

FASTER COMPUTATION
OF G-FUNCTIONS USED

FOR MODELING OF
GROUND HEAT

EXCHANGERS WITH
REDUCED MEMORY

CONSUMPTION

Jack Cook and Jeffrey Spitler
Jack.cook@okstate.edu, spitler@okstate.edu

Pre-print
Cook, J.C. and J.D. Spitler. 2021. Faster computation of g-functions used for

modeling of ground heat exchangers with reduced memory consumption. Accepted
for publication in Proceedings of Building Simulation 2021, Bruges, Belgium.

September 1-3, 2021.

Faster computation of g-functions used for modeling of ground heat exchangers with reduced
memory consumption

Jack C. Cook1, Jeffrey D. Spitler1,

1Oklahoma State University, Stillwater, Oklahoma, USA

Abstract
Temperature response functions, known as g-functions,
are a computationally efficient method for simulating
ground heat exchangers (GHEs), used with ground-source
heat pump (GSHP) systems or direct ground cooling
systems as part of a whole-building energy simulation. In
fact, at present, there are no other methods that have
sufficient accuracy and are fast enough to simulate a
ground-source heat pump system in a whole-building
energy simulation.
The concept, mathematical derivation and an
implementation of a g-function calculation program were
originally developed by Claesson and Eskilson (1985).
More recently (Cimmino 2018a, Cimmino 2018b,
Cimmino 2019) developed an open-source g-function
calculation tool known as pygfunction. This tool offers
great flexibility for the user to compute g-functions for
specific configurations of boreholes. However, for large
borehole configurations (with ~1000 boreholes), the
required time to compute a single g-function can take
several hours, and the required RAM can be on the order
of 100 GB, greatly exceeding most desktop PCs. In order
to develop libraries of g-functions and training sets for
machine learning approaches, we are computing hundreds
of thousands of g-functions. This paper describes further
development of Cimmino’s methodology to speed the
computation and reduce the memory requirements.
Key Innovations

• Significant reduction in memory requirements
for computing g-functions.

• Significant increase in g-function computation
speed for ground heat exchangers with irregular
configurations.

Practical Implications
Developments in this paper make it more practical to
compute g-functions for larger ground heat exchangers on
a desktop computer. These same developments
significantly increase throughput of calculations on a
high-performance computing cluster, bringing us closer to
being able to utilize machine learning to very quickly
calculate g-functions. In the future, this will support
automated optimization of ground heat exchanger
designs.

Introduction
Ground source heat pump systems commonly use vertical
borehole ground heat exchangers to serve as a heat sink
and source. Since the ground heat exchanger (GHE)
represents a significant portion of the system cost, it is
important to accurately “right-size” the GHE. This is
particularly the case as large systems become more
common. Current interest in GSHP technology began in
the 1970s with residential applications, but there are many
large commercial systems with hundreds of boreholes,
and some “district-scale” systems with more than a
thousand boreholes. Two large district-scale examples
are the Ball State University system with more than 3600
boreholes and the Epic Systems system with more than
6000 boreholes. (Florea et al. 2017)
For both large systems serving commercial and
institutional buildings, g-functions are needed for design
and simulation purposes. Calculation of these g-
functions, whether done for a specific design, or as part of
development of a machine learning training set, is of
interest. Due to available computing resources, the work
in this paper is focused on borehole configurations with a
maximum number of boreholes around 1000.
Dusseault and Pasquier (2019) demonstrated use of
artificial neural networks to compute g-functions.
500,000 g-functions computed for fields of up to 10
boreholes were used to train the neural network. Pasquier
(2019) has estimated that a million g-functions might be
needed to train a neural network. As described by Spitler
et al. (2020), the computing time and memory scale
approximately with the square of the number of segments
used. Each borehole is divided into multiple segments
treated as finite line sources and the accuracy depends on
the number of segments used. To compute g-functions for
~1000 borehole configurations with deep (~400m)
boreholes even the resources of our university’s high-
performance computing cluster (OSUHPCC 2020)are
insufficient, as we have very few nodes with available
RAM exceeding 96 GB.
Therefore, any effort to develop neural network training
sets, or even libraries of g-functions that include very
large borehole configurations will require development of
an improved tool that is faster and uses less memory than
pygfunction. This is also necessary for individual users
wishing to compute custom g-functions on their desktop
PC. The work described in this paper represents a

significant improvement in both speed and memory
requirements.
Background
Cimmino and Bernier (2014) developed a semi-analytical
methodology for calculating g-functions of a ground heat
exchanger consisting of one or more borehole heat
exchangers. The semi-analytical method relies on
discretizing each borehole into discrete finite line sources.
The single integral analytical finite line source model
presented by Claesson and Javed (2011) was adapted by
Cimmino and Bernier (2014) to calculate the response
between two buried segments. The g-function is
calculated for a uniform borehole wall temperature
throughout the field. This requires that the heat injection
rate to each finite line source be adjusted over time to
maintain a constant heat injection rate for the entire
ground heat exchanger, while also meeting a prescribed
boundary condition at any time for all segments.
Different boundary conditions may be applied to the
ground heat exchanger in order to calculate the g-
function. It is important to understand the differences
between the boundary conditions:
• Uniform heat flux (UHF). The heat is uniformly

distributed, and all boreholes have the same heat flux,
i.e. the total heat input used to calculate the g-function
is divided by the total borehole length. This is
relatively easy to calculate, but as shown by
Malayappan and Spitler (2013), the resulting g-
function may significantly overpredict the
temperature response as the number of boreholes
increases.

• Uniform borehole wall temperature (UBHWT). The
borehole wall temperatures have time-varying but
uniform temperature (i.e., the same borehole wall
temperature for all boreholes at any given time).
Calculating the heat input rates for each segment at
each time requires solution of a large equation set.

• Uniform inlet fluid temperature (UIFT). All of the
boreholes receive fluid at the same temperature. The
actual distribution of heat is then calculated as part of
the calculation of the g-function. Again, calculating
the individual heat inputs requires solution of a large
equation set. G-functions calculated with the UIFT
boundary condition show some sensitivity to the
borehole thermal resistance and fluid flow rates.

The UIFT boundary conditions are arguably the closest to
the physical situation – in most system designs, the fluid
returning from the heat pump(s) to the GHE is well-mixed
and other than minor heat losses or gains in the horizontal
connecting piping, the inlet fluid temperatures should be
the same for all boreholes. For design and simulation
purposes g-functions calculated with the UBHWT
boundary conditions have been used for many years and
the results for design purposes have been validated by
Cullin et al. (2015).
Further development (Cimmino 2018a, Cimmino 2019)
led to an open source g-function toolbox, written in
Python, known as pygfunction (Cimmino 2018b).

pygfunction can calculate g-functions for any user-
defined ground heat exchanger, for all three boundary
conditions.
Pygfunction is a very powerful tool for calculating g-
functions, but for larger borehole fields with hundreds of
boreholes and thousands of finite line sources, the
required memory and computational time can be quite
high, exceeding several hours and requiring hundreds of
Gigabytes of RAM. Figure 1 shows the computational
time and memory requirements for calculation of g-
functions for rectangular borehole fields up to 1024
boreholes, with up to 24 finite line sources per borehole.
The computational time and memory are plotted against
the total number of finite line source segments, 𝑛𝑛𝑞𝑞, for
each ground heat exchanger. (I.e. 𝑛𝑛𝑞𝑞 is the number of
boreholes multiplied by the number of finite line source
segments per borehole.) Cimmino and Bernier (2014)
recommended 12 finite line sources per borehole. As
shown by Spitler et al. (2020), the g-functions have some
sensitivity to the discretization and for larger borefields
and deeper boreholes, more than 12 finite line sources
may be needed. Further research will explore this
sensitivity in more detail and show how this sensitivity
can be exploited to reduce computation time and memory
requirements.
The calculations used for Figure 1 were run with
Pygfunction 1.1.1 on Oklahoma State University’s High
Performance Computing Cluster (OSUHPCC). All
compute nodes on the cluster use dual Intel Skylake 6130
CPUs. (OSUHPCC 2020) There are 164 nodes with 96
GB RAM, 12 nodes with 768 GB RAM and one node with
1.5 TB RAM. For larger fields with several hundred
boreholes or more, the memory required can easily exceed
what’s available on most desktop computers, and even
exceed the 96 GB available on the most commonly
available OSUHPCC nodes.
Therefore, the amount of memory required can be very
important, and, in our view, the most important feature of
the new software is a nearly 8-fold reduction in memory
requirements.

Figure 1 CPU time and memory requirements for g-
function calculation with pygfunction

Methodology
This section gives an overview of the cpgfunction
methodology, much of which is derived directly from

pygfunction. In order to benefit from the increased speed
of a compiled language, cpgfunction was written in C++.
Both programs require calculation of segment-to-segment
response functions, using Cimmino and Bernier’s
adaptation (2014) of Claesson and Javed’s (2011) single
integral analytical finite line source formulation. Letting
ℎ𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) represent the dimensionless mean temperature rise
of the jth segment due to a unit heat flux input at the ith
segment, after time 𝑡𝑡𝑘𝑘, a matrix 𝐻𝐻[𝑖𝑖, 𝑗𝑗, 𝑡𝑡𝑘𝑘] is formed in
pygfunction and later used to calculate the g-function.
This matrix is responsible for much of pygfunction’s
memory consumption.
The H matrix has a form of symmetry across the diagonal;
if 𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑖𝑖 are the lengths of the ith and jth segments,
respectively:
 𝐿𝐿𝑖𝑖 ∙ 𝐻𝐻[𝑖𝑖, 𝑗𝑗, 𝑡𝑡𝑘𝑘] = 𝐿𝐿𝑖𝑖 ∙ 𝐻𝐻[𝑗𝑗, 𝑖𝑖, 𝑡𝑡𝑘𝑘] (1)
Given the need to reduce the memory consumption, only
the lower triangular half of the matrix is stored; when
needed, values from the upper triangular half are
recalculated using a reordered form of Eqn. 1. The lower
half of the matrix is stored in a vector using an index
transformation:

 𝐼𝐼𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗) = 𝑖𝑖∗�2∗𝑛𝑛𝑞𝑞−𝑖𝑖−1�
2

+ 𝑗𝑗 (2)

Where 𝑛𝑛𝑞𝑞 is the total number of finite line sources, and
𝐼𝐼𝑑𝑑𝑑𝑑 is the index for the vector.
In order to calculate the UBHWT and UIFT boundary
conditions, pygfunction allocates memory and computes
variants of the segment response matrix H, which are used
in the spatial and temporal superposition processes. It is
not currently clear if this is done for readability and
organizational purposes, or if it is necessary to maintain
speed performance. Cpgfunction does not allocate
additional space for these matrices, but accesses the H
matrix itself. The resulting memory savings of using a
single triangular half matrix and eliminating the two
additional matrices gives approximately a six-fold
reduction in memory required. Beyond this reduction, the
containers (specifically the vector container available in
the standard C++ library) used in cpgfunction are
minimized. C++ containers handle the memory allocation
and deallocation that would have to be explicitly
described in C. Each container is only allocated once, and
the locations in those arrays overwritten with new values
rather than replaced. The net impacts, as shown later, are,
in practice, reductions between five-fold and nine-fold.
These memory reductions come at a computational time
cost once the problem becomes large enough, but in our
view, this is needed for large ground heat exchangers
where the memory requirements can easily exceed
available machine memory. The extra computational time
of cpgfunction stems from the departure from complete
vectorization (as utilized in pygfunction) after the
segment response matrix is filled. This had to be done due
to the reduction in size of the H matrix, and the need to
access it by Eqn. 2. Cpgfunction makes extensive use of
multithreading to perform calculations in parallel. The
possibility of introducing critical race conditions make

development of mathematical computation programs
containing multithreading tedious in nature. Additionally,
the cpgfunction code is not as straightforwardly readable
as that of pygfunction.
Having spoken of the general symmetry of the H matrix,
it is important to note that both programs take advantages
of other symmetries for reducing the number of
calculations of segment-to-segment response functions.
In large rectangular-grid configurations, there are many,
many identical pairs of segments. (By “identical”, we
mean they have the same horizontal distance and same
vertical distance, within some tolerance.) As discussed by
Cimmino (2018a), use of these similarities greatly speeds
the g-function computation for cases where there are large
numbers of identical pairs.
Regarding the boundary conditions, it should be noted
that cpgfunction currently only implements calculation of
the UBHWT boundary conditions; calculation of UIFT
boundary conditions would be a desirable capability.
Results
The results include a validation of accuracy; comparisons
of RAM; comparisons of timing for high-similarities and
low-similarities cases.
Verification and Timing for Example Cases
Cpgfunction has been verified against pygfunction for a
variety of cases. The UBHWT boundary condition in
cpgfunction matches the results of pygfunction quite
accurately. Consider the four cases shown in Figure 2 –
an L-shape, U-shape, open rectangle, and a configuration
generated with Poisson disk sampling.
Hill’s (2017) implementation of Bridson’s (2007) Poisson
disk sampling algorithm is used to generate this field and
other fields (below) with reduced similarities. Compared
to a true random placement of boreholes, using the
Poisson disk sampling algorithm eliminates the
possibilities of having boreholes closer together than a
minimum distance, or farther apart than twice that
distance. Here we used 5 m as the minimum distance.

Figure 2 Borehole configurations - illustrative test cases

Figure 3 shows the g-functions computed with each
program; the RMSE differences between the 27 points of
each g-function, is less than 0.1%.

Figure 3 Comparison of g-functions calculated with

cpgfunction and pygfunction
Table 1 summarizes the time required by the two
programs; the last column gives the ratio of the time
required by pygfunction to that required by cpgfunction.
It could be considered the “speed ratio”. The g-function
is represented as a series of g-values, computed for
specific values of ln(t/ts). The amount of time to compute
a g-function varies linearly with the number of g-values
computed. All g-functions in this paper are represented
by 27 g-values. This ratio is related to the relative
prevalence of similar segment pairs. Cases with higher
numbers of similar pairs have lower ratios. Ordering the
cases as Poisson Disk, L, U, Open rectangle, orders the
ratio from highest to lowest and the prevalence of similar
pairs from lowest to highest.
This trend can be explained as follows. The g-function
calculation occurs in two parts: (1) computing segment-
to-segment responses and filling the segment matrix, and
(2) building and solving systems of equations. In process
(1), cpgfunction calculates segment-to-segment response
factors notably faster than pygfunction, due to the
advantage of using a compiled language (C++ instead of
Python.) Both programs incorporate similarity
identification presented by Cimmino (2018a) to reduce
the number of necessary segment-to-segment responses
(FLS integrations) to be computed. Segment-to-segment
responses that are similar contain pairs of segments with
identical or near-identical horizontal and vertical offsets,
such that the segment-to-segment responses are identical
or near-identical. However, a high prevalence of similar
segments reduces the advantage of cpgfunction. This
occurs because less time is spent in process (1), and the
remainder of cpgfunction contains less vectorization than
pygfunction. Therefore, the building and solving systems
of equations that adjust the distribution of heat are
comparatively slower in cpgfunction than in pygfunction.
The segment response matrix must be indexed by
Equation 2, thus cpgfunction’s speed relies heavily on
multithreading (by use of thread pools). The superposition
process in pygfunction occurs significantly faster than the

multithreaded version of cpgfunction; there are simply too
many operations occurring in series in this function.
Additionally, multidimensional arrays are being used to
sum into a vector of segment wall temperatures. This
compression into one matrix could introduce a critical
race condition if not threaded properly. However, in
future development, the multithreaded loop could be
completely unwrapped by copying the necessary values
out of the segment response matrix into matrices that
could use vectorization. Unravelling the loop and copying
rather than operating would give a significant increase in
speed. Once the full matrix for the current time step is
built, vectorization could be used (like pygfunction). It is
anticipated that this would significantly increase the speed
of cpgfunction.

Table 1: Summary of example cases
Config. Number

sources
Pygf. time

(s)
Cpgf. time

(s)
Ratio

L 204 19.7 1.6 12.7
U 300 22.9 2.3 9.9

Open 384 23.3 3.7 6.4
Poisson

Disk
840 168.0 11.0 15.3

Results for fields with high similarities
As discussed in the last section, large rectangular borehole
configurations have large numbers of identical segment
pairs, which reduces the speed advantage of cpgfunction
compared to pygfunction.
To compare the performance of cpgfunction and
pygfunction for cases with high similarities, g-functions
were calculated for uniformly spaced square
configurations from 2x2 to 32x32 boreholes. A horizontal
spacing of 5m and a depth of 96m were utilized, with 24
segments per borehole. For each case, the computation
time was determined within the code by polling the
system clock at the beginning and end of the calculation.
The RAM consumption is provided by the Simple Linux
Utility for Resource Management (SLURM) (Jette et al.
2003), which OSUHPCC makes use of for job scheduling.
Figure 4 shows a comparison of the computational time
for the 30 of the 31 cases, plotted against the total number
of sources �𝑛𝑛𝑞𝑞� in the field. (Even using a compute node
with 768 GB of RAM, pygfunction ran out of RAM for
the 32x32 borehole case, so pygfunction results are not
shown for this case.) The ratio of the time required for
pygfunction to that required by cpgfunction is plotted in
Figure 5. Up to about 10,000 sources, cpgfunction is
faster than pygfunction; above 10,000 sources the two
programs have similar computational speed, with
cpgfunction being slightly slower than pygfunction for
some cases.
As can be seen in Figures 4 and 5, there is some “wobble”
in the results – slight deviations from a smooth curve with
pygfunction. The reason is not known, but it seems likely
that other processes on the compute node may have small
effects on the computational time.

Figure 4 Timing comparisons for square configurations

Figure 5 Ratio (pygf./cpgf.) of computing time

Pygfunction uses the NumPy package (Harris et al. 2020)
which provides compiled-language-like speed when
performing matrix operations. Here, the computational
speed of pygfunction exceeds that of cpgfunction with
configurations containing high number of sources and
similarities in large part due to the similarity identification
methods of Cimmino (2018a), which reduce the amount
of time spent in pure Python code while calculating
segment-to-segment response factors. (Again, the more
similar segment pairs, the greater the possibility for
pygfunction to have a computational edge in speed.) After
the segment responses are computed, the remainder of
pygfunction’s UBHWT g-function calculation depends
heavily on NumPy matrix operations which provide
access to low-level highly optimized FORTRAN or C
functions.
Figure 6 compares the memory requirements for the
square borehole configurations. Figure 7 shows the ratio
of peak RAM consumed by pygfunction to that consumed
by cpgfunction. For larger fields where the RAM
becomes a limiting factor, pygfunction uses about seven
to nine times as much RAM. Picking just one example –
the case with 5400 sources corresponds to a borehole field
with 225 boreholes in a 15x15 configuration. For this
case, pygfunction requires 20.5GB of RAM – a value that
will exceed the available RAM on all but the highest spec
desktop computers. Cpgfunction will only require 3.6 GB

– a value that is commonly available on modern desktop
computers.

Figure 6 Comparison of peak RAM usage

Figure 7 Ratio (pygf./cpgf.) of peak RAM usage

Results for fields with low similarities
To investigate the speed of the two programs for more
irregular cases, a series of Poisson disk configurations
were calculated. These fields were chosen based on
having the same surface area as the rectangular cases
above, but the aspect ratio (width to length of the field)
was chosen as 4. Then, for each rectangle, a Poisson disk
distribution was created. A sample field of 900 m2 area,
with 28 boreholes is shown in Figure 8.

Figure 8 Sample Poisson disk field

Figure 9 shows a comparison of the computation time
required for the two programs with the Poisson disk fields,
where there are comparatively low numbers of similar
pairs. As shown in Figure 10, cpgfunction is significantly
faster than pygfunction for all cases; as the number of

sources gets high, cpgfunction is about 4 times faster than
pygfunction. This suggests that giving pygfunction
access to the segment-to-segment response factor
calculation in the cpgfunction library could significantly
speed pygfunction.

Figure 9 Timing results for the Poisson disk fields

Figure 10 Ratio (pygf./cpgf.) of computing time

Example
For purposes of example, a g-function for a system
installed in the 1990s was calculated with both
pygfunction and cpgfunction. The 320 borehole system
(Dinse 1998)was installed at Daniel Boone High School
in Washington County, Tennessee. The boreholes are
46m deep and are laid out in 16 groups of 20 boreholes
each. Each group is a 4x5 rectangle with 4.6m spacing,
The field consists of two rows of 8 groups, with spacing
of 6.1m between each group, as illustrated in Figure 11.
Thus, there are considerably more similarities than there
would be in a 320-borehole Poisson disk field, but less
than there would be in a uniformly-spaced 32x10
rectangular field. For both programs, 12 segments per
borehole were used for a total of 3840 segments.

Figure 11 Example borehole field
The two g-functions are shown in Figure 12. The RMSE
difference between the two g-functions, each with 27
points, is less than 1%. For this case, pygfunction required
10.8 GB of RAM and cpgfunction required 2.0 GB. The
computation time for each step is summarized in Table 2.
As can be seen, cpgfunction has a significant advantage in
calculating the segment-to-segment response factors.
This might be incorporated in pygfunction by making use
of a compiled version of this portion of cpgfunction as
part of a library used by pygfunction. Also noticeable is
the fact that pygfunction, by being able to take fuller
advantage of very fast linear algebra libraries is faster at
building and solving the system of equations. This comes
at the cost of using about 5.3 times the RAM of
cpgfunction.

Table 2: Summary of 320-borehole example
Step Pygf.

time (s)
Cpgf.

time (s)
Ratio

Identifying similarities 258.5 29.9 8.6
Calculating segment-to-
segment response factors

293.1 2.1 139.6

Building and solving
system of equations

108.3 197.7 0.55

Total 662 229.8 2.8
One may also infer that, for cpgfunction, it may not be
worth the computational effort expended to identify
similarities. This needs further investigation.

Figure 12 Example borehole field g-functions

Conclusion
The authors anticipate three uses for cpgfunction:
1. Calculation of custom g-functions for use in design

and simulation programs.
2. Calculation of large libraries of g-functions for use in

design and simulation programs.
3. Calculation of training sets for use in developing

ANN that can very quickly calculate g-functions.
For all three applications, the RAM requirements can
represent a significant hurdle to calculation of g-
functions. For the first application, the improvements
shown in cpgfunction can allow calculation of g-functions
for larger borehole fields on desktop computers, for which
pygfunction would exceed the available RAM. For the
second two applications, the reduced RAM requirements
allow much higher throughput on a high-performance
computing cluster where the availability of compute
nodes with RAM exceeding 100 GB is limited.
With regards to computational time, the relative
performance of pygfunction and cpgfunction is highly
dependent on the arrangement of the field. With a high
degree of similarities (large numbers of segment pairs
with the same horizontal and vertical distances),
pygfunction is extremely efficient for large fields,
achieving computational speeds up to 10% faster than
cpgfunction. However, for less regular fields where the
degree of similarities is lower, cpgfunction can be
significantly faster. In the case of a highly irregular field
with few similarities, cpgfunction is about four times
faster than pygfunction.
Cpgfunction currently only calculates g-functions using
the UBHWT boundary conditions, so further work to
incorporate the UIFT boundary conditions is
recommended. For pygfunction, it seems likely that some
of the modifications that reduced memory consumption
could be applied to reduce pygfunction’s memory
consumption. It also appears that pygfunction’s speed
could be increased by using the segment-to-segment
response factor calculation in the cpgfunction library.
Acknowledgements
The work in this paper builds upon theory developed by
Prof. Johan Claesson and his graduate students, Per
Eskilson and Göran Hellström, of Lund University in
Sweden. It builds and even more heavily on the further
developments of Dr. Massimo Cimmino, Assistant
Professor at Polytechnique Montreal in Canada. Their
contributions to the field are gratefully acknowledged.
References
Bridson, R. (2007). Fast Poisson disk sampling in

arbitrary dimensions. ACM SIGGRAPH 2007
Sketches, SIGGRAPH'07, August 5, 2007 - August 9,
2007, San Diego (United States), Association for
Computing Machinery.

Cimmino, M. (2018a). "Fast calculation of the g-functions
of geothermal borehole fields using similarities in the
evaluation of the finite line source solution." Journal
of Building Performance Simulation 11(6): 655-668.

Cimmino, M. (2018b). pygfunction: an open-source
toolbox for the evaluation of thermal. eSim 2018,
Montreál, IBPSA Canada.

Cimmino, M. (2019). "Semi-Analytical Method for g-
Function Calculation of bore fields with series- and
parallel-connected boreholes." Science and
Technology for the Built Environment 25(8): 1007-
1022.

Cimmino, M. and M. Bernier (2014). "A semi-analytical
method to generate g-functions for geothermal bore
fields." International Journal of Heat and Mass
Transfer 70: 641-650.

Claesson, J. and P. Eskilson (1985). Thermal analysis of
heat extraction boreholes. Enerstock 85 (the 3rd
International Conference on Energy Storage for
Building Heating and Cooling), Toronto, Canada
Public Works and Government Services Canada.

Claesson, J. and S. Javed (2011). "An Analytical Method
to Calculate Borehole Fluid Temperatures for Time-
scales from Minutes to Decades." ASHRAE
Transactions 117(2): 279-288.

Cullin, J. R., J. D. Spitler, C. Montagud, F. Ruiz-Calvo, S.
J. Rees, S. S. Naicker, P. Konečný and L. E. Southard
(2015). "Validation of vertical ground heat exchanger
design methodologies." Science and Technology for
the Built Environment 21(2): 137-149.

Dinse, D. R. (1998). "Geothermal System for School."
ASHRAE Journal 40(5): 52-54.

Dusseault, B. and P. Pasquier (2019). "Efficient g-
function approximation with artificial neural networks
for a varying number of boreholes on a regular or
irregular layout." Science and Technology for the
Built Environment 25(8): 1023-1035.

Florea, L. J., D. Hart, J. Tinjum and C. Choi (2017).
"Potential Impacts to Groundwater from Ground-
Coupled Geothermal Heat Pumps in District Scale."
Groundwater 55(1): 8-9.

Harris, C. R., K. J. Millman, S. J. van der Walt, R.
Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J.
Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S.
Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J.
F. del Río, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H.
Abbasi, C. Gohlke and T. E. Oliphant (2020). "Array
programming with NumPy." Nature 585(7825): 357-
362.

Hill, C. (2017). "Poisson disc sampling in Python."
Retrieved 29 January, 2021, from
https://scipython.com/blog/poisson-disc-sampling-in-
python/.

Jette, M. A., A. B. Yoo and M. Grondona (2003).
SLURM: Simple Linux Utility for Resource
Management. Job Scheduling Strategies for Parallel
Processing, Seattle, Washington (USA).

https://scipython.com/blog/poisson-disc-sampling-in-python/
https://scipython.com/blog/poisson-disc-sampling-in-python/

Malayappan, V. and J. D. Spitler (2013). Limitations of
Using Uniform Heat Flux Assumptions in Sizing
Vertical Borehole Heat Exchanger Fields. Clima
2013. Prague (Czech Republic).

OSUHPCC. (2020). "OSU's newest supercomputer "Pete"
is available for all OSU researchers." Retrieved 29
January, 2021, from https://hpcc.okstate.edu/pete-
supercomputer.html.

Pasquier, P. (2019). E-mail. J. D. Spitler.
Spitler, J. D., J. C. Cook and X. Liu (2020). "Recent

Experiences Calculating g-functions for Use in
Simulation of Ground Heat Exchangers." Geothermal
Resources Council Transactions 44: 296-315.

https://hpcc.okstate.edu/pete-supercomputer.html
https://hpcc.okstate.edu/pete-supercomputer.html

	Faster computation of g-functions used for modeling of ground heat exchangers with reduced memory consumption
	Abstract
	Key Innovations
	Practical Implications
	Introduction
	Background
	Methodology
	Results
	Verification and Timing for Example Cases
	Results for fields with high similarities
	Results for fields with low similarities

	Ratio
	Cpgf. time (s)
	Pygf. time (s)
	Number sources
	Config.
	12.7
	1.6
	19.7
	204
	L
	9.9
	2.3
	22.9
	300
	U
	6.4
	3.7
	23.3
	384
	Open
	15.3
	11.0
	168.0
	840
	Poisson Disk
	Ratio
	Cpgf. time (s)
	Pygf. time (s)
	Step
	8.6
	29.9
	258.5
	Identifying similarities
	139.6
	2.1
	293.1
	Calculating segment-to-segment response factors
	0.55
	197.7
	108.3
	Building and solving system of equations
	2.8
	229.8
	662
	Total
	Example
	Conclusion
	Acknowledgements
	References

