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Abstract 

Land use intensification has resulted in the conversion of complex natural systems into 

simpler, managed environments which has a considerable impact on physical and 

chemical soil properties as well as above and belowground diversity for crop production. 

The productivity of agricultural systems greatly depends on a number of ecosystems 

services provided by the soil biota which are directly and indirectly affected by land use. 

Important ecosystem services provided by soil microbial communities include 

biogeochemical cycling, plant nutrient availability, and organic matter decomposition, all 

of which contribute to the overall functioning of the soil environment. Soil microbial 

communities and soil properties are not only influenced by land use, but a combination 

of temporal dynamics including seasonal management, climatic variations, and their 

interactions. While detecting differences in the microbial DNA pools over shorter 

periods is challenging, microbial communities changes have been clearly documented 

over months, seasons, and years raising the question if sampling at a single time point is 

enough to describe microbial community differences especially concerning 

environmental changes and management practices. Therefore, understanding the 

consequences of such interactions on soil microbial composition, diversity, and function 

is essential for maintaining the productivity and stability of valuable soil ecosystems. 

Thus, this dissertation aimed to explore the interaction between land use and temporal 

variation on soil microbial communities under varying levels of management disturbance 

in a U.S. Southern Plains agroecosystem with the goal of better understanding the impact 

on microbial community diversity, function, and interactions in order to provide 

information to better inform future management decisions to sustain soil health.  
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At the beginning of this work, the study sought to seek out the microbial 

community responses to common agricultural land uses and how these responses differed 

temporally in a U.S. Southern Plains agroecosystem that included two grasslands and 

two croplands that ranged in management disturbance. Grasslands to cultivated soils 

represent a frequent land use conversion as well as two types of land uses that often 

distinctly affect soil microbial communities and soil properties. Together, the four land 

uses represent a gradient of increasing disturbance from native tallgrass prairie (TGP) < 

Old World bluestem (OWB) pasture < no-tillage (NT) canola < conventionally tilled 

(CT) wheat. By examining land use types within a single agroecosystem, the study was 

able to reduce the effects of soil type since all ecosystems had similar silt loam soils and 

decrease the exposure to different climate conditions with grasslands being 

approximately 2.7 km apart from cropland sites. First, this study showed that there were 

different responses of taxonomic and functional diversity of the bacterial communities 

with land use having a greater impact on taxonomic diversity, and sampling time and its 

interaction with land use being most important to functional diversity. Overall, 

differences in taxonomic diversity between land uses were driven by tillage management, 

sampling time, and the impact of air temperature. In comparison, temporal differences 

were driven by soil total nitrogen, rainfall, and soil nitrate all of which vary due to 

management input or seasonal climatic differences. Lastly, functional diversity had a 

stronger relationship with taxonomic diversity for CT wheat compared to phylogenetic 

diversity in the native TGP. This study emphasized the importance of the interaction 

between temporal dynamics and land use in influencing soil microbiomes as well as 

establishing the negative effect that tillage management has on bacterial community 
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diversity across a gradient of land management disturbance in a U.S. Southern Plains 

agroecosystem.  

 Next, the goal was to zoom in on the microbial community interactions in 

response to land use conversion for long-term cropland use by focusing on the native 

system (TGP) and the conventionally tilled wheat site. Complicated ecological 

relationships can be represented as networks that are useful for making relative 

comparisons across treatments to better understand ecosystem dynamics. While it is 

frequently investigated how microbial community diversity and composition are 

impacted by land use conversion and associated management practices, less is known 

about how these microbial networks change under the same scenarios which can have a 

critical effect on ecosystem functioning and stability. This study examined the temporal 

dynamics of soil microbial community molecular ecological network (MEN) complexity 

and stability in response to long-term cropland use. In summary, CT wheat land use 

increased network complexity as well as caused observable temporal changes in network 

complexity which did not occur under native land use. Network stability was also 

increased under CT wheat land use with network stability increasing with network 

complexity. Also, CT wheat network complexity was significantly influenced by soil 

water content, ammonium, and management practices while CT network stability was 

mainly impacted by different management inputs. The results of this study suggest that 

converting native land for long-term cropland use greatly increased network complexity 

and stability which also varied temporally likely resulting in network structures that 

could adapt quickly to the many management disturbances associated with cropland use. 

While the cropland soil microbial communities may have adapted to the effect of the 
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same repeated management disturbances, it remains to be determined if the microbial 

community and its ecosystem functions will become more vulnerable to other 

disturbances such as future environmental changes.  

 Lastly, the final study extended the exploration of soil communities in a U.S. 

Southern Plains agroecosystem to virus communities by monitoring virus and potential 

bacterial host abundance. Viruses are extremely abundant, present in most ecosystems, 

and evidence already exists that viruses impact soil microbes and soil biogeochemistry. 

Therefore, to truly understand soil ecosystem dynamics in relation to land use and time, 

we need to investigate how viruses could affect microbial community contributions to 

soil ecosystem processes. Three land uses were examined including conventionally tilled 

wheat, no-tillage canola, and the native tallgrass prairie. All land use systems had 

temporal differences in viral and bacterial abundance with abundance decreasing with 

increasing management disturbance. Virus and potential host abundance were also 

influenced by soil and environmental factors that were often reflective of management in 

each land use. Additionally, using metagenomic sequencing, this study showed that not 

only did virus abundance differ, but so did the viral community structure of the CT 

wheat cropland and the TGP. Together, the results suggest that land use and land 

management shape the physiochemical properties of agricultural soil which affect virus 

abundance, host abundance, and the structure of the soil viral communities. 

 Overall, the work in this dissertation provided valuable evidence on the microbial 

community response to land use and land management disturbance as well as the 

interaction with time in a U.S. Southern Plains agroecosystem. Intensive management 

disturbance greatly impacted the soil bacterial and viral communities reducing 
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abundance and diversity in addition to diminishing many soil properties generally 

associated with healthy soils. A more in-depth look at the microbial community 

interactions also revealed that long-term cropland use impacts network complexity, 

stability, and their interaction generating microbial communities that likely can quickly 

adapt to repeated management disturbance. Many of these findings support the idea that 

land use conversion and management disturbance has a negative impact on soil microbial 

communities and soil properties, while also providing new insight into other vital parts of 

soil communities (i.e. viruses) and looking beyond changes in microbial diversity to 

better understand how agriculture affects soil microbial communities. 

 

 

 

 

 

 

Keywords: soil microbial community, microbial diversity, functional diversity, microbial 

ecology,  virus abundance, viral metagenomics, agriculture, agroecosystem, land use, 

perennial grassland, cropland 

  



 1 

Chapter 1 : Introduction 

1.1 Agriculture 
 

1.1.1 A brief history of agriculture 

Agriculture is the basis of all civilizations. Without agriculture, early societies could not 

create large permanent settlements making it a prerequisite for people moving to more 

sedentary lifestyles (Tauger, 2016). Farming, or the practice of agriculture, consists of the 

cultivation of crops and raising of livestock to produce food, feed, fiber, and other 

desirable products. While agriculture is known to have been invented more than once in 

history (Solheim, 1972), the second agricultural revolution took place in Europe in the 

1800s with the introduction of crop rotations, integration of livestock in crop production, 

and improvement of the plow system playing an important role for economic 

development (Andersen et al., 2016). During the last half of the nineteenth century, the 

ability to manufacture reliable and affordable machinery for agriculture was developed 

which allowed agricultural output to greatly increase (Hounshell, 1984). After 

mechanical advances came chemistry with the use of chemical fertilizer, insecticides, and 

fungicides, followed by a focus on soil makeup and analysis of agricultural products, 

both of which are still at the forefront of agricultural practices today. While these 

practices of agricultural intensification have successfully increased crop yields to meet 

the global food demand, it is now known that it is resulting in ecosystem degradation 

(Reid et al., 2005). This had led to agriculture across the world to be particularly 

vulnerable and functioning under significant strain. The developments over the twentieth 

and twenty-first centuries such as farming becoming dependent on technology and 

energy, environmental changes like global warming, and rapid population growth has 
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further complicated agriculture for future generations (Tauger, 2016). Together, such 

developments are leading agriculture to reach its global limits and generating a looming 

crisis, further stressing the importance of continued research on agriculturally impacted 

ecosystems.  

 

1.1.2 Land use in a U.S. Southern Plains agroecosystem  

An agroecosystem is the basic unit of study of agricultural ecology and involves a large 

number of alterations to a natural ecosystem in order to provide ecosystem services 

(Costanza et al., 1997). Agroecosystems generally consist of complex food chains and 

food webs interacting to create a single stable unit. Agriculture results in systems 

becoming more clearly defined in terms of biological and physicochemical properties and 

are simplified by losses of indigenous fauna and flora including the reduction in 

numerous natural ecosystem processes (Conway, 1985; Ding et al., 2013). Inversely, 

agroecosystems also become more complex through the input of human activity and 

management (Conway, 1985). Originally, agroecosystems could be characterized by 

decreasing diversity while increasing functionality by selecting for more productive crop 

varieties with the removal of unproductive species (Moonen and Bàrberi, 2008). They 

also tend to be associated with nutrient input in the form of organic or inorganic 

fertilizers. It is now known that such changes in land use have a long-lasting impact on 

soil nutrients, texture, and pH (Murty et al., 2002) that are often associated with the 

decreased plant diversity and management input (Lauber et al., 2008), changing the 

perspective on how biodiversity should be managed in agroecosystems. It was now 

proposed almost 25 years ago that agroecosystems can no longer focus on just above 
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ground productivity, but need to start disentangling the relationships between 

intensification, biodiversity, and function including soil biodiversity (Giller et al., 1997). 

In the U.S. Southern Great Plains, agroecosystems often consist of varying land 

uses including rangelands, pastures, and croplands converted from natural ecosystems. 

Grasslands make up the greatest land cover in the subhumid to semiarid areas of the 

Great Plains (Ghimire et al., 2019) with native tallgrass prairies originally constituting the 

majority of the midwestern US (Fierer et al., 2013). Through fire suppression, the 

removal of native animal species, and plowing of native grasses, tallgrass prairies have 

been one of the most significantly destroyed major North American ecosystems (Fierer et 

al., 2013; Samson et al., 2004; Sims and Risser, 2000). Grasslands have large root 

systems generally exceeding that of above ground biomass (Yang et al., 2010) improving 

soil structure and increasing soil carbon (Kandeler and Murer, 1993; Woods, 1989) 

making them targets for agricultural cultivation. The term grassland is used to represent 

rangelands, native grasslands, and pastures all of which are used for agriculture to 

support livestock. Although, pastures typically involve more management than other 

grasslands such as the application of fertilizers and herbicides (Peterson et al., 2018). In 

the Southern Plains, Old World bluestem is commonly used in pasture sites because it is a 

productive perennial grass that does well under limited water conditions (Philipp et al., 

2005). While pasture sites have resulted from the conversion of natural lands, changing 

more intensively management disturbed agricultural land uses into perennial pastures has 

positive impacts on the ecosystem such as reducing soil loss, restoring organic matter, 

and promoting soil structural stability (Haynes et al., 1991; Nath and Lal, 2017). 

Livestock grazing in grasslands can also contribute to greater soil nutrients through 
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animal waste (Vendramini et al., 2007). Grasslands including native systems are a key 

part of the agroecosystems in the U.S. Southern Great Plains, but grasslands only 

represent a portion of land uses in these systems.  

In the United States, the majority of new croplands from 2008-2012 were 

originally grasslands with winter wheat being the dominant planted crop in the Southern 

Plains (Lark et al., 2015). More recently, crop rotations of winter wheat and winter-hardy 

cultivars of canola have drawn attention to control weeds, break disease in wheat, and 

increase grain yield for the following wheat crop (Bushong et al., 2012; Daugovish et al., 

1999). Most winter wheat is grown under rainfed conditions and is managed in several 

ways including grain only (no grazing), graze-grain (dual purpose), and graze-out (no 

grain production) (Phillips et al., 1999). In the U.S. Southern Plains, the traditional 

management technique is conventional tillage (Hossain et al., 2004). Conventional tillage 

management includes plowing the soil and post-harvest removal of crop residues. Such 

practices result in loss of soil structure, soil erosion, and reduction of soil organic matter 

(Liu et al., 2010a). Due to these unfavorable impacts, conservation tillage practices such 

as reduced tillage or no-tillage with residue retention have gained attention as alternative 

management strategies. Results have shown conservation tillage practices to enhance soil 

quality by reducing erosion, enhancing soil moisture, increasing soil nutrients, and in 

some cases increasing crop yields (Hobbs et al., 2008; Ward et al., 2012). Therefore, in 

this region, it is common for a combination of conventional tillage and no-tillage 

practices to be used for winter wheat and canola crop production (Hossain et al., 2004). 

Yet, current crop production still relies heavily on management that involves chemical, 

mechanical, and biological inputs to support the population (Tilman et al., 2002), with the 
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long-term sustainability of crop production and the accompanying management practices 

under further investigation (Pretty, 2008; Tilman et al., 2002). 

 

1.1.3 Defining a sustainable agricultural system 

With an increasing population, the global food demand will continue to rise in the 

coming decades (Long et al., 2015) putting a greater emphasis on agricultural 

sustainability. Even though agriculture is working to improve management practices, it is 

still up for debate on how to quantify good management practices and what makes a 

system sustainable. Sustainable agriculture is generally defined as being able to meet the 

needs of the present generation without compromising the ability to meet the needs of 

future generations (World Commission on and Development, 1987). While sustainability 

must be addressed from several angles including economic and social (Goodland, 1995), 

agricultural research focuses on the environmental impact such as protection and 

effective management of natural resources. Ranges of indicators have been used to 

determine farm-level sustainability generally focusing on crop and soil properties under 

different management systems. For example, pest control, soil fertility, and soil erosion 

have been used as indicators on Malaysian farms (Taylor et al., 1993); while crop yield, 

frequency of crop failure, ground cover, organic matter, and soil depth were used in the 

Philippines (Gomez et al., 1997). Farmers in Utah relied on pest management, nutrient 

management, and field operations to create a farming index for sustainable agriculture 

(Drost et al., 1998). Similarly, a farm-level index in the UK was developed based on pest 

control, soil fertility, seed source, and crop management (Rigby et al., 2001). Although 

many different methods have been used to gauge sustainability, there are always several 
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common factors that appear to be important in most fields based on preserving natural 

resources from reducing management disturbances, but the majority of indicators 

previously used focus on aboveground health and abiotic soil characteristics ignoring soil 

microbial communities.  

As knowledge has progressed on above and belowground interactions in 

agricultural soil systems, the idea of using soil microorganisms as soil health indicators 

has evolved as an area of interest for agricultural sustainability. It is believed there is 

great potential for using bacterial community composition or the relative abundance of 

specific taxa to understand the state of the soil environment (Hermans et al., 2017) 

because they are considered to be indicators of early changes in the quality of soil 

ecosystems (Kennedy and Stubbs, 2006). Previously, microbial populations have 

provided early signs of positive and negative transformations in soil ecosystems that 

preceded discernable changes in the physical and chemical properties of the soil (Nielsen 

et al., 2002; Pankhurst et al., 1997). Such strategy will likely be accomplished by 

examining changes at lower taxonomic levels that might not be visible at higher 

taxonomic ranks (Dohrmann et al., 2013), but it could also be largely dependent on the 

fact that terrestrial biomes are differently affected by agricultural management. In a 

Caatinga dry forest surrounded by agricultural lands therefore affected by water and 

nutrient use, almost all detected genera of Actinobacteria were enriched during drought 

periods potentially making them good indicators of "health" in arid soils in relation to 

irrigation practices (Lacerda-Júnior et al., 2019). On larger scales, meta-analyses of over 

100 sites indicated bacterial communities and specific taxa were able to reflect changes in 

anthropogenically impacted soil environments (Hermans et al., 2017) and trends at the 
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community-scale held across tropical, temperate, continental, and arid biomes (Trivedi et 

al., 2016). As more studies are conducted looking at microbes as indicators of soil health, 

it will become clear if this is a reliable method for examining agricultural sustainability. 

If so, it could offer substantial benefits due to the speed and ease of data analysis in 

addition to less sampling-related disturbance compared to traditional chemical and 

biological measures (Lear et al., 2012). While using microbial communities to determine 

soil health is a promising direction in agricultural sustainability, more research needs to 

be done to determine if this is a viable method without forgetting about the importance of 

chemical and physical indicators in determining overall soil health.  

 

 

 

1.2 Impact of agriculture on the soil microbial community 
 

1.2.1 Introduction to microbes in soils  

 

Soil microorganisms have been recognized for their importance for almost a century 

(Waksman, 1928), and despite their small size, make up one of the greatest forms of 

biomass on the planet. Soil frequently contains more than 1000 kg of microbial biomass 

carbon per hectare contending with forms of aboveground biomass including plants and 

animals (Fierer et al., 2009; Serna-Chavez et al., 2013). Not only are they highly 

abundant with cell estimates of up to 109 per gram of soil (Gans et al., 2005), but they are 

also extremely diverse with an estimated 104 species per gram of soil (Curtis et al., 2002). 

The original use of culture-based approaches greatly underestimated soil microbial 

diversity; however methodological advances have allowed for the discovery of an 

extensive diversity of microbes in soils providing researchers the ability to examine 

relationships between microorganisms and soil processes (Fierer, 2017). It is now known 
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that microorganisms play important parts in carbon sequestration, nutrient cycling, 

maintenance of soil fertility, and impact plant productivity (Fierer, 2017; Griffiths and 

Philippot, 2013). Yet, many of the important functions performed by soil microbial 

communities are threatened by a range of factors including climate change, soil 

degradation, and poor land management practices (Amundson et al., 2015). Therefore, 

despite the large body of literature on the impact of environmental factors and 

agricultural management on microbial communities, it is important to continue 

examining the dynamics of microbial diversity and associated functional traits as 

conditions continue to change and the demand for sustainable agricultural practices 

grows. 

 Taking into account the importance of microbes in global processes, it is believed 

that effective management of soil is one of the best lines of defense in reducing 

biodiversity loss and mitigating climate change (Cavicchioli et al., 2019). To be able to 

accomplish this task, ecologists need in-depth knowledge on the organisms present in soil 

and the environmental conditions such as topography, soil physicochemical 

characteristics, and climate that drive their activity; which has led to the continued 

detailed analysis of soil communities patterns around the world (Crowther et al., 2019). 

Soil communities are generally characterized by biomass measurements, taxonomic and 

phylogenetic diversity, taxonomic composition, functional group composition, and 

functional trait expression. The amount of microbial biomass in soil provides information 

not only on the abundance of organisms in a system but also offers insight into the ability 

of an area to cycle nutrients (Wang et al., 2003) acting as a baseline for determining the 

functional potential of the community (Crowther et al., 2019). Examining the relative 
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abundance of taxa is useful for identifying which groups of organisms dominate the 

system, and in combination with biomass measurements, can provide abundance 

estimates of specific taxa. Also, if the general functional traits of dominant taxa are 

known, it can provide initial evidence on the functional capacity of communities within a 

system as well as a direction for further functional research questions (Delgado-

Baquerizo et al., 2018). However, at a fine-scale, taxonomic identity alone does not 

define function. It is the expression of the functional traits of the community that needs to 

be examined to determine what processes are taking place at any individual time or 

location. The differences in soil community composition and gene expression between 

systems are often determined by the combination of edaphic factors and climate 

(Noronha et al., 2017), but the introduction of anthropogenic disturbances (i.e. 

agriculture) could impact the influence of each factor. Even with all the studies on soil 

microbial communities, the ability of microbial diversity and function to fluctuate with 

time and space are often related to natural and anthropogenic disturbances making a 

comprehensive understanding of soil microbial community dynamics an enormous task 

(Nannipieri et al., 2003; Nannipieri et al., 2017; Nannipieri et al., 2020). 

 

1.2.2 Spatial and temporal dynamics in the soil environment  

Soil microbial communities are subjected to significant changes and disturbances that are 

of great importance on both temporal and spatial scales especially in the rhizosphere. 

Variations can be hard to determine since microbial communities can differ between 

areas meters to centimeters apart (O'Brien et al., 2016), and on larger scales studies have 

demonstrated that sampling space generally has the greatest impact on the microbial 
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community (Zhang et al., 2020). While soils are very heterogeneous, the implementation 

of agricultural management practices, specifically conventional tillage, results in the 

complete disturbance of soil in the rhizosphere (Peterson et al., 2019) making for a more 

homogenous soil structure than what is found in natural ecosystems. It has been shown 

that land conversion strongly negatively affects diversity creating microbial communities 

that are more similar across space (Rodrigues et al., 2013). Since soils are 3D dynamic 

environments that are constantly changing, they are not only affected by spatial 

differences but a fourth dimension of time which is generally less understood than spatial 

dynamics (Nannipieri et al., 2020). Soil microbial communities are subjected to short-

term changes (i.e. hours to weeks), seasonal changes, and long-term trends all of which 

may be influenced by different factors such as freeze-thaw, changes in plant activity, and 

climatic change (Chernov and Zhelezova, 2020). In agricultural fields, temporal 

dynamics are also strongly linked to management practices (Spedding et al., 2004) as 

crops have specific growing seasons that are often accompanied by fertilizer, herbicide, 

and pesticide application. Yet, in several studies examining spatial and temporal 

dynamics, temporal variation is still usually less than spatial variation (Lauber et al., 

2013; Uksa et al., 2014; Zhang et al., 2020). Absence of the detection of temporal 

variation may be related to the fact soil sampling is destructive so the exact location 

cannot be resampled (Fierer, 2017), the presence of relic DNA (Carini et al., 2016), and 

the lack of focus on living or active cells (Herzog et al., 2015; Zifcakova et al., 2016). 

Therefore, determining the contribution of spatiotemporal variations to microbial 

community compositional and functional differences is complex, and likely depends on 

the spatial and temporal scale in question as well as the land use being examined.   
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To understand how an ecosystem works, the effect of biotic and abiotic factors on 

ecosystem components needs to be determined. Many factors, directly and indirectly, 

influence microbial communities, and at a broad scale, several abiotic and biotic factors 

are regularly found to influence the bacterial community composition (Bahram et al., 

2018; Fierer et al., 2009; Lauber et al., 2009). These key factors generally include soil pH 

(Lauber et al., 2009), temperature (Oliverio et al., 2017), nitrogen availability (Cederlund 

et al., 2014), and soil organic carbon content (Sul et al., 2013). Globally, bacterial 

biomass increases in areas of high soil organic matter content and lower pH; while 

bacterial richness appears to be the greatest in soils at midlatitudes where pH is relatively 

neutral and the soil carbon:nitrogen ratio is high (Bahram et al., 2018). Soil moisture 

availability has additionally been suggested as one of the best predictors of total soil 

microbial biomass at the global scale (Fierer, 2017). Functional gene diversity of bacteria 

peaks at midlatitudes with strong correlations to annual perception (Bahram et al., 2018), 

and is also driven by the interactive effects of edaphic factors and climate (Fierer et al., 

2012b; Noronha et al., 2017). The majority of these large-scale studies focus on dynamics 

in natural systems and similar land use types, but intensive disturbances like agriculture 

can modify intrinsic soil properties resulting in significant impacts on soil moisture, pH, 

texture, nutrient status, and plant community composition (Lauber et al., 2008; Murty et 

al., 2002) potentially impacting the importance of specific factors on a local scale. When 

looking across a large transect including multiple land uses, microbial spatial distribution 

was impacted by soil properties as well as climate, topography, and land use, with areas 

of agricultural use having a local influence on microbial community variation (Xue et al., 

2018). For example, in a study comparing monoculture cropping systems, the edaphic 
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properties shaped by land use were more important than the effect of specific crops on 

the bacterial communities (Bainard et al., 2016). The routine application of inorganic 

fertilizer in agricultural systems has been shown to reduce bacterial abundance and 

biodiversity while also changing the relative importance of environmental factors 

between the rhizosphere and bulk soil (Wang et al., 2017). Therefore, there is no single 

factor that determines the dynamics of a bacterial community especially at a local scale 

where different management practices are implemented. More thorough knowledge of the 

interactions between land use management, biotic and abiotic factors, and climate are 

needed to understand the impact on microbial communities to help determine the best 

management strategies for specific regions. 

 

1.2.3 Further importance of land use and management  

To further complicate predictions of soil microbial communities across landscapes, land 

use history may have long lasting effects on local community structure. Less is known 

about the persistence of land use legacies as there is a lack of long-term experiments 

addressing the topic. Although, some results have shown microbial community 

composition and/or function can persist over a growing season (Frindte et al., 2020), 

years (Hawkes et al., 2017), decades (Bond-Lamberty et al., 2016), or potentially longer 

for certain taxa (Andam et al., 2016). Such results emphasize that microbial community 

dynamics are also based on the intrinsic properties of the community assembly location 

and not just the current environmental conditions (Crowther et al., 2019). Soil 

communities have also demonstrated the ability to retain some functional characteristics 

after invasive species (Elgersma et al., 2011), natural disturbances (Fichtner et al., 2014) 
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and land use conversion (Kallenbach and Stuart Grandy, 2015). Similarly, areas with 

extensive cultivation histories impact microbial community structure long after the fields 

are no longer used for agriculture purposes (Buckley and Schmidt, 2001). Land use 

conversion and natural disturbances are additionally accompanied by changes in 

vegetation type and diversity. The impact on soil microbial communities by plants 

species is mixed with several studies linking microbial communities to changes in plant 

communities (Barberán et al., 2015; Peay et al., 2013), while others have observed little 

to no effect (Nunan et al., 2005; Tedersoo et al., 2016). It is likely that plants species in 

their native soils have a larger impact on the soil microbial community due to long-term 

co-evolution of plant–microorganism interactions compared to agricultural ecosystems 

(Philippot et al., 2013). In addition, a range of soil bacterial taxa may have the ability to 

associate with many plant species potentially extending the amount of time it would take 

to observe changes in microbial communities related to changes in aboveground 

vegetation (Crowther et al., 2014). Therefore, the degree to which land use history and 

the plant community impact the microbial community likely differs with bacterial group, 

soil type, and plant species.  

 While land use legacy may maintain some microbial taxa and ecosystem function, 

agricultural practices inevitably will impact the environment with many of the 

unfavorable effects being long-lasting and challenging to alleviate. Moving towards more 

sustainable agricultural management generally starts with implementing reduced or no-

tillage systems with residue retention as well as crop rotations that have shown to 

maintain soil fertility, manage disease and pests, and promote crop yield (Karlen et al., 

1994). Agricultural sustainability also depends on the ability to reduce the use of mineral 
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nutrients and pesticides with one of the overall goals being to improve the management 

of the soil microbiome. This is often approached through adapting plant genotypes to the 

environment to take advantage of the biotic and abiotic resources (Philippot et al., 2013) 

or amending soils and seeds through the addition of beneficial bacteria to promote crop 

production (Tilak et al., 2005; Timmusk et al., 2017). Previous research indicates that the 

soil microbiome can also be used to minimize soil erosion (Chiquoine et al., 2016) and 

suppress plant disease (Kinkel et al., 2011). Although, the interaction between the 

inoculated plant and soil microbes may be temporary and depends on the stage of growth 

of the plant (Sessitsch et al., 2003) meaning the microbes that are beneficial likely vary 

with plant types and growth stage. It should not be expected that amending the microbial 

community for a specific purpose will result in the improvement of soil structure, disease 

suppression, and crop growth. Therefore, there is no “ideal” community for sustainable 

agriculture as it can be very context-dependent, likely being contingent upon the specific 

crop, the biotic and abiotic challenges, and soil conditions (Fierer, 2017). This further 

emphasizes the importance of studying the soil microbiome under different management 

practices, crops, and soil conditions to determine regionally specific sustainable 

management practices. 

 
 

 

1.3 Bacteriophages in soil  
 

1.3.1 Viruses in natural systems  

 

It was not until 1989 that viruses were recognized as being abundant in the environment 

with Bergh et al. showing that there were roughly 10 million virus-like particles (VLPs) 

per mL of seawater (Bergh et al., 1989). Since then, it has been estimated that viruses are 
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the most abundant biological entity on Earth (Suttle, 2005). The majority of knowledge 

on viral ecology has been generated from the study of natural viral assemblages in marine 

ecosystems. Advances in accurate enumeration techniques in marine microbial ecology 

(Hobbie et al., 1977) lead to direct counts of viruses (Bergh et al., 1989) which was 

fundamental to understanding marine environments. Through the study of aquatic 

ecosystems, it is now known that viruses are prevalent with a 2000-fold range in VLP 

abundance from the deep sea to freshwater marshes (Srinivasiah et al., 2008) with most 

viruses being phage-type viruses (viruses that infect bacteria) (Børsheim, 1993) generally 

ranging in size from 30-60 nm (Jacquet et al., 2010). It was also observed that viral 

abundance does not remain constant and fluctuates with shifts in host abundance (Sandaa 

and Larsen, 2006; Weinbauer and Suttle, 1996) mostly due to the productivity of the 

system during certain times of the year (Filippini et al., 2008; Weinbauer and Peduzzi, 

1994). Due to the ubiquity and wide range of VLP abundance, viruses were then thought 

to be an active part of aquatic microbial communities with viruses now being recognized 

for their role in biogeochemical nutrient cycling (Fuhrma and Suttle, 1993), shaping 

microbial communities through viral lysis (Muhling et al., 2005), acting as one of the 

greatest genetic reservoirs (Paul and Sullivan, 2005) and mediating horizontal gene 

transfer contributing to microbial evolution (Millard et al., 2004). For example, marine 

and freshwater systems have linked host mortality due to viruses as an important control 

of microbial community composition and biogeochemical cycling (Middelboe et al., 

2008), with it being shown that viruses in marine systems release 20-30% of the daily 

carbon production into the water by lysing host cells (Suttle, 2007; Wilhelm and Suttle, 

1999). With all the important information about viruses in aquatic ecosystems, there is a 
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narrow understanding of viral distribution and the relationship between viruses and hosts 

in many natural environments (Wommack and Colwell, 2000). Specifically, areas that 

need further research include the mechanisms controlling viral proliferation and activity 

such as abiotic parameters (Jacquet et al., 2010) in differing ecosystems. Due to the large 

impact of viruses in aquatic ecosystems, it is thought that viruses will play equally 

important roles in terrestrial environments. 

 As the interest in viral ecology grows, studies are now expanding to terrestrial 

ecosystems, but little is still known about natural virus populations in soils compared to 

aquatic environments. Early soil studies focusing on VLP abundance have shown a range 

of 80-390 x 107 VLPs per grams dry soil in wetlands to 23 and 64 x 107 VLPs per grams 

dry soil in agricultural areas of Delaware (Srinivasiah et al., 2008; Williamson et al., 

2005) with viral abundance often being reflective of host abundance. With the continued 

use of these methods, studies have demonstrated that VLP abundance often exceeds 

bacterial abundance, showing less variability in VLP abundance than their bacterial hosts, 

and being extremely abundant in a diverse range of locations and soil types (Srinivasiah 

et al., 2008). Although several studies examine viral and microbial abundance in soils at a 

single time point, few studies examine the change in abundance of these communities 

related to time and space as well as what factors may impact virus populations (Narr et 

al., 2017; Roy et al., 2020). Still, with the lack of VLP abundance dynamics, soil virus 

ecology is quickly shifting to trying to understand viral community composition and 

function through the use of sequencing technologies. Viral diversity is generally 

examined using metagenomic approaches since there is no single genetic element shared 

by viruses (Rohwer and Edwards, 2002). Viral communities in oceans often share a large 
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portion of viral genotypes across communities (Angly et al., 2006) compared to soils that 

appear to be locally unique with little to no overlap in viral genotypes across land types 

(Srinivasiah et al., 2008). Also, considering the importance of viruses in carbon cycling 

in marine systems (Fuhrman, 1999; Suttle, 2005; Suttle, 2007), similar roles are now 

being explored in soils (Trubl et al., 2018). Viruses not only impact their hosts through 

lysis but also metabolically influence their hosts through the expression of virus-carried 

auxiliary metabolic genes (AMGs) (Breitbart, 2012; Middelboe and Brussaard, 2017) 

which are genes used for host manipulation instead of viral replication. AMG 

classification is still in its early stages, but it is a promising method to examine the role of 

viruses in natural ecosystems. While techniques to explore autochthonous viruses in soils 

are constantly expanding and improving, little is still known about terrestrial virus 

abundance and community dynamics.  

 

 

1.3.2 Survival of viruses in soils 

 

Through the use of different lifecycle strategies, viruses not only influence host dynamics 

but impact their ability to survive in unique ecosystems. Bacteriophages have four 

different lifecycles including the lytic cycle, lysogenic cycle, pseudolysogeny (Miller, 

2006), and chronic infection (Russel and Model, 2006), with the latter two being poorly 

understood in soils. Generally, lytic viruses quickly kill off host populations susceptible 

to infection by redirecting the hosts' metabolism towards the production of new viruses 

and lysing the host cell. After cell lysis, progeny must survive extracellularly as a free 

virus until coming in contact with a new host for this lifestyle to be successful 

(Weinbauer and Suttle, 1996). Lysogenic replication, on the other hand, involves the 
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suppression of lytic function once inside the host cell and instead usually exists in a 

symbiotic state (Ackermann and DuBow, 1987) either integrated into the bacterial 

chromosome as a prophage or as an extrachromosomal element. Soils are very 

heterogenous systems that can affect the encounter rate of viruses with host cells, 

potentially making a lytic lifestyle unfavorable in soils. It is thought that when host 

abundance is low or conditions are poor, lysogeny provides a way for viruses to survive 

(Smit et al., 1996; Williamson et al., 2002) which could be advantageous in soil systems 

where conditions frequently fluctuate. Although, a switch of lifestyle can be induced by 

an environmental signal such as DNA damage or an influx in nutrients resulting in lytic 

function and the production of viral progeny (Campbell, 2006). While lysogeny is 

believed to be favored in soil ecosystems, few studies have been done to determine the 

interaction of virus communities, their lifestyles, and changing ecosystem dynamics. 

 The survival of viruses in soil is further impacted by a range of soil and 

environmental factors that influence the activity of viruses and their ability to infect host 

organisms. Similar to their microbial hosts, viral activity and survival in soil are impacted 

by many factors including temperature, soil pH, clay type, ionic strength, organic matter 

content, and moisture content (Kimura et al., 2008); and the interaction with these factors 

may differ from that on their microbial hosts. Temperature is key to virus survival in soil 

with studies having demonstrated longer survival times, longer latency, and reduced burst 

size of viruses with lower temperatures (Leonardopoulos et al., 1996; Straub et al., 1992). 

Similar to temperate, soil pH affects host activity and virus survival. Soil pH directly 

affects phage-host interactions such as penetration and length of the latent period (Sykes 

et al., 1981). Indirectly, pH influences virus survival by affecting the electrostatic 
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properties of the soil surface altering viral absorption and increasing survival time 

(Kapuscinski and Mitchell, 1980). Viral survival is controlled by binding to soil particles 

that have positively and negatively charged sites as well as hydrophobic sites; and soil pH 

will influence the charge of both viruses and soils (Kimura et al., 2008). Clay particles 

also have the ability to shelter viruses from inactivation by shielding them from harmful 

environmental effects such as UV radiation (Vettori et al., 2000). The majority of viruses 

in soil bind to clay particles increase the survival time of free viruses in soils (Bitton et 

al., 1979; Moore et al., 1982). Clay particles and ionic strength work together to influence 

viral survival. The higher the ionic strength, the greater the ability of clay particles to 

absorb viruses preventing host infection while allowing virus persistence (Kimura et al., 

2008). Soils that tend to be rich in organic matter do not absorb viruses as strongly since 

its presence weakens the electrostatic binding abilities normally found in highly clay-

based soils (Zhuang and Jin, 2003). Using plaque formation studies, it was revealed that 

the successfulness of infection is dependent upon the substrate composition (Delisle and 

Levin, 1972). Virus hosts, specifically microbial communities, are heavily influenced by 

soil composition affecting the susceptibility of the host and/or the activity of the viruses. 

Lastly, while many studies have examined moisture content in relation to microbial 

communities, it was not until the early 2000s that a significant correlation between soil 

water content and virus-like particle abundance was discovered (Williamson et al., 2005). 

Also, as soils dry, viruses may irreversibly bind inactivating them in the environment 

(Yeager and O'Brien, 1979). Together, these soil and environmental factors govern the 

movement of viruses, the absorption of viruses, and the overall infectivity and survival of 

viruses in soils. Although, the majority of the known interactions were discovered from 
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the study of specific viruses with much to still be revealed about viral community 

interactions with the soil environment. 

 

1.3.3 Methodological limitations of studying viruses in soils  

 

With the growing interest in the role of viruses in terrestrial ecosystems, it has become 

clear that there is a lack of standardized protocol across the field. Varying methods have 

been used throughout the literature to estimate viral abundance (Ashelford et al., 2003; 

Narr et al., 2017; Swanson et al., 2009; Williamson et al., 2013; Williamson et al., 2005; 

Williamson et al., 2003), but due to the lack of a consistent method, the reasons for 

variations between studies cannot be fully determined. To date, viruses extracted from 

soils using sonication and vortexing have been the most widely used and efficient 

mechanical methods published (Narr et al., 2017; Williamson et al., 2013; Williamson et 

al., 2005), and has been the most reliable with a range of extraction buffers (Narr et al., 

2017). Williamson and colleagues found that, overall, potassium citrate buffer was the 

most effective for removing viruses from soils, but, when examining the few studies 

comparing extraction buffers, soil type was often the determining factor (Williamson et 

al., 2005; Williamson et al., 2003). Many soil, environmental, and viral factors are known 

to affect the adsorption of viruses to soils such as type of clay minerals (Carlson et al., 

1968; Moore et al., 1982; Moore et al., 1981), cation exchange capacity (Moore et al., 

1982; Schiffenbauer and Stotzky, 1982), organic matter (Carlson et al., 1968; Moore et 

al., 1982; Moore et al., 1981; Zhuang and Jin, 2003), soil pH (Loveland et al., 1996; 

Taylor et al., 1981), and virus type (Dowd et al., 1998; Schiffenbauer and Stotzky, 1982; 

Zhuang and Jin, 2003). Furthermore, viruses and bacteria are often extracted from soils in 
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the same process then enumerated separately (Danovaro et al., 2002; Sawstrom et al., 

2009; Williamson et al., 2013). However, the combined extraction of bacteria and viruses 

can be biased, resulting in the preferential extraction of one cell type (Williamson et al., 

2013). Taken together, all factors contribute to the need for optimized protocols to reduce 

differences between studies for better comparisons of virus abundance across a rapidly 

growing field.  

 The use of different virus enumeration methods often results in different trends in 

abundance across soil samples. Plaque assays, transmission electron microscopy (TEM), 

and epifluorescent microscopy (EFM) have all been used to study autochthonous 

bacteriophages in soils. While plaque assays demonstrate viral activity, the method 

greatly underestimates viral abundance due to the need to isolate phage-host systems 

(Wommack and Colwell, 2000). Current TEM and EFM methods give more accurate 

VLP counts than culture-based methods, however, both still have disadvantages (Ferris et 

al., 2002; Williamson et al., 2013; Williamson et al., 2005; Williamson et al., 2003). 

EFM has become the standard enumeration technique, yet it cannot be absolutely 

determined that the dots being observed during direct counts are viruses (Breitbart and 

Rohwer, 2005), hence it is sensitive to false positives. TEM gives confidence that the 

particles being counted are in fact viruses, but the abundance is usually several times 

lower than with EFM (Williamson et al., 2003). Overall, studies of viral extraction and 

enumeration, especially in porous media environments, have been limited by 

methodology, reinforcing the need to develop uniform protocols. 

 Studies of virus communities are shifting greatly towards culture-independent 

methods since only a tiny fraction of viruses are culturable in laboratory settings. As 
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previously mentioned, the first challenge is removing viruses from the soil matrix which 

will likely be based on soil type (Pratama and van Elsas, 2018), followed by overcoming 

issues of low DNA yields and co-extracted inhibitors (Zielinska et al., 2017) during DNA 

extraction. Amplification methods are often needed due to low DNA yields, but many 

widely used amplification methods bias samples by overamplifying specific virus types 

(Binga et al., 2008; Karlsson et al., 2013; Kim and Bae, 2011). Although, more recent 

developments of amplification methods have shown promising results for maintaining the 

relative abundance of template viral DNA (Roux et al., 2016b; Trubl et al., 2018). This is 

important as amplification will to needed to understand viral variations and dynamics at 

smaller sampling scales where pooling larger viral samples will not be able to address 

critical ecological questions (Fierer, 2017). These methods generally apply to datasets 

that have been enriched for viruses such as single-virus genomes or viral metagenomes. 

However, viral sequences can also be mined from microbial genomes and metagenomes 

but might be biased toward viruses that infect the dominant host cell in the system (Roux 

et al., 2019a). While sequencing has been able to show diverse viral communities in a 

range of ecosystems, the majority of viruses cannot be taxonomically identified being 

referred to as uncultivated virus genomes (UViGs). UViGs make up the majority of 

available sequences in publicly available databases (Brister et al., 2015; Paez-Espino et 

al., 2017) further showing the fast growth of sequencing data, but at the expense of not 

being able to identify who is present in the community. Lastly, to be able to determine the 

role of viruses in soils, the hosts of the viruses need to be predicted. The most reliable 

host-range prediction method relies on sequence similarity but requires a closely related 

host genome to have been sequenced (Edwards et al., 2016). While other less specific 
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approaches exist, all techniques remain to be predictive therefore still need to be 

interpreted with caution. As virus studies continue to quickly multiply, many steps of the 

process need to be more consistent to provide a better framework for generating, 

analyzing, and reporting virus sequence data.  

 

 
 

1.4 Focus and objectives 
 

As previously mentioned, agriculture is the backbone of functioning societies providing 

goods needed for human survival. Yet, land use conversion for agricultural use has 

resulted in numerous environmental consequences including decreased soil organic 

matter, above- and belowground biodiversity loss, and alterations to ecosystem functions. 

With the continued population growth, the ability to sustain agriculture into the future 

without further environmental costs is becoming a critical issue resulting in a revived 

focus on understanding the impacts of agricultural activity on soil microbial 

communities. Therefore, this dissertation aimed at addressing how soil microbial 

communities were shaped by a range of agricultural land uses often found in a U.S. 

Southern Plains agroecosystem as well as the temporal dynamics of these microbial 

communities based on differences in soil properties, climate factors, and management 

input. Soil samples were collected from grassland and cropland ecosystems and examined 

using high-throughput sequencing technologies to characterize the diversity and 

composition of the soil microbial communities. Major results are summarized in the 

following chapters. 

 Chapter 2 focused on the temporal dynamics of soil bacterial communities over 

one year subjected to different disturbance intensities across a U.S. Southern Plains 
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agroecosystem. The four field sites included a tallgrass prairie (TGP), old world bluestem 

(OWB) pasture, no-tillage (NT) canola cropland, and conventional tillage (CT) wheat 

cropland. Soils were sampled every two weeks during the fall and spring months and 

once a month during summer and winter months, all of which were used to characterize 

the bacterial communities. Several of the sampling times were further analyzed using 

GeoChip functional gene array to examine the diversity in the functional genes of the soil 

bacterial communities. We aimed to address the following questions: i) Does land use 

with varying management disturbance and season shape soil properties? ii) How do land 

use and seasonal temporal dynamics interact to influence bacterial community diversity? 

iii) What roles do soil and environmental properties play in influencing bacterial 

community diversity between seasons and under increasing management disturbance? 

This study intended to determine the effect of land use and sampling time on the 

structural and functional diversity of soil bacterial communities as well as help provide 

insight on which management factors need to be improved in U.S. Southern Plains 

agroecosystems to support important ecosystem services.  

Chapter 3 focused on examining the impact of land use conversion on the ecological 

relationships of microbial communities using molecular ecological network (MEN) 

analysis. This study investigated these relationships for the conventionally tilled wheat 

cropland and native tallgrass prairie system as this is one of the most common types of 

land use conversion that occurs in the U.S. Southern Plains as well as has the greatest 

difference in management disturbance of the four sites studied in the previous chapter. 

Soils were sampled monthly for a total of 19-months to understand whether or how land 

use affects the complexity and stability of soil microbial MENs over time. We aimed to 
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address the following questions: i) How does land use conversion from the native system 

to cropland use impact the complexity and stability of the molecular ecological networks 

(MENs) over time? ii) Does land use conversion from the native system to cropland use 

change the relationship between the complexity and stability of the MENs? iii) Are the 

relationships between complexity and stability of the MENs with environmental factors 

altered due to land use conversion and management practices? In general, this study set 

out to better understand the ecological consequences of converting native land into long-

term croplands by focusing on the network features which may be affected by both time 

and space.  

 Chapter 4 focused on viruses in agricultural soils which are an important part of 

the overall diversity of soil ecosystems. Like their microbial hosts, soil viruses are also 

affected by the changes of physiochemical properties in soil ecosystems that occur due to 

land use conversion. This study investigated the temporal changes in virus and potential 

host abundances over one year in the native tallgrass prairie and two cropland sites, CT 

wheat and NT canola. We also aimed to address whether increasing amounts of land 

management disturbance (TGP < NT < CT) had a further effect on the influence of soil 

and environmental factors on viral abundance. Additionally, the impact of land use on 

viral community structure in the native tallgrass prairie and conventionally tilled cropland 

were inspected using metagenomic sequencing. Overall, this study examined whether 

land use, season, and soil and environmental variables had an observable impact on virus 

abundance and bacterial host abundance, and if these differences in abundance were also 

accompanied by differences in virus community structure.  
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 In summary, this dissertation provided notable results on the effects of land use 

disturbance and the interaction with temporal dynamics of soil microbial and viral 

communities in a U.S. Southern Plains agroecosystem. Together, this information is 

critical to understanding the impacts of long-term agricultural land use on soil ecosystems 

which is needed when trying to develop sustainable agriculture practices.  
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Chapter 2 : Temporal dynamics of bacterial communities along a 

gradient of disturbance in a U.S. Southern Plains agroecosystem 

 

2.1 Abstract 

Land conversion for intensive agriculture produces unfavorable changes to soil 

ecosystems causing global concern. Soil bacterial communities mediate essential 

ecosystems processes making it imperative to understand their responses to agricultural 

perturbations. Here, we used high-throughput sequencing coupled with functional gene 

array to study temporal dynamics of soil bacterial communities over one year under 

different disturbance intensities across a U.S. Southern plains agroecosystem, including 

tallgrass prairie, old world bluestem pasture, no-tillage (NT) canola, and conventional 

tillage (CT) wheat. Land use had the greatest impact on bacterial taxonomic diversity, 

whereas sampling time and its interaction with land use were central to functional 

diversity differences. The main drivers of taxonomic diversity were tillage > sampling 

time > temperature, while all measured factors explained a similar amounts of variations 

in functional diversity. Temporal differences had the strongest correlation with total 

nitrogen > rainfall > nitrate. Within land uses, community variations for CT wheat were 

attributed to nitrogen levels, whereas soil organic matter and soil water content explained 

community variations for NT canola. In comparison, all measured factors contributed 

almost equally to variations in grassland bacterial communities. Lastly, functional 

diversity had a stronger relationship with taxonomic diversity for CT wheat compared to 

phylogenetic diversity in the prairie. These findings reinforce that tillage management has 

the greatest impact on bacterial community diversity with sampling time also critical. 
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Hence, our study highlights the importance of the interaction between temporal dynamics 

and land use in influencing soil microbiomes, providing support for reducing agricultural 

disturbance to conserve soil biodiversity.   

 
 

2.2 Introduction 

Rising human populations have resulted in the need for increased land conversion to 

heavily managed environments for greater food production. Yet, land use change 

represents one of the largest perturbations to soil ecosystems significantly impacting both 

aboveground and belowground communities (Ding et al., 2013; Lauber et al., 2008). 

Whole ecosystem diversity is generally diminished when natural land is converted to 

agricultural systems with lasting negative effects on soil health (Murty et al., 2002). In 

general, agricultural land use type regulates microbial diversity, plant diversity, and soil 

physicochemical properties (Calderón et al., 2001; Plassart et al., 2019; Zhang et al., 

2020; Zhao et al., 2005). The effect of land use on microbial communities has become 

increasingly important since microbes represent the bulk of biodiversity in terrestrial 

ecosystems, perform essential ecosystem functions, and are fundamental to ecosystem 

stability (Bell et al., 2005; Choudhary et al., 2011; de Moraes et al., 1996). 

While it has been established that changes in land use shift microbial community 

structure and diversity, there has been a renewed focus on observing these communities 

under an increasing gradient of disturbance intensities due to the quickly growing need 

for sustainable agricultural practices. Different intensities of soil disturbance creates 

unique environments that support microbes with those specific environmental 

requirements (Steenwerth et al., 2002). Although terrestrial microbial studies over large 
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spatial scales (Bahram et al., 2018; Plassart et al., 2019; Xue et al., 2018; Zhang et al., 

2020) have demonstrated which soil and environmental factors are important for shaping 

microbial distribution patterns, they are unable to pinpoint the dynamics required to 

manage microbial communities at the local level. Agricultural management practices also 

vary locally with inputs such as tillage, pesticide and fertilizer use, crop rotation, and 

residue incorporation directly altering soil microbial biomass (Franzluebbers et al., 1995; 

Sparling et al., 1994) and community composition (Ding et al., 2013; Ishaq, 2017). This 

is critical as there is no ideal community type (Fierer et al., 2021), soil type, or soil 

characteristics (Bünemann et al., 2018; Lehmann et al., 2020) when trying to define a 

functional soil system. By directing attention to gradients of disturbance in a range of 

land uses commonly found in agroecosystems, local variation can be captured in soil and 

environmental properties, management type, and plant diversity, which may give insight 

into the complex dynamics shaping soil communities (Steenwerth et al., 2002).  

Patterns of variability between land uses with increasing management disturbance 

have been studied extensively at single timepoints, but much less is known about the 

extent to which land use under a gradient of disturbance intensities interacts with 

temporal dynamics in altering soil bacterial communities. As seasons transition, 

variations occur in environmental factors such as solar radiation, temperature, and 

precipitation, all of which can affect microbial community structure and functions (Ishaq 

et al., 2020; Koranda et al., 2013; Lacerda-Júnior et al., 2019; Lauber et al., 2013). 

Several studies investigating soil microbial community changes in relation to temporal 

variability have observed community differences on a range of time scales many of 

which are associated with shifting environmental conditions (Lacerda-Júnior et al., 2019; 
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Lauber et al., 2013; Zhang et al., 2011). These variations in environmental conditions and 

community structure are often related to land management practices (Ghimire et al., 

2019; Ishaq, 2017; Ishaq et al., 2020) and temporal changes in plant growth and 

development (Chaparro et al., 2014; Sayer et al., 2017). Specifically, plant growth alters 

rhizodeposition promoting microbial activity (Philippot et al., 2013) and modifying 

community composition by enriching specific microorganisms (Peiffer et al., 2013). 

Expanding on spatiotemporal studies that are specific to the local land use, plant 

community, and soil conditions are critically needed.  

Functional diversity of the soil microbial community is equally important as 

compositional diversity when examining overall ecosystem diversity. Typically, a high 

structural and functional microbial diversity are thought to be fundamental to soil health, 

function, and sustainability by providing functional redundancy critical for ecosystem 

stability in the presence of stress and disturbance (Bell et al., 2005; Bérard et al., 2011; 

Foley et al., 2005; Kuan et al., 2006). The use of functional gene arrays (FGAs) or 

GeoChip has provided a way to examine relationships between microbial community 

structure and function by focusing on genes important to microbial processes like 

biogeochemical cycling and stress responses (He et al., 2010; He et al., 2007; Rhee et al., 

2004; Shi et al., 2019; Tu et al., 2014; Van Nostrand et al., 2016; Wu et al., 2001). FGAs 

allow for a thorough analysis of essential ecological questions especially those concerned 

with microbial community responses to disturbances (Cong et al., 2015; Guo et al., 2020; 

Hazen et al., 2010; He et al., 2008; Shi et al., 2019; Zhou et al., 2014), including soil 

microbial community responses to land use, land management, and temporal changes 

(Berthrong et al., 2009; Reeve et al., 2010; Zhou et al., 2020). However, it remains 
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unclear how the functional capabilities of soil microbial communities change under a 

gradient of disturbance intensities and seasons. 

To investigate the effect of land use with increasing management disturbance and 

season on the temporal dynamics of soil bacterial communities and its underlying 

mechanisms, we conducted a 12-month field study in agroecosystem land uses with a 

gradient of disturbance within the U.S. Southern Plains agroecosystem. The agricultural 

sites included two perennial grasslands and two annual croplands: a native tallgrass 

prairie (TGP), Old World Bluestem (OWB) pasture, no-tillage (NT) canola (Brassica 

napus L.) field, and conventional tillage (CT) winter wheat (Triticum aestivum L.) field. 

In this study, we focused on i) Does land use with varying management disturbance and 

season shape soil properties? ii) How do land use and seasonal temporal dynamics 

interact to influence bacterial community diversity? iii) What roles do soil and 

environmental properties play in influencing bacterial community diversity between 

seasons and under increasing management disturbance? We predicted that soil bacterial 

diversity would decrease with increasing management disturbance while seasonal 

differences would become more discernable with increasing management disturbance. 

Our results revealed that land use drove differences in taxonomic diversity while 

sampling time and its interaction with land use influenced functional gene diversity, and 

that the biotic and abiotic factors shaping bacterial community diversity also differed 

spatiotemporally with their importance varying with management intensity. 
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2.3 Materials and Methods 

2.3.1 Site description & field sampling  

The study was conducted at the United States Department of Agriculture, Agricultural 

Research Service, Grazinglands Research Laboratory at El Reno, OK, (35 34.1’ N, 98 

03.6’ W; 414 m above sea level) from August 2016 to July 2017. Soil was collected from 

four sites: native tallgrass prairie (TGP), introduced (OWB) pasture, NT canola field, and 

CT winter wheat field. The grasslands and croplands were approximately 2.7 km apart. 

All four sites are included in the Southern Plains site of the Long-Term Agroecosystem 

Research (LATR) network (Kleinman et al., 2018; Spiegal et al., 2018). The soil type for 

the research area was Bethany silt loam (a fine, mixed, superactive, thermic Pachic 

Paleustolls). The study area has a temperate continental climate with summer months 

being characteristically hot and dry with a 30 year (1980–2010) average daily maximum 

and minimum air temperature of  22.5 ̊C,  and 8.8 ̊C, respectively, and rainfall mostly 

occurring in May-June and September-October with an average annual rainfall of 860 

mm (Bajgain et al., 2018; Fischer et al., 2012; Peterson et al., 2018; Peterson et al., 

2021).  

Native tallgrass prairie consists of mainly warm-season native mixed grasses. 

This mixture includes big bluestem (Andropogon gerardii Vitman.), little bluestem 

(Schizachyrium scoparium (Michx.) Nash), Indiangrass (Sorghastrum nutans (L) Nash), 

and switchgrass (Panicum vergatum L.). Old World bluestem (Bothriochloa spp.) is a 

monoculture pasture site that was established well over 20 years before this study was 

conducted. Both pasture sites had deep soils (> 1 m depth) and high water holding 

capacity (Bajgain et al., 2018; Zhou et al., 2017). During the sampling period, the TGP 
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was grazed by beef cattle for approximately five of the sampling months at a stocking 

density of 0.13 head/ha for 30 days and 0.83-1.06 head/ha for the remaining months. The 

OWB pasture was grazed for roughly eight of the sampling months at a stocking density 

ranging from 0.65-0.94 head/ha. Prescribed burns of the pasture sites are on a 4-year 

rotation with the most recent burning occurring in February 2014. The OWB pasture is 

managed using annual fertilizer and herbicide treatments (Peterson et al., 2018), while the 

native TGP is not fertilized. In these pastures, vegetation generally greens up in April and 

enters the senescence phase towards the end of October with peak growing season 

occurring during the May-June period (Wagle et al., 2017). 

As a cool-season crop, winter wheat is the dominant cultivated ecosystem in the 

U.S. Southern Plains generally converted from native tallgrass prairies. Winter wheat has 

been planted in the study sites under CT management since the late 1990s. In Oklahoma, 

winter wheat fields are managed for multiple purposes such as grain-only, graze-grain, 

and graze-out. The CT wheat field was grain-only during the 2015-2016 growing season 

and graze-out (no grain production; cattle grazing from November through May) during 

the 2016-2017 growing season. Each year the seedbed was prepared for planting using a 

chisel plow treatment to a depth of 31 cm, which resulted in complete disturbance of soil 

and residue mixing (Peterson et al., 2019). The NT canola field was converted from a CT 

wheat field in 2015. It was grain-only wheat during the 2015-2016 growing season and 

on canola rotation during the 2016-2017 growing season as a part of the 4-year crop 

rotation (canola, grain-only wheat, graze-grain wheat, and graze-out wheat). It was the 

first year canola had been grown in the NT plot. Both croplands were left fallow from 

June to September being fertilized and planted between late August to mid-October. 
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Crops had fall and spring growing seasons and were dormant during the winter months. 

The CT wheat site was harvested in early June and the NT canola site was harvested in 

late June. Detailed management data have been previously published (Wagle et al., 

2019). 

Soil sampling began in August 2016 for all sites. Soil sampling was conducted 

every two weeks during the fall and spring months and once a month during summer and 

winter months, resulting in 20 sampling times per field between August 2016 and July 

2017 for a total of 80 soil samples. During each soil sampling time point, eight cores 

roughly 20 meters apart were taken in a random walking pattern throughout each field at 

a depth of 0-15 cm using a 2.5 cm-diameter soil probe. Soil cores were pooled and 

homogenized at each sampling time for a representative sample of each plot. Soils were 

sieved to 2 mm to remove debris and stored at -80C until analysis.  

 

2.3.2 Soil properties & climate data 

Weather data including average monthly rainfall, maximum air temperate, average air 

temperature, and minimum air temperature were gathered from an Oklahoma Mesonet 

weather station (http://www.mesonet.org/index.php/weather/local/elre) in El Reno 

(ELRE), Oklahoma. The Mesonet tower is located on the native TGP site used in this 

study (35° 32.9' N, 98° 02.2' W). Soil chemical analyses were performed at the Oklahoma 

State University Soil, Water and Forage Analytical Laboratory 

(https://agriculture.okstate.edu/departments-programs/plant-soil/soil-testing/). Tests 

included topsoil nitrate (TopN), soil organic matter (OM), soil total nitrogen (TN), and 
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ammonium (NH4). Gravimetric soil water content (SWC) was determined by oven drying 

for  24 hours at 65ºC or until the weight no longer changed (Peterson et al., 2019). 

 

 

2.3.3 Soil DNA extraction, PCR amplification, & sequencing 

Microbial genomic DNA was extracted from 0.25 g of soil using the Quick-DNA™ 

Fecal/Soil Microbe Miniprep Kit (Zymo Research, Irvine, CA, USA) according to the 

manufacturer’s instructions and DNA was eluted with sterile water. For each soil sample, 

four technical replicates were extracted. DNA was quantified with the Qubit dsDNA 

BR Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) as described by the 

manufacturer’s instructions. DNA dilutions of 2 ng/µL were prepared for use in PCR. 

PCR was performed using a two-step barcoding protocol (Herbold et al., 2015). For the 

first DNA amplification, primer pair M13 tagged 341F (5'-

GTAAAACGACGGCCATACGGGNGGCWGCAG-3') and 785R (5'-

GACTACHVGGGTATCTAATCC-3') were used (Klindworth et al., 2013). The second 

PCR step used a barcoded version of the forward primer and the 785R primer stated 

above. The PCR reaction for amplification was a 50 µL containing 0.1 µL of each primer 

(100 µM), 2 µl of template DNA, 25 µL of Phusion High-Fidelity PCR Master Mix with 

HF Buffer, and 23 µL of water. The PCR conditions were preliminary denaturation phase 

at 95 ºC for 5 min then 30 cycles at 95 ºC for 30 s, 55 ºC for 30 s, 72 ºC for 60 s, and final 

extension at 72 ºC for 10 min. PCR products were checked on a 1% agarose gel for 

amplification and purified using QIAquick PCR Purification Kit (Qiagen, USA) before 

the barcoding reaction. The PCR barcoding step was 30 µL containing 0.15 µL of reverse 

primer, 1 µL of the barcode forward primer, 5 µL of purified PCR product, 15 µL 
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Phusion High-Fidelity PCR Master Mix with HF Buffer, and 8.85 µL of water. The PCR 

conditions for the barcoding reaction were 95 ºC for 5 min followed by 6 cycles at 95 ºC 

for 30 s, 55 ºC for 60 s, and 72 ºC for 90 s, and a final extension at 72 ºC for 10 min. PCR 

product was then pooled and further purified before sequencing using an Illumina MiSeq 

platform (Illumina, USA) at the Oklahoma Medical Research Foundation (Oklahoma 

City, OK).  

 

2.3.4 Sequence analyses 

Raw FASTQ files were checked for quality with FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc) then demultiplexed and 

processed using QIIME (version 1.9.0) (Caporaso et al., 2010). Low quality sequences 

and chimeras were removed. Operational taxonomic units (OTUs) were clustered at 97% 

sequence similarity using the UCLUST function in QIIME. Technical replicates for each 

sample were combined to increase sequence number per sample and get one 

representative sample per time point. The OTU representative sequences were 

taxonomically identified using the SILVA 16S database. Sequences were rarefied to 

12,000 sequences per sample based on the lowest sequence number sample to use for 

alpha-diversity calculated using the vegan package (Oksanen et al., 2019) in R version 

4.0.3 (R Core Team, 2020). Beta-diversity was calculated using the vegan package using 

the unrarefied data.  
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2.3.5 Functional gene array 

GeoChip 5.0S array containing ~60,000 probes per array (Shi et al., 2019) was used for 

functional gene analysis. Microarray analysis was conducted following previously 

described protocols (Shi et al., 2019; Van Nostrand et al., 2016). In short, three time 

points were chosen from the one-year sampling period to represent various sampling 

seasons from TGP and CT wheat. These two fields were chosen for further examination 

because CT wheat croplands are the most common type of land conversion of native 

prairie systems. The DNA extracted for sequencing was also used for this part of the 

study. Each DNA sample was purified using Agencourt AMPure XP (Beckman Coulter, 

California, USA) bead purification following the manufacturer’s protocol. The quality of 

the DNA was determined using a Nanodrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) based on the A260/A280 and A260/A230 ratio, and DNA 

concentrations were quantified again using Qubit dsDNA BR Assay Kit (Thermo 

Fisher Scientific, Waltham, MA, USA). DNA was labeled using random priming and 

cyanine dye, purified using Qiagen QIAquick purification kit per manufacturer’s 

instructions and dried. Resuspended labeled DNA was mixed with hybridization solution, 

pipetted into the center of the well of the gasket slide (Agilent), the array assembled and 

sealed, and placed into a rotisserie hybridization oven to hybridize in the presence of 10% 

formamide at 67°C for 24 h. Once hybridization was complete, slides were washed and 

imaged using a NimbleGen MS200 microarray scanner (Roche NimbleGen, Madison, 

WI, USA).  

GeoChip data were normalized and quality filtered with methods modified from 

previous ones (Shi et al., 2019; Van Nostrand et al., 2016). Probes flagged as outliers 



 38 

(bad spots) were removed from all samples. Then, for each array, the sum of the signal 

intensity was calculated, and the maximum sum value was applied to normalize the signal 

intensity in each array producing a normalized value for each spot in each array. 

Normalized data was further denoised as follows. A probe signal is counted as low-rank 

in a sample if raw signal < 500, or SNR < 2, or SBR < 1.3, or CV > 0.8, or signal < 99% 

of detected probes, or signal < 50% of designed probes. Only the probes showing low-

rank signals across all samples were removed as noise. Then, probe signals with SBR < 

1.1 were filled with zeros, considered as undetected.  

 

2.3.6 Statistical analyses  

Differences in measured soil properties were compared across land use and season using 

Kruskal-Wallis rank sums test. The effects of land use type, seasonal sampling time, and 

their interactions with alpha-diversity and beta-diversity indices were analyzed using R. 

The main effects and interactions of land use and season on alpha diversity indices were 

tested using avop in the “lmPerm” package (Wheeler and Torchiano, 2016) in R. Tukey’s 

post hoc test was used when significant values (p < 0.05) were returned for one of the 

main effects or interactions. ANOVA was used to compare the effect of soil properties to 

alpha-diversity within land use types. Principal coordinate analysis (PCoA) was 

performed using Bray-Curtis distance metrics. The statistical significance of season and 

land use on beta-diversity was assessed by permutational multivariate analysis of 

variance (PERMANOVA), using adonis in the vegan package (Oksanen et al., 2019). The 

same analysis was used for alpha- and beta-diversity of the functional community. 

Bacterial community composition differences were compared by field using adonis and 
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pairwise field comparisons. The same method was used for within field seasonal 

differences of bacterial community composition. To link beta-diversity to measured soil 

and environmental factors, Mantel test and multiple regression on distance matrix 

(MRM) were modified as previously described (Ning et al., 2020). In the modified 

Mantel and MRM, beta-diversity of spatial, temporal, or all pairwise comparisons was, 

respectively, subjected to a linear mixed model with random effect of intercepts in 

different seasons. The significance test was based on constrained permutation of samples 

considering the repeated measurement. The factors in the MRM models were forward 

selected based on adjusted R2. Canonical correspondence analysis (CCA) was conducted 

to determine the effect of soil properties and environmental factors on the bacterial 

community within land uses and for the overall functional dataset. CCA models were 

considered significant when p < 0.05 and redundant variables had been removed (VIF > 

15). Each variable was additionally checked for significance within each model. Variance 

partitioning analysis was conducted for bacterial community composition of each field 

based on CCA results. Variables were separated into three groups representing including 

nitrogen measurements (TopN, NH4, TN), soil variables (OM, SWC), and climate factors 

(rainfall, air temperature). To examine differences in relative gene abundance based on 

GeoChip data, genes present in at least 50% of the samples across treatment were used. 

Response ratios were determined using an online available MicroArray functional gene 

microarray analysis system (http://ieg.ou.edu/microarray/) based on 90%, 95%, and 99% 

confidence intervals for land use and sampling time (He et al., 2012; Liang et al., 2016). 

Mantel test was also used to examine correlations between functional diversity, 

taxonomic diversity, and phylogenetic diversity. Correlation coefficients were compared 

http://ieg.ou.edu/microarray/
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using a two-sided t-test. Spearman’s correlation was used to look at relationships between 

functional groups and OTUs using cor.test in R. 

2.3.7 Data availability  

 

16S rRNA gene sequences were deposited in the Sequence Read Archive (SRA) database 

under BioProject accession number PRJNA816491. 

 

 

2.4 Results  

2.4.1 Changes in soil and environmental variables across land use and management 

gradient 

Over the one-year sampling period, all the measured soil properties were significantly 

affected (p < 0.001) by land use (Figure 2.1a). Only properties influenced by climate (soil 

water content, SWC) and management practices (topsoil nitrate, TopN) significantly 

differed by season (p < 0.05). Notably, soil organic matter (OM) and soil total nitrogen 

(TN) decreased as management disturbance increased. The OM only differed by season 

for CT wheat. SWC significantly decreased (p < 0.05) in CT wheat with the lowest SWC 

of all sites being observed in CT wheat during January, whereas all other land uses had 

lows in SWC during summer months (Figure 2.1b). Minimum daily air temperatures 

occurred in December 2016 and January 2017, and maximum air temperatures occurred 

in August 2016 and July 2017. The greatest monthly rainfall was recorded in April 2017 

(227 mm) and the lowest monthly rainfall in November 2016 (15 mm). Both croplands 

had higher averages of TopN that significantly differed from the less management 

disturbed grasslands (p < 0.05). Elevated levels of TopN were present during summer and 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA816491
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fall in both croplands (Table S2.1). Ammonium (NH4
+) was significantly (p < 0.05) lower 

in NT canola than other land uses.  

 

 

Figure 2.1 Soil chemistry within each land use type across one-year sampling period. a) 

Soil chemistry averages for each land use across one year. b) Factors that were 

significantly different by season across the whole land use gradient shown by season 

within land uses. Error bars represent the standard deviations. Letters represent 

significant differences of p < 0.05 between pairwise land use comparisons or seasons 

within land use. The same letter indicates no significant difference. 

 

 

2.4.2 Impact of land use and seasonality on soil bacterial communities 

To determine the effect of land use and season over the sampling period, α-diversity was 

calculated for the bacterial communities (Table 2.1). For all land uses, seasonal 

variability had a greater impact on α-diversity than land use with all indices significantly 
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different between seasons (p < 0.001). Overall, bacterial richness was lower in summer 

and fall than winter and spring, but no single land use had a more diverse or rich 

community throughout the sampling period. Shannon diversity was the lowest in the fall 

across all land use types, and fall was significantly different from other seasons (p < 

0.05). The two fields that differed the most as far as management disturbance, TGP and 

CT wheat, were compared separately to see if land use differences were observed when 

focusing on the most different land use types and level of management disturbance 

(Table 2.1), interestingly significant differences were still driven by season.   

 

Table 2.1 Bacterial community structural and functional differences in alpha-diversity 

based on land use and sampling time.  

Alpha 

diversity  
Effects 

16S 16S GeoChip 

All Fields  TGP and CT TGP and CT 

F value p F value p F value p 

Chao 1 
Field 0.517 0.672 0.896 0.350 - - 

Season 12.05 < 0.001   5.196 0.005 - - 

Observed 

OTUs 

Field 0.573 0.635 1.401 0.244 - - 

Season 11.16 < 0.001   3.663 0.022 - - 

Pielou 
Field 1.891 0.138 1.738 0.195   0.410 0.529 

Season 3.494 0.020 0.280 0.839 1.790 0.192 

Shannon 
Field 0.426 0.735 0.415 0.523 0.939 0.343 

Season 9.129 < 0.001   1.970 0.137 1.772 0.195 

Bolded values indicated significant effects (p < 0.05) based on analysis of variance. 

Season for GeoChip represents sampling time since only three time used across dataset.  

Native tallgrass prairie (TGP) and conventionally tilled (CT) winter wheat 

 

 

The effect of land use and season on the β-diversity of soil bacterial communities 

was examined using PCoA based on Bray-Curtis distance metric. The bacterial 

community structure of soils visibly separated by land use with CT wheat generally 

isolated from the other land uses (Figure 2.2). NT canola and OWB pasture were the 
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most similar in community structure. Each field had observable temporal differences in 

community structure, and the visible temporal differences increased with increasing 

management disturbance. PERMANOVA analysis supported the PCoA plot (Table 2.2), 

indicating that the structure of the bacterial community was significantly shaped by land 

use (p = 0.001, R2 = 0.2949) and season (p = 0.001, R2 = 0.1067), but the effect of season 

was not as strong as that of land use. When comparing just the TGP and CT wheat, the 

same significant differences were observed, but the effect of land use (p < 0.05, R2 = 

0.3614) on bacterial community structure was even greater.  

 

 

 

Figure 2.2 Principal coordinate analysis of Bray-Curtis dissimilarity for soil bacterial 

communities (16S rRNA gene) showing the differences in four fields along a 

management disturbance gradient types over a one-year sampling period. a) Differences 

in community structure between land uses. Land uses include conventionally tilled (CT) 

wheat, no-till (NT) canola, Old World bluestem (OWB) pasture, and native tallgrass 

prairie (TGP). b) Differences in community structure separated by season 
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Table 2.2 Effect of land use and season on bacterial community structure 

 

 

 

 

 

 

 

 

 

 

2.4.3 Responses of soil bacterial community composition across land use gradient 

The soil bacterial community was dominated on average by several bacterial taxa across 

all land use types commonly found in soils including Actinobacteria (20.16% - 24.67%), 

Proteobacteria (21.20% - 24.36%), Firmicutes (9.68% - 18.03%), Acidobacteria (9.20% - 

13.53%), and Chloroflexi (4.23 - 9.90%) accounting for over 75% of the relative 

abundance of each system (Figure S2.1, Table S2.2). The lower relative abundance phyla 

were comprised of Bacteroidetes, Gemmatimonadetes, Planctomycetes, and 

Verrucomicrobia, all of which made up at least 1% of the bacterial community in all land 

uses over the sampling period (Figure S2.2, Table S2.2).   

 Significant differences in the relative abundance of the main bacterial taxa 

between land use were evident at the phylum level (p = 0.001). The greatest number of 

significant differences of relatively abundant phyla were between CT wheat and TGP 

communities, while NT canola and OWB pasture had the least significant community 

Distance 

Metric 

  

Effects 

  

16S  16S GeoChip 

All Fields TGP and CT TGP and CT 

R2 p R2 p R2 p 

Bray-Curtis 

Field (F) 0.2949 0.001 0.3614 0.001 0.0842 0.005 

Season (S) 0.1067 0.001 0.1140 0.014 0.1363 0.034 

F × S 0.1102 0.104 0.0783 0.112 0.1049 0.011 

Jaccard 

Field (F) 0.2057 0.001 0.2394 0.001 0.0798 0.004 

Season (S) 0.0876 0.001 0.1125 0.018 0.1299 0.042 

F × S 0.1303 0.032 0.0928 0.083 0.1054 0.014 

16S permutational multivariate analysis of variance (adonis) model was set up as dissimilarity ~ field * 

season. 16S analysis was done including 4 fields: TGP, OWB pasture, NT and CT. It was also 

performed using only prairie and CT since GeoChip only included those two fields. GeoChip 

permutational multivariate analysis of variance (adonis) model was set up as dissimilarity ~ field * 

season + block with permutation constrained by block to deal with effect of data on multiple arrays.   
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differences (detailed in Table S2.3). Within individual land uses, the phylum relative 

abundance of the bacterial communities differed significantly by season (p < 0.01) except 

for OWB pasture (p = 0.066). Markedly, significant changes in many phyla across 

seasons were unique to specific land use types (detailed in Table S2.4). At a lower 

taxonomic level, roughly 20% of the OTUs in each land use were not present in any of 

the other land uses with the smallest percentage of shared OTUs between CT wheat and 

the TGP (Figure S2.3a). Within all land uses, the greatest percentage of unique OTUs 

was observed during the spring (Figure S2.3b-e) corresponding to warming air 

temperatures, rainfall peaks, and resuming plant growth. CT wheat had the most shared 

OTUs during the fall and spring, which were the wheat growing seasons. TGP also had 

the most shared OTUs during the peak growing season for warm grasses during summer 

and fall. In general, as the amount of management disturbance increased between land 

uses, the bacterial communities became increasingly different at the phylum and OTU 

levels.  

 

2.4.4 Effect of soil and environmental factors on soil bacterial diversity  

While α-diversity indices were not significantly different across the land management 

disturbance gradient, they were affected by local soil properties that differed between 

land uses. The richness and diversity of the CT wheat bacterial community significantly 

(p < 0.05) decreased when there were high levels of TopN present. Similarly, the 

diversity and evenness significantly (p < 0.05) decreased in the presence of elevated 

TopN in NT canola. Only the richness in the TGP was significantly influenced by SWC. 



 46 

There were no detectable relationships between soil variables and α-diversity for OWB 

pasture.  

The influence of management, soil, and environmental factors on β-diversity was 

determined using Mantel test and multiple regression on a distance matrix (MRM) with 

correlations to individual taxa within land uses in Table S2.5. Overall, bacterial 

community differences were significantly driven by tillage > SWC > sampling time > 

minimum air temperature according to Mantel test (Figure 2.3a). Between fields 

(spatially), soil factors shaped by land use were significantly important including OM > 

TN > SWC. In comparison, sampling time had the greatest correlation to temporal 

community differences as well as OM and TN. Since potential significant correlations 

among factors could exist, MRM was further used to determine the contributions of 

different environmental factors on shaping bacterial community structure. In general, 

differences based on MRM were similar to that of Mantel test with tillage > sampling 

time > minimum air temperature being significant (Figure 2.3b). Notably, spatially 

related factors had a stronger impact (R2 = 0.62) on the bacterial community than 

temporally (R2 = 0.46). The same soil factors were key to spatial difference based on 

MRM and Mantel test (Figure 2.3c), with average air temperature also having moderate 

importance. Sampling time again had the strongest relationship with temporal differences 

(Figure 2.3d). Average rainfall > TN > TopN were also key to temporal community 

dynamics.  
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Figure 2.3 Effects of soil and environmental factors on soil bacterial community 

structure. a) Correlations on overall, spatial, and temporal differences based on Mantel 

test. b) Multiple regression on distance matrix (MRM) on overall community structure. c) 

MRM for spatial differences in community structure. d) MRM for temporal differences in 

community structure. Bars with diagonal lines represent negative regression coefficients. 

Gdist, geographical distance between sampling sites. Significance expressed as ***p < 

0.001, **p < 0.01, and *p < 0.05. 

 

 

 

Each land use was then examined separately to determine if soil and 

environmental variables contributed equally to the variation in bacterial community 

structure. Based on CCA analysis (Figure S2.2), variance partitioning was used to 

determine if climate variables, nitrogen measurements, or other soil properties explained 

the most variations in community structure (Figure 2.4). Nitrogen measurements had the 

largest impact on the CT wheat bacterial community and interacted with the other soil 

properties and climate variables (Figure 2.4a). The majority of the variation of bacterial 
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communities was explained by the soil properties for the NT canola site (Figure 2.4b), 

with nitrogen measurements and climate variables having a minor interaction. For OWB 

pasture, the variation explained by all groups was similar, with soil properties and 

nitrogen measurements explaining almost the same amount of variation (Figure 2.4c). 

The distribution of the variation explained for TGP was similar to what was observed at 

the OWB site (Figure 2.4d), with all sets of variables having a relatively equal impact on 

the bacterial community structure. The greatest interaction of all variables was observed 

for the TGP. Therefore, management and sampling time had the greatest impact on 

diversity, and management greatly impacted the importance of different soil and climatic 

factors on shaping bacterial communities within fields.  
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Figure 2.4 Variation partition analysis (VPA) of bacterial community structure explained 

by soil properties, nitrogen measurements and climate variables for each land use. 

Variable groupings include soil variables (SWC, OM), nitrogen measurements (TopN, 

NH4
+, TN), and climate (rainfall, temp) variables. Total nitrogen (TN) was only included 

in the CT wheat nitrogen measurements based on the CCA results. Bacterial community 

data based on 16S rRNA gene sequencing data. 
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2.4.5 Functional community differences between tilled cropland and native prairie  

Functional diversity at three distinct times across the one-year dataset was investigated 

using a functional gene array for the CT wheat and TGP. For α-diversity of the functional 

community, no significant differences were found based on land use or sampling time 

when looking at evenness and diversity (Table 2.1). Significant differences were 

observed for the functional β-diversity of the two fields. Land use, sampling time, and the 

interaction of the two factors were all significant in shaping functional diversity (Table 

2.2). Interestingly, sampling time and the interaction of sampling time and land use had a 

stronger effect on the functional structure than land use alone.  

To investigate the significant differences in functional community structure, 

response ratios were used to compare relative gene abundance between land use and 

sampling time. When comparing by land use, all genes that were significantly different 

were greater in the TGP. Comparisons of sampling time between land uses had 

significant differences in genes involved in carbon cycling, organic remediation, 

nitrogen, and metal homeostasis. Surprisingly, very few functional gene differences were 

observed when comparing the two fields during August (Figure S2.4). The greatest 

significant differences between the functional community structure of CT wheat and the 

TGP occurred during January (Figure 2.5a) when the relative abundance of almost all 

genes that were significantly different were greater in the TGP. Fewer significant 

differences in function were observed in May (Figure S2.4) than in January.  

Soil and environmental factors also impacted the functional potential of CT wheat 

and TGP. The local diversity of the CT wheat field was impacted by OM, SWC, and 

temperature measurements. Evenness and diversity significantly decreased (p < 0.05) as 
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OM increased, while both indices significantly increased (p < 0.05) with increasing air 

temperature. An increase (p < 0.05) in local diversity was also associated with increasing 

SWC. No significant relationships were identified in the TGP land use. CCA was also 

used to explore the impact of soil and environmental factors on the functional community 

composition (Figure 2.5b). Nitrogen measurements (TopN, NH4
+) appeared to have a 

greater impact on CT wheat and soil properties (SWC, OM) appeared to be more 

important for the functional structure in the TGP. Average air temperature (AvgTemp) 

had a more important relationship with the function of the TGP community than the CT 

functional community. Overall, OM grouped closer to the first axis where functional 

differences were observed based on land use, while AvgTemp and NH4
+ were closer to 

the second axis where functional differences were separated by sampling time. SWC and 

TopN appeared to influence functional structure the most based on the interaction 

between land use and sampling time. Similarly, VPA showed a large amount of the 

variation in the functional structure to be unexplained (Figure 2.5c) and soil properties, 

nitrogen measurements, and climatic factors all explained a comparable amount of 

variation. Soil properties greatly interacted with climatic factors and nitrogen 

measurements. While all soil factors and climatic variables were important to variations 

in functional diversity, more links to these factors and local functional diversity were 

observable for the highly managed CT wheat field. 
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Figure 2.5 Functional differences between conventional tilled (CT) wheat cropland and 

tallgrass prairie (TGP). a) Differences in relative gene abundance during January between 

TGP and CT wheat functional community based on response ratio. All genes greater than 

0.0 were greater in the TGP community. All genes present significantly different by 90% 

confidence interval, * 95% confidence interval, and ** 99% confidence interval. (b) 

Canonical correspondence analysis (CCA) examining the relationships between soil and 

environmental factors on function community structure using GeoChip data (c) VPA of 

functional community structure explained by soil properties (SWC, OM), nitrogen 

measurements (TopN, NH4
+), and climate variables (rainfall, temp). 

 

 

2.4.6 Links between structural and functional community in tilled cropland and 

native prairie  

Mantel test was used to examine the relationship between taxonomic, phylogenetic, and 

functional bacterial community structure focusing on key functional groups (e.g. carbon 

cycling, nitrogen cycling, virulence). When considering overall community interactions 

for the TGP, almost all functional groups had a negative relationship with taxonomic 
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diversity (Figure S2.5a). In comparison, most of the relationships between functional 

groups and phylogenetic diversity were positive with a moderately significant association 

with methane cycling genes (r = 0.229, p = 0.07). The strength of the relationship 

between functional groups and phylogenetic diversity was significantly greater (p < 

0.001) on average than that with taxonomic diversity for the TGP. For individual 

sampling times, a similar pattern was observed where the strength of the relationships 

between functional groups and phylogenetic diversity was greater than taxonomic 

diversity. For the CT wheat field, the majority of relationships between functional 

groups, taxonomic diversity, and phylogenetic diversity were negative (Figure S2.5b). 

The most significant relationships were found between functional groups and taxonomic 

diversity for CT wheat including carbon cycling (r = 0.26, p = 0.05), methane cycling (r = 

0.31, p = 0.02), and organic remediation (r = 0.24, p = 0.05). The strength of the 

relationships was significantly greater (p < 0.001) between taxonomic diversity and 

functional groups on average. The correlation strength for each sampling time for CT 

wheat was greater between taxonomic diversity and functional diversity for individual 

sampling months as well. Primarily, functional structure was more strongly associated 

with phylogenetic structure in the TGP compared to CT wheat where functional structure 

was more closely related to taxonomic structure.   

 To look closer at relationships between structure and function, functional groups 

were compared to OTUs. Several OTUs that had a significant relationship (p ≤ 0.05) with 

functional groups that were present in both fields (Table S2.6) with the direction of the 

relationship often varying between fields. For example, all the OTUs linked to carbon 

cycling, carbon degradation, and methane cycling in both fields had a negative 
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correlation for the TGP and a positive correlation for CT wheat likely related to their 

importance to the processes directly or indirectly within each field. OTUs significantly 

correlated to N fixation present in both fields were all Bacillus spp. and were present in a 

much greater abundance in CT wheat generally having highs in August and May 

compared to highs in just May for the prairie. One OTU (Massilia sp.) significantly 

correlated to organic remediation in both fields and had a higher abundance overall in the 

TGP with peaks in August whereas abundance was greatest in May for CT wheat. 

Significant OTUs were then compared within fields to determine if OTUs were 

significantly correlated to more than one function. When examining the functional groups 

of carbon cycling, nitrogen cycling, and organic remediation, the TGP had almost 60 

OTUs that significantly correlated to all three processes compared to only three in CT 

wheat potentially reflective of how specialized the community is in the CT wheat field. 

The three OTUs in CT wheat all belonged to a different phylum, while the significant 

OTUs in the TGP included many species in the order Rhizobiales, Bacillales, and 

Solirubrobacterales. 

 

 

 

2.5 Discussion 
 

2.5.1 Impact of land use and seasonality on soil properties 

Land use change, management intensification, and season have different effects on soil 

properties and thus impact microbial communities in different ways. In this study, we 

examined how the soil ecosystem was affected by an increasing amount of management 

disturbance across four land uses commonly found in the U.S. Southern Plains. Land use 

change and management intensification modify the soil environment and generally 
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reduces soil quality (Dunjó et al., 2003) as illustrated by the decrease in OM, TN, and 

SWC under tillage management compared to other land uses (Liu et al., 2010a). 

Reducing management disturbance resulted in several soil properties being 

indistinguishable between land uses further signifying that removing intensive 

management improves vital soil properties (Lauber et al., 2008). Meanwhile, it has been 

previously observed that land uses under comparable amounts of management resulted in 

similar edaphic properties when comparing cropland and non-cropland soil properties 

(Johnson et al., 2003; Murty et al., 2002), which may explain parallels between properties 

in NT canola and OWB pasture which received similar yearly management. Only soil 

properties related to climate and management significantly differed by season. Lower 

SWC was evident in times of low monthly rainfall or increased daily temperatures. For 

the croplands, soils exhibited highs of TopN during summer and fall due to fertilizer 

application, which is expected as management practices in agricultural fields that are 

largely seasonally dependent (Ishaq et al., 2020; Morrison-Whittle and Goddard, 2015). 

Overall, even though land use was the greatest determinant of soil properties, sampling 

time was also key for explaining differences in soil properties, especially as management 

disturbance increased.  

 

2.5.2 Impacts of land use and seasonality on soil bacterial diversity 

Determining how soil microbial community diversity is impacted across time and space 

is crucial for preserving soil health against continued environmental changes. The α- and 

β-diversity of bacterial communities were differently altered by land use and season. As 

has been observed in a similar study comparing land use types and temporal dynamics 
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(Lauber et al., 2013), season had the most significant impact on α-diversity with different 

land uses having greater diversity at varying times of the year. However, the interactive 

effect of season and land use on belowground diversity remains unclear as most studies 

emphasize spatial variability over temporal variability (Fierer, 2017). On large spatial 

scales, variation in α-diversity is not significantly explained by land use but rather soil 

properties (Plassart et al., 2019), with moisture and nutrient availability generally being 

the most notable factors (Koranda et al., 2013; Manzoni et al., 2012; Taketani et al., 

2017). Increases in TopN in the croplands decreased α-diversity (Wang et al., 2017; Zhou 

et al., 2016), while SWC influenced α-diversity in the TGP. Both properties generally 

vary over shorter periods of time making them potentially better predictors of seasonal 

microbial community changes (Zhang et al., 2020). Even with the documented impact of 

season on α-diversity, it is thought that the importance of temporal dynamics is 

underestimated due to the presence of relic DNA (Carini et al., 2016), the response of 

different taxa to environmental changes (Fierer, 2017), and the lack of focus on 

living/active cells (Herzog et al., 2015; Zifcakova et al., 2016). Given that no land use 

had the greatest α-diversity throughout the whole one-year period and α-diversities were 

influenced by soil properties that vary seasonally, it is important to assess temporal 

dynamics when trying to determine differences in the microbial community. 

The effects of land use were far more critical for regulating the β-diversity of the 

bacterial communities across the management gradient. The β-diversity of all land use 

types differed from that of the TGP (Figure 2.2), with tillage management having the 

most significant impact (Figure 2.3). Between land uses, several soil factors and air 

temperature were critical for differences in bacterial diversity (Figure 2.3), while the 
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distance between sites had no significant effect on the smaller scale of our study. Within 

fields, as management decreased, less variation in β-diversity was explained by the 

measured properties, of which the relative importance became more evenly distributed 

(Figure 2.4). No group of variables was clearly the most important to variations in TGP 

bacterial diversity. In comparison, slightly greater importance of nitrogen and other soil 

properties was found to be associated with variations in OWB pasture, possibly due to 

changes in microbial community composition and diversity from management 

disturbances in grasslands (Kennedy et al., 2005; Nacke et al., 2011). More variation in 

bacterial diversity was explained in the croplands. While both croplands were fertilized, 

soil N content was far more important to bacterial diversity in CT wheat presumably 

because fertilizer was applied with no residue cover and was directly incorporated 

through tillage. Soil properties that increased under NT management like SWC and OM 

explained more variations in the NT canola supporting that reduced management 

increases carbon storage and moisture availability (Derpsch et al., 2010; Dı́az-Zorita et 

al., 2002). Sampling time was also a significant driver of diversity differences (Figure 

2.3) with rainfall and soil nutrients again having considerable influence. This is consistent 

with previous studies where climate variables, soil moisture, and nutrient availability 

dictated temporal changes (Zhang et al., 2020). Although several factors were exclusive 

to shaping bacterial diversity based on time or space, SWC, OM, and TN continually 

appeared to be notable factors impacting the bacterial communities (Cederlund et al., 

2014; Oliverio et al., 2017; Serna-Chavez et al., 2013; Sul et al., 2013), with land use 

type being critical to explain differences in diversity especially compared to the native 

system. It should be noted, that this was the first time canola was planted on the NT 
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cropland, which had previously been a long-term winter wheat system. While plant 

species can influence the microbial communities, many other factors in croplands likely 

outweigh the introduction of a new crop. In agricultural systems, crops are cultivated in 

various soils being impacted by the soil type, soil properties, and land management often 

reducing the importance of the rhizosphere microbial community for plant growth 

compared to native ecosystems (Philippot et al., 2013). Soil properties have also been 

shown to override the influences of crop type on soil bacterial communities (Bainard et 

al., 2016), with land use and management strongly shaping soil properties (Lauber et al., 

2013; Lauber et al., 2008). Additionally, a mesocosm experiment using soil collected 

from long-term monoculture cropping systems determined that the cropping history of 

the soil was the main factor determining the microbial community composition when a 

new crop was introduced (Frindte et al., 2020). Together, these points help emphasize 

that the plant type during this single growing season was likely not responsible for the 

overall observed differences.  

While much is still unknown about the relationship between 

taxonomic/phylogenetic and functional diversity, it is widely believed that increased 

diversity, including functional diversity, sustains soil functions and creates greater 

resilience to disturbance and stress (Tardy et al., 2014; Torsvik and Øvreås, 2002). 

Taxonomic/phylogenetic and functional diversity can also be differentially affected by 

soil and environmental properties. Based on results from the FGA analysis, land use and 

sampling time were both central in shaping the functional diversity of the CT wheat and 

TGP field, although land use alone had less of an effect than sampling time or the 

interaction of sampling time with land use. The reduced effect of land use on functional 
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diversity is likely due to shared taxa between communities leading to more similar 

functional traits (Fierer et al., 2013; Montecchia et al., 2015) and the redundancy of many 

biogeochemical gene families across microbial groups (Fitter et al., 2005). TGP 

functional diversity was associated with greater SWC, OM, and air temperature, and CT 

wheat functional diversity was associated with higher N content. Available N has been 

shown to significantly impact the active bacterial community and increase the number of 

taxonomic and phylogenetic groups that specialize in using N compounds (Herzog et al., 

2015). We also attempted to uncover the correlations between taxonomic/phylogenetic 

and functional diversity, although deciphering such correlations is not straightforward. 

Functional diversity had stronger correlations to taxonomic diversity than to phylogenetic 

diversity in the CT wheat field, whereas in the TGP functional diversity had stronger 

relationships with phylogenetic diversity. It is possible that the CT wheat community 

remains more phylogenetically similar overtime, while the taxonomic community 

changes more rapidly. These types of patterns have been previously observed and 

suggested as warning signs of biodiversity loss due to environmental changes (Hewitt et 

al., 2010; Rodrigues et al., 2013) resulting from intensive management practices in 

agroecosystems.  

 

2.5.3 Impacts of land use and seasonality on soil bacterial community composition   

Throughout our study, the greatest management disturbance resulted in the greatest 

impact on the bacterial community as shown by the results of tillage treatment at both the 

phylum and OTU levels. The impact of land management especially tillage on bacterial 

community composition has been extensively documented (Lauber et al., 2008; Le 
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Guillou et al., 2019; Wang et al., 2020), and although less studied, season has 

considerable influence on composition as well (Degrune et al., 2017; Ishaq et al., 2020; 

Lauber et al., 2013). For all land uses, the most unique OTUs were present during the 

spring season. During spring, air temperatures begin to rise and rain increases. 

Temperature and moisture not only impact the physiological activity of bacterial 

communities, but also regulate plant activity, including rapid growth and increasing root 

exudates (Chernov and Zhelezova, 2020; Thomson et al., 2015). Such large seasonal 

changes are likely responsible for differences in community composition observed 

between land uses as well as the increase in bacterial richness during the spring season. 

Monitoring changes in microbial composition over time and in response to management 

is one of the best ways to determine sustainable agricultural practices as it can indicate 

early potential changes in soil functionality, although it is necessary to remember there is 

not one optimal microbial community composition.  

 To examine the functional gene community composition, relative gene 

abundances of the whole communities were compared between CT wheat and the TPG. 

Between the two land uses, the abundances of all genes that significantly differed were 

always greater in the TGP. Such differences are believed to be reflective of microbial 

functional gene abundance and diversity (Reeve et al., 2010), although gene presence 

does not necessarily mean the gene is being actively transcribed. More distinct 

differences in gene abundances between land uses were apparent when comparing 

specific sampling times (Figures 2.5, S2.4). In general, seasonal microbial community 

differences are usually more evident in agricultural soils compared to native soils (Lauber 

et al., 2013) due to seasonal management practices and plant activity. The greatest 
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differences occurred during January when plants in both fields were generally not active, 

air temperatures reached yearly lows, and CT wheat had the lowest SWC. The 

importance of soil water content in regulating microbial activities is well known with soil 

water content being a key abiotic factor linked to functional diversity (Liu et al., 2010b). 

Furthermore, the greater ground cover (i.e., residues) during the winter in the TGP may 

help alleviate the stress of the colder temperature on the microbial community with 

greater plant litter amounts also increasing water infiltration and reducing soil 

evaporation (Weaver and Rowland, 1952). Therefore, the effects of reduced SWC and 

reduced ground cover could lead to decreased microbial diversity and activity under CT 

wheat. The least amount of differences in the functional gene community was observed in 

August. The tallgrass prairie mainly consists of warm-season grasses, therefore the plant 

community is in peak growth during this time likely releasing nutrients to support 

microbial activity. In comparison, the CT wheat field is tilled during the summer fallow 

season to incorporate residues for decomposition providing organic carbon and nitrogen 

again likely resulting in increased microbial activity (Frey et al., 1999; Peterson et al., 

2019). Even though there were clear differences in the functional diversity of the 

microbial communities in relation to land use and sampling time, it is equally necessary 

to survey changes in functional gene abundance as shifts in diversity alone do not always 

result in differences in the biogeochemical functional ability of the soil microbial 

community (Cheneby et al., 2009; Hallin et al., 2009). 
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2.6 Conclusions 
 

Environments in agroecosystems are continually modified due to land use and 

management practices that can, directly and indirectly, influence soil bacterial 

communities. Soil communities are exposed to variability in space and time, making no 

single biotic or abiotic factor the sole reason for shifts in bacterial community 

composition (Fierer, 2017), raising the need for continued research on a range of 

agricultural systems. In this study, we investigated the effects of land use and sampling 

time on the structural and functional diversity of bacterial communities as well as the 

interactions with soil and environmental factors in four land uses in the U.S. Southern 

Plains. First, our results indicated that land use, especially with intensive management, 

had the greatest impact on taxonomic diversity, while sampling time and time within a 

specific land use were more important for differences observed in functional diversity. 

Next, soil nutrients, particularly nitrogen, and soil water content were determined to be 

critical for variations in community taxonomic and functional diversity across land 

management and sampling time. Last, functional diversity was also reduced under 

intensive management with species likely being more specialized in function due to 

fertilizer usage and more strongly linked to taxonomic diversity than phylogenetic 

diversity. Although the impacts on functional and structural diversity may have different 

relationships with land use and sampling time, it is clear that both are important for 

structuring the interactions of edaphic properties, climatic factors, and bacterial 

communities. The results contribute to the idea that preserving microbial diversity should 

be one of the main focuses of sustainable agriculture. While these observations may be 

regionally specific, we recommend sampling around management practices (e.g., August) 
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as sampling in relation to a specific management practice or environmental change likely 

provides the most insight when trying to determine the impact on soil health. This is one 

reason why microbes show great promise as a soil health indicator as they can respond to 

disturbance before plant communities and soil properties (Delgado-Baquerizo et al., 

2016). Additionally, we further recommend the use of no-tillage as it increased the total 

nitrogen, organic matter, and water content in the soil, in comparison to CT management 

which increased the reliance on nitrogen inputs generating a less diverse and likely more 

specialized bacterial community. Moving forward, continued monitoring of changes in 

bacterial communities within local land uses corresponding natural and anthropogenic 

disturbances will likely be most useful when trying to make informed decisions about 

managing soil health and ecosystem services.  
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Chapter 3 : Land use conversion enhances microbial network 

complexity and stability  

3.1 Abstract 

Soils harbor highly diverse microbial communities that are critical to soil health, but the 

spread of agriculture has caused extensive land use conversion resulting in negative 

effects on critical ecosystem processes. However, the responses and adaptations of 

microbial community interactions due to land use conversion have not yet been 

understood. Here, we examined the effects of land conversion for long-term cropland use 

on the complexity and stability of molecular ecological networks of soil microbial 

communities over 19 months. Despite reduced microbial biodiversity in comparison with 

native tallgrass prairie, conventionally tilled (CT) cropland use significantly increased 

network complexity such as connectivity, connectance, average clustering coefficient, 

relative modularity, and the number of species acting as network hubs and connectors as 

well as resulted in greater temporal variation of the complexity indices. Molecular 

ecological networks under CT cropland use became significantly more robust and less 

vulnerable, overall increasing network stability. The interaction between network 

complexity and stability was also substantially strengthened due to land use conversion. 

Lastly, CT cropland use decreased the number of relationships between network structure 

and environmental properties instead being strongly correlated to management 

disturbances. These results indicate agricultural disturbance generally increases the 

complexity and stability of species “interactions”, possibly as a trade-off for biodiversity 

loss to support ecosystem function when faced with frequent agricultural disturbance.  
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3.2 Introduction 
 

Land use conversion largely due to agricultural expansion has considerably impacted 

ecosystem structure and function (Shaoqiang et al., 2004; Verchot, 2010). Grasslands 

often have deep, rich soils that support increased soil carbon making them targets for 

conversion for agricultural cultivation (Lark et al., 2019). Pointedly, temperate grasslands 

in the central U.S. have undergone one of the greatest anthropogenic transformations with 

habitat conversion greatly exceeding habitat protection (Hoekstra et al., 2005). From 

2008 to 2012, roughly 77% of new croplands in the US were originally grasslands (Lark 

et al., 2015), and in the Southern Great Plains, these new croplands replaced 

approximately 11,000 km2 of grasslands with winter wheat alone (Bajgain et al., 2018), 

the dominant crop in this area. This extensive ecosystem conversion has resulted in 

significant declines in soil health which also includes the effects on the soil biota and 

biotic processes (Doran and Zeiss, 2000). 

Soil microorganisms are essential for providing many ecosystem services needed 

for agricultural production, but they are also very sensitive to land use changes and 

management disturbances (Trivedi et al., 2016). Numerous studies examining the 

response of microbial communities to agricultural land use and management show 

consistent results that increasing land use intensification significantly decreases microbial 

community diversity and shapes microbial community composition (Ding et al., 2013; 

Ishaq et al., 2020; Lauber et al., 2008). In addition, these studies also reveal that land use 

conversion substantially changes intrinsic soil properties such as soil moisture, pH, and 

nutrient status, all of which are known to further affect microbial community dynamics 

(Bainard et al., 2016; Fierer, 2017; Lacerda-Júnior et al., 2019). While many types of 
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agricultural management exist, tillage is one of the most common practices that causes 

the largest disturbance and has led to the greatest degradation of soil ecosystems (Liu et 

al., 2010a). Tillage physically disturbs the soil, breaks down soil structure, causes 

nutrient loss (Liu et al., 2010a; Six et al., 1999), and leaves the soil more vulnerable to 

climatic differences which results in more perturbation to soil microbial communities. 

While previous studies have been valuable for describing the impact of agriculture on 

community composition, diversity, and the role of biotic and abiotic factors in shaping 

these communities, few have investigated the potential interactions among soil 

microorganisms which may be more important to the functioning of complex ecosystems 

(Deng et al., 2012). 

Individual populations of microbial species do not exist alone, but instead interact 

to form complex microbial communities (Barberán et al., 2012; Zhou et al., 2010), and 

these interactions represent a crucial dimension of microbial community ecology. The 

widely used method of ecological network analysis has proven to be a powerful tool to 

examine the interactions and organization of microbial communities (Barberán et al., 

2012; Faust and Raes, 2012; Zhou et al., 2011a), provides a way to study community 

complexity and stability (Montoya et al., 2006; Yuan et al., 2021), as well as serves as a 

basis to quantify the contribution of microbial interactions to ecosystem functions and 

services. These association networks are commonly referred to as molecular ecological 

networks (MENs) as they are generally reconstructed based on molecular markers (Zhou 

et al., 2010). Network topological features have been shown to change with 

environmental conditions (Deng et al., 2016; Tian et al., 2018; Wu et al., 2016) and can 

be used to reflect the ability of the ecosystem to respond to such changes (Jia et al., 
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2021). Recently, studies have investigated the interactions of complex microbial systems 

in response to anthropogenic activities including groundwater pollution (Deng et al., 

2016), deforestation (Tian et al., 2018), nitrogen addition (Li et al., 2021), and climate 

warming (Yuan et al., 2021), but the effects on network interactions due to converting 

native land for long-term cropland use is still largely unknown. Yet, it is expected that 

introduced disturbances will significantly affect the assembly and overall composition of 

the soil microbial community (Yan et al., 2017), emphasizing the importance of 

preserving biotic interactions that are equally at risk as individual species to extinction 

due to anthropogenic disturbances (Pocock et al., 2012). 

For these reasons, we set out to understand whether and how native land use 

conversion for long-term cropland use affects the complexity and stability of soil 

microbial community ecological networks by examining the temporal dynamics of soil 

microbial communities in a native tallgrass prairie (TGP) and conventionally tilled (CT) 

winter wheat site in the U.S. Southern Plains in El Reno, Oklahoma. While previous 

studies from this area have shown that land use and sampling time impact bacterial 

abundance (Cornell et al., 2021) and bacterial community diversity and composition 

(Cornell et al., unpublished) with increased management intensification having the 

greatest impact, it is not clear if the networks of the microbial communities will be 

similarly affected. In this study we aimed to address: (1) How does land use conversion 

from the native system to cropland use impact the complexity and stability of the 

molecular ecological networks (MENs) over time? (2) Does land use conversion from the 

native system to cropland use change the relationship between the complexity and 

stability of the MENs? (3) Are the relationships between complexity and stability of the 
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MENs with environmental factors altered due to land use conversion and management 

practices? We hypothesized that increasing habitat disturbance under cropland use would 

increase the complexity of species associations resulting in a more complex and stable 

network. 

 

 

3.3 Materials and Methods  

3.3.1 Study site and sampling strategy 

This study included a native tallgrass prairie (64 ha) as the control site and a 

conventionally tilled winter wheat field (20.5 ha) as the treatment site located at the 

United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 

Grazing Research Laboratory (GRL) in El Reno, Oklahoma, USA (35 34.1’ N, 98 03.6’ 

W). Both sites are included in the Southern Plains site of the Long-Term Agroecosystem 

Research (LATR) network (Kleinman et al., 2018; Spiegal et al., 2018). El Reno, 

Oklahoma, has a temperate continental climate with summer months generally hot and 

dry and most rainfall occurring May-June and September-October. The average daily 

maximum and minimum air temperature of the study sites were 23 °C ± 8.7 °C and 8.9 

°C ± 6.4 °C respectively, with an average total annual rainfall was 855 mm ± 44.7 mm 

over a 30-year period (1980-2010) (Bajgain et al., 2020).  

 The tallgrass prairie (TGP) plant community is predominantly warm-season 

mixed grasses native to Oklahoma including big bluestem (Andropogon gerardii 

Vitman.), little bluestem (Schizachyrium scoparium (Michx.) Nash), Indiangrass 

(Sorghastrum nutans (L) Nash), and switchgrass (Panicum vergatum L.). The soil is 

classified as Norge loamy prairie (Fine, mixed, thermic Udertic Paleustalf) with a high 
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water holding capacity. Grazing in the tallgrass prairie is under a year-round rotation by 

50 cow-calf pairs being grazed for 30-day periods followed by 90-day rest periods. 

Prescribed spring burns are implemented on 4-year rotations as part of routine 

management. Burns generally occur in early spring before the initiation of growth of 

warm-season grasses. Recent prescribed burns occurred in February 2013 and February 

2018.  

 Native tallgrass prairies are often converted into cultivated ecosystems dominated 

by the cool-season crop winter wheat in the U.S. Southern Plains. Winter wheat (Triticum 

aestivum) has been planted in the study site under conventional tillage (CT) management 

since the late 1990s. Concerning the studied period (June 2017-December 2018), the CT 

wheat field was grain-only during the 2015-2016 growing season and graze-out wheat 

(no grain production; cattle grazing from Nov/Dec through April/May) during the 2016-

2017, 2017-2018, and 2018-2019 growing seasons. The soil in the wheat field was disced 

with a tandem disc harrow (4-5 in depth) in May 2017 and June 2018 post growing 

season. Before planting in late September, the field was fertilized, tilled, and seedbed 

prepared. Since wheat was never harvested for grain, a burndown herbicide was applied 

in May 2018 between the 2017-2018 and 2018-2019 growing season with the field being 

resowed in November 2018. 

 Soil samples were collected monthly from the native TGP and CT winter wheat 

site from June 2017 – December 2018. To collect soil samples representative of each 

field, eight soil samples were taken 20 meters apart along a diagonal transect in each 

field. Each replicate soil sample consisted of four soil cores pooled into a single 

representative replicate sample. Soil samples were taken using a 2.5 cm-diameter soil 
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probe at a depth of 0-15 cm. Soils were passed through a 2 mm sieve to remove debris 

and stored at -80C until analysis. 

 

3.3.2 Soil properties and climate data 

Weather data was collected from an Oklahoma Mesonet station 

(http://www.mesonet.org/index.php/weather/local/elre) in El Reno (ELRE), Oklahoma. 

The Mesonet tower is located on the native tallgrass prairie used in this study (35° 32.9' 

N, 98° 02.2' W). Mesonet data included rainfall, maximum air temperate, average air 

temperature, and minimum air temperature. Soil chemical analyses were performed at the 

Oklahoma State University Soil, Water and Forage Analytical Laboratory  

(https://agriculture.okstate.edu/departments-programs/plant-soil/soil-testing/). Tests 

included topsoil nitrate (NO3
-), soil organic matter (OM), soil total nitrogen (TN), 

ammonium (NH4
+), and available phosphorus (P). Gravimetric soil water content (SWC) 

was determined by oven drying for  24 hours at 65ºC or until the weight no longer 

changed (Peterson et al., 2019). Soil pH was measured with a pH meter using soil:water 

(w/v) = 1:5 (Hendershot et al., 2007). Soil properties were measured for seven of the 19 

sampling times being representative of different seasons over the study period. Soil 

properties were measured for all eight replicates.  

 

3.3.3 Soil DNA extraction, amplicon sequencing, and analysis 

DNA was extracted from 0.5 g of individual soil samples using an established protocol 

involving bead mill and SDS lysis (Zhou et al., 1996) combined with the MoBio 

PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA). A total of 304 



 71 

soil samples were processed in this study. The quality of DNA was assessed based on 

260/280 nm and 260/230 nm absorbance ratios using a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA). DNA 

concentrations were quantified by PicoGreen using a FLUOstar Optima fluorescence 

plate reader (BMG Labtech, Jena, Germany). For microbial community profiling, the V4 

hypervariable regions of 16S rRNA genes were amplified using the common primer pair 

515F (5’- GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’- 

GGACTACHVGGGTWTCTAAT-3’). A two-step PCR protocol was used and carried 

out in triplicate to minimize amplification bias as previously described (Ding et al., 

2015). PCR products from triplicate reactions were then pooled and quantified using 

PicoGreen. An equal amount of DNA for each sample was further pooled and purified 

with Qiagen QIAqick gel extraction kit. Sequencing was carried out on an Illumina 

MiSeq platform (Illumina Inc., San Diego, CA, USA) using a 2 × 250 pair-end format. 

 Raw amplicon sequencing data were processed through a pipeline  

(http://zhoulab5.rccc.ou.edu:8080) by the Institute for Environmental Genomics at the 

University of Oklahoma (Wu et al., 2016) to check read quality, demultiplex reads, and 

remove primers. Reads were then processed using USEARCH-UNOISE3 (Edgar, 2010; 

Edgar, 2016) which has been shown to have a good balance between resolution and 

specificity for amplicon sequencing process (Prodan et al., 2020). Reads were merged as 

suggested by USEARCH documentation for 2 x 250 pairs with longer overlaps. Reads 

were quality filtered using 1 as the max expected error threshold and unique reads 

identified. UNOISE3 was then used for ASV-level denoising based on the default level 

minimum abundance. An ASV table was generated and resampled to the same 
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sequencing depth across all samples (27,000 sequences per sample). Taxonomy was 

assigned using the USEARCH suggested RDP training set. 

 

3.3.4 Network construction and characterization 

Correlation networks using a Random Matrix Theory (RMT)-based approach (Deng et 

al., 2012; Yuan et al., 2021; Zhou et al., 2010) were constructed for all sampling times 

resulting in a total of 19 networks for each site using the Molecular Ecological Network 

Analysis Pipeline (MENAP) available at the Institute for Environmental Genomics, 

University of Oklahoma (http://ieg4.rccc.ou.edu/MENA/). RMT distinguishes system-

specific, nonrandom associations from random associations and thus yields association 

networks that are robust to random noise. Each of the networks was constructed 

independently, with nodes representing ASVs and edges representing tentative 

association relationships based on correlation between the abundance profiles of 

connected nodes. To increase the reliability of the predicted association relationships, 

only ASVs in at least 6 of the 8 replicates were used for the network construction. In 

short, ASV abundance data was central-log-ratio transformed to mitigate the effect of 

compositional bias (Aitchison, 1994; Carr et al., 2019), and Pearson correlations were 

used to calculate the correlation matrix followed by an RMT-based approach (Deng et al., 

2012; Yuan et al., 2021; Zhou et al., 2010). In order to compare network topologies under 

the same condition, a uniform cutoff value (St) was used to generate microbial networks. 

The best cutoff value for all networks was determined by a scheme based on the 

generalized Brody distribution (Sabri et al., 2014). Then, an adjacency matrix was 

generated, containing only the correlations whose absolute values of coefficient 
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(correlation strengths) were larger or equal to St. Nodes in isolation after the cut (no 

correlation strength to other nodes ≥ St) were removed from the network. iDIRECT was 

applied to these networks to reduce the influence of indirect relationships (Xiao et al., 

2022).  

The potential contributions of environmental filtering or dispersal limitation in 

shaping network topology were tested. First, we determined the importance of soil 

factors, climate variables, and spatial distance between samples on the networked 

community structure using a CCA model followed by VPA. Next, we used a pipeline 

developed by Yuan et al. publicly available R and Python 3 script (Yuan et al., 2021) to 

detect taxon–taxon–environment co-variation links (Lima-Mendez et al., 2015) and links 

possibly caused by dispersal limitation. While such analyses provide insight on the 

relative importance of biotic interactions in shaping MENs, it is still not possible to prove 

to prove that the links are truly due to biotic interactions. For this reason, MENs are best 

for making relative comparisons between conditions or treatments (Zhou et al., 2011a; 

Zhou et al., 2015). Therefore, this study focused on comparing network differences 

between native land (TGP) converted for long-term cropland use (CT wheat).  

A total of twenty-two network topological indices were calculated using the 

MENAP to characterize network topological structure (Deng et al., 2012). We focused on 

several indices including nodes, the total number of links, average connectivity (avgK), 

average clustering coefficient (avgCC), average path distance (geodesic distance, GD), 

connectance (Con), and modularity (M). All network properties were calculated 

individually for each random network. To test the significance of the constructed 

empirical MENs, 100 random networks corresponding to each network were generated. 
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The numbers of nodes and links in random networks were constant, but link positions 

were rewired randomly so that the rewired network was comparable to the empirical 

network (Maslov and Sneppen, 2002). The same suite of network topological properties 

was calculated with each randomization. The means and standard deviations of these 

properties from the 100 randomizations were calculated and compared with those from 

the corresponding empirical MENs. Networks were visualized using Cytoscape 3.8.2 

(Shannon et al., 2003).  

Network size and connectivity considerably varied among the MENs especially 

under CT wheat land use, therefore relative modularity (RM) was calculated. RM is 

considered to be more meaningful for comparing modular structures across different 

networks by measuring how modular a network is compared to the mean expected 

modularity (Thebault and Fontaine, 2010; Yuan et al., 2021). RM was calculated as the 

ratio of the difference between the modularity of an empirical network and the mean of 

modularity from the random networks over the mean of modularity from the random 

network (Thebault and Fontaine, 2010).  

Each node was grouped into a topological role in the network based on its within-

module connectivity (Zi) and among-module connectivity (Pi) (Guimera and Nunes 

Amaral, 2005). As used in previous studies (Olesen et al., 2007; Yuan et al., 2021; Zhou 

et al., 2011a), nodes were classified as network hubs (highly connected nodes within the 

entire network, Zi > 2.5 and Pi > 0.62), module hubs (highly connected nodes within the 

modules, Zi > 2.5 and Pi ≤ 0.62), connectors (nodes that connect the modules, Pi > 0.62), 

and peripherals (nodes connected in the modules with few links, Zi < 2.5 and Pi ≤ 0.62). 
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Module hubs, connectors, and network hubs are referred to as keystone nodes (Banerjee 

et al., 2019; Rottjers and Faust, 2019) 

 

3.3.5 Statistical analyses for network complexity comparisons 

To evaluate the differences of MENs over time in both land uses, the 22 topological 

indices calculated for each empirical MEN were used for principal component analysis 

using the ‘prcomp’ function in the stats package in R (R Core Team, 2020). Overall 

differences of network topological properties between land uses were compared using a 

Mann–Whitney U test in the stats package in R (R Core Team, 2020). To examine 

differences in module composition, Fischer’s exact test was performed to identify 

preserved module pairs in networks (Yuan et al., 2021) (1) under CT wheat land use or 

native TGP land use over time and (2) between CT wheat and native TGP land use. P-

values from the exact tests were adjusted using the Bonferroni procedure within each 

network. In short, if two modules in different networks consisted of large proportions of 

shared nodes (adjusted p ≤ 0.05), they were considered preserved module pairs (Zhou et 

al., 2011a). The exact tests were performed in R with the ‘fisher.test’ function in the stats 

package, and p-value adjustment was done with the ‘p.adjust’ function in the stats 

package in R (R Core Team, 2020). 

In order to assess the differences of the networked communities under CT wheat 

and native TGP land use, three non-parametric multivariate analyses of dissimilarity were 

performed including MRPP, ANOSIM, and Adonis based on Bray-Curtis distance using 

the R package ‘vegan’ (Oksanen et al., 2019) and visualized using principal coordinate 

analysis (PCoA). Mantel tests were also performed between networked community 
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structures and soil and climate variables using the R package ‘vegan’ (Oksanen et al., 

2019). The taxonomic composition of the networked communities under CT wheat and 

native TGP land use were analyzed at the phylum and class levels. Mann–Whitney U 

tests were used to evaluate the changes in the average relative abundance of each taxa 

due to land conversion. 

 

3.3.6 Network stability analyses 

To determine whether and how land use conversion affects the stability of the constructed 

MENs, several indices were used to characterize network stability including robustness, 

vulnerability, node and link constancies, node persistence, and compositional stability. 

Detailed descriptions of the calculations can be found in Supplementary Table S3.8. 

Network stability based on simulation includes robustness and vulnerability. The 

robustness of a MEN is defined as the proportion of the remaining species in the network 

after random or targeted node removal (Dunne et al., 2002; Montesinos-Navarro et al., 

2017). For simulations of random removal, robustness was measured when 50% of 

random nodes were removed from each MEN. For simulations of targeted removal, 

robustness was compared when five module hubs were removed and when half of the 

modules hubs were removed since the number of module hubs differed greatly between 

networks. Vulnerability of each node measures the relative contribution of the node to the 

global efficiency. The vulnerability of a network is indicated by the maximal 

vulnerability of nodes in the network (Deng et al., 2012) and the global efficiency of a 

graph was calculated as the average of the efficiencies over all pairs of nodes. In 

ecological networks, efficiency explains the ability to spread information within a 
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network and is important to determine how quickly the effect of biological/ecological 

events spread to parts or the entire network (Yuan et al., 2021).  

Network stability based on empirical data includes node constancy, link 

constancy, node overlap, node persistence, and compositional stability. Constancy 

measures the temporal stability of species. It is defined as μ/σ, where μ is the mean of 

abundance over time and σ is the standard deviation (Hautier et al., 2014). The constancy 

of node i was calculated as μi/σi. The abundance of species i at a certain time point was 

positive only if species i was in the MEN at that time point. Otherwise, the abundance of 

species i was considered zero for that time point and removed from subsequent analyses. 

The average of all the node constancy values were reported. Similar procedure was used 

to calculate link constancy. We let lij+ = 1 if nodes i and j were positively linked in a 

network, lij-  = 1 if nodes i and j were negatively linked in a network, and lij+ = lij- = 0 if 

there was no link between i and j (Yuan et al., 2021). Again nonfinite values were 

removed from subsequent analyses. The average of all the link constancy values were 

reported. The number of overlapping nodes among multiple networks was calculated 

following previous methods by Hui et al. (Hui et al., 2014) where the higher numbers of 

overlapping nodes among networks indicated slower turnover of species composition in 

the networks with time points being referred to as “orders” (Yuan et al., 2021). The node 

persistence is defined as the proportion of coexisting species (over the total number of 

species) at an ecological regime (Landi et al., 2018). Node persistence was calculated as 

the percentage of nodes present in the network in consecutive monthly comparisons. The 

compositional stability evaluates the change in community structure over time (Zelikova 

et al., 2014). The compositional stability for the networked microbial communities was 
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calculated using the sample × ASV matrix. If community structure does not change, the 

stability index is equal to 1; while if community structure is completely different among 

time points if stability index is 0. Compositional stability was addressed as consecutive 

monthly comparisons as done with node persistence.  

Overall differences in stability indices between CT wheat and native TGP land 

use were determined using Mann-Whitney U test. The relationship between node 

persistence and compositional stability for each land use was addressed using Spearman 

correlation. Spearman correlations were also used to associate soil properties, climate 

variables, and management input with network stability and complexity indices. The 

correlations with management data were calculated using Spearman’s generalized 

equation due to repetitive values in the coded management data.  

 

3.4 Results  

3.4.1 Constructing molecular ecological networks 

Molecular ecological networks (MENs) were constructed for each sampling month 

resulting in 19 networks per land use (Figure 3.1a, Figure S3.1) (Zhou et al., 2010). In 

general, the empirical MENs were significantly different than the random MENs (Table 

S3.2). The overall topological properties (Table S3.1) revealed that curves of network 

connectivity distribution were fitted well with the power-law model with R2 values for 

CT wheat (0.75-0.95) and the TGP (0.72-0.85) indicative of scale-free networks, or that 

most nodes in the network have few neighbors while few nodes have many neighbors 

(Amaral et al., 2000; Ding et al., 2013). The networks also exhibited small-world 

characteristics with average path lengths (GD) ranging from 3.3-8.3 and 3.2-10.4 for CT 
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wheat and native TGP, respectively. Small-world networks have short distances between 

nodes meaning network nodes are always closely related to each other (Girvan and 

Newman, 2002). Modularity (M) values for CT wheat and native TGP were significantly 

greater (p = 0.04 and p < 0.001, respectively) than the corresponding modularity values 

for the randomized networks and the relative modularity (RM) was > 0 (M of empirical 

MENs greater than M of random MENs) which is evidence of modular networks. 

The observed species co-occurrence patterns in the MENs could mainly be due to 

environmental filtering, dispersal limitation, and biotic interaction. We used CCA plus 

variation partitioning analysis (VPA) and the link test for environmental filtering and 

dispersal limitation (LTED) (Yuan et al., 2021) to determine the relative contributions of 

these ecological processes to species co-occurrence in the MENs. While CCA results 

indicated that soil and climate variables had a significant (p ≤ 0.05) impact on the 

networked microbial communities (Table S3.3), VPA showed that the majority of 

variation (70.2%, Figure S3.2b) could not be explained by measured environmental 

variables (i.e., environmental filtering effect), and distance between samples within a 

land use only had a noticeable effect (8.9%) when considering interaction with soil 

properties. LTED suggested similar results of minor contributions from environmental 

filtering with less than 1% of links on average considered taxon-taxon-environmental 

covariates using the network correlation cutoff (Figure S3.3a). When the correlation 

threshold (|r|) was lowered, links due to taxon-taxon-environment covariates increased in 

the CT wheat on average, but were still relatively minimal (2.1% - 20.0%). In addition, 

dispersal limitations impacted less than 5% of links (Figure S3.3b) in the networks on 

average in both fields (p ≤  0.05, r > 0) based on LTED, and only 1.14% and 0.81% of 
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links on average where considered significant strong correlations (p ≤  0.05, r  0.5) due 

to dispersal limitations. Collectively, these results all indicated MENs in this study were 

less likely due to environmental filtering or dispersal limitation, and therefore, it is most 

probable that biotic interactions could be the major driver shaping these networks.  
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Figure 3.1 Temporal dynamics of soil microbial networks. a) Visualization of soil 

microbial networks over time. Temporal changes of MENs over 19-month sampling 

period represented by select sampling times. As networks on the native TGP systems 

remained relatively similar, a single visual representation of the control site is outlined in 

black. The other networks depict temporal differences of seven on MENs for the CT 

wheat land use. Large module with ≥10 node are shown in different colors, and smaller 

modules are shown in gray. b) Twenty-two network topological parameters were used for 

principal component analysis (PCA). Sampling times are labeled 1 through 19 

representing consecutive sampling months. For example, 1 represents June 2017 while 19 

represents December 2018. Arrows clarify the chronological order of the MENs. c) 

Temporal changes of the network topological parameters including nodes, links, average 

K, average CC, Con, and Modularity. Red circles represent networks under CT wheat 

land use and blue squares represent native TGP (control) land use. Overall differences 

between network topologies between land uses compared using Mann-Whitney U Test.  
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3.4.2 Networked community composition 

The number of ASVs used for network construction (ASVs in 6 of 8 replicates) were on 

average 39% greater in the native TGP than CT wheat, and the resulting constructed 

networks were 24% larger. By contrast, 43% of ASVs made it into the constructed CT 

wheat networks compared to 34% of ASVs in the native TGP networks. Also, when 

considering ASVs in large modules (≥ 10 nodes), 72% of the nodes were in large 

modules in the CT wheat networks compared to 63% of nodes in the native TGP 

networks. Together, these results suggested that the CT wheat microbial taxa might 

associate more closely with each other than those of the native TGP.  

The composition of the networked microbial communities significantly differed 

between the CT wheat cropland and native TGP as shown by principal coordinate 

analysis (Figure S3.2a). This was further supported by three non-parametric dissimilarity 

analyses (Table 3.1) that confirmed networked microbial communities significantly (p = 

0.001) differed by land use as well as sampling time. Converting native land to long-term 

CT wheat use resulted in a significant (p ≤ 0.05) increase in the relative abundance of 

Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, 

Gemmatimonadetes, Alphaproteobacteria, and Betaproteobacteria (Figure S3.4, Table 

S3.4) accompanied by significant decreases in the relative abundance of Acidobacteria, 

Thaumarcheota, Verrucomicrobia, and Deltaproteobacteria.  
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3.4.3 Differences in complexity of MENs 

Based on 22 different network topological properties, the microbial MENs under CT 

wheat and native TGP land use displayed noticeably different trajectories over the 19-

month sampling period (Figure 3.1b; Figure S3.1). Compared with native TGP land use, 

CT wheat underwent many major management events. After the wheat spring growing 

season ended, the field was left fallow. It was tilled several times between June and 

September to mix the soil and prepare the seedbed (Figure 3.1c). Seedbed preparation 

was closely accompanied by fertilizer application and seed planting. For the 2018-2019 

season, the field was left again fallow after the spring and prepared using herbicide and 

soil tillage. Finally, the field was fertilized during the fall and bare spots resowed in late 

November.  

To determine how land conversion for long-term cropland use affected microbial 

network complexity, we closely examined several network topological properties. 

Network size (number of nodes; p = 0.001, W = 73) and modularity (M; p < 0.001, W = 

Table 3.1 Significance tests of the networked communities between CT wheat and 

native TGP land use. 

Dataset Factor 
MRPP ANOSIM Adonis 

δ  p r p F p 

All 

Land 

use 
0.579 0.001 0.943 0.001 182.6 0.001 

Month 0.693 0.001 0.144 0.001 2.156 0.001 

TGP Month 0.457 0.001 0.726 0.001 4.043 0.001 

CT Wheat Month 0.533 0.001 0.443 0.001 3.778 0.001 

Three different permutation tests were performed (MRPP, ANOSIM and Adonis) on the basis of 

Bray–Curtis distance.  
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5.5) significantly decreased under CT wheat, while average connectivity (average links 

per node, avg K; p = 0.001, W = 219), connectance (the proportion of realized links in all 

possible ones, con; p < 0.001, W = 345), and average clustering coefficient (the extent to 

which nodes are clustered, avg CC; p =0.077, W = 242) strongly increased under CT 

wheat (Figure 3.1c). The majority of the native TGP network topological properties 

remained stable over the 19-month sampling period compared to the CT wheat cropland 

properties that had observable temporal variations. In addition, the relative modularity 

(how modular a network is as compared with the mean expected modularity, RM) of 

MENs was calculated as it is considered more meaningful for comparing modularity 

across networks. The RM was significantly greater (p = 0.05) under CT wheat compared 

to the native TGP. Notably, the RM of the CT wheat cropland significantly correlated (p 

≤ 0.05) with many of the network topological properties including nodes, links, average 

connectivity, average clustering coefficient, path distance, and connectance (Figure 3.2) 

while RM of the native TGP networks only significantly correlated (p ≤ 0.05) with links 

and average connectivity. Together, these results indicated that MENs under CT wheat 

were more complex and experienced substantially more temporal variation than those of 

the native TGP over the sampling period, which coincided with and were likely due to the 

management that occurred in CT wheat field.  

Variations in the structure of the microbial MENs could affect the network 

organization principles (i.e. modularity). Networks under CT wheat consisted of 189 

large modules (modules with ≥ 10 nodes) accounting for 34.4%-91.2% of the node in 

each MENs while native TGP networks had 430 large modules totaling 52.4%-71.1% of 

the networked nodes (Table S3.1). Between CT wheat and the native TGP, there were no 
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preserved modular pairs (Table S3.5). In short, preserved module pairs are modules that 

contain a significantly large proportion of shared nodes when two modules in different 

networks are compared (Zhou et al., 2011a). The native TGP also did not have any 

preserved module pairs over the sampling period in comparison with 67 preserved 

module pairs for CT wheat, suggesting that CT wheat land use resulted in greater 

similarities in module identity.  

Differences in network complexity could also impact the role of individual 

members within the network. The roles of each node were classified based on the within-

module connectivity (Zi) and among-module connectivity (Pi) (Zhou et al., 2010). A total 

of 433 and 637 module hubs (nodes highly connected to other members in a module) 

were identified for the CT wheat and native TGP networks (Table S3.6; Table S3.7), 

respectively. The CT wheat networks also consisted of 38 network hubs (nodes being 

both a module hub and a connector) and 456 connectors (nodes linking different 

modules). However, native TGP networks had no network hubs and only one connector 

for all networks. Together, network hubs, module hubs, and connectors are considered 

keystone nodes or nodes that play critical roles in shaping network structure (Banerjee et 

al., 2019). Of the 1,226 unique ASVs that acted as keystone nodes among all MENs, only 

18 (1.5%) were found to be shared between both land uses. Additionally, of the keystone 

nodes within each land use, 17.7% acted as keystones in two or more of the CT wheat 

networks compared to only 3.8% in native TGP networks. Taken together, CT wheat land 

use altered the roles of members within the networks and resulted in a greater number of 

temporally preserved keystone nodes. 
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Figure 3.2 Relationship between network topological properties and relative modularity. 

Spearman correlations were used to compare network topologies including nodes, links, 

average K, average CC, GD, and Con to the relative modularity. Red circles represent 

networks under CT wheat land use and blue squares represent native TGP (control) land 

use. Correlation coefficients (rho) are shown in corresponding colors followed by “*” for  

p ≤ 0.05,  “**” for p ≤ 0.01 , and “***” for p ≤ 0.001 
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3.4.4 Impact on stability of MENs  

To determine whether and how land use conversion affected MENs stability, multiple 

stability indices were calculated based on simulations and empirical data. First, 

robustness or the resistance to node loss (Montesinos-Navarro et al., 2017) of the MENS 

was calculated based by simulating species extinction. Under random species loss (Figure 

3.3a), the MENs had significantly higher robustness (p < 0.001, W=317) under CT wheat 

land use than the native TGP. When five module hubs were targeted for removal (Figure 

S3.5a), there was no significant difference (p = 0.246, W=221) in robustness. Yet, when 

50% of module hubs were removed (Figure 3.3b), robustness of the MENs was 

significantly greater (p < 0.001, W=361) under CT wheat land use than the native TGP. 

Second, the vulnerability or the maximum decrease in efficiency when a single node was 

deleted from the network (Banerjee et al., 2018) was significantly lower (p < 0.001, 

W=47) under CT wheat land use averaging 0.11 ± 0.08 and averaging 0.25 ± 0.11 for the 

native TGP (Figure 3.3c). Third, while the temporal invariability of the community 

composition (Zelikova et al., 2014) was greater (p < 0.001, W=6825) under native TGP 

based on consecutive monthly comparisons (Figure S3.5b), more of the same nodes were 

present under CT wheat than the native TGP when any two pairs of networks were 

compared (p = 0.02, W= 53.5; Figure 3d). This held true for comparisons up to any six 

networks (p < 0.005). The compositional stability and node persistence strongly 

correlated under both CT cropland use (p < 0.001, rho =0.94) and the native TGP (p < 

0.001, rho =0.89; Figure S3.5c), and the constancy (inverse of temporal variations) of 

nodes (Figure S3.5d) was greater (p = 0.001) under native TGP land use, while the 

constancy of links (Figure S3.5e) was greater (p < 0.001) under CT wheat land use. 
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Together, results from multiple stability indices suggest that the CT wheat cropland 

showed greater stability than the native TGP even though the networked community 

composition changed more between consecutive months.  

 Interestingly, there were significant correlations between network stability and 

network complexity that differed with land use. Overall, robustness, compositional 

stability, and node persistence significantly (p ≤ 0.05) positively correlated with several 

network complexity indices under CT wheat (Figure 3.3e) while only robustness had 

significant positively correlations with network complexity for the native TGP (Figure 

3.3f). Consistently, network stability indices under CT wheat significantly positively 

correlated with nodes, average connectivity, and relative modularity. Network 

vulnerability had a significant negative relationship with the majority of network 

complexity indices for CT wheat compared to no significant correlations for the native 

TGP. In general, CT wheat land use had a strong relationship between network stability 

and complexity that was not observed for the native TGP land use. 
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Figure 3.3 Temporal dynamics of network stability. a) Robustness measured by 

randomly removing 50% of taxa from each of the empirical MENs. b) Robustness 

measured by removing 50% of module hubs from each of the empirical MENs. For a and 

b, error bars represent the standard deviation of 100 repetitions of the simulation. 

Robustness for each timepoint was compared between CT wheat and native TGP 

(control) land use using a two-sided t-test. Significant differences are indicated by “*” for  

p ≤ 0.05,  “**” for p ≤ 0.01 , and “***” for p ≤ 0.001. CT wheat shown in red and native 

TGP shown in blue. c) The network vulnerability of the empirical MENS measured by 

maximum node vulnerability in each network. d) The number of overlapping nodes under 

CT wheat and native TGP land use among different numbers of networks (that is, orders). 

For example, for order=2, the overlapping nodes were between any two pairs of 

networks; for order=3, they were among any three networks. Spearman correlations 

between network stability and network complexity indices under e) CT wheat and f) 

native TGP land use. Significant correlations (p ≤ 0.05) are shown in blue for positive 

correlations and green for negative correlations. Inside the cells are the corresponding 

correlation coefficients. Non-significant correlations are shown in gray. 
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3.4.5 Interactions between complexity, stability, and the environment 

An important question is whether the relationship between the complexity and stability of 

the networks with the environment are altered due to land use conversion for long-term 

CT wheat use. Land use conversion for CT wheat land use resulted in less importance of 

various environmental factors in shaping the networked community structure compared 

to the native TGP (Figure 3.4a,b). The TGP networked community structure was strongly 

correlated to all environmental factors except for nitrate (NO3
-) and ammonium (NH4

+). 

In comparison, the networked community under CT wheat was only strongly correlated 

with soil temperature, soil pH, and nitrate. CT wheat land use and likely its associated 

management also resulted in more negative correlations between pairwise comparisons of 

environmental factors than were observed for the native TGP. 

Similarly, environmental factors played a less important role in influencing 

network complexity and stability of CT wheat land use than of the native TGP (Figure 

3.4c). The TGP network complexity and stability were influenced by several 

environmental factors. Overall, OM, air temperature, and soil temperature had positive 

correlations with network complexity indices, while nitrate negatively correlated with 

complexity. Increases in SWC and NH4
+ decreased TGP network stability by reducing 

node persistence, composition stability, and increasing vulnerability. For CT wheat, SWC 

had the greatest impact on the complexity of the MENs always having a negative 

correlation with complexity indices. Ammonium (NH4
+) also significantly influenced CT 

wheat network complexity by increasing distance between nodes (GD) and decreasing 

node connectance (Con) when soil NH4
+ was higher. However, CT network stability was 
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not as noticeably impacted by environmental factors with only rainfall having a positive 

effect on node persistence and SWC had a negative effect on network robustness.  

 

 

Figure 3.4 Associations between network indices, environmental properties, and 

management. Correlations of the networked community structures (Bray-Curtis distance) 

and soil and climate properties for the a) CT wheat and b) native TGP land use. Edge 

width corresponds to Mantel’s r value and the edge color represents the statistical 

significance. Pairwise spearman correlation of the variables are shown with a color 

gradient representing the correlation coefficients. c) Spearman correlations between 

network stability and network complexity indices under CT wheat land use and native 

TGP (control) land use. Spearman’s rho for significant correlations are depicted in a color 

gradient. The p-values of correlations are show in the color squares, “*” for 0.5 < p < 0.1, 

“**” for p ≤ 0.05, “***” for p ≤ 0.01, “****” for p ≤ 0.001. Non-significant correlations 

are shown in gray.  

 

Notably, management practices had considerable impact on the soil microbial 

network complexity and stability of CT wheat land use. The TGP received minimal 
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management including cattle grazing and a prescribed burn, but no significant 

correlations were detected for either. Although, growing times of the perennial grasses 

negatively impacted native TGP node persistence and compositional stability (Figure 

3.4c), management practices associated with CT wheat land use (including fallow, tillage, 

and herbicide/fertilizer application) significantly correlated with network complexity and 

stability, in particular, with compositional stability and node persistence. Overall, 

management input significantly increased network complexity and stability with soil 

tillage and herbicide/fertilizer application having considerable positive impacts. 

 

3.5 Discussion 

3.5.1 Microbial community network assembly 

As an important part of many ecosystems, microbial communities and their “interacting” 

networks are inherently complex (Fuhrman, 2009). In this study, the architecture of the 

MENs was driven by several simple principles, sharing many common properties such as 

scale-free, small-world, and modular under CT wheat and native land use. Scale-free 

networks are highly non-uniform resulting in most nodes or species having few links or 

interactions while few nodes have many links (Barabási and Albert, 1999; Deng et al., 

2012). In small-world networks, the short path length between nodes enables efficient, 

rapid communication between network members and allows disturbances to spread 

quickly through the network for swift reactions (Zhou et al., 2010) which is critical for 

responding to environmental changes. Lastly, a module in a network is a group of nodes 

that are highly connected within the group but have very few connections outside the 

group. Modularity in a microbial community has been suggested to arise for several 
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reasons including habitat heterogeneity, specificity of interactions, ecological niche 

overlap, resources partitioning, phylogenetic relatedness, and/or natural selection (Olesen 

et al., 2007); and it is important for minimizing the impacts of disturbance by containing 

the disturbance and damage at a local level (Kitano, 2004). Together, these properties 

have significant implications on microbial community dynamics and network topology 

(Barabasi and Oltvai, 2004; Kitano, 2004).  

Although biotic interactions are a key part of regulating community assembly and 

disassembly (Galiana et al., 2018), environmental filtering and dispersal limitation, are 

also considered major drivers of microbial network patterns (Barberán et al., 2012). Yet, 

it remains challenging to disentangle these mechanisms and determine the importance of 

biological interactions in ecological community assembly (Zhou and Ning, 2017). 

Therefore, we used multiple statistical approaches to determine that biotic interactions 

could be the most important factor shaping soil microbial networks (Yuan et al., 2021). 

Nevertheless, soils are highly heterogenous environments making it exceptionally 

difficult to determine the involvement of unmeasured environmental variations, 

especially in agriculturally managed systems which are rapidly fluctuating environments 

(Trivedi et al., 2016). For this reason, biotic interactions should be at most considered 

putative biotic interactions (Yuan et al., 2021) as well as interpreted with caution since 

interactions are based on co-occurrence correlations (Blanchet et al., 2020).  

 

3.5.2 Microbial community structure and keystone taxa 

Networked community structure significantly differed between land uses with it being 

known that land use strongly impacts community structure (Lacerda-Júnior et al., 2019; 
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Lauber et al., 2013; Montecchia et al., 2015). Management intensification and the 

resulting environmental changes likely act as a deterministic filtering factor (Barnett et 

al., 2019; Guo et al., 2018; Zhou et al., 2021) generating dynamic changes to the 

microbial communities and their network structure. Similarly, the identity of the keystone 

nodes also differed between land uses. The native TGP keystone nodes overlapped with 

many of those previously detected in grasslands (Sphingobacteriales, Actinomycetales, 

Acidobacteria GP4) while the keystone nodes of the CT wheat land use corresponded to 

those for other agricultural lands (Rhizobiales, Solirubrobacterales) and plant-associated 

microbes (Acidobacteria GP1, Acidobacteria GP3) (Banerjee et al., 2018). Therefore, 

land use conversion for long-term cropland use not only shifted the microbial community 

structure but also changed the keystone nodes which drive community composition 

regardless of their abundance.  

 

3.5.3 Network complexity and stability  

While it has been recognized that changes in network structure affect the stability and 

functioning of an ecosystem (Dunne et al., 2002; Thebault and Fontaine, 2010), less is 

understood about this relationship in microbial ecology. In this study, we showed the soil 

microbial community response to long-term cropland use generated more complex 

networks and increased network topological temporal variability compared to native land 

use. Although the microbial community was more diverse and the networks were larger 

under the native TGP, the resulting networks were less complex suggesting that greater 

diversity does not necessarily mean greater complexity (Tu et al., 2020). This observation 

could arise for various reasons. For example, tallgrass prairies harbor greater 
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aboveground plant species diversity providing more diverse nutrient and energy sources 

for the belowground microbial communities compared to croplands where nitrogen 

fertilizers provide the majority of the nutrients (Philippot et al., 2013). Therefore, the 

more diverse environmental nutrient and energy may support the microbial community 

instead of supplies through complex species interactions (Tu et al., 2020). Another 

potential explanation could be greater functional redundancy due to higher microbial 

diversity in tallgrass prairies. Microbes often interact through function/metabolite 

preference (Tu et al., 2016), and higher diversity and functional redundancy of the 

microbial community reduces reliance on a few taxa and provides more opportunity for 

microbes to generate relationships within neighborhoods (i.e. modules). This could lead 

to greater modularity, reduced complexity, and the lack of persevered module pairs and 

keystone taxa as observed under native land use. In addition, the greater modularity in 

native land use is likely linked to stronger niche differentiation (Shi et al., 2016; Zhang et 

al., 2018) as the soils in native tallgrass prairies are generally a more heterogeneous and 

disconnected habitat compared to soils that are mixed by tilling creating a more 

homogeneous soil structure. 

Network stability was enhanced under CT wheat land use with stability generally 

being important to dampen responses to environmental disturbance (Hudson and Henry, 

2010; Tilman et al., 2006). The CT wheat networks were better able to withstand random 

and targeted module hub removal, indicating reduced network vulnerability. The 

networked CT wheat microbial community was also more consistent over time with 

significantly more shared nodes between networks, conserved modules, and conserved 

keystone nodes compared to native land use. Similar to macroorganisms (McKinney and 



 96 

Lockwood, 1999; Smart et al., 2006), land use conversion can cause biotic 

homogenization of microbial communities (Rodrigues et al., 2013; Tian et al., 2018), 

which leads to greater similarity of communities over time and/or space (Olden and Poff, 

2003). This could be a cause for concern if biotic homogenization is a result of the loss of 

endemic taxa as these taxa tend to have unique traits, and homogenization of these traits 

likely alters ecosystem function and reduces ecosystem resilience (McKinney and 

Lockwood, 1999; Olden et al., 2004). Furthermore, there are often important ecological 

relationships between the complexity and stability of a system (MacArthur, 1955; May, 

2019) with native land use conversion for cropland use enhancing the relationship 

between network stability and complexity. Greater complexity could produce differential 

effects on stability creating a more resistant (Landi et al., 2018; Okuyama and Holland, 

2008) but less resilient system (Pimm, 1984). Hence, while the CT cropland developed 

stable ecological networks after many years of cultivation, the networks also heavily rely 

on “interactions” to maintain stability, potentially leaving the networks vulnerable to 

cascade effects (Helbing, 2013) which could disrupt these interactions (i.e. complexity) 

and the network stability.  

 

3.5.4 Impact of environment factors and management on MENs 

Soil microbial communities are the most sensitive indicators of land use conversion and 

disturbance often being altered by soil properties (Fierer and Jackson, 2006), climate 

(Yao et al., 2017), land use intensity (Thomson et al., 2015), and plant communities (Guo 

et al., 2016). In the native TGP, we observed significant correlations between network 

complexity and stability with multiple environmental factors. Plant activity likely has a 
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substantial influence on the complexity and stability of the MENs as plants are thought to 

be highly important to microbial community dynamics in natural ecosystems due to the 

co-evolution of plant-microorganism interactions (Philippot et al., 2013). Plant 

productivity interacts with all the factors important to shaping native TGP networks 

including soil water content, nitrogen availability, organic matter, and temperature which 

in turn could, directly and indirectly, affect microbial interactions. For instance, 

grasslands are often nitrogen limited with the productivity of many plant communities 

relying on nitrogen availability (Vitousek and Howarth, 1991), and aboveground net 

primary production in grassland generally has a large response to increased water 

availability (Lauenroth et al., 2000). This was further supported by the decrease in 

stability during times of vegetation growth under native land use.  

While nutrient content and water availability can act as robust environmental 

filters to strongly select for microbial communities (Chase, 2007; Huang et al., 2021), 

management disturbance could be equally if not more important to shaping microbial 

communities. Overall, the complexity and stability of the MENs in the CT cropland were 

more strongly correlated to management input than environmental factors. Summer-

fallow decreased network stability, while the frequent disturbance of tillage, herbicide, 

and fertilizer input generally increased complexity and stability. Management 

disturbances also greatly contributed to the dynamic changes of the networks over time. 

Meanwhile, frequent fertilizer use in CT wheat cropland effects nitrogen (NH4
+) content 

that was important for influencing CT wheat cropland network complexity (Lu et al., 

2013; Zhang et al., 2018). Additionally, water availability is frequently limited in areas 

where wheat is grown and summer-fallow wheat ecosystems generally have reduced 
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water use efficiency (Lauenroth et al., 2000), thus, increased precipitation in the CT 

cropland community might disrupt existing microbial links. Although land use and the 

changes in soil properties may have changed the microbial community structure and 

diversity, repeated management disturbance in the CT cropland greatly influenced the 

ecological networks, generating more complex and stable MENs presumably because 

greater interactions are needed for the microbial community to quickly respond to 

management disturbances. 

 

3.6 Conclusions 

Determining the extent of microbial “interactions” and their changes due to land use 

conversion and management disturbance is a difficult issue to address and remains 

understudied. Therefore, we compared the soil microbial community temporal network 

dynamics in long-term cropland to the native tallgrass prairie land use. Similar to 

observations for microbial diversity, network features of the MENs differed due to land 

conversion and were temporally dynamic, especially under converted cropland use. 

Increased complexity of the MENs under CT wheat may have resulted from decreased 

microbial diversity, increased biotic homogenization, and/or greater niche sharing related 

to the more homogenous soil habitat of croplands compared to native land use. The 

stability of the MENs was also greater under CT wheat compared to the native TGP. On 

the one hand, frequent management disturbances stimulate dynamic responses that have 

led to greater complexity and stability of microbial “interaction” networks, making the 

ecosystem potentially less vulnerable to further disturbance. On the other hand, it remains 

unclear how resilient the community and the links between microorganisms would be to 
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non-management related disturbances, such as drought, wildfires, and long-term 

warming. In addition, the negative impacts of the biodiversity loss due to land conversion 

could far exceed the positive effects of greater complexity and stability of microbial 

“interaction” networks, resulting in even more vulnerable ecosystems to both 

management and non-management related disturbances. Considering the increasing 

intensity of anthropogenic disturbance and environmental change, preserving microbial 

diversity and “interactions” could be vital to maintaining critical ecosystem functions. 
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Chapter 4: Temporal changes of virus-like particle abundance and 

metagenomic comparison of viral communities in cropland and prairie 

soils  

 

4.1 Abstract 
 

During the last several decades, viruses have been increasingly recognized for their 

abundance, ubiquity, and important roles in different ecosystems. Despite known 

contributions to aquatic systems, few studies examine viral abundance and community 

structure over time in terrestrial ecosystems. The effects of land conversion and land 

management on soil microbes have been previously investigated, but their effects on 

virus population are not well studied. This study examined annual dynamics of viral 

abundance in soils from a native tallgrass prairie and two croplands, conventional till 

winter wheat and no-till canola, in Oklahoma. Virus-like particle (VLP) abundance 

varied across sites, and showed clear seasonal shifts. VLP abundance significantly 

correlated with environmental variables that were generally reflective of land use, 

including air temperature, soil nitrogen, and plant canopy coverage. Structural equation 

modeling supported the effects of land use on soil communities by emphasizing 

interactions between management, environmental factors, and viral and bacterial 

abundance. Between the viral metagenomes from the prairie and tilled wheat field, 1,231 

unique viral operational taxonomic units (vOTUs) were identified, and only five were 

shared that were rare in the contrasting field. Only 13% of the vOTUs had similarity to 

previously identified viruses in the RefSeq database, with only 7% having known 

taxonomic classification. Together, our findings indicated land use and tillage practices 
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influence virus abundance and community structure. Analyses of viromes over time and 

space are vital to viral ecology in providing insight on viral communities and key 

information on interactions between viruses, their microbial hosts, and the environment.  

 

4.2 Introduction  
 

Viruses have been making their way to the forefront of ecological research for their 

significant roles in marine and terrestrial ecosystems, being found everywhere 

that life exists. Most knowledge on viral ecology has been generated from the study of 

natural virus populations in marine and freshwater ecosystems, where viruses have 

been shown to mediate horizontal gene transfer (Breitbart et al., 2004), help drive 

biogeochemical nutrient cycling (Fuhrman, 1999), and play a central role in controlling 

the total abundance, population dynamics, and evolution of their hosts (Liang et al., 

2020b; Williamson et al., 2007). It has been estimated that viruses may be the most 

abundant biological entity on the Earth at 1031 viruses (Suttle, 2005), with soils providing 

one of the greatest reservoirs (Williamson et al., 2017). As a result, it is now predicted 

that viruses have equal ecologically valuable roles in terrestrial environments. Soils 

provide a more diverse habitat for viruses than aquatic environments due to their wide 

compositional range, spatial heterogenicity in terms of physicochemical properties, and 

management practices, allowing viruses to be exposed to many unique ecological 

pressures that are not present in aquatic systems (Jangid et al., 2008; Lauber et al., 2013; 

Schlesinger et al., 1990; Zablocki et al., 2016). Understanding the response of virus 

communities to such pressures is critical to the knowledge of soil ecology and important 

for ecosystem sustainability. 
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Natural land conversion is a prevalent practice that results in distinct effects on 

the soil characteristics and function of terrestrial ecosystems. Specifically, agricultural 

cultivation has significantly changed land use across North America, resulting in the 

depletion of native tallgrass prairies to 4% of their original land coverage (Claassen et al., 

2011; Wright and Wimberly, 2013). The majority of new croplands in the United States 

were initially grasslands with roughly a fourth of the converted land planted with wheat 

(Lark et al., 2015), which is now the dominant annually cropped plant in the Southern 

Plains. Grasslands are important for preventing erosion, acting as carbon sinks and as a 

source of nitrogen fixation (Carlier et al., 2009). Converting previously natural land into 

arable soils results in above and below ground species loss, allowing species invasion, as 

well as introducing disturbances to soil and biological processes (Calderón et al., 2001; 

Ding et al., 2013; Peterson et al., 2019). Together, these anthropogenic activities act as 

environmental stressors greatly impacting soil ecosystems with little known about the 

effects on virus populations. Since viruses are highly abundant and influence microbial 

hosts, it is important to understand the impacts of land use and management practices on 

the soil viral community. 

Estimates of viruses in terrestrial environments are the first step to identifying 

virus significance in soils since organisms that are present in large numbers generally 

play important roles in ecosystem function. Transmission electron microscopy (TEM) 

and epifluorescence microscopy (EFM) have been used in aquatic systems to show a 

range in viral abundance of 104 to 108
 ml-1, providing evidence that viruses are a prevalent 

component of marine and freshwater environments (Wilhelm and Matteson, 2008; 

Wommack and Colwell, 2000). Advance in epifluorescence microscopy resulted in an 
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approach to directly visualize virus particles in marine systems (Bergh et al., 1989; 

Hobbie et al., 1977). These previous discoveries have resulted in the development of 

methods to mechanically extract, microscopically enumerate, and quantify viruses from 

soils (Ashelford et al., 2003; Williamson et al., 2005; Williamson et al., 2003). Virus-like 

particle (VLP) abundance ranging from 107 to 109 VLPs g-1 soil has been observed in a 

diverse range of sites and soil types (Narr et al., 2017; Williamson et al., 2007; 

Williamson et al., 2005; Williamson et al., 2003). For example, more nutrient-rich soils 

found in forests and pastures generally have a higher viral abundance than soils from 

croplands and extreme locations such as Antarctica (Narr et al., 2017; Williamson et al., 

2007; Williamson et al., 2005). The VLP abundance often exceeds bacterial abundance, 

with it being thought that viral abundance is dependent on the productivity of the hosts, 

as well as viral persistence (Sharma et al., 2002; Williamson et al., 2007; Williamson et 

al., 2005), but few studies examine these dynamics at seasonal or annual timescales in 

soils. While studies in marine environments have presented clear temporal dynamics in 

viral abundance and community structure (Brum et al., 2016; Jiang and Paul, 1994), 

limited research leaves much to be discovered about the spatiotemporal changes of 

viruses in soils of terrestrial ecosystems. 

To compare differences of viral populations, it is fundamental to have an accurate 

assessment community composition. Investigations have come to rely on high throughput 

sequencing to evaluate diversity, population structure, and potential 

functional importance of whole viral assemblages. As studies of marine systems have 

reported a diverse population of DNA and RNA viruses (Angly et al., 2006; Breitbart et 

al., 2002; Hurwitz and Sullivan, 2013), most terrestrial studies focus on dsDNA viruses 
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or examine extreme landscapes such as polar (Zablocki et al., 2014) and desert regions 

(Adriaenssens et al., 2015; Zablocki et al., 2016). Comparisons of viral communities 

between soil and aquatic environments have implied that distinct habitat types consist of 

distinct viral communities (Angly et al., 2006; Srinivasiah et al., 2008; Zablocki et al., 

2014). With advances toward optimized methods for studying terrestrial viruses, recent 

studies in a thawing permafrost gradient recovered roughly 2,000 viruses approximately 

doubling the number of known genera in the RefSeq database at the time (Emerson et al., 

2018; Trubl et al., 2018) with the number of uncultivated virus genomes greatly 

surpassing the number of sequenced virus isolates in publicly available databases (Roux 

et al., 2019a). Such studies demonstrate that metagenomic analysis of a single 

environmental gradient has the ability to greatly expand the knowledge of terrestrial 

viruses. It also emphasizes the importance of including viral abundance and viral 

community structure in studies to fully understand the dynamics of soil ecosystems in 

response to environmental changes. 

The objective of this study was to determine whether there were temporal changes 

in virus and their potential bacterial host abundance in three differently managed 

Oklahoma soils. Experimental sites included a native tallgrass prairie (never tilled or 

cultivated), conventional till (CT) winter wheat, and no-till (NT) canola. By using data 

from multiple sites, we also aimed to determine whether the abundance of the viral 

communities was affected by increasing amounts of land management by examining the 

influence of soil and environmental factors on VLP abundance over the 1-year sampling 

period. Furthermore, metagenomic analysis was used to examine the impact of land use 

on viral community structure in soils of the native prairie and CT cropland, which aimed 
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to examine whether viral abundance or community composition played a larger role in 

the observed changes in viral populations. Our results indicated that soil properties, plant 

canopy cover, and environmental factors such as air temperature, most of which are 

further controlled by land use and land management practices, are important in shaping 

virus-host interactions, along with virus and host abundance. 

 

4.3 Materials and Methods 
 

4.3.1 Sample sites 

Soil samples were collected at the U.S. Department of Agriculture, Agricultural 

Research Service, Grazing Research Laboratory in El Reno, OK (35º34.19N, 98º 

03.69W; 414 m above sea level), from August 2016 to October 2017. Samples were 

taken approximately every 4 weeks from a native tallgrass prairie (35º32.99N, 

98º02.29W; 64 ha), conventional till (CT) winter wheat (35º34.19N, 98º03.39W; 27.5 

ha), and no-till (NT) winter canola (35º34.07N, 98º03.5W; 20.5 ha). The croplands and 

prairie sites were ~2.7 km apart. The native tallgrass prairie was native, mixed species 

grassland managed by cattle grazing several months out of the year and spring burns on a 

4-year rotation with the most recent burn occurring in 2014. The soil was classified as 

Norge loamy prairie (fine, mixed, thermic Udertic Paleustalf) with a high-water holding 

capacity and a depth of >1 m (Bajgain et al., 2018). Winter wheat fields represent a cool 

season crop that dominates in central Oklahoma in areas where tallgrass prairies have 

been converted to croplands. The soil type at the croplands was characterized as Bethany 

silt loam (fine, mixed, superactive, thermic Pachic Paleustolls) (Peterson et al., 2019). In 

Oklahoma, winter wheat fields are managed for multiple purposes (grain production and 
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cattle grazing). The CT wheat field was managed for grain production (grain-only) during 

the 2015-2016 growing season and graze-out wheat (no grain production; cattle grazing 

from November through May) during the 2016-2017 growing season. Each year the 

seedbed was prepared for planting using a chisel plow treatment to a depth of 31 cm, 

which resulted in complete disturbance of soil and residue mixing (Peterson et al., 2019). 

The NT cropland field was grain-only wheat during the 2015-2016 growing season and 

on canola rotation during the 2016-2017 growing season. No-tillage treatment was 

initiated in 2015 only (just a year prior to this experiment). Detailed management data 

have been previously published (Wagle et al., 2019). For each soil sampling time point, 

eight cores roughly 20 m apart were taken in a random walking pattern throughout each 

field at a depth of 0 to 15 cm using a 2.5-cm-diameter soil probe. Soil cores were pooled 

and homogenized to deal with soil heterogenicity and sieved to 2 mm to remove debris 

prior to analysis. Soils were kept on ice and directly transports to the lab where they were 

kept at 4ºC for virus extraction, while soils for bacterial and chemical analysis were 

stored at -80ºC. Samples for virus extraction were stored for a maximum of 48 h before 

processing. Not all soils were used in every experiment. 

 

4.3.2 Environmental, soil, and plant data 

Weather data were gathered from the Oklahoma Mesonet station 

(http://www.mesonet.org/index.php/weather/local/elre) in El Reno (ELRE), OK. The 

Mesonet tower is located on the native tallgrass prairie used in this study at 35º32.99N 

and 98º02.29W. Data used from Mesonet measurements included average rainfall, 

maximum air temperate, average air temperature, and minimum air temperature. Similar 
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weather data for croplands were collected from eddy covariance stations located in those 

fields. Soil chemical analysis was performed at the Oklahoma State University 

Soil, Water, and Forage Analytical Laboratory (http://soiltesting.okstate.edu/). Tests 

included topsoil nitrate, organic matter, total nitrogen, and ammonium. Gravimetric water 

content was determined by oven drying for 24 h at 65ºC or until the weight no longer 

changed (Peterson et al., 2019). Leaf area index (LAI) was measured nondestructively 

using an LAI-2200C plant canopy analyzer (LI-COR Inc., Lincoln, NE), and the percent 

canopy cover (Canopy%) was determined using the Canopeo app. The aboveground 

biomass was collected destructively from five randomly located 0.5 x 0.5m2
 quadrats 

within each field at 2-week intervals during the active growing season. Dry biomass 

weights were recorded after drying samples in forced-air oven at 70ºC for a minimum of 

48 h (Wagle et al., 2019). 

 

4.3.3 Bacterial extraction and qPCR 

Bacterial genomic DNA was extracted with a Quick-DNA fecal/soil microbe miniprep kit 

(Zymo Research, Irvine, CA) according to the manufacturer’s protocol with the exception 

of eluting DNA with sterile water. For each pooled soil sample, four subsamples were 

used for extractions. DNA was quantified with a Quibit dsDNA BR assay kit (Thermo 

Fisher Scientific, Waltham, MA) as described by the manufacturer’s instructions. DNA 

dilutions of 2 ng/µl were prepared to use for downstream analysis. qPCR was performed 

to estimate bacterial abundance based on the copy number of 16S rRNA genes using an 

Applied Biosystems 7300 real-time PCR system (Thermo Fischer Scientific). All four 

replicates were run for each sampling time point and collection site. PCR was performed 
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in a total volume of 30 µl that contained 15 µl of Power SYBR Green Master (Thermo 

Fisher Scientific), 2 µl of DNA template, and 100 nM concentrations of primers 27F and 

519R (Lane et al., 1985; Weisburg et al., 1991). The qPCR thermocycling steps included 

95ºC for 10 min, followed by 40 cycles of denaturation at 95ºC for 45 s, annealing at 

55ºC for 45 s, and extension at 72ºC for 1 min. The CT (threshold cycle) and 10-log-fold 

standard curves were used to estimate bacterial abundance in soils by converting CT 

values into estimates of bacterial cells present in 1.0 g of soil in each technical replicate. 

The amount of template DNA used for qPCR and the amount of soil used for each DNA 

extraction were accounted for in abundance estimates. Estimates were then converted to 

cells per gram of dry weight. Negative controls had no detectable amplification.  

 

4.3.4 Virus-like particle extraction 

Viruses were extracted from soil samples using an adaptation of the method by 

Williamson et al. (Williamson et al., 2005; Williamson et al., 2003). In short, 5.0 g of 

fresh soil was weighed into acid-cleaned 50-ml glass test tubes containing 15 ml of 

sterilized potassium citrate buffer (10 g of potassium citrate, 1.44 g of Na2PO4, and 0.25 

g of KHPO4 [pH 7.0] per liter) stored at 4ºC. Viruses were mechanically separated from 

soil samples through sonication. Each tube was sonicated using a Branson 5510 

ultrasonic for a total of 10 min with vortexing at high intensity for 20 s every 2 min. 

Samples were centrifuged at 8,000 x g for 25 min at 4ºC to sediment large soil particles. 

Supernatants were filtered through a 0.2-µm syringe filter (GE Healthcare Life Sciences, 

Marlborough, MA) to remove bacteria and other large particles, and the filtrate was 
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collected into sterile 15-ml polypropylene tubes and stored at 4ºC. Three subsamples 

were used for VLP extraction from each composite field sample.  

 

4.3.5 Epifluorescence microscopy quantification of VLPs 

For VLP enumeration, 1 ml of viral extract that had been diluted at a 1:4 ratio with sterile 

deionized water was vacuum filtered through a 0.02-µm Anodisc filter (25mm diameter, 

Whatman International, Ltd., Maidstone, England). A 0.45-µm filter (Pall 

Life Sciences, Port Washington, NY) was used for support. Anodisc filters were stained 

with 500 µl of 2.5 x SYBR gold (Invitrogen/Thermo Fisher Scientific, Waltham, MA) in 

the dark for 15 min. Excess SYBR gold was vacuumed through, and filters were washed 

with 1 ml of sterilized TE buffer. Filters were then mounted on glass slides using 30 µl of 

antifade solution on the coverslip (Williamson et al., 2003) and analyzed by 

epifluorescence microscopy using an Olympus BX61 motorized system microscope with 

an attached DP71 digital camera (Olympus Corp., Center Valley, PA). Three slides in 

total were made for each field and time point, one from each replicate extraction. The 

number of VLPs were counted manually in 10 fields per slide at x 1,000 magnification. 

The average VLP counts were calculated from the grand mean of the replicate filters per 

gram of dry soil (Williamson et al., 2005; Williamson et al., 2003). 

 

4.3.6 Virus dsDNA extraction and sequencing 

Large soil samples (~500 g) were collected from the native tallgrass prairie and 

conventional tillage winter wheat site in October 2017 for viral DNA extraction. Using 

200 g of fresh soil per field, soil samples were treated as described above to extract VLPs 
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for the purpose of DNA extraction. VLPs were then pelleted using an Optima LE-80K 

Ultracentrifuge (Beckman Coulter, Brea, CA) and a SW 28 Ti swinging bucket rotor at 

50,000 rcf for 2 h at 4ºC in thin-wall, Ultra-Clear, 38.5-ml centrifuge tubes (Beckman 

Coulter). For each soil sample, six tubes containing 0.2-µm-filtered supernatant were 

centrifuged. Pellets were resuspended and combined in 200 µl of potassium citrate buffer. 

Samples were treated with DNase (100 U/ml) to remove any free contaminant DNA 

before lysing the virus particles (Lopez-Bueno et al., 2009). DNase reactions were 

stopped by incubating samples at 65ºC for 10 min in the presence of 0.5 M EDTA. 

Viruses were lysed using 1 volume formamide, 0.1 volume 2 M Tris-Cl, and 0.05 volume 

0.5 M EDTA at 37ºC for 30 min (Sambrook and Russel, 2001b). DNA was then collected 

by PEG precipitation as described by Sambrook and Russell (Sambrook and Russel, 

2001a). Pelleted DNA was resuspended in 200 µl of sterile water. dsDNA was extracted 

by using a Quick-DNA fecal/soil microbe miniprep kit (Zymo Research, Irvine, CA) 

according to the manufacturer’s instructions with the exception of removing the bead-

beating lysis step. DNA was quantified using a Quibit dsDNA BR assay kit (life 

Technologies/Thermo Fisher Scientific) as described by the manufacturer’s protocol. 

DNA was sequenced using Illumina HiSeq PE150 technology at the Oklahoma Medical 

Research Foundation. 

 

4.3.7 Bioinformatic analyses 

Raw reads for each metagenome were evaluated for quality using FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and duplicates were 

removed by using CD-HIT (Li and Godzik, 2006). Reads were then quality trimmed and 
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filtered using the NGCS QC Toolkit (Patel and Jain, 2012). IDBA_UD (Peng et al., 2012) 

was used for metagenome assembly using default parameter and keeping contigs 500 bp 

or larger. Using CyVerse, assemblies were processed with VirSorter to determine viral 

sequences using the Virome database (Roux et al., 2015). Sequences from VirSorter 

categories 1, 2, 4, and 5 were kept (Emerson et al., 2018; Roux et al., 2015). Contigs of 

>10 kb were selected and clustered into vOTUs using the CyVerse app ClusterGenomes 

(v1.1.3) with the parameters 95% average nucleotide identity and 80% alignment fraction 

of the smallest contig (Roux et al., 2016a). vOTU relative abundance was estimated by 

mapping reads using Bowtie2 (Langmead and Salzberg, 2012) with multimapping and 

zero mismatches (Daly et al., 2019). vOTUs were only considered present in a sample if 

at least 75% of a contig was covered. To normalize each data set for comparison, the total 

number of base pairs mapped were divided by the vOTU sequence length and divided by 

the total number of base pairs in the metagenome (Trubl et al., 2018). Bubble plots of the 

relative abundance of vOTUs was constructed using ggplot2 in R version 3.6.1 (R Core 

Team, 2020). Taxonomic classifications were determined by vContact2 by producing 

viral clusters (VCs) based on viral predicted proteins with pairs of sequences with a 

similarity score of  >1 being clustered into viral clusters (Bolduc et al., 2017; Daly et al., 

2019; Roux et al., 2016a). Reference sequences that coclustered with soil viral sequences 

from the present study were used to predict the taxonomy using the last common ancestor 

approach and if the taxonomy of reference genomes within a VC differed, majority rule 

was used (Daly et al., 2019). The network was then visualized and imaged using 

Cytoscape v3.8.0 (Shannon et al., 2003). MetaProdigal was used to predict open reading 

frames (ORFs) for the shared vOTUs. The predicted proteins were then compared the 
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viral RefSeq database using a minimum bitscore of 50 using blastp. Protein searches were 

also done using NCBI virus (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/), which 

includes virus sequences not available in the RefSeq database. Up to the top 500 query 

results for each ORF was compiled into a custom database, and blastp was used again to 

compare the proteins to the custom database. Results from both searches were compared 

to determine the best match for each gene prediction. 

 

4.3.8 Statistical analysis 

Principal-component analysis was performed using soil chemistry data for the 

three collection sites in R version 3.6.1 (R Core Team, 2020). To test for significant 

differences of soil chemistry between sites, data were checked for normality than 

analyzed using the aovp function in the lmPerm R package. Differences were considered 

significant base on a P value of < 0.05. T-tests were used to compare plant biometrics 

data for the fall and spring growing season. Spearman correlations were calculated using 

the cor.test function to determine the relationship between viral abundance, microbial 

abundance, soil properties, and other environmental factors. Correlations were done 

separately for each field due the difference in soil chemistry for each sampling site. The 

rho value for moderate to very strong correlations range from 0.4 to 1.0, while significant 

correlations were determined by a P value of ≤ 0.05. Relationships for the abundance, soil 

chemistry, and air temperature were further examined with structural equation modeling 

(SEM) using the lavaan package in R. Tallgrass prairie data were treated as the control 

with CT and NT management were used as treatments. 
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4.3.9 Data availability 

Raw metagenomic data for each viral metagenome was deposited in the Sequence Read 

Archive (SRA) database under BioProject accession number PRJNA669149. 

 

4.4 Results  

4.4.1 Soil, plant, and environmental properties 

Land use and land management had considerable impact on soil properties (Figure 4.1). 

All measured soil properties were significantly different between at least one set of sites 

(p < 0.05). Significant differences between field comparisons varied with specific soil 

properties. Organic matter (OM) and total nitrogen (TN) were significantly different (p < 

0.001) in pairwise comparisons between all fields. OM and TN levels in soil decreased 

with increasing levels of management input. Croplands had significantly higher (p < 

0.05) topsoil nitrate (TopN) compared to the native tallgrass prairie. The CT wheat field 

had TopN of 49 kg ha-1
 on an average and was as high as 160 kg ha-1. The NT canola 

field had higher level of TopN (37 kg ha-1) compared to the native tallgrass prairie (13.5 

kg ha-1) on average. Ammonium (NH4
+) levels were only marginally significantly lower 

(p = 0.059) in the NT cropland (13.9 kg ha-1), while NH4
+

 levels were only slightly 

greater in the CT cropland at 24.0 kg ha-1
  than in prairie soil at 22.4 kg ha-1, on average. 

Nitrogen fertilizer was applied in both croplands during planting, while native prairie was 

not fertilized. 

From August 2016 to September 2017, monthly rainfall ranged from lows of 

14.99 mm during November 2016 and highs of 227.08 and 252.22 mm during April 

2017 and August 2017, respectively. Over the growing season of wheat and canola 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA669149/
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from October 2016 to May 2017, no severe drought was observed, with the sites 

receiving ~508 mm of rain. Overall, CT wheat had the lowest soil water content (p < 

0.001) of all the fields. The tallgrass prairie had soil water content (SWC) of 18% and 

the NT cropland SWC was 17% on average, whereas the CT cropland site had an average 

of 10% with SWC as low as 3%. However, lower SWC was recorded during winter 

(dormant period for the crops). 

 

 

Figure 4.1 Comparison of soil properties that significantly varied between land use and 

land management based on principal component analysis. Study sites include native 

tallgrass prairie, no-till canola, and conventional till wheat. Soil properties data were 

collected from August 2016 to July 2017. 

 

 

 

Air temperature reached a maximum during the summer months in August 2016 



 115 

and July 2017 with minimum air temperatures during winter in December and January. 

Annual dynamics of soil temperature varied with sites and growing seasons, 

often differing based on land use type due to contrasting seasonality of crops and 

native prairie. Wheat was planted on September 12 and grazed from 15 November 

2016 to 9 May 2017. Canola was planted on 3 October 2016 and harvested in June 

2017. Plant biometrics measurements were taken during the fall 2016 and spring 2017 

at both croplands. Higher values of leaf area index (LAI), biomass, and canopy cover 

percentage were observed before and after winter since both crops were dormant during 

winter. By mid-November, LAI reached ~5 m2m-2
  for canola and ~3 m2m-2

  for 

wheat, while canopy cover percentage was > 95 for canola and > 80 for wheat. 

Vegetation growth in croplands increased again with increasing air temperature in 

spring, with canopy cover percentage > 70 in both fields and LAI of ~3 and 3.5 m2m-2
  for 

canola and wheat, respectively, in April. Native prairie vegetation greened up 

in April and entered into senescence phase at the end of October. Croplands had 

higher soil temperatures during the summer compared to the tallgrass prairie because 

croplands were left fallow from June to September, while summer was peak growing 

season for the prairie. 

 

4.4.2 Temporal dynamics of VLP abundance and its influencing factors 

The VLP abundance was substantially altered due to land use and land management 

practices (p < 0.0001). Over the sampling period, VLP abundance ranged from 2.63 x 108 

to 2.51 x 109
 VLP g-1

 dry weight among the three sites (Figure 4.2a). The greatest 

difference in abundance was observed between native prairie and CT wheat (p <  0.001). 
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There was also a significant difference for VLP abundance between native prairie and NT 

canola (p = 0.001) and both croplands (p < 0.05). The average abundance was 1.66 x 109
 

VLP g-1
  in prairie soil, 1.01 x 109

 VLP g-1
 in NT canola, and 5.75 x 108 

 VLP g-1
  in CT 

wheat. The tallgrass prairie had the greatest VLP abundance during all sampling months. 

The CT wheat had the lowest abundance except for July (fallow period) where VLP 

abundance was greater than that of the NT canola. Seasonal variations were observed 

with significant changes in abundance related to sampling month (p < 0.01) at all 

sampling sites. The shifts detected in the croplands overall followed the same seasonal 

dynamics with lower abundance observed during winter (December through February), 

and peak VLP abundance in March (i.e., the period of rapid vegetation growth with rise 

in temperature). This was supported by the most pairwise significant differences (p < 

0.05) being observed for January and February in the winter and March and April in the 

spring. Prairie soil also had lower VLP abundance in February and elevated VLP 

abundance during the spring months, March through May (i.e., greening up and rapid 

growth of prairie vegetation) that was further supported significant pairwise difference (p 

< 0.05) in abundance between sampling months. The highest standard deviation was 

observed in the tallgrass prairie site at 4.80 x 108 
  VLP g-1. In comparison, croplands had 

lower standard deviations of 4.31 x 108 
  VLP g-1

  and 2.88 x 108 
  VLP g-1

  at NT canola and 

CT wheat, respectively. 
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Figure 4.2 VLP and bacterial abundance between different land usage and land 

management. (a) VLP abundance over a 1-year sampling period from October 2016 to 

September 2017. VLP abundance was calculated based on the dry weight of soil. (b) 

Bacterial cell abundance at corresponding sampling dates for VLP samples. Only time 

points of bacterial abundance that overlap with VLP abundance are shown in the figure. 

 

 

Spearman correlations were calculated to determine which soil, plant, and 

environmental factors potentially influenced VLP abundance for individual sites (Table 

4.1). No highly significant correlations were observed between tallgrass prairie 
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parameters and VLP abundance. SWC and VLP abundance at the prairie site had the 

strongest correlation, but it was not significant (rho 0.40, p = 0.0993). The NT canola had 

a significant negative correlation between VLP abundance and TopN (rho - 0.65, p = 

0.0204), and highly significant positive relationship between VLP abundance and leaf 

area index (rho 1.00, p < 0.001). The VLP abundance had correlations with several 

different factors at the CT wheat field. The VLP abundance showed a moderately strong 

correlation with air temperature (rho 0.49, p = 0.0531), and significant positive 

correlations with plant biometrics such as plant biomass, leaf area index, and canopy 

height. The only significantly negative correlation (rho - 0.56) was overserved between 

ammonium and VLP abundance at the CT wheat field. 

 

Table 4.1 Influence of soil, plant, and environmental factors on VLP abundance within 

fields based on Spearman correlations 

  Native Tallgrass Prairie No-Till  Conventional Till  

  Rho p Rho p Rho p 

Topsoil Nitrate 0.01 0.5101 -0.65 0.0204 -0.37 0.1492 

Organic Matter 0.14 0.6504 -0.03 0.4669 0.15 0.3438 

Total N  0.05 0.5539 -0.04 0.4527 -0.04 0.4561 

NH4
+  0.07 0.4206 -0.12 0.6243 -0.56 0.0449 

SWC 0.40 0.0992 0.04 0.4485 0.28 0.2215 

Avg Rain 0.22 0.2596 -0.09 0.3952 -0.09 0.3952 

Min Temp 0.09 0.3892 0.06 0.4314 0.43 0.0834 

Avg Temp 0.10 0.3767 0.03 0.4656 0.49 0.0531 

Max Temp 0.02 0.4785 -0.01 0.5086 0.48 0.0591 

Avg Soil Temp 0.12 0.3685 -0.18 0.3508 0.47 0.1027 

Plant Biomass - - 0.40 0.3000 1.00 < 0.001 

LAI - - 1.00 < 0.001 1.00 < 0.001 

Canopy Cover - - -0.50 0.3333 0.50 0.3333 

Canopy Height - - - - 1.00 < 0.001 

Correlation coefficients with p < 0.05 are indicated in bold, coefficients with 0.1 > p > 0.05 are indicated in 

italics. Dashes (-) represent missing data.  

Topsoil nitrate (kg/ha), organic matter (%), total nitrogen (%), NH4
+ (kg/ha), gravimetric soil water content 

(%), daily average soil temperature at 6 cm depth, leaf area index (LAI), canopy height (cm), canopy cover 

(%), dry plant biomass (kg/m2). 
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Structural equation modeling (SEM) was used to further estimate the direct and 

indirect relationships between the soil variables and VLP abundance. SEM results were 

similar to those observed in the Spearman correlations (Figure 4.3). The VLP abundance 

was indirectly influenced by land management practices that directly influenced TopN, 

and SWC. Bacterial abundance also had significant positive influence on the overall VLP 

abundance (p = 0.034). TopN was positively influenced by NH4
+, air temperature, and 

land use, while SWC had a negative effect on nitrate levels. Lastly, SWC had significant 

negative relationships with land management and average air temperature with tillage 

land use having the strongest effect. 

 

4.4.3 Temporal dynamics of bacterial abundance and its influencing factors 

Bacterial abundance was significantly different (p ≤ 0.001) among the sites ranging from 

105 to 109 bacterial cells g-1  dry weight (Figure 4.2b). Bacterial abundance was 

significantly less in CT wheat (p ≤ 0.001) and NT canola (p ≤ 0.05) than that of the 

tallgrass prairie. On average, the tallgrass prairie had an abundance of 6.87 x 108 cells g-1 

dry weight, followed by NT canola (1.37 x 108  cells g-1  dry weight) and CT wheat (7.50 

x 107 cells g-1 dry weight). Both croplands had lower standard deviations (i.e., 1.88 x 108 

cells g-1  dry weight for NT canola and 1.41 x 108 cells g-1  dry weight for CT wheat) than 

that of the tallgrass prairie (1.02 x 109 cells g-1  dry weight). Significant seasonal shifts (p 

< 0.05) were detected at all sampling sites. In the tallgrass prairie, bacterial abundance in 

spring was significantly different from that of summer and winter, while June and July 

were the most significantly differently from other sampling months. Spring was also 

significantly different than summer and winter in the NT canola site along with 
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significant differences between bacterial abundance during summer and fall. Significant 

seasonal differences only occurred in bacterial abundance during the summer for CT 

wheat. 

 

Table 4.2 Influence of soil, plant, and environmental factors on bacterial abundance 

within fields based on Spearman correlations 

  Native Tallgrass Prairie No-Till Conventional Till  

  Rho p Rho p Rho p 

Topsoil Nitrate 0.40 0.0392 0.06 0.3930 0.13 0.2975 

Organic Matter 0.45 0.0235 0.53 0.0079 0.71 0.0002 

Total N  0.49 0.0143 0.50 0.0125 0.69 0.0003 

NH4
+  0.16 0.2448 0.04 0.4399 -0.05 0.4177 

SWC -0.07 0.3908 -0.32 0.0821 -0.53 0.0082 

Avg Rain -0.01 0.5172 -0.31 0.1775 -0.32 0.1701 

Min Temp 0.24 0.1550 -0.03 0.5501 -0.04 0.5600 

Avg Temp 0.17 0.2310 -0.11 0.6775 -0.13 0.7044 

Max Temp 0.19 0.2118 -0.13 0.7131 -0.17 0.7651 

Avg Soil Temp 0.21 0.1900 0.68 0.0469 0.21 0.2322 

Plant Biomass - - -0.21 0.3233 0.07 0.5605 

LAI - - 0.71 0.0454 0.29 0.7327 

Canopy Cover - - 0.66 0.0481 0.37 0.2342 

Canopy Height - - 0.10 0.5636 -0.49 0.1644 

Correlation coefficients with p < 0.05 are indicated in bold, coefficients with 0.1 > p > 0.05 are 

indicated in italics. Dashes (-) represent missing data.  

Topsoil nitrate (kg/ha), organic matter (%), total nitrogen (%), NH4
+ (kg/ha), gravimetric soil water 

content (%), daily average soil temperature at 6 cm depth, leaf area index (LAI), canopy height 

(cm), canopy cover (%), dry plant biomass (kg/m2). 

 

 

Correlation analysis was performed to examine the relationship between the soil 

and environmental factors in relation to bacterial abundance for each sampling site Table 

4.2). All fields had significant correlations to at least one factor, and the correlations 

differed from those observed in comparison to VLP abundance. For the native prairie, 

bacterial abundance had significant positive correlations of moderate strength to TopN, 

OM, and TN (rho 0.40, rho 0.45, and rho 0.49, respectively). Both croplands had a 
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significant positive correlation between bacterial abundance, soil organic matter, and total 

nitrogen. At the NT canola, bacterial abundance also had a positive significant 

relationship with soil temperature, leaf area index, and canopy cover. SWC showed a 

negative relationship with bacterial abundance in NT canola soil (rho - 0.32, p = 0.0821) 

and a significant negative effect in CT wheat soil (rho - 0.53, p = 0.0082). 

The SEM revealed similar results as observed from Spearman correlations (Figure 

4.3). Several factors appeared to have an influence on bacterial and VLP abundance. 

Land use had direct significant impact (p < 0.001) on bacterial abundance that was not 

observed for VLP abundance. Land use also had indirect impacts on bacterial abundance 

by significantly directly impacting NH4
+, TopN, and OM, which further influenced 

bacterial abundance. In addition, average air temperature had a significant positive 

interaction with bacterial abundance. While bacterial abundance had a positive impact on 

VLP abundance, VLP abundance had a significant direct negative impact on bacterial 

abundance (p = 0.001). 
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Figure 4.3 Relationship between VLP abundance, bacterial abundance, land 

management, and soil and environmental factors based on structural equation modeling. 

Solid arrows indicate factors that had p-values of < 0.05. Dashed arrows indicate factors 

with marginal nonsignificant relationships (p < 0.1). Red arrows represent negative 

relationships, while blue arrows represent positive relationships. Native tallgrass prairie 

was used as the control, with the two management practices acting as treatments. 

 

 

 

4.4.4 Differences of DNA viral communities between tallgrass prairie and tilled 

wheat field 

The tallgrass prairie and CT wheat field soils were chosen for metagenomic 

sequence analysis as they had the greatest differences in VLP abundance, bacterial 

abundance, and differed the most as far as management input. DNA viral genomes 

were extracted from purified filtrate enriched with virus particles and sequenced using 

Illumina technology. A large amount of soil per sample was used for virus extractions 
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and DNA concentrated to avoid amplification methods that might bias sequencing 

results (Kim and Bae, 2011). Metagenome assemblies of viral reads showed observable 

differences between two sites. The prairie soil virome consisted of 657,863 contigs and 

the CT wheat field soil virome included 274,051 contigs (Table 4.3). VirSorter predicted 

375 contigs from the CT wheat assembly and 6,856 contigs from the prairie assembly to 

be possible viruses (≥ 1 kb). In total, 1,272 viral contigs were over 10 kb, which were 

used to determine viral operational taxonomic units (vOTUs). For the two data sets, only 

a little over 3% of the sequences formed clusters with more than one sequence, resulting 

in 1,231 vOTUs based on 95% average nucleotide identity (ANI) and 80% alignment 

fraction relative to the shorter sequence. Although the prairie assembly was three times 

larger than the CT wheat assembly, it had roughly 10-fold more vOTUs identified in the 

soil virome (Figure 4.4a). The majority of the vOTUs were unique to land use type with 

only five vOTUs shared across assemblies. The relative abundance of the shared vOTUs 

also differed between the land use types (Figure 4.4b). When one of the shared vOTUs 

was abundant in the CT wheat virome the abundance was reduced in the prairie. The 

opposite was true as well with vOTUs abundant in the prairie virome being rare in the CT 

wheat virome. While the richness and Shannon’s diversity index were greater in the 

prairie, the evenness of the community based on Pielou’s evenness index was relatively 

similar in the prairie and CT wheat field: 0.925 and 0.908, respectively. 
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Table 4.3 Summary of soil viral metagenomes 

 
Total no. 

contigs 
Total bp 

Max contig 

length (bp) 
N50 

VirSorter 

≥ 10kb 
Total no. 

vOTUs 

Tallgrass 

prairie 
657,863 831,434,430 227,057 1,450 1,145 

1,231 

Tillage  

wheat (CT) 
274,051 260,104,506 350,802 905 127 

Virome assembly data provided only includes contigs at least 500 bp in size. VirSorter results represent 

contigs ≥ 10kb that were identified as possible viruses from categories 1, 2, 4, and 5. Size selected 

sequences were then used to cluster viral OUTs using 95% average nucleotide identity and 80% 

alignment fraction. 

 

 

vOTUs were grouped into viral clusters (VCs) that were used to predict taxonomy 

of the viral sequences collected from soils in El Reno, OK. Together, the data will be 

referred to as the El Reno viruses or vOTUs based on the soil collection location. VCs 

roughly represent genus-level taxonomy of sequences grouped with a similarity score of 

at least 1 as previously described (Daly et al., 2019). Relationships of VCs, including the 

El Reno vOTUs in comparison to sequences in the RefSeq viral database, are presented 

in a gene-sharing network (Figure 4.5). Of the VCs formed, 34% contained vOTUs from 

the tillage and prairie soil. The majority of the clusters containing El Reno viruses did not 

cluster with known viruses in the database and instead formed VCs with sequences in 

their own data set. Five of the VCs consisted of known viruses from the RefSeq database 

and El Reno vOTUs. VC_15 consisted of three subclusters, one of which contained all El 

Reno viruses, and all subclusters grouped closely in the network meaning taxonomically 

the vOTUs most likely are the same at the family level but not genus-level. The 66 

vOTUs in VC_15 were identified as belonging to the family Siphoviridae. One vOTU 

each belonged to VC_20 and VC_50 belonging to the genera Xp10virus and Ydn12virus, 
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both in the Siphoviridae family, respectively. VC_135 belonged to Ssp2virus containing 

two vOTUs and VC_140 belonged to Pepy6virus containing 15 vOTUs. Only one vOTU 

within VC_118 was identified in the Myoviridae family belonging to the genus 

Msw3virus. Another 14 VCs containing 76 vOTUs consisted of El Reno viruses that 

clustered with unclassified viruses in the RefSeq database. The rest of the vOTUs either 

clustered with other samples in the El Reno data set or were identified as singletons (no 

significant shared similarity to other protein sequences) or outliers. 
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Figure 4.4 Overlap of viral community structure in soils from different intensities of land 

management. vOTUs were only considered to be present in an assembly if the vOTU had 

at least 75% sequence coverage. (a) Depiction of vOTUs in each virome and the number 

of shared vOTUs between the native and tillage viromes. (b) Bubble plot of the relative 

abundance of the shared vOTUs in the two viromes. vOTU abundance was normalized by 

the vOTU length and size of the individual assemblies then standardized by the minimal 

size of metagenomes (bp) across all samples. (c) Bar graph of portion of predicted genes 

identified in shared vOTUs. Unclassified genes had no high-quality matches in currently 

database. (d) Main groups of genes represented from shared vOTUs based on currently 

available virus protein sequences. 
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Viral OTUs shared between the tallgrass prairie and CT wheat field were 

compared to known viral sequences to try to determine gene function. Protein coding 

genes predicted per contig ranged from 13 to 43, with 28 genes predicted on an average. 

The majority of the predicted genes for the shared vOTUs were not able to be classified 

or associated with proteins that had no functional identification (Figure 4.4c). Of the 141 

predicted proteins, 42 were identified and 17 were classified as hypothetical proteins. 

When looking at the classified viruses, the majority were identified as structural proteins 

including capsid, tail, and baseplate proteins (Figure 4.4d). Proteins related to replication 

mainly consisted of DNA polymerase and helicase, and endo- and exonucleases made up 

17% of the predicted genes. Proteins classified as other did not have enough genes 

predicted to form clear groups, but several notable proteins include 

DNA methyltransferase, phage integrase, and hydrolase. 
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Figure 4.5 Gene sharing network of El Reno vOTUs clustered with RefSeq viral 

sequences. Solid colors indicate sequences from El Reno virus data set. Nodes are 

depicted as shapes of various colors that correspond to virus families within the RefSeq 

database. El Reno viruses in viral clusters that clearly grouped closely in the network on 

circled and labeled. Clusters in bolded circles represent those with El Reno viruses that 

could be taxonomically identified with the family-level taxonomy depicted. Viral clusters 

that contained only El Reno vOTUs and that did not interact with the main network are 

not pictured. 
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4.5 Discussion  
 

4.5.1 Virus abundance. 

In this study, we investigated VLP abundance over a 1-year period 

in soils from different land use and management intensities. VLP abundance 

ranged from 108 to 109
 (g-1  dry soil) during the sampling period being consistent with 

previous research that showed abundance ranging from 107 to 109 (g-1  dry soil) from 

soils of differing land uses and times of the year (Ashelford et al., 2003; Narr et al., 2017; 

Williamson et al., 2013; Williamson et al., 2005; Williamson et al., 2003; Yu et al., 

2018). Specifically in agricultural soils, VLP abundance has been observed between 1.0 x 

108 to 1.1 x 109 g-1  dry soil (Narr et al., 2017; Roy et al., 2020; Williamson et al., 2005; 

Williamson et al., 2003), which is comparable to the average VLP abundance observed in 

the croplands in this study. Based on the average VLP abundance for sampling sites, 

abundance decreased with increasing amounts of land management. The tallgrass prairie 

had the highest VLP abundance and CT winter wheat soil had the lowest VLP abundance 

except during one collection month when abundance spiked above that of the NT canola 

soil (Figure 4.2a). According to management data, this is potentially reflective of soil 

tillage a few weeks prior to the collection that took place during the fallow period. Tillage 

is a physical disturbance to soil systems that increases soil erosion, loss of soil organic 

carbon, and loss of aggregate stability (Lal et al., 2007). However, tillage has also been 

shown to accelerate microbial activity (Young and Ritz, 2000), and increased virus 

abundance is often thought to occur when there are increased bacterial host activity and 

abundance in the system (Kimura et al., 2008; Maranger and Bird, 1995). This idea was 

supported by the SEM results of this study where bacterial abundance had a direct 
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positive influence on VLP abundance, and bacterial abundance was directly affected by 

land use. While increased bacterial host activity and abundance could be responsible for 

increased VLP abundance in soil, it is not possible to distinguish whether the increased 

VLP abundance that was observed during certain times of the year was a result of active 

virus production or virus survival related to physical and/or biological factors 

(Williamson et al., 2005) in specific soil systems. However, in general, viruses are often 

impacted by similar factors as their hosts, which affects virus-host interactions (Hurst et 

al., 1980). 

The structural model based on VLP abundance from all study sites showed a clear 

relationship with nitrate and soil water content both of which were directly influenced by 

land use. Soil water content has been previously detected to influence virus abundance in 

other soil systems (Williamson et al., 2013; Williamson et al., 2003). The soil water 

content was higher in the prairie and NT canola than in CT wheat, both of which had 

greater VLP abundance. No-till management can reduce water evaporation from soil and 

increase water infiltration and soil water content due to plant residues on the soil surface. 

Survival and inactivation of viruses in soils is often strongly related to wetting and drying 

of soils (Kimura et al., 2008). Work examining virus survival has shown wetter soils 

result in virus persistence (Hurst et al., 1980; Straub et al., 1993). The CT wheat field had 

the lowest soil moisture throughout the year due to more water loss through evaporation 

from soil pores that are exposed directly to radiation. These dry conditions could further 

contribute to reduced counts in CT soils (Kimura et al., 2008). It is speculated that viruses 

are likely to passively distribute with water, and due to their size are expected to be 

present in micro- and nanoscale soil pores (Kuzyakov and Mason-Jones, 2018). The 
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increased presence of organic matter can improve soil water holding capacity and overall 

soil structure (Oades, 1984). The organic matter content of the soil is also considered to 

be linked to increased VLP abundance. While no direct interaction was found between 

OM and VLP abundance in this study, organic matter was directly influenced by land use 

and impacted bacterial host abundance (Figure 4.3). The greater levels of organic matter 

in prairie soil may further explain the increased virus survival, partially due to the input 

of fertilization from grazing cattle throughout the year. The CT wheat field also had 

grazing cattle for a portion of the year, but there was no observable effect on virus 

abundance. Other more intense management practices likely had a greater overall impact 

on the virus community. Previous studies have reported agricultural soils having lower 

VLP abundance than nutrient-rich forest and pasture soils, both of which were associated 

with organic matter and water content (Narr et al., 2017; Roy et al., 2020; Williamson et 

al., 2005). Land use and management practices also greatly affect soil temperature. 

Although little is known about the persistence of autochthonous viruses in soils, 

laboratory incubation experiments introducing nonnative viruses to soil demonstrated 

temperature was a key factor controlling virus survival in soil with survival often being 

favored at cooler temperatures (Hurst et al., 1980; Straub et al., 1993; Yeager and 

O'Brien, 1979). Tallgrass prairies accumulate an enormous amount of biomass leading to 

thick groundcover in contrast to croplands where above ground biomass is removed 

yearly, exposing the soil. More groundcover is present in an NT system where residues 

are left on the soil surface compared to CT management where residues are incorporated 

into the soil. Overall, tillage management leaves the soil more vulnerable to the elements 

for a larger portion of the sampling year. Based on correlation analysis, larger plant 
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related measurements reflective of land cover have a positive relationship with virus 

abundance. The presence of crops and crop residue may have played a role in virus 

survival by relieving stress especially in the form of high soil temperatures throughout 

the year. Although this is just one possibility, increased virus presence could also be 

based on greater bacterial host abundance (Srinivasiah et al., 2008; Srinivasiah et al., 

2015) or virus lifestyle choice based on host nutrient availability (Pradeep Ram and 

Sime-Ngando, 2010; Wilson and Mann, 1997). While already known to influence 

microbial communities (Lauber et al., 2008), nitrogen levels in the soil also impacted the 

virus populations. Nitrate was an important factor linked to overall virus abundance 

(Figure 4.3). The response to different nitrogen sources based on Spearman’s correlations 

in relation to viral abundance in the two croplands might be reflective of the differences 

in the viral and host community composition and their function in the soil system. This is 

supported by our model that confirms the important influence on nitrate in the soil by 

NH4
+, air temperature, and management practices. Together, this study and prior studies 

of viral diversity demonstrate that local environmental conditions have a strong effect on 

the viral community (Lachnit et al., 2019; Narr et al., 2017; Roy et al., 2020; Srinivasiah 

et al., 2013). Therefore, it is highly likely that viral abundance and community structure 

are in part shaped by the biotic and abiotic factors influenced by land use and land 

management practices. 

The VLP abundance data show temporal variation over the 1-year collection 

period that was often observed during specific months instead of across seasons. A 12-

month study by Narr et al. also detected seasonal differences and changes in abundance 

over time in the majority of their sampling sites (Narr et al., 2017). When looking at 
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growing seasons alone, a similar study found viral abundance to be roughly constant from 

May to July and September to November in a range of agricultural treatments (Roy et al., 

2020). Overall, this resembles what is observed during the growing seasons of both 

croplands in this study (Figure 4.2a), but the largest temporal difference we observed in 

VLP abundance occurred in March when the weather begins to warm up and crops 

resume actively growing. Long-term studies examining VLP abundance in soil are very 

limited; therefore, more studies are needed to support these initial findings. However, 

variation in seasonal VLP abundance was recorded early on in viral studies in seawater 

(Hobbie et al., 1977). Many marine viral studies have observed changes in abundance by 

an order of magnitude between the winter and the summer months (Cochran and Paul, 

1998; Jiang and Paul, 1994). While temporal differences were observed in our study, the 

scale of the change in soils appears to be much smaller than that of marine systems (Narr 

et al., 2017; Roy et al., 2020). The amount of variation in VLP abundance throughout the 

year differed for each field. The temporal responses were larger in prairie soil, but all 

fields had lower abundance in winter months and higher abundance during March. 

Although VLP abundance had similar temporal dynamics, the differences observed in the 

magnitude of the variation are likely due to increased management activity that 

continually disturbs the system, including the microbial hosts needed for virus 

production. 

 

4.5.2 Bacterial host abundance 

Bacteria are speculated to be the most common hosts for viruses in environmental 

samples, explaining why bacterial abundance is often examined in combination with viral 
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abundance. In this study, estimates of bacterial abundance ranged from 106
 to 109 

bacterial cells g-1  soil. Although approaches differed, this is consistent with other 

investigations that determined bacterial abundance to be ≥ 106  g-1  soil (Roy et al., 2020; 

Williamson et al., 2013; Williamson et al., 2005). As seen with VLP abundance, there 

were significant differences between bacterial abundance in the cropland soils in 

comparison to the tallgrass prairie soils. Changes in abundance followed the same 

structure observed in the viral communities such that bacterial abundance decreased with 

increasing land management. Considering the idea that most viruses present in soils are 

bacteriophages, it is not unexpected that the observed population abundance for viruses 

and bacteria responded in a similar manner to land use and land management practices. 

Numerous studies in marine systems have looked at bacterial abundance and its 

relationship to viral abundance. In these systems, VLP abundance is highest in coastal 

environments and lowest in deep-sea waters in general (Wommack and Colwell, 2000). 

These variations in abundance are often correlated with microbial production and the 

productivity of the system (Kimura et al., 2008; Williamson et al., 2003). Soil studies 

have demonstrated similar relationships where organic-rich soils with higher moisture 

have greater prokaryotic cells present than that of dry low organic content soils; the latter 

of which generally results in a much greater presence of virus than prokaryotic hosts 

(Williamson et al., 2007; Williamson et al., 2005; Williamson et al., 2003; Wommack et 

al., 2015). As seen here using SEM, the positive direct influence of bacterial abundance 

on VLP abundance suggests increased productivity of bacteria is advantageous for 

viruses, while the negative direct effect of VLP abundance on bacterial abundance 

implies increase in virus abundance is unfavorable for the host population. Most current 
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soil studies do not look specifically at bacterial cell counts, but a large number have 

shown that soil microbial communities are considerably affected by changes in land use 

and land management (Bossio et al., 1998; Johnson et al., 2003; Lauber et al., 2008; 

Steenwerth et al., 2002). Such changes in land use and management also have a 

significant effect on soil and environmental factors (Ashelford et al., 2000; Kimura et al., 

2008; Murty et al., 2002), all of which could contribute to the differences in bacterial 

abundance observed between the different sites. 

Microbial activity and biomass have been shown to respond to multiple 

influences, including organic matter, soil management, and other abiotic factors 

(Calderón et al., 2000; Calderón et al., 2001; Narr et al., 2017; Williamson et al., 2005). 

Our data also indicate that many factors, including ground cover, soil nutrients, soil water 

content, and temperature, all of which are influenced by land use and land management, 

have significant interactions with soil bacterial abundance. The CT cropland had the most 

significant correlation between soil water content and bacterial abundance. The water 

content fluctuated more in the croplands than the prairie soil over the sampling period. 

Notably, bacterial abundance was negatively related to SWC, while VLP abundance had 

a positive relation with SWC, which may reflect virus production in the soils. Most often 

higher moisture in soil supports an increase in bacterial activity and abundance (Prado 

and Airoldi, 1999; Skopp et al., 1990), but an increase in the activity of a typically 

starved host infected with a virus can lead to induced virus production and host lysis 

(Kimura et al., 2008; Miller and Day, 2008). It is also possible that increased water in the 

soil dilutes or mobilizes the microbial hosts especially in the loose soil of the tillage site, 
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although this would be expected to be accompanied by an even greater runoff of viruses 

(Williamson et al., 2014).  

Soil microbes play an important role in nutrient cycling, decomposing organic 

matter, carbon mineralization, and plant nutrient availability (Haney et al., 2008; Paul and 

Clark, 1989). These differences in functional activities of microbes are impacted by land 

cover which differs substantially between land uses. In addition, land cover has been 

found to regulate microbial structure by affecting soil conditions such as organic matter 

(Bissett et al., 2011; Moon et al., 2016). Bacterial abundance was strongly influenced by 

organic matter and total nitrogen at all sites based on Spearman’s correlations, both of 

which strongly decreased with land cover and increased with management intensity. Land 

cover is also known to be a controlling factor of soil temperatures that is overall 

influenced by air temperature. Bacteria and virus survival in soil is often temperature 

dependent, and optimal temperatures can differ between hosts and their associated phages 

(Kimura et al., 2008). In the cropland sites, the directions of the relationship with 

temperature overall differed for bacterial and viruses. The changes in soil bacterial 

abundance may result from prophage induction triggered by increased temperature 

resulting in host cell lysis. Virus production can be induced by an environmental signal 

such as host DNA damage, resulting in the lytic function of lysogenic viruses and the 

production of progeny (Campbell, 2006). For example, DNA damage can induce an SOS 

repair mechanism initiating the lytic pathway of virus replication in lysogens (Weinbauer 

and Suttle, 1999). Alternatively, it could be caused by selective mortality of different 

microbial groups which have been recently shown to be triggered by bacterial quorum 

sensing signals inducing a lysogenic to lytic switch in samples collected from agricultural 
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soils (Liang et al., 2020a); any of these could result in the different response in 

abundance to changes in soil and air temperature by the bacterial and virus populations. 

Nitrate and ammonium both were key in determining bacterial abundance based on SEM 

and Spearman’s correlations. These two forms of nitrogen, especially at elevated levels 

from fertilizer input, impact soil processes and shape microbial community structure 

(Fierer et al., 2012a). While the changes observed depend on the specific land use and 

management practices, sampling site overall appears to have the largest impact on soil 

factors which affects the below ground community dynamics. 

There were observable seasonal shifts in bacterial abundance at all sampling 

locations over the 1-year study period. The lowest bacterial abundance was recorded in 

August and the following winter months for all fields similar to the temporal lows in 

VLP abundance. Increases in bacterial abundance were observed in fall and spring 

extending into early summer. While all the fields had similar shifts in abundance 

throughout the year, the magnitude of the changes varied greatly. Comparable results 

were detected in agricultural soils in Michigan where bacterial abundance stayed 

relatively stable and quickly returned to these stable levels when fluctuations in 

abundance occurred, but this study did not account for differences in bacterial abundance 

during winter and summer months (Roy et al., 2020). The same marine studies that 

observed seasonal changes in VLP abundance also observed similar changes in bacterial 

abundance, but of smaller magnitude than that seen for viruses (Cochran and Paul, 1998; 

Jiang and Paul, 1994). Although the results are from contrasting systems, the same 

general variations appear to be present in the recent studies of soil systems. Further 
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studies of combined viral and bacterial abundance are needed to determine the seasonal 

effects on virus and host interaction in 

terrestrial systems. 

 

4.5.3 Viral community 

The scarcity of studies examining viral communities especially in terrestrial 

environments is usually attributed to the absence of a genetic marker sequence, such as 

those used in identifying bacterial communities (Breitbart and Rohwer, 2005). Certain 

viral taxonomic groups share conserved genes which allow them to be used as targets to 

study specific viral groups (Srinivasiah et al., 2013), but a less targeted approach needs to 

be used to look at the whole community. Fingerprinting methods have allowed for fast 

analysis and higher sample throughput for screening viral communities but lack 

information on viral abundance and identity (Narr et al., 2017). For these reasons, most 

examinations of viral community structure rely on metagenomic approaches. Studies 

have recently started to focus on optimizing protocols for viral metagenomic analysis 

from terrestrial environments in order to create a standardized method for viral 

communities to be compared across environments (Daly et al., 2019; Roux et al., 2019b; 

Trubl et al., 2019). However, it should still be taken into consideration that soil, 

environmental, and viral factors are known to affect the adsorption of viruses to soils 

(Kimura et al., 2008), and virus extractability from soil can be further impacted by the 

extraction method (Narr et al., 2017; Williamson et al., 2013; Williamson et al., 2005). 

Viral metagenomics provides more than just sequence data by offering insight into 
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biogeographical distributions, community structure, and ecological dynamics (Breitbart 

and Rohwer, 2005). 

In order to determine the possible impacts of viruses on soil microbial 

communities, it is critical to study autochthonous viruses using cultivation-independent 

approaches to assess community composition. Current bioinformatic tools were used to 

characterize viruses in soils under different levels of management intensity. These recent 

tools have provided a way to use assembled virus fragments that have not been 

previously cultivated or identified in phylogenetic and diversity studies (Roux et al., 

2019a). In El Reno soils, the majority of identified viral sequences did not cluster 

together, suggesting the majority of the sequences represented unique virus species or 

vOTUs. The large assembly and greater number of viral species in the native tallgrass 

prairie is also consistent with the observations of greater VLP abundance in the prairie 

soil. The term viral operational taxonomic units (vOTUs) has been proposed at the formal 

way of classifying species rank virus groups in order to streamline the area of viral 

ecology and prevent confusion between various terms used across studies (Roux et al., 

2019a). There was also very few shared vOTUs between the two land use types as has 

been previously observed in other habitat gradients (Trubl et al., 2018), supporting the 

idea that viral communities are influenced by the environment in which they are found. 

Clustering methods of comparing new viral data sets to known viruses in 

available databases provides a way to examine relationships between identified and 

unknown viruses while assigning taxonomic classification to uncultivated virus genomes 

(UViGs) (Roux et al., 2019a). UViGs represent the majority of virus sequences in 

available databases due to the use of metagenomic and metatranscriptomic studies 
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(Brister et al., 2015; Paez-Espino et al., 2017; Roux et al., 2019a; Roux et al., 2016a). By 

clustering the vOTUs from El Reno with publicly available viruses, we were able to 

identify 86 of vOTUs from assembled viromes with another 76 vOTUs grouping with 

unclassified viruses in the RefSeq database. The majority of vOTUs from CT wheat and 

native prairie soils had no genetic similarity to viruses in the current databases. Similar 

results have been obtained in other studies where only 8.5 to 24.3% of viral sequences 

were identified in Chinese agricultural soils (Han et al., 2017), 9.8% in polar freshwater 

(Aguirre de Cárcer et al., 2015), and 15% thawing permafrost harbors (Trubl et al., 2018). 

In combination, these studies reveal the limitations of examining viral communities 

showing most viromes consist of predominately unidentifiable sequences. This was 

further exemplified when examining proteins in a subset of the El Reno vOTUs, where 

less than half of the predicted genes were identified based on currently available 

sequences. Each field’s taxonomic profile differed by the presence of specific 

bacteriophage families and the relative abundance of taxonomically identified viruses. 

Siphoviridae was the dominantly identified group in both viral communities with 

Podoviridae not being identified in either virome, but due to the lack of identified viruses 

in the El Reno viromes it is hard to determine which specific viruses are abundant in the 

community. Although, it does appear that each virome is distinct to the collection site 

with there being little overlap in the viral community structure, which could be partially 

due to the technical issues associated under sampling and reproducibility (Zhou et al., 

2015; Zhou et al., 2013; Zhou et al., 2011b). When examining the shared vOTUs, unique 

function was not observed most likely due to the lack of predicted gene identification. 

One shared vOTU highly present in the tilled soil contained methyltransferase genes 
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which are known to be a powerful gene regulator in bacteria and have been proposed as a 

life cycle regulator in phages (Bochow et al., 2012). Switching life cycles in soils subject 

to frequent disturbances could be an important and distinctive function in frequently 

disturbed soils such as intensely managed croplands. Comparably, earlier soil viral 

metagenomic data have revealed that viral assemblages are locally unique, and medium 

type is most likely the driving force behind observed differences when comparing viral 

communities (Han et al., 2017; Srinivasiah et al., 2013). More specifically, the texture 

and physiochemical factors may influence the community more than distance between 

sites (Han et al., 2017), supporting the idea that viral abundance and community structure 

are influenced by various soil and environmental factors which are known to be affected 

by land use and land management practices. Although there were clear observable 

differences in VLP abundance, vOTU abundance, and community structure in the two 

fields, further work is required to determine whether similar environmental factors and 

seasonal differences are influencing the community structure over time as was observed 

for virus abundance. 

 

4.6 Conclusions  
 

In each land use system, there were clear temporal differences in viral 

and bacterial abundance over the 1-year sampling period. The abundance of viruses 

and potential hosts both decreased with increasing amounts of management input 

with the prairie site continually having greater abundance than the croplands. There 

were also observable seasonal differences in abundance with similar trends for virus 

and bacterial populations. Various soil and environmental factors influenced viral and 
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host abundance which was often reflective of management activities in each system. 

When examining DNA viral communities in the prairie and tilled wheat field, there 

were clear differences in community structure and vOTU relative abundance with the 

native tallgrass prairie containing more unique viral species. There was also minimal 

intersection of the viral community structure between land use types. This study suggests 

that the different levels of land management impacted the soil properties and 

environmental effects on the belowground communities especially abundance. Overall, 

our results implicate land use and land management as driving factors of shaping the 

physicochemical properties in agricultural soils which influence not only the abundance 

of virus and host communities but the structure of the soil viral communities. Global or 

large-scale studies are needed to identify whether such interactions between management, 

environmental factors, and viruses are a general rule across all agricultural systems. 
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Chapter 5 : Summary 

 

This dissertation presented evidence based on field studies supporting that soil microbial 

communities are influenced by land use and associated management practices, 

specifically in a U.S. Southern Plains agroecosystem. Changes were observed in 

microbial community composition, diversity, abundance, functional potential, and 

network complexity and stability. The responses of the soil microbial communities were 

closely linked to land use type, soil physicochemical properties, seasonal climate 

differences, and the level of management disturbance. Different land uses resulted in 

distinct soil microbial communities with tillage management having the greatest overall 

impact on community dynamics. Conventional tillage causes the largest disturbance of 

most management practices to microbial communities since it mechanically turns over 

the soil with many areas trying to implement less intensive practices. As the interest in 

agricultural sustainability grows, detailed research on local microbial community 

dynamics is needed to inform management decisions to retain and restore soil health. 

Therefore, this research focused on examining soil microbial communities under 

common land uses in the U.S. Southern Plains to determine the effects of current land use 

and management practices over time.  

 The impact of intensive agriculture on soil microbial communities is of significant 

worldwide concern since microbes play important roles in nutrient cycling, carbon 

storage, and plant productivity. The application of conservation agriculture practices such 

as reduced or no-tillage has produce mixed results on soil health often being dependent 

on other factors such as climate and soil type. Thus, determining the impact of land use 

and management practices at a local scale will give greater insight into microbial 



 144 

community dynamics needed to develop sustainable practices. Four common land uses in 

a Southern Plains agroecosystem including two croplands and two grasslands were 

examined over one year to examine microbial communities dynamics across a 

disturbance gradient. We observed that land use had the greatest impact on taxonomic 

diversity, and sampling time and time within a specific land use were more important for 

differences observed in functional diversity. The most disturbed fields became more 

dependent on nitrogen likely related to a dependence on fertilizer input compared to less 

disturbed fields where soil properties, nitrogen measurements, and climate were roughly 

equally important for explaining bacterial community differences. Intensive management 

disturbance and fertilizer usage were also possibly responsible for the reduction in 

functional potential observed in the tilled cropland compared to the native tallgrass 

prairie. This study provided critical information on the compositional and functional 

diversity of soil microbial communities across a gradient of management disturbance in 

an agroecosystem and elucidated the importance of minimizing management disturbance 

to improve soil health including the diversity of the bacterial communities.  

 After it was established that microbial communities significantly differed with 

time and land use, the next aim was to determine if the potential microbial interactions 

were similarly affected using molecular ecological network (MEN) analysis. This study 

focused on the conventionally tilled wheat field and native tallgrass prairie to investigate 

whether and how land conversion from native land use to long-term cropland use 

impacted the complexity and stability of the networks. Overall, we observed an increase 

in network complexity, network stability, and temporal variation under CT cropland use 

compared to native land use. Although microbial community diversity was greater under 
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native land use, the networks were less complex including fewer “interactions” and 

greater modularity. Soil properties, climate, and plant growth had the greatest impact on 

the complexity and stability of the native TGP networks, while different types of 

management disturbance were highly correlated to CT cropland network differences. 

Together, this study showed land conversion also influences the soil microbial 

community interactions with the microbial community under long-term cropland use 

adapting to withstand management disturbances and becoming heavily reliant on 

“interactions” to support ecosystem function. 

 With insight on the impact of land use disturbance on microbial community 

diversity, functional potential, and network interactions, we then focused on the viral 

community under different land uses. Viruses are abundant members of microbial 

communities with important roles in influencing microbial community structure and 

function. Here, we examined three land uses over one-year, focusing on the native 

tallgrass prairie and the two croplands with different amounts of management 

disturbance. As the amount of management disturbance increased, the abundance of 

viruses and potential bacterial hosts both decreased. Temporal differences were also 

observed in virus and bacterial abundance mostly differing by season. Not only did the 

abundance of viruses differ by land use, but so did the viral community composition with 

the native tallgrass prairie having more unique viral species. Overall, this study 

implicated land use and land management as driving factors of shaping the 

physicochemical properties in agricultural soils which influenced the abundance of 

viruses, the abundance of bacterial hosts, and the structure of the soil viral communities.  
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 From the beginning, civilization has been dependent on food, fiber, and other 

goods produced by agriculture. Yet, current agricultural practices are threatening our 

soils and microbial communities needed for the health of ecosystems and human 

populations. While certain soil properties are generally always relevant when trying to 

assess microbial community dynamics such as soil water content and nutrient availability, 

the significance can often be context dependent as vegetation types may have different 

growth requirements and climate varies by region. Therefore, this dissertation aimed to 

explore the impact of land use and time on microbial communities in the U.S. Southern 

Plains in hopes to improve our understanding of the large effect microorganisms can have 

on the function of agricultural ecosystems.    
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Appendix A : Supplementary Tables  

Table S2.1 Soil properties as affected by season and land use type. Values represent 

averages over seasons and standard deviation within each land use.  

 

Land Use Season 

Topsoil 

Nitrate 

(kg/ha) 

Organic 

Matter (%) 

Total 

Nitrogen 

(%) 

NH4
+ (kg/ha) 

Soil Water 

Content (%) 

CT Wheat Summer 48 ± 28 1.66 ± 0.11 0.11 ± 0.01 46.9 ± 52.5 10.50 ± 2.31 

 Fall 105 ± 33 1.80 ± 0.21 0.12 ± 0.01 27.9 ± 7.4 11.07 ± 4.45 

 Winter 25 ± 14 2.06 ± 0.12 0.13 ± 0.01 17.2 ± 12.1  8.11 ± 5.94 

  Spring 15 ± 10 1.89 ± 0.19 0.12 ± 0.01 11.2 ± 3.2 11.41 ± 6.09 

       

NT Canola Summer 62 ± 26 2.56 ± 0.21 0.14 ± 0.01 13.1 ± 5.0 18.59 ± 3.82 

 Fall 49 ± 19 2.74 ± 0.12 0.16 ± 0.01 12.9 ± 2.6 18.35 ± 1.63 

 Winter 18 ± 8 2.98 ± 0.38 0.17 ± 0.02 12.5 ± 3.2 16.73 ± 3.13 

 Spring 16 ± 15 3.00 ± 1.50 0.17 ± 0.02 12.6 ± 1.4 16.90 ± 4.09 

       

OWB 

Pasture  
Summer 7 ± 4 2.64 ± 0.33 0.15 ± 0.02 12.0 ± 2.4 11.92 ± 3.16 

 Fall 10 ± 3 3.15 ± 0.63 0.17 ± 0.03 16.7 ± 3.0 14.66 ± 2.97 

 Winter 5 ± 2 2.94 ± 0.37 0.16 ± 0.02 21.3 ± 5.9 16.41 ± 2.13 

 Spring 8 ± 5 3.01 ± 0.80 0.16 ± 0.03 22.7 ± 12.7 16.45 ± 5.08 

       

TGP Summer 15 ± 9 3.81 ± 0.97 0.20 ± 0.04 16.1 ± 1.6 11.73 ± 2.74 

 Fall 13 ± 2 3.63 ± 0.38 0.19 ± 0.02 22.4 ± 4.0 16.42 ± 1.80 

 Winter 11 ± 4 3.52 ± 0.70 0.19 ± 0.03 24.2 ± 2.9 21.93 ± 2.63 

 Spring 13 ± 6 3.71 ± 0.79 0.20 ± 0.04 25.4 ± 4.7 21.81 ± 2.22 

Conventionally tilled (CT) wheat; no-till (NT) canola; old world bluestem (OWB) pasture; tallgrass prairie 

(TGP) 
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Table S2.2 Average relative abundance (%) of abundant phyla in soil from 

conventionally tilled (CT) winter wheat, no-till (NT) canola, Old World Bluestem 

(OWB) pasture, and native tallgrass prairie (TGP) systems from August 2016 to July 

2017.  
 

        CT NT OWB TGP 

Acidobacteria 11.75% 11.32% 13.53% 9.20% 

Actinobacteria 24.67% 23.55% 21.45% 20.16% 

Bacteroidetes 2.92% 2.81% 2.74% 2.54% 

Chloroflexi 9.90% 4.23% 4.78% 4.73% 

Cyanobacteria 2.35% 0.76% 1.29% 0.32% 

Firmicutes 9.68% 15.95% 18.03% 17.51% 

Gemmatimonadetes 1.00% 1.57% 1.04% 1.40% 

Nitrospirae 0.51% 0.76% 0.26% 0.73% 

Planctomycetes 2.57% 2.79% 2.99% 3.47% 

Proteobacteria 21.20% 22.56% 20.84% 24.36% 

Verrucomicrobia 1.78% 3.77% 3.67% 6.35% 

Archaea Phyla 0.09% 0.17% 0.06% 0.14% 
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Table S2.3 Pairwise comparison p-values for relative abundance of phyla significantly 

different between land use types from August 2016 to July 2017. P-values FDR 

corrected. Land types include conventionally tilled (CT) winter wheat, no-till (NT) 

canola, Old World Bluestem (OWB) pasture, and native tallgrass prairie (TGP). All phyla 

used in pairwise comparisons previously found to be significant by field using 

PERMANOVA with 999 permutations and Bray-Curtis dissimilarity metric.  

 

aVerrucomicrobia found to have significant difference in dispersion within group based off of multivariate homogeneity of groups 

dispersions test. Potentially contributes to significant differences observed between land use types.  

 

  

  

OWB:NT OWB:TGP OWB:CT NT:TGP NT:CT  TGP:CT  

Acidobacteria 0.002 0.002 0.006 0.002 0.375 0.002 

Actinobacteria 0.027 0.233 0.006 0.006 0.238 0.006 

Chloroflexi 0.126 0.918 0.002 0.172 0.002 0.002 

Cyanobacteria 0.001 0.001 0.001 0.001 0.001 0.001 

Firmicutes 0.338 0.950 0.002 0.338 0.002 0.002 

Gemmatimonadetes 0.002 0.002 0.411 0.193 0.002 0.002 

Proteobacteria 0.075 0.003 0.639 0.050 0.127 0.003 

Verrucomicrobiaa 0.613 0.001 0.001 0.001 0.001 0.001 
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Table S2.4 F-values of phyla relative abundance significantly different between seasons. 

The last timepoint in July was left out of the analysis because it stood alone for the 

summer 2017 season. All phyla individually compared across seasons using 

PERMANOVA with 999 permutations and Bray-Curtis dissimilarity metric. Asterisk 

indicates significant differences *indicate significant (p < 0.05) effects, ** indicate 

significant (p < 0.01) effects, ***  indicate significant (p < 0.001) effects. Italicized 

values indicate a p-value of 0.05 < p < 0.1. 

Conventionally tilled (CT) wheat; no-till (NT) canola; old world bluestem (OWB) pasture; tallgrass prairie (TGP) 

 

 
 

 

 

  

  

CT NT OWB TGP 

 

Acidobacteria - - - 7.17** 

Actinobacteria - - - 5.10** 

Bacteroidetes 6.65** 7.23*** - - 

Chloroflexi - - - 3.80* 

Cyanobacteria 3.73* - - - 

Firmicutes 2.52 3.62* - - 

Gemmatimonadetes - - - - 

Nitrospirae 4.98** 8.61** 4.86** 7.17** 

Planctomycetes 3.13* 6.85*** 20.00*** 16.47*** 

Proteobacteria 18.77*** - - 3.50* 

Verrucomicrobia 3.17* - - - 

Archaea Phyla - 3.70* 3.14* 9.27** 
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Table S2.5 Spearman correlations between relatively abundant phyla and soil properties 

within land use types. Correlation coefficients with p < 0.05 are indicated in bold, 

coefficients with 0.05 < p < 0.1 are indicated in italics, and data omitted where p > 0.1. 

 

    TopN OM TN NH4
+  SWC 

 Phylum Rho p Rho p Rho p Rho p Rho p 

C
T

 W
h
ea

t 
 

Acidobacteria 0.406 0.076 - - - - - - - - 

Actinobacteria - - - - - - - - - - 

Bacteroidetes -0.602 0.005 0.467 0.038 0.382 0.096 -0.553 0.013 - - 

Chloroflexi - - 0.523 0.018 0.567 0.009 - - -0.674 0.002 

Cyanobacteria - - 0.620 0.004 0.532 0.016 - - - - 

Firmicutes - - - - - - 0.409 0.075 - - 

Gemmatimonadetes - - - - - - - - - - 

Nitrospirae - - -0.845 0.000 -0.732 0.000 - - 0.550 0.012 

Planctomycetes -0.469 0.037 - - 0.263 - -0.600 0.006 - - 

Proteobacteria - - -0.742 0.000 - - - - - - 

Verrucomicrobia - - -0.740 0.000 -0.715 0.000 - - 0.612 0.005 

N
T

 C
an

o
la

 
 

Acidobacteria - - 0.715 0.000 0.682 0.001 - - -0.640 0.002 

Actinobacteria - - - - - - - - - - 

Bacteroidetes -0.769 0.000 0.464 0.039 0.487 0.029 - - - - 

Chloroflexi - - - - - - - - -0.471 0.036 

Cyanobacteria - - 0.505 0.023 0.448 0.048 - - -0.688 0.001 

Firmicutes 0.470 0.036 -0.588 0.006 -0.576 0.008 - - 0.576 0.008 

Gemmatimonadetes - - -0.382 0.096 -0.391 0.088 - - - - 

Nitrospirae 0.434 0.056 -0.809 0.000 -0.833 0.000 - - 0.580 0.007 

Planctomycetes -0.481 0.032 0.805 0.000 0.798 0.000 - - -0.648 0.002 

Proteobacteria - - - - - - - - - - 

Verrucomicrobia - - -0.682 0.001 -0.700 0.001 - - 0.489 0.029 

O
W

B
 P

as
tu

re
 

 

Acidobacteria - - - - - - 0.567 0.009 0.520 0.020 

Actinobacteria - - - - -0.409 0.073 - - - - 

Bacteroidetes - - 0.439 0.053 - - 0.420 0.065 - - 

Chloroflexi - - - - -0.469 0.037 - - - - 

Cyanobacteria - - - - - - - - - - 

Firmicutes 0.432 0.057 - - - - - - - - 

Gemmatimonadetes - - - - -0.406 0.075 - - - - 

Nitrospirae - - -0.605 0.005 -0.447 0.048 -0.467 0.038 - - 

Planctomycetes - - - - - - - - - - 

Proteobacteria - - - - - - - - - - 

Verrucomicrobia -0.570 0.009 -0.462 0.042 -0.477 0.033 - - - - 

T
G

P
 

 

Acidobacteria - - - - - - -0.381 0.098 -0.660 0.002 

Actinobacteria - - - - - - - - 0.441 0.053 

Bacteroidetes 0.471 0.036 0.508 0.022 0.461 0.041 - - - - 

Chloroflexi - - - - - - - - 0.442 0.052 

Cyanobacteria - - - - - - - - - - 

Firmicutes - - - - - - - - - - 

Gemmatimonadetes - - - - - - - - - - 

Nitrospirae - - - - - - -0.486 0.030 - - 

Planctomycetes - - - - - - - - 0.388 0.092 

Proteobacteria - - - - - - - - -0.480 0.034 

Verrucomicrobia -0.631 0.003 -0.590 0.006 -0.661 0.002 - - - - 
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Table S2.6 OTUs significantly correlated (p ≤ 0.05) to functional gene groups present in 

both the tallgrass prairie (TGP) and conventionally tilled (CT) wheat field. Correlations 

based on Spearman correlations with direction of relationship presented as positive (+) 

and negative (-). 

 

Category OTU Phylum Class Order Family Genus 
Correlation 

TGP CT 

Carbon 

cyc.a 
OTU 

193246 
Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae 

Strepto-

myces 
- + 

Carbon 

deg.b 
OUT 

188347 
Chloroflexi Chloroflexi Chloroflexales Chloroflexaceae 

Rosei-

flexus 
- + 

Carbon 

fixation 

OTU 
160059 

Actinobacteria Actinobacteria Kineosporiales Kineosporiaceae 
Kineo-
sporia 

- + 

OTU 
193246 

Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae 
Strepto-

myces 
- + 

OTU 
77827 

Gemmatimon-

adetes 

Gemmatimon-

adetes 

Gemmatimo-

nadales 

Gemmatimon-

adaceae 
 + + 

Methane 

OTU 
156892 

Actinobacteria Actinobacteria Frankiales Frankiaceae Frankia - + 

OTU 
319788 

Actinobacteria Actinobacteria Kineosporiales Kineosporiaceae 
Kineo-

sporia 
- + 

Sulfur OTU 
456750 

Proteobacteria 
Deltaproteo-

bacteria 

Desulfuro-

monadales 
AKYG597  + + 

Nitrifi-

cation 
OTU 

376259 
Firmicutes Bacilli Bacillales 

Thermoactino-
mycetaceae 

Shimaz-
uella 

+ - 

N 

fixationc 

OTU 

19539 
Firmicutes Bacilli Bacillales Bacillaceae Bacillus + - 

OTU 

345627 
Firmicutes Bacilli Bacillales Bacillaceae Bacillus + + 

OTU 

478718 
Firmicutes Bacilli Bacillales Bacillaceae Bacillus + - 

Metal 
homeo-

stasis 

OTU 

188347 
Chloroflexi Chloroflexi Chloroflexales Chloroflexaceae 

Rosei-

flexus 
- + 

OTU 

242252 
Proteobacteria 

Betaproteo-

bacteria 
Burkholderiales Oxalobacteraceae Massilia + + 

OTU 

353029 
Firmicutes Bacilli Bacillales Bacillaceae Bacillus + + 

Organic 

remed-
iation 

OTU 

242252 
Proteobacteria 

Betaproteo-
bacteria 

Burkholderiales Oxalobacteraceae Massilia + + 

a carbon cycling (cyc) 
b carbon degradation (deg) 
c nitrogen (N) fixation 
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Table S3.1 Topological properties of Empirical MENs of converted cropland (CT wheat) 

and tallgrass prairie (TGP) control. All networks constructed using a threshold value (St) 

of 0.96. 

*The total numbers of ASVs with non-zero sequence numbers in at least 6 of the 8 samples used in each network. 

**Large modules contain 10 or more nodes. 

  

 Sample 

time 

No. of 

ASVs* 
Nodes Link R2 Avg K GD 

Avg 

CC 
Con M 

Total 

mod-

ules 

No. 

large 

module

** 

No. 

nodes 

in large 

module 

** 

% 

nodes 

in large 

module

** 

 

C
T

 W
h
ea

t 

Jun-17 2153 688 
 

875 
0.795 2.544 5.871 0.085 0.412 0.784 106 11 456 66.3  

Jul-17 1974 1082 3809 0.795 7.041 3.868 0.279 0.734 0.452 76 10 919 84.9  

Aug-17 2145 748 942 0.879 2.519 5.169 0.099 0.189 0.828 115 13 482 64.4  

Sep-17 2000 600 679 0.822 2.263 5.310 0.078 0.192 0.841 116 11 329 54.8  

Oct-17 2122 1172 5237 0.774 8.937 3.773 0.254 0.825 0.426 54 10 1046 89.2  

Nov-17 2092 942 3243 0.846 6.885 3.994 0.235 0.702 0.439 74 12 776 82.4  

Dec-17 1861 860 3589 0.814 8.347 3.293 0.164 0.537 0.432 91 4 642 74.7  

Jan-18 1946 959 3350 0.785 6.986 3.878 0.271 0.697 0.480 70 9 783 81.6  

Feb-18 1944 861 1893 0.795 4.397 4.813 0.152 0.599 0.591 81 9 672 78.0  

Mar-18 1873 653 1087 0.747 3.329 4.855 0.178 0.464 0.735 68 10 492 75.3  

Apr-18 1479 308 278 0.952 1.805 4.777 0.095 0.054 0.901 85 6 106 34.4  

May-18 2009 930 3402 0.787 7.316 4.115 0.223 0.700 0.484 72 9 764 82.2  

Jun-18 2205 1564 8454 0.808 10.811 4.041 0.278 0.720 0.501 90 11 1337 85.5  

Jul-18 2058 1094 5344 0.750 9.770 3.669 0.307 0.774 0.375 68 12 954 87.2  

Aug-18 1690 708 1472 0.796 4.158 4.732 0.205 0.709 0.585 62 11 577 81.5  

Sep-18 2080 626 579 0.927 1.850 8.736 0.057 0.154 0.917 132 10 310 49.5  

Oct-18 1991 510 484 0.884 1.898 4.208 0.090 0.068 0.940 121 8 217 42.5  

Nov-18 2123 716 866 0.879 2.419 8.273 0.106 0.324 0.863 103 13 477 66.6  

Dec-18 1992 1166 5899 0.754 10.118 3.556 0.315 0.871 0.348 55 10 1063 91.2  

T
G

P
 

Jun-17 3192 1044 1263 0.746 2.420 7.660 0.153 0.053 0.929 163 19 689 66.0  

Jul-17 3388 1081 1183 0.749 2.189 4.469 0.164 0.056 0.945 183 20 681 63.0  

Aug-17 3287 1212 1454 0.843 2.399 5.613 0.117 0.155 0.959 179 28 838 69.1  

Sep-17 3357 1241 1430 0.844 2.305 6.333 0.096 0.113 0.951 193 26 812 65.4  

Oct-17 3368 1141 1238 0.783 2.170 3.747 0.104 0.052 0.953 191 25 743 65.1  

Nov-17 2982 1126 1270 0.815 2.256 5.126 0.127 0.088 0.925 186 22 723 64.2  

Dec-17 3200 1078 1229 0.765 2.280 4.179 0.142 0.058 0.932 193 21 666 61.8  

Jan-18 3320 1060 1079 0.745 2.036 3.708 0.081 0.038 0.959 192 31 692 65.3  

Feb-18 3016 920 969 0.818 2.107 3.890 0.127 0.044 0.940 196 17 482 52.4  

Mar-18 2987 897 1082 0.740 2.412 3.179 0.104 0.041 0.931 172 18 525 58.5  

Apr-18 3110 980 957 0.723 1.953 6.088 0.072 0.084 0.951 179 21 581 59.3  

May-18 3448 1180 1465 0.814 2.483 3.315 0.151 0.039 0.947 193 19 748 63.4  

Jun-18 3457 1124 1333 0.771 2.372 3.329 0.101 0.037 0.952 186 21 696 61.9  

Jul-18 3488 1739 2167 0.780 2.492 10.44 0.116 0.143 0.958 234 32 1236 71.1  

Aug-18 3324 1047 1165 0.730 2.225 4.772 0.115 0.051 0.954 215 20 570 54.4  

Sep-18 3420 1200 1436 0.848 2.393 3.443 0.137 0.030 0.958 194 25 777 64.8  

Oct-18 2946 797 829 0.831 2.080 3.717 0.131 0.064 0.947 170 17 432 54.2  

Nov-18 3312 1122 1342 0.846 2.392 4.949 0.115 0.101 0.931 189 24 711 63.4  

Dec-18 3511 1275 1318 0.783 2.067 4.170 0.112 0.046 0.952 203 24 843 66.1  
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Table S3.2 Topological properties of Random MENs of converted cropland (CT wheat) 

and tallgrass prairie (TGP) control 

 

Land 

use 

Sample 

time 
GD  +/- SD avgCC  +/- SD 

Modularity  +/- 

SD 
HD  +/- SD Con  +/- SD 

 

CT 

Wheat 

Jun-17 4.447 +/- 0.080 0.025 +/- 0.005 0.689 +/- 0.005 3.987 +/- 0.053 0.718 +/- 0.028  

Jul-17 3.003 +/- 0.017 0.202 +/- 0.006 0.307 +/- 0.002 2.798 +/- 0.011 0.961 +/- 0.011  

Aug-17 4.720 +/- 0.080 0.013 +/- 0.004 0.701 +/- 0.006 4.240 +/- 0.056 0.704 +/- 0.030  

Sep-17 4.852 +/- 0.096 0.012 +/- 0.003 0.749 +/- 0.006 4.307 +/- 0.067 0.620 +/- 0.032  

Oct-17 2.933 +/- 0.014 0.196 +/- 0.007 0.263 +/- 0.002 2.740 +/- 0.009 0.980 +/- 0.006  

Nov-17 3.100 +/- 0.018 0.147 +/- 0.007 0.313 +/- 0.003 2.871 +/- 0.013 0.952 +/- 0.012  

Dec-17 2.997 +/- 0.018 0.157 +/- 0.007 0.274 +/- 0.003 2.778 +/- 0.013 0.941 +/- 0.016  

Jan-18 3.027 +/- 0.015 0.187 +/- 0.008 0.309 +/- 0.003 2.815 +/- 0.010 0.956 +/- 0.011  

Feb-18 3.486 +/- 0.029 0.085 +/- 0.007 0.450 +/- 0.004 3.212 +/- 0.020 0.916 +/- 0.020  

Mar-18 3.824 +/- 0.048 0.063 +/- 0.007 0.560 +/- 0.004 3.475 +/- 0.031 0.882 +/- 0.023  

Apr-18 6.118 +/- 0.499 0.004 +/- 0.004 0.849 +/- 0.010 4.950 +/- 0.299 0.369 +/- 0.040  

May-18 3.084 +/- 0.017 0.152 +/- 0.007 0.304 +/- 0.003 2.867 +/- 0.012 0.955 +/- 0.013  

Jun-18 2.978 +/- 0.011 0.133 +/- 0.004 0.240 +/- 0.002 2.782 +/- 0.007 0.977 +/- 0.006  

Jul-18 2.787 +/- 0.014 0.275 +/- 0.008 0.236 +/- 0.002 2.601 +/- 0.009 0.973 +/- 0.009  

Aug-18 3.399 +/- 0.028 0.110 +/- 0.008 0.461 +/- 0.004 3.132 +/- 0.019 0.911 +/- 0.020  

Sep-18 6.166 +/- 0.263 0.003 +/- 0.002 0.866 +/- 0.007 5.262 +/- 0.189 0.410 +/- 0.029  

Oct-18 5.178 +/- 0.222 0.008 +/- 0.004 0.830 +/- 0.007 4.450 +/- 0.146 0.415 +/- 0.032  

Nov-18 4.853 +/- 0.082 0.011 +/- 0.003 0.723 +/- 0.006 4.354 +/- 0.057 0.676 +/- 0.029  

Dec-18 2.745 +/- 0.012 0.330 +/- 0.009 0.224 +/- 0.002 2.567 +/- 0.008 0.977 +/- 0.007  

TGP 

Jun-17 4.610 +/- 0.060 0.014 +/- 0.003 0.722 +/- 0.005 4.188 +/- 0.039 0.650 +/- 0.023  

Jul-17 4.679 +/- 0.071 0.012 +/- 0.003 0.770 +/- 0.006 4.235 +/- 0.050 0.553 +/- 0.026  

Aug-17 4.793 +/- 0.063 0.009 +/- 0.002 0.731 +/- 0.005 4.382 +/- 0.044 0.631 +/- 0.023  

Sep-17 4.638 +/- 0.069 0.010 +/- 0.002 0.745 +/- 0.005 4.239 +/- 0.047 0.584 +/- 0.023  

Oct-17 4.759 +/- 0.070 0.009 +/- 0.002 0.776 +/- 0.006 4.322 +/- 0.049 0.537 +/- 0.022  

Nov-17 4.911 +/- 0.075 0.011 +/- 0.003 0.763 +/- 0.006 4.432 +/- 0.056 0.594 +/- 0.027  

Dec-17 4.733 +/- 0.066 0.013 +/- 0.003 0.752 +/- 0.005 4.279 +/- 0.047 0.596 +/- 0.023  

Jan-18 4.853 +/- 0.080 0.007 +/- 0.002 0.807 +/- 0.006 4.384 +/- 0.058 0.463 +/- 0.021  

Feb-18 4.881 +/- 0.093 0.011 +/- 0.003 0.790 +/- 0.006 4.363 +/- 0.065 0.518 +/- 0.026  

Mar-18 4.609 +/- 0.065 0.013 +/- 0.003 0.717 +/- 0.005 4.179 +/- 0.044 0.631 +/- 0.024  

Apr-18 4.752 +/- 0.090 0.008 +/- 0.002 0.823 +/- 0.006 4.275 +/- 0.064 0.424 +/- 0.021  

May-18 4.801 +/- 0.061 0.011 +/- 0.002 0.715 +/- 0.004 4.367 +/- 0.040 0.669 +/- 0.020  

Jun-18 4.672 +/- 0.056 0.010 +/- 0.002 0.732 +/- 0.005 4.270 +/- 0.041 0.612 +/- 0.025  

Jul-18 4.933 +/- 0.053 0.009 +/- 0.002 0.722 +/- 0.004 4.523 +/- 0.038 0.680 +/- 0.020  

Aug-18 4.775 +/- 0.070 0.011 +/- 0.003 0.762 +/- 0.005 4.325 +/- 0.047 0.561 +/- 0.021  

Sep-18 4.947 +/- 0.059 0.009 +/- 0.002 0.736 +/- 0.005 4.501 +/- 0.041 0.643 +/- 0.022  

Oct-18 4.694 +/- 0.085 0.010 +/- 0.003 0.788 +/- 0.006 4.211 +/- 0.060 0.493 +/- 0.024  

Nov-18 4.687 +/- 0.055 0.012 +/- 0.002 0.728 +/- 0.005 4.264 +/- 0.041 0.627 +/- 0.022  

Dec-18 4.828 +/- 0.078 0.008 +/- 0.002 0.803 +/- 0.006 4.377 +/- 0.057 0.489 +/- 0.021  

*100 random networks were generated by randomly rewiring all the links of a corresponding empirical 

network with the identical numbers of nodes and links. Values shown are the mean values and standard 

derivations from 100 random networks. 
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Table S3.3 Correlations between soil and climatic properties detected using canonical 

correspondence analysis (CCA). 

 
 

CT and TGP * CT Wheat ┼ TGP * 

 F p F p F p 

Total N - - 2.30 0.006** - - 

NH4+ 2.02 0.012* 2.74 0.007** 1.41 0.015* 

Topsoil NO3
-  2.83 0.001*** 3.32 0.001*** 2.04 0.001*** 

Organic matter  6.54 0.001*** 2.32 0.004** 2.70 0.001*** 

Available P 14.35 0.001*** 3.14 0.001*** 4.61 0.001*** 

Soil pH 5.84 0.001*** 6.59 0.001*** 2.04 0.001*** 

Soil temperature 1.71 0.020* - - 1.19 0.103 

Soil water content 4.34 0.001*** 3.47 0.002** 1.42 0.018* 

Average rainfall 2.05 0.006** 1.78 0.014* 1.52 0.008** 

Average air temperature 1.78 0.012* 1.70 0.035* 1.17 0.113 

Distance between replicates 2.22 0.003** 2.49 0.004** 1.42 0.011* 

All CCA models significant based on anova (p ≤ 0.01). 

P-values are followed by “*” for  p ≤ 0.05,  “**” for p ≤ 0.01 , and “***” for p ≤ 0.001. 

*Redundant variables removed (VIF >= 20) which included total N, max daily air temperature, and min daily air 

temperature. 

┼ Redundant variables removed (VIF >= 20) which included soil temperature, max daily air temperature, and min daily 

air temperature. 
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Table S3.4  Mann-Whitney U tests on relative abundances of highly abundant microbial 

phyla and classes between CT wheat and TGP. 

 

    Mann-Whitney U test* 

Phylum/Class Mann-Whitney W p-value 

Effect of 

land 

conversion 

Acidobacteria  8945954 < 2.20E-16 ↓ 

 Acidobacteria_Gp1 805112 1.39E-08 ↑ 

 Acidobacteria_Gp3 315256 2.14E-11 ↑ 

 Acidobacteria_Gp4 278258 < 2.20E-16 ↓ 

 Acidobacteria_Gp5 25425 < 2.20E-16 ↓ 

 Acidobacteria_Gp6 251511 < 2.20E-16 ↓ 

 Acidobacteria_Gp7 28974 4.46E-08 ↓ 

 Acidobacteria_Gp16 28592 2.34E-03 ↓ 

 Acidobacteria_Gp17 2535 < 2.20E-16 ↓ 

Actinobacteria  12447030 < 2.20E-16 ↑ 

 Actinobacteria 11329842 < 2.20E-16 ↑ 

 Thermoleophilia 25116 < 2.20E-16 ↓ 

Armatimonadetes  275936 1.72E-04 ↑ 

Bacteroidetes  14609563 < 2.20E-16 ↑ 

 Bacteroidia 130016 < 2.20E-16 ↓ 

 Cytophagia 867636 3.25E-01 NS 

 Sphingobacteriia 4547038 < 2.20E-16 ↑ 

Candidate_division_WPS-1  365526 6.17E-01 NS 

Candidate_division_WPS-2  10431 < 2.20E-16 ↑ 

Chloroflexi  4848430 8.34E-13 ↑ 

 Anaerolineae 524084 < 2.20E-16 ↓ 

 Ardenticatenia 6708 6.73E-01 NS 

 Thermomicrobia 171814 2.02E-02 ↓ 

 Ktedonobacteria 275000 1.48E-02 ↑ 

Cyanobacteria  60414 < 2.20E-16 ↑ 

Firmicutes  3576756 9.85E-01 NS 

 Clostridia 947141 3.18E-05 ↑ 

 Bacilli 455786 < 2.20E-16 ↑ 

Gemmatimonadetes  1766812 1.14E-03 ↑ 

 Gemmatimonadetes 1766812 1.14E-03 ↑ 

Planctomycetes  5527590 < 2.20E-16 ↓ 

 Planctomycetia 4986834 < 2.20E-16 ↓ 

Proteobacteria  130708090 < 2.20E-16 ↑ 

 Alphaproteobacteria 10862558 5.21E-03 ↑ 

 Betaproteobacteria 919741 < 2.20E-16 ↑ 

 Deltaproteobacteria 15550195 < 2.20E-16 ↓ 

 Gammaproteobacteria 6510492 3.32E-07 ↑ 

Thaumarchaeota  5670 2.89E-02 ↓ 

Verrucomicrobia  3147920 < 2.20E-16 ↓ 

 Opitutae 54836 9.04E-07 ↓ 

 Spartobacteria 192696 < 2.20E-16 ↓ 

  Subdivision3 840356 < 2.20E-16 ↓ 

*In Mann-Whitney U test results, “NS” denotes not significant. 

All phyla and classes were represented by five of more keystone nodes from networks 
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Table S3.5 List of preserved module pairs, the number of overlapping and non-

overlapping nodes in paired modules.  

 

Pairs* 
Overlapping 

nodes 

Nodes only 

in module1 

Nodes only 

in module2 

Nodes absent 

from both 

modules 

Fisher 

exact test p-

value 

Adjusted  

p-value** 

July17_CT_M1  -  Aug18_CT_M0 36 207 74 1125 1.59E-05 0.003 

July17_CT_M1 - Dec18_CT_M0 52 191 159 1350 5.05E-06 0.001 

July17_CT_M1 - Feb18_CT_M2 39 204 75 1169 8.27E-07 0.000 

July17_CT_M1 - Jan18_CT_M3 54 189 158 1186 2.28E-05 0.005 

July17_CT_M1 - July18_CT_M0 79 164 165 1207 4.55E-14 0.000 

July17_CT_M1 - June18_CT_M1 56 187 197 1591 6.30E-07 0.000 

July17_CT_M1 - Mar18_CT_M5 22 221 29 1135 9.23E-06 0.002 

July17_CT_M1 - Nov17_CT_M2 49 194 135 1201 1.87E-05 0.006 

July17_CT_M1 - Oct17_CT_M0 71 172 236 1247 1.38E-06 0.000 

July17_CT_M2 - July18_CT_M2 91 209 255 1060 3.59E-05 0.009 

July17_CT_M2 - June18_CT_M2 107 193 355 1376 2.17E-08 0.000 

Aug17_CT_M14 - Nov18_CT_M16 3 3 3 1265 1.16E-06 0.001 

Aug17_CT_M5 - Dec17_CT_M0 15 16 214 1122 3.58E-05 0.007 

Aug17_CT_M5 - Jan18_CT_M3 16 15 196 1205 1.20E-06 0.000 

Oct17_CT_M0 - Dec17_CT_M0 66 241 163 1082 2.29E-04 0.037 

Oct17_CT_M0 - Dec18_CT_M0 60 247 151 1281 2.31E-05 0.005 

Oct17_CT_M0 - Jan18_CT_M3 65 242 147 1130 1.49E-05 0.004 

Oct17_CT_M0 - July18_CT_M0 71 236 173 1239 1.93E-06 0.001 

Oct17_CT_M1 - Jan18_CT_M1 45 222 108 1209 3.26E-05 0.009 

Oct17_CT_M3 - Dec18_CT_M1 74 156 281 1228 4.15E-06 0.001 

Oct17_CT_M3 - Feb18_CT_M1 43 187 124 1219 4.37E-05 0.011 

Oct17_CT_M3 - July18_CT_M2 79 151 267 1222 3.48E-08 0.000 

Oct17_CT_M3 - June18_CT_M2 74 156 388 1519 5.27E-05 0.021 

Oct17_CT_M3 - May18_CT_M0 55 175 156 1265 3.40E-07 0.000 

Nov17_CT_M1 - Aug18_CT_M1 30 148 90 1083 1.70E-04 0.042 

Nov17_CT_M1 - Dec18_CT_M1 68 110 287 1152 1.21E-07 0.000 

Nov17_CT_M2 - Dec17_CT_M0 49 135 180 1021 1.24E-04 0.021 

Nov17_CT_M2 - Dec18_CT_M0 57 127 154 1279 6.27E-12 0.000 

Nov17_CT_M2 - Jan18_CT_M3 55 129 157 1112 6.68E-09 0.000 

Nov17_CT_M2 - July18_CT_M0 46 138 198 1228 1.37E-04 0.042 

Nov17_CT_M2 - Mar18_CT_M5 20 164 31 1080 5.88E-06 0.002 

Nov17_CT_M2 - May18_CT_M0 47 137 164 1161 5.59E-06 0.001 

Dec17_CT_M0 - Aug18_CT_M0 34 195 76 965 4.08E-04 0.048 

Dec17_CT_M0 - Dec18_CT_M0 53 176 158 1188 8.26E-06 0.001 

Dec17_CT_M0 - May18_CT_M0 52 177 159 1062 1.96E-04 0.023 

Dec17_CT_M2 - Dec18_CT_M1 68 101 287 1119 3.09E-08 0.000 

Jan18_CT_M3 - Dec18_CT_M0 47 165 164 1221 7.28E-05 0.014 

Jan18_CT_M3 - Feb18_CT_M2 33 179 81 1136 3.91E-05 0.008 

Jan18_CT_M3 - July18_CT_M0 55 157 189 1209 7.41E-06 0.002 

Jan18_CT_M3 - June18_CT_M1 53 159 200 1574 1.64E-07 0.000 

Jan18_CT_M3 - June18_CT_M2 73 139 389 1385 6.05E-05 0.020 

Jan18_CT_M3 - Mar18_CT_M5 25 187 26 1045 3.60E-08 0.000 

Jan18_CT_M3 - May18_CT_M0 59 153 152 1119 1.24E-08 0.000 

Jan18_CT_M5 - Nov18_CT_M22 3 25 2 1395 6.63E-05 0.022 

Feb18_CT_M1 - June18_CT_M2 65 102 397 1375 3.75E-06 0.001 

Feb18_CT_M2 - Mar18_CT_M5 15 99 36 1050 3.20E-05 0.007 

Mar18_CT_M4 - May18_CT_M0 15 15 196 1068 1.51E-05 0.003 
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Mar18_CT_M4 - Sept18_CT_M8 4 26 6 1093 7.64E-05 0.024 

Mar18_CT_M5 - May18_CT_M0 22 29 189 1054 3.22E-06 0.001 

Apr18_CT_M0 - Dec18_CT_M1 21 14 334 986 1.97E-05 0.003 

Apr18_CT_M0 - June18_CT_M2 22 13 440 1221 8.90E-06 0.002 

May18_CT_M0 - Dec18_CT_M0 45 166 166 1289 1.04E-04 0.018 

May18_CT_M0 - June18_CT_M1 46 165 207 1497 1.69E-04 0.048 

May18_CT_M0 - June18_CT_M2 92 119 370 1334 2.83E-11 0.000 

May18_CT_M0 - Sept18_CT_M8 7 204 3 1151 1.52E-04 0.042 

May18_CT_M0 - Sept18_CT_M81 7 204 3 1151 1.52E-04 0.042 

May18_CT_M1 - June18_CT_M2 67 108 395 1345 8.19E-06 0.002 

June18_CT_M1 - Aug18_CT_M0 32 221 78 1507 1.12E-05 0.003 

June18_CT_M1 - Dec18_CT_M0 46 207 165 1697 1.32E-05 0.004 

June18_CT_M1 - July18_CT_M0 56 197 188 1549 1.45E-06 0.001 

June18_CT_M2 - Aug18_CT_M3 50 412 56 1320 3.38E-07 0.000 

June18_CT_M2 - Dec18_CT_M1 126 336 229 1424 5.23E-11 0.000 

June18_CT_M2 - July18_CT_M2 138 324 208 1320 1.05E-14 0.000 

July18_CT_M0 - Dec18_CT_M0 59 185 152 1314 1.78E-08 0.000 

July18_CT_M2 - Dec18_CT_M1 103 243 252 1112 5.05E-06 0.001 

Oct18_CT_M11 - Nov18_CT_M22 2 3 3 1095 1.64E-04 0.050 

Oct18_CT_M11 - Nov18_CT_M221 2 3 3 1095 1.64E-04 0.050 

No significantly preserved module pairs in TGP or between TGP and CT wheat based on Bonferroni adjusted p-values. 

*The identified module pairs are shown as “network_ID of the first module -- network_ID of the second module”.  
**P-values from Fisher exact test were adjusted by the Bonferroni procedure based on the total number of Fisher exact test.  
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Table S3.6 Number of keystone nodes in each MENs 

 

Land use Network 
No. of network 

hubs 

No. of module 

hubs 

No. of 

connectors 

CT Wheat 

Jun-17 1 22 5 

Jul-17 3 25 47 

Aug-17 0 15 0 

Sep-17 0 17 1 

Oct-17 6 26 76 

Nov-17 8 23 87 

Dec-17 0 24 15 

Jan-18 2 32 35 

Feb-18 4 19 48 

Mar-18 0 20 2 

Apr-18 0 4 0 

May-18 2 26 25 

Jun-18 0 50 11 

Jul-18 5 30 37 

Aug-18 2 21 28 

Sep-18 0 17 0 

Oct-18 0 9 0 

Nov-18 0 19 2 

Dec-18 5 34 37 

TGP 

Jun-17 0 31 0 

Jul-17 0 28 0 

Aug-17 0 41 0 

Sep-17 0 36 0 

Oct-17 0 32 0 

Nov-17 0 32 1 

Dec-17 0 30 0 

Jan-18 0 37 0 

Feb-18 0 23 0 

Mar-18 0 28 0 

Apr-18 0 27 0 

May-18 0 34 0 

Jun-18 0 42 0 

Jul-18 0 53 0 

Aug-18 0 30 0 

Sep-18 0 42 0 

Oct-18 0 22 0 

Nov-18 0 34 0 

Dec-18 0 35 0 
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Table 3.7 List of network hubs, their taxonomic information, and relative abundance. 

 

ASV Network 
Mod

-ule 
Phylum Class Order 

Relative 

abund.(%) 

148 CT_June17 0 Acidobacteria (1.00) Acidobacteria_Gp1 (1.00) Unclassified 0.155 

299 CT_July17 1 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.141 

15 CT_July17 3 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.567 

1475 CT_July17 3 Chloroflexi (0.86) Ktedonobacteria (0.86) Ktedonobacterales (0.86) 0.035 

150 CT_Oct17 0 Chloroflexi (0.82) Ktedonobacteria (0.81) Ktedonobacterales (0.80) 0.096 

14 CT_Oct17 3 Proteobacteria (1.00) Alphaproteobacteria (1.00) Sphingomonadales (0.99) 0.580 

195 CT_Oct17 1 Acidobacteria (1.00) Acidobacteria_Gp1 (1.00) Unclassified 0.256 

105 CT_Oct17 1 Proteobacteria (1.00) Alphaproteobacteria (1.00) Rhizobiales (0.99) 0.195 

311 CT_Oct17 0 Actinobacteria (1.00) Actinobacteria (1.00) Acidimicrobiales (0.98) 0.090 

270 CT_Oct17 3 Bacteroidetes (1.00) Sphingobacteriia (1.00) Sphingobacteriales (1.00) 0.075 

153 CT_Nov17 1 Actinobacteria (1.00) Actinobacteria (0.99) Solirubrobacterales (0.92) 0.085 

336 CT_Nov17 0 Actinobacteria (1.00) Actinobacteria (0.99) Solirubrobacterales (0.98) 0.053 

38 CT_Nov17 1 Proteobacteria (0.97) Alphaproteobacteria (0.97) 
Alphaproteobacteria_incert

ae_sedis (0.60) 
0.376 

117 CT_Nov17 4 Actinobacteria (0.99) Actinobacteria (0.98) Gaiellales (0.95) 0.148 

972 CT_Nov17 0 Proteobacteria (1.00) Deltaproteobacteria (0.98) Myxococcales (0.96) 0.061 

57 CT_Nov17 0 Acidobacteria (1.00) Acidobacteria_Gp1 (1.00) Unclassified 0.273 

80 CT_Nov17 2 Firmicutes (0.69) Clostridia (0.32) Clostridiales (0.26) 0.162 

105 CT_Nov17 1 Proteobacteria (1.00) Alphaproteobacteria (1.00) Rhizobiales (0.99) 0.163 

57 CT_Jan18 2 Acidobacteria (1.00) Acidobacteria_Gp1 (1.00) Unclassified 0.276 

110 CT_Jan18 4 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.136 

60 CT_Feb18 0 Acidobacteria (1.00) Acidobacteria_Gp1 (1.00) Unclassified 0.155 

294 CT_Feb18 1 Actinobacteria (1.00) Actinobacteria (0.79) Solirubrobacterales (0.68) 0.073 

303 CT_Feb18 2 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.060 

1266 CT_Feb18 8 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.027 

171 CT_May18 3 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.131 

2778 CT_May18 3 Proteobacteria (1.00) Betaproteobacteria (1.00) Burkholderiales (0.99) 0.125 

617 CT_July18 7 Actinobacteria (1.00) Actinobacteria (0.99) Gaiellales (0.98) 0.038 

161 CT_July18 9 Proteobacteria (0.97) Deltaproteobacteria (0.92) Myxococcales (0.76) 0.056 

853 CT_July18 6 Acidobacteria (1.00) Acidobacteria_Gp3 (1.00) Unclassified 0.024 

136 CT_July18 7 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.286 

345 CT_July18 1 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.061 

15 CT_Aug18 3 Actinobacteria (1.00) Actinobacteria (1.00) Actinomycetales (1.00) 0.701 

105 CT_Aug18 1 Proteobacteria (1.00) Alphaproteobacteria (1.00) Rhizobiales (0.99) 0.113 

65 CT_Dec18 4 Thermotogae (0.14) Thermotogae (0.14) Petrotogales (0.14) 0.213 

183 CT_Dec18 3 Bacteroidetes (0.33) Cytophagia (0.13) Cytophagales (0.13) 0.137 

131 CT_Dec18 3 
Gemmatimonadetes 

(0.92) 
Gemmatimonadetes (0.92) Gemmatimonadales (0.92) 0.069 

181 CT_Dec18 0 Nitrospirae (0.96) Nitrospira (0.96) Nitrospirales (0.96) 0.166 

196 CT_Dec18 6 Chloroflexi (0.35) Ktedonobacteria (0.30) Ktedonobacterales (0.30) 0.215 

Network hubs have Zi greater than 2.5 and Pi greater than 0.62. 

No TGP networks had networks hubs. 
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Table S3.8 Indexes for determining network stability  

 

Index Process Formula Details 

Robustness simulated 

 

The abundance-weighted mean interaction strength (wMIS) 

of node i where bj is the relative abundance of species j and sij 
is the association strength between species i and j, which is 

measured by Pearson correlation coefficient. After removing 
the selected nodes from the MEN, if wMISi = 0 (all the links 

to species i have been removed) or wMISi < 0 (not enough 
mutualistic association between species i and other species for 

its survival), node i was considered extinct/isolated and thus 
removed from the network. This process continued until all 

species had positive wMISs. 

Vulnerability  simulated 

 

The vulnerability of a network is indicated by the maximal 
vulnerability of nodes in the network where E is the global 

efficiency and Ei is the global efficiency after removing node 
i and its entire links. Next, the global efficiency of a graph 

was calculated as the average of the efficiencies over all pairs 
of nodes where d(i,j) is the number of edges in the shortest 

path between node i and j. 

Node 

constancy 
empirical 

 

Constancy measures temporal stability of species and is 
defined as μ/σ, where μ is the mean of abundance over time 

and σ is the standard deviation. Here, we constancy was 
calculated as the constancy of node i when μi is the mean and 

σi  is the standard deviation of abundances of species i in the 
networks from different timepoints. The abundance of species 

i at a certain time point was positive only if species i was in 
the MEN at that time point. Otherwise, the abundance of 

species i was considered zero for that time point. For σi = 0, 
the constancy was not finite and thus removed from 

subsequent analyses. 

Link 

constancy 
empirical 

 

Link constancy was adapted from node constancy and 

calculated in a similar manner. lij+=1 if nodes i and j were 

positively linked in a network, lij-=1 if nodes i and j were 

negatively linked in the network, and lij+= lij-= 0 is there was 
no link between i and j. For example,  μlij+ is the mean and 

σlij+ is the standard deviation of lij+ in all the networks from 
different time points, and μlij- and σlij- are the mean and 

standard deviation of lij- in all the networks from different 
timepoints. For σlij+, the constancy of lij+ was not finite and 

thus removed from subsequent analyses, and similarly for lij-. 

Node 

persistence 
empirical 

 

The node persistence is defined as the proportion of 

coexisting species (over the total number of species) at an 
ecological regime. It was calculated as the he percentage of 

nodes present in the network in multiple consecutive months 
where v is the number of samples taken from the same field 

plot at multiple consecutive time points. S is the total ASV 
number in the networks, and δi,k is a Dirac delta function with 

δi,k=1 if the abundance of ASV k in sample i is larger than 0 
and δi,k=0 if ASV k is not present in sample i. 

Compositional 

stability 
empirical 

 

The compositional stability evaluates the change in 
community structure over time. Compositional stability was 

calculated for a microbial community in the networks using 
the sample x ASV matrix where v is the number of samples 

taken from the same field site/plot at multiple consecutive 
timepoints. S is the total number of ASVs in the network. yi,k 

is the abundance of ASV k in sample i.  If community 
structure has no change (yi,k = min(𝑖) yi,k) the stability index is 

equal to 1. If community structure is completely different 

among timepoints (min(𝑖) yi,k=0) the stability index is 0.  

  

wMIS𝑖 =  
∑j≠𝑖 𝑏𝑗 𝑠𝑖𝑗

∑j≠𝑖 𝑏𝑗
 

max (
𝐸 − 𝐸𝑖

𝐸
) 

𝐸 =
1

𝑛(𝑛 − 1)
∑

1

𝑑(𝑖, 𝑗)
𝑖≠𝑗

 

𝜇𝑖
𝜎𝑖

 

𝑙𝑖𝑗− =
𝜇𝑙𝑖𝑗−
𝜎𝑙𝑖𝑗−

 𝑙𝑖𝑗+ =
𝜇𝑙𝑖𝑗+
𝜎𝑙𝑖𝑗+

 

∑ ∏ 𝛿𝑖,𝑘
𝑣
𝑖=1

𝑆
𝑘=1

𝑆
 

√
∑ 𝑣(min

𝑖
𝑦𝑖,𝑘)

𝑆
𝑘=1

∑ ∑ 𝑦𝑖,𝑘
𝑣
𝑖=1

𝑆
𝑘=1
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Appendix B : Supplementary Figures 

 

 
 

Figure S2.1 Relative abundance of dominant bacterial phyla in soils separated by land 

use and season. Based on proportional frequencies of DNA sequences classified at the 

phylum level. Fields include conventionally tilled (CT) wheat, no-till (NT) canola, Old 

World Bluestem (OWB) pasture, and native tallgrass prairie (TGP). 
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Figure S2.2 Canonical correspondence analysis (CCA) for each land use type. 

Redundant variables were removed if present (VIF > 15). a) conventionally tilled (CT) 

wheat, b) no-till (NT) canola, c) Old World Bluestem (OWB) pasture, d) native tallgrass 

prairie (TGP). All CCA formula significant (p < 0.05). 
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Figure S2.3 Unique OTUs across different land uses (a) and seasons (b-e). The 

percentage of unique OTUs found in each season presented using a Venn diagram.  
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Figure S2.4 Differences in relative gene abundance during August and May between the 

tallgrass prairie (TGP) and CT wheat function community based on response ratio. All 

genes greater than 0.0 were greater in the prairie community. All genes present 

significantly different by 90% confidence interval, * 95% confidence interval, and ** 

99% confidence interval. 
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Figure S2.5  Relationship between functions diversity, taxonomic diversity, and 

phylogenetic diversity for tallgrass prairie (TGP) and CT wheat based on Mantel test. 

Mantel test used Pearson correlations. Taxonomic diversity was based on Bray-Curtis 

distance metric and UniFrac weighted distance metric was used for phylogenetic 

diversity. GeoChip functional data was grouped by probes into main gene categories.  
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Figure S3.1 Visualization of soil microbial networks over time. MENs were constructed 

for nineteen sampling months from June 2017 – December 2018. As networks on the 

native TGP system remained relatively similar over, a single visual representation of the 

control site is outlined in a black square. The other networks depict the temporal 

differences of the nineteen MENs in the CT wheat land use. Large module with ≥10 node 

are shown in different colors, and smaller modules are shown in gray. The average K and 

modularity is shown above each network. Detailed network topological attributes are 

listed in Supplementary Table 3.1.  
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Figure S3.2 Networked community structure differences and environmental drivers. a) 

Principal coordinate analysis (PCoA) of the structure of the networked communities 

based on Bray-Curtis distance. Networked communities were significantly different (p ≤ 

0.05) based on land use and sampling month according to three non-parametric 

permutations tests found in Table 1. Red circles represent networks under CT wheat land 

use and blue squares represent native TGP (control) land use. b) Variation partitioning 

analysis (VPA) based on significant (p ≤ 0.01) CCA model. Soil category includes soil 

temperature, soil water content (SWC), soil pH, topsoil nitrate (NO3
-), ammonia (NH4

+), 

soil organic matter (OM), and available phosphorus (P). Climate category includes 

average rainfall and average air temperature. Details of the CCA model can be found is 

Supplementary Table 3.3.  
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Figure S3.3 Detecting the contributions of environmental filtering or dispersal limitation 

to the observed network links using the Link Test for Environmental filtering or 

Dispersal limitation (LTED). a) The links in the MENs were tested with the 12 soil and 

climatic variables at the network correlation cutoff (St = 0.96) and a lower correlation 

threshold cutoff of |r|  0.8. In short, if a link between two taxa was caused by their 

covariation with environmental conditions, strong correlations between each taxon and 

the responsible environmental variable should be observed. b) If dispersal limitation 

simultaneously affects the abundance distribution of two species across space, the 

abundances of both species are expected to covary with spatial distance. Therefore, 

assuming dispersal limitation was the only factor governing community assembly, the 

farther away the sampling locations, the larger difference in the observed species 

abundances. For a pair of linked nodes in a network, it was tested whether significant (p  

0.05, r > 0) and significant strong positive (p  0.05, r  0.5) correlations were observed 

simultaneously between the pairwise distance among sampling locations, and the 

difference in their relative abundance among samples based on Pearson correlation. 
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Figure S3.4 Taxonomic composition of networked microbial communities under CT 

wheat cropland use and native prairie land use. Microbial community relative abundance 

at the a) phylum level and b) class level. Detailed changes between taxa based on land 

use conversion for long-term CT wheat land use in Supplementary Table 2. Based on 

Mann-Whitney U test, Acidobacteria, Thaumarchaeota, and Verrucomicrobia significant 

decreased on average under cropland use. While Proteobacteria, Cyanobacteria, 

Chloroflexi, Bacteroidetes, and Actinobacteria significantly increased on average under 

cropland use. Overall, the relative abundance of eight phyla and eleven classes that 

significant increased (p ≤ 0.05) under cropland use.  
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Figure S3.5 Additional temporal dynamics of network stability. a) Robustness measured 

by removing 5 module hubs from each of the empirical MENs. For April 2018, only 4 

module hubs removed as that was the total module hubs in CT wheat for that network. 

CT wheat shown in red and native TGP shown in blue for all graphs. Error bars represent 

the standard deviation of 100 repetitions of the simulation. Robustness for each timepoint 

was compared between CT wheat and native TGP land use using a two-sided t-test. 

Significant differences are indicated by “*” for p ≤ 0.05,  “**” for p ≤ 0.01 , and “***” 

for p ≤ 0.001. b) Compositional stability of the networked community over time shown as 

consecutive monthly comparisons. Overall compositional stability between CT wheat and 

native TGP land use compared using Mann-Whitney U Test. c) Spearman correlation of 

compositional stability and node persistence for CT wheat and native TGP land use. 

Spearman’s correlation coefficient and p-value shown in graph. d) Network node 

constancy. Each box shows the constancy distribution of all node, averaged between land 

uses. e) Unweighted network link constancy. Each box shows the constancy distribution 

of the links in the networks under each land use. For c and d, Mann-Whitney U Test was 

used to compare differences in constancy between the CT wheat and native TGP land 

use. 
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