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CHAPTER I 

INTRODUCTION 

Interest into the physiological effects of altitude on exercise performance was 

stimulated by the 1968 Olympic Games in Mexico City (altitude - 2300 m above sea 

level) (Craig, 1969; Dill, 1967). In the United States many people travel to the Denver, 

Colorado area (altitude - 1600 m above sea level) to participate in sports or physical 

activity, and the U.S. Olympic Training Center is located in Colorado Springs, Colorado 

(alt. approx. 1839 meters above sea level). It is generally believed that performance of 

aerobic exercise is impaired when the human body is exposed to altitude. The logic of 

this is based on physics. 

At sea level the ambient air (air in the surrounding environment) has a barometric 

pressure (PB) of 760 mm Hg, an oxygen concentration of20.93%, and a partial pressure 

of oxygen (P02) of 159 mm Hg (Guyton & Hall, 1996). When corrected for water vapor 

pressure in the lungs this yields a partial pressure of oxygen in alveolar air (PA 0 2) of 104 

mm Hg (Guyton et al. 1996). Oxygen (02) diffuses down a pressure gradient across the 

alveoli in the lungs into the circulatory system and binds to hemoglobin (Hb) (Berne & 

Levy, 1993). At sea level the part_ial pressure of oxygen in arterial blood (P a02) of 100 

mm Hg, and the oxygen saturation of hemoglobin (Sa02) is 96% (Haymes & Wells, 

1986). At the tissue level in the human body, 0 2 diffuses into cells down a pressure 
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gradient andis utilized for aerobic metabolism (Grover, 1979). At elevations above sea 

level 0 2 concentration in ambient air remains constant, but the PB, P A02 and Pa02 

decrease. With a smaller pressure gradient at the alveoli the Sa02 and P a02 also decreases 

resulting in lower 0 2 diffusion into cells (Grover, 1979). However, the amount of02 

bound to Hb is relative to the sigmoidal shape of the standard oxygen dissociation curve. 

Initial decreases in PA 0 2 during mild altitude result in small decreases in Sa02, but 

subsequent decreases in PA 0 2 during moderate to high altitude exposure result in large 

decreases in Sa02 (Ganong, 1997). The decrease in 0 2 availability due to decreased P02 

is known as hypoxic hypoxia (Ganong, 1997). 

When exposed to hypoxia the decreases in Pa 0 2 stimulate the chemoreceptors in 

the carotid bodies (Berne et al., 1993; Ganong, 1997; Guyton et al., 1996). The increased 

neural stimulation from the carotid bodies signals an increase in ventilatory drive at the 

respiratory center in the brain stem (Ganong, 1997). The respiratory center signals a 

sympathetic increase in ventilation, and also stimulates the cardioaccelerator center in the 

brain (Berne et al., 1993). Consequently, the sympathetic response of the heart is both 

chronotropic (increased rate) and inotropic (increased force) (Guyton et al., 1996). The 

result includes increasing heart rate and cardiac output. 

Normal transport of 0 2 is essential for optimal human performance. During 

muscular activity there is an increased demand for 0 2 at the cellular level. Dilation of the 

peripheral vasculature and increased cardiac output, via increased heart rate (HR) and 

stroke volume (SV), result in increasing the flow of 0 2 to the working muscle tissue 

(Wasserman, Hansen, Sue and Whipp, 1987). Minute ventilation (VE) also increases, via 

increased tidal volume (VT) and breathing :frequency (t), to ensure adequate 0 2 is 
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available at the alveoli for diffusion into circulation (Durstine & Pate, 1988). Therefore, 

to maintain adequate 0 2 delivery to match the demand there is a coupling of the . 

muscular, cardiovascular and respiratory systems (Wasserman et al., 1987). 

Graded exercise tests (GXT) are commonly used to assess the function of these 

coupling mechanisms (Wasserman et al., 1987). During a GXT there is a progressive 

systematic increase in exercise intensity designed to stress these systems. Therefore, the 

maximal amount of work an individual can perform is a result of the function of 0 2 

delivery and extraction by the working muscle (Wasserman, et al. 1987). During a 

normal GXT cellular 0 2 uptake increases with increasing workloads, and is demonstrated 

by an increase in arteriovenous oxygen difference (a-v 0 2 difl) and an increase in oxygen 

consumption (V02) (Wasserman et al., 1987). Normal cardiovascular responses include 

1) progressive linear increase in HR at each workload, 2) progressive linear increase in 

SV up to a workload of 40 to 50% of maximum then plateaus, and 3) progressive and 

linear increase in cardiac output at each workload (Durstine et al., 1988; Nieman, 1990). 

Total peripheral resistance (TPR) steadily decreases as workload increases, and is a 

function ofvasodilation. Mean arterial blood pressure generally increases at each 

workload due primarily to increasing systolic blood pressure (SBP), while diastolic blood 

pressure (DBP) remains relatively constant (Durstine et al., 1988). Normal respiratory 

responses include 1) a curvilinear increase in fwith workload, 2) a linear increase in VT at 

low and plateaus at high workloads respectively, 3) curvilinear increase in VE with 

workload (Durstine et al., 1988, Nieman, 1990). 

To reach maximal aerobic power (V02max) each system is required to increase 

its' function to deliver the maximal amount of oxygen to working muscles (Wasserman et 
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al., 1987). Therefore, hypoxia due to altitude exposure can reduce aerobic power. 

However, the level of altitude necessary to reduce V02max has been the focus of much 

debate. Squires and Buskirk (1982) didn't observe reduced V02max in recreational 

runners at 914 m of elevation. Meanwhile, Terrdos, Mizuno, & Anderson (1985) 

reported that endurance trained athletes experienced a significant reduction in V02max at 

600 to 900 m above sea level, but that sedentary subjects were unaffected until the 

elevation reached 1200 m. Young (1990) has suggested that at elevations equal to 1000 

to 2000 m, V02max responses of individuals are highly variable, but that a significant 

reduction is observed at altitudes greater than 2000 m. Squires et al. (1982) did observe a 

4.9% and 6.9% reduction in aerobic power from GXT's performed at 1219 and 1524 m 

respectively. Grover, Weil, & Reeves (1986) have observed that beginning at 700 m 

above sea level there is an 8% reduction in V02max for every 1000 m of elevation. 

When GXT's are performed at altitudes greater than 2000 m there is general 

agreement that aerobic power is reduced (Faulkner, Kollias, Favour, Buskirk, & Balke, 

1968; Pugh, Gill, Lahiri, Milledge, Ward, & West, 1964; Squires et al. 1982). 

Statement of the Problem 

The purpose of this study was to determine the effects of mild acute simulated 

altitude exposure on the cardiovascular, respiratory, and metabolic responses to graded 

exercise. The specific responses measured include oxygen saturation, heart rate, blood 

pressure, minute ventilation, oxygen consumption, and blood lactate concentration. 
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Hypothesis 

This study tested the following hypotheses, and significance was accepted at the 

0.05 level: 

1. There will be no significant differences in oxygen saturation between low and 

mild altitude exposure during rest, submaximal and maximal exercise. 

2. There will be no significant differences in heart rate between low and mild 

altitude exposure during rest, submaximal and maximal exercise. 

3. There will be no significant differences in blood pressure between low and 

mild altitude exposure during rest, submaximal and maximal exercise. 

4. There will be no significant differences in minute ventilation between low and 

mild altitude exposure during rest, submaximal and maximal exercise. 

5. There will be no significant differences in oxygen consumption between low 

and mild altitude exposure during rest, submaximal and maximal exercise. 

6. There will be no significant differences in blood lactate concentration between 

low and mild altitude exposure during rest, submaximal and maximal exercise. 

Limitations 

This study was subject to the following limitations: 

1. The researchers exerted no control over the participants exercise or training 

patterns prior to or during the study except for the 24 hours prior to exercise testing. 

2. The researchers exerted no control over the participants food or beverage 

intake prior to or during the study except for the 24 hours prior to exercise testing. 
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3. No attempt was made to control the participants exposure to other stressors (ie. 

work, sleep) prior to or during the study. 

Delimitations 

The delimitations of this study were: 

1. The participants were delimited to 8 male and 2 female adult trained cyclists 

who volunteered to serve as subjects in this study. 

2. The physiological measures were delimited to oxygen saturation, heart rate, 

blood pressure, minute ventilation, oxygen consumption, and blood lactate concentration. 

Assumptions 

For this study the following assumptions were made: 

1. It was assumed that the participants followed recommendations concerning 

physical activity/exercise prior to each exercise test. 

2. It was assumed that the participants dietary pattern were similar prior to both 

exercise tests, and the participants were instructed in writing regarding appropriate 

exercise and dietary patterns for the 24 hour period prior to each exercise test. 

3. It was assumed that the participants exerted maximal effort during both 

exercise tests. 
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Definition of Terms 

The following definitions were used in this study: 

Altitudes. 

HighAltitude. Elevations greater than 3,500 m above sea level or 

simulated environments producing conditions, barometric pressure or partial pressures of 

oxygen similar to altitudes greater than 3,500 m. 

Low Altitude. Elevations less than 500 m above sea level or simulated 

environments producing conditions, barometric pressure or partial pressure of oxygen 

similar to altitudes less than 500 m. 

Mild Altitude. Elevations between 500 m and 2,000 m above sea level or 

simulated environments, barometric ~ressure or partial pressure of oxygen similar to 

altitudes between 500 and 2,000 m. 

Moderate Altitude. Elevations between 2,001 m and 3,500 m above sea 

level or simulated environments, barometric pressure or partial pressure of oxygen similar 

to altitudes between 2,001 and 3,500 m. 

Sea Level. The elevation at sea level where the environmental conditions 

include a barometric pressure of760 mm Hg or a partial pressure of inspired oxygen 

equals 159 mm Hg. 

Blood Lactate. The concentration of lactate in whole blood obtained from venous 

or capillary samples. 

Cardiac Output. The quantity of blood pumped from the left ventricle per minute 

of time. 
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Diastolic Blood Pressure. The pressure exerted by blood on the arterial walls 

during the diastolic phase of the cardiac cycle. 

Heart Rate. The number of systolic contractions of the heart during one minute of 

time. 

Hypoxia. A condition where there is decreased oxygen content in arterial blood. 

Mean Arterial Pressure. The average pressure exerted by the blood on the artery 

walls during the cardiac cycle. 

Minute Ventilation. The volume of air inhaled or exhaled by the lungs in one 

minute of time. 

Oxygen Consumption. The amount of oxygen utilized by the body for the 

purpose of metabolizing fuels to produce energy in one minute of time. 

Oxygen Saturation. The percent of hemoglobin in the arterial blood supply that is 

bound or coupled to oxygen. 

Stroke Volume. The quantity of blood pumped by the left ventricle during one 

cardiac cycle. 

Systolic Blood Pressure. The pressure exerted by the blood on the artery walls 

during the systolic phase of the cardiac cycle. 
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CHAPTER II 

REVIEW OF LITERATURE 

The study of the effects of simulated altitude on the acute physiological responses 

to graded exercise involves examination of the organ systems primarily responsible for 

performing aerobic exercise. To evaluate these systems with regard to this study, the 

review ofliterature will include 1) altitude/hypoxia classifications and comparisons, 2) 

the physiological responses at rest, during submaximal, and maximal workloads during 

acute altitude exposure, and 3) maximal exercise performance during acute altitude 

exposure. 

Altitude/Hypoxia Classification 

Previous investigators have produced levels of hypoxia similar to altitude 

environments using different methods. Some investigators have performed research in 

the field or in laboratories actually located at altitude. Others have simulated altitude by 

decreasing barometric pressure in a specialized hypobaric chamber. Meanwhile, others 

have decreased the concentration of oxygen in inspired air to produce a partial pressure of 

inspired oxygen similar to altitude. Regardless of the technique employed the result is 

the same, lowered partial pressure of inspired oxygen. For the purposes of this review of 

literature the altitude equivalent will be used unless otherwise specified. 
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At present there is no standardized nomenclature for reporting altitude or hypoxia 

classifications. The classifications used for this review include four different levels of 

altitude: 1) Low Altitude ( 2'.: sea level & < 500 m), 2) Mild Altitude (2'.: 500 m & S 2,000 

m), 3) Moderate Altitude (> 2,000 m & S 3,500 m) and 4) High Altitude (> 3,500 m). 

The selection of the nomenclature for these categories is based on the authors 

interpretation oflevels of hypoxia observed by previous investigators (Welch 1987) (ie. 

mild hypoxia is associated with the term mild altitude). This classification system allows 

one to examine the effects of similar altitude levels on various physiological 

measurements. 

Acute Physiological Responses to Altitude 

Cardiovascular Responses 

Cardiac Output In reviewing the literature no studies were found where cardiac 

output was measured during rest, submaximal or maximal exercise during acute exposure 

to mild altitude. However, there is some evidence to suggest that resting cardiac output 

does increase significantly during moderate altitude exposure (McManus, Horvath, 

Bolduan & Miller, 1974; Wagner, Gale, Moon, Torre-Bueno, Stolp, & Saltzman, 1986). 

Meanwhile, numerous studies have demonstrated a consistent increase in resting cardiac 

output during acute exposure to high altitude (Asmussen & Chiodi, 1941; Asmussen & 

Nielsen, 1955; Hansen, Vogel, Stetler, & Consolazio, 1967b; Klausen, 1966; Saltz, 

Beller, Giamber & Alpert, 1976; Stenberg, Ekblom, & Messin, 1966; Vogel, Hansen, & 

Harris, 1967; Wagner et al. 1986). 
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Limited studies suggest that cardiac output is significantly higher at moderate 

altitude when compared to low altitude at submaximal exercise workloads during a GXT 

(Hughes, Clode, Edwards, Goodwin, & Jones, 1973; Wagner, et al., 1986). During 

graded exercise testing subjects inspired oxygen at a concentration of 16% ( - 2,100 m 

altitude), Hughes et al. (1973) observed a significant increase in cardiac output at all 

submaximal bicycle ergometer workloads. Wagner et al. (1986) also observed an increase 

in cardiac output during graded exercise testing at a simulated altitude of approximately 

3,000 m. When exposed to high altitude there is a significant increase in cardiac output 

during submaximal exercise (Assmussen et al. 1941; Asmussen et al. 1955; Hansen et al. 

1967b; Hughes et al, 1973, Klausen, 1966; Stenberg et al. 1966; Vogel et al. 1967; 

Wagner, et al. 1986). 

During maximal exercise cardiac output responses are highly variable. Wagner et 

al. (1986) and Hughes et al. (1973) did not observe a significant difference in maximal 

cardiac output during acute exposure to moderate altitude conditions. Furthermore, 

Hughes et al. (1973) and Stenberg et al. (1966) did not observe significant differences in 

maximal cardiac output during exercise at high altitude. However, there is some 

evidence to suggest that maximal cardiac output is increased at high altitude (Hansen et 

al. 1967b; Vogel et al. 1967), while others have observed a decrease (Pugh, 1964; Vogel, 

Hartley, Cruz & Hogan, 1974). 

Heart Rate Under resting conditions at simulated mild altitudes of 1,000 and 

2,000 m, moderate altitude of 3,000 m, and high altitude of 4,000 m, Bubb, Howley & 

Cox (1983) reported no difference in resting heart rates compared to low altitude. 
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However, the majority of studies have reported significant increases in resting heart rate 

at moderate (:Nagner et al. 1986), and high altitudes (Assmussen et al. 1941; Asmussen et 

al. 1955; Hoon, Balasubramanian, Matthew, Tivari, Sharma & Chadha, 1977; Klausen 

1966; Manchada, Maher & Cymerman, 1975; Reeves, Halpin, Cohen & Dauod, 1969; 

Saltz et al. 1976; Vogel et al. 1967; Wagner et al. 1986). 

A limited number of studies have been performed to study the acute effects of 

mild altitude on heart rate during submaximal exercise. Bubb et al. (1983) observed no 

significant difference in heart rate during exercise at a workload equal to 40% ofV02 

max at sea level vs. 1,000 m. Similarly, Squires et al. (1982) reported no difference in 

steady state heart rate during level treadmill running at 214 m/min at 362, 914, 1219, and 

1524 m of altitude. 

During exposure to moderate altitudes heart rate responses during submaximal 

exercise were variable. Bubb et al. (1983) and Squires et al. (1982) reported no 

significant difference in steady state heart rate between sea level and 2,000 and 2,286 m 

respectively. However, Hughes et al. (1968) and Saltin (1996) reported higher exercise 

heart rates at 2,100 m compared to low altitude. At moderate altitudes of 3,000 m and 

above there is a consensus of agreement that heart rate is increased compared to low 

altitude during submaximal exercise (Assmussen et al. 1941; Asmussen et al. 1955; Bubb 

et al. 1983; Hughes et al. 1968; Klausen 1966; Knuttgen & Saltin, 1973b; Manchada et al. 

1975; McManus et al. 1974; Pugh 1964; Stenberg et al. 1966; Vogel et a.11967; Wagner 

et al. 1986). 

Maximal heart rates are not different at mild (Squires et al. 1982) or moderate 

altitudes (Fagraeus, Karlsson, Linnarsson & Saltin, 1973; Hughes et al. 1968; Reeves, 
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' 
Grover & Cohen, 1967; Saltin 1996; Squires et al. 1982; Wagner, Miles, Horvath & 

Reyburn, 1979) and, it has been reported that acute high altitude exposure does not effect 

maximal heart rate (Hughes et al. 1968; Pugh 1964; Stenberg et al. 1966). However, 

some investigators have observed decreases in maximal heart rate during high altitude 

exposure (Cymerman, Reeves, Sutton, Rock, Groves, Malconian, Young, Wagner & 

Houston, 1989; Hartley, Vogel & Cruz, 1974; Klausen, Robinson, Michael & Myhre 

1966; Knuttgen et al. 1973b; Vogel et al. 1967; Vogel et al. 1974). 

Stroke Volume In reviewing the literature very little information can be found 

regarding the acute effects of mild and moderate altitude exposure on stroke volume at 

rest or during exercise. McManus et al. (1974) did observe a reduction is stroke volume 

when subjects exercised for 2 hours at 30% ofV02max at 3,060 m above sea level. 

Alexander, Hartley, Modelski & Grover (1967) also reported a reduced exercise stroke 

volume at 3,100 m, and Mac Dougall, Reddan, Dempsey & Forster (1976) attributed 

this to myocardial hypoxia resulting in decreased myocardial contractility. 

At high altitudes stroke volume responses are variable. Asmussen et al. (1955) 

observed an 11 % reduction in resting stroke volume at 4,300 m altitude. Hoon et al. 

(1977) also observed decreased resting stroke volume at 3,658 m, but other investigators 

have reported an increase (Assmussen et al. 1941) or no change in resting stroke volume 

(Saltz et al. 1976, Vogel et al. 1967). During exercise Asmussen et al. (1955) reported 

that stroke volume remained 2 to 10% lower than sea level values during submaximal 

exercise workloads of 60 to 180 W. However, Vogel et al. (1967) did not observe 

reduced stroke volumes during rest or submaximal exercise at 4,300 m altitude. 
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Interestingly, Stenberg et al. (1966) reported a decreased stroke volume when subjects 

exercised at 100 W, but did not observe any significant difference at 150 W when 

subjects exercised at 4,000 m. When subjects performed graded exercise at 5,800 m 

Pugh (1964) reported significant reductions in stroke volume for each exercise stage. 

During maximal exercise at high altitudes stroke volume responses are highly 

variable with some reports ofreduced (Vogel et al. 1974), elevated (Vogel et al. 1967) or 

no change (Stenberg et al. 1966). 

Arterial Blood Pressure Resting arterial blood pressure does not appear to be 

altered by acute exposure to mild hypoxia similar to mild altitude. Ekblom, Huot, Stein 

& Thorstensson (1975) exposed subjects to 15% CO mixture to induce mild hypoxia 

(Pa02 = 96 mm Hg). No significant differences between normal and hypoxic treatments 

were observed in mean arterial pressure at rest. Alexander et al. (1967) reported no 

difference in resting systolic, diastolic or mean blood pressure upon acute exposure to 

moderate altitude. However, variable differences have been observed in resting blood 

pressures at high altitudes. Resting systolic pressures have been reported to be lower 

(Reeves et al. 1969) or unchanged (Stenberg et al. 1966; Vogel et al. 1967) at altitudes 

greater than of 4,000 m. Saltz et al. (1976) reported an increase in pulmonary arterial 

pressure, but mean arterial, and left atrial pressures were unaffected by 4,300 m. 

Lower resting diastolic pressures have been observed during acute exposure to 

high altitude (Reeves et al. 1969; Stenberg et al. 1966). Meanwhile, resting mean arterial 

pressure has been observed to be decreased (Stenberg et al. 1966), increased (Weil, 

Bryne-Quinn, Battock, Grover & Chidsey, 1971), and unaffected (Vogel et al. 1967) by 

acute high altitude exposure. 
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During submaximal work at 30% and 70% ofV02max Ekblom et al. (1975) found 

no difference in mean arterial pressure during mild CO-hypoxic treatment. At moderate 

altitude (3,100 m) Alexander et al. (1967) observed an increase in mean arterial pressure 

in subjects during low cycle ergometry workloads of 25, 50, 75, and 100 W. During 

submaximal exercise systolic pressures have been lower at high altitude (Reeves et al. 

1969) and unaffected (Stenberg et al. 1966; Vogel et al. 1967), diastolic pressures have 

been lower (Reeves et al. 1969; Stenberg et al. 1966), resulting in no effect of mean 

arterial pressure (Vogel et al. 1967). 

No significant altitude effect has been observed on systolic, diastolic (Squires et 

al. 1982) or mean arterial pressure (Ekblom et al. 1975) during maximal exercise under 

mild hypoxic conditions. Squires et al. (1982) reported a lower systolic pressure, but 

unaffected diastolic pressure during maximal exercise at moderate altitude, and Vogel et 

al. (1967) observed lower systolic and mean arterial pressures during maximal exercise at 

high altitude. 
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TABLE I 

SUMMARY OF THE CARDIOVASCULAR RESPONSES DURING REST AND 
EXERCISE TO ALTITUDE 

Physiological Variable Mild Altitude Moderate Altitude High Altitude 

Cardiac Output 
Resting ? + ++ 
Submaximal Ex. ? + ++ 
Maximal Ex. ? =+-

Heart Rate 
Resting =+ ++ 
Submaximal Ex. = =+ ++ 
Maximal Ex. = - -

Stroke Volume 
Resting ? ? +=-
Submaximal Ex. ? +=-
Maximal Ex. ? ? +=-

= no effect, + some evidence of increase, ++ strong evidence of an increase, 
- some evidence of a decrease, ? no literature reported 

Respiratozy Responses 

Minute Ventilation Under resting conditions at mild altitude it is reported that 

there is no significant change is minute ventilation at BTPS (Adams & Welch, 1980; 

Bubb et al. 1983; Ekblom et al. 1975; Tucker, Stager & Cordain, 1984). There is also no 

effect on minute ventilation under resting conditions when subjects are exposed to 

moderate altitude (Bubb et al. 1983; Reeves et al. 1967; Tucker et al. 1984; Wagner et al. 

1986). However, at higher elevations some investigators have observed increases in 

resting minute ventilation (Assmussen et al. 1941; Bender, McCullough, Huang, Wagner, 

Cymerman, Hamilton & Reeves, 1989; Reeves et al. 1969, Wagner et al. 1986). Others 

have not seen changes in resting minute ventilation at high altitude (Bubb et al. 1983; 
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Hansen et al. 1967b ). 

During submaximal exercise at mild altitude minute ventilation is reported to be 

higher than at low altitude (Adams et al. 1980; Astrand, 1954; Hogan et al. 1983), or 

unchanged (Bubb et al. 1983). However, Squires et al. (1982) observed no difference in 

minute ventilation at 914 or 1219 m, but did report significantly higher values at 1524 m. 

As the environment increases to moderate altitude minute ventilation is increased 

significantly for a given submax.imal workload (Astrand 1954; Grover, Reeves, Grover & 

Leathers, 1967; Hughes et al. 1968; McManus et al. 1974; Reeves et al. 1967; Squires et 

al. 1982; Wagner et al. 1986). However, Bubb et al. (1983) did not observe a significant 

difference in minute ventilation at 3,000 m when exercising at 40% ofV02max. At high 

altitude there is an increase in minute ventilation during submaximal work (Assmussen et 

al. 1941; Astrand 1954; Bubb et al. 1983; Hansen et al. 1967b; Hughes et al. 1968; 

Knuttgen et al. 1973b; Maher, Jones & Hartley, 1974; Stenberg et al. 1966; Wagner et al. 

1986). 

A significant increase in maximal minute ventilation during acute mild altitude 

exposure has been reported (Hogan et al. 1983; Tucker et al. 1984). However, Squires et 

al. (1982) did not observe significant changes in maximal minute ventilation during a 

treadmill GXT when subjects ran at 914, 1219, and 1524 m of elevation. When the 

subjects performed the GXT at 2286 m, maximal minute ventilation was significantly 

higher. Other investigators have reported similar increases in maximal minute ventilation 

during moderate altitude exposure (Fagraeus et al. 1973; Tucker et al. 1984; Wagner et al. 

1979). Interestingly, not all researchers have observed increased maximal minute 

ventilation (Hughes et al. 1983; Reeves et al. 1967). The conflicting results in minute 
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ventilation have also been reported during maximal exercise at high altitude with some 

investigators reporting increases (Buskirk, Kollias, Akers, Prokop & Reategui, 1967; 

Cymerman et al. 1989; Hansen et al. 1967b; Knuttgen et al. 1973a) while others observed 

no differences (Hughes et al. 1968; Klaussen et al. 1966, Stenberg et al. 1966). 

Oxygen Saturation At rest oxygen saturation is significantly lower at mild 

(Tucker et al. 1984), moderate (Reeves et al. 1969; Wagner et al. 1986), and high altitude 

(Assmussen et al. 1941; Bender et al. 1989; Hansen et al. 1967b; Vogel et al. 1974; West, 

Lahiri, Gill, Milledge, Pugh & Ward, 1962). When the demands for oxygen increase 

during submaximal and maximal exercise oxygen saturation declines further at mild 

(Squires et al. 1982; Tucker et al. 1984), moderate (Reeves et al. 1967; Squires et al. 

1982; Tucker et al. 1984), and high altitude (Assmussen et al. 1941; Cymerman et al. 

1989; Hansen et al. 1967b; Stenberg et al. 1966; Vogel et al. 1974; West et al. 1962). 

These decreases in oxygen saturation occur at increasing altitude, decreasing barometric 

pressure, P 10 2 and PA 0 2, and could not be offset by coupling the increases observed in 

cardiac output and minute ventilation at rest and exercise. 

Metabolic Responses 

Oxygen Consumption Resting oxygen consumption does not appear to be 

affected by acute mild (Adams et al. 1980; Hogan, Cox & Welch, 1983; Tucker et al. 

1984), moderate (Tucker et al. 1984; Wagner et al. 1986) or high altitude exposure 

(Assmussen et al. 1941; Hansen et al. 1967b; King, Dodd & Cain, 1987; Reeves et al. 

1969; Wagner et al. 1986). During submaximal exercise, oxygen consumption also does 

18 



not appear to be affected by acute mild {Adams et al.1983; Ekblom et al. 1975; Hogan et 

al. 1983; Squires et al. 1982), moderate (Hughes et al. 1968; McManus et al. 1974) or 

high altitude exposure (Assmussen et al. 1941; Hansen et al. 1967b; Hartley et al. 1971; 

Hughes et al. 1968; Katz et al. 1987; King et al. 1987; Knuttgen et al. 1973b; Pugh et al. 

1964; Stenberg et al. 1966). However, Squires et al. (1982) observed a reduced oxygen 

consumption when subjects exercised at 2,286 m. Others reported reduced oxygen 

consumption during submaximal exercise between 3,000 and 4,600 m (Hansen et al. 

1967b; Wagner et al. 1986). 

Maximal oxygen consumption has generally been reported to be reduced at 

altitudes from 600 {Terrados et al. 1985) to 7,400 m (Pugh et al. 1964). However, at mild 

altitudes of 914 and 1,600 m Squires et al. (1982) and Hogan et al. (1986) respectively, 

did not observe a significant reduction in maximal oxygen consumption. Others have 

reported reduced oxygen consumption during maximal exercise at mild altitudes between 

1,200 and 1,524 m of elevation (Squires et al. 1982; Terrados et al. 1985; Tucker et al. 

1984). There is agreement among investigators that maximal oxygen consumption is 

reduced at moderate (Bouissou, Peronnet, Brisson, Helie & Ledous, 1986; Fragraeus et 

al. 1973; Faulkner et al. 1968; Grover et al. 1967; Reeves et al.1967; Saltin 1996; 

Squires et al. 1982; Tucker et al. 1984; Wagner et al. 1979) and high altitude (Buskirk et 

al. 1967; Cymerman et al. 1989; Faulkner et al. 1968; Hansen et al. 1967b; Hartley et al. 

1971; Kiaussen et al. 1966; Knuttgen et al. 1973b; Linnarsson et al. 1974; Maher et al. 

1974; Pugh et al. 1964; Stenberg et al. 1966). 

Upon review of the research Grover et al. (1986) has suggested that maximal 

oxygen consumption is reduced by 8% for every 1,000 m of altitude above 700 m. 
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However, Young (1990) suggests that altitude has no effect on maximal oxygen 

consumption up to 1,000 m, at 1,000 to 2,000 m there is a small and variable decrease in 

maximal oxygen consumption, and above 2,000 m there is a decrease of 10% for every 

1,000 m increase in altitude. Meanwhile, Haymes et al. (1986) concluded that a threshold 

of 1,500 m exists, before maximal oxygen consumption is reduced by altitude. 

Blood Lactate Resting blood lactate responses to acute altitude exposure have 

been variable. McManus et al. ( 197 4) reported no change in blood lactate upon elevation 

to above 3,000 m, but Wagner et al. (1986) and Edwards (1936) observed increased 

resting blood lactate at altitudes above 2,800 to 6, 100 m. At high altitude others did not 

observe a change in resting blood (Hansen et al. 1967a; Harboe, 1957) or muscle lactate 

(Katz et al. 1987). Harboe (1957) did report a rise in blood lactate at 6,100 m. 

During submaximal exercise at 2,000 m, Adams et al. (1980) did not observe a 

difference in blood lactate at 55% or 90% ofV02max. Hogan et al. (1983) reported no 

difference in blood lactate at workloads up to 120 W, but lactate was significantly higher 

when workloads were greater than 195 W in subjects exercising at 1,600 m. Meanwhile, 

Lundin & Strom (1947) did observe a higher blood lactate when subjects exercised at 

altitudes between 1,400 to 5,500 m. There does appear to be an increase in blood lactate 

during submaximal exercise at moderate altitude (Edwards 1936; Lundin et al. 1947; 

McManus et al. 1974; Saltin 1996; Wagner et al. 1986). However, Hughes et al. (1968) 

and Lorentzen (1962) have reported conflicting (unchanged to higher) blood lactate 

values when subjects exercised between 2,100 and 5,100 m. At high altitude, lactate is 

generally higher in blood (Edwards et al. 1936; Linnarsson, Karlsson, Fagraeus & Saltin, 
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1974; Lundin et al. 1947; Stenberg et al. 1966; Wagner et al. 1986) and muscle (Katz et 

al. 1987; Linnarsson et al. 1974) at similar exercise workloads. Hansen et al. (1967a) did 

not report changes in blood lactates during submaximal exercise at 4,300 m, but Hughes 

et al. (1968) and Lorentzen (1962) reported variable differences in blood lactates during 

exercise at high altitude. 

At mild altitude, maximal blood lactates have been observed to be similar at 1,600 

m (Hogan et al. 1983) and elevated at 2,000 m (Adams et al. 1980) compared to sea level. 

There does not appear to be any difference in maximal blood lactate at moderate altitude 

(Bouissou et al 1986; Fagraeus et al. 1973; Saltin 1996; Wagner et al. 1973). Klaussen et 

al. (1966) reported decreased maximal blood lactate at 3,800 m. This may be due to 

lower maximal work at performed 3,800 m. Others have not observed a change in 

maximal blood (Hansen et al. 1967a; Linnarsson et al. 1974; Stenberg et al. 1966) or 

muscle lactate at high altitude (Linnarsson et al. 1974). 

Maximal Performance 

At mild altitude beginning at 1,600 m of elevation there is a debatable effect on 

human performance aerobic in nature. Adams et al. (1980) observed a decrease in time to 

exhaustion from 12.5 min to 9.7 min when trained subjects exercised at 90% ofV02max 

while breathing 16.82% oxygen (similar to 2,000 m). Hogan et al. (1983) reported a 

decrease in maximal workload when subjects performed GXT's while breathing 17.2% 

oxygen (similar to 1,600 m). At moderate altitudes some investigators have reported 

decreases in middle distance and distance track events (Craig 1969; Faulkner et al. 1968; 

Grover et al. 1967). Others observed decreases in performance measured as time to 
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exhaustion during laboratory exercise (Fagraeus et al. 1973) and maximal exercise 

workload during a GXT (Hughes et al. 1968). At high altitude previous investigators 

have reported decreases in maximal workload (Hughes et al. 1968; Klaussen et al. 1966; 

Linnarsson et al. 1974; Maher et al. 1974) and time to exhaustion (Young, et al. 1984). 

TABLE II 

SUMMARY OF THE RESPIRATORY AND METABOLIC RESPONSES DURING 
REST AND EXERCISE TO ALTITUDE 

Physiological Variable Mild Altitude Moderate Altitude High Altitude 

Minute Ventilation 
Resting = =+ 
Submaximal Ex. =+ + =+ 
Maximal Ex. =+ =+ =+ 

Oxygen Saturation 
Resting 
Submaximal Ex. 
Maximal Ex. 

Oxygen Consumption 
Resting = 
Submaximal Ex. = 
Maximal Ex. - -

Blood Lactate 
Resting ? =+ =+ 
Submaximal Ex. =+ =+ =+ 
Maximal Ex. =+ - -

= no effect, + some evidence of increase, ++ strong evidence of an increase, 
- some evidence of a decrease, - - strong evidence of a decrease, ? no literature reported 
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CHAPTER III 

METHODS AND PROCEDURES 

The purpose of this study was to detennine the effects of mild acute simulated 

altitude exposure on the cardiovascular, respiratory, and metabolic responses to graded 

exercise. The specific responses measured include oxygen saturation, heart rate, blood 

pressure, minute ventilation, oxygen consumption, and blood lactate concentration. 

Prior to initiating this study, approval from Oklahoma State University's 

Institutional Review Board was obtained, and subsequent modifications to the 

experimental protocol were also approved (Appendix A). All of the procedures were 

conducted in accordance with the guidelines for ethical treatment of human subjects, and 

exercise testing followed established guidelines (American College of Sports Medicine, 

1995). 

Participants 

The participants were ten (8 male, 2 female) adult cyclists ( age = 31 ± 2 yrs.; 

mean± sem). Eight of the participants were actively trained as members of the Tulsa 

Wheelmen Bicycle Club in Tulsa, Oklahoma, and two trained independently in 

Stillwater, Oklahoma. These participants were classified as trained, using the criteria of a 

minimum bicycle training routine of 3 days per week for 30 minutes per session for the 
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last 6 months. Prospective participants were solicited via flyers and personal contact at 

organizational weekend training rides. Prior to testing the participants completed a 

medical history questionnaire (Appendix B). All participants were classified as 

apparently healthy using ACSM guidelines (American College of Sports Medicine, 

1995): asymptomatic with no more than one major coronary risk factor. Furthermore, 

the participants were evaluated by a physician for medical clearance (Appendix C) and 

safety prior to exercise testing. The participants then gave informed consent to serve as 

participants (Appendix D). 

Upon acceptance each participant scheduled 2 graded exercise tests (GXT) to be 

performed within 5 to 10 days of each other inside the Oklahoma State University 

College of Osteopathic Medicine Hypobaric Chamber (United States Air Force 20 man 

Guardite Stratosphere Chamber) at the Tulsa Technology Center. Prior to reporting for 

testing the subjects were given the following instructions: 

1. Refrain from consuming food, alcohol, caffeine, tobacco or drugs within three 

hours of the scheduled test. Water consumption is recommended to 

maintain hydration. 

2. A void any vigorous exercise within twelve hours of the scheduled test. 

3. Dress for maximal exercise should include: shorts, short sleeve t-shirt, athletic 

bra (for females), and athletic shoes. 

Upon arrival for their first exercise test the participants descriptive information 

was collected. The age of each participant was self reported in years. Each participant 

was then measured in their exercise clothes without shoes for height and weight using a 
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Detecto Standard Physicians Scale and Stadiometer. Skinfold thickness was measured on 

the right side of the body using Lange calipers at the following seven sites: 1) chest, 2) 

subscapula, 3) tricep, 4) mid-axilla, 5) suprailiac, 6) abdominal, and 7) thigh. The 

skinfold site locations followed those outlined by Jackson and Pollock (1978). Each site 

was measured twice, and if a difference was observed to be greater than 2 mm a third 

measurement was obtained. The skinfold trials were then averaged for each site and 

summed together. Body density was estimated from the sum of the seven skinfold sites 

and age using gender specific formulae (Jackson et al. 1978; Jackson, Pollock & Ward, 

1980). Percent body fat was estimated from body density using the Siri equation (Siri, 

1961). 

Preparation for Exercise Testing 

Following collection of descriptive data the participant entered the hypobaric 

chamber with the researcher. The chamber operator closed and sealed the door to the 

chamber, and decreased the internal barometric pressure to either 733 mm Hg (altitude 

equivalent of 305 m above sea level) or 609 mm Hg (altitude equivalent of 1829 m above 

sea level). The rate of assent and later descent was 914 m/minute. The simulated altitude 

was blind to the participant, and the order was randomly assigned. 

Once the desired simulated altitude was attained a Monark 818E mechanically 

braked bicycle ergometer was calibrated using a 2.25 kg weight according to standard 

procedures (Howley, 1988). The seat height of the bike was then adjusted by the 

participant to allow for near complete knee extension of the participant during the down 

stroke of pedaling. The participant also adjusted the handle bar position for comfort. The 
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seat height and handle bar position were measured and recorded for use in the second 

GXT. The toe straps of the bike were adjusted to secure the participants feet to the 

pedals. 

After the bike was set, the participant was prepped for collection of the 

physiological data. The preparation included placement of a blood pressure cuff on the 

participants right arm. The blood pressure cuff was attached to a floor standing mercury 

sphygmomanometer. A portable pulse oximeter (Burdick Model I 00) was secured to the 

participants index finger on their dominant hand to measure oxygen saturation. A Polar 

telemetry heart rate transmitter was strapped to the participants chest at the level of the 

xiphoid process. The Polar Beat telemetry heart rate receiver was strapped to the handle 

bars of the bicycle ergometer. A Hans-Rudolph mask was then placed on the participants 

face and secured by straps around the head. The mask consisted of two small one way 

valves for inspiration and one large one way valve for expiration. The mask was attached 

to a three meter tube which was later secured to a metabolic cart (Quinton Q-Plex I 

Cardio-Pulmonary Exercise System). The participants descriptive data was then entered 

into the metabolic cart. The metabolic cart was then calibrated for volume and gas 

concentrations according to manufacturers specifications (Quinton Instrument Company, 

1989), and programmed to calculate minute ventilation (BTPS) and oxygen consumption 

(STPD) in 30 second intervals. Following calibration the expiration tube was attached to 

the internal mixing chamber of the metabolic cart. 

Exercise Testing and Physiologic Data Collection 

Following preparation and equipment calibration the participant remained in the 
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seated position on the bike for 5 minutes prior to data collection. During this period 

proper functioning of the laboratory instruments was verified. Afterwards, 3 minutes of 

resting data was collected while the participant remained seated. Heart rate and oxygen 

saturation were observed and recorded during the last 5 seconds of each minute. Blood 

pressure was measured after the first minute. Systolic blood pressure was determined as 

the first Korotkoff sound, and diastolic pressure as the change from the 4th to 5th 

Korotkoff sound. Rate of perceived exertion (RPE) was self-reported following blood 

pressure using the Borg Scale (Borg, 1982). Minute ventilation and oxygen consumption 

were calculated by the metabolic cart in 30 second intervals. 

Blood lactate concentrations were measured between minutes 2 and 3 of each 

workload using an Accusport portable lactate analyzer via finger tip capillary blood 

samples from the non-dominant hand of the participants. Immediately prior to obtaining 

the blood sample an Accusport dry chemical strip was placed in the analyzer. During 

each sampling period the finger tips were cleaned with an alcohol swab and dried with a 

cotton ball. A thin layer of petroleum jelly was applied to the area with a cotton swab. A 

lancet secured to an Auto let was used to puncture the skin. A large drop of blood (- 20 

microliters) was collected in a heparinized capillary tube attached to a rubber bulb and 

then expelled on the dry chemical strip for analysis. The blood lactate concentration 

(mM) was determined by the analyzer in 60 seconds and recorded. The used lancet and 

capillary tube was disposed of in a sharps container. A cotton ball was placed over the 

puncture site to stop blood flow. The used alcohol swab, cotton swab, cotton ball, and 

dry chemical strip were disposed of in a biohazard container. Each subsequent blood 

sample was taken from a different finger and/or a different location on the same finger. 
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The GXT began at a workload of70 W (pedal cadence of70 rpm with 1 kg of 

friction) and increased by 70 W (1 kg of friction) every 3 minutes until volitional 

exhaustion. Volitional exhaustion was determined to be either the point where the 

participant quit or when the participant was unable to maintain the appropriate pedal 

cadence. 

During the GXT, heart rate and oxygen saturation were monitored and recorded 

from the appropriate receiver at the end of each minute of exercise. Blood pressure was 

monitored during the second minute of each exercise stage. Rate of perceived exertion 

was reported by the participant at the end of the second minute of each stage. Minute 

ventilation and oxygen consumption were measured and recorded in 30 second intervals 

throughout the rest and exercise periods using a Quinton Q-Plex I met cart. Blood 

samples were obtained for lactate analysis during the last minute of each stage. 

Analysis of Data 

Prior to data analysis, each participants resting oxygen consumption, minute 

ventilation, heart rate, and oxygen saturation at each altitude were averaged. 

Subsequently, for the last minute of each stage oxygen consumption and minute 

ventilation data were also averaged and were considered a representative value for that 

workload. Maximal or peak oxygen consumption and minute ventilation was determined 

to be the highest measured over 30 sec. Maximal workload is defined as the highest 

workload the participant exercised at for at least 1 min. Maximal heart rate was the 

highest recorded heart rate during the GXT. 

All data was entered into a SAS Institute, Inc. data file for analysis. The maximal 
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data were analyzed using paired t-tests to reveal significant differences between the two 

altitude treatments. A randomized block on subjects with split-plot on altitude and 

workload ANOVA was used to determine the main effects and interaction effects of the 

altitude treatment on the physiological responses at each workload (Steel & Torrie, 1980). 

Any significant main effects due to altitude or interaction effects were further analyzed 

with a Bonferroni multiple comparison technique using the appropriate error term 

(Milliken & Johnson, 1992). All measures are reported as mean± standard error of the 

mean (sem). And subsequently the significance level for this experiment is p < 0.05. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The purpose of this study was to determine the effects of mild acute simulated 

altitude exposure on the cardiovascular, respiratory, and metabolic responses to graded 

exercise. Eight male and two female trained cyclists served as the participants. The 

descriptive characteristics of these participants are reported in Table III. 

TABLE III 

DESCRIPTIVE CHARACTERISTICS OF PARTICIPANTS (mean± sem) 

Variable Male (n:;:=8) Female (n=2) 

Age (yrs) 32±3 29 ± 1 

Body Fat(%) 9.5 ± 1.0 17.0±1:7 

Height (m) 1.78 ± 0.02 1.66 ± 0.01 

Weight (kg) 75.5 ±2.8 64.3 ±2.9 

V02max (ml/kg/min) 63.8 ±2.2 51.8 ± 2.4 

Results 

When the participants ofthis study were seated on the bike and exposed to 1,829 

m of altitude there were no significant changes in heart rate, blood pressure, minute 

ventilation, oxygen saturation, or blood lactate. However, when oxygen demand 
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increased with exercise there was a significant reduction in oxygen saturation (p < 0.05) 

at 1829 m for 70, 140,210,280 W, and maximal workloads respectively (Table IV & 

Figure I). This decrease was not affected further by increasing workload. At the highest 

workload (350 W) only 2 participants were able to exercise for greater than 1 minute at 

both altitudes. Therefore, no meaningful statistical comparisons were made for any of the 

physiological variables at 350 W. Oxygen saturation during the highest workload for 

each participant was significantly reduced from 94% at 305 m to 86% at 1829 m. 

TABLE IV 

OXYGEN SATURATION(%) RESPONSES TO GRADED EXERCISE AT 305 m 
AND 1829 m OF ALTITUDE (mean± sem). 

Workload (W) 305m. 

Rest 95 ± 1 

70 93±2 

140 95 ± 1 

210 96± 1 

280 94± 1 

350 95 ± 1 

Maximal 94 ± 1 

* significantly different than 305 m. (p < 0.05). 
# significantly different than previous workload (p < 0.05). 

31 

1829m. 

93±2 

88 ± 3*# 

87 ±3* 

89±2* 

86 ± 1 *# 

82±0 

86± 1* 



FIGURE I 

OXYGEN SATURATION RESPONSES TO GRADED EXERCISE AT 
305 m AND 1829 m OF ELEVATION 
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Resting heart rate was not affected by altitude. There was also no significant 

420 

altitude effect on exercise heart rate at any workload during the GXT, and maximal heart 

rate was not effected by 1829 m of altitude (Table V & Figure II). However, there was a 

significant increase in heart rate due to exercise workload regardless of altitude. 
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TABLEV 

HEART RATE RESPONSES TO GRADED EXERCISE AT 305 m AND 1829 m OF 
ELEVATION (mean± sem). 

Workload (W) 305m 1829m 

Rest 71 ±3 69±4 

70 99±3# 104±4# 

140 120 ±4# 128 ± 5# 

210 145 ± 5# 152 ± 5# 

280 166 ± 6# 167 ± 5# 

350 179±7 171 ± 9 

Maximal 176±5 172±4 

# significantly different than previous workload (p < 0.05). 

Systolic blood pressure response data are shown in table VI and figure III. 

Resting systolic blood pressure wasn't affected by altitude (305 m: 122 ± 3; 1829 m 129 

± 6 mm Hg). Systolic blood pressure increased significantly during each workload, but 

was not effected by altitude. During maximal exercise workload attained by each 

participant, systolic blood pressure was also not altered due to altitude. Meanwhile 

diastolic blood pressure remained unchanged regardless of exercise workload or altitude 

(Table VII & Figure III). 
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HEART RATE RESPONSES TO GRADED EXERCISE AT 
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TABLE VI 

SYSTOLIC BLOOD PRESSURE (mm Hg) RESPONSES TO GRADED EXERCISE 
AT 305 m AND 1829 m OF ELEV A TION (mean± sem). 

Workload (W) 305m 

Rest 122±3 

70 140 ± 3# 

140 153 ± 4# 

210 172 ± 4# 

280 186 ± 5# 

350 206±6 

Maximal 189 ± 7 

# significantly different than previous workload (p < 0.05). 

TABLE VII 

1829m 

129±6 

139 ± 4# 

159 ± 3# 

174 ± 4# 

186 ±4# 

203 ±7 

187 ±5 

DIASTOLIC BLOOD PRESSURE (mm Hg) RESPONSES TO GRADED EXERCISE 
AT 305 m AND 1829 m OF ELEVATION (mean± sem). 

Workload (W) 305m 1829m 

Rest 72±2 73±3 

70 71 ±2 70±3 

140 71 ±2 74±2 

210 74±2 73 ±2 

280 73 ± 1 73 ± 1 

350 78 ±5 75 ±3 

Maximal 74±2 73 ± 1 
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Minute ventilation measured at BTPS was not affected by altitude at rest (305 m: 

15.9 ± 3.3; 1829 m: 16.4 ± 3.8 I/min) or at exercise workloads of70 or 140 W (Table 

VIII & Figure IV). However, at higher workloads, 210 and 280 W, minute ventilation 

was significantly higher when the participants exercised at 1829 m. Workload also 

exerted a significant increase in minute ventilation. Despite the altitude effect on the 

higher workloads there was no effect on maximal minute ventilation. 

TABLE VIII 

MINUTE VENTILATION (I/min) RESPONSES TO GRADED EXERCISE AT 305 m 
AND 1829 m OF ELEVATION (mean± sem). 

Workload (W) 305 in 

Rest 15.9 ± 3.3 

70 30.9 ± 1.0# 

140 51.3 ± 1.6# 

210 83.2 ± 3.8# 

280 121.9 ± 8.2# 

350 166.0 ± 11.2 

Maximal 166.4 ± 8.3 

* significantly different (p < 0.05). 
# significantly different than previous workload (p < 0.05). 
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1829m 

16.4 ± 3.8 

32.7 ± 1.0# 

54.8 ± 1.7# 

95.6 ± 5.3*# 

143.0 ± 8.7*# 

193.6 ± 9.2 

168.8 ± 10.0 
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MINUTE VENTILATION (BTPS) RESPONSES TO GRADED EXERCISE AT 
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* significant difference (p<0.05). 
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The oxygen consumption data is presented in Table IX and Figure V. Resting 

oxygen consumption was not altered during exposure to 1829 m of altitude. Exercise 

oxygen consumption was not effected by altitude at any submaximal exercise workload, 

but maximal oxygen consumption was significantly lower when the participants 

exercised at altitude (305 m: 4.45 ± 0.18; 1829 m: 4.04* ± 0.111/min). Exercise 

workload also exerted a significant increase in oxygen consumption regardless of altitude. 

TABLE IX 

OXYGEN CONSUMPTION (1/min) RESPONSES TO GRADED EXERCISE AT 305 
m AND 1829 m OF ELEV A TION (mean± sem). 

Workload (W) 305m 

Rest 0.42 ± 0.04 

70 1.30 ± 0.04# 

140 2.10 ± 0.07# 

210 3.05 ± 0.10# 

280 3.81 ± 0.14# 

350 4.95 ± 0.11 

Maximal 4.45 ± 0.18 

* significantly different than 305 m (p < 0.05). 
# significantly different than previous workload (p < 0.05). 
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1829m 

0.43 ± 0.03 

1.33 ± 0.04# 

2.13 ± 0.07# 

3.08 ± 0.05# 

3.88 ± 0.10# 

4.50 ± 0.34 

4.04 ± 0.11 * 
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Resting and exercise blood lactate concentrations were not effected by altitude 

(Table X & Figure V). There was a significant workload effect on blood lactates, but 

samples obtained during the highest workload attained were not altered at altitude (305 

m: 7.49 ± 0.84; 1829 m: 8.34 ± 0.95 mM). 

TABLEX 

BLOOD LACTATE (mM) RESPONSES TO GRADED EXERCISE AT 305 m AND 
1829 m OF ELEV A TION (mean± sem). 

Workload (W) 305m 

Rest 2.0± 0.2 

70 2.3 ± 0.2 

140 2.3 ± 0.1 

210 3.0 ± 0.3# 

280 5.5 ± 0.8# 

350 8.1 ± 1.0 

Maximal 7.5 ± 0.8 

#significantly different than previous workload (p < 0.05). 

1829m 

2.2±0.2 

2.5 ± 0.3 

2.5 ± 0.2 

3.7 ± 0.4# 

6.1 ± 0.7# 

10.8 ± 0.9 

8.3 ± 1.0 

The total exercise time was reduced from 14.02 ± 0.63 to 12.96* ± 0.61 min when 

the participants exercised at 1829 m. As a result the maximal workload was also 

significantly reduced from 335 ± 14 Wat low altitude to 308* ± 19 Wat 1829 m. 
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FIGURE VI 

BLOOD LACTATE RESPONSES TO GRADED EXERCISE AT 
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CHAPTERV 

DISCUSSION 

The findings of this study indicate that at 1829 m there is a trend towards 

decreased resting oxygen saturation (2%) compared to 305 m of elevation. However, in a 

previous study (Tucker et al.1984) a significant decrease of 3.6% in resting oxygen 

saturation, measured by ear oximetry, was reported in trained runners when exposed 

1,520 m altitude versus sea level. Under resting conditions no significant hypoxia was 

observed in the present study. This may be due to the relatively flat slope for the 

relationship between oxygen saturation and the partial pressure of oxygen associated with 

this altitude and individual variability. 

During the submaximal and maximal stages of the graded exercise test, mild 

hypoxia is evident by the significant decrease in oxygen saturation in cyclists at 1829 m. 

This is consistent with previous investigations at mild altitude (Squires et al. 1982; 

Tucker et al. 1984). As exercise began at 1829 m there was an immediate 5% reduction 

in oxygen saturation. This reduction remained fairly constant throughout the exercise 

test. Tucker et al. (1984) previously reported a significant reduction in oxygen saturation 

when comparing maximal work to resting regardless of altitude. The increased demand 

for and extraction of oxygen, as measured by increased arterial-venous oxygen difference 

(Grover et al. 1986), during exercise was not offset by the cardiovascular and respiratory 
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systems. 

Despite the presence of mild hypoxia there was no altitude effect on heart rate at 

rest or during submaximal and maximal work. This is consistent with previous studies at 

similar altitudes (Bubb et al. 1983; Squires et al. 1982). Since heart rate has been 

reported to be the main factor contributing to increased cardiac output at high altitude 

(Grover et al. 1986), it is assumed that cardiac output was not altered by altitude during 

exercise. This would suggest that the levels of hypoxia observed during submaximal and 

maximal exercise at mild altitude is not sufficient enough to cause increased sympathetic 

response to the heart when compared to low altitude. 

Blood pressure measures at rest, during submaximal, and maximal exercise were 

not effected by mild altitude. This is consistent with previous reports (Ekblom et al. 

1975; Squires et al. 1982). Systolic blood pressure increased and diastolic blood pressure 

remained relatively constant during the graded exercise test as expected (Durstine et al. 

1988) regardless of altitude. 

As expected resting minute ventilation was not altered at mild altitude (Adams et 

al. 1980; Bubb et al. 1983; Tucker et al. 1984). This may be the result of maintained 

oxygen saturation at rest. During exercise at low intensity workloads of 70 and 140 W 

(29 and 47% of low altitude maximal oxygen consumption) minute ventilation was not 

effected by mild altitude exposure. However, at workloads of210 and 280 W (68 and 

86% oflow altitude maximal oxygen consumption) minute ventilation was significantly 

higher when the participants were at 1829 m. These findings do not clarify the issue of 

minute ventilation response to submaximal work at mild altitude. Previous investigators 

have observed increased (Adams et al. 1980; Astrand 1954; Hogan et al. 1983; Squires et 
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al. 1982) or unchanged minute ventilation (Bubb et al. 1983; Squires et al. 1982) at mild 

altitude during submaximal exercise. 

In the present study, a decreased arterial partial pressure of oxygen, due to the 

observed decrease in oxygen saturation and possibly increased arterial-venous oxygen 

difference, at the higher workloads most likely stimulated the carotid chemoreceptors. 

However, it is possible that increased catecholamines produced during hypoxia and 

strenuous exercise (Welch 1987) may also stimulate peripheral chemoreceptors resulting 

in increased minute ventilation. It should be noted that partial pressure of carbon dioxide 

and hydrogen ion concentration in blood are decreased during hyperventilation when 

exercising at altitude (Welch 1987), and therefore do not provide excitatory chemical 

stimuli to the chemoreceptors. In fact Ganong ( 1997) stated that "the chemical 

. stimulatory effects of hypoxia on ventilation are not clearly manifest until they become 

strong enough to override the counterbalancing inhibitory effects of a decline in arterial 

H+ concentration and PC02". This may explain the observed minute ventilation response 

in the present study. 

Maximal minute ventilation at BTPS was not observed to significantly different 

in this study. In a review of the literature Welch (1987) reached a similar conclusion 

concerning hypoxia and maximal minute ventilation. However, some investigators have 

reported significantly higher maximal minute ventilation at mild altitude (Hogan et al. 

1983; Tucker et al. 1984). 

Oxygen consumption was not significantly different at rest or during any 

submaximal exercise workload at 1829 m. Previous investigators observed the same 

results at mild altitude (Adams et al. 1980; Hogan et al. 1983; Tucker et al. 1984). It is 
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apparent that the amount of energy required to perform an absolute workload on a 

stationary bicycle ergometer is not affected by mild altitude. 

In the present study there was a significant reduction of9.2% in maximal oxygen 

consumption. At slightly lower altitudes of between 1,200 and 1,600 m Squires et al. 

(1982) reported 5 and 7% reductions, and at 1,520 m Tucker observed a 6.5% reduction 

in maximal values compared to sea level. However, at 900 m Squires et al. (1982) 

reported an insignificant reduction of2%, and at 1,600 m Hogan et al. (1983) reported an 

insignificant 4% reduction in maximal oxygen consumption. The physiological 

mechanisms responsible for the observed decrease in maximal oxygen consumption are 

debatable. However, it is apparent that the ability of the respiratory and cardiovascular 

system to deliver oxygen to the muscles during strenuous exercise is impaired at mild 

altitude. As a result of hypoxia, muscles may be required to rely to a greater extent on 

anaerobic metabolism to produce the energy required to perform work. 

However, blood lactate values were not significantly different between the two 

altitudes during rest, submaximal or maximal exercise conditions. Previous studies at 

mild altitude have reported mixed findings regarding blood lactates during submaximal 

and maximal exercise (Adams et al. 1980; Hogan et al. 1983; Lundin et al. 1947). The 

lack of altered blood lactate differences during submaximal exercise may be due to the 

relatively mild hypoxia present at the altitude in question. At moderate and high altitudes 

there is generally a significant higher blood lactate concentration at the same submaximal 

workload (Young 1990). It should be noted that the stage lengths were 3 minutes and the 

work increments were 70 W. Previous investigations have been performed with sampling 

done at 3, 5, and 10 minutes with various exercise protocols (Adams et al. 1980; Hogan et 
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al. 1983; Lundin et al. 1947). The study by Hogan et al. (1983) employed a similar 

graded exercise test with small increments (15 W/stage) and 3 minute stages at sea level 

and at 1,600 m. The researchers observed no significant altitude effect on submaximal 

blood lactate until the workload exceeded 195 W. At higher workloads there was a 

significantly higher blood lactate at altitude, but the peak blood lactate was not 

significantly effected. 

As a result of the decrease in maximal oxygen consumption observed in the 

present study there was a reduction in maximal exercise performance as indicated by a 

lower maximal workload, and time to exhaustion at mild altitude. Previous investigators 

have also observed decreases maximal workload (Hogan et al. 1983) during graded 

exercise testing at 1,600 m. However, when exercising at a workload equal to 90% of 

maximal oxygen consumption, Adams et al. (1980) did not observe a significant 

reduction in time to exhaustion. 
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CHAPTER VI 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

In summary, in the present study acute altitude exposure at 1829 m did not alter 

resting measures of oxygen saturation, heart rate, blood pressure, minute ventilation, 

oxygen consumption or blood lactate. Acute exposure to mild altitude may create mild 

hypoxia at rest and during submaximal and maximal exercise (Squires et al. 1982; Tucker 

et al. 1984). Under resting conditions this level of hypoxia is not sufficient enough to 

alter normal functioning of the cardiovascular (Bubb et al. 1983; Ekblom et al. 197 5) and 

respiratory systems (Adams et al. 1980; Bubb et al. 1983; Ekblom et al. 1975; Tucker et 

al. 1989) or alter energy metabolism (Adams et al 1980; Hogan et al. 1983; Tucker et al. 

1984). · 

In the present study normal heart rate, blood pressure, oxygen consumption and 

blood lactate responses to graded exercise were observed at 1829 m during submaximal 

exercise workloads (Durstine et al. 1988; Nieman 1990; Wasserman et al. 1987). 

Therefore, there appears to be no effect on cardiovascular and metabolic responses to 

submaximal exercise during acute mild altitude exposure (Adams et al. 1980; Bubb et al. 

1983; Hogan et al. 1983; Squires et al. 1982). 

Also, at low intensity and maximal workloads during graded exercise the 

respiratory response is normal, but during moderate intensity workloads minute 
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ventilation is significantly higher when at mild altitude. The levels of hypoxia produced 

at mild altitude generally appears to increase the minute ventilation response to 

submaximal exercise (Adams et al. 1980; Astrand 1954; Hogan et al. 1983) and may 

increase maximal minute ventilation (Hogan et al. 1983; Tucker et al. 1982). When the 

magnitude of the hypoxia created by the environment and exercise is great enough, it 

appears to increase respiratory stimulation. 

In the present study the level of hypoxia caused by acute mild altitude exposure 

resulted in a 9 .2% decrease in maximal oxygen consumption, 8.1 % decrease in maximal 

workload, and a 7.8% decrease in time to exhaustion measurements during graded 

exercise testing. Therefore, decreased performance of high intensity exercise is expected 

of individuals upon arrival to mild altitude environments (Adams et al. 1980; Hogan et al. 

1983). 

The purpose of the present study was to examine the effects of acute mild altitude 

exposure on the cardiovascular, respiratory and metabolic responses to graded exercise. 

Therefore, the physiological findings from this study are limited to application towards 

graded exercise testing. The three minutes stages of the test protocol are similar to the 

Bruce treadmill test (Wasserman et al. 1987), but may not be of sufficient length to yield 

steady state physiological data in all subjects during mild altitude exposure. Therefore, 

the submaximal data should be interpreted in the context of a graded exercise test, and 

application to longer duration steady state submaximal exercise should be made with 

caution. 

Care should also be taken when attempting to predict lactate threshold from the 

present data. The continuous test protocol, short three minute stages and large workload 
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increments at each stage may not yield accurate predictions of lactate threshold for the 

subjects. 

It should also be noted that the results of this study are limited to the two altitudes 

under investigation. As altitude increases and the partial pressures decrease there appears 

to be a continuous impact on the cardiovascular, respiratory and metabolic processes of 

the body at rest and during exercise. Therefore, it is possible that a similar experiment 

performed at sea level and 2,000 m may yield slightly different results. 

The subjects in the present study were young, apparently healthy, highly trained 

cyclists. Previous investigators (Saltin 1996; Terrados et al. 1985) have suggested that 

training status impacts the physiologic effects of altitude on exercise performance. 

Therefore, untrained persons or individuals with cardiovascular, pulmonary or metabolic 

disease may demonstrate different results when performing exercise at mild altitude. 

Future investigations into the effects of acute mild altitude exposure on exercise 

performance should include various participant populations and altitudes. Exercise test 

protocols should also include long duration steady state exercise, workloads and stage 

durations appropriate for lactate threshold prediction. To increase the level of knowledge 

regarding the cardiovascular, respiratory and metabolic response to exercise at mild 

altitude, additional physiological variables be included (ie. arterial blood-gases and pH, 

stroke volume, cardiac output, respiratory rate, tidal volume, muscle metabolites and pH, 

and blood hormones and catecholamines). 
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Comments, Modifications/Conditions for Approval or Disapproval are as follows: 

Date: March 16, 1998 
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APPENDIXB 

MEDICAL HISTORY QUESTIONNAIRE 

61 



Medical History Questionnaire 

Name: ---------- Age: ____ yrs. Date: ____ _ 

Major Coronary Risk Factors 

Please check if you have any of the following risk factors: 

1. Diagnosed high blood pressure on at least two separate occasions (SBP2: 140 or 
DBP2:90), or currently taking medication for high blood pressure 

_ 2. Blood cholesterol values 2: 200 mg/dl or HDL < 35 mg/dl 

_ 3. Currently smoke cigarettes 

4. Diabetes Mellitus 

_ 5. Family history (parents or siblings prior to age 55) of coronary heart disease of 
other atherosclerotic disease 

_ 6. Sedentary lifestyle without regular physical activity 

Symptoms of Cardiopulmonary or Metabolic Disease 

Please check if you've recently experienced any of the following symptoms: 

_ 1. Pain or discomfort in the chest or surrounding areas 

2. Unaccustomed shortness of breath or shortness of breath with mild exertion 

_ 3. Dizziness of syncope (fainting) 

_ 4. Orthopnea ( difficulty breathing except when in upright position) paroxysmal 
nocturnal dyspnea (recurring labored breathing at night) 

_ 5. Ankle edema ( swelling) 

_ 6. Palpitations or tachycardia (rapid heart rate) 

_ 7. Claudication (pain in extremities upon exertion) 

8. Known heart murmur 
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APPENDIXC 

MEDICAL CLEARANCE FORM 
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REVIEW BY MEDICAL STAFF 

PHYSICAL EXAMINATION 

BLOOD PRESSURE: ------

TEMPERATURE: ------

JUMPTEST: 

TM's ------

INFECTION ------

FLUID ------

MOBILITY ------

THROAT ------

HEART ------

RHYTHM ------

MURMUR ------

LUNGS ------

CLEAR ------

PATELLAR REFLEX ------

RECOMMENDATIONS: 

CLEARED FOR CHAMBER FLIGHT: YES NO 

SIGNATURE DATE 
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APPENDIXD 

INFORMED CONSENT FORM 
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INFORMED CONSENT FORM 

School of Applied Health and Educational Psychology 

Oklahoma State University 

Principle Investigators: Frank Kulling, Ed.D., Curtis L. Hart, M.S. 

Project Title 

The effects of simulated acute mild altitude exposure on the cardiovascular, 

metabolic and ventilatory responses to graded exercise. 

Purpose 

The purpose of this experiment is to evaluate the human body's response to 

exercise intensity when exposed to simulated mild altitude. 

General Procedures 

Prior to this experiment you will evaluated for medical clearance by a physician 

that is a FAA Certified Flight Examiner. If you qualify, you will perform two exercise 

tests on a bicycle ergometer in the Oklahoma State University - College of Osteopathic 

Medicine altitude chamber located at Tulsa Airpark. The exercise tests will be separated 

by approximately one week. One bicycle test will be performed at a simulated altitude 

(1000 ft) slightly higher than Tulsa, and the other will be at a simulated altitude (6000 ft) 

similar to Colorado Springs, CO. Each experimental trial/exercise test will last 

approximately one hour. The rate of assent and descent will be 3000 ft/min. The order of 
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the test conditions will be randomly assigned, and only the research team will have 

knowledge of the altitude during each session. During the bicycle test you wiUbe pedal 

at a set cadence equal to 70 revolutions /minute. In the beginning the tension you pedal 

against will be light and will increase every three minutes until exhaustion. While in the 

chamber you will be attached to a heart rate monitor, blood pressure cuff, and finger tip 

pulse oximeter to monitor your cardiovascular conditions. You will also wear a face 

mask attached to a metabolic analyzer to monitor your respiratory and metabolic 

response. Every three minutes during the exercise test and five and ten minutes after 

maximal effort, a member of the research team will obtain a blood sample from a finger 

stick for determination of blood lactate concentration. 

The exercise test and simulated altitude may be stopped at any time by the 

investigators based on signs of fatigue, equipment failure or abnormal physiological 

responses. You also have the right to stop the test whenever you wish due to feelings of 

fatigue or any other discomfort. 

Risks and Discomforts 

There exists the possibility of abnormal changes during the experiment due to 

exercise. They include abnormal blood pressure and/or heart rate, fainting, and in rare 

instances, heart attack, stroke, or death. Every effort will be made to minimize these risks 

by evaluation of preliminary information regarding your health and fitness and by 

observations during testing. The possibility also exists that you may experience slight 

headaches, nausea, sinus or ear blocks, and mild disorientation during the tests due to the 

simulated altitude. These symptoms should rapidly dissipate. Emergency equipment and 
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trained personnel will be available to deal with unusual situations that may arise. 

Potential Benefits 

The results of this study will expand the body of knowledge related to 

physiological responses of exercise at mild altitude in apparently healthy trained 

participants. If you desire a copy of the results of this study will be provided upon 

request. 

Confidentiality 

The individual information obtained from the procedures listed will be treated as 

privileged and confidential. It will not be release or revealed without your written 

consent. The information will be used for statistical analysis for scientific purposes with 

your right to privacy maintained. 

Freedom of Consent 

Your participation in this investigation is voluntary. You are free to deny consent 

if you desire. You are free to withdraw your consent and discontinue the investigation at 

any time. If you have any questions about the procedures you may contact Frank 

Kulling or Curtis Hart at 744-4837. You may also contact Ms. Gay Clarkson, 

Institutional Review Board, 305 Whitehurst Hall, Oklahoma State University, Stillwater, 

OK 74078, telephone number (405) 744-5700. 

I acknowledge that I have read and fully understand the consent form. I sign it 

freely and voluntarily and consent to participation in this investigation. A copy has been 

68 



given to me. 

Signature Date Time 

Witness 

I certify that I have personally explained all elements of this form to the subject 

before requesting the subject to sign it. 

Principal Investigator 
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APPENDIXE 

ANOVA TABLES OF PHYSIOLOGICAL RESPONSES TO GRADED EXERCISE 
AT 305 m AND 1829 m ELEVATION 
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TABLE XI 

ANALYSIS OF VARIANCE: OXYGEN SATURATION RESPONSE 

Source df Sums of Squares Mean Square F 

Subject 8 918.17 114.77 

Altitude, factor A 1 764.76 764.76 22.22* 

Subject x Altitude, 8 275.29 34.41 
Error (a) 

Workload, factor B 4 136.24 34.06 2.37 

Altitude x Workload, 4 93.64 23.41 1.63 
AB 

Error (b) 61 877.63 14.39 

Total 94 3065.72 

* significant difference (p < 0.05). 

TABLE XII 

ANALYSIS OF VARIANCE: HEART RATE RESPONSE 

Source df Sums of Squares 

Subject 9 12134.45 

Altitude, factor A 1 240.29 

Subject x Altitude, 9 884.23 
Error (a) 

Workload, factor B 4 103176.63 

Altitude x Workload, 4 335.47 
AB 

Error (b) 67 3892.25 

Total 94 120663.32 

* significant difference (p < 0.05). 

\ 
\ 
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Mean Square F 

1348.27 

240.29 2.45 

98.25 

25794.16 444.01 * 

83.87 1.44 
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TABLE XIII 

ANALYSIS OF VARIAN CE: SYSTOLIC BLOOD PRESSURE RESPONSE 

Source df Sums of Squares Mean Square F 

Subject 9 11465.200 1273.911 

Altitude, factor A 1 208.663 208.663 2.07 

Subject x Altitude, 9 909.037 101.004 
Error (a) 

Workload, factor B 4 44440.874 11110.218 277.47* 

Altitude x Workload, 4 213.807 53.452 1.33 
AB 

Error (b) 70 2802.919 40.142 

Total 97 60040.500 

* significant difference (p < 0.05). 

TABLE XIV 

ANALYSIS OF VARIAN CE: DIASTOLIC BLOOD PRESSURE RESPONSE 

Source df Sums of Squares Mean Square F 

Subject 9 2938.059 326.451 

Altitude, factor A 1 8.582 8.582 0.15 

Subject x Altitude, 9 500.018 55.558 
Error (a) 

Workload, factor B 4 117.406 29.352 1.95 

Altitude x Workload, 4 58.162 14.541 0.96 
AB 

Error (b) 70 1056.231 15.089 

Total 97 4678.459 

72 



TABLE XV 

ANALYSIS OF VARIAN CE: MINUTE VENTILATION RESPONSE 

Source df Sums of Squares Mean Square F 

Subject 9 8964.98 996.11 

Altitude, factor A 1 871.23 871.23 4.81 

Subject x Altitude, 9 1628.79 180.98 
Error (a) 

Workload, factor B 4 147457.05 36864.26 291.08* 

Altitude x 4 1466.79 366.70 2.90* 
Workload, AB 

Error (b) 65 8232.07 126.65 

Total 92 160388.84 

* significant difference (p < 0.05). 

TABLE XVI 

ANALYSIS OF VARIANCE: OXYGEN CONSUMPTION RESPONSE 

Source df Sums of Squares Mean Square F 

Subject 9 6.65076 0.73897 

Altitude, factor A 1 0.00245 0.00245 0.04 

Subject x Altitude, 9 0.52826 0.05870 
Error (a) 

Workload, factor B 4 122.56023 30.64006 1084.08* 

Altitude x Workload, 4 0.01839 0.00460 0.16 
AB 

Error (b) 65 1.83714 0.02826 

Total 94 131.59723 

* significant difference (p < 0.05). 
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TABLE XVII 

ANALYSIS OF VARIANCE: BLOOD LACTATE RESPONSE 

Source df Sums of Squares Mean Square F 

Subject 9 27.55222 3.03136 

Altitude, factor A 1 2.91960 2.91960 1.44 

Subject x Altitude, 9 18.24468 2.02719 
Error (a) 

Workload, factor B 4 162.89678 40.72419 35.19* 

Altitude x Workload, 4 1.14673 0.28267 0.25 
AB 

Error (b) 68 78.68499 1.15713 

Total 95 291.44500 

* significant difference (p < 0.05). 
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