AIChE Senior Design Project

Modular Distributed Gas-to-Liquids (GTL) Synthesis

April 11, 2022

Group Number: 1890

Team Members: Garrison Allen, Natalie Evans, Jacob Lewellen, Dakota Plumlee

Introduction	4
Summary	4
Discussion	4
Syngas Generation	4
CO ₂ Recovery	5
Fischer-Tropsch Reactor	6
Separations	8
Hydroisomerization Unit	10
Conclusions	10
Recommendations	11
Project Premises	11
Table 2: Utility Streams	12
Table 3: Process Streams	13
FTR Unit Process Flow Diagrams	15
Simplified GTL Plant Process Flow Diagram	21
Safety and Environmental Summary	22
Inherent Safety Evaluation	22
Process Safety Management	23
Process Hazards	23
FTR Runaway Hazard	23
P&IDs of the Major Fractionator	25
Uncongested Vapor Cloud Deflagration	29
Safety Summary	29
Unit Control and Instrumentation Description	
Economics	
Logistics Considerations	35
Groupings	
Optimization Process	35
Expected Plot Layout	41
Summary of Project NPV and Sensitivities	
NPV	
Engineering Calculations, Computer Simulation Outputs	45

Table of Contents

e rences

Executive Summary

This project intends to evaluate the use of modular gas-to-liquid plants for well-site implementation based on energy efficiency and economic value. The design presented would allow the company to have the flexibility of the modular design and various reactor sizes, while reducing greenhouse gas emissions. In addition, the presented design incorporates inherent safety measures to control the hazards and risks that come with the unit.

Simulations of the design process were conducted and interpreted with the help of polymath code for reactor modeling and Aspen HYSYS for reactor and separation simulations. For the required equipment to design, the group recommends for the FTR operating a PBR and for the separations unit to install three 3-phase separators, one air fan, and two heat exchangers.

After overall design of the three units and entire process it was found that the energy efficiency of the hydrocarbon products over the methane in the initial feed was 93.9%.

An economic analysis of the project had an NPV of \$5.99 million over the project evaluation life. Diesel was found to be the largest revenue contributor at \$2112.60/day for the 500 MSCFD unit, \$10,562.99/day for the 2.5 MMSCFD, and \$21,125.99/day for the 5 MMSCFD. Naphtha was found to be the second largest revenue contributor at \$5,558.45/day for the 5 MMSCFD unit. The fixed capital investment was found to be \$180 million in year zero for construction of the equipment. The units will undergo turnaround every three years for routine maintenance and catalyst replacement. Trucking costs are dependent upon the deployment and redeployment schedule of the units. An optimization analysis was performed to determine the number of each size unit that should be fabricated. It was found that the optimal time to fabricate units was in year 0 before production begins. A grouping optimization was then used to group wells in order to optimize central plant capacity. Once these groups were complete, the best route and production schedule for each unit was determined. An NPV analysis was conducted and determined to be \$5.99 million over the project life with a rate of return of 8.53% with a 95% confidence interval between 1.97% and 19.03%. Based on these analyses and the assumptions upon which the design is based, we recommend proceeding on an environmental and energy efficiency basis, but not on an economic basis.

In addition to the energy efficiency and economic aspects of the project, the safety and environmental aspects of the project were strongly considered in the design. The proposed design uses the best available technology available to control hazards associated with the process. As opposed to flaring, the design process generates transportation fuels to reduce CO_2 emissions.

Introduction

The company has discovered new gas deposits in remote areas that are difficult to profitably recover by traditional means. They are considering the option of modular deployment of gas-to-liquid (GTL) plants, based on the design of a Fischer-Tropsch reactor (FTR) reactor and separations system. These modular units were to be designed on the idea of three standard sizes or parallel implementation. Included with the plant is a predesigned Syngas Unit and Hydro-isomerization Unit. Along with the design of the modular units, the company requires an analysis of the supply chain and network optimization of deployment of the GTL modules over a project evaluation life of 20 years.

Summary

The process of the entire GTL plant is broken down into four units comprised of a syngas unit, CO2 recovery unit, a FTR unit, and a separations unit. At the syngas unit steam and CO2 are introduced to the feed and sent to a furnace to be heated. The feed is then mixed with oxygen in a steam methane reforming (SMR) and water-gas shift (WGS) reactor to allow partial oxidation, SMR, and WGS reactions to occur and produce carbon monoxide and hydrogen. This feed is then cooled and sent to the CO2 recovery unit.

The feed enters the CO2 recovery unit to be stripped of CO2, before being sent to the FTR. The CO2 recovery is made up of an absorber and a regenerator. The feed, sent to the absorber, is removed of CO2 with water as a solvent, moved along to a heater, bringing heat back to the feed. The removed CO2 is sent to a regenerator that separates the CO2 from the water, then recycled back into the syngas unit.

The heated feed from the CO2 recovery unit is run through a PBR, converting it into hydrocarbons, ranging from C2 to C45+. After the feed stream has converted, it is sent to the separations unit and split into different product, credit, and waste streams. The streams are either reintroduced to the process, sent to a waste treatment, or stored onsite, where they will later be transported to a central plant.

Discussion

Syngas Generation

The Syngas Unit was not included in actual equipment design and optimization for the project. The required objectives to meet were:

- 1. Have a Steam to CH4 ratio of a .5 mol steam/ 1 mol CH4 minimum in preheater feed
- 2. Meet a Hydrogen to Carbon Monoxide ratio of 2:1
- 3. Run the partial oxidation reaction to completion with oxygen as the limiting reagent
- 4. Run the SMR and WGS to equilibrium

The syngas unit consists of the feed from the well, a fired furnace, a SMR/WGS reactor, and a heat exchanger that cools the reactor product stream, before entering the carbon dioxide recovery system. The entire unit was modelled in Aspen HYSYS, simulating the SMR, partial oxidation, and WGS reactions. The feed from the well is assumed to be 100% methane, not requiring pre-treatment for sulfur compounds. The feed is mixed with low pressure steam at a

ratio of .68 for coking prevention, maintaining the hydrogen to carbon monoxide ratio. Supplemental carbon dioxide is also mixed in at a ratio of .25 mol CO2/ 1 mol CH4, keeping the hydrogen to carbon monoxide ratio at 2.

The mixed feed is sent to a furnace, raising the temperature, before going into a SMR/WGS reactor. The furnace operates at 85% efficiency and can heat to a maximum limit of 1000°F, which is in place for metallurgical integrity purposes. The fired furnace was fueled with methane and produced tail gas, in order to lower cost in fuel utility. The excess air percentage was assumed to be 7.5%, based on a heuristic of natural gas fuels¹. The furnace heated the feed to a temperature of 700°F, before entering the SMR/WGS reactor.

The SMR and WGS reactions were modelled in a Gibbs reactor, in Aspen HYSYS. A Gibbs reactor was chosen for the three reactions involved in syngas production. A Gibbs reactor in Aspen HYSYS works by minimizing the Gibbs free energy of a reaction. The SMR and WGS reactions are equilibrium reactions, in which the Gibbs free energy is minimized or equaled to zero, when these reactions reach equilibrium. This allows reliable simulation of SMR and WGS reactor for partial oxidation to occur, raising the temperature for non-catalytic SMR reactions. A ratio of 1:2 oxygen to methane was used to create a partial oxidation reaction, raising the temperature to 1645°F. This temperature allows for SMR to occur, as well as WGS, resulting in the Gibbs reactor to yield a molar ratio of 2.006:1 of hydrogen to oxygen. This feed from the reactor enters a heat exchanger, is cooled down and run through the carbon dioxide recovery system to maintain pipe integrity.

CO₂ Recovery

A CO₂ recovery system was necessary to reduce the utility cost associated with carbon dioxide production, as well as minimize the quantities of inert components in the Fischer-Tropsch Reactor. An absorber column was selected to clean a 95 weight percentage of the CO₂ out of the FTR feed; the CO2 would then be stripped out by a stripper column, in addition to any residual H2S ubiquitous to reservoir product. Water was selected as the absorption medium over the more traditional amine system, due to concerns of product contamination and preclude the toxicity hazards associated with amine systems. The absorber was simulated using the Sour Soave-Redlich-Kwong (Sour SRK) property package of Aspen HYSYS. This was utilized over other properties, as it simulates the chemical absorption, neglected by other property packages, without the need to input additional reaction parameters. Results from the Sour SRK simulation had strong similarities to simulations run with the Acid Gas- Liquid Treating fluid property package. The absorber removes 95 weight percent of the CO2 and 99 weight percent of the H2O from the Fisher-Tropsch Reactor feed. The column operates at a temperature high of 470 °F and a pressure high of 445 psia, requiring 20.55 kgal/hr for 500 MSCFD units, 102.73 kgal/hr for 2.5 MMSCFD units and 205.45 kgal/hr for 5 MMSCFD units of process water. The reactor requires a heat exchanger utilizing 369 MBTU/hr for 500 MSCFD, 1.85 MMBTU/hr for 2.5 MMSCFD and 3.69 MMBTU/hr for 5 MMSCFD of high-pressure steam heating capacity in the CO2 recovery unit, bringing the reactor feed to the appropriate temperature.

Fischer-Tropsch Reactor

The Fischer-Tropsch Reactor (FTR) was designed and optimized to achieve the following objectives:

- 1. Minimize the inherent hazards associated with the system
- 2. Maximize energy efficiency
- 3. Maximize project net present value (NPV)
- 4. Create a safe, consistent, and reliable operation and control

The reactor system was designed by determining the optimal reactor operating temperature, then optimizing conversion via a separate reactor model. The selectivity of the hydrocarbon products of the FTR was determined via the Anderson-Schulz-Flory (ASF) distribution and the parameters described³, which were ultimately a function of the operating temperature. Based on the relevant Fischer-Tropsch literature on cobalt catalyst⁴, the hydrocarbons generated were assumed to be straight-chain alkanes, ranging from 1 to 100 carbon atoms. The conversion of the wax fraction (i.e. longer than n-icosane) to shorter hydrocarbons and the production of diesel in the Hydroisomerization Unit (HIU) was calculated via the parameters provided³. Since methane production is directly proportional to the production of ethane, propane, and butane, the components most likely to be used in a form other than a finished fuel product, the optimal energy efficiency was determined from the methane production. Revenue in terms of both mass and volume was approximated by assuming perfect separation of products and accounting for the utility cost of the HIU³. Other costs and utilities were assumed to have a negligible impact, compared to increases in the revenue generated. The optimal reactor temperature in terms of environmental impact, revenue by volume, and revenue by mass were 380.6 °F, 378.1 °F, and 380.7 °F, respectively; the differences between these values are too insufficiently small for common measurement and/or control systems to distinguish⁵. Minor changes in temperature have a minimal impact on the value of the hydrocarbon products near the optimal temperature.

Several reactor designs were considered as part of the FTR design. A number of continuous process FTR designs have previously been implemented, including packed-bed, circulating fluidized bed, fixed fluidized bed, and slurry bed reactors⁶. Recent research efforts have resulted in advancing the development of microchannel reactors for FTR applications^{7,8}. Slurry bed reactors are the most implemented FTR, especially for recent applications⁶. However, these reactors do not effectively scale down to the flow rates encountered at a well-site^{6,9}, thus inappropriate for this application. Fluidized bed reactors are notoriously difficult to start up and control, especially at small scales⁹. Well-sites, typically, do not have the personnel needed to attend to these complexities. Microchannel reactors have not been implemented outside of pilot plants, and many of the parameters associated with their operation and design are not well known⁸. Because of the uncertainty associated with these reactor parameters and the immature nature of the technology, estimates are unlikely to accurately predict the cost and design requirements, and it is likely that the project timeline would be substantially delayed for the completion of R&D work, substantially decreasing NPV. Based on the comparison of these alternatives, the packed-bed reactor (PBR) design was considered the simplest design, most readily controlled, and most capable of handling the greatest variation in flow rates, as is

expected with well site operation. Boiling water was selected to use on the shell side, due to the inherent safety improvement over alternatives, ability to make revenue from steam, and ease of control methodology implementation.

To determine the optimal reactor geometry, temperature profile, maximal conversion, and other reactor parameters, a single tube of the reactor was modeled in the Polymath differential equation solver software. The reactor mass balance was modeled in terms of conversion with respect to catalyst volume. The reaction kinetics and the catalyst parameters, relevant to the Ergun Equation, were provided³. The reaction stoichiometry of hydrogen and product hydrocarbon were based on the average chain length, as a function of temperature. The average chain length was determined via an empirical correlation of hydrocarbon products from the selectivity model. The energy balance was determined by the given heat of reaction and the overall heat transfer coefficient³; specific heat capacities, as a function of temperature for components that were not hydrocarbon products, were utilized from published empirical correlations¹⁰. Specific heat capacities for hydrocarbon products, modeled as a function of temperature, were determined by multiplying the phase fraction by the molar heat capacity of the phase¹⁰. The phases for each component at a specified temperature were then calculated. Heat capacities of pseudo components, utilized for hydrocarbons chains, longer than n-icosane, were calculated with Aspen HYSYS, using a Peng-Robinson property package. The specific heat capacity for the product hydrocarbons at a given temperature was calculated by multiplying the heat capacity for the component or pseudo component by the mole fraction, then summing the components and pseudo components of a given temperature. The heat capacities, as a function of temperature, were fit to an empirical correlation (See Figure in Appendix)

FTR geometry was designed and optimized with two goals in mind: optimize heat transfer and maximize conversion. Maximal energy efficiency, conversion, and revenue occurs when the reactor operates isothermally; however, operating under these conditions does not provide sufficient heat exchange to accommodate even slight upward deviations in the FTR feed temperature. To ensure safe operating conditions, the FTR was required to be able to sustain a 55 °F upward deviation in feed temperature, without the temperature in the reactor encountering a temperature of 620 °F; this represents a sufficiently high pressure differential such that a pressure relief valve could be sized such that a relief device would be practicable and provide sufficient control^{11,12,13}. A slight, yet downward sloping temperature gradient was required to accomplish this. Optimal operating FTR feed temperature was selected as 386 °F, with the boiler producing shell side operating at 377 °F and 125 psig, thus producing a medium pressure steam utility. A differential between these two temperatures meets the upward deviation requisite that were adequately measured and controlled⁵. The design was specified so the 2,500 MSCFD FTR could be contained within a single module. Optimization was accomplished by selecting a tube diameter, maximizing the number of tubes, and varying length to maximize conversion subject to the modular units listed above, in addition to the maximum pressure drop of 50 psi specified³. Product specifications of the syncrude were determined by averaging the temperature gradient.

The optimized reactor geometry consists of tubes of diameter 1 ¹/₄" and length 36' 4" in a tube sheet arrangement, akin to a floating head shell and tube exchanger, selected for ease of

maintenance during the regular 3-year turnaround. 1000 and 5000 tubes were utilized in the 500 MSCFD and 2,500 MSCFD FTR modules, respectively. Since the tubes for the 5,000 MSCFD unit cannot be contained within a cylinder of outer diameter 8', the 5000 MSCFD consisted of two 2500 FTR modules, running in parallel. Each tube contains 15.4 lb of catalyst. The reactor conversion of 0.972 made the addition of any other reactors unnecessary. Pressure dropped in the reactor from 29.8 atm to 27.6 atm. The converged differential equation model implemented in the differential equation solver PolyMath can be found in the Appendix.

Separations

Once the product and effluent from the Fischer Tropsch reactor had been produced, the following points were required to be met:

- 1. Separate into individual products/effluents (if profitability available) the following, along with their state of matter
 - a. Tail Gas (TG) (Vapor)
 - b. Liquid Petroleum Gases (LPG) (Liquid)
 - c. Naphtha (Liquid)
 - d. Distillate (Liquid)
 - e. Produced Water/ Produced Steam Condensate (Liquid/Vapor)
 - f. Waste Water (Liquid)
- 2. Keep distillate products of C20+ above 250 °F
- 3. Meet Water Solubility limit in distillate stream to HIU
- 4. Maintain a Naphtha RVP @ 100 °F between 8-14
- 5. Minimize the capital cost of the process unit
- 6. Minimize the required utilities needed for operation
- 7. Reduce complexity of process for remote operation/control

A computer simulation in Aspen HYSYS was selected as the prime source of modelling for the potential separation processes. The Peng-Robinson_fluid package was selected since non-idealities from the elevated pressures encountered were thought to dominate over the impact of polar interactions, its successful use in simulating similar systems, and the presence of an RVP property within the Peng-Robinson package¹⁴; results obtained had strong agreement with results generated with the CPA package. Many potential separation processes were researched for initial design consideration by the group such as the traditional "stick built" refinery approach, separating the products via distillation columns. Due to the amount of water volume from the FTR, the constraint of maintaining streams with high distillate composition to it, and the potential for these units to be operated in remote locations, the group discovered that three phase separators, which are quite common in upstream oil and gas facilities¹⁵, could be used as a main piece of equipment for the project's needed separation process.

An initial separation occurs in V-101/V201/V-301 of water, heavy hydrocarbon product and light hydrocarbon product. This allows for most of the water to be separated from potential product streams. A delta pressure of 159 psi was determined in V-101/V201/V-301, by limiting the amount of C20+ components to a negligible amount. By making the composition of C20+ components negligible in the vapor stream (Stream 103/203/303), better separation of Naphtha components from lighter hydrocarbons could be executed below the 250 °F constraint. C20+ was assumed for this cutoff, allowing untraceable to negligible amounts in streams below 250 °F, making it unlikely for the process streams under the constraint conditions to crystalize.

A fin fan air cooler was chosen to cool Stream 103/203/303 to 100°F, allowing for better separation of TG and LPG from the liquid naphtha product stream, rather than a larger pressure drop across V-102/202/302 that would inhibit the ability for any produced TG to be introduced resourcefully into a process as fuel gas. The fin fan air cooler was also selected because of its remote operation practicality in comparison to cooling water heat exchangers. V-102/202/302 separated out the condensed aqueous phase (Stream 107/207/307), the liquid naphtha (Stream 106/206/306) and the light end hydrocarbons and inert gases. Stream 106/206/306 of Naphtha product met the top end constraint of RVP of natural gasoline⁵ of 14 psia. The top end of the RVP specification was used, as the group assumed it to mean that more LPG/TG components could be used and considered as the higher priced naphtha. Separation of the LPG from the TG was considered but ruled out based upon the assumption, even at complete and total separation of LPG from TG, it would not meet the necessary threshold to justify the lowest cost compressor system, the process would be inherently safer, due to less equipment especially of complexity and the inherent hazard of storing LPG under pressure, and the rich TG was best economically justified for utility needs. The hydrocarbon/inert vapor mixture of stream 105/205/305 is introduced as the majority of the fuel gas to the fire heater that heats the reactants prior to introduction to the syngas reactor.

V-103/203/303 was used to separate the water from the distillate stream, meeting the required temperature dependent solubility limit, as described in the GPSA Handbook⁵. A maximization of distillate product volume was conducted by increasing the pressure drop across V-103/203/303 to 47 psi, which allowed for the most hydrocarbon to drop out of stream 110/209/309. Produced and separated water of stream 108/207/307 was introduced into V-103/203/303, increasing the amount of steam in stream 110/209/309, condensed across the cooling water heat exchanger, E-102/E-202/E-302, to a vapor fraction assumed to be negligibly close to 0%. Stream 111/210/310 is then disposed of as wastewater, meeting the required 75% water purity on a volume basis. The produced water of V-102/202/302 for the 500 MSCFD modular unit size was of a volume that decreased the temperature of Stream 12 below the requested 250 °F. The group was able to solve this issue by introducing heat to the produced water stream of V-102/202/302 with the created medium pressure steam of the FTR at E-103. Produced water of V103/203/303 was combined with V-101/201/301 and used as a steam condensate credit, meeting the volume purity specification of 99.9%.

The post FTR separation streams' of met specification standard volumes are listed below per modular size.

Stream	500 MSCFD Unit	2.5 MMSCFD Unit	5 MMSCFD Unit
TG (105/205/305)	138.4 MSCFD	690.0 MSCFD	1380 MSCFD

Table 1: Post FTR Separation Streams Specifications

Naphtha (106/206/306)	5.73 STBD	28.7 STBD	57.3 STBD
Distillate	37.9 STBD	189.5 STBD	379.0 STBD
(112/212/312)			
Wastewater	7.9 STBD	79.0 STBD	158 STBD
(111/210/310)			
Steam Condensate	57.4 STBD	114.8 STBD	229.6 STBD
(115/214/314)			

The tail gas was determined to have a LHL of 3.222*10^5 Btu/lbmol; this value was found from Aspen HYSYS simulation and used to calculate the ability of tail gas to meet modular fuel gas needs throughout the process.

Sizing of separation equipment was approached by using a well-known and established upstream oil and gas manual by Richard Sivalls¹⁶. The manual distinguishes approaches for selecting liquid-gas three phase separators via correlations, established for liquid and vapor flowrate, in addition to, what the manual describes as, high pressure process vessels (200-2000 psig) and low-pressure process vessels (<125psig).

Optimization of the separation unit was approached by varying temperature and pressure variables over the three phase separators and heat exchangers in the process. Main dependent variables that were looked upon were volumetric flowrate of naphtha and distillate product streams, the Reid vapor pressure

Hydroisomerization Unit

The distillate stream was fed into the HIU; HIU products and utility requirements were calculated as described³.

Conclusions

For this process, the design team was able to design and model a creative solution while still meeting given specifications. It can be concluded from the technical design and economic analysis that the project is feasible. This process was 93.9% energy efficient, making it an attractive for the company on an environmental basis.

In addition to the project being economically feasible, the design is inherently safer. Many efforts were made to design a process that used the best available technology to control the process and contribute to the efforts to reduce greenhouse gas emissions. Through this technology the design team was able to control any remaining hazards which makes this design inherently safer than alternatives.

The system design consists of the syngas feed stream into a packed-bed Fischer-Tropsch reactor which is then fed to a separations unit consisting of three three-phase separators before going to the hydroisomerization unit. Through further analyses, it was determined that the energy efficiency of the system was 93.9%.

In an economic analysis, NPV was found to be \$5.99 million with an ROR of 8.53%. The project is profitable, and the ROR exceeds the minimum discount rate, making this project economically feasible with enhancements in the safety and environmental aspects.

Recommendations

For the project based on the results from preliminary design, it is recommended to remove some of the assumptions provided that simplify the process. The assumption of a 100% methane feed from the well is atypical compared to real well feeds where methane can range from 75% to 98% (mole basis) with an array of other materials from the well including ethane, propane, and butane as well as many impurities like hydrogen sulfide, water vapor and mercury¹⁷. Another assumption taken is that sulfur treatment is not necessarily from the well and as previously stated, wells typically have hydrogen sulfide which usually cost 300 to 600\$/ton to remove excluding the cost of the equipment to treat sulfur¹⁸. Both these assumptions remove essential costs from the project that could impact the economics.

Due to the limitations associated with chemical reaction engineering and scale-up from laboratory tests, the FTR should be empirically modeled in both laboratory and pilot plant scales; experiments should be conducted to understand steady-state behavior, start-up and shut down, and runaway conditions and phenomena. The CO2 absorber column was designed under temperature and pressure conditions not previously validated; although two independent physical property models resulting in similar results, vapor-liquid equilibrium data should be collected prior to implementation.

After the sensitivity and quantitative analyses were run, it was determined that this project is heavily dependent on the price of oil. With the current price of oil, this project cannot reliably produce an economically attractive NPV. Due to this, we are recommending against the project on an economic basis, but suggesting the project be looked into further on an environmental aspect.

Project Premises

The objective of the project is to design a modular GTL plant that follows a safe design and mitigates hazards to people and the environment. This also forbids flaring of hydrocarbons except in emergency situations throughout the process. Find the best possible solution in lowering environmental impact and maximizing energy efficiency, based on the methane feed used and the hydrocarbons produced from that methane. With this approach the group will be able to find the optimum finished liquid fuel production, where a reasonable cost and benefit balance is found. When developing these modular units, follow the principles of MCPI (modular chemical process intensification) to develop quick and easy deployable units. Finally, establish an economic analysis that includes the equipment capital investment, expense cost of designed equipment, and expense costs of the syngas, air separation plant, and hydroisomerization units. In this analysis the following can be assumed:

- Assess project evaluation life of 20 years
- Account for a 7-year straight line depreciation starting first
- 3% yearly inflation and 20% tax rate

- Multiply equipment cost by 4.8 to account for total capital investments
- Estimate total yearly operating expense beyond utilities as 3% of total capital investment
- Execute every 3 years a 1-month turnaround, for non-catalyst replacement purposes
- Factor in 35% depletion in feedstock source every year after 2 years
- Analyze suitable and realistic process control

Heat and Material Balance

_	500 MSCFD	2500 MSCFD	5000 MSCFD
Steam and Steam Condensate	lb/hr consumed	lb/hr consumed	lb/hr consumed
SEP MPS	103	0	0
HIU MPS	14	70	141
MPS	2158	11307	22613
HPS Feed	676	3378	6756
Air Sep HPS	4388	21941	43883
CO2 Recovery HPS	381	1903	3805
FTR SC	2275	11377	22754
Used Air Sep Steam (SC)	-4388	-21941	-43883
Condensed CO2 Recovery Steam (SC)	-381	-1903	-3805
HIU SC	-14	-70	-141
Cooling Water			
Sep CWS	11029	55145	110289
Sep CWR	-11029	-55145	-110289
HIU CWS	29294	146471	292941
HIU CWR	-29294	-146471	-292941
Fuel Gas Stream	MBTU/hr	MBTU/hr	MBTU/hr
Purchased Fuel Gas	-1.705	-8.525	-17.050
Tailgas	-4.907	-24.536	-49.071
Furnace Fuel Gas	0.470	2.350	4.700
Steam Plant Fuel Gas	6.603	33.016	66.033
HIU Fuel Gas	0.046	0.229	0.459
Paraffins	-0.508	-2.539	-5.077
Electrical Streams	kWh/hr	kWh/hr	kWh/hr
FTR Elec	41.8	208.8	417.6
HIU Elec	3.5	17.6	35.2

Table 2: Utility Streams

-	1			T	1		1 4010	5. 170005	s Sircums									
500 MSCFD						Compone	ent Flows	(lb/hr)										
	Vapor	Temperature	Pressure	Mass	Enthalpy	Methane	Ethane	Propane	n-	Water	Carbon	Carbon	Hydrogen	Nitrogen	Naphtha	Diesel	Waxes	Oxygen
	Fraction	(°F)	(psia)	Flowrate	(10^{6}BTU/hr)				Butane		Dioxide	Monoxide						
				(lb/hr)														
Methane	1.00	100	515	881	-1.77	881.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO2	1.00	100	515	604	-2.33	0.0	0.0	0.0	0.0	0.0	604.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oxygen	1.00	75	515	869	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	86.9	0.0	0.0	0.0	860.1
Cleaned	1.00	386	438	1482	-2.10	194.5	0.0	0.0	0.0	2.7	36.2	1084.2	156.8	7.5	0.0	0.0	0.0	0.0
Syngas																		
CO2 Waste	0.00	88	445	311	-1176.00	0.0	0.0	0.0	0.0	0.0	311.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FTR Steam*	1.00	386	125	2275	-12.83	0.0	0.0	0.0	0.0	2275.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Syncrude	0.56	377	405	1443	-5.10	202.5	0.6	0.9	1.2	680.7	36.2	29.9	0.3	6.3	62.4	124.2	298.3	0.0
Tailgas*	1.00	93	88	298	-0.62	201.8	0.6	0.9	1.1	2.4	35.8	29.9	0.3	6.3	19.2	0.1	0.0	0.0
Naphtha	0.00	93	88	60	-0.05	0.2	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	34.7	24.9	0.2	0.0
Waste Water	0.01	100	29	83	-0.52	0.5	0.0	0.0	0.0	74.3	0.2	0.1	0.0	0.0	4.6	3.2	0.0	0.0
Distillate	0.00	258	35	398	-0.32	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	3.9	96.0	298.1	0.0
SEP SC*	0.06	259	35	604	-3.97	0.0	0.0	0.0	0.0	603.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Paraffins*	-	-	-	25	-	3.0	1.5	10.4	10.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HUI	-	-	-	78	-	-	-	-	-	-	-	-	-	-	78.0	-	-	-
Naphtha																		
Diesel	-	-	-	291	-	-	-	-	-	-	-	-	-	-	-	291.0	-	-
H2	-	-	-	2	-	-	-	-	-	-	-	-	2.2	-	-	-	-	-

2500						Compone	ent Flows	(lb/hr)										
MSCFD	Vapor Fraction	Temperature (°F)	Pressure (psia)	Mass Flowrate (lb/hr)	Enthalpy (10 ⁶ BTU/hr)	Methane	Ethane	Propane	n- Butane	Water	Carbon Dioxide	Carbon Monoxide	Hydrogen	Nitrogen	Naphtha	Diesel	Waxes	Oxygen
Methane	1.00	100	515	4406	-8.9	4405.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO2	1.00	100	515	3022	-11.7	0.0	0.0	0.0	0.0	0.0	3021.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oxygen	1.00	75	515	4344	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	434.4	0.0	0.0	0.0	4300.7
Cleaned	1.00	386	438	7409	-10.5	972.3	0.0	0.0	0.0	13.4	180.8	5421.1	783.8	37.3	0.0	0.0	0.0	0.0
Syngas																		
CO2 Waste	0.00	88	445	1557	-5.9	0.0	0.0	0.0	0.0	0.0	1557.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FTR Steam*	1.00	386	125	11375	-64.2	0.0	0.0	0.0	0.0	11375.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Syncrude	0.56	377	405	7217	-25.5	1012.3	3.0	4.4	5.8	3403.5	180.9	149.6	1.3	31.7	312.0	621.1	1491.6	0.0
Tailgas*	1.00	93	88	1491	-3.1	1008.8	3.0	4.3	5.4	12.2	179.1	149.3	1.3	31.6	95.9	0.5	0.0	0.0
Naphtha	0.00	93	88	301	-0.3	0.9	0.0	0.1	0.3	0.0	0.4	0.1	0.0	0.0	173.3	124.6	1.2	0.0
Waste	0.01	100	29	415	-2.6	2.6	0.0	0.0	0.1	371.7	1.1	0.3	0.0	0.1	23.1	16.2	0.0	0.0
Water																		
Distillate	0.00	258	35	1992	-1.6	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	19.7	479.9	1490.3	0.0

Table 3: Process Streams

SEP SC*	0.06	259	35	3018	-19.9	0.0	0.0	0.0	0.0	3017.7	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Paraffins*	-	-	-	127	-	14.9	7.4	52.1	52.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HUI	-	-	-	390	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphtha																		
Diesel	-	-	-	1455	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H2	-	-	-	11	-	-	-	-	-	-	-	-	11	-	-	-	-	-

5000						Compone	ent Flows	(lb/hr)										
MSCFD								1	•		1	1	-		1			1
	Vapor	Temperature	Pressure	Mass Flowrate	Enthalpy	Methane	Ethane	Propane	n-	Water	Carbon	Carbon	Hydrogen	Nitrogen	Naphtha	Diesel	Waxes	Oxygen
	Fraction	(°F)	(psia)	(lb/hr)	(10^6BTU/hr)				Butane		Dioxide	Monoxide						
Methane	1.00	100	515	8812	-18	8812	0	0	0	0	0	0	0	0	0	0	0	0
CO2	1.00	100	515	6043	-23	0	0	0	0	0	6043	0	0	0	0	0	0	0
Oxygen	1.00	75	515	8688	0	0	0	0	0	0	0	0	0	869	0	0	0	8601
Cleaned	1.00	386	438	14818	-21	1945	0	0	0	27	362	10842	1568	75	0	0	0	0
Syngas																		
CO2 Waste	0.00	88	445	3114	-12	0	0	0	0	0	3114	0	0	0	0	0	0	0
FTR Steam*	1.00	386	125	22750	-128	0	0	0	0	22750	0	0	0	0	0	0	0	0
Syncrude	0.56	377	405	14434	-51	2025	6	9	12	6807	362	299	3	63	624	1242	2983	0
Tailgas*	1.00	93	88	2983	-6	2018	6	9	11	24	358	299	3	63	192	1	0	0
Naphtha	0.00	93	88	602	-1	2	0	0	1	0	1	0	0	0	347	249	2	0
Waste Water	0.01	100	29	830	-5	5	0	0	0	743	2	1	0	0	46	32	0	0
Distillate	0.00	258	35	3983	-3	0	0	0	0	4	0	0	0	0	39	960	2981	0
SEP SC*	0.06	259	35	6036	-40	0	0	0	0	6035	1	0	0	0	0	0	0	0
Paraffins*	-	-	-	253	-	30	15	104	104	0	0	0	0	0	0	0	0	0
HUI	-	-	-	780	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphtha																		
Diesel	-	-	-	2910	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H2	-	-	-	22	-	-	-	-	-	-	-	-	22	-	-	-	-	-

"*" Denotes product flow may also be considered utility stream.

FTR Unit Process Flow Diagrams

E-102

V-103

E-103

Three-Phase Condenser

500 MSCFD FTR Unit PFD

V-102

Boiler Feed Packed Bed Syncrude Light End Light-Ends Light-Ends Heavy-Ends Cooling Water

E-101

Water Pump Fischer- Three-Phase Condenser Three-Phase Water

P-101A/B R-101 V-101

Figure 1: 500 MSCFD FTR Process Flow Diagram

Stream Number	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115
Vapor Fraction	1.00	0.56	1.00	0.46	1.00	0.00	0.00	0.11	0.00	1.00	0.01	0.00	0.00	0.00	0.06
Temperature (°F)	386	377	344	100	93	93	93	314	344	258	100	258	258	344	259
Pressure (psia)	438	405	246	240	88	88	88	82	246	35	29	35	35	246	35
Mole Flowrate	129.82	54.50	32.53	32.53	15.23	0.46	16.85	16.85	1.23	4.23	4.23	1.08	12.77	20.74	33.50
(lbmole/hr)															
Mass Flowrate (lb/hr)	1482	1443	662	662	298	60	304	304	408	83	83	398	230	374	604
Enthalpy (-10 ⁶ BTU/hr)	-2.10	-5.10	-2.35	-2.75	-0.63	-0.06	-2.07	-1.97	-0.31	-0.43	-0.52	-0.32	-1.53	-2.45	-3.97
Density (lb/ft ³)	0.49	2.19	0.60	1.78	0.29	44.50	62.48	1.68	43.17	0.09	8.26	45.65	57.81	55.06	1.35
Vol. Flow (Barrel/day)	11649	2820	4702	1587	4332	6	21	774	40	3904	43	37	17	29	1918
Std. Id. Vol. Flow	294.8	141.9	81.5	81.5	55.0	5.7	20.8	20.8	34.7	6.0	6.0	33.8	15.8	25.6	41.4
(Barrel/day)															
Reid Vapor Pressure		1640.4				13.9			6.5	268.9	268.9	0.0			
(psia)															
	101 7	000 F	201.0	Co	ompone	nt Mass	Flows (lb/hr)	0 7		0.7			0.0	0.0
Methane	194.5	202.5	201.9	201.9	201.8	0.2	0.0	0.0	0.5	0.5	0.5	0.0	0.0	0.0	0.0
Ethane	0.0	0.6	0.6	0.6	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Propane	0.0	0.9	0.9	0.9	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
n-Butane	0.0	1.2	1.1	1.1	1.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
n-Pentane	0.0	8.4	8.2	8.2	7.1	1.2	0.0	0.0	0.2	0.2	0.2	0.0	0.0	0.0	0.0
n-Hexane	0.0	9.4	9.0	9.0	5.9	3.1	0.0	0.0	0.4	0.4	0.4	0.0	0.0	0.0	0.0
n-Heptane	0.0	10.3	9.5	9.5	3.7	5.8	0.0	0.0	0.8	0.6	0.6	0.1	0.0	0.0	0.0
n-Octane	0.0	10.9	9.5	9.5	1.7	7.9	0.0	0.0	1.4	0.9	0.9	0.4	0.0	0.0	0.0
n-Nonane	0.0	11.5	9.2	9.2	0.6	8.6	0.0	0.0	2.2	1.2	1.2	1.1	0.0	0.0	0.0
n-Decane	0.0	11.9	8.4	8.4	0.2	8.2	0.0	0.0	3.5	1.2	1.2	2.2	0.0	0.0	0.0
n-Undecane	0.0	12.2	7.2	7.2	0.1	7.1	0.0	0.0	5.0	1.1	1.1	3.9	0.0	0.0	0.0
n-Dodecane	0.0	12.4	5.8	5.8	0.0	5.8	0.0	0.0	6.6	0.9	0.9	5.8	0.0	0.0	0.0
n-Tridecane	0.0	12.6	4.2	4.2	0.0	4.2	0.0	0.0	8.3	0.6	0.6	7.8	0.0	0.0	0.0
n-Tetradecane	0.0	12.6	2.8	2.8	0.0	2.8	0.0	0.0	9.9	0.3	0.3	9.5	0.0	0.0	0.0
n-Pentadecane	0.0	12.7	1.9	1.9	0.0	1.9	0.0	0.0	10.7	0.2	0.2	10.5	0.0	0.0	0.0
n-Hexadecane	0.0	12.6	1.3	1.3	0.0	1.3	0.0	0.0	11.3	0.1	0.1	11.2	0.0	0.0	0.0
n-Heptadecane	0.0	12.5	0.8	0.8	0.0	0.8	0.0	0.0	11.7	0.1	0.1	11.7	0.0	0.0	0.0
n-Octadecane	0.0	12.4	0.5	0.5	0.0	0.5	0.0	0.0	11.9	0.0	0.0	11.9	0.0	0.0	0.0
n-Nonadecane	0.0	12.2	0.3	0.3	0.0	0.3	0.0	0.0	11.9	0.0	0.0	11.9	0.0	0.0	0.0
n-Icosane	0.0	12.0	0.2	0.2	0.0	0.2	0.0	0.0	11.8	0.0	0.0	11.8	0.0	0.0	0.0
C21-C25	0.0	56.2	0.2	0.2	0.0	0.2	0.0	0.0	56.0	0.0	0.0	56.0	0.0	0.0	0.0
C26-C29	0.0	39.7	0.0	0.0	0.0	0.0	0.0	0.0	39.7	0.0	0.0	39.7	0.0	0.0	0.0
C30-C35	0.0	50.2	0.0	0.0	0.0	0.0	0.0	0.0	50.2	0.0	0.0	50.2	0.0	0.0	0.0
C36-C47	0.0	70.1	0.0	0.0	0.0	0.0	0.0	0.0	70.1	0.0	0.0	70.1	0.0	0.0	0.0
C48+	0.0	82.1	0.0	0.0	0.0	0.0	0.0	0.0	82.1	0.0	0.0	82.1	0.0	0.0	0.0
Water	2.7	680.7	305.9	305.9	2.4	0.0	303.5	303.5	1.2	74.3	74.3	0.4	230.0	373.6	603.5
Carbon Dioxide	36.2	36.2	36.0	36.0	35.8	0.1	0.1	0.1	0.1	0.2	0.2	0.0	0.0	0.1	0.1
Carbon Monoxide	1084.2	29.9	29.9	29.9	29.9	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0
Hydrogen	156.8	0.3	0.3	0.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nitrogen	7.5	6.3	6.3	6.3	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 4: 500 MSCFD FTR Unit Stream Table

2500 MSCFD FTR Unit PFD

Figure 2: 2500 MSCFD FTR Unit Process Flow Diagram

Table 5: 2500 MSCFD FTR Unit Stream Table

	r	r	-	r										
Stream Number	201	202	203	204	205	206	207	208	209	210	211	212	213	214
Vapor Fraction	1.00	0.56	1.00	0.46	1.00	0.00	0.00	0.00	1.00	0.01	0.00	0.00	0.00	0.06
Temperature (°F)	386	377	344	100	93	93	93	344	258	100	258	258	344	259
Pressure (psia)	438	405	246	240	88	88	88	246	35	29	35	35	246	35
Mole Flowrate (lbmole/hr)	649.1	272.5	162.7	162.7	76.2	2.3	84.2	6.1	21.1	21.1	5.4	63.8	103.7	167.5
Mass Flowrate (lb/hr)	7409	7217	3310	3310	1491	301	1518	2039	415	415	1992	1150	1868	3018
Enthalpy (10 ⁶ BTU/hr)	-10.49	-25.51	-11.73	-13.74	-3.12	-0.27	-10.34	-1.55	-2.15	-2.58	-1.60	-7.64	-12.23	-19.87
Density (lb/ft ³)	0.49	2.19	0.60	1.78	0.29	44.50	62.48	43.17	0.09	8.26	45.65	57.81	55.06	1.34
Volumetric Flow Rate (Barrel/day)	58247	14099	23508	7935	21659	29	104	202	19522	215	186	85	145	9594
Id. Volumetric Flow Rate (Barrel/day)	1474.0	709.3	407.6	407.6	274.9	28.5	104.1	173.5	29.9	29.9	168.8	78.9	128.2	207.1
Reid Vapor Pressure (psia)		1640.4				13.9		6.5	268.9	268.9	0.0			
				Comp	onent Ma	ass Flow	vs (lb/hr)							
Methane	972.3	1012.3	1009.7	1009.7	1008.8	0.9	0.0	2.6	2.6	2.6	0.0	0.0	0.0	0.0
Ethane	0.0	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Propane	0.0	4.4	4.4	4.4	4.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
n-Butane	0.0	5.8	5.7	5.7	5.4	0.3	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0
n-Pentane	0.0	42.2	41.1	41.1	35.3	5.8	0.0	1.2	1.1	1.1	0.1	0.0	0.0	0.0
n-Hexane	0.0	47.2	44.9	44.9	29.6	15.3	0.0	2.2	2.0	2.0	0.2	0.0	0.0	0.0
n-Heptane	0.0	51.3	47.3	47.3	18.4	28.8	0.0	4.0	3.2	3.2	0.7	0.0	0.0	0.0
n-Octane	0.0	54.6	47.7	47.7	8.4	39.4	0.0	6.9	4.7	4.7	2.2	0.0	0.0	0.0
n-Nonane	0.0	57.3	46.1	46.1	3.2	42.9	0.0	11.2	5.9	5.9	5.4	0.0	0.0	0.0
n-Decane	0.0	59.4	42.1	42.1	1.1	41.0	0.0	17.3	6.2	6.2	11.2	0.0	0.0	0.0
n-Undecane	0.0	61.0	36.0	36.0	0.3	35.7	0.0	25.0	5.5	5.5	19.5	0.0	0.0	0.0
n-Dodecane	0.0	62.1	29.0	29.0	0.1	28.9	0.0	33.1	4.3	4.3	28.8	0.0	0.0	0.0
n-Tridecane	0.0	62.9	21.2	21.2	0.0	21.1	0.0	41.7	2.8	2.8	38.9	0.0	0.0	0.0
n-Tetradecane	0.0	63.2	13.9	13.9	0.0	13.9	0.0	49.3	1.6	1.6	47.7	0.0	0.0	0.0
n-Pentadecane	0.0	63.3	9.7	9.7	0.0	9.7	0.0	53.5	1.0	1.0	52.5	0.0	0.0	0.0
n-Hexadecane	0.0	63.0	6.3	6.3	0.0	6.3	0.0	56.7	0.5	0.5	56.2	0.0	0.0	0.0
n-Heptadecane	0.0	62.6	4.0	4.0	0.0	4.0	0.0	58.6	0.3	0.3	58.3	0.0	0.0	0.0
n-Octadecane	0.0	61.9	2.4	2.4	0.0	2.4	0.0	59.4	0.2	0.2	59.3	0.0	0.0	0.0
n-Nonadecane	0.0	61.0	1.5	1.5	0.0	1.5	0.0	59.5	0.1	0.1	59.4	0.0	0.0	0.0
n-Icosane	0.0	60.0	0.9	0.9	0.0	0.9	0.0	59.2	0.0	0.0	59.1	0.0	0.0	0.0
C21-C25	0.0	281.1	1.1	1.1	0.0	1.1	0.0	280.0	0.0	0.0	280.0	0.0	0.0	0.0
C26-C29	0.0	198.4	0.1	0.1	0.0	0.1	0.0	198.3	0.0	0.0	198.3	0.0	0.0	0.0
C30-C35	0.0	250.8	0.0	0.0	0.0	0.0	0.0	250.8	0.0	0.0	250.8	0.0	0.0	0.0
C36-C47	0.0	350.6	0.0	0.0	0.0	0.0	0.0	350.6	0.0	0.0	350.6	0.0	0.0	0.0
C48+	0.0	410.6	0.0	0.0	0.0	0.0	0.0	410.6	0.0	0.0	410.6	0.0	0.0	0.0
Water	13.4	3403.5	1529.6	1529.6	12.2	0.0	1517.4	6.1	371.7	371.7	1.8	1150.0	1867.8	3017.7
Carbon Dioxide	180.8	180.9	180.0	180.0	179.1	0.4	0.5	0.7	1.1	1.1	0.0	0.0	0.3	0.3
Carbon Monoxide	5421.1	149.6	149.3	149.3	149.3	0.1	0.0	0.3	0.3	0.3	0.0	0.0	0.0	0.0
Hydrogen	783.8	1.3	1.3	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nitrogen	37.3	31.7	31.7	31.7	31.6	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0
U						-	-		1		-	-	-	, <u> </u>

5000 MSCFD FTR Unit PFD

Figure 3: 5000 MSCFD FTR Unit Process Flow Diagram

Table 6: 5000 MSCFD FTR Unit Stream Table

Stream Number	301	302	303	304	305	306	307	308	309	310	311	312	313	314
Vapor Fraction	1.00	0.56	1.00	0.46	1.00	0.00	0.00	0.00	1.00	0.01	0.00	0.00	0.00	0.06
Temperature (°F)	470	377	344	100	93	93	93	344	258	100	258	258	344	259
Pressure (nsia)	438	405	246	240	88	88	88	246	35	29	35	35	246	35
Mole Flowrate	1298.2	545.0	325.3	325.3	152.3	46	168 5	12.3	42.3	42.3	10.8	127.7	207.4	335.0
(lbmole/hr)	1270.2	515.0	525.5	525.5	152.5	1.0	100.5	12.5	12.5	12.3	10.0	127.7	207.1	555.0
Mass Flowrate (lb/hr)	14818	14434	6620	6620	2983	602	3036	4078	830	830	3983	2300	3736	6036
Enthalpy (BTU/hr)	-20.97	-51.02	-23.47	-27.48	-6.25	-0.55	-20.68	-3.10	-4.31	-5.15	-3.19	-15.28	-24.46	-39.74
Density (lb/ft ³)	0.49	2.19	0.60	1.78	0.29	44.50	62.48	43.17	0.09	8.26	45.65	57.81	55.06	1.34
Volumetric Flow Rate (Barrel/day)	116493	28197	47016	15871	43318	58	208	404	39044	430	373	170	290	19187
Id. Volumetric Flow Rate (Barrel/day)	2948.1	1418.5	815.2	815.2	549.9	57.0	208.3	347.0	59.9	59.9	337.6	157.8	256.4	414.2
Reid Vapor Pressure		1640.4				13.9		6.5	268.9	268.9	0.0			
(psia)														
				Com	ponent M	lass Flow	/s (lb/hr)							
Methane	1944.6	2024.5	2019.3	2019.3	2017.6	1.7	0.0	5.1	5.1	5.1	0.0	0.0	0.1	0.1
Ethane	0.0	6.0	6.0	6.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Propane	0.0	8.8	8.7	8.7	8.6	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0
n-Butane	0.0	11.6	11.4	11.4	10.9	0.6	0.0	0.2	0.2	0.2	0.0	0.0	0.0	0.0
n-Pentane	0.0	84.5	82.2	82.2	70.5	11.6	0.0	2.3	2.2	2.2	0.1	0.0	0.0	0.0
n-Hexane	0.0	94.3	89.9	89.9	59.2	30.6	0.0	4.4	4.0	4.0	0.5	0.0	0.0	0.0
n-Heptane	0.0	102.5	94.5	94.5	36.9	57.6	0.0	8.0	6.5	6.5	1.5	0.0	0.0	0.0
n-Octane	0.0	109.2	95.5	95.5	16.7	78.7	0.0	13.7	9.4	9.4	4.4	0.0	0.0	0.0
n-Nonane	0.0	114.6	92.2	92.2	6.3	85.9	0.0	22.4	11.7	11.7	10.7	0.0	0.0	0.0
n-Decane	0.0	118.8	84.2	84.2	2.1	82.0	0.0	34.7	12.4	12.4	22.3	0.0	0.0	0.0
n-Undecane	0.0	122.0	72.1	72.1	0.6	71.4	0.0	50.0	10.9	10.9	39.0	0.0	0.0	0.0
n-Dodecane	0.0	124.3	58.1	58.1	0.2	57.9	0.0	66.2	8.5	8.5	57.7	0.0	0.0	0.0
n-Tridecane	0.0	125.7	42.3	42.3	0.0	42.3	0.0	83.4	5.6	5.6	77.9	0.0	0.0	0.0
n-Tetradecane	0.0	126.5	27.9	27.9	0.0	27.9	0.0	98.6	3.2	3.2	95.4	0.0	0.0	0.0
n-Pentadecane	0.0	126.6	19.5	19.5	0.0	19.5	0.0	107.1	2.0	2.0	105.1	0.0	0.0	0.0
n-Hexadecane	0.0	126.1	12.6	12.6	0.0	12.6	0.0	113.5	1.1	1.1	112.4	0.0	0.0	0.0
n-Heptadecane	0.0	125.2	7.9	7.9	0.0	7.9	0.0	117.2	0.6	0.6	116.6	0.0	0.0	0.0
n-Octadecane	0.0	123.8	4.9	4.9	0.0	4.9	0.0	118.9	0.3	0.3	118.6	0.0	0.0	0.0
n-Nonadecane	0.0	122.1	3.1	3.1	0.0	3.1	0.0	119.0	0.2	0.2	118.8	0.0	0.0	0.0
n-Icosane	0.0	120.1	1.7	1.7	0.0	1.7	0.0	118.3	0.1	0.1	118.3	0.0	0.0	0.0
C21-C25	0.0	562.2	2.2	2.2	0.0	2.2	0.0	560.0	0.1	0.1	560.0	0.0	0.0	0.0
C26-C29	0.0	396.9	0.2	0.2	0.0	0.2	0.0	396.7	0.0	0.0	396.7	0.0	0.0	0.0
C30-C35	0.0	501.7	0.0	0.0	0.0	0.0	0.0	501.7	0.0	0.0	501.7	0.0	0.0	0.0
C36-C47	0.0	701.2	0.0	0.0	0.0	0.0	0.0	701.2	0.0	0.0	701.2	0.0	0.0	0.0
C48+	0.0	821.2	0.0	0.0	0.0	0.0	0.0	821.2	0.0	0.0	821.2	0.0	0.0	0.0
Water	26.9	6806.9	3059.2	3059.2	24.5	0.1	3034.7	12.2	743.4	743.4	3.6	2299.9	3735.5	6035.5
Carbon Dioxide	361.7	361.9	359.9	359.9	358.2	0.8	0.9	1.4	2.3	2.3	0.0	0.0	0.6	0.6
Carbon Monoxide	10842.2	299.3	298.7	298.7	298.6	0.1	0.0	0.5	0.5	0.5	0.0	0.0	0.1	0.1
Hydrogen	1567.5	2.6	2.6	2.6	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nitrogen	74.6	63.4	63.3	63.3	63.3	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0

Figure 4: Simplified GTL Plant Process Flow Diagram

Safety and Environmental Summary

The primary consideration for all design decisions is the safety and environmental impact. A concerted effort was placed on identifying process hazards, evaluating design alternatives with an inherent safety approach, designing passive, active, and procedural controls, to prevent and mitigate the impact of remaining process hazards. Energy efficiency, the second highest weighted decision factor, is 93.9%.

Four waste streams are generated as part of this process: carbon dioxide purge from CO₂ recovery, wastewater from separations, and flue gases from the boiler and fired-heater exhaust. Each can be controlled to the Best-Available Control Technology (BACT); the laws and regulations of the Texas Commission on Environmental Quality were utilized, as a model law for this purpose¹⁹. Of the chemical species potentially present in the process, nitrogen oxides produced through combustion (NOx), carbon monoxide (CO), and volatile organic carbons (VOCs) are subject to BACT requirements. The CO2 purge stream contains a small, albeit substantive, quantity of CO that cannot be readily controlled by changes to operating conditions, which would not generate a much greater environmental impact. The BACT, an oxidative catalyst module, was installed on the CO2 recovery unit, to oxidize up to 98% of the remaining CO to CO2, as well as any trace VOCs²⁰. VOCs containing wastewater will be disposed of by a properly vetted contractor, as the hydrocarbons cannot be adequately removed without prohibitively high capital investment. Low NOx burners, meeting CO omissions requirements, represent the BACT for both boilers and fired heaters²¹, and will be installed on the respective equipment.

Inherent Safety Evaluation

Inherently safer design served as an integral guiding consideration in all design decisions, especially, when evaluating amongst design alternatives. Each of the inherently safer design principles, defined by the Centers for Chemical Process safety, were applied to this project22; examples are as follows:

Substitution

- Water was selected as the absorber solvent in the CO2 recovery unit, opposed to the more toxic and flammable amine solutions.
- Ambient air was used to cool lines 103/203/303, reducing the hazards associated with fouling and corrosion-causing components, which would have resulted from using cooling water.

Minimization

- A plug-flow FTR reactor was used in place of a larger batch, or fluidized bed reactors, to reduce the quantity of reactants and the consequences of a reactor runaway.
- Consuming the LPG fraction and tail gas as fuel, gas on-site minimizes the stored quantity of compressed, flammable gases.
- Oxygen is completely consumed in the syngas reactor, reducing the oxidizer concentration in other parts of the process.

Moderation

- Consuming the LPG fraction precludes the need for higher pressure processes, required to condense the stream.
- Three-phase separators allow for the naphtha-tail gas and distillate-water fractionations to occur at lower pressures than if a single, large column were used.
- Cooling the CO2 recovery feed, between the syngas reactor and absorber, reduces the temperature for the bulk of the process.

Simplification

- Using a single fired heater reduces the equipment required to heat the syngas reactor.
- Using a packed bed, rather than a fluidized bed, greatly simplifies the control and operational parameters.
- Utilizing three-phase separators, rather than distillation columns, reduces the complexities, in terms of additional heat exchange equipment, start-up, and process control, associated with distillation columns.
- Implementing three-phase separators, rather than two-phase separators, allows for a greater degree of separation to occur with less equipment.
- Ambient air was used to cool lines 103/203/303, rather than cooling water, reducing the equipment associated with the latter.

Process Safety Management

Process Hazards

There are few hazards in the GTL plant that exceed the baseline risks, associated with a wellsite. Hydrogen and all hydrocarbons produced are flammable, many being able to form explosive mixtures with air. Proper facility citing, pressure relief, and fireproofing are vital to safe operation. Facility citing should consider the hazards associated with oil and gas extraction and endeavor, in order to minimize the hazards of extraction operations. Additionally, this process produces carbon monoxide, a toxic, colorless, odorless gas; proper monitoring for carbon monoxide and combustible gases is essential to create a safe work environment. All relief devices and transient hydrocarbon waste streams should be vented to a flare. More information on the inherent hazards of the chemical species involved can be found in the Appendix.

Special consideration should be taken toward the prevention and mitigation of an FTR runaway and an uncongested vapor cloud explosion.

FTR Runaway Hazard

The FTR represents the single most inherently hazardous unit in the GTL Plant, predominantly due to the runaway hazard of the exothermic Fischer-Tropsch Reaction. In exothermic reactors, insufficient cooling capacity will cause an uncontrollable increase in temperature, with severe consequences. However, there is no known increase in stoichiometric pressure in the FTR, as opposed to the circumstances behind more infamous runaways²³. Reactor parameters at operating conditions, minimum runaway conditions, and minimum runaway conditions at 0 psig are shown in Table 7. To anticipate the hazards associated with a runaway

FTR, a worst-case scenario runaway, assuming feed temperature 458°F, average hydrocarbon length of 1.50 (the average length at 1664°F), and hydrocarbon heat capacity of methane was modeled; the temperature profile is shown in Figure 5. However, laboratory and pilot plant studies should be pursued to confirm this runaway model and verify the lack of secondary reactions.

Parameter	Operating Condition	Runway	Runaway at 0 psig Jacket
Feed temperature (°F)	386	449	548
Feed flow (mol/hr)	58.9	16.8	2.0
Feed Pressure (psia)	438	617	>15,000
Jacket Pressure (psia)	189.5	215.5	N/A

Table 7: Operating and Runaway Conditions

Figure 5: Worst-Case Runaway Temperature Profile

From Table 7 and Figure 5, it is apparent that the focus of FTR safety efforts should be upon prevention, as opposed to mitigation of effects. Notably, no pressure readings above the feed pressure were observed in the reactor model, and outlet temperature was an unreliable means of determining the presence of a runaway. At the temperatures concentrated over the length predicted, a loss of metallurgical integrity in most materials, including carbon steel, would occur. Adding heat resistant coatings to the FTR or using heat resistant materials of construction should be considered to limit the impact of a runaway event, although it is unlikely the reactor could sustain such an event without substantive damage, requiring major repair.

To prevent a runaway event, several active safety systems should be put into effect. First, the control system regulates the pressure of the two-phase region on the shell side of the reactor, as well as the level in the reactor. It is apparent from the runaway conditions at 0 psig, simply lowering the pressure on the shell side of the FTR can be sufficient to prevent reactor runaway. There are systems designed to detect and alarm when the process upsets, including when feed

temperature exceeds its bounds, there are signs of reaction runaway, the flow rate or outlet pressure increase. Appropriate safety interlocks should be designed to increase reaction cooling, quenching the reactor with steam, when a runaway is detected. Provisions should be made to supply cooling media in the event of P-101A/B, P-201A/B, or P-301A/B failure, either through a redundant pump with an independent power supply or the utilization of cooling water. The shell side of the reactor is protected by both a pressure safety valve and a rupture disk; both devices should be set so that the overpressure experienced is less than the minimum runaway pressures.

P&IDs of the Major Fractionator

500 MSCFD FTR Unit P&ID

Figure 6: 500 MSCFD FTR Unit P&ID

2500 MSCFD FTR Unit P&ID

Figure 7: 2500 MSCFD FTR Unit P&ID

27

5000 MSCFD FTR Unit P&ID

Figure 8: 5000 MSCFD FTR Unit P&ID

Uncongested Vapor Cloud Deflagration

The deflagration of an uncongested vapor cloud is able to occur at any point, where a potential vapor leak can be found in the process. This is most likely to occur in the Syngas unit and the FTR. These units were determined to be the most possible areas for leaks to occur, due to the high pressures, temperatures, as well as having the largest capacity for vapors to reside. The most probable ignition source locations for deflagration in the process are at the syngas unit furnace and the FTR feed heat exchanger. The best possible actions for prevention and mitigation of deflagration are having daily leak checks by operators, emergency shut offs, in case of leaks, an installation of automated block valves on fuel and feed lines, and an increasing distance of ignition sources from flammable and explosive materials.

Safety Summary

There are several substantive hazards associated with the GTL process that require a dedicated process safety plan to manage; however, few hazards are greater or different to those typically encountered on a wellsite. Inherently safer design principles were applied throughout the design to minimize the safety risks of the project. For the hazards that could not be avoided through design alternatives, passive and active measures to prevent or mitigate the hazards were explored, with several recommended for implementation in the latter stages of design. Special effort was taken to determine the conditions under which the FTR would runaway, with the bulk of safety measures focused on mitigating this aspect of the design. Safety was central to the design of the control system as well as line sizing. Finally, the impacts of and mitigation for an uncongested vapor cloud deflagration was considered. The result of these efforts is a plant mitigated to an acceptable level of risk.

Heat Exchangers	E-101	E-102	E-103	Heat Exchangers	E-201	E-202		Heat Exchangers	E-301	E-302	
			D 11 D	- T				T T			
Туре	Fin Fan Air	Floating Head	Double Pipe	Туре	Floating Head	Floating Head		Туре	Floating Head	Floating Head	
Area (ft ²)	14.2	38.7	17.7	Area (ft ²)	936	7082		Area (ft ²)	936	7082	
Duty (10 ³ BTU/hr)	93	441	110	Duty (10 ⁶ BTU/hr)	49.2	19.4		Duty (10 ⁶ BTU/hr)	49.2	19.4	
Shell				Shell				Shell			
Temp. (°F)	75	343.9	94.1	Temp. (°F)	500	131		Temp. (°F)	500	131	
Press. (PSIA)	175.0	132.0	175.0	Press. (PSIA)	175.0	132.0		Press. (PSIA)	175.0	132.0	
Phase	Condensing	Condensing	2-Phase	Phase	Condensing	Condensing		Phase	Condensing	Condensing	
МОС	CS	CS	CS	MOC	CS	CS		MOC	CS	CS	
Stream	Air	process	Process	Stream	Mps	process		Stream	Mps	process	
Tube				Tube				Tube			
Temp. (°F)	343.9	353	80	Temp. (°F)	253	120		Temp. (°F)	253	120	
Press. (PSIA)	246.0	139.7	60	Press. (PSIA)	130.0	64.7		Press. (PSIA)	130.0	64.7	
Phase	Liquid	Vapor	Liquid	Phase	Liquid	Liquid		Phase	Liquid	Liquid	
МОС	CS	CS	CS	МОС	CS	CS		MOC	CS	CS	
Vessels	V-101	V-102	V-103	Vessels	V-201	V-202	V-203	Vessels	V-301	V-302	V-303
Orientation	Horizontal	Horizonal	Horizonal	Orientation	Horizontal	Horizonal	Horizonal	Orientation	Horizontal	Horizonal	Horizonal
Temp. (°F)	343.9	93.9	257.8	Temp. (°F)	120	109	105	Temp. (°F)	120	109	105
Press. (PSIA)	246	98	35	Press. (PSIA)	131.1	130	220.9	Press. (PSIA)	131.1	130	220.9
МОС	CS	CS	CS	MOC	CS	CS	CS	MOC	CS	CS	CS
Height/length (ft)	17.6	12.9	13.1	Height/length (ft)	17.6	12.9	13.1	Height/length (ft)	17.6	12.9	13.1
Diameter	14	10	8	Diameter	14	10	8	Diameter	14	10	8
Reactor	R-101			Reactor	R-201			Reactor	R-301	R-302	
Туре	Floating Head			Tubesheet Type	Floating Head			Tubesheet Type	Floating Head	Floating Head	
Duty (10 ⁶ BTU/hr)				Duty (10 ⁶ BTU/hr)				Duty (10 ⁶ BTU/hr)			
Shell				Shell				Shell			

Temp. (°F)	386	Temp. (°F)	386		Temp. (°F)	386	386	
Press. (PSIA)	196	Press. (PSIA)	196		Press. (PSIA)	196	196	
Phase	Evaporating	Phase	Evaporating		Phase	Evaporating	Evaporating	
MOC	CS	MOC	CS		MOC	CS	CS	
Stream	SC	Stream	SC		Stream	SC	SC	
Tube		Tube			Tube			
Number	1000	Number	2500		Number	2500	2500	
Diameter (in)	1.25	Diameter (in)	1.25		Diameter (in)	1.25	1.25	
Length (ft)	36.33	Length (ft)	36.33		Length (ft)	36.33	36.33	
Temp. (°F)	253	Temp. (°F)	253		Temp. (°F)	253	253	
Press. (PSIA)	130.0	Press. (PSIA)	130.0		Press. (PSIA)	130.0	130.0	
МОС	CS	MOC	CS		MOC	CS	CS	
Pumps	P-101A/B	Pumps	P-201A/B		Pumps	P-301A/B	P-302A/B	
Flow (gpm)	20	Flow (gpm)	20		Flow (gpm)	20	20	
Fluid Density (lb/ft ³)	62.4	Fluid Density (lb/ft ³)	62.4		Fluid Density (lb/ft ³)	62.4	62.4	
Brake Power (hp)	10.6	Brake Power (hp)	10.6		Brake Power (hp)	10.6	10.6	
ΔP (PSI)	235	ΔP (PSI)	235		ΔP (PSI)	235	235	
Discharge (PSIA)	250	Discharge (PSIA)	250		Discharge (PSIA)	250	250	
МОС	CS	MOC	CS		MOC	CS	CS	

Figure 9: Equipment Information Summary

Unit Control and Instrumentation Description

There are two handles on the FTR, both on the cooling jacket side: LV1 and PV1. LV1 controls the flow of steam condensate from P101A/B, P201A/B, or P301A/B into the FTR through LIC1, based off the liquid level in the FTR jacket. The pressure in the jacket is controlled through a cascade loop, so any runaways can be quickly mitigated. The pressure is primarily controlled by PV1 through PIC1, as measured by PT1. The secondary controller, FI1, uses the flow rate of the effluent hydrocarbons to establish an external set point for LIC1. The FTR is supported by a wide swath of additional instrumentation, primarily to prevent or detect potential runaway conditions. As the cleaned syngas enters the FTR, the temperature is measured by PT3, before the outlet flow is measured by FI1. To prevent runaways, TIC1, LIC1, PIC1, PI3, and F1 were outfitted with appropriate alarms.

Each of the three-phase separators (V-101/V-102/V-103) implemented the same control methodology. The flow of the aqueous phase out of LV11/LV21/LV31 were controlled by LIC11/LIC21/LIC31, based on the level of the aqueous/organic liquid phase interface. It is likely the total liquid level, as transmitted by LT12/LT22/LT32, controlled the flow of organic phase through LV12/LV22/LV32. Pressure in the vessel was controlled by PIC11/PIC21/PIC31 through PV-11/PV-21/PV31.

The controlled variable for all heat exchangers was the temperature of the effluent process fluid, while the manipulated variable was the flow of the cooling or heating media. FV201 and FV301 were controlled by TIC201 and TIC301 respectively, while the fan of E-101/E-201/E-301 was controlled via TT101, through a variable frequency drive.

All piping in the FTR and separation unit were sized, based on either 3-phase, 2-phase, liquid, and gas flows. The basis for sizing 3-phase flow was varying the diameter to adjust the line velocity and move liquid and gas volumetric flows into a stratified flow regime, based on a flow regime chart in GPSA⁵. Calculation of 2-phase flow was accomplished by using a diameter calculation specified in the PDH course on optimum pipe sizing²⁴. For liquid flow, the inner diameter of the pipe was assumed, then plugged into the continuity equation to calculate the line velocity of the fluid. Based on heuristic data, found from Norsok Standard²⁵, a velocity range of 2.6 ft/s and 19.7 ft/s was used to figure the optimum diameter of the pipe. For gas flow, diameter was varied and used in the technique, found from "Pipe Line Rules of Thumb Handbook," to find the optimum diameter. Heuristic ranges of 15 ft/s to 60-80 ft/s, found from PetroWiki²⁶, were used for determining an appropriate line diameter for gas flow. Welds for pipe connections were selected to lower the chance of mass flow leaks between units and equipment.

Economics

Capital Costs

The capital costs for each unit are shown in Tables 8. The cost of the syngas unit, hydroisomerization unit, CO₂ unit, and steam plant were created from the base capital expenditures, multiplied by a capacity factor, and the sixth-tenths rule, as prescribed by AIChE3. The cost of the FTR was based on the layout of the reactor, pressure, and size. The separators' cost was based on the load and the maximum allowable working pressure (MAWP). Finally, the cost of the heat exchangers was based on a purchased equipment cost scaling factor. All equipment was costed, using a CEPCI scaling factor of 1.67. This was found based on historical CEPCI data²⁷ and an analyzing a trendline. Equipment was also multiplied by a factor of 4.8, to account for additional costs and working capital, and a Lang factor of 1.7, per the project statement.

Equipment	Cost
SynGas	\$2,126,000
Hydroisomerization	\$1,492,000
CO ₂ Recovery	\$961,000
Steam Plant	\$69,000
FTR	\$2,020,000
Separators	\$101,000
Heat Exchangers	\$692,000
TOTAL	\$7,461,000

Table 8: Capital Cost of 500 MSCFD Unit

Equipment	Cost
SynGas	\$6,251,000
Hydroisomerization	\$3,264,000
CO ₂ Recovery	\$2,329,000
Steam Plant	\$345,000
FTR	\$3,640,000
Separators	\$112,000
Heat Exchangers	\$1,059,000
TOTAL	\$17,360,000

Table 9: Capital Cost of 2.5 MMSCFD Unit

Equipment	Cost
SynGas	\$9,949,000
Hydroisomerization	\$5,305,000
CO ₂ Recovery	\$3,410,000
Steam Plant	\$690,000
FTR	\$8,990,000
Separators	\$125,000
Heat Exchangers	\$1,588,000
TOTAL	\$30,062,000

Table 10: Capital Cost of 5 MMSCFD Unit

Operating Costs

The operating costs were found using the specifications given in the problem statement. The utility specifications can be found in Table 11 and the total utility costs for each unit can be found in Table 12.

Utility	Cost	Credit
HP Steam	\$5/klb consumed	\$4/klb produced
MP Steam	\$4/klb consumed	\$3/klb produced
LP Steam	\$3.5/klb consumed	\$2.5/klb produced
Electricity	\$0.04/kWh consumed	\$0.03/kWh produced
Fuel Gas	\$3/MBTU consumed	\$2/MBTU produced
Hydrogen	\$0.06/lb consumed	
Carbon Dioxide	\$400/MSCF consumed	
Steam Condensate		\$2/klb produced
Process/Cooling Tower Water	\$0.50/kgal consumed	\$0.35/klb produced
Waste Water Treatment	\$6/kgal produced	

Table 11: Utility Specifications

Unit	Total Utility Cost
500 MSCFD	\$1,257,055
2.5 MMSCFD	\$6,285,300
5 MMSCFD	\$12,570,550

In addition to utilities, operational labor was accounted for, assuming each operator would work 40 hours/week and 50 weeks/year. The hourly wage of a plant and system operator in the oil and gas extraction industry was found through the Bureau of Labor Statistics²⁸. Operational labor costs are found in Table 13.

Number of Operators	4
Hourly Wage	\$39.50
Total Operator Cost per	\$316,000
Year	

Operating costs other than utilities and labor were accounted for by taking 3% of the total capital investment.

Logistics Considerations

Groupings

For the purpose of optimizing the capacity of the central plant, an approach of grouping wells together was taken. An optimization analysis, similar to the transportation problem, used to decide optimal transportation locations and resource allocations²⁹, was run in Excel to optimize the combinations, while trying to create groups with total production as close to 30,000 MSCFD as possible. The analysis resulted in groups shown below in Table 14. These groupings were the basis of optimization and used during the redeployment scheduling process discussed.

Group 1	Group 2	Group 3	Group 4
1B	2A	1C	1G
1E	1D	1H	1A
1F	2D	2E	1B
2C	2F	2G	
	2H		

TT 11	1 1	α	•
Table	14:	(irol	inings
Inon		0100	μ μ λ λ λ λ

Optimization Process

In order to optimize the unit capacity on each well, all possible unit combinations for production of each well were analyzed. Production was based on year 1 production, due to it being the highest well head flow rate. Once all possible combinations were identified, a present worth cost analysis was performed for each combination on each well. The analysis was conducted through the first 11 years, including annual production revenue, annual utility costs, annual trucking costs, and annual equipment costs.

With combinations analyzed, the cases were ranked from best to worst. The top 3 cases for each well were organized in a table and considered for implementation. A theoretical Net Present Value (NPV) was calculated, as if all required modules were built in a well's 11-year operation life. The cost of all potential combinations of reactors was also considered. The 3 best cases were analyzed to optimize the number of each size unit that would be fabricated. This included trying to keep the number of each size unit equal throughout all groups while still maximizing NPV. The best cases, based on NPV across a 11-year life only considering utilities, revenue and number of units without accounting for fixed capital costs, are shown below in

Table 15. Capital costs were not accounted for under the assumption that all units would be fabricated during year 0 before production begins. The best and worst case NPVs of the top 3 cases for each well were analyzed and totaled by group. The totals of the top 3 cases were analyzed and used to determine which case would be used for which group.

Well ID	Best Case NPV	Worst Case	# of 500	# of 2.5	# of 5
		NPV	MSCFD	MMSCFD	MMSCFD
1A	\$17.04 MM	(\$13.89) MM	1	1	0
1B	\$11.46 MM	(\$14.45) MM	0	0	1
1C	\$32.10 MM	(\$29.75) MM	0	0	2
1D	\$28.15 MM	(\$20.82) MM	0	1	1
1E	\$12.66 MM	(\$23.43) MM	0	2	0
1F	\$55.44 MM	(\$37.34) MM	0	0	3
1G	\$43.84 MM	(\$36.05) MM	0	1	2
1H	\$26.65 MM	(\$22.32) MM	0	1	1
2A	\$34.61 MM	(\$27.24) MM	0	0	2
2B	\$46.19 MM	(\$33.70) MM	0	1	2
2C	\$33.67 MM	(\$28.15) MM	0	0	2
2D	\$14.64 MM	(\$16.29) MM	0	0	1
2E	\$29.80 MM	(\$27.03) MM	1	1	1
2F	\$11.83 MM	(\$14.87) MM	1	1	0
2G	\$27.37 MM	(\$21.60) MM	0	1	1
2H	\$29.44 MM	(\$24.20) MM	0	1	1

Table 15: Best and Worst Case

This analysis led to the conclusion that five 5 MMSCFD units, three 2.5 MMSCFD units, and one 500 MSCFD unit would be fabricated in year 0. The units fabricated are shown below in Table 16.

Unit Size	Unit Name
500 MSCFD	A1
2.5 MMSCFD	B1
2.5 MMSCFD	B2
2.5 MMSCFD	B3
5 MMSCFD	C1
5 MMSCFD	C2
5 MMSCFD	C3
5 MMSCFD	C4
5 MMSCFD	C5
After units were determined, a sensitivity analysis was run to determine the optimum time for a well to produce, while maximizing NPV. The graphs of the varying times v. NPV are shown below for Group 1, Group 3, and Group 4.

Figure 10: Group 1 NPV

Figure 11: Group 3 NPV

Figure 12: Group 4 NPV

Group 2 was the last group of wells to be put into production from the field as well as optimized. From the graphs above, the implementation of Group 2 into the cash flow sheet moved closer to the present the maximum NPV value of the project due to its additional production capacity. This was completed by trial and error of moving the starting of Groups 3 and 4 as well as the beginning of Group 2.

Once the groups, the best cases, and the number of each unit to be fabricated had been determined, a map of the field was created, and the distances between all wells were calculated. The distances between wells were used to minimize the trucking costs. This allowed each well to be moved the shortest distance, while still optimizing production and following best case scenarios. After determining the redeployment schedule, a sensitivity analysis was run to determine the units' duration on each well, in order to maximize production. It was found that the units would stay on the Group 1 wells from years 1-4, Group 2 wells from years 5-8, Group 3 wells from years 9-12, and Group 4 wells from years 13-20. The deployment and redeployment schedule of each unit is shown below in Figure 13.

Project Planner												
		•		LEGEND		Permiting Co	nstruction Group 1	Group 2	Group 3			
	ACTIVITY	PLANNED PRODUCTION START	PL AN DURATION		0	1	2	3	4			
	A1	YR 1	19 Years	Permitting	Construction		WELL 1B		WELL 1B			
	B1	YR 2	20 Years	Permitting	Construction		WELL 1B		WELL 1B			
	B2	YR 3	20 Years	Permitting	Construction		WELL 1E		WELL IE			
	B3	YR 4	21 Years	Permitting	Construction		WELL IE		WELL IE			
	Cl	YR 5	22 Years	Permitting	Construction		WELL 2C		WELL 2C			
	C2	YR 6	23 Years	Permitting	Construction		WELL 2C		WELL 2C			
	C3	YR 7	24 Years	Permitting	Construction		WELL 1F		WELL 1F			
	C4	YR 8	25 Years	Permitting	Construction		WELL 1F		WELL IF			
	C5	YR 9	26 Years	Permitting	Construction		WELL IF		WELL IF			
	C6	SPARE		Permitting	Construction		SPARING		SPARING			

Figure 13: Project Schedule

7	8	9	10	11	12	13	14	15	
WEL	L 2F	WELL 2E		WELL 2E			IDLE		
WEL	WELL 2H			WELL 1H			WELL 2B		
WEL	WELL 2F			WELL 2G		WELL 1G			
WEL	L 1D	WELL 2E		WELL 2E		WELL 1C			
WEL	L 2D	WELL 1C		WELL 1C			WELL 1A		
WEL	L 2H	WELL 2G		WELL 2G			WELL 1G		
WEL	L 1D	WELL 1C		WELL 1C			WELL 1G		
WEL	L 2A	WELL 2E		WELL 2E			WELL 2B		
WEL	WELL 2A			WELL 1H			WELL 2B		
SPAR	SPARING			SPARING			WELL 2E		

Figure 13: Cont'd

16	17	18	19	20	
	IDLE		ID	LE	
	WELL 2B		WEL	L 2B	
	WELL 1G		WEL	L 1G	
	WELL 1C		WEL	L 1C	
	WELL 1A		WEL	L 1A	
	WELL 1G		WEL	L 1G	
	WELL 1G		WEL	L 1G	
	WELL 2B		WEL	L 2B	
	WELL 2B		WEL	L 2B	
	WELL 2E		WEI	L 2E	

Figure 13: Cont'd

The groupings approach of scheduling wells was conducted to maximize capacity at the central plant, optimizing the number of units needed to be produced, allowing the retirement of unit A1 to occur at the end of year 12. Retirement of all other units will occur at the end of the project's life.

After distinguishing the deployment and redeployment schedule, spare units were considered. Due to the turnaround being every three years, it was determined that only one spare unit would be needed on hand. It was then decided that the unit would be a 5 MMSCFD unit, due to the high capacity and flexible placement, allowing for it to replace any size unit at any well and allowing for that well to maintain maximum capacity. Assuming the redeployment of the units to Group 4 wells, the spare C6 unit could be used on well 2E to continue production, after its completion of the third round of wells, maximizing NPV for the project.

Expected Plot Layout

Figure 14: Expected Plot Layout Drawing

Summary of Project NPV and Sensitivities

NPV

This project is based on a 20-year project evaluation life. The project was assumed to be under permitting applications and construction during 2022, with production beginning at the first of 2023. Depreciation was accounted for using straight-line depreciation over a 7-year depreciation period. Per the project statement, taxes were accounted for at 20% taxable income. The discount rate was assumed to be 8% and the service factor was given as 80%. It was also assumed that escalation could be accounted for under the washout assumption.

Cach Eler-	-														I								
ash Flow	/			0.8	0.8	0.8	8.0	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
ctual Year			2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2
nd of Year			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
Yearly Produ	ction (MMS	SCF)																					
1		1A														1312.2	1312.2	853.0	554.4	360.4	234.2	152.3	9
1		1B		872.8	872.8	567.3	368.8								1000 0		126.0		1040				
1								2174.5	2174.5	14134	018 7	2442.0	2442.0	1587.7	1032.0	0/0.8	430.0	285.4	184.2	119.7	77.8	50.0	
1		1E		960.7	960.7	624.4	405.9	21/4.2	21/4.2	1112.1	510.7												
1		lF		4303.2	4303.2	2797.1	1818.1																
1		1G														3374.1	3374.1	2193.1	1425.5	926.6	602.3	391.5	2
1		1H										2067.7	2067.7	1344.0	873.6								
1		2A						2682.6	2682.6	1743.7	1133.4												
1		2B														3579.3	3579.3	2326.6	1512.3	983.0	638.9	415.3	-
1		2C		2552.7	2552.7	1659.2	1078.5	1121.2	1121.2	73 0 0	472.7												
1		20						1121.5	1121.5	12.0.0	4/5./	2318.2	2318.2	1506.8	070 4	636.6	413.8	260.0	174.8	113.6	73.0	480	
1		2F						839.2	839.2	545.5	354.6	20102	2010.2	1500.0	515.4	050.0	415.6	203.0	114.0	115.0	12.2	40.0	
1		2G										1774.2	1774.2	1153.2	749.6								
1		2H						1894.5	1894.5	1231.4	800.4												
		Total	0.000	8689.3	8689.3	5648.1	3671.2	8712.1	8712.1	5662.9	3680.9	8602.6	8602.6	5591.7	3634.6	9573.1	9115.5	5925.1	3851.3	2503.3	1627.2	1057.7	
e venue			0.000	57.006	57.006	37.054	24.085	57.156	57.156	37.151	24.148	56.437	56.437	36.684	23.845	62.804	59.802	38.871	25.266	16.423	10.675	6.939	
Salvage Cost Itilities			0.000	17 477	17 477	11 260	7 2 8 4	17 522	17522	11 200	7 402	17202	17 202	11 247	0.740	10.254	10 224	11.01.7	7 746	5.025	2 272	2 127	1
Trucking			0.000	-17.477	-17.477	-11.500	-7.364	-17.525	-17.525	-11.550	-7.405	-17502	-17.302	-11.247	-7.510	-19.2.54	-18.554	-11.917	-7.740	-5.055	-5.275	-2.127	-
2	62	1A		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.174	-0.174	-0.113	-0.073	-0.048	-0.031	-0.020	-
	21	1B		-0.039	-0.039	-0.025	-0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	17	1C		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.089	-0.089	-0.058	-0.037	-0.024	-0.016	-0.010	-0.007	-0.004	-0.003	-0.002	-
	73.4	1D		0.000	0.000	0.000	0.000	-0.341	-0.341	-0.222	-0.144	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	6.2	1E		-0.013	-0.013	-0.008	-0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	50	16		-0.837	-0.837	-0.544	-0.354	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	89.3	10		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.395	-0.395	-0.256	-0.167	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-
	85.8	2A		0.000	0.000	0.000	0.000	-0.492	-0.492	-0.320	-0.208	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	(
	84.7	2B		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.648	-0.648	-0.421	-0.274	-0.178	-0.116	-0.075	-(
	2.4	2C		-0.013	-0.013	-0.009	-0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	(
	42	2D		0.000	0.000	0.000	0.000	-0.101	-0.101	-0.065	-0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	(
	98.8	2E		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.049	-0.049	-0.032	-0.021	-0.013	-0.009	-0.006	-0.004	-0.002	-0.002	-0.001	-(
	13	2F		0.000	0.000	0.000	0.000	-0.023	-0.023	-0.015	-0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	8/	2G 2H		0.000	0.000	0.000	0.000	-0.146	-0.146	-0.000	-0.062	0.000	0.000	-0.214	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	50	Total	0.000	-0.902	-0.902	-0.586	-0.381	-1.103	-1.103	-0.717	-0.466	-0.862	-0.862	-0.560	-0.364	-1.285	-1.272	-0.827	-0.537	-0.349	-0.227	-0.148	-0
Catalyst Cost			-1.790			-1.790			-1.790			-1.790			-1.790			-1.790			-1.790		
			4 020	4 020	4 020	4 020	4 020	4 0 2 0	4.02.0	4 020	4 000	4 0 0 0	4 000	4 000	4 000		4 000	4.020	4 000	4 000	4 000	4 000	

Figure 15: Cash Flow

-0.316	-0.316	-0.316	-0.316 End	-0.316	-0.316	
0 0 01791 03582 14328 0	0 0 11.74732 -2.34946 9.397855 0	0 5.80329 -1.1607 4.64263 0	0 0.1495 -0.03 0.1196 0	0 -0.5717 0.1143 -0.4573 0	0 -0.225 14.912 -2.982 11.93 0	
81433 73449 18619 15	9.39785 2.74314 0.62317 16	4.6426 1.2548 0.605 17	0.12 0.03 0.587 18	-0.457 -0.106 0.5703 19	11.93 2.559 0.554 20	

Sensitivity Analysis

An economic sensitivity analysis was run on the project to determine the best and worst case scenarios. The best-case scenario included reducing the capital cost to 80% of the expected value, operating cost and utilities cost to 90% of the expected value, increasing revenue by 30%, and trucking cost to \$1.19/mile drive (95% of expected cost). Trucking cost was reduced to account for the slight possibility of trucking advancements that could result in a lower cost. The worst case included increasing capital cost to 130% of the expected cost, operating cost and utilities cost to 105%, decreasing revenue by 30%, and the trucking cost to \$6.50/mile driven. The trucking cost was increased, accounting for realistic values, given by a ChampionX Consulting Group vendor quote. The operating cost and utilities cost varied with room for fluctuation, but under the assumption that they would be reduced over time. The capital cost varied, based on historical data³⁰. The revenue varied, based on the WTI price data collected over the last 10 years³¹. A summary of the sensitivity analysis and quantitative are shown below in Table 17.

	Best Case	Expected Case	Worst Case
ROR	23.37%	8.53%	-11.14%
NPV	\$156.97 MM	\$5.99 MM	(\$187.07) MM

Table	17:	Sensitivity	Analysis
		~	~

After conducting a sensitivity analysis, the standard deviation was calculated using the propagation of error method with values from the best and worst case scenarios. This allowed the conclusion that the economic aspect of the project is heavily dependent upon the price of oil. Using the 95% confidence limits, the ROR of the expected case was found to range between 1.97% and 19.03%.

Engineering Calculations, Computer Simulation Outputs

Figure 16: Aspen HYSYS Separation (Other sizes included in Appendix)

	HEX Coolers for 500																						
Duty (Btu/hr)	Duty (Btu/hr) OSIZE	Thi (F)	Tci (F)	Tho (F)	Tco (F)	∆Tlm (F)	F	U (Btu/hr	A (ft^2)	p (Btu/lb*	ΔT (F)	K1	K2	K3	Сро	FP	FM	B1	B2	Fbm	CBM	TM	TM(2022)*
401,170	441,286	343.9	80	100	120	84.4	0.9	150	38.7	0.24036	40	3.3444	0.2745	-0.0472	4584.332	1	. 1	0.96	1.21	2.17	22004.79	37408.15	62471.61

Table 18: HEX Sizing Calculation (Full Sizing included in Appendix)

	Liquio	d Phase							
	V-101 to C	Condensate					Gas Phase		
Nominal [Inner Dia(in)	Q (bbl/d)	V (ft/s)			V-	101 to E-101		
0.125	0.269	29	4.774958		Nominal [Inner Dia(in)	Q (MMCFD)	P(psia)	V (ft/s)
0.25	0.364	29	2.607783		0.125	0.269	0.2957	246	519.1127
0.375	0.493	29	1.421609		0.25	0.364	0.2957	246	283.5068
0.5	0.622	29	0.893086		0.375	0.493	0.2957	246	154.5512
0.75	0.824	29	0.508885		0.5	0.622	0.2957	246	97.09245
1	1.049	29	0.313995		0.75	0.824	0.2957	246	55.32378
1.25	1.38	29	0.181433		1	1.049	0.2957	246	34.13621
1.5	1.61	29	0.133298		1.25	1.38	0.2957	246	19.72459
Liquid Cal	D*5.61458/(24*6	0*60)/(PI()/4*(Q/1	2)^2) = V		1.5	1.61	0.2957	246	14.49154
						Gas Cal	(0.75*(Q*100	0000/24)/(D ⁴	2*P)) =V
	3 Ph	nase Calculation							
	R	-101 to V-101							
	Vapor	Liq	Aq						
Frac	0.558	0.0237	0.4183	0.442					
N				0					
V(m/s)	0.1			0.075416					
Q(m^3/s)	0.000153556	6.39444E-05	5.19E-05	0.000116					
D (m)	0.044216853			0.044217					
				1.740827					
Based on	flow regime in GP	SA		1.75in					
		Two Phase Gas	/Liq Flow F	Pipe Dia					
Stream Na	QL (m3/s)	QG (m3/s)	Inner Dia	VsG	VsL	Inner Dia (In)			
E-103 to V	2.85404E-05	0.001040318	0.00635	32.8495	0.901204	0.25			
E-103 to V	2.85404E-05	0.001040318	0.0127	8.212375	0.225301	0.5			
E-103 to V	2.85404E-05	0.001040318	0.01905	3.649944	0.100134	0.75			
E-103 to V	2.85404E-05	0.001040318	0.0254	2.053094	0.056325	1			
E-103 to V	2.85404E-05	0.001040318	0.0381	0.912486	0.025033	1.5			
E-103 to V	2.85404E-05	0.001040318	0.0508	0.513273	0.014081	2			
E-103 to V	2.85404E-05	0.001040318	0.0635	0.328495	0.009012	2.5			
VsG=QG/(QG/(PI()/4*D^2)		VsL=QL/(F	I()/4*D^2)					

Figure 17: Pipe Sizing Calculation Charts (Full Piping Summary in Appendix)

Reactor Operating Temperature	466.811886	К	
T3	0.755590114		
T4	1.007031008		
alpha	0.936538837		
n	Wn	Mn	Mn'n
5	0.015491348	0.048822	0.244108
6	0.017409899	0.045723	0.274339
7	0.019022555	0.042822	0.299751
8	0.020360413	0.040104	0.320833
9	0.021451857	0.037559	0.338031
10	0.022322775	0.035175	0.351755
11	0.02299676	0.032943	0.362375
12	0.023495301	0.030853	0.370231
13	0.02383795	0.028895	0.375631
14	0.024042486	0.027061	0.378854
15	0.02412506	0.025344	0.380155
16	0.024100326	0.023735	0.379765
17	0.023981572	0.022229	0.377894
18	0.02378083	0.020818	0.37473
19	0.023508986	0.019497	0.370447
20	0.023175872	0.01826	0.365198
21	0.02279036	0.017101	0 359123
22	0.022360441	0.016016	0.352348
23	0.021893304	0.014999	0 344987
24	0.021305405	0.014049	0.337142
24	0.021330400	0.012156	0.337142
20	0.020072026	0.013130	0.320302
20	0.020329651	0.012321	0.320351
27	0.019771991	0.011535	0.31106
28	0.019203061	0.010807	0.302595
29	0.018626713	0.010121	0.293514
30	0.018046179	0.009479	0.284366
31	0.01/464313	0.008877	0.275197
32	0.01688362	0.008314	0.266047
33	0.016306296	0.007786	0.256949
34	0.015734252	0.007292	0.247935
35	0.015169142	0.006829	0.23903
36	0.01461239	0.006396	0.230257
37	0.014065212	0.00599	0.221635
38	0.013528634	0.00561	0.21318
39	0.013003515	0.005254	0.204905
40	0.01249056	0.004921	0.196822
41	0.011990342	0.004608	0.18894
42	0.01150331	0.004316	0.181265
43	0.011029803	0.004042	0.173804
44	0.010570068	0.003785	0.16656
45	0.010124263	0.003545	0.159535
46	0.009692471	0.00332	0.152731
47	0.00927471	0.00311	0.146148
48	0.008870937	0.002912	0.139785
49	0.00848106	0.002727	0.133642

Figure 18: Polymath Code and ASF Distribution (Complete results and code in Appendix)

References

- 1. "Combustion Efficiency and Excess Air." *Engineering ToolBox*, <u>https://www.engineeringtoolbox.com/boiler-combustion-efficiency-d_271.html</u>.
- Granovskiy, Mikhail. "Integrated Coproduction of Power and Syngas from Natural Gas to Abate Greenhouse Gas Emissions without Economic Penalties." *ACS Omega*, vol. 6, no. 25, 2021, pp. 16336–16342., <u>https://doi.org/10.1021/acsomega.1c00743</u>

3. "2021-2022 Student Design Competition Problem Statement & Rules." *American Institute of Chemical Engineers*.

4. Anderson, Robert; Kolbel, Herbert; Ralek, M. *The Fischer-Tropsch Synthesis*. Orlando, Academic Press, 1984.

5. Gas Processors Suppliers Association. *Engineering Data Book, 13 ed., SI Version*. Tulsa, Gas Processors Suppliers Association, 2012.

6. de Klerk, Arno. Fischer-Tropsch Refining. Weinheim, Wiley-VCH Verlag & Co., 2011.

7. Myrstad, Rune; Eri, Sigrid; Pfeifer, Peter; Rytter, Erling; and Holmen, Anders. "Fischer-Tropsch synthesis in a microstructured reactor." *Catalysis Today*, https://doi.org/10.1016/j.cattod.2009.07.011

8. Park, Seongho et al. "Design and modeling of large-scale cross-current multichannel Fischer-Tropsch reactor using channel decomposition and cell-coupling method." *Chemical Engineering Science*, vol. 134, pp. 448-456, http://dx.doi.org/10.1016/j.ces.2015.05.057

9. Wang, Xiuli; Economides, Michael. *Advanced Natural Gas Engineering*. Houston, Gulf Publishing Company, 2009.

10. Green, Don; Southard, Marylee. *Perry's Chemical Engineer's Handbook, 9th Ed.* McGraw-Hill, 2019.

11. Moran, Michael; Shapiro, Howard; Boettner, Daisie; Bailey, Margaret. Fundamentals of Engineering Thermodynamics, 9th Ed. Wiley, 2018.

12. Crowl, Daniel; Louvar, Joseph. *Chemical Process Safety: Fundamentals with Applications,* 3rd Ed. Pearson Education, 2011.

13. Seborg, Dale; Edgar, Thomas; Mellichamp, Duncan; Doyle, Francis. Process Dynamics and Control, 4th edition, 2017.

14. Aspen Physical Property System 11.1. Aspen Technology Inc, 2001.

15. "Oil and gas separators" *PetroWiki*. Society of Petroleum Engineers. <u>https://petrowiki.spe.org/Oil_and_gas_separators</u>.

16. Sivalls, C. Richard. Oil and Gas Separation Design Manual, 2009.

- 17. "Natural Gas Composition and Specifications." Natural Gas Composition and Specifications / FSC 432: Petroleum Refining, <u>https://www.e-education.psu.edu/fsc432/content/natural-gas-composition-and-specifications#:~:text=Natural%20gas%20as%20recovered%20at,discussed%20in%20the%20previous%20section.</u>
- 18. More Economical Sulfur Removal for Fuel Processing Plants. https://www.energy.gov/sites/prod/files/2013/11/f5/tda_sbir_case_study_2010.pdf.

19. "Air Pollution Control: How to Conduct a Pollution Control Evaluation." Air Permits Division, Texas Commission on Environmental Quality, 2019. https://www.tceq.texas.gov/permitting/air/nav/air_bact_chemsource.html

20. MJ Bradley & Associates. "Best Available Technology for Air Pollution Control: Analysis Guidance and Case Studies for North America." Commission for Environmental Cooperation (CEC) of North America, 2009. <u>http://www.cec.org/files/documents/publications/2195-best-available-technology-air-pollution-control-en.pdf</u>

21. "BACT Guidelines for Chemical Sources." Air Permits Division, Texas Commission on Environmental Quality, 2019. https://www.tceq.texas.gov/permitting/air/nav/air_bact_chemsource.html

22. "Inherently Safer Design: The Fundamentals." *Chemical Engineering Progress*. American Institute of Chemical Engineers, 2012. <u>https://www.aiche.org/sites/default/files/cep/20120140-</u>1.pdf

23. "INVESTIGATION REPORT: T2 LABORATORIES, INC. RUNAWAY REACTION." United States Chemical Safety Board, 2009.

- 24. Selecting the Optimum Pipe Size a PDH Online Course for Engineers and Surveyors, https://www.pdhonline.com/courses/m270/m270_new.htm.
- 25. Norsok Standard. https://www.standard.no/pagefiles/1130/p-001r3.pdf.
- 26. PetroWiki. "Pipeline Design Consideration and Standards." *PetroWiki*, PetroWiki, 2 June 2015, https://petrowiki.spe.org/Pipeline_design_consideration_and_standards#:~:text=The%20ve locity%20in%20gas%20lines,sec%2C%20which%20minimizes%20liquid%20fallout.
- 27. Maxwell, Charles. "Cost Indices." *Towering Skills*, 28 May 2020, https://www.toweringskills.com/financial-analysis/cost-indices/.
- 28. "51-8099 Plant and System Operators, All Other." U.S. Bureau of Labor Statistics, U.S. Bureau of Labor Statistics, 31 Mar. 2022, <u>https://www.bls.gov/oes/current/oes518099.htm</u>.
- 29. Babu, Akhitha. "Optimization in the Transportation Problem." *Towards Data Science*, Towards Data Science, 5 July 2020, <u>https://towardsdatascience.com/optimization-in-transportation-problem-f8137044b371</u>.

- 30. "Consumer Price Index Summary 2022 M02 Results." *U.S. Bureau of Labor Statistics*, U.S. Bureau of Labor Statistics, 10 Mar. 2022, <u>https://www.bls.gov/news.release/cpi.nr0.htm</u>.
- 31. "WTI Spot Price FOB." U.S. Energy Information Administration, U.S. Energy Information Administration, 6 Apr. 2022, <u>https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RWTC&f=M</u>.

Appendix

Reactor Operating Temperature	466.81189	к	
T4	1.00703101		
aipria	0.33603004		_
n	Wn	Mn	Mo'n
5	0.01549135 0.0174099	0.048822 0.045723	0.244108 0.274339
7	0.01902255	0.042822	0.299751
8 9	0.02036041 0.02145186	0.040104	0.320833 0.338031
10	0.02232277	0.035175	0.351755
12	0.02299676	0.032943	0.362375
13	0.02383795	0.028895	0.375631
15	0.02412506	0.025344	0.380155
16 17	0.02410033	0.023735	0.379765
18	0.02378083	0.020818	0.37473
19 20	0.02350899	0.019497 0.01826	0.370447 0.365198
21	0.02279036	0.017101	0.359123
22 23	0.02236044	0.016016	0.352348
24	0.0213954	0.014048	0.337142
20 26	0.02087253	0.013156	0.328902
27	0.01977199	0.011539	0.31156
20	0.01820306	0.010807	0.293514
30	0.01804618	0.009479	0.284366
32	0.01688362	0.008314	0.266047
33	0.0163063	0.007786	0.256949
35	0.01516914	0.006829	0.23903
36 37	0.01461239	0.006396	0.230257
38	0.01352863	0.00561	0.21318
39 40	0.01300351 0.01249056	0.005254	0.204905 0.196822
41	0.01199034	0.004608	0.18894
42 43	0.01150331	0.004316	0.181265
44	0.01057007	0.003785	0.16656
45	0.00969247	0.003545	0.153535
47	0.00927471	0.00311	0.146148
49	0.00848106	0.002727	0.133642
50 51	0.00810494	0.002554	0.127715
52	0.00739324	0.00224	0.1165
53 54	0.00705721	0.002098	0.111205
55	0.0064235	0.00184	0.101219
56	0.00583896	0.001/24	0.096519
58	0.00556435	0.001512	0.087681
59	0.00530108	0.001416	0.083533
61 62	0.00480721	0.001242	0.07575
63	0.00435467	0.001089	0.06862
64 65	0.00414306	0.00102	0.065285
66	0.00374746	0.000895	0.059051
67 68	0.00356281	0.000838	0.056142
69	0.00321824	0.000735	0.050712
70 71	0.00305765	0.000688	0.045769
72	0.00275854	0.000604	0.043468
73	0.00248674	0.00053	0.041275
75 76	0.0023604	0.000496	0.037194
77	0.00212553	0.000435	0.033493
78 79	0.00201649	0.000407	0.031775 0.03014
80	0.00181403	0.000357	0.028585
81	0.00172014	0.000335	0.027105
83	0.001546	0.000294	0.024361
85	0.00138868	0.000213	0.021882
86 97	0.00131585	0.000241	0.020735 0.019645
88	0.00118098	0.000211	0.018609
89 90	0.0011186	0.000198 0.000185	0.017627 0.016693
91	0.00100318	0.000174	0.015808
92 93	0.00094984 0.00089923	0.000163	0.014967 0.01417
94	0.00085122	0.000143	0.013413
95 96	0.00080568	0.000134	0.012696 0.012015
97	0.00072155	0.000117	0.01137
98 99	0.00068272	0.000103	0.010158
100	0.00061104	9.63E-05	0.009629

FTR Products		Mass Fraction	Mole Fraction
C21-C200		0.601056741	0.268052409
C21-C215		0.601056741	0.268052409
C5-C200		0.95416073	0.767892219
C1-C4		0.04583927	0.232107781
Naptha (C5-C10)		0.116058847	0.250204935
Diesel (C11-C20)		0.237045142	0.249634875 N
C1		0.043784301	0.20723909
C2		0.000934397	0.008289564
C3		0.00063717	0.008289564
C4		0.000483402	0.008289564
HI unit		Mass Fraction	Mole Fraction C
C1		0.006010567	
C2		0.003005284	
C3		0.021036986	
C4		0.021036986	
Naptha (C5-C10)		0.150264185	
Diesel		0.399702733	
FTR C_P Fractions		Mass Fraction	Mole Fraction
C1		0.043784301	0.20723909
C2		0.000934397	0.008289564
C3		0.00063717	0.008289564
C4		0.000483402	0.008289564
	- 5	0.015491348	0.048821508
	6	0.017409899	0.045723239
	- 7	0.019022555	0.042821589
	- 8	0.020360413	0.040104081
	- 9	0.021451857	0.037559029
	10	0.022322775	0.03517549
	11	0.02299676	0.032943212
	12	0.023495301	0.030852598
	13	0.02383795	0.028894656
	14	0.024042486	0.027060967
	15	0.02412506	0.025343647
	16	0.024100326	0.02373531
	- 17	0.023981572	0.022229039
	18	0.02378083	0.020818359
	19	0.023508986	0.019497201
	20	0.023175872	0.018259886
C21-C25		0.109312037	0.075320051
C26-C29		0.077931615	0.044788611
C30-C35		0.099603802	0.048578116
C36-C47		0.141885277	0.054897199
C48+		0.172324009	0.044468432

Figure 20: Empirical Fit of Specific Heat Capacity to Temperature

Figure 22: FTR Temperature Profile

Figure 23: Price per Barrel v. Temperature

Figure 24: Price per Pound v. Temperature

Figure 25: Value of Hydrocarbons

Value of Hydrocarbons per Barrel

		Mass Balance	100 lb basis	\$	density	\$	Value with	out HI	Component	lb/barrel pure	contribution	Volume contribution (barrel/lb)	Volume Fra	action	
	LPG (C3-C4	0.001120572	0.1120572			0	0							0.87911	
	Naptha	0.266323032	26.632303	75	45	0.296823983	7.905106							0.780671	
	Diesel	0.636747875	63.674788	90	53	0.302424436	19.25681		C3	201.601764	0.128454505	7.784857384	0.432556	0.670332	
						Total Revenue	27.16192		C4	206.77104	0.099953529	10.00464926	0.555896	0.535819	
									Naptha	252.553	29.31100988	0.034116873	0.001896		
			1 Barrel Bas	is			Value with	HI	Diesel	297.553	70.53349324	0.014177662	0.000788		
	LPG (C3-C4	0.001120572	0.3029369			0	0		C21-C25	276.0393384	30.17442246	0.033140651	0.001841		
	Naptha	0.266323032	71.998149	75	45	0.296823983	21.37078		C26-C29	279.140904	21.7539016	0.045968765	0.002554		
	Diesel	0.636747875	172.13933	90	53	0.302424436	52.05914		C30-C35	281.8978512	28.07809782	0.035614948	0.001979		
4.53	Cost/Barrel						-0.14024		C36-C47	284.9994168	40.43722131	0.024729691	0.001374		
							73.28968		C48+	289.1348376	49.82487423	0.020070297	0.001115		
										Total	270.3414286	17.99732553			

Figure 26: Polymath FTR Reactor Report and Code

POLYMATH Report Ordinary Differential Equations

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	a	1.26E-11	1.26E-11	1.102362	1.102362
2	A_c	7.917298	7.917298	7.917298	7.917298
3	alpha	2.25E-05	2.25E-05	2.25E-05	2.25E-05
4	Area_Costing	1.26E-08	1.26E-08	1102.362	1102.362
5	Area_Cross_Max	1.008E+04	1.008E+04	1.008E+04	1.008E+04
6	beta_0	0.0015927	0.0015927	0.0015927	0.0015927
7	C_CH4	45.66084	45.36797	45.7775	45.36797
8	C_CO	30.24453	30.22142	30.25376	30.22142
9	C_CO2	49.45079	49.40747	49.46809	49.40747
10	C_H2	28.66103	28.64352	28.66802	28.64352
11	C_H2O	34.51579	34.45562	34.53981	34.45562
12	C_HC	630.7407	615.6069	672.1558	672.1558
13	C_N2	29.10142	29.07925	29.11029	29.07925
14	C_T	1816.673	1593.838	1816.673	1593.838
15	Coe	0.001	0.001	0.001	0.001
16	D	3.175	3.175	3.175	3.175
17	D_p	0.0015875	0.0015875	0.0015875	0.0015875
18	delta	-2.	-2.	-2.	-2.
19	epsilon	-0.5964935	-0.5964935	-0.5964935	-0.5964935
20	F_CH4	5.4981	5.4981	5.4981	5.4981
21	F_CO	17.5571	0.4875536	17.5571	0.4875536
22	F_CO2	0.372987	0.372987	0.372987	0.372987
23	F_CO_0	17.5571	17.5571	17.5571	17.5571
24	F_H2	35.2691	0.0649022	35.2691	0.0649022
25	F_H2_0	35.2691	35.2691	35.2691	35.2691
26	F_H2O	0.067721	0.067721	17.13727	17.13727
27	F_H2O_0	0.067721	0.067721	0.067721	0.067721
28	F_HC	0	0	1.065105	1.065105
29	F_N2	0.102693	0.102693	0.102693	0.102693
30	FT	58.8677	24.72861	58.8677	24.72861
31	G	4.206738	4.206738	4.206738	4.206738
32	g_c	1.	1.	1.	1.
33	Hrx	-1.633E+05	-1.633E+05	-1.633E+05	-1.633E+05
34	k	0.0173	0.0173	0.0173	0.0173
35	k2	4.512	4.512	4.512	4.512
36	L	1.263E-08	1.263E-08	1105.175	1105.175
37	mu	1.693E-05	1.693E-05	1.693E-05	1.693E-05

38	n	14.75298	14.28982	16.02616	16.02616
39	р	1.	0.9247946	1.	0.9247946
40	Р	29.8	27.55888	29.8	27.55888
41	P_0	29.8	29.8	29.8	29.8
42	P_CO	8.887753	0.5433557	8.887753	0.5433557
43	P_H2	17.85392	0.0723304	17.85392	0.0723304
44	phi	0.4	0.4	0.4	0.4
45	Qg	1768.621	2.418058	1919.583	2.418058
46	Qr	1377.573	2.425646	1926.525	2.425646
47	R	8.314	8.314	8.314	8.314
48	r_CO	-0.0108315	-0.011756	-1.481E-05	-1.481E-05
49	rho_0	12.81	12.81	12.81	12.81
50	rho_d	0.8	0.8	0.8	0.8
51	т	470.	465.0088	471.9925	465.0088
52	T1	0.9411827	0.8494184	0.9799316	0.8494184
53					
00	T2	1.117569	1.037873	1.348869	1.348869
54	T2 T_0	1.117569 470.	1.037873 470.	1.348869 470.	1.348869 470.
54 55	T2 T_0 Ta	1.117569 470. 465.	1.037873 470. 465.	1.348869 470. 465.	1.348869 470. 465.
54 55 56	T2 T_0 Ta Tubes	1.117569 470. 465. 1000.	1.037873 470. 465. 1000.	1.348869 470. 465. 1000.	1.348869 470. 465. 1000.
54 55 56 57	T2 T_0 Ta Tubes U	1.117569 470. 465. 1000. 2.187E+06	1.037873 470. 465. 1000. 2.187E+06	1.348869 470. 465. 1000. 2.187E+06	1.348869 470. 465. 1000. 2.187E+06
54 55 56 57 58	T2 T_0 Ta Tubes U V	1.117569 470. 465. 1000. 2.187E+06 1.0E-07	1.037873 470. 465. 1000. 2.187E+06 1.0E-07	1.348869 470. 465. 1000. 2.187E+06 8750.	1.348869 470. 465. 1000. 2.187E+06 8750.
55 55 56 57 58 59	T2 T_0 Ta Tubes U V Vol_flow	1.117569 470. 465. 1000. 2.187E+06 1.0E-07 2600.	1.037873 470. 465. 1000. 2.187E+06 1.0E-07 2600.	1.348869 470. 465. 1000. 2.187E+06 8750. 2600.	1.348869 470. 465. 1000. 2.187E+06 8750. 2600.
54 55 56 57 58 59 60	T2 T_0 Ta Tubes U V Vol_flow X	1.117569 470. 465. 1000. 2.187E+06 1.0E-07 2600. 0	1.037873 470. 465. 1000. 2.187E+06 1.0E-07 2600. 0	1.348869 470. 465. 1000. 2.187E+06 8750. 2600. 0.9722304	1.348869 470. 465. 1000. 2.187E+06 8750. 2600. 0.9722304

Differential equations

 $1 d(X)/d(V) = -1^{*}(r_CO)/F_CO_0$

-1"(r_CO)/F_CO_0 #1/cm^3 cat

- 2 d(p)/d(V) = -1.5*(alpha/(2*p))*(T/T_0)*(1+epsilon*X)
 - 1/cm^3, 1.5 is factor adjustment for liquid pressure drop
- $3 d(T)/d(V) = (Qg-Qr)/(C_T)$

K/cm^3

Explicit equations

 $\begin{array}{l} n=6.2604780397556^{*}(10^{-8})^{*}T^{4}-1.4037308161193^{*}(10^{-4})^{*}T^{3}+1.1812096519132^{*}(10^{-1})^{*}T^{2}-1.4246415349350^{*}10^{*}T^{+6}-2366878599327^{*}10^{-3} \end{array}$

dimensionless

2 T1 = exp(-4492*((1/T)-(1/473)))

dimensionless

3 T2 = exp(8237*((1/T)-(1/473)))

dimensionless

4 k = 0.0173

gmol CO / hr cm^3 cat*atm^2

5 k2 = 4.512

atm ^-1

- 6 Coe = 1/1000
- 7 F_CO_0 = Coe*17557.1 100 #moles/hr, from SU and appropriate simulation
- 8 D = 2.54*(20/16)

cm, basis

- 9 P_0 = 29.8
 - atm
- 10 P = P_0*p

atm

11 phi = 0.4

dimensionless

12 rho_d = 0.8

g/cm^3 bulk density

13 A_c = 3.14159*0.25*D^2

cm^2

- 14 D_p = 2.54/(16*100)
- m, catalyst diameter
- 15 g_c = 1

dimensionless

16 mu = 1.693*10^-5

1 #kg/m*s, from SU and appropriate simulation

17 L = V/A_c

cm

18 rho_0 = 12.81

kg/m^3, from SU and appropriate simulation

- 19 Vol_flow = 1.625*(10^4)*0.16
- kg/m^3
- 20 F_H2O_0 = Coe*67.721

100 #moles/hr, from SU and appropriate simulation

21 delta = -2

dimensionless, from kinetics

22 F_N2 = Coe*102.693

moles/hr, from SU and appropriate simulation

23 F_CO2 = Coe*372.987

moles/hr, from SU and appropropriate simulation

24 F_HC = X*(1/n)*F_CO_0

moles/hr

25 F_H2_0 = Coe*35269.1

```
moles/hr
27 F_H2O = F_CO_0*X+F_H2O_0
   moles/hr
28 F_H2 = F_H2_0 - (2*n+1)*(1/n)*F_CO_0*X
   moles/hr
29 F_CH4 = Coe*5498.1
   moles/hr, from SU and appropropriate simulation
30 y a0 = F CO 0/(F CO 0+F H2 0+F H2O 0+F N2+F CO2+F CH4)
   dimensionless, from SU and appropropriate simulation
31 FT = F_HC+F_CO+F_H2+F_H2O+F_CO2+F_CH4+F_N2
   moles
32 R = 8.314
   J/mol*K
33 G = Coe*rho_0*(Vol_flow/A_c)
   1 #kg/s*m^2, from SU and appropriate simulation
34 P_H2 = P*F_H2/FT
   atm
35 epsilon = delta*y a0
36 beta_0 = (1/100)*(1/101325)*(G*(1-phi)/(rho_0*q_c*D_p*(phi^3)))*((150*(1-phi)*mu/D_p)+1.75*G)
   atm/cm
37 C_HC = 1.06702*10^(-6)*T^4-2.53963*10^(-3)*T^3+2.26556*T^2-8.97529*(10^2)*T+1.33612*10^5
   J/mol*K
38 C_CH4 = R*(1.702 + (9.081*10^-3) * ((T)) - (2.164*10^-6) * ((T)^2))
39 C_H2 = R*(3.249 + (0.422*10^-3) * ((T)) - (0.083*10^-9) * ((T)^2))
40 C_CO2 = R*(5.457 + (1.045 * 10^-3) * ((T)) - (1.157*10^-9) * ((T)^2))
41 C_H2O = R*(3.47 + (1.45*10^-3) * ((T)) + (0.121*10^-9) * ((T)^2))
42 C CO = R*(3.376 + (0.557*10^-3) * ((T)) - (0.031*10^-9) * ((T)^2))
43 C_N2 = R*(3.208 + (0.593*10^-3)*T+0.030*(10^5)*T^-2)
44 Hrx = -1*(70200)*2.326
   J/gmol CO
45 P_CO = P*F_CO/FT
   atm
46 r_CO = -1*(k*T1*P_H2*P_CO)/((1+k2+T2*P_CO)^2)
   gmol CO/(hr*cm^3cat)
47 Qg = r_CO*Hrx
   J/hr*cm^3 cat
48 T_0 = 470
   K, basis
49 Ta = 465
```

200#moles/hr, from SU and appropriate simulation

26 F_CO = F_CO_0*(1-X)

K, basis

50 U = (2.044175*10*1000)*0.385*((G*3600/10)^0.8)/D^0.2

J/hr*(m^2)*K

51 a = (1/(100^2))*V/(0.25*D)

```
m^2,
```

52 Qr = U*a*(T-Ta)/V

J/hr*cm^3 cat

53 alpha = 2*beta_0/(A_c*P_0*(1-phi))

1/cm^3, adjusted alpha parameter

54 C_T = F_HC*C_HC+F_H2O*C_H2O+F_CO2*C_CO2+F_CO*C_CO+F_N2*C_N2+F_H2*C_H2+F_CH4*C_CH4

55 Tubes = 1/Coe

- 56 Area_Cross_Max = Tubes*D*D
- 57 Area_Costing = Tubes*3.14159*D*L*(1/100)^2

m^2; area of tubes for costing

General

Total number of equations	60
Number of differential equations	3
Number of explicit equations	57
Elapsed time	1.157 sec
Solution method	RKF_45
Step size guess. h	0.000001
Truncation error tolerance. eps	0.000001

Data file: c:\users\lewel\downloads\pbr_final!.pol

FTR PolyMath Code

#Kinetics

 $r_CO = -1*(k*T1*P_H2*P_CO)/((1+k2+T2*P_CO)^2) \#gmol CO/(hr*cm^3cat)$

 $T1 = \exp(-4492*((1/T)-(1/473)))$ #dimensionless

T2=exp(8237*((1/T)-(1/473))) #dimensionless

k=0.0173 #gmol CO / hr cm^3 cat*atm^2

k2=4.512 #atm ^-1

#Partial Pressures
P_CO=P*F_CO/FT #atm
P_H2=P*F_H2/FT #atm

#Mass Balance

 $d(X) / d(V) = -1*(r_CO)/F_CO_0#-1*(r_CO)/F_CO_0 #1/cm^3 cat$

X(0) = 0 #dimensionless

 $L = V/A_c \ \text{\#cm}$

#Bounds of integration V(0) = 0.0000001 #cm^3 cat V(f) = 8750# cm^3 cat

#Pressure Drop

 $d(p) / d(V) = -1.5*(alpha/(2*p))*(T/T_0)*(1+epsilon*X) \#1/cm^3, 1.5 \ is \ factor \ adjustment \ for \ liquid \ pressure \ drop$

p(0) = 1 #dimensionless

P=P_0*p #atm

#catalyst parameters

alpha= 2*beta_0/(A_c*P_0*(1-phi)) #1/cm^3, adjusted alpha parameter

phi=0.4 #dimensionless

rho_d=0.8 #g/cm^3 bulk density

beta_0=(1/100)*(1/101325)*(G*(1-phi)/(rho_0*g_c*D_p*(phi^3)))*((150*(1-phi)*mu/D_p)+1.75*G)#atm/cm, GARRISON PLEASE CHECK

D_p=2.54/(16*100) #m, catalyst diameter GARRISON PLEASE CHECK

g_c=1 #dimensionless

mu= 1.693*10^-5 #1 #kg/m*s, will get from SU and appropriate simulation

G=Coe*rho_0*(Vol_flow/A_c)#1 #kg/s*m^2, will get from SU and appropriate simulation

 $rho_0 = 12.81 \ \#kg/m^3$ will get from SU and appropriate simulation

Vol_flow =1.625*(10^4)*0.16 #kg/m^3

y_a0=F_CO_0/(F_CO_0+F_H2_0+F_H2O_0+F_N2+F_CO2+F_CH4) #dimensionless, will get from SU and appropropriate simulation delta=-2 #dimensionless, from kinetics epsilon=delta*y_a0

#Mole Flows

FT=F_HC+F_CO+F_H2+F_H2O+F_CO2+F_CH4+F_N2 #moles

F_HC=X*(1/n)*F_CO_0 #moles/hr

 $F_CO=F_CO_0^{(1-X)}$ #moles/hr

F_H2O=F_CO_0*X+F_H2O_0 #moles/hr

 $F_H2=F_H2_0-(2*n+1)*(1/n)*F_CO_0*X \text{ #moles/hr}$

F_CH4=Coe*5498.1 #moles/hr, from SU and appropripate simulation

F_CO2=Coe*372.987 #moles/hr, from SU and appropropriate simulation

F_N2=Coe*102.693 #moles/hr, from SU and appropriate simulation

#Average Chain Length

 $n = 6.2604780397556*(10^{-8})*T^{4}-1.4037308161193*(10^{-4})*T^{3}+1.1812096519132*(10^{-1})*T^{2}-4.4246415349350*10*T+6.2366878599327*10^{3} \# dimensionless$

#Energy Balance

 $d(T) / d(V) = (Qg-Qr)/(C_T) \#K/cm^3$

T(0) = 470 #473.15 #K, Will get from SU

#T=467.4957

R=8.314 #J/mol*K

 $Qr=U^*a^*(T-Ta)/V # J/hr^*cm^3 cat$

Qg=r_CO*Hrx # J/hr*cm^3 cat

U=(2.044175*10*1000)*0.385*((G*3600/10)^0.8)/D^0.2 #J/hr*(m^2)*K

#Heat Capacities ()

 $C_T=F_HC*C_HC+F_H2O*C_H2O+F_CO2*C_CO2+F_CO*C_CO+F_N2*C_N2+F_H2*C_H2+F_CH4*C_CH4 #J/hr*K$ $C_HC=1.06702*10^{(-6)*T^{4}-2.53963*10^{(-3)*T^{3}+2.26556*T^{2}-8.97529*(10^{2})*T+1.33612*10^{5}\#J/mol*K$ $C_CH4 = R^{*}(1.702 + (9.081*10^{-3})*((T)) - (2.164*10^{-6})*((T)^{2}))$ $C_H2 = R^{*}(3.249 + (0.422*10^{-3})*((T)) - (0.083*10^{-9})*((T)^{2}))$ $C_CO2 = R^{*}(5.457 + (1.045*10^{-3})*((T)) - (1.157*10^{-9})*((T)^{2}))$ $C_H2O = R^{*}(3.47 + (1.45*10^{-3})*((T)) + (0.121*10^{-9})*((T)^{2}))$ $C_CO = R^{*}(3.376 + (0.557*10^{-3})*((T)) - (0.031*10^{-9})*((T)^{2}))$ $C_N2 = R^{*}(3.208 + (0.593*10^{-3})*T+0.030*(10^{5})*T^{-2})$

Hrx=-1*(70200)*2.326 #J/gmol CO

#Reactor Parameters

F_CO_0=Coe*17557.1 #100 #moles/hr, from SU and appropriate simulation F_H2_0= Coe*35269.1 #200#moles/hr, from SU and appropriate simulation F_H2O_0= Coe*67.721#100 #moles/hr, from SU and appropriate simulation T_0=470 #473.15 #K, basis Ta=465#451.5 #K, basis D=2.54*(20/16) #cm, basis $a=(1/(100^2))*V/(0.25*D) #m^2$,

A_c=3.14159*0.25*D^2 #cm^2

P_0= 29.8 #atm

Area_Cross_Max=Tubes*D*D

Area_Costing=Tubes*3.14159*D*L*(1/100)^2 #m^2; area of tubes for costing

Tubes=1/Coe

Coe = 1/1000

Figure 27: Aspen HYSYS Separators

500 MSCFD V-101

Design Reactions Rating Worksheet Dynamics Conditions Name 500 MSCFD N/D/Wax LPG/TG/N W1 Conditions Vapour 0.5580 0.0000 1.0000 0.0000 Properties Temperature [F] 377.0 343.9 343.9 343.9 Composition Pressure [psia] 405.0 246.0 246.0 246.0 Molar Flow [lbmole/hr] 54.50 1.228 322.53 20.74 Mass Flow [lb/hr] 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow [lbarrel/day] 141.9 34.70 81.52 25.64 Molar Entropy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole-F] 40.84 356.0 42.85 20.50 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006	된 3 Phase Sepa	rator: V-104					_		×
Worksheet Name 500 MSCED N/D/Wax LPG/TG/N W1 Conditions Properties Temperature [F] 377.0 343.9 343.9 343.9 Composition Pressure [psia] 405.0 246.0 246.0 246.0 Molar Flow [lbmole/hr] 54.50 1228 32.53 20.74 Mass Flow [lb/hr] 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow [barrel/day] 141.9 34.70 81.52 25.54 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Enthalpy [Btu/lbmole-F] 4006 -3.095e+005 -2.347e+006 -2.446e+006	Design Reacti	ions Rating Worksheet Dynamics							
Conditions Properties Composition PF Specs Vapour 0.5580 0.0000 1.0000 0.0000 Preseure [psi] 377.0 343.9 343.9 343.9 343.9 Pressure [psi] 405.0 246.0 246.0 246.0 246.0 Molar Flow [lbmole/hr] 54.50 1.228 32.53 20.74 Mass Flow [lb/hr] 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow [barrel/day] 141.9 34.70 81.52 25.64 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole-F] 40.84 356.0 42.85 20.50 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006	Worksheet	Name	500 MSCFD	N/D/Wax	LPG/TG/N	W1			
Properties Composition PF Specs Temperature [F] 377.0 343.9 343.9 343.9 Molar Flow [lob/hr] 405.0 246.0 246.0 246.0 Molar Flow [lb/hr] 54.50 1.228 32.53 20.74 Mass Flow [lb/hr] 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow [barrel/day] 141.9 34.70 81.52 25.64 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -2.347e+006 -2.446e+006 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006	Conditions	Vapour	0.5580	0.0000	1.0000	0.0000			
Composition PF Specs Pressure [psia] 405.0 246.0 246.0 246.0 Molar Flow [lbmole/hr] 54.50 1.228 32.53 20.74 Mass Flow [lb/h] 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow [barrel/day] 141.9 34.70 81.52 25.64 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Enthalpy [Btu/lbmole-F] 40.84 336.0 42.85 20.50 Heat Flow [Btu/hmole-F] 40.84 3.095e+005 -2.347e+006 -2.446e+006	Properties	Temperature [F]	377.0	343.9	343.9	343.9			
PF Specs Molar Flow [lbmole/hr] 54.50 1.228 32.53 20.74 Mass Flow [lb/h] 1443 407.8 662.0 373.6 128 32.53 20.74 143 143 407.8 662.0 373.6 128 32.53 20.74 143 407.8 662.0 373.6 128 32.53 20.74 143 407.8 662.0 373.6 128 128 32.53 20.50 128 32.53 20.51 128 32.53 20.51 128 32.53 20.51 128 32.53 20.51 128 32.53 20.50 128 32.53 128 32.53 20.51 128 32.51 128 32.52 128 32.53 128 128 128.52	Composition	Name Source Source N/D/Wax LPG/TG/N W1 tions Vapour 0.5580 0.0000 1.0000 0.0000 rities Temperature [F] 377.0 343.9 343.9 343.9 rosition Pressure [psia] 405.0 246.0 246.0 246.0 Molar Flow (Ibmole/hr) 54.50 1.228 32.53 20.74 Mass Flow (Ib/hr) 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow (barrel/day) 141.9 34.70 81.52 25.64 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006							
Mass Flow [lb/hr] 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow [barrel/day] 141.9 34.70 81.52 25.64 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole-F] 40.84 356.0 42.85 20.50 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006	PF Specs	Molar Flow [lbmole/hr]	54.50	1.228	32.53	20.74			
Std Ideal Liq Vol Flow [barrel/day] 141.9 34.70 81.52 25.64 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole-F] 40.84 356.0 42.85 20.50 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006		Mass Flow [lb/hr]	1443	407.8	662.0	373.6			
Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole-F] 40.84 356.0 42.85 20.50 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006		Std Ideal Liq Vol Flow [barrel/day]	141.9	34.70	81.52	25.64			
Molar Entropy [Btu/lbmole-F] 40.84 356.0 42.85 20.50 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006		Molar Enthalpy [Btu/Ibmole]	-9.362e+004	-2.520e+005	-7.213e+004	-1.180e+005			
Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006		Inditions perties Vapour 0.5580 0.0000 1.0000 0.0000 Temperature [F] 377.0 343.9 343.9 343.9 Pressure [psia] 405.0 246.0 246.0 246.0 Molar Flow [lbmole/hr] 54.50 1.228 32.53 20.74 Mass Flow [lb/hr] 1443 407.8 662.0 373.6 Std Ideal Liq Vol Flow [barrel/day] 141.9 34.70 81.52 25.64 Molar Enthalpy [Btu/lbmole] -9.362e+004 -2.520e+005 -7.213e+004 -1.180e+005 Molar Entropy [Btu/lbmole-F] 40.84 356.0 42.85 20.50 Heat Flow [Btu/hr] -5.102e+006 -3.095e+005 -2.347e+006 -2.446e+006							
		Heat Flow [Btu/hr]	-5.102e+006	-3.095e+005	-2.347e+006	-2.446e+006			
	Delete			OK					

Norksheet	Name	9	Naphtha Pdt	12	W2	
onditions	Vapour	0.4630	0.0000	1.0000	0.0000	
roperties	Temperature [F]	100.0	93.16	93.16	93.16	
omposition	Pressure [psia]	240.0	88.00	88.00	88.00	
F Specs	Molar Flow [lbmole/hr]	32.53	0.4567	15.23	16.85	
	Mass Flow [lb/hr]	662.0	60.16	298.3	303.6	
	Std Ideal Liq Vol Flow [barrel/day]	81.52	5.699	54.99	20.83	
	Molar Enthalpy [Btu/Ibmole]	-8.446e+004	-1.201e+005	-4.102e+004	-1.228e+005	
Specs	Molar Entropy [Btu/lbmole-F]	25.92	47.76	41.09	13.38	
	Heat Flow [Btu/hr]	-2.748e+006	-5.486e+004	-6.248e+005	-2.068e+006	
Composition Pressure [psia] 240.0 88.00 88.00 88.00 PF Specs Molar Flow [lbmole/hr] 32.53 0.4567 15.23 16.85 Mass Flow [lb/hr] 662.0 60.16 298.3 303.6 Std Ideal Liq Vol Flow [barrel/day] 81.52 5.699 54.99 20.83 Molar Enthalpy [Btu/lbmole] -8.446e+004 -1.201e+005 -4.102e+004 -1.228e+005 Molar Entropy [Btu/lbmole-F] 25.92 47.76 41.09 13.38 Heat Flow [Btu/hr] -2.748e+006 -5.486e+004 -6.248e+005 -2.068e+006						

500 MSCFD V-102

500 MSCFD V-103

	arator: V-108					-	
esign React	ions Rating Worksheet Dynamics						
Worksheet	Name	N/D/Wax	4	Distillate Pdt	TG/LPG 2	W3	
Conditions	Vapour	0.0000	0.1070	0.0000	1.0000	0.0000	<er< td=""></er<>
roperties	Temperature [F]	343.9	313.7	257.8	257.8	257.8	<er< td=""></er<>
omposition	Pressure [psia]	246.0	82.00	35.00	35.00	35.00	<e< td=""></e<>
Specs	Molar Flow [lbmole/hr]	1.228	16.85	1.084	4.225	12.77	<e< td=""></e<>
	Mass Flow [lb/hr]	407.8	303.6	398.3	83.03	230.0	<e< td=""></e<>
	Std Ideal Liq Vol Flow [barrel/day]	34.70	20.83	33.76	5.989	15.78	<e< td=""></e<>
	Molar Enthalpy [Btu/Ibmole]	-2.520e+005	-1.168e+005	-2.948e+005	-1.019e+005	-1.197e+005	<e< td=""></e<>
	Molar Entropy [Btu/Ibmole-F]	356.0	22.00	369.1	42.97	18.27	<e< td=""></e<>
	Heat Flow [Btu/hr]	-3.095e+005	-1.968e+006	-3.195e+005	-4.305e+005	-1.528e+006	(
		٩ [11			

2500 MSCFD V-201

Design Reacti	ions Rating Worksheet Dynamics						
Worksheet	Name	2.5 MMSCFD	N/D/Wax-2	LPG/TG/N-2	W1-2		
Conditions	Vapour	0.5580	0.0000	1.0000	0.0000		
roperties	Temperature [F]	377.0	343.9	343.9	343.9		
omposition	Pressure [psia]	405.0	246.0	246.0	246.0		
F Specs	Molar Flow [lbmole/hr]	272.5	6.140	162.7	103.7		
	Mass Flow [lb/hr]	7217	2039	3310	1868		
	Std Ideal Liq Vol Flow [barrel/day]	709.3	173.5	407.6	128.2		
	Molar Enthalpy [Btu/Ibmole]	-9.362e+004	-2.520e+005	-7.213e+004	-1.180e+005		
	Molar Entropy [Btu/Ibmole-F]	40.84	356.0	42.85	20.50		
	Heat Flow [Btu/hr]	-2.551e+007	-1.548e+006	-1.173e+007	-1.223e+007		

2500 MSCFD V-202

Name	9-2	Naphtha Pdt-2	12-2	W2-2		_
Vapour	0.4630	0.0000	1.0000	0.0000		
Temperature [F]	100.0	93.16	93.16	93.16		
Pressure [psia]	240.0	88.00	88.00	88.00		
Molar Flow [lbmole/hr]	162.7	2.284	76.15	84.24		
Mass Flow [lb/hr]	3310	300.8	1491	1518		
Std Ideal Liq Vol Flow [barrel/day]	407.6	28.49	274.9	104.1		
Molar Enthalpy [Btu/lbmole]	-8.446e+004	-1.201e+005	-4.102e+004	-1.228e+005		
Molar Entropy [Btu/lbmole-F]	25.92	47.76	41.09	13.38		
Heat Flow [Btu/hr]	-1.374e+007	-2.743e+005	-3.124e+006	-1.034e+007		
	Vapour Temperature [F] Pressure [psia] Molar Flow [lbmole/hr] Mass Flow [lb/hr] Std Ideal Liq Vol Flow [barrel/day] Molar Enthalpy [Btu/lbmole] Molar Entropy [Btu/lbmole-F] Heat Flow [Btu/hr]	Vapour 0.4630 Temperature [F] 100.0 Pressure [psia] 240.0 Molar Flow [lbmole/hr] 162.7 Mass Flow [lb/hr] 3310 Std Ideal Liq Vol Flow [barrel/day] 407.6 Molar Enthalpy [Btu/lbmole] -8.446e+004 Molar Entropy [Btu/lbmole-F] 25.92 Heat Flow [Btu/hr] -1.374e+007	Vapour 0.4030 0.0000 Temperature [F] 100.0 93.16 Pressure [psia] 240.0 88.00 Molar Flow [lbmole/hr] 162.7 2.284 Mass Flow [lb/hr] 3310 300.8 Std Ideal Liq Vol Flow [barrel/day] 407.6 28.49 Molar Enthalpy [Btu/lbmole] -8.446e+004 -1.201e+005 Molar Entropy [Btu/lbmole-F] 25.92 47.76 Heat Flow [Btu/hr] -1.374e+007 -2.743e+005	Vapour 0.4930 0.0000 1.0000 Temperature [F] 100.0 93.16 93.16 Pressure [psia] 240.0 88.00 88.00 Molar Flow [lbmole/hr] 162.7 2.284 76.15 Mass Flow [lb/hr] 3310 300.8 1491 Std Ideal Liq Vol Flow [barrel/day] 407.6 28.49 274.9 Molar Enthalpy [Btu/lbmole] -8.446e+004 -1.201e+005 -4.102e+004 Molar Entropy [Btu/lbmole] 25.92 47.76 41.09 Heat Flow [Btu/hr] -1.374e+007 -2.743e+005 -3.124e+006	Vapour 0.4630 0.0000 1.0000 0.0000 Temperature [F] 100.0 93.16 93.16 93.16 Pressure [psia] 240.0 88.00 88.00 88.00 Molar Flow [lbmole/hr] 162.7 2.284 76.15 84.24 Mass Flow [lb/hr] 3310 300.8 1491 1518 Std Ideal Liq Vol Flow [barrel/day] 407.6 28.49 274.9 104.1 Molar Enthalpy [Btu/lbmole] -8.446e+004 -1.201e+005 -4.102e+004 -1.228e+005 Molar Entropy [Btu/lbmole] 25.92 47.76 41.09 13.38 Heat Flow [Btu/hr] -1.374e+007 -2.743e+005 -3.124e+006 -1.034e+007	Vapour 0.4930 0.0000 1.0000 0.0000 Temperature [F] 100.0 93.16 93.16 93.16 Pressure [psia] 240.0 88.00 88.00 88.00 Molar Flow [lbmole/hr] 162.7 2.284 76.15 84.24 Mass Flow [lb/hr] 3310 300.8 1491 1518 Std Ideal Liq Vol Flow [barrel/day] 407.6 28.49 274.9 104.1 Molar Enthalpy [Btu/lbmole] -8.446e+004 -1.201e+005 -4.102e+004 -1.228e+005 Molar Entropy [Btu/lbmole-F] 25.92 47.76 41.09 13.38 Heat Flow [Btu/hr] -1.374e+007 -2.743e+005 -3.124e+006 -1.034e+007

2500 MSCFD V-203

_

🚯 3 Phase Separator: V-108-2

Design Reaction	ons Rating Worksheet Dynamics						
Worksheet	Name	N/D/Wax-2	W2-2	Distillate Pdt-2	TG/LPG 2-2	W3-2	Q
Conditions	Vapour	0.0000	0.0000	0.0000	1.0000	0.0000	<emp< td=""></emp<>
Properties	Temperature [F]	343.9	93.16	257.8	257.8	257.8	<emp< td=""></emp<>
Composition	Pressure [psia]	246.0	88.00	35.00	35.00	35.00	<emp< td=""></emp<>
PF Specs	Molar Flow [lbmole/hr]	6.140	84.24	5.419	21.13	63.83	<emp< td=""></emp<>
	Mass Flow [lb/hr]	2039	1518	1992	415.2	1150	<emp< td=""></emp<>
	Std Ideal Liq Vol Flow [barrel/day]	173.5	104.1	168.8	29.94	78.90	<emp< td=""></emp<>
	Molar Enthalpy [Btu/Ibmole]	-2.520e+005	-1.228e+005	-2.948e+005	-1.019e+005	-1.197e+005	<emp< td=""></emp<>
	Molar Entropy [Btu/Ibmole-F]	356.0	13.38	369.1	42.97	18.27	<emp< td=""></emp<>
	Heat Flow [Btu/hr]	-1.548e+006	-1.034e+007	-1.597e+006	-2.153e+006	-7.638e+006	5.000e+
		٠		11			•
Delete			OK				gnored

5000 MSCF V-301

Worksheet	Name	1.2	N/D/May 2		W/1 2		_
- distance	Vanour	0.5590	0.0000	1 0000	0.0000		
	Tomporature [E]	277.0	242.0	242.0	242.0		
omnosition	Prossure Incial	405.0	246.0	246.0	246.0		
Specs	Molar Elow Illamola/hrl	403.0	12 20	240.0	240.0		
opees	Mass Flow [Ib/br]	1420+004	12.20	6620	207.4		
	Std Ideal Lig Val Elew [barral/dav]	1/10	247.0	0020	256.4		
	Molar Enthaley (Ptu/Ibmolo)	0.2620.004	2 5200 : 005	7 212 - 1004	1 190 - 1 005		
	Molar Entrany (Btu/Ibmole	-9.3020+004	-2.5202+005	-7.2130+004	20.50		
	Heat Flaw (Pau / Pal	F 102 007	2.005006	2247-,007	20.00		

5000 MSCF V-302

esign Reacti	ons Rating Worksheet Dynamics					
Norksheet	Name	9-3	Naphtha Pdt-3	12-3	W2-3	
onditions	Vapour	0.4630	0.0000	1.0000	0.0000	
roperties	Temperature [F]	100.0	93.16	93.16	93.16	
omposition	Pressure [psia]	240.0	88.00	88.00	88.00	
Specs	Molar Flow [lbmole/hr]	325.3	4.567	152.3	168.5	
	Mass Flow [lb/hr]	6620	601.6	2983	3036	
	Std Ideal Liq Vol Flow [barrel/day]	815.2	56.99	549.9	208.3	
	Molar Enthalpy [Btu/Ibmole]	-8.446e+004	-1.201e+005	-4.102e+004	-1.228e+005	
	Molar Entropy [Btu/Ibmole-F]	25.92	47.76	41.09	13.38	
	Heat Flow [Btu/hr]	-2.748e+007	-5.486e+005	-6.248e+006	-2.068e+007	

5000 MSCF V-303

	Irator: v-108-5						
esign Reacti	ions Rating Worksheet Dynamics						
Vorksheet	Name	N/D/Wax-3	W2-3	Distillate Pdt-3	TG/LPG 2-3	W3-3	
onditions	Vapour	0.0000	0.0000	0.0000	1.0000	0.0000	<6
operties	Temperature [F]	343.9	93.16	257.8	257.8	257.8	<
mposition	Pressure [psia]	246.0	88.00	35.00	35.00	35.00	<
Specs	Molar Flow [lbmole/hr]	12.28	168.5	10.84	42.25	127.7	<
	Mass Flow [lb/hr]	4078	3036	3983	830.3	2300	<
	Std Ideal Liq Vol Flow [barrel/day]	347.0	208.3	337.6	59.89	157.8	<
	Molar Enthalpy [Btu/Ibmole]	-2.520e+005	-1.228e+005	-2.948e+005	-1.019e+005	-1.197e+005	<
	Molar Entropy [Btu/Ibmole-F]	356.0	13.38	369.1	42.97	18.27	<
	Heat Flow [Btu/hr]	-3.095e+006	-2.068e+007	-3.195e+006	-4.305e+006	-1.528e+007	1.00

Figure 28: 3-Phase Separator Sizing

Example 4: Size a horizontal high pressure separator for the following conditions:

Gas Flow Rate:	10.0 MMSCFD
Operating Pressure:	800 psig
Condensate Load:	500 bbl/day
Water Load:	100 bbl/day

From Figure 4A, at 800 psig operating pressure, a 20° x 10° horizontal separator will handle 10.2 MMSCFD operating ½ full of liquid. Where three phase operation is required in a horizontal separator, the liquid section should be ½ full, otherwise the level control action becomes too critical.

From Table 4B, the liquid capacity will be:

 $W = \frac{1440 (v)}{t} = \frac{1440 (1.80)}{5.0} = 518 \text{ bbl/day}$

Therefore, the 20° x 10' separator will not handle the combined liquid load of 500 + 100 = 600 bbl/day. Five minute retention time is used as a conservative figure without any additional information.

From Table 4B, a separator with more settling volume is a 24" x 10'. Its liquid capacity is:

W = <u>1440 (2.63)</u> = 757 bbl/day 5.0

The gas capacity of a 24" x 10' separator at 800 psig is 15.0 MMSCFD.

SETTLING VOLUMES OF STANDARD HORIZONTAL HIGH PRESSURE SEPARATORS, 230 PSIG THROUGH 2000 PSIG W.P. **

Size		Settling Volume, bbl*									
Dia. x Length	1/2 Full	1/3 Full	1/4 Full								
12 ¾" x 5'	0.38	0.22	0.15								
12 ¾" x 7 ½'	0.55	0.32	0.21								
12 ¾" x 10'	0.72	0.42	0.28								
16" x 5'	0.61	0.35	0.24								
16" x 7 ½'	0.88	0.50	0.34								
16" x 10'	1.14	0.66	0.44								
20" x 5'	0.98	0.55	0.38								
20" x 7 ½'	1.39	0.79	0.54								
20" x 10'	1.80	1.03	0.70								
24" x 5'	1.45	0.83	0.55								
24" x 7 ½'	2.04	1.18	0.78								
24" x 10'	2.63	1.52	1.01								
24" x 15'	3.81	2.21	1.47								
30" x 5'	2.43	1.39	0.91								
30" x 7 ½'	3.40	1.96	1.29								
30" x 10'	4.37	2.52	1.67								
30" x 15'	6.30	3.65	2.42								
36" x 7 ½'	4.99	2.87	1.90								
36" x 10'	6.38	3.68	2.45								
36" x 15'	9.17	5.30	3.54								
36" x 20'	11.96	6.92	4.63								
42" x 7 ½'	6.93	3.98	2.61								
42" x 10'	8.83	5.09	3.35								
42" x 15'	12.62	7.30	4.83								
42" x 20'	16.41	9.51	6.32								
48" x 7 ½'	9.28	5.32	3.51								
48" x 10'	11.77	6.77	4.49								
48" x 15'	16.74	9.67	6.43								
48" x 20'	21.71	12.57	8.38								
54" x 7 ½'	12.02	6.87	4.49								
54" x 10'	15.17	8.71	5.73								
54" x 15'	12.49	12.40	8.20								
54" x 20'	27.81	16.08	10.68								
60" x 7 ½'	15.05	8.60	5.66								
60" x 10'	18.93	10.86	7.17								
60" x 15'	26.68	15.38	10.21								
60" x 20'	34.44	19.90	13.24								

*Based on 1000 psig W.P. Separator. **Standard working pressures available are 230, 500, 600, 1000, 1200, 1440, 1500, and 2000 psig.

Figure 29: Heat Exchanger Sizing Tables

Duty (Btu/hr)	Duty (Btu/hr) OSIZE	Thi (F)	Tci (F)	Tho (F)	Tco (F)	ΔTIm (F)	F	U (Btu/hr*	A (ft^2)	p (Btu/lb*l	ΔT (F)	K1	К2	K3	Сро	FP	FM	B1	B2	Fbm	CBM	TM	TM(2022)*	Scaled TM
84,518	92,970	257.8	75	115	115	80.8	0.9	90	14.2	0.24036	40	4.0336	0.2341	0.0497	42082.73	8 1	. 1	0.9	5 1.21	1 2.17	201997.1	343395.1	573469.76	\$188,571.00
HEX Coolers for 500																								
Duty (Btu/hr)	Duty (Btu/hr) OSIZE	Thi (F)	Tci (F)	Tho (F)	Tco (F)	∆Tlm (F)	F	U (Btu/hr*	A (ft^2)	p (Btu/lb*l	ΔT (F)	К1	K2	K3	Сро	FP	FM	B1	B2	Fbm	CBM	TM	TM(2022)*]
401,170	441,286	343.9	80	100	120	84.4	0.9	150	38.7	0.24036	40	3.3444	0.2745	-0.0472	4584.332	2 1	. 1	0.9	5 1.21	L 2.17	22004.79	37408.15	62471.605	7
HEX Heater for 500																								
Duty (Btu/hr)	Duty (Btu/hr) OSIZE	Thi (F)	Tci (F)	Tho (F)	Tco (F)	ΔTIm (F)	F	U (Btu/hr*	A (ft^2)	p (Btu/lb*l	ΔT (F)	K1	К2	K3	Сро	FP	FM	B1	B2	Fbm	CBM	TM	TM(2022)*	
100,000	110,000	. 353	. 94.1	. 353	. 315.3	. 114.8	0.9	. 60	. 17.7	0.9999	. 221.2	3.3444	0.2745	-0.0472	4107.923	1	1	0.9	5 1.21	2.17	19718.03	33520.65	55979.487	
Air Coolers for 2500																								
Duty (Btu/hr)	Duty (Btu/hr) OSIZ	E Thi (F)	Tci (F)	Tho (F)	Tco (F)	ΔTIm (F)	F	U (Btu/hr	A (ft^2)	p (Btu/lb*	ΔT (F)	К1	К2	К3	Сро	FP	FM	B1	B2	Fbm	CBM	TM 1	FM(2022)* 5	icaled TM
422,594	464,854	257.8	75	115	115	80.8	0.9	90	71	0.24036	40	4.0336	0.2341	0.0497	42082.73	1	1	0.96	1.21	2.17	201997.1	343395.1	573469.76	688163.7123
Duty (Btu/hr)	Duty (Btu/hr) OSIZ	E Thi (F)	Tci (F)	Tho (F)	Tco (F)	ΔTlm (F)	F	U (Btu/hr	A (ft^2)	p (Btu/lb*	L ΔT (F)	К1	К2	K3	Сро	FP	FM	B1	B2	Fbm	CBM	TM 1	FM(2022)*	
2,005,851	2,206,436	343.9	80	100	120	84.4	0.9	150	193.6	0.24036	40	4.8306	-0.8509	0.3187	35602.03	1	1	0.96	1.21	2.17	170889.8	290512.6	485156.037	
										Air Cool	ers for 500	0												
Duty (Btu/hr)	Duty (Btu/hr) OSIZ	E Thi (F)	Tci (F)	Tho (F)	Tco (F)	ΔTIm (F)	F	U (Btu/hr	A (ft^2)	p (Btu/lb*	L ΔT (F)	К1	К2	КЗ	Сро	FP	FM	B1	B2	Fbm	CBM	TM 1	FM(2022)*	
845,189	929,708	257.8	75	115	115	80.8	0.9	90	142.1	0.24036	40	4.0336	0.2341	0.0497	58586.13	1	1	0.96	1.21	2.17	281213.4	478062.9	798364.975	
										HEX Cool	ers for 500	00												
Duty (Btu/hr)	Duty (Btu/hr) OSIZ	E Thi (F)	Tci (F)	Tho (F)	Tco (F)	ΔTIm (F)	F	U (Btu/hr	A (ft^2)	p (Btu/lb*	ΔT (F)	K1	К2	К3	Сро	FP	FM	B1	B2	Fbm	CBM	TM	FM(2022)*	
4,011,704	4,412,874	343.9	80	100	120	84.4	0.9	150	387.2	0.24036	40	4.8306	-0.8509	0.3187	57945.44	1	1	0.96	1.21	2.17	278138.1	472834.8	789634.038	

Figure 30: Purchased Cost Scale Curve For HEX

Figure 31: Piping Tables

Gas Pipe Diameter Table

		F00				1	2500					F000		
		500 101 to F 10	01				2500					5000	01	
	V·	-101 to E-1				V-	-101 to E-10				V-	101 to E-1		
Nominal L	Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal L	Inner Dia(Q (MMCFL	P(psia)	V (ft/s)	Nominal L	Inner Dia(Q (MMCFI	P(psia)	V (ft/s)
0.75	0.824	0.2957	246	55.32378	0.75	0.824	1.4785	246	276.6189	0.75	0.824	2.957	246	553.2378
1	1.049	0.2957	246	34.13621	1	1.049	1.4785	246	170.681	1	1.049	2.957	246	341.3621
1.25	1.38	0.2957	246	19.72459	1.25	1.38	1.4785	246	98.62297	1.25	1.38	2.957	246	197.2459
1.5	1.61	0.2957	246	14.49154	1.5	1.61	1.4785	246	72.45769	1.5	1.61	2.957	246	144.9154
2	2.067	0.2957	246	8.791952	2	2.067	1.4785	246	43.95976	2	2.067	2.957	246	87.91952
2.5	2.469	0.2957	246	6.162034	2.5	2.469	1.4785	246	30.81017	2.5	2.469	2.957	246	61.62034
3	3 068	0 2957	246	3 990759	3	3 068	1 4785	246	19 9538	3	3 068	2 957	246	39 90759
35	3 5/18	0.2957	246	2 98/1001	35	3 5/18	1 //785	2/16	1/ 92001	3 5	3 5/18	2 957	246	29.8/1001
3.5	4.026	0.2957	240	2.304001	3.5	4.020	1.4705	240	14.92001	3.5	4.026	2.337	240	23.04001
4	4.020	0.2957	240	2.317494	4	4.020	1.4703	240	11.56/4/	4	4.020	2.337	240	23.1/494
	V-	102 to Tail	gas			V-	102 to Tailg	as			V-:	102 to Tail	gas	
Nominal L	Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal L	Inner Dia(Q (MMCFL	P(psia)	V (ft/s)	Nominal L	Inner Dia(Q (MMCFI	P(psia)	V (ft/s)
1	1.049	0.1384	88	44.66347	1	1.049	0.692	88	223.3174	1	1.049	1.384	88	446.6347
1.25	1.38	0.1384	88	25.80746	1.25	1.38	0.692	88	129.0373	1.25	1.38	1.384	88	258.0746
1.5	1.61	0.1384	88	18.96058	1.5	1.61	0.692	88	94.80292	1.5	1.61	1.384	88	189.6058
2	2.067	0.1384	88	11.5033	2	2.067	0.692	88	57.51651	2	2.067	1.384	88	115.033
2.5	2.469	0.1384	88	8.062343	2.5	2.469	0.692	88	40.31171	2.5	2.469	1.384	88	80.62343
3	3 068	0 1384	88	5 221469	3	3 068	0.692	88	26 10735	3	3 068	1 384	88	52 21469
2 5	2 5/19	0.129/	00	2 00/1227	25	2 5/19	0.602	00	10 52110	2 5	2 5/19	1 22/	00	20 0/227
J.J	3.340	0.1304	00	3.304237	J.J	3.040	0.032	00	19.32119	J.J	4.020	1.304	00	20.22100
4	4.026	0.1384	88	3.032186	4	4.026	0.692	88	15.16093	4	4.026	1.384	88	30.32186
5	5.047	0.1384	88	1.929465	5	5.047	0.692	88	9.647323	5	5.047	1.384	88	19.29465
	V	-103 to E-1	02			V	-103 to E-10)2	1		V-	103 to E-1	02	
Nominal [Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal D	Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal [Inner Dia(Q (MMCFI	P(psia)	V (ft/s)
0.75	0.824	3.84E-02	35	50.5044	0.75	0.824	1.92E-01	35	252.522	0.75	0.824	3.84E-01	35	505.044
1	1.049	3.84E-02	35	31.16252	1	1.049	1.92E-01	35	155.8126	1	1.049	3.84E-01	35	311.6252
1.25	1.38	3.84E-02	35	18.00634	1.25	1.38	1.92E-01	35	90.0317	1.25	1.38	3.84E-01	35	180.0634
15	1.61	3 84F-02	35	13 22915	15	1 61	1 92F-01	35	66 14574	15	1 61	3 84F-01	35	132 2915
2.5	2.067	2 8/F-02	25	8 026065	2.5	2.067	1.02E-01	25	40 12022	2.5	2 067	2 8/F-01	25	80 26065
2	2.007	3.04E-02	33	6.020003	2	2.007	1.926-01	33	40.13032	2 5	2.007	3.04E-01	35	60.20005
2.5	2.469	3.84E-02	35	5.625245	2.5	2.469	1.92E-01	35	28.12622	2.5	2.469	3.84E-01	35	56.25245
3	3.068	3.84E-02	35	3.643115	3	3.068	1.92E-01	35	18.21558	3	3.068	3.84E-01	35	36.43115
3.5	3.548	3.84E-02	35	2.724058	3.5	3.548	1.92E-01	35	13.62029	3.5	3.548	3.84E-01	35	27.24058
4	4.026	3.84E-02	35	2.115612	4	4.026	1.92E-01	35	10.57806	4	4.026	3.84E-01	35	21.15612
	Syn	gas to Rea	ctor			Syn	gas to Rea	ctor			Syn	gas to Rea	ctor	
Nominal [Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal D	Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal [Inner Dia(Q (MMCFI	P(psia)	V (ft/s)
4	4.026	1.18E+00	35	65.00046	4	4.026	5.90E+00	35	325.0023	4	4.026	11.8	35	650.0046
5	5.047	1.18E+00	35	41.3616	5	5.047	5.90E+00	35	206.808	5	5.047	1.18E+01	35	413.616
6	6 065	1 18F+00	35	28 64194	6	6 065	5 90F+00	35	143 2097	6	6 065	1 18F+01	35	286 4194
0	7 021	1 195+00	25	16 5/052	°	7 091	5 00E±00	25	82 70264	0	7 091	1 195+01	25	165 /052
10	10.02	1.100+00	35	10.04000	10	10.02	5.30L+00	35	52.70204	10	10.02	1.100+01	35	104.027
10	10.02	1.180+00	35	10.4937	10	10.02	5.90E+00	35	52.40849	10	10.02	1.100+01	35	104.937
12	11.94	1.18E+00	35	7.390185	12	11.94	5.90E+00	35	36.95093	12	11.94	1.18E+01	35	/3.90185
14	13.12	1.18E+00	35	6.120633	14	13.12	5.90E+00	35	30.60316	14	13.12	1.18E+01	35	61.20633
	Pun	np Reactor	out			Pun	np Reactor	out			Pun	np Reactor	out	
Nominal [Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal D	Inner Dia(Q (MMCFI	P(psia)	V (ft/s)	Nominal [Inner Dia(Q (MMCFI	P(psia)	V (ft/s)
4	4.026	4 4 4 9											. (19.91.97)	
5	4.020	1.148	35	63.23774	4	4.026	5.74	35	316.1887	4	4.026	11.48	35	632.3774
	5.047	1.148	35	63.23774 40.23993	5	4.026 5.047	5.74 5.74	35 35	316.1887 201.1997	4	4.026 5.047	11.48 11.48	35	632.3774 402.3993
6	5.047 6.065	1.148 1.148 1.148	35 35 35	63.23774 40.23993 27.86521	4 5 6	4.026 5.047 6.065	5.74 5.74 5.74	35 35 35	316.1887 201.1997 139.326	4 5 6	4.026 5.047 6.065	11.48 11.48 11.48	35 35 35	632.3774 402.3993 278.6521
6	4.020 5.047 6.065 7.981	1.148 1.148 1.148 1.148	35 35 35 35	63.23774 40.23993 27.86521 16.09197	4 5 6 8	4.026 5.047 6.065 7.981	5.74 5.74 5.74 5.74	35 35 35 35	316.1887 201.1997 139.326 80.45986	4 5 6	4.026 5.047 6.065 7.981	11.48 11.48 11.48 11.48	35 35 35 35 35	632.3774 402.3993 278.6521 160.9197
6 8 10	4.020 5.047 6.065 7.981	1.148 1.148 1.148 1.148 1.148	35 35 35 35 35	63.23774 40.23993 27.86521 16.09197 10.20912	4 5 6 8	4.026 5.047 6.065 7.981	5.74 5.74 5.74 5.74	35 35 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561	4 5 6 8	4.026 5.047 6.065 7.981	11.48 11.48 11.48 11.48 11.48	35 35 35 35 35 35	632.3774 402.3993 278.6521 160.9197
6 8 10	4.020 5.047 6.065 7.981 10.02	1.148 1.148 1.148 1.148 1.148 1.148	35 35 35 35 35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774	4 5 6 8 10	4.026 5.047 6.065 7.981 10.02	5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561	4 5 6 8 10	4.026 5.047 6.065 7.981 10.02	11.48 11.48 11.48 11.48 11.48 11.48	35 35 35 35 35 35 35	632.3774 402.3993 278.6521 160.9197 102.0912 71 89774
6 8 10 12	4.020 5.047 6.065 7.981 10.02 11.94	1.148 1.148 1.148 1.148 1.148 1.148 1.148	35 35 35 35 35 35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774	4 5 6 8 10 12	4.026 5.047 6.065 7.981 10.02 11.94	5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887	4 5 6 8 10 12	4.026 5.047 6.065 7.981 10.02 11.94	11.48 11.48 11.48 11.48 11.48 11.48 11.48	35 35 35 35 35 35 35 35	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774
6 8 10 12 14	4.020 5.047 6.065 7.981 10.02 11.94 13.12	1.148 1.148 1.148 1.148 1.148 1.148 1.148	35 35 35 35 35 35 35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649	4 5 6 8 10 12 14	4.026 5.047 6.065 7.981 10.02 11.94 13.12	5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325	4 5 6 8 10 12 14	4.026 5.047 6.065 7.981 10.02 11.94 13.12	11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48	35 35 35 35 35 35 35 35 35 35	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649
6 8 10 12 14	4.020 5.047 6.065 7.981 10.02 11.94 13.12	1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 E-103 in	35 35 35 35 35 35 35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649	4 5 6 8 10 12 14	4.026 5.047 6.065 7.981 10.02 11.94 13.12	5.74 5.74 5.74 5.74 5.74 5.74 5.74 E-103 in	35 35 35 35 35 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325	4 5 6 8 10 12 14	4.026 5.047 6.065 7.981 10.02 11.94 13.12	11.48 11.48 11.48 11.48 11.48 11.48 11.48 E-103 in	35 35 35 35 35 35 35 35 35 35	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649
6 8 10 12 14 Nominal [4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 E-103 in Q (MMCFI	35 35 35 35 35 35 35 35 9(psia)	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s)	4 5 6 8 10 12 14 Nominal [4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35 35 9(psia)	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s)	4 5 6 8 10 12 14 Nominal [4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 E-103 in Q (MMCFI	2014 2014 2014 2014 2014 2014 2014 2014	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s)
6 8 10 12 14 Nominal [3	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(<u>3.068</u>	1.148 1.148 1.148 1.148 1.148 1.148 1.148 E-103 in Q (MMCFI 0.5207	35 35 35 35 35 35 35 P(psia) 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225	4 5 6 8 10 12 14 Nominal [3	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068	5.74 5.74 5.74 5.74 5.74 5.74 5.74 E-103 in Q (MMCFE 2.6035	35 35 35 35 35 35 35 9(psia) 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613	4 5 6 8 10 12 14 Nominal I	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068	11.48 11.48 11.48 11.48 11.48 11.48 E-103 in Q (MMCFI 5.207	P(psia) P(psia) P(psia)	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225
6 8 10 12 14 Nominal I 3 3.5	4.020 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(<u>3.068</u> 3.548	1.148 1.148 1.148 1.148 1.148 1.148 1.148 E-103 in Q (MMCFI 0.5207 0.5207	35 35 35 35 35 35 35 P(psia) 35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225 36.93196	4 5 6 8 10 12 14 Nominal [3 3.5	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548	5.74 5.74 5.74 5.74 5.74 5.74 5.74 E-103 in Q (MMCFE 2.6035 2.6035	35 35 35 35 35 35 35 9(psia) 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598	4 5 6 8 10 12 14 Nominal [3 3.5	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548	11.48 11.48 11.48 11.48 11.48 11.48 E-103 in Q (MMCFI 5.207 5.207	P(psia) P(psia) P(psia) P(psia) P(psia)	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196
6 8 10 12 14 Nominal I 3 3.5 4	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(<u>3.068</u> 3.548 4.026	1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 E-103 in Q (MMCFI 0.5207 0.5207 0.5207	35 35 35 35 35 35 35 9(psia) 35 35 35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225 36.93196 28.68283	4 5 6 8 10 12 14 Nominal [3 3.5 4	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026	5.74 5.74 5.74 5.74 5.74 5.74 5.74 E-103 in Q (MMCFE 2.6035 2.6035 2.6035	35 35 35 35 35 35 35 9(psia) 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598 143.4142	4 5 6 8 10 12 14 Nominal [3 3.5 4	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026	11.48 11.48 11.48 11.48 11.48 11.48 11.48 E-103 in Q (MMCFI 5.207 5.207 5.207	P(psia) P(psia) P(psia) P(psia) P(psia)	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196 286.8283
6 8 10 12 14 Nominal [3 3.5 4 5	4.020 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(<u>3.068</u> 3.548 4.026 5.047	1.148 1.148 1.148 1.148 1.148 1.148 1.148 E-103 in Q (MMCFI 0.5207 0.5207 0.5207	35 35 35 35 35 35 9(psia) 9(psia) 35 35 35 35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225 36.93196 28.68283 18.25168	4 5 6 8 10 12 14 Nominal [3 3.5 4 5	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047	5.74 5.74 5.74 5.74 5.74 5.74 5.74 E-103 in Q (MMCFI 2.6035 2.6035 2.6035 2.6035	35 35 35 35 35 35 35 35 35 35 35 35 35 3	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598 143.4142 91.25842	4 5 6 8 10 12 14 Nominal [3 3.5 4 5,5	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047	11.48 11.48	P(psia) P(ps	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196 286.8283 182.5168
6 8 10 12 14 Nominal I <u>3</u> 3.5 4 5 6	4.020 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(<u>3.068</u> 3.548 4.026 5.047 6.055	1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 0.5207 0.5207 0.5207 0.5207 0.5207 0.5207	35 35 35 35 35 35 35 35 35 35 35 35 35 3	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225 36.93196 28.68283 18.25168	4 5 6 8 10 12 14 Nominal [3 3.5 4 5 5 6	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.548 5.047 6.055	5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35 35 35 35 35 35 35 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598 143.4142 91.25842 63.19431	4 5 6 8 10 12 14 Nominal C 3.5 3.5 4 5 6	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.006 5.047 5.047	11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 2.007 5.207 5.207 5.207 5.207	P(psia) P(psia) P(psia) P(632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196 286.8283 182.5168 126.3886
6 8 10 12 14 Nominal I 3 3.5 4 5 6 6	4.020 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(<u>3.068</u> 3.548 4.026 5.047 6.065	1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 0.5207 0.5207 0.5207 0.5207 0.5207 0.5207	35 35 35 35 35 35 35 35 35 35 35 35 35 3	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225 36.93196 28.68283 18.25168 12.63886 12.63886	4 5 6 8 10 12 2 14 14 Nominal [3 3 3.5 4 5 6 6 0 °	4.026 5.047 6.065 7.981 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065	5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35 35 35 35 35 35 35 35 3	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598 143.4142 91.25842 63.19431 36.49479	4 5 6 10 12 14 Nominal [3 3.5 4 5 6 6	4.026 5.047 6.065 7.981 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981	11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 5.207 5.207 5.207 5.207 5.207	P(psia) P(psia)	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196 286.8283 182.5168 126.3886 72,900000
6 8 10 12 14 8 3 3.5 4 5 6 6 8 8	4.020 5.047 6.065 7.981 10.02 11.94 13.12 1nner Dia(3.068 3.548 4.026 5.047 6.065 7.981	1.148 1.148 1.148 1.148 1.148 1.148 1.148 1.148 2.103 in Q (MMCFI 0.5207 0.	35 35 35 35 35 35 35 35 35 35 35 35 35 3	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225 36.93196 28.68283 18.25168 12.63886 7.298858	4 5 6 8 10 12 14 14 Nominal [3 3 3.5 4 5 6 6 8 8	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981	5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35 35 35 35 35 35 35 35 3	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598 143.4142 91.25842 63.19431 36.49429	4 5 6 10 12 14 Nominal [3 3.5 4 5 6 8 8	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981	11.48 11.48 11.48 11.48 11.48 11.48 11.48 E-103 in Q (MMCFI 5.207 5.207 5.207 5.207 5.207	P(psia) P(632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196 286.8283 182.5168 126.3886 72.9888
6 8 10 12 14 Nominal I 3.55 4 4 5 6 8 10	4.020 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981 10.02	1.148 1.	35 35 35 35 35 35 35 35 35 35 35 35 35 3	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.954649 V (ft/s) 49.39225 36.93196 28.68283 18.25168 12.63886 7.298858 4.630566	4 5 6 8 8 10 12 14 14 Nominal [] 3 3 5 5 6 8 8 8 8 10	4.026 5.047 6.065 7.981 11.94 11.94 3.068 3.548 4.026 5.047 6.065 7.981 10.02	5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35 35 35 35 35 35 35 35 35 35 35 35 3	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598 143.4142 91.25842 63.19431 36.49429 23.15283	4 5 6 8 10 12 14 8 8 3 3.5 6 8 8 6 8 8	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981 0.02	11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 5.207 5.207 5.207 5.207 5.207 5.207 5.207	P(psia) P(psi	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196 286.8283 182.5168 126.3886 72.98858 46.3056
6 8 10 12 14 Nominal I 3.5 4 5 6 8 10 12	4.020 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981 10.02 11.94	1.148 1.	35 35	63.23774 40.23993 27.86521 16.09197 10.20912 7.189774 5.9554649 V (ft/s) 49.39225 36.93196 28.68283 18.25168 12.63886 7.298858 4.630566 3.261076	4 5 6 8 10 12 14 8 8 3 3.5 6 6 8 8 10 12	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981 10.02 11.94	5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	35 35	316.1887 201.1997 139.326 80.45986 51.04561 35.94887 29.77325 V (ft/s) 246.9613 184.6598 143.4142 91.25842 63.19431 36.49429 23.15283 16.30538	4 5 6 8 10 12 14 8 8 3 3 5 4 4 5 6 8 8 10 12	4.026 5.047 6.065 7.981 10.02 11.94 13.12 Inner Dia(3.068 3.548 4.026 5.047 6.065 7.981 10.02 11.94	11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 5.207 5.207 5.207 5.207 5.207 5.207 5.207 5.207 5.207	P(psia) P(psia)	632.3774 402.3993 278.6521 160.9197 102.0912 71.89774 59.54649 V (ft/s) 493.9225 369.3196 286.8283 182.5168 126.3886 72.98858 46.30566 32.61076

Liquid Pipe Diameter Table

	5	00			25	600			50	000	
V-101 to C	ondensate	2		V-101 to C	ondensate	2		V-101 to C	ondensate	2	
Nominal D	Inner Dia	Q (bbl/d)	V (ft/s)	Nominal [Inner Dia(Q (bbl/d)	V (ft/s)	Nominal [Inner Dia(Q (bbl/d)	V (ft/s)
0.125	0.269	29	4.774958	0.125	0.269	145	23.87479	0.125	0.269	290	47.74958
0.25	0.304	29	1 /121609	0.25	0.304	145	7 108047	0.25	0.304	290	1/1 21609
0.575	0.622	29	0.893086	0.575	0.622	145	4.465431	0.575	0.622	290	8,930862
V-101 to V	-103			V-101 to V	-103			V-101 to V	-103		
Nominal D	Inner Dia	Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=
0.125	0.269	40	6.586149	0.125	0.269	200	32.93075	0.125	0.269	400	65.86149
0.25	0.364	40	3.596941	0.25	0.364	200	17.98471	0.25	0.364	400	35.96941
0.375	0.493	40	1.960841	0.375	0.493	200	9.804203	0.375	0.493	400	19.60841
0.5	0.622	40	1.231843	0.5	0.622	200	6.159215	0.5	0.622	400	12.31843
0.75	0.824	40	0.70191	0.75	0.824	200	3.509552	0.75	0.824	400	7.019105
1	1.049	40	0.433097	1	1.049	200	2.165485	1	1.049	400	4.33097
V-103 to D	Distillate			V-103 to D	listillate			V-103 to D	istillate		
Nominal [Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=
0.125	0.269	37	6.092188	0.125	0.269	185	30.46094	0.125	0.269	370	60.92188
0.25	0.364	3/	3.32/1/1	0.25	0.364	185	16.63585	0.25	0.364	370	33.2/1/1
0.375	0.493	3/	1.813/78	0.375	0.493	185	9.068888	0.375	0.493	370	18.13/78
0.5	0.022	27	0.640267	0.5	0.022	105	2 2/6226	0.5	0.022	270	6 402672
U.75	0.024	5/	0.049267	U.75	0.024	102	5.240550	U.75	0.024	570	0.492072
Nominal	Inner Dia	Q (bbl/d)	V=	Nominal	Inner Die/	Q (bbl/d)	V=	Nominal	Inner Die/	Q (bbl/d)	V=
0.125	0.269	17	2,799113	0.125	0.269	2 (00) (0) 85	13,99557	0.125	0.269	170	27.99113
0.25	0.364	17	1.5287	0.25	0.364	85	7.643501	0.25	0.364	170	15.287
0.375	0.493	17	0.833357	0.375	0.493	85	4.166786	0.375	0.493	170	8.333573
V-102 to E	-103			V-102 to E	-103			V-102 to E	-103		
Nominal [Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=
0.125	0.269	21	3.457728	0.125	0.269	105	17.28864	0.125	0.269	210	34.57728
0.25	0.364	21	1.888394	0.25	0.364	105	9.441971	0.25	0.364	210	18.88394
0.375	0.493	21	1.029441	0.375	0.493	105	5.147207	0.375	0.493	210	10.29441
0.5	0.622	21	0.646718	0.5	0.622	105	3.233588	0.5	0.622	210	6.467176
V-102 to N	laphtha		1	V-102 to N	laphtha			V-102 to N	laphtha		
Nominal D	Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=
0.125	0.269	6	0.987922	0.125	0.269	30	4.939612	0.125	0.269	60	9.879224
0.25	0.364	6	0.539541	0.25	0.364	30	2.697706	0.25	0.364	60	5.395412
0.375	0.493	6	0.294126	0.375	0.493	30	1.47063	0.375	0.493	60	2.941261
E-102 to W	Vaste Wate	er O (I I I I I I I I I I I I I I I I I I I		E-102 to V	Vaste Wate	er O (I I I I I I I I I I I I I I I I I I I		E-102 to V	/aste Wate	er O (I I I (I)	
Nominal L	Inner Dia	Q (bbi/d)	V=	Nominal L	Inner Dia(Q (DDI/d)	V=	Nominal L	Inner Dia	Q (bbi/d)	V=
0.125	0.269	43	2.966712	0.125	0.269	215	35.40055	0.125	0.269	430	70.80111
0.25	0.304	43	3.600/12	0.25	0.304	215	19.55550	0.25	0.304	430	36.00/12
0.375	0.493	43	2.10/904	0.375	0.493	215	10.53952	0.375	0.493	430	12 24221
0.5	0.022	43	0.754554	0.5	0.022	215	2 772760	0.5	0.022	430	7 545527
0.75	Pump re	actor in	0.754554	0.75	Pump re	actor in	3.772709	0.75	Pump re	actor in	7.343337
Nominal [Inner Dia	O (bbl/d)	V=	Nominal [Inner Dia(O (bbl/d)	V=	Nominal [Inner Dia	O (bbl/d)	V=
0.125	0.269	158.4	26.08115	0.125	0.269	792	130,4058	0.125	0.269	1584	260.8115
0.25	0.364	158.4	14.24389	0.25	0.364	792	71.21944	0.25	0.364	1584	142.4389
0.375	0.493	158.4	7.764929	0.375	0.493	792	38.82464	0.375	0.493	1584	77.64929
0.5	0.622	158.4	4.878098	0.5	0.622	792	24.39049	0.5	0.622	1584	48.78098
0.75	0.824	158.4	2.779565	0.75	0.824	792	13.89783	0.75	0.824	1584	27.79565
1	1.049	158.4	1.715064	1	1.049	792	8.57532	1	1.049	1584	17.15064
1.25	1.38	158.4	0.990999	1.25	1.38	792	4.954994	1.25	1.38	1584	9.909988
1.5	1.61	158.4	0.728081	1.5	1.61	792	3.640404	1.5	1.61	1584	7.280808
2	2.067	158.4	0.441723	2	2.067	792	2.208617	2	2.067	1584	4.417234
2.5	2.469	158.4	0.309592	2.5	2.469	792	1.547958	2.5	2.469	1584	3.095916
Nominal	E-10		V-	Nominal	E-10		V-	Nominal	E-10		V-
Nominal L	1 0/0	751 6	8 127002		1 0/0	2750	V-	nvominal L	1 0/0	7516	v = 81 37903
1 25	1.049	751.6	4 707720	1 25	1 20	3/38	73 5117	1.25	1 20	7516	47 02230
1.25	1.50	751.6	3,454707	1.25	1.50	3758	17.27352	1.25	1.50	7516	34.54707
2.5	2.067	751.6	2.095955	2.5	2.067	3758	10.47978	2.5	2.067	7516	20.95955
2.5	2.469	751.6	1.468996	2.5	2.469	3758	7.344982	2,5	2.469	7516	14.68996
3	3.068	751.6	0.951376	3	3.068	3758	4.75688	3	3.068	7516	9.51376
3.5	3.548	751.6	0.71137	3.5	3.548	3758	3.556851	3.5	3.548	7516	7.113702
4	4.026	751.6	0.552478	4	4.026	3758	2.762392	4	4.026	7516	5.524785
5	5.047	751.6	0.351557	5	5.047	3758	1.757787	5	5.047	7516	3.515574
	E-10	3 out			E-10	3 out			E-10	3 out	
Nominal [1										N/-
#REF!	Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	V=	Nominal [Inner Dia(Q (bbl/d)	v-
#REF!	Inner Dia(0.493	Q (bbl/d) 72.21	V= 3.539808	Nominal [#REF!	Inner Dia(0.493	Q (bbl/d) 361.05	V= 17.69904	Nominal E #REF!	Inner Dia(0.493	Q (bbl/d) 722.1	35.39808
	Inner Dia(0.493 0.622	Q (bbl/d) 72.21 72.21	V= 3.539808 2.223785	Nominal E #REF! #REF!	Inner Dia(0.493 0.622	Q (bbl/d) 361.05 361.05	V= 17.69904 11.11892	Nominal E #REF! #REF!	Inner Dia(0.493 0.622	Q (bbl/d) 722.1 722.1	35.39808 22.23785
0.75	Inner Dia(0.493 0.622 0.824	Q (bbl/d) 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.70124	Nominal E #REF! #REF! 0.75	Inner Dia(0.493 0.622 0.824	Q (bbl/d) 361.05 361.05 361.05	V= 17.69904 11.11892 6.335619	Nominal E #REF! #REF! 0.75	Inner Dia(0.493 0.622 0.824	Q (bbl/d) 722.1 722.1 722.1	35.39808 22.23785 12.67124
0.75	Inner Dia(0.493 0.622 0.824 1.049	Q (bbl/d) 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451762	Nominal [#REF! #REF! 0.75 1	Inner Dia(0.493 0.622 0.824 1.049	Q (bbl/d) 361.05 361.05 361.05 361.05	V= 17.69904 11.11892 6.335619 3.909242	Nominal [#REF! #REF! 0.75 1	Inner Dia(0.493 0.622 0.824 1.049	Q (bbl/d) 722.1 722.1 722.1 722.1	35.39808 22.23785 12.67124 7.818483
0.75	Inner Dia(0.493 0.622 0.824 1.049 1.38	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.221011	Nominal [#REF! #REF! 0.75 1 1.25	Inner Dia(0.493 0.622 0.824 1.049 1.38	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05	V= 17.69904 11.11892 6.335619 3.909242 2.258839	Nominal [#REF! #REF! 0.75 1 1.25	Inner Dia(0.493 0.622 0.824 1.049 1.38	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1	35.39808 22.23785 12.67124 7.818483 4.517678
0.75 1 1.25 1.5	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201262	Nominal I #REF! #REF! 0.75 1 1.25 1.5	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05 361.05 361.05	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.005945	Nominal L #REF! #REF! 0.75 1 1.25 1.5	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1 722.1 722.1	35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01252
0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201369	Nominal I #REF! #REF! 0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102+	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05 361.05 361.05 0 V-103	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.006845	Nominal E #REF! #REF! 0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102+	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1 722.1 722.1 722.1	35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01369
0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201369	Nominal I #REF! #REF! 0.75 1.25 1.5 2 Nominal I	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05 361.05 0 V-103 Q (bbl/d)	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.006845 V=	Nominal E #REF! #REF! 0.75 1 1.25 1.5 2 Nominal F	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1 722.1 722.1 722.1 722.1 0 V-103 0 (bbl/d)	V- 35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01369 V=
0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201369	Nominal [#REF! #REF! 0.75 1.25 1.5 2 Nominal [0.125	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05 361.05 361.05 0 V-103 Q (bbl/d) 103 9	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.006845 V= 17.10752	Nominal [#REF! #REF! 0.75 1 1.25 1.5 2 Nominal [0.125	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1 722.1 722.1 722.1 0 V-103 Q (bbl/d) 207 8	V= 35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01369 V= 34.21505
0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201369	Nominal I #REF! #REF! 0.75 1.25 1.5 2 Nominal I 0.125 0.25	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05 361.05 0 V-103 Q (bbl/d) 103.9 103.9	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.006845 V= 17.10752 9.343055	Nominal I #REF! #REF! 0.75 1 1.25 1.5 2 Nominal I 0.125 0.25	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1 722.1 722.1 722.1 0 V-103 Q (bbl/d) 207.8 207.8	V= 35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01369 V= 34.21505 18.68611
0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201369	Nominal [#REF! #REF! 0.75 1 1.25 1.5 2 Nominal [0.125 0.25 0.375	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364 0.493	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05 361.05 361.05 0 V-103 Q (bbl/d) 103.9 103.9	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.006845 V= 17.10752 9.343055 5.093284	Nominal I #REF! #REF! 0.75 1 1.25 1.5 2 Nominal I 0.125 0.25 0.375	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364 0.493	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1 722.1 722.1 722.1 722.1 0 V-103 Q (bbl/d) 207.8 207.8	V= 35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01369 V= 34.21505 18.68611 10.18657
0.75	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201369	Nominal [#REF! #REF! 0.75 1 1.25 1.5 2 Nominal [0.125 0.25 0.375 0.5	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364 0.493 0.622	Q (bbl/d) 361.05 361	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.006845 V= 17.10752 9.343055 5.093284 3.199712	Nominal I #REF! #REF! 0.75 1 1.25 1.5 2 Nominal I 0.125 0.25 0.375 0.5	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364 0.493 0.622	Q (bbl/d) 722.1 72.1 7	V= 35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01369 V= 34.21505 18.68611 10.18657 6.399424
0.75 1 1.25 1.5 2	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067	Q (bbl/d) 72.21 72.21 72.21 72.21 72.21 72.21 72.21	V= 3.539808 2.223785 1.267124 0.781848 0.451768 0.331911 0.201369	Nominal [#REF! #REF! 0.75 1.075 2 1.055 2 0.75 0.25 0.25 0.375 0.55 0.75	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364 0.493 0.622 0.824	Q (bbl/d) 361.05 361.05 361.05 361.05 361.05 361.05 361.05 361.05 361.05 361.05 0 V-103 Q (bbl/d) 103.9 103.9 103.9 103.9	V= 17.69904 11.11892 6.335619 3.909242 2.258839 1.659555 1.006845 V= 17.10752 9.343055 5.093284 3.199712 1.823212	Nominal D #REF! #REF! 0.75 1.5 2 1.5 2 0.125 0.25 0.25 0.375 0.5 5 0.75	Inner Dia(0.493 0.622 0.824 1.049 1.38 1.61 2.067 V-102 t Inner Dia(0.269 0.364 0.493 0.622 0.824	Q (bbl/d) 722.1 722.1 722.1 722.1 722.1 722.1 722.1 0 V-103 Q (bbl/d) 207.8 207.8 207.8 207.8	V= 35.39808 22.23785 12.67124 7.818483 4.517678 3.319111 2.01369 V= 34.21505 18.68611 10.18657 6.399424 3.646425

3-Phase Pipe Diameter Tables

		R-101 to V-1	01		
	Vapor	Liq	Aq		
Frac	0.558	0.0237	0.4183	0.442	
Ν				0	
V(m/s)	0.1			0.075416	
Q(m^3/s)	0.000154	6.39444E-05	5.18611E-05	0.000116	
D (m)	0.044217			0.044217	1.75in
		E-101 to V-1	02		
	Vapor	Liq	Aq		
Frac	0.558	0.0237	0.4183	0.442	
N				0	
V(m/s)	0.1			0.075416	
Q(m^3/s)	0.000154	6.39444E-05	5.18611E-05	0.000116	
D (m)	0.044217			0.044217	1.75in

2-Phase Pipe Diameter Table

		Two Phase Gas/Liq	Flow Pipe Dia		
Stream Name	QL (m3/s)	QG (m3/s)	Inner Dia (m)	VsG	VsL
	2.85404E-				
E-103 to V-103	05	0.001040318	0.00635	32.84949847	0.901204071
	2.85404E-				
E-103 to V-103	05	0.001040318	0.0127	8.212374619	0.225301018
	2.85404E-				
E-103 to V-103	05	0.001040318	0.01905	3.649944275	0.100133786
	2.85404E-				
E-103 to V-103	05	0.001040318	0.0254	2.053093655	0.056325254
	2.85404E-				
E-103 to V-103	05	0.001040318	0.0381	0.912486069	0.025033446
	2.85404E-				
E-103 to V-103	05	0.001040318	0.0508	0.513273414	0.014081314
	2.85404E-				
E-103 to V-103	05	0.001040318	0.0635	0.328494985	0.009012041

Figure 32: Potential Unit Combinations per Wellhead

	2H(6488)
0000	5000
7500	5000
/300	3000
	2500
6300	500
	500
	500
7500	200
/300	2500
	2500
	2500
6300	2500
	2500
	500
	500
	300
6300	2500
	500
	500
	500
	500
	500
	500
	500
6500	500
3300	500
	500
	500
	500
	500
	500
	500
	500
	500
	500
	500
	500
	300

Figure 33: Oil Field Map

В		
80	100	

Well ID													Sum
1A	0	1	0	0	0	0	0	0	0	0	0	0	4
1B	1	0	0	0	0	0	0	0	0	0	0	0	2
10	0		1	0	0	0	0	0	0	0	0	0	8
1D	0	0	0	1	0	0	0	0	0	0	0	0	7
1E	1	0	0	0	0	0	0	0	0	0	0	0	3
IF	1	0	0	0	0	0	0	0	0	0	0	0	14
1G	0	1	0	0	0	0	0	0	0	0	0	0	11
1H	0	0	1	0	0	0	0	0	0	0	0	0	7
2A	0	0	0	1	0	0	0	0	0	0	0	0	9
2B	0	1	0	0	0	0	0	0	0	0	0	0	12
2C	1	0	0	0	0	0	0	0	0	0	0	0	8
2D	0	0	0	1	0	0	0	0	0	0	0	0	3
2E	0	0	1	0	0	0	0	0	0	0	0	0	7
2F	0	0	0	1	0	0	0	0	0	0	0	0	2
2G	0	0	1	0	0	0	0	0	0	0	0	0	6
2H	0	0	0	1	0	0	0	0	0	0	0	0	6
SUM	29758	27907	29461	29836	0	0	0	0	0	0	0	0	
CP Max	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	
Yr	0	1	2	3	4	5	6	7	8	9	10	11	
MIN Cost	-1612.614407												
Total Cost													
Total Cost 1A	-58.86	-58.86	-58.86	-58.86	-58.86	-58.86	-58.86	-58.86	-58.86	-58.86	-58.86	-58.86	
Total Cost 1A 1B	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	-58.86 -45.26	
Total Cost 1A 1B 1C	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	-58.86 -45.26 -114.13	
Total Cost IA IB IC ID	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	-58.86 -45.26 -114.13 -94.11	
Total Cost IA IB IC ID IE	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	-58.86 -45.26 -114.13 -94.11 -55.27	
Total Cost IA IB IC ID IE IF	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57	
Total Cost IA IB IC ID IB IF IG	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65	
Total Cost IA IB IC ID IE IF IG IH	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11	
Total Cost IA IB IC ID IE IF IG IH 2A	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71	
Total Cost 1A 1B 1C 1D 1E 1F 1G 1H 2A 2B	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97	
Total Cost 1A 1B 1C 1D 1E 1F 1G 1H 2A 2B 2C 2D	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71	
Total Cost 1A 1B 1C 1D 1E 1F 1G 1H 2A 2B 2C 2D	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86	
Total Cost 1A 1B 1C 1D 1E 1F 1G 1H 2A 2B 2C 2D 2E	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -4526 -114.13 -94.11 -5527 -17657 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12	
Total Cost 1A 1B 1C 1D 1E 1F 1G 1H 2A 2B 2C 2D 2E 2F 2C	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -4526 -114.13 -94.11 -5527 -17657 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -452.6	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	-58.86 -45.26 -114.13 -94.11 -55.27 -176.57 -194.65 -94.11 -117.71 -152.97 -117.71 -58.86 -104.12 -45.26	

Tota1
4,494
2,989
8,365
7,447
3,290
14,737
11,155
7,081
9,187
12,258
8,742
3,840
7,939
2,874
6.076
6,488
-

GROUPS 1B,1E,1F,2C 1A,1G,2B 1C,1H,2E,2G 1D,2A,2D,2H,2F

Design Rating	Worksheet	Performance	Dynamics	EDR Fired	leater			
Worksheet	Name			4	13	11	5	12
Conditions	Vapour			0.9098	1.0000	1.0000	1.0000	1.0000
roperties	Temperature [F]		1	351.4171	75.0000	100.0000	700.0000	839.3943
Composition	Pressure [psia] Molar Flow [lbmole/hr] Mass Flow [lb/hr]			514.7	14.70	514.7	514.7	14.70
F Specs				106.1575	21.9764	2.0065	106.1575	23.9832
			2	161.0578	634.0252	32.1907	2161.0578	666.2160
	LigVol Flow [barrel/day]		298.0161	50.1860	7.3622	298.0161	54.7441
	Molar Enthal	py [Btu/lbmole]	-7.4	48e+004	-17.47	-3.226e+004	-6.928e+004	-2.568e+004
	Molar Entrop	y [Btu/lbmole-f		39.29	36.20	36.81	44.87	45.29
	Heat Flow IB	tu/hrl	-7.9	062e+06	-3.8384e+02	-6.4730e+04	-7.3551e+06	-6.1583e+05

Figure 35: F500 MSCF Furnace

esign React	tions Rating Worksheet Dynamics					,
Worksheet	Name	5	8	10	9	
Conditions	Vapour	1.0000	1.0000	0.0000	1.0000	
roperties	Temperature [F]	700.0	75.00	1645	1645	
omposition	Pressure [psia]	514.7	514.7	508.7	508.7	
F Specs	Molar Flow [Ibmole/hr]	106.2	27.46	0.0000	192.1	
	Mass Flow [lb/hr]	2161	877.6	0.0000	3039	
	Std Ideal Liq Vol Flow [barrel/day]	298.0	53.01	0.0000	412.8	
	Molar Enthalpy [Btu/Ibmole]	-6.928e+004	-155.1	-3.832e+004	-3.832e+004	
	Molar Entropy [Btu/Ibmole-F]	44.87	27.47	43.06	43.06	
	11	7 355 006	4260	0.0000	7 250 - 006	
	Heat How [Btu/hr]	-7.555e+000	-4200	0.0000	-7.5398+000	
	Heat How [Btu/hr]	-7.3358-000	-4200	0.000		

Vorksheet	Name Vapour Temperature (F) Pressure (psia) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barre Molar Enthalpy (Btu/lbmole- Heat Flow (Btu/hr)	26 1.0000 1645 506.7 192.1 3039 4/day] 412.8] -3.832e+004 F] 43.07 -7.359e+006	27 1.0000 470.0 500.7 192.1 3039 412.8 -4.873e+004 35.93 -9.359e+006	Q-103 <empty> <empty> <empty> <empty> <empty> <empty> <empty> 2.000e+006</empty></empty></empty></empty></empty></empty></empty>		
onditions roperties omposition F Specs	Vapour Temperature (F) Pressure (psia) Molar Flow (lbmole/hr) Mass Flow (lb/hr) Std Ideal Liq Vol Flow (barre Molar Enthalpy (Btu/lbmole- Heat Flow (Btu/hr)	1.0000 1645 506.7 192.1 3039 412.8 J -3.832e+004 F] 43.07 -7.359e+006	1.0000 470.0 500.7 192.1 3039 412.8 -4.873e+004 35.93 -9.359e+006	<empty> <empty> <empty> <empty> <empty> <empty> <empty> 2.000e+006</empty></empty></empty></empty></empty></empty></empty>		
roperties omposition F Specs 	Temperature [F] Pressure [psia] Molar Flow [Ibmole/hr] Mass Flow (Ibmole/hr] Std Ideal Liq Vol Flow (Ibarre Molar Enthalpy [Btu/Ibmole- Heat Flow [Btu/hr]	1645 506.7 192.1 3039 4/day] 412.8] -3.832e+004 F] 43.07 -7.359e+006	470.0 500.7 192.1 3039 412.8 -4.873e+004 35.93 -9.359e+006	<empty> <empty> <empty> <empty> <empty> <empty> <empty> 2.000e+006</empty></empty></empty></empty></empty></empty></empty>		
omposition F Specs 	Pressure [psia] Molar Flow [lbmole/hr] Mass Flow [lb/hr] Std Ideal Liq Vol Flow [barre Molar Enthalpy [Btu/lbmole- Molar Entropy [Btu/lbmole- Heat Flow [Btu/hr]	1/day] 506.7 192.1 3039 1/day] 412.8 3.832e+004 F] 43.07 -7.359e+006	500.7 192.1 3039 412.8 -4.873e+004 35.93 -9.359e+006	<empty> <empty> <empty> <empty> <empty> 2.000e+006</empty></empty></empty></empty></empty>		
F Specs I	Molar Flow [Ibmole/hr] Mass Flow [Ib/hr] Std Ideal Liq Vol Flow [barre Molar Enthalpy [Btu/Ibmole Molar Entropy [Btu/Ibmole- Heat Flow [Btu/hr]	192.1 3039 4l/day] 412.8] -3.832e+004 F] 43.07 -7.359e+006	192.1 3039 412.8 -4.873e+004 35.93 -9.359e+006	<empty> <empty> <empty> <empty> <empty> 2.000e+006</empty></empty></empty></empty></empty>		
	Mass Flow [lb/hr] Std Ideal Liq Vol Flow [barre Molar Enthalpy [Btu/lbmole Molar Entropy [Btu/lbmole- Heat Flow [Btu/hr]	3039 I/day] 412.8 J -3.832e+004 FJ 43.07 -7.359e+006	3039 412.8 -4.873e+004 35.93 -9.359e+006	<empty> <empty> <empty> <empty> 2.000e+006</empty></empty></empty></empty>		
	Std Ideal Liq Vol Flow [barre Molar Enthalpy [Btu/Ibmole Molar Entropy [Btu/Ibmole- Heat Flow [Btu/hr]	H/day] 412.8] -3.832e+004 F] 43.07 -7.359e+006	412.8 -4.873e+004 35.93 -9.359e+006	<empty> <empty> <empty> 2.000e+006</empty></empty></empty>		
	Molar Enthalpy [Btu/Ibmole Molar Entropy [Btu/Ibmole- Heat Flow [Btu/hr]] -3.832e+004 F] 43.07 -7.359e+006	-4.873e+004 35.93 -9.359e+006	<empty> <empty> 2.000e+006</empty></empty>		
1	Molar Entropy [Btu/Ibmole- Heat Flow [Btu/hr]	F] 43.07 -7.359e+006	35.93 -9.359e+006	<empty> 2.000e+006</empty>		
	Heat Flow [Btu/hr]	-7.359e+006	-9.359e+006	2.000e+006		

Figure 37: 500 Cooler

Figure 37: 2500 furnace

esign Rating	Worksheet	Performance	Dynamics EDI	R FiredHeater					
Worksheet	Name			6	16	15	7		14
Conditions	Vapour		0.9	098	1.0000	1.0000	1.0000	1.00	00
roperties	Temperature	(F)	351.4	147	75.0000	100.0000	700.0000	839.39	43
omposition	Pressure [psia]		5	14.7	14.70	514.7	514.7	14.	70
F Specs	Molar Flow [lbmole/hr]	530.8	000	109.8854	10.0330	530.8000	119.91	95
	Mass Flow [I	b/hr]	10805.2	798 3	170.2230	160.9586	10805.2798	3331.18	17
	LiqVol Flow	barrel/day]	1490.1	266	250.9379	36.8120	1490.1266	273.72	88
	Molar Entha	py [Btu/lbmole]	-7.447e+	004	-17.47	-3.226e+004	-6.928e+004	-2.568e+0	04
	Molar Entrop	y [Btu/lbmole-f	39	9.29	36.20	36.81	44.87	45.	29
	Heat Flow [B	tu/hr]	-3.9530e	+07 -1.9	9192e+03	-3.2366e+05	-3.6775e+07	-3.0793e+	06

Design React	tions Rating	Worksheet	Dynamics				
Worksheet	Name			7	17	19	18
Conditions	Vapour			1.0000	1.0000	0.0000	1.0000
Properties	Temperature	e (F)		700.0	75.00	1645	1645
Composition	Pressure [psi	ia]		514.7	514.7	508.7	508.7
PF Specs	Molar Flow [[bmole/hr]		530.8	137.3	0.0000	960.3
	Mass Flow [I	b/hr]		1.081e+004	4388	0.0000	1.519e+004
	Std Ideal Liq	Vol Flow [bar	rrel/day]	1490	265.1	0.0000	2064
	Molar Enthalpy [Btu/Ibmole]			-6.928e+004	-155.1	-3.832e+004	-3.832e+004
	Molar Entroy	ov [Btu/lbmo]	e-Fl	44.87	27.47	43.06	43.06
	Wolar Entrop	by [btu/ibilloi	C (1)				
	Heat Flow [B	itu/hr]	- 1]	-3.677e+007	-2.130e+004	0.0000	-3.680e+007
	Heat Flow [8	itu/hr]		-3.677e+007	-2.130e+004	0.0000	-3.680e+007

Figure 38: 2500 Gibbs reactor

Figure 39: 2500 cooler

Jesign Rating	Worksheet Performance Dynamics					
Worksheet	Name	28	30	Q-104		
Conditions	Vapour	1.0000	1.0000	<empty></empty>		
Properties	Temperature [F]	1645	470.0	<empty></empty>		
Composition	Pressure [psia]	508.7	502.7	<empty></empty>		
F Specs	Molar Flow [lbmole/hr]	960.3	960.3	<empty></empty>		
	Mass Flow [lb/hr]	1.519e+004	1.519e+004	<empty></empty>		
	Std Ideal Liq Vol Flow [barrel/day]	2064	2064	<empty></empty>		
	Molar Enthalpy [Btu/Ibmole]	-3.832e+004	-4.873e+004	<empty></empty>		
	Molar Entropy [Btu/Ibmole-F]	43.06	35.92	<empty></empty>		
	Heat Flow [Btu/hr]	-3.680e+007	-4.679e+007	9.999e+006		

Design	Rating	Worksheet	Performance	Dynamics	EDR FiredH	leater			
Works	heet	Name			6-2	21	20	7-2	22
Conditio	ons	Vapour			0.9098	1.0000	1.0000	1.0000	1.0000
Properti	ies	Temperature	• (F)	3	51.4039	75.0000	100.0000	700.0000	839.3943
Compos	sition	Name 0 21 20 1 Vapour 0.9098 1.000 1.0000 1.0000 is Temperature [F] 351.4039 75.0000 100.0000 700.0000 is Pressure [psia] 514.7 14.70 514.7 514.7 Molar Flow [bmole/h] 1061.7000 219.7977 20.0665 1061.7000 Mass Flow [lb/n] 21614.9606 6341.2231 321.9567 21614.9606 LiqVol Flow bmare/day] 2890.6183 501.9372 73.6330 2980.6183 Molar Enthalpy [Btu/lbmole] -7.448e+004 -17.47 -3.226e+004 -6.929=+004 Molar Enthalpy [Btu/lbmole] -7.978e+07 -3.8390e+03 -6.4739e+05 -7.3566e+07	514.7	14.70					
PF Spec	s	Molar Flow	lbmole/hr]	10	6-2 21 20 0.9098 1.0000 10.0000 351.4039 75.0000 100.0000 700 514.7 14.70 514.7 1061.7000 210.685 106 2161.49606 6341.2231 321.9567 2161 2980.6183 501.9372 73.6330 298 -7.448e+004 -17.47 -3.226e+004 -6.929 36.21 36.81	1061.7000	239.8684		
	Specs	Mass Flow [I	b/hr]	216	14.9606	6341.2231	321.9567	21614.9606	6663.1798
		LiqVol Flow	[barrel/day]	29	80.6183	501.9372	73.6330	2980.6183	547.5247
	Molar Entha	lpy [Btu/lbmole]	-7.44	8e+004	-17.47	-3.226e+004	-6.929e+004	-2.568e+004	
		Molar Entro	py [Btu/lbmole-	F	39.29	36.20	36.81	44.87	45.29
		Heat Flow [B	tu/hr]	-7.90	78e+07	-3.8390e+03	-6.4739e+05	-7.3566e+07	-6.1593e+06

Figure 40: 5000 furnace

Figure 41:	5000	Gibbs	reactor
------------	------	-------	---------

esign React	ions Rating Worksheet Dynamics						
Norksheet	Name	7-2	24	25	23		
onditions	Vapour	1.0000	1.0000	0.0000	1.0000		
roperties	Temperature [F]	700.0	75.00	1645	1645		
Composition	Pressure [psia]	514.7	514.7	508.7	508.7		
PF Specs	Molar Flow [lbmole/hr]	1062	274.6	0.0000	1921		
	Mass Flow [lb/hr]	2.161e+004	8776	0.0000	3.039e+004	e+004	
	Std Ideal Liq Vol Flow [barrel/day]	2981	530.1	0.0000	4128		
	Molar Enthalpy [Btu/Ibmole]	-6.929e+004	-155.1	-3.832e+004	-3.832e+004		
	Molar Entropy [Btu/Ibmole-F]	44.87	27.47	43.07	43.07		
	Heat Flow [Btu/hr]	-7.357e+007	-4.260e+004	0.0000	-7.361e+007		

esign Rating	Worksheet	Performance	Dynamics					
Norksheet	Name			29	31	Q-105		
onditions	Vapour			1.0000	1.0000	<empty></empty>		
roperties	Temperature	e (F)		1645	470.0	<empty></empty>		
omposition	Pressure [ps	ia]		508.7	502.7	<empty></empty>		
F Specs	Molar Flow	[lbmole/hr]		1921	1921	<empty></empty>		
	Mass Flow [b/hr]		3.039e+004	3.039e+004	<empty></empty>		
	Std Ideal Liq	Vol Flow [barre	el/day]	4128	4128	<empty></empty>		
	Molar Entha	lpy [Btu/lbmole	2]	-3.832e+004	-4.873e+004	<empty></empty>		
	Molar Entro	py [Btu/lbmole-	-F]	43.07	35.92	<empty></empty>		
	Heat Flow [E	8tu/hr]		-7.361e+007	-9.361e+007	2.000e+007		

Figure 42: 5000 Cooler

Column: T-10	0 / COL1 Fluid Pkg: Basis-1 / Sour SRK							-	
Design Param	eters Side Ops Internals Rating	Worksheet Per	formance	Flowsheet	Reactions	Dynamics			
Worksheet Conditions	Name	500 So	v Water @COL1	500 SU @	COL1	500 Pre FTR HE @COL1	500 Rich Solv @COL1		
Properties	Vapour		0.0000	1	.0000	1.0000	0.0000		
PF Specs	Temperature [F]		80.00		470.0	80.15	88.10		
	Pressure [psia]		500.0		500.0	444.0	445.0		
	Molar Flow [lbmole/hr]		9500		192.1	129.8	9562		
	Mass Flow [lb/hr]	1.7	11e+005		3039	1482	1.727e+005		
	Std Ideal Liq Vol Flow [barrel/day]	1.1	74e+004		412.9	294.8	1.186e+004		
	Molar Enthalpy [Btu/Ibmole]	-1.2	30e+005	-4.871e	+004	-1.837e+004	-1.230e+005		
	Molar Entropy [Btu/Ibmole-F]		12.82		35.94	28.48	13.15		
	Heat Flow [Btu/hr]	-1.1	69e+009	-9.358e	e+006	-2.385e+006	-1.176e+009		

Figure 44: Absorber 2500 MSCFD

 \times

🕒 Column: T-101 / COL2 Fluid Pkg: Basis-1 / Sour SRK

Design Parameters Side Ops Internals Rating Worksheet Performance Flowsheet Reactions Dynamics Worksheet 2.5 MM SU @COL2 2.5 MM Solv W 2.5 MM Pre-FTR 2.5 MM Rich Name @COL2 HE @COL2 Solv @COL2 Conditions Properties Vapour 0.0000 1.0000 1.0000 0.0000 Compositions PF Specs Temperature [F] 80.00 470.0 80.15 88.09 500.0 500.0 444.0 445.0 Pressure [psia] Molar Flow [lbmole/hr] 4.750e+004 960.3 649.0 4.781e+004 1.519e+004 8.635e+005 Mass Flow [lb/hr] 7407 8.557e+005 Std Ideal Liq Vol Flow [barrel/day] 5.871e+004 1474 5.930e+004 2064 Molar Enthalpy [Btu/Ibmole] -1.230e+005 -4.871e+004 -1.837e+004 -1.230e+005 Molar Entropy [Btu/Ibmole-F] 12.82 35.94 28.48 13.15 Heat Flow [Btu/hr] -5.844e+009 -4.678e+007 -1.192e+007 -5.879e+009