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Abstract 
Temperature response functions, known as g-functions, 
are a computationally efficient method for simulating 
ground heat exchangers (GHEs), used with ground-source 
heat pump (GSHP) systems or direct ground cooling 
systems as part of a whole-building energy simulation.  In 
fact, at present, there are no other methods that have 
sufficient accuracy and are fast enough to simulate a 
ground-source heat pump system in a whole-building 
energy simulation.   
The concept, mathematical derivation and an 
implementation of a g-function calculation program were 
originally developed by Claesson and Eskilson (1985).  
More recently (Cimmino 2018a, Cimmino 2018b, 
Cimmino 2019) developed an open-source g-function 
calculation tool known as pygfunction.  This tool offers 
great flexibility for the user to compute g-functions for 
specific configurations of boreholes.  However, for large 
borehole configurations (with ~1000 boreholes), the 
required time to compute a single g-function can take 
several hours, and the required RAM can be on the order 
of 100 GB, greatly exceeding most desktop PCs.  In order 
to develop libraries of g-functions and training sets for 
machine learning approaches, we are computing hundreds 
of thousands of g-functions.  This paper describes further 
development of Cimmino’s methodology to speed the 
computation and reduce the memory requirements. 
Key Innovations 

• Significant reduction in memory requirements 
for computing g-functions. 

• Significant increase in g-function computation 
speed for ground heat exchangers with irregular 
configurations. 

Practical Implications 
Developments in this paper make it more practical to 
compute g-functions for larger ground heat exchangers on 
a desktop computer. These same developments 
significantly increase throughput of calculations on a 
high-performance computing cluster, bringing us closer to 
being able to utilize machine learning to very quickly 
calculate g-functions.  In the future, this will support 
automated optimization of ground heat exchanger 
designs. 

Introduction 
Ground source heat pump systems commonly use vertical 
borehole ground heat exchangers to serve as a heat sink 
and source.  Since the ground heat exchanger (GHE) 
represents a significant portion of the system cost, it is 
important to accurately “right-size” the GHE. This is 
particularly the case as large systems become more 
common.  Current interest in GSHP technology began in 
the 1970s with residential applications, but there are many 
large commercial systems with hundreds of boreholes, 
and some “district-scale” systems with more than a 
thousand boreholes.  Two large district-scale examples 
are the Ball State University system with more than 3600 
boreholes and the Epic Systems system with more than 
6000 boreholes. (Florea et al. 2017)   
For both large systems serving commercial and 
institutional buildings, g-functions are needed for design 
and simulation purposes.  Calculation of these g-
functions, whether done for a specific design, or as part of 
development of a machine learning training set, is of 
interest.  Due to available computing resources, the work 
in this paper is focused on borehole configurations with a 
maximum number of boreholes around 1000. 
Dusseault and Pasquier (2019) demonstrated use of 
artificial neural networks to compute g-functions.  
500,000 g-functions computed for fields of up to 10 
boreholes were used to train the neural network.  Pasquier 
(2019) has estimated that a million g-functions might be 
needed to train a neural network.  As described by Spitler 
et al. (2020), the computing time and memory scale 
approximately with the square of the number of segments 
used.  Each borehole is divided into multiple segments 
treated as finite line sources and the accuracy depends on 
the number of segments used.  To compute g-functions for 
~1000 borehole configurations with deep (~400m) 
boreholes even the resources of our university’s high-
performance computing cluster (OSUHPCC 2020)are 
insufficient, as we have very few nodes with available 
RAM exceeding 96 GB.   
Therefore, any effort to develop neural network training 
sets, or even libraries of g-functions that include very 
large borehole configurations will require development of 
an improved tool that is faster and uses less memory than 
pygfunction. This is also necessary for individual users 
wishing to compute custom g-functions on their desktop 
PC.  The work described in this paper represents a 



significant improvement in both speed and memory 
requirements. 
Background 
Cimmino and Bernier (2014) developed a semi-analytical 
methodology for calculating g-functions of a ground heat 
exchanger consisting of one or more borehole heat 
exchangers. The semi-analytical method relies on 
discretizing each borehole into discrete finite line sources.  
The single integral analytical finite line source model 
presented by Claesson and Javed (2011) was adapted by 
Cimmino and Bernier (2014) to calculate the response 
between two buried segments.  The g-function is 
calculated for a uniform borehole wall temperature 
throughout the field.  This requires that the heat injection 
rate to each finite line source be adjusted over time to 
maintain a constant heat injection rate for the entire 
ground heat exchanger, while also meeting a prescribed 
boundary condition at any time for all segments.   
Different boundary conditions may be applied to the 
ground heat exchanger in order to calculate the g-
function.  It is important to understand the differences 
between the boundary conditions: 
• Uniform heat flux (UHF). The heat is uniformly 

distributed, and all boreholes have the same heat flux, 
i.e. the total heat input used to calculate the g-function 
is divided by the total borehole length.  This is 
relatively easy to calculate, but as shown by 
Malayappan and Spitler (2013), the resulting g-
function may significantly overpredict the 
temperature response as the number of boreholes 
increases. 

• Uniform borehole wall temperature (UBHWT). The 
borehole wall temperatures have time-varying but 
uniform temperature (i.e., the same borehole wall 
temperature for all boreholes at any given time).  
Calculating the heat input rates for each segment at 
each time requires solution of a large equation set. 

• Uniform inlet fluid temperature (UIFT). All of the 
boreholes receive fluid at the same temperature. The 
actual distribution of heat is then calculated as part of 
the calculation of the g-function.  Again, calculating 
the individual heat inputs requires solution of a large 
equation set. G-functions calculated with the UIFT 
boundary condition show some sensitivity to the 
borehole thermal resistance and fluid flow rates. 

The UIFT boundary conditions are arguably the closest to 
the physical situation – in most system designs, the fluid 
returning from the heat pump(s) to the GHE is well-mixed 
and other than minor heat losses or gains in the horizontal 
connecting piping, the inlet fluid temperatures should be 
the same for all boreholes. For design and simulation 
purposes g-functions calculated with the UBHWT 
boundary conditions have been used for many years and 
the results for design purposes have been validated by 
Cullin et al. (2015).  
Further development (Cimmino 2018a, Cimmino 2019) 
led to an open source g-function toolbox, written in 
Python, known as pygfunction (Cimmino 2018b).   

pygfunction can calculate g-functions for any user-
defined ground heat exchanger, for all three boundary 
conditions. 
Pygfunction  is a very powerful tool for calculating g-
functions, but for larger borehole fields with hundreds of 
boreholes and thousands of finite line sources, the 
required memory and computational time can be quite 
high, exceeding several hours and requiring hundreds of 
Gigabytes of RAM.  Figure 1 shows the computational 
time and memory requirements for calculation of g-
functions for rectangular borehole fields up to 1024 
boreholes, with up to 24 finite line sources per borehole.  
The computational time and memory are plotted against 
the total number of finite line source segments, 𝑛𝑛𝑞𝑞, for 
each ground heat exchanger. (I.e. 𝑛𝑛𝑞𝑞 is the number of 
boreholes multiplied by the number of finite line source 
segments per borehole.)  Cimmino and Bernier (2014) 
recommended 12 finite line sources per borehole.  As 
shown by Spitler et al. (2020), the g-functions have some 
sensitivity to the discretization and for larger borefields 
and deeper boreholes, more than 12 finite line sources 
may be needed.  Further research will explore this 
sensitivity in more detail and show how this sensitivity 
can be exploited to reduce computation time and memory 
requirements. 
The calculations used for Figure 1 were run with 
Pygfunction 1.1.1 on Oklahoma State University’s High 
Performance Computing Cluster (OSUHPCC).  All 
compute nodes on the cluster use dual Intel Skylake 6130 
CPUs. (OSUHPCC 2020) There are 164 nodes with 96 
GB RAM, 12 nodes with 768 GB RAM and one node with 
1.5 TB RAM. For larger fields with several hundred 
boreholes or more, the memory required can easily exceed 
what’s available on most desktop computers, and even 
exceed the 96 GB available on the most commonly 
available OSUHPCC nodes. 
Therefore, the amount of memory required can be very 
important, and, in our view, the most important feature of 
the new software is a nearly 8-fold reduction in memory 
requirements.   

Figure 1 CPU time and memory requirements for g-
function calculation with pygfunction 

Methodology 
This section gives an overview of the cpgfunction 
methodology, much of which is derived directly from 



pygfunction.  In order to benefit from the increased speed 
of a compiled language, cpgfunction was written in C++.  
Both programs require calculation of segment-to-segment 
response functions, using Cimmino and Bernier’s 
adaptation (2014) of Claesson and Javed’s (2011) single 
integral analytical finite line source formulation.  Letting 
ℎ𝑖𝑖𝑖𝑖(𝑡𝑡𝑘𝑘) represent the dimensionless mean temperature rise 
of the jth segment due to a unit heat flux input at the ith 
segment, after time 𝑡𝑡𝑘𝑘, a matrix 𝐻𝐻[𝑖𝑖, 𝑗𝑗, 𝑡𝑡𝑘𝑘] is formed in 
pygfunction and later used to calculate the g-function. 
This matrix is responsible for much of pygfunction’s 
memory consumption. 
The H matrix has a form of symmetry across the diagonal; 
if 𝐿𝐿𝑖𝑖 , 𝐿𝐿𝑖𝑖 are the lengths of the ith and jth segments, 
respectively: 
 𝐿𝐿𝑖𝑖 ∙ 𝐻𝐻[𝑖𝑖, 𝑗𝑗, 𝑡𝑡𝑘𝑘] = 𝐿𝐿𝑖𝑖 ∙ 𝐻𝐻[𝑗𝑗, 𝑖𝑖, 𝑡𝑡𝑘𝑘] (1) 
Given the need to reduce the memory consumption, only 
the lower triangular half of the matrix is stored; when 
needed, values from the upper triangular half are 
recalculated using a reordered form of Eqn. 1. The lower 
half of the matrix is stored in a vector using an index 
transformation: 

 𝐼𝐼𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗) = 𝑖𝑖∗�2∗𝑛𝑛𝑞𝑞−𝑖𝑖−1�
2

+ 𝑗𝑗 (2) 

Where 𝑛𝑛𝑞𝑞 is the total number of finite line sources, and 
𝐼𝐼𝑑𝑑𝑑𝑑 is the index for the vector. 
In order to calculate the UBHWT and UIFT boundary 
conditions, pygfunction allocates memory and computes 
variants of the segment response matrix H, which are used 
in the spatial and temporal superposition processes. It is 
not currently clear if this is done for readability and 
organizational purposes, or if it is necessary to maintain 
speed performance. Cpgfunction does not allocate 
additional space for these matrices, but accesses the H 
matrix itself.  The resulting memory savings of using a 
single triangular half matrix and eliminating the two 
additional matrices gives approximately a six-fold 
reduction in memory required.  Beyond this reduction, the 
containers (specifically the vector container available in 
the standard C++ library) used in cpgfunction are 
minimized. C++ containers handle the memory allocation 
and deallocation that would have to be explicitly 
described in C. Each container is only allocated once, and 
the locations in those arrays overwritten with new values 
rather than replaced.  The net impacts, as shown later, are, 
in practice, reductions between five-fold and nine-fold. 
These memory reductions come at a computational time 
cost once the problem becomes large enough, but in our 
view, this is needed for large ground heat exchangers 
where the memory requirements can easily exceed 
available machine memory. The extra computational time 
of cpgfunction stems from the departure from complete 
vectorization (as utilized in pygfunction) after the 
segment response matrix is filled. This had to be done due 
to the reduction in size of the H matrix, and the need to 
access it by Eqn. 2. Cpgfunction makes extensive use of 
multithreading to perform calculations in parallel. The 
possibility of introducing critical race conditions make 

development of mathematical computation programs 
containing multithreading tedious in nature. Additionally, 
the cpgfunction code is not as straightforwardly readable 
as that of pygfunction.   
Having spoken of the general symmetry of the H matrix, 
it is important to note that both programs take advantages 
of other symmetries for reducing the number of 
calculations of segment-to-segment response functions.  
In large rectangular-grid configurations, there are many, 
many identical pairs of segments. (By “identical”, we 
mean they have the same horizontal distance and same 
vertical distance, within some tolerance.)  As discussed by 
Cimmino (2018a), use of these similarities greatly speeds 
the g-function computation for cases where there are large 
numbers of identical pairs.   
Regarding the boundary conditions, it should be noted 
that cpgfunction currently only implements calculation of 
the UBHWT boundary conditions; calculation of UIFT 
boundary conditions would be a desirable capability. 
Results 
The results include a validation of accuracy; comparisons 
of RAM; comparisons of timing for high-similarities and 
low-similarities cases. 
Verification and Timing for Example Cases 
Cpgfunction has been verified against pygfunction for a 
variety of cases.  The UBHWT boundary condition in 
cpgfunction matches the results of pygfunction quite 
accurately. Consider the four cases shown in Figure 2 – 
an L-shape, U-shape, open rectangle, and a configuration 
generated with Poisson disk sampling.   
Hill’s (2017) implementation of Bridson’s (2007) Poisson 
disk sampling algorithm is used to generate this field and 
other fields (below) with reduced similarities.  Compared 
to a true random placement of boreholes, using the 
Poisson disk sampling algorithm eliminates the 
possibilities of having boreholes closer together than a 
minimum distance, or farther apart than twice that 
distance.  Here we used 5 m as the minimum distance. 

  

 
Figure 2 Borehole configurations - illustrative test cases 



Figure 3 shows the g-functions computed with each 
program; the RMSE differences between the 27 points of 
each g-function, is less than 0.1%. 

 
Figure 3 Comparison of g-functions calculated with 

cpgfunction and pygfunction 
Table 1 summarizes the time required by the two 
programs; the last column gives the ratio of the time 
required by pygfunction to that required by cpgfunction.  
It could be considered the “speed ratio”.  The g-function 
is represented as a series of g-values, computed for 
specific values of ln(t/ts). The amount of time to compute 
a g-function varies linearly with the number of g-values 
computed.  All g-functions in this paper are represented 
by 27 g-values. This ratio is related to the relative 
prevalence of similar segment pairs. Cases with higher 
numbers of similar pairs have lower ratios.  Ordering the 
cases as Poisson Disk, L, U, Open rectangle, orders the 
ratio from highest to lowest and the prevalence of similar 
pairs from lowest to highest.  
This trend can be explained as follows.  The g-function 
calculation occurs in two parts: (1) computing segment-
to-segment responses and filling the segment matrix, and 
(2) building and solving systems of equations. In process 
(1), cpgfunction calculates segment-to-segment response 
factors notably faster than pygfunction, due to the 
advantage of using a compiled language (C++ instead of 
Python.)  Both programs incorporate similarity 
identification presented by Cimmino (2018a) to reduce 
the number of necessary segment-to-segment responses 
(FLS integrations) to be computed. Segment-to-segment 
responses that are similar contain pairs of segments with 
identical or near-identical horizontal and vertical offsets, 
such that the segment-to-segment responses are identical 
or near-identical. However, a high prevalence of similar 
segments reduces the advantage of cpgfunction. This 
occurs because less time is spent in process (1), and the 
remainder of cpgfunction contains less vectorization than 
pygfunction. Therefore, the building and solving systems 
of equations that adjust the distribution of heat are 
comparatively slower in cpgfunction than in pygfunction. 
The segment response matrix must be indexed by 
Equation 2, thus cpgfunction’s speed relies heavily on 
multithreading (by use of thread pools). The superposition 
process in pygfunction occurs significantly faster than the 

multithreaded version of cpgfunction; there are simply too 
many operations occurring in series in this function. 
Additionally, multidimensional arrays are being used to 
sum into a vector of segment wall temperatures. This 
compression into one matrix could introduce a critical 
race condition if not threaded properly. However, in 
future development, the multithreaded loop could be 
completely unwrapped by copying the necessary values 
out of the segment response matrix into matrices that 
could use vectorization. Unravelling the loop and copying 
rather than operating would give a significant increase in 
speed. Once the full matrix for the current time step is 
built, vectorization could be used (like pygfunction). It is 
anticipated that this would significantly increase the speed 
of cpgfunction.  

Table 1: Summary of example cases 
Config. Number 

sources 
Pygf. time 

(s) 
Cpgf. time 

(s) 
Ratio 

L 204 19.7 1.6 12.7 
U 300 22.9 2.3 9.9 

Open 384 23.3 3.7 6.4 
Poisson 

Disk 
840 168.0 11.0 15.3 

Results for fields with high similarities 
As discussed in the last section, large rectangular borehole 
configurations have large numbers of identical segment 
pairs, which reduces the speed advantage of cpgfunction 
compared to pygfunction. 
To compare the performance of cpgfunction and 
pygfunction for cases with high similarities, g-functions 
were calculated for uniformly spaced square 
configurations from 2x2 to 32x32 boreholes. A horizontal 
spacing of 5m and a depth of 96m were utilized, with 24 
segments per borehole.  For each case, the computation 
time was determined within the code by polling the 
system clock at the beginning and end of the calculation.  
The RAM consumption is provided by the Simple Linux 
Utility for Resource Management (SLURM) (Jette et al. 
2003), which OSUHPCC makes use of for job scheduling.  
Figure 4 shows a comparison of the computational time 
for the 30 of the 31 cases, plotted against the total number 
of sources �𝑛𝑛𝑞𝑞� in the field.  (Even using a compute node 
with 768 GB of RAM, pygfunction ran out of RAM for 
the 32x32 borehole case, so pygfunction results are not 
shown for this case.) The ratio of the time required for 
pygfunction to that required by cpgfunction is plotted in 
Figure 5.  Up to about 10,000 sources, cpgfunction is 
faster than pygfunction; above 10,000 sources the two 
programs have similar computational speed, with 
cpgfunction being slightly slower than pygfunction for 
some cases. 
As can be seen in Figures 4 and 5, there is some “wobble” 
in the results – slight deviations from a smooth curve with 
pygfunction.  The reason is not known, but it seems likely 
that other processes on the compute node may have small 
effects on the computational time. 
 



 
Figure 4 Timing comparisons for square configurations 

 
Figure 5 Ratio (pygf./cpgf.) of computing time  

Pygfunction uses the NumPy package (Harris et al. 2020) 
which provides compiled-language-like speed when 
performing matrix operations. Here, the computational 
speed of pygfunction exceeds that of cpgfunction with 
configurations containing high number of sources and 
similarities in large part due to the similarity identification 
methods of Cimmino (2018a), which reduce the amount 
of time spent in pure Python code while calculating 
segment-to-segment response factors. (Again, the more 
similar segment pairs, the greater the possibility for 
pygfunction to have a computational edge in speed.) After 
the segment responses are computed, the remainder of 
pygfunction’s UBHWT g-function calculation depends 
heavily on NumPy matrix operations which provide 
access to low-level highly optimized FORTRAN or C 
functions. 
Figure 6 compares the memory requirements for the 
square borehole configurations. Figure 7 shows the ratio 
of peak RAM consumed by pygfunction to that consumed 
by cpgfunction.  For larger fields where the RAM 
becomes a limiting factor, pygfunction uses about seven 
to nine times as much RAM. Picking just one example – 
the case with 5400 sources corresponds to a borehole field 
with 225 boreholes in a 15x15 configuration.  For this 
case, pygfunction requires 20.5GB of RAM – a value that 
will exceed the available RAM on all but the highest spec 
desktop computers.  Cpgfunction will only require 3.6 GB 

– a value that is commonly available on modern desktop 
computers.  
 

 
Figure 6 Comparison of peak RAM usage 

 
Figure 7 Ratio (pygf./cpgf.)  of peak RAM usage 

Results for fields with low similarities 
To investigate the speed of the two programs for more 
irregular cases, a series of Poisson disk configurations 
were calculated.  These fields were chosen based on 
having the same surface area as the rectangular cases 
above, but the aspect ratio (width to length of the field) 
was chosen as 4.  Then, for each rectangle, a Poisson disk 
distribution was created.  A sample field of 900 m2 area, 
with 28 boreholes is shown in Figure 8. 
 

 
Figure 8 Sample Poisson disk field 

Figure 9 shows a comparison of the computation time 
required for the two programs with the Poisson disk fields, 
where there are comparatively low numbers of similar 
pairs.  As shown in Figure 10, cpgfunction is significantly 
faster than pygfunction for all cases; as the number of 



sources gets high, cpgfunction is about 4 times faster than 
pygfunction.  This suggests that giving pygfunction 
access to the segment-to-segment response factor 
calculation in the cpgfunction library could significantly 
speed pygfunction. 

 
Figure 9 Timing results for the Poisson disk fields 

 
Figure 10 Ratio (pygf./cpgf.) of computing time  

Example 
For purposes of example, a g-function for a system 
installed in the 1990s was calculated with both 
pygfunction and cpgfunction.  The 320 borehole system 
(Dinse 1998)was installed at Daniel Boone High School 
in Washington County, Tennessee.  The boreholes are 
46m deep and are laid out in 16 groups of 20 boreholes 
each.  Each group is a 4x5 rectangle with 4.6m spacing,  
The field consists of two rows of 8 groups, with spacing 
of 6.1m between each group, as illustrated in Figure 11. 
Thus, there are considerably more similarities than there 
would be in a 320-borehole Poisson disk field, but less 
than there would be in a uniformly-spaced 32x10 
rectangular field.  For both programs, 12 segments per 
borehole were used for a total of 3840 segments. 

Figure 11 Example borehole field 
The two g-functions are shown in Figure 12. The RMSE 
difference between the two g-functions, each with 27 
points, is less than 1%. For this case, pygfunction required 
10.8 GB of RAM and cpgfunction required 2.0 GB.  The 
computation time for each step is summarized in Table 2.  
As can be seen, cpgfunction has a significant advantage in 
calculating the segment-to-segment response factors.  
This might be incorporated in pygfunction by making use 
of a compiled version of this portion of cpgfunction as 
part of a library used by pygfunction.  Also noticeable is 
the fact that pygfunction, by being able to take fuller 
advantage of very fast linear algebra libraries is faster at 
building and solving the system of equations.  This comes 
at the cost of using about 5.3 times the RAM of 
cpgfunction. 

Table 2: Summary of 320-borehole example 
Step Pygf. 

time (s) 
Cpgf. 

time (s) 
Ratio 

Identifying similarities 258.5 29.9 8.6 
Calculating segment-to-
segment response factors 

293.1 2.1 139.6 

Building and solving 
system of equations 

108.3 197.7 0.55 

Total 662 229.8 2.8 
One may also infer that, for cpgfunction, it may not be 
worth the computational effort expended to identify 
similarities.  This needs further investigation. 

 
Figure 12 Example borehole field g-functions 



Conclusion 
The authors anticipate three uses for cpgfunction: 
1. Calculation of custom g-functions for use in design 

and simulation programs. 
2. Calculation of large libraries of g-functions for use in 

design and simulation programs. 
3. Calculation of training sets for use in developing 

ANN that can very quickly calculate g-functions.   
For all three applications, the RAM requirements can 
represent a significant hurdle to calculation of g-
functions.  For the first application, the improvements 
shown in cpgfunction can allow calculation of g-functions 
for larger borehole fields on desktop computers, for which 
pygfunction would exceed the available RAM.  For the 
second two applications, the reduced RAM requirements 
allow much higher throughput on a high-performance 
computing cluster where the availability of compute 
nodes with RAM exceeding 100 GB is limited. 
With regards to computational time, the relative 
performance of pygfunction and cpgfunction is highly 
dependent on the arrangement of the field.  With a high 
degree of similarities (large numbers of segment pairs 
with the same horizontal and vertical distances), 
pygfunction is extremely efficient for large fields, 
achieving computational speeds up to 10% faster than 
cpgfunction.  However, for less regular fields where the 
degree of similarities is lower, cpgfunction can be 
significantly faster.  In the case of a highly irregular field 
with few similarities, cpgfunction is about four times 
faster than pygfunction.   
Cpgfunction currently only calculates g-functions using 
the UBHWT boundary conditions, so further work to 
incorporate the UIFT boundary conditions is 
recommended. For pygfunction, it seems likely that some 
of the modifications that reduced memory consumption 
could be applied to reduce pygfunction’s memory 
consumption.   It also appears that pygfunction’s speed 
could be increased by using the segment-to-segment 
response factor calculation in the cpgfunction library. 
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