteers responded

positively in terms of the educational potential of the program. One user wrote that “The

user utilizing the software to virtually perform experiments while a mentor is available to

explain subtleties within the experiment and answer questions. I was able to learn more

about how these types of materials change resistances as their structures are altered (i.e.,

compressed) and it was cool to see the images of the materials after the experiment to have

a clearer understanding of the microstructures”, while another wrote that “The concepts

were not difficult to understand, and it helped having someone there to answer questions

during the experimentation process. This seems like the natural setup if this software were

to be used for teaching purposes”. Similarly, it was said that “Overall I feel this software

is a great starting point for someone trying to understand the research process and what

data is trying to be collected”. One user even gave a suggestion on how to improve the

relay of information and improve the educational experience of the program by

commenting that “It would be cool to view the graphs outside of the testing stage. Maybe

something along the lines of example graphs so the user better understands what the live

updating graph represents. It would also be nice to have a couple of the SEM pictures have

88

different details highlighted or pointed out. These changes would mostly be aimed at a

more novice audiences as everything is easily understood from a graduate stand point”.

Section 3.6: Reflection and Utilization

 Considering all the feedback from the testers of the program, it seems that the

overall impression of the simulation was positive. Learning how the controls worked on

the VR gear was very easy to all subjects which shows that equipment set-up and

instructions to new users shouldn’t pose a problem.

The only aspect of the program that caused the most trouble was the UI interaction

to navigate through the program. For the users well-versed in VR interactions, the

navigation and controls were much easier to use. As the creator of this program, the

controls, natural movements, and interactions got easier the more it was used. For those

less experienced, the delicate aiming of the arrays and correct pressure on the handheld

controller buttons proved to cause some struggle at times. The scene with the SEM testing

especially proved to cause issues due to what could be assumed to be the overload of

created data. Due to the real-time aspect of the slider bar with the graph, the constantly

changing values of the graphical points seem to cause lag and quality deterioration in the

program. Even with the lag, most of the testers rated the UI interaction aspect of the

program to be between not difficult to very easy.

Besides the UI interaction, most of the other surveyed aspects came out relatively

positive as well. A majority of the users felt that the lab experience was mostly comfortable

and entertaining. Most of them also felt that the lab lasted just the right amount of time and

89

was memorable. Education-wise, most of the users felt that they either learned quite a bit

or saw potential in new students learning from the program. It wase especially helpful that

the content wasn’t muddled in the creation of the lab and was still easy to learn and

understand from a new user’s standpoint. Based on the average of each of the user’s

responses, the program has potential to become even better but lays a solid foundation in

terms of what it currently does and how it could be modified to encompass even more

different kinds of labs.

This program was made with creating an opportunity for students who were barred

from performing real labs in person due to restrictions such as when the pandemic first

occurred. When asked about how useful this research would be in trying times such as the

pandemic, it was overwhelmingly determined to be very useful, despite its current

downfalls. One student even wrote that “I definitely can see how this software would be

beneficial to allow for virtual experimentation and teaching to be done. As a user, I would

be able to very realistically perform an experiment and see the results of these experiments.

I think this idea could be utilized in conjunction with a lab-style class. A group of students

and a lab mentor could meet virtually and many simultaneous experiments could be run

with all students being able to directly ask questions to the lab mentor while running the

experiments. This could also be used as a demonstration-style software where a teacher

could cast the software virtually to a class and perform the experiment while teaching the

subject.

90

CHAPTER 4: CONCLUSION

Section 4.1: Potential

Having a standard program with many components allow for an easier creation of

diverse labs. The background of the lab can easily be changed by either finding different

3D models online or created through modelling software such as SolidWorks. Textures

could be added by taking pictures of real objects and uploaded or images found off the

web. Drawers and doors could easily be created as well as the interactions with them. VR

setup was already done which would take out that step. The graph could be altered by

changing the axis to the desired value as well as the function the graph follows. An

instruction manual with these different components could be compiled so that labs could

be tailored according to the instructors wishes.

The developed VR platform can be further modified for the virtual additive

manufacturing applications. Multiple additive manufacturing technologies have been

developed and employed in Dr. Yingtao Liu’s laboratory at the University of Oklahoma

including direct ink writing, filament deposition modeling, and selective laser sintering

[19] [20] [21] [22] [23] [24] [25] [26].The developed technologies have been used to 3D

print composites, nanocomposites, and polymers for biomedical, mechanical, and senor

applications. The developed platform can be modified to show the 3D printing process and

assist both graduate and undergraduate students to practice 3D printing virtually. The

virtual 3D printing can serve as an exercise for future students to understand the

fundamentals of additive manufacturing.

91

Section 4.2: Conclusion

With the COVID-19 pandemic ravaging the world, more efficient ways of

providing the necessary education to the students affected. Laboratories specifically have

limitations that prevent the hands-on experience of STEM majors hoping to graduate on

time with the necessary experience needed for the workforce. The usage of Virtual Reality

Simulations are an efficient and effective way for students to safely experience the lab

through technology with minor drawbacks in the takeaway compared to real labs. By

having a general lab created on the simulation software, instructors would easily be able to

recreate their own lab tailored to their way of teaching for the enriching of student

experience. The future of education was limitless and potential that it brings the students

could change the world for the better.

92

References

[1] Valem, "Introduction to VR in Unity - Part 1: VR SETUP," Youtube, 8 April 2020.

[Online]. Available:

https://www.youtube.com/watch?v=gGYtahQjmWQ&list=PLrk7hDwk64-

a_gf7mBBduQb3PEBYnG4fU&index=2.

[2] Velem, "How to Make a VR Game WITHOUT a VR Headset," Youtube, 11

December 2020. [Online]. Available:

https://www.youtube.com/watch?v=UlqdHrfXppo.

[3] Valem, "Introduction to VR in Unity - PART 2: INPUT and HAND PRESENCE,"

Youtube, 15 April 2020. [Online]. Available:

https://www.youtube.com/watch?v=VdT0zMcggTQ&list=PLrk7hDwk64-

a_gf7mBBduQb3PEBYnG4fU&index=3.

[4] Valem, "Introduction to VR in Unity - PART 7: DOOR, LEVER, DRAWER,...,"

Youtube, 21 June 2020. [Online]. Available:

https://www.youtube.com/watch?v=bYS35_hC6B0&list=PLuU_htLgvU_HalAFgrf

3UkuQAcOffTH9g&index=11.

[5] U. City, "How to make Jelly Mesh in unity || Softbody(tutorial)," Youtube, 28

September 2020. [Online]. Available:

93

https://www.youtube.com/watch?v=Kwh4TkQqqf8&list=PLuU_htLgvU_HalAFgrf

3UkuQAcOffTH9g&index=4.

[6] Valem, "Introduction to VR in Unity - PART 5: GRAB INTERACTION,"

Youtube, 27 May 2020. [Online]. Available:

https://www.youtube.com/watch?v=FMu7hKUX3Oo&list=PLrk7hDwk64-

a_gf7mBBduQb3PEBYnG4fU&index=6.

[7] Valem, "Introduction to VR in Unity - Part 7: DOOR, LEVER, DRAWER,...,"

Youtube, 21 June 2020. [Online]. Available:

https://www.youtube.com/watch?v=bYS35_hC6B0&list=PLuU_htLgvU_HalAFgrf

3UkuQAcOffTH9g&index=11.

[8] Valem, "Introduction to VR in Unity - PART 8: SNAP ZONE," Youtube, 23 July

2020. [Online]. Available:

https://www.youtube.com/watch?v=AWNhsSB6x9M&list=PLuU_htLgvU_HalAF

grf3UkuQAcOffTH9g&index=12.

[9] Valem, "Introduction to VR in Unity - PART 6: RAY INTERACTION," Youtube,

15 June 2020. [Online]. Available:

https://www.youtube.com/watch?v=4tW7XpAiuDg&list=PLuU_htLgvU_HalAFgr

f3UkuQAcOffTH9g&index=14.

[10] Brackeys, "START MENU in Unity," YouTube, 29 November 2017. [Online].

Available:

94

https://www.youtube.com/watch?v=zc8ac_qUXQY&list=PLuU_htLgvU_HalAFgr

f3UkuQAcOffTH9g&index=4.

[11] Hellium, "Change Position of ganeobjects with slider," Stackoverflow, 16 May

2019. [Online]. Available: https://stackoverflow.com/questions/56176859/change-

position-of-gameobjects-with-slider.

[12] A. Zotov, "How to create UI slider with text that shows percentage value in Unity |

Simple Unity 2D tutorial," YouTube, 1 September 2017. [Online]. Available:

https://www.youtube.com/watch?v=b3S5a_ohZZ0.

[13] C. Monkey, "Unity Tutorial - Create a Graph," YouTube, 22 June 2018. [Online].

Available: https://www.youtube.com/watch?v=CmU5-v-

v1Qo&list=PLzDRvYVwl53v5ur4GluoabyckImZz3TVQ&index=3.

[14] C. Monkey, "Unity Tutorial - Create a Graph: Axis Separators," YouTube, 25 June

2018. [Online]. Available:

https://www.youtube.com/watch?v=YVgMyQ3FWjI&list=PLzDRvYVwl53v5ur4

GluoabyckImZz3TVQ&index=4.

[15] C. Monkey, "Unity Tutorial - Create a Graph: Axis Labels," YouTube, 29 June

2018. [Online]. Available: https://www.youtube.com/watch?v=3ozu5osNw-

I&list=PLzDRvYVwl53v5ur4GluoabyckImZz3TVQ&index=5.

95

[16] Programmer, "How to make the script wait/sleep in a simple way in unity," Stack

Overflow, 5 May 2015. [Online]. Available:

https://stackoverflow.com/questions/30056471/how-to-make-the-script-wait-sleep-

in-a-simple-way-in-unity.

[17] U. Technologies, "Render Texture," Unity Documentation, 11 04 2019. [Online].

Available: https://docs.unity3d.com/Manual/class-RenderTexture.html.

[18] J. Weimann, "Unity3D - How to Zoom an Image / Create a zoomable pannable

sprite," YouTube, 15 September 2017. [Online]. Available:

https://www.youtube.com/watch?v=BFX3FpUnoio.

[19] B. Herren, M. Saha, M. Altan and Y. Liu, "Development of Ultrastretchable and

Skin Attachable Nanocomposites for Human Motion Monitoring via Embedded 3D

Printing," Composites, Part B: Engineering, vol. 200, 2020.

[20] L. Chavez, B. Wilburn, P. Ibave, L. Delfin, S. Vargas, H. Diaz, C. Fulgentes, A.

Renteria, J. Regis, Y. Liu, R. Wicker and Y. Lin, "Fabrication and characterization

of 3D printing induced orthotropic functional ceramics," Smart Materials and

Structures, vol. 28, no. 12, 2019.

[21] M. Charara, M. Abshirini, M. Saha, M. Altan and Y. Liu, "Highly sensitive

compression sensors using three-dimensional printed polydimethylsiloxane/carbon

96

nanotube nanocomposites," Journal of Intelligent Material Systems and Structures,

vol. 30, no. 8, pp. 1216-1224, 2019.

[22] L. Chavez, J. Regis, L. Delfin, C. Garcia-Rosales, H. Kim, N. Love, Y. Liu and Y.

Lin, "Electrical and mechanical tuning of 3D printed photopolymer–MWCNT

nanocomposites through in situ dispersion," Journal of Applied Polymer Science,

vol. 136, no. 22, 2019.

[23] A. Renteria, J. Diaz, B. He, I. Rentaria-Marques, L. Chavez, J. Regis, Y. Liu, D.

Espalin, T. Tseng and Y. Lin, "Particle size influence on material properties of

BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing," Materials

Research Express, vol. 6, no. 11, 2019.

[24] A. Rentaria, H. Fontes, J. Diaz, J. Regis, L. Chaves, T. Tseng, Y. Liu and Y. Lin,

"Optimization of 3D printing parameters for BaTiO3 piezoelectric ceramics

through design of experiments," Material Research Express, vol. 6, no. 8, 2019.

[25] M. Abshirini, M. Charara, Y. Liu, M. Saha and M. Altan, "3D Printing of Highly

Stretchable Strain Sensors Based on Carbon Nanotube Nanocomposites," Advanced

Engineering Materials, vol. 20, no. 10, 2018.

[26] C. Billings, C. Cai and Y. Liu, "Utilization of Antibacterial Nanoparticles in

Photocurable Additive Manufacturing of Advanced Composites for Improved

Public Health," Polymers, vol. 13, no. 16, 2021.

97

Appendix A: Hand Presence Code

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.XR;

public class HandPresence : MonoBehaviour

{

 public bool showController = false;

 public InputDeviceCharacteristics controllerCharacteristics;

 public List<GameObject> controllerPrefabs;

 public GameObject handModelPrefab;

 private InputDevice targetDevice;

 private GameObject spawnedController;

 private GameObject spawnedHandModel;

 private Animator handAnimator;

 // Start is called before the first frame update

 void Start()

 {

 TryInitialize();

 }

 void TryInitialize()

 {

 List<InputDevice> devices = new List<InputDevice>();

 InputDevices.GetDevicesWithCharacteristics(controllerCharacteristi

cs, devices);

 foreach (var item in devices)

 {

 Debug.Log(item.name + item.characteristics);

 }

 if(devices.Count > 0)

 {

 targetDevice = devices[0];

 GameObject prefab = controllerPrefabs.Find(controller =>

controller.name == targetDevice.name);

98

 if(prefab)

 {

 spawnedController = Instantiate(prefab, transform);

 }

 else

 {

 Debug.LogError("Did not find corresponding controller

model");

 spawnedController = Instantiate(controllerPrefabs[0],

transform);

 }

 spawnedHandModel = Instantiate(handModelPrefab, transform);

 handAnimator = spawnedHandModel.GetComponent<Animator>();

 }

 }

 void UpdateHandAnimation()

 {

 if(targetDevice.TryGetFeatureValue(CommonUsages.trigger, out float

triggerValue))

 {

 handAnimator.SetFloat("Trigger", triggerValue);

 }

 else

 {

 handAnimator.SetFloat("Trigger", 0);

 }

 if(targetDevice.TryGetFeatureValue(CommonUsages.grip, out float

gripValue))

 {

 handAnimator.SetFloat("Grip", gripValue);

 }

 else

 {

 handAnimator.SetFloat("Grip", 0);

 }

 }

 // Update is called once per frame

 void Update()

 {

 if(!targetDevice.isValid)

99

 {

 TryInitialize();

 }

 else

 {

 if(showController)

 {

 spawnedHandModel.SetActive(false);

 spawnedController.SetActive(true);

 }

 else

 {

 spawnedHandModel.SetActive(true);

 spawnedController.SetActive(false);

 UpdateHandAnimation();

 }

 }

 }

}

100

Appendix B: Jelly Mesh Code

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class jelly : MonoBehaviour

{

 public float Intensity = 1f;

 public float Mass = 1f;

 public float stifness = 1f;

 public float dampining = 0.75f;

 private Mesh OriginalMesh, MeshClone;

 private MeshRenderer mrenderer;

 private JellyVertex[] jv;

 private Vector3[] vertexArray;

 // Start is called before the first frame update

 void Start()

 {

 OriginalMesh = GetComponent<MeshFilter>().sharedMesh;

 MeshClone = Instantiate(OriginalMesh);

 GetComponent<MeshFilter>().sharedMesh = MeshClone;

 mrenderer = GetComponent<MeshRenderer>();

 jv = new JellyVertex[MeshClone.vertices.Length];

 for (int i = 0; i < MeshClone.vertices.Length; i++)

 jv[i] = new JellyVertex(i,

transform.TransformPoint(MeshClone.vertices[i]));

 }

 // Update is called once per frame

 void FixedUpdate()

 {

 vertexArray = OriginalMesh.vertices;

 for(int i = 0; i < jv.Length; i++)

 {

 Vector3 target =

transform.TransformPoint(vertexArray[jv[i].ID]);

 float intesity = (1 - (mrenderer.bounds.max.x - target.x) /

mrenderer.bounds.size.x) * Intensity;

 //jv[i].Shake(target, Mass, stifness, dampining);

 target = transform.InverseTransformPoint(jv[i].position);

101

 vertexArray[jv[i].ID] = Vector3.Lerp(vertexArray[jv[i].ID],

target, intesity);

 }

 MeshClone.vertices = vertexArray;

 }

 public class JellyVertex

 {

 public int ID;

 public Vector3 position;

 public Vector3 velocity, force;

 public JellyVertex(int _id,Vector3 _pos)

 {

 ID = _id;

 position = _pos;

 }

 /*public void Shake(Vector3 target, float m, float s, float d)

 {

 force = (target - position) * s;

 velocity = (velocity + force / m) * d;

 position += velocity;

 if ((velocity + force + force / m).magnitude < 0.001f)

 {

 position = target;

 }

 } */

 }

}

102

Appendix C: Scene Traversal Code

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.SceneManagement;

public class Zoom : MonoBehaviour

{

 public void PlayGame ()

 {

 SceneManager.LoadSceneAsync("2.Sim");

 }

 public void SEMClose ()

 {

 SceneManager.LoadSceneAsync("3.SEM Close");

 }

 public void Computer ()

 {

 SceneManager.LoadSceneAsync("4.Computer");

 }

 public void Gallery ()

 {

 SceneManager.LoadSceneAsync("5.Gallery");

 }

 public void GalleryTwo ()

 {

 SceneManager.LoadSceneAsync("6.Gallery2");

 }

 public void Home ()

 {

 SceneManager.LoadSceneAsync("4.1HomeScreen");

 }

 public void PDMS1mm ()

 {

 SceneManager.LoadSceneAsync("PDMS_1mm");

 }

 public void PDMS1mm_2 ()

103

 {

 SceneManager.LoadSceneAsync("PDMS_1mm_2");

 }

 public void PDMS500um ()

 {

 SceneManager.LoadSceneAsync("PDMS_500um");

 }

 public void PDMS200um ()

 {

 SceneManager.LoadSceneAsync("PDMS_200um");

 }

 public void CNF500 ()

 {

 SceneManager.LoadSceneAsync("CNF_500");

 }

 public void CNF200 ()

 {

 SceneManager.LoadSceneAsync("CNF_200");

 }

 public void CNF100 ()

 {

 SceneManager.LoadSceneAsync("CNF_100");

 }

 public void CNF50 ()

 {

 SceneManager.LoadSceneAsync("CNF_50");

 }

 public void CNF20 ()

 {

 SceneManager.LoadSceneAsync("CNF_20");

 }

 public void G1 ()

 {

 SceneManager.LoadSceneAsync("I1_P2_L3_6.9N_2.12mm");

104

 }

 public void G2 ()

 {

 SceneManager.LoadSceneAsync("I1_P2_L4_5.9N_1.6mm");

 }

 public void G3 ()

 {

 SceneManager.LoadSceneAsync("I1_P2_L5_3.9N_0.8mm");

 }

 public void G4 ()

 {

 SceneManager.LoadSceneAsync("I1_P2_L6_1.8N_0mm");

 }

 public void G5 ()

 {

 SceneManager.LoadSceneAsync("I1_P3_L4_5.5N_2mm");

 }

 public void G6 ()

 {

 SceneManager.LoadSceneAsync("I1_P3_L5_4.5N_1.4mm");

 }

 public void G7 ()

 {

 SceneManager.LoadSceneAsync("I1_P3_L6_3.4N_0.7mm");

 }

 public void G8 ()

 {

 SceneManager.LoadSceneAsync("I1_P3_L7_2.2N_0mm");

 }

 public void QuitGame ()

 {

 Application.Quit();

 }

}

105

Appendix D: Slider Object Translation Code

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class ChangePositionWithSlider : MonoBehaviour

 {

 public Slider slider;

 public Transform objectTransform;

 private Vector3 position1 = new Vector3(0.58f, 0.77f, 3.275f);

 private Vector3 position2 = new Vector3(0.64f, 0.77f, 3.275f);

 private void Start()

 {

 // Make sure the slider value is clamped between 0 and 1

 slider.onValueChanged.AddListener(UpdatePosition);

 }

 public void UpdatePosition(float value)

 {

 Vector3 newPosition = Vector3.Lerp(position1, position2,

value);

 objectTransform.position = newPosition;

 }

 }

106

Appendix E: Percentage Value Code

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class PercentageShowValue: MonoBehaviour {

 Text percentageText;

 void Start() {

 percentageText = GetComponent < Text > ();

 }

 public void textUpdate(float value) {

 percentageText.text = Mathf.RoundToInt(value * 100) + "%";

 }

}

107

Appendix F: Move Percentage Code

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class MovePercentage : MonoBehaviour

 {

 public Slider slider;

 public Transform objectTransform;

 private Vector3 position1 = new Vector3(1.533f, 0.726999f,

3.529f);

 private Vector3 position2 = new Vector3(1.742f, 0.726999f,

3.529f);

 private void Start()

 {

 // Make sure the slider value is clamped between 0 and 1

 slider.onValueChanged.AddListener(UpdatePosition);

 }

 public void UpdatePosition(float value)

 {

 Vector3 newPosition = Vector3.Lerp(position1, position2,

value);

 objectTransform.position = newPosition;

 }

 }

108

Appendix G: Live Graph Code

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using CodeMonkey.Utils;

public class Window_Graph : MonoBehaviour {

 [SerializeField] private Sprite circleSprite;

 private RectTransform graphContainer;

 private RectTransform labelTemplateX;

 private RectTransform labelTemplateY;

 private RectTransform dashTemplateX;

 private RectTransform dashTemplateY;

 public Slider slider;

 private int N1=0;

 private int N2=0;

 private int N3=0;

 private int N4=0;

 private int N5=0;

 private int N6=0;

 private int N7=0;

 private int N8=0;

 private int N9=0;

 private int N10=0;

 private int N11=0;

 private int N12=0;

 private int N13=0;

 private int N14=0;

 private int N15=0;

 private int NN=0;

 private int temp=2;

 private void Awake() {

 graphContainer =

transform.Find("graphContainer").GetComponent<RectTransform>();

 labelTemplateX =

graphContainer.Find("labelTemplateX").GetComponent<RectTransform>();

109

 labelTemplateY =

graphContainer.Find("labelTemplateY").GetComponent<RectTransform>();

 dashTemplateX =

graphContainer.Find("dashTemplateX").GetComponent<RectTransform>();

 dashTemplateY =

graphContainer.Find("dashTemplateY").GetComponent<RectTransform>();

 List<int> valueList = new List<int>() { N1, N2, N3, N4, N5, N6,

N7, N8, N9, N10, N11, N12, N13, N14, N15 };

 ShowGraph(valueList, (int _i) => (_i+1) + "s", (float _f) => "σ" +

Mathf.RoundToInt(_f));

 // slider.onValueChanged.AddListener(UpdateValue);

 }

//////

 private GameObject CreateCircle(Vector2 anchoredPosition) {

 GameObject gameObject = new GameObject("circle", typeof(Image));

 gameObject.transform.SetParent(graphContainer, false);

 gameObject.GetComponent<Image>().sprite = circleSprite;

 RectTransform rectTransform =

gameObject.GetComponent<RectTransform>();

 rectTransform.anchoredPosition = anchoredPosition;

 rectTransform.sizeDelta = new Vector2(11, 11);

 rectTransform.anchorMin = new Vector2(0, 0);

 rectTransform.anchorMax = new Vector2(0, 0);

 return gameObject;

 }

///////

 private void ShowGraph(List<int> valueList, Func<int, string>

getAxisLabelX = null, Func<float, string> getAxisLabelY = null) {

 if (getAxisLabelX == null) {

 getAxisLabelX = delegate (int _i) { return _i.ToString(); };

 }

 if (getAxisLabelY == null) {

 getAxisLabelY = delegate (float _f) { return

Mathf.RoundToInt(_f).ToString(); };

 }

 float graphHeight = graphContainer.sizeDelta.y;

110

 float yMaximum = 20f;//100

 float xSize = 40f;//50

 GameObject lastCircleGameObject = null;

 for (int i = 0; i < valueList.Count; i++) {

 float xPosition = xSize + i * xSize;

 float yPosition = (valueList[i] / yMaximum) * graphHeight;

 GameObject circleGameObject = CreateCircle(new

Vector2(xPosition, yPosition));

 /* if (lastCircleGameObject != null) {

 CreateDotConnection(lastCircleGameObject.GetComponent<Rect

Transform>().anchoredPosition,

circleGameObject.GetComponent<RectTransform>().anchoredPosition);

 }*/

 lastCircleGameObject = circleGameObject;

 //====================== delete old circles

 Destroy(circleGameObject, 0.1f);

 //=====================

 RectTransform labelX = Instantiate(labelTemplateX);

 labelX.SetParent(graphContainer, false);

 labelX.gameObject.SetActive(true);

 labelX.anchoredPosition = new Vector2(xPosition+50, -60f);

 labelX.GetComponent<Text>().text = getAxisLabelX(i);

 RectTransform dashX = Instantiate(dashTemplateX);

 dashX.SetParent(graphContainer, false);

 dashX.gameObject.SetActive(true);

 dashX.anchoredPosition = new Vector2(xPosition+10, 300f);

 }

 int separatorCount = 10;

 for (int i = 0; i <= separatorCount; i++) {

 RectTransform labelY = Instantiate(labelTemplateY);

 labelY.SetParent(graphContainer, false);

 labelY.gameObject.SetActive(true);

 float normalizedValue = i * 1f / separatorCount;

 labelY.anchoredPosition = new Vector2(22f, normalizedValue *

graphHeight * 5);

 labelY.GetComponent<Text>().text =

getAxisLabelY(normalizedValue *10);//* yMaximum);

111

 RectTransform dashY = Instantiate(dashTemplateY);

 dashY.SetParent(graphContainer, false);

 dashY.gameObject.SetActive(true);

 dashY.anchoredPosition = new Vector2(330f, normalizedValue *

graphHeight * 5 + 40);

 }

 }

///////

 /*private void CreateDotConnection(Vector2 dotPositionA, Vector2

dotPositionB) {

 GameObject gameObject = new GameObject("dotConnection",

typeof(Image));

 gameObject.transform.SetParent(graphContainer, false);

 gameObject.GetComponent<Image>().color = new Color(1,1,1, .5f);

 RectTransform rectTransform =

gameObject.GetComponent<RectTransform>();

 Vector2 dir = (dotPositionB - dotPositionA).normalized;

 float distance = Vector2.Distance(dotPositionA, dotPositionB);

 rectTransform.anchorMin = new Vector2(0, 0);

 rectTransform.anchorMax = new Vector2(0, 0);

 rectTransform.sizeDelta = new Vector2(distance, 3f);

 rectTransform.anchoredPosition = dotPositionA + dir * distance *

.5f;

 rectTransform.localEulerAngles = new Vector3(0, 0,

UtilsClass.GetAngleFromVectorFloat(dir));

 //====================== delete old Lines

 //Destroy(distance, 0.1f);

 //=====================

 } */

//

///

 public void Update()//Move dot with slider

 {

 N1 = Mathf.RoundToInt(slider.value * 140);

 NN = N1;

 List<int> valueList = new List<int>() { N1, N2, N3, N4, N5,

N6, N7, N8, N9, N10, N11, N12, N13, N14, N15 };

 ShowGraph(valueList, (int _i) => (_i+1) + "s", (float _f) =>

"σ" + Mathf.RoundToInt(_f));

112

 //if (make counter)(if number is even) use temp

 if(temp%2==0){

 StartCoroutine(wait());

 StartCoroutine(waiter());

 }

 else{

 StartCoroutine(pause());

 temp=temp-2;

 }

 }

 IEnumerator wait()

 {

 yield return new WaitForSeconds(1f);

 N2=NN;

 temp = temp+1;

 }

 IEnumerator waiter()

 {

 yield return new WaitForSeconds(2f);

 N3=N2;

 yield return new WaitForSeconds(2f);

 N4=N3;

 yield return new WaitForSeconds(2f);

 N5=N4;

 yield return new WaitForSeconds(2f);

 N6=N5;

 yield return new WaitForSeconds(2f);

 N7=N6;

 yield return new WaitForSeconds(2f);

 N8=N7;

 yield return new WaitForSeconds(2f);

 N9=N8;

 yield return new WaitForSeconds(2f);

 N10=N9;

113

 yield return new WaitForSeconds(2f);

 N11=N10;

 yield return new WaitForSeconds(2f);

 N12=N11;

 yield return new WaitForSeconds(2f);

 N13=N12;

 yield return new WaitForSeconds(2f);

 N14=N13;

 yield return new WaitForSeconds(2f);

 N15=N14;

 }

 IEnumerator pause()

 {

 yield return new WaitForSeconds(1f);

 temp = temp+1;

 }

}

114

Appendix H: Zoomed Image

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using UnityEngine.EventSystems;

public class UI_ZOOM_IMAGE : MonoBehaviour, IScrollHandler

{

 private Vector3 initialScale;

 [SerializeField]

 private float zoomSpeed = 1f;

 [SerializeField]

 private float maxZoom = 100f;

 private void Awake()

 {

 initialScale = transform.localScale;

 }

 public void OnScroll(PointerEventData eventData)

 {

 var delta = Vector3.one * (eventData.scrollDelta.y * zoomSpeed);

 var desiredScale = transform.localScale + delta;

 desiredScale = ClampDesiredScale(desiredScale);

 transform.localScale = desiredScale;

 }

 private Vector3 ClampDesiredScale(Vector3 desiredScale)

 {

 desiredScale = Vector3.Max(initialScale, desiredScale);

 desiredScale = Vector3.Min(initialScale * maxZoom, desiredScale);

 return desiredScale;

 }

}

