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Abstract

This article develops a new approach to explain why risk factors constructed from
index option returns are priced in the stock market. We decompose an option-based
factor into three main components and identify the one responsible for the beta–re-
turn relationship. Applying this method to the bear risk factor proposed by Lu and
Murray reveals that the negative correlation between bear betas and stock returns
does not reflect systematic risk premia. Instead, it represents an anomaly closely
related to the betting-against-beta puzzle. We trace the root of this anomaly to dis-
agreement concerning the aggregate stock market. Our work reconciles the conflict-
ing evidence concerning downside risk by showing that neither ex-post nor ex-ante
downside risk is priced in the cross-section of stocks while making a methodological
contribution that facilitates more accurate interpretation of option-based risk factors
in future research.
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1. Introduction

The Capital Asset Pricing Model’s (CAPM) inability to explain the cross-section of

expected stock returns has motivated numerous studies searching for alternative sources of

systematic risk. One strand of such research focuses on market betas measured during mar-

ket downturns. Early studies such as Roy (1952) and Bawa and Lindenberg (1977) have

argued that downside betas should play a significant role in determining asset prices. More

recently, Ang, Chen, and Xing (2006) show in a model with loss-averse investors that

downside betas should be positively correlated with expected stock returns even in the pres-

ence of CAPM betas and provide evidence to support this argument. Lettau, Maggiori, and

Weber (2014) further show this extends to multiple asset classes. Both studies focus on the

contemporaneous relationship between downside betas and asset returns.
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The evidence on positive downside risk premium, however, has been called into ques-

tion by Levi and Welch (2019) and Barahona, Driessen, and Frehen (2021), whose work

convincingly demonstrates that downside betas measured in the portfolio formation period

fail to predict downside betas in the holding period, and downside betas do not significantly

predict stock returns. The lack of persistence in downside beta seems to put the relevance of

downside risk in asset management in doubt. In a similar vein, van Oordt and Zhou (2016)

and Kapadia et al. (2019) go beyond the basic semi-covariance framework to argue that

downside risk is not priced with a positive premium.

Motivated by an asset pricing model with time-varying probabilities of negative jumps,

Lu and Murray (2019) (hereafter, LM) argue that the standard CAPM needs to be aug-

mented by a factor that captures the risk of deep market declines. Their empirical findings

suggest that the exposure to bear market risk is a strong determinant of expected stock

returns. Empirically, LM construct an approximate Arrow–Debreu (A–D) security from

SPX options to track the risk-neutral probability of the market index falling below a par-

ticular threshold on the downside. They show that stocks with high loadings on the A–D se-

curity returns tend to earn low expected returns, consistent with a sizable premium being

paid to hedge the probability of an upcoming market crash.1 From the theoretical stand-

point, LM’s findings seem to point to the importance of ex-ante market downside risk, as

opposed to the ex-post, or realized, downside risk emphasized by Ang, Chen, and Xing

(2006), in explaining expected stock returns. Their findings also seem to be free of the two

major issues of Ang, Chen, and Xing’s (2006) evidence concerning ex-post downside risk

premium: First, bear betas predict future stock returns; second, bear betas are statistically

persistent over time.

The importance of ex-ante tail or disaster risk in asset pricing has been well established

in theory. Gabaix (2012) and Wachter (2013) argue that time-varying disaster risk provides

a unified explanation for several asset pricing puzzles. Before LM’s work, another influen-

tial study by Kelly and Jiang (2014) utilizes the cross-sectional of stock returns to estimate

the shape of the left tail of the stock return distribution. They show that a stock’s exposure

to this tail risk is negatively correlated with its expected return, pointing to a premium for

hedging ex-ante tail risk. Taken together, existing evidence appears to strongly support the

notion that exposure to ex-ante downside risk plays an important role in shaping the cross-

section of expected stock returns.

In this work, we provide a careful assessment of the existing evidence. In particular, we

use a decomposition method to show that, although the bear risk factor is meant to capture

ex-ante downside risk, it in fact involves three major sources of systematic risk. The factor

can be decomposed into three components,2 and loadings on different components are asso-

ciated with drastically different risk exposures and expected returns. Surprisingly, the de-

composition reveals that the low average returns of the high bear beta stocks, which are

designed to hedge bear market risk, are in fact earned by a group of stocks that carry not

only high overall market risk but also countercyclical market risk. These stocks do not

1 In the following, we refer to the time series of the A–D security returns as the bear risk factor and

the loading on the factor as bear beta.

2 To perform a complete decomposition of the bear risk factor, we also need a fourth factor, which

we call residual component. We show that this component accounts for a small portion of the var-

iations of the bear risk factor and has no pricing power. In addition, its economic meaning is not as

clear as the other components. To save space, we do not emphasize it in our exposition.
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hedge against downside risk at all, be it ex-ante or ex-post. If anything, we find that they

are particularly exposed to realized downside risk. Therefore, the bear risk premium is not

a compensation for systematic risk and should be viewed as an asset pricing anomaly.

A joint analysis of the bear risk factor and the tail risk factor reveals little evidence that

exposures to these factors help select stocks that hedge any form of jump or disaster risk.

Therefore, we argue that no existing evidence convincingly supports a rational asset pricing

theory where investors pay a premium for stocks that hedge some form of systematic risk

on the downside or in the left tail.

The anomaly we discover shares the same spirit as Kapadia et al. (2019), but the overlap

between the two anomalies is not particularly large, which suggests that negative relation-

ships between risk and reward could arise for various reasons. Empirical evidence on negative

risk–reward relationships is important to our understanding of the limitations of rational

expectations theory. The most widely studied example is perhaps the betting-against-beta

(BaB) puzzle popularized by Frazzini and Pedersen (2014). We demonstrate that the compo-

nent of the bear risk factor that is responsible for its pricing power actually generates a deep-

ened version of the BaB puzzle. Controlling for the BaB factor does not resolve this puzzle,

nor do several existing resolutions for the BaB puzzle. Our analysis suggests that the aggre-

gate disagreement channel proposed by Hong and Sraer (2016) provides the best fit for the

current anomaly. In particular, our regression models in Section 8.1 imply that if there were

no aggregate disagreement in the market, then the anomaly would have changed sign and be-

come consistent with canonical asset pricing theory; hence, the puzzle can be resolved.

To dissect the bear risk factor, our empirical design starts from the fact that option

returns are driven by changes both in the underlying asset price and implied volatilities

(IVs). Therefore, risk factors constructed from index option returns can be decomposed

into innovations driven by these two forces. More specifically, the bear risk factor tracks

the probability of the market index falling below a predetermined threshold, and this prob-

ability changes for two main reasons.

First, when the index level falls (rises), the likelihood of it falling below the threshold by

the option expiration day increases (decreases), assuming that the market index return dis-

tribution remains unchanged. In addition, due to the convex relationship between option

prices and the underlying price, the impact of a market loss is larger than the impact of a

market gain of the same magnitude, leading to an asymmetric exposure of the factor return

to the market return. Despite the different empirical implementations, this type of variation

is conceptually close to the ex-post downside risk studied by Ang, Chen, and Xing (2006).

Second, holding the index level constant, the prospect of entering a bear market could

change when the index return distribution changes. Since the distribution of the underlying

asset return enters its option prices via IVs, this component can be captured by fixing the

index level and only allowing the IVs to drive the bear risk factor. This component reflects

changes in ex-ante downside risk.3

When calculating an approximate A–D security return,4 we re-calculate the option pri-

ces at the end of each return period using the Black and Scholes (1973) formula by letting

3 In Section 1 of the Supplementary Appendix of this paper, we also design bear risk factors that are

only exposed to ex ante downside risk even without decomposition and arrive at similar conclu-

sions based on those factors.

4 An A–D security is approximated by a bearish spread that involves buying an OTM put and writing

a further OTM one.
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the index level stay constant and the IVs take their actual values at the end of the period.

The A–D security returns based on such fictitious ending option prices constitute the “IV-

driven bear risk factor,” representing changes in the probability of entering a bear market

due to changing index return distribution. The other component is calculated in a similar

manner but with the IVs fixed and the index level allowed to change, and it is called the

“index-driven bear risk factor.”

Although the index-driven factor is highly correlated with the index return itself, they

differ in two important aspects. First, the factor is a convex function of the index return,

inheriting the convexity of the option pricing function. Second, the factor return, just like

any option return, is a scaled version of the index return. Consider an at-the-money (ATM)

put option whose delta is fixed at �0.5. As its IV increases, the same market return leads to

option returns of smaller magnitudes. To separate these two effects, the index-driven com-

ponent is further decomposed into a “linear” component and a “non-linear” component by

separating the first-order term from the higher-order ones in the Taylor series. The linear

component models the scaling effect, and the nonlinear one models the convexity.

We show that the linear component of the index-driven bear risk factor is of particular

importance. As explained in detail in Section 4.3, CAPM augmented by this linear compo-

nent amounts to a time-varying market beta model, where stocks with high loadings on the

linear component tend to carry high systematic risk when the option-implied market vola-

tility is high. To the extent that IVs tend to increase as the market declines, these stocks can

be particularly sensitive to market downturns. Consistent with this intuition, we find that

high linear-beta stocks tend to carry high market risk when the VIX index is high, and they

have performed particularly poorly during the market downturns in our sample.

Importantly, it turns out that these high linear-beta stocks earn low average returns and ac-

count for the majority of the bear risk premium, a situation clearly at odds with most asset

pricing models populated by rational agents. This finding shows that the bear risk premium

is not a compensation for bear market or downside risk; instead, it reveals a striking high-

risk-low-return anomaly.

In contrast to the linear factor, loadings on the IV-driven factor and the nonlinear

index-driven factor do not significantly predict stock returns, which rules out two potential

explanations of the bear risk premium: First, the IV-driven component’s lack of pricing

power suggests that changes in the probability of a future market downturn that is solely

caused by the changes in the index return distribution are not highly priced. In particular,

ex-ante downside risk exposure is not price. Second, the nonlinear index-driven compo-

nent’s lack of pricing power confirms that the premium is not a compensation for protec-

tion against realized downside risk. Regarding the second point, the nonlinear component

is highly convex in the underlying index return; therefore, stocks with high and positive

loadings on this factor can be expected to have relatively low downside betas. As we show

in detail in Section 4.2, the nonlinear component indeed generates such favorable asymmet-

ric market betas, both in the portfolio formation period and, to a lesser degree, in the hold-

ing period. However, we find no evidence that this factor is priced in the stock market,

which further confirms that ex-post downside risk is not priced in the cross-section of

stocks.

Our factor decomposition is similar to the one adopted by Israelov and Kelly (2017),

who focus on improving forecasts of option prices. It is also closely related to the research
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of Cremers, Halling, and Weinbaum (2015), who develop tradable option factors for

gamma and vega risks. In our decomposition, the components related to these risks are not

tradable. We argue that there is a tradeoff in choosing between tradable and nontradable

factors. On the one hand, our decomposition method is more flexible and produces factors

that are conceptually clean and allow us to reach non-ambiguous conclusions regarding the

source of the pricing power. On the other hand, we would not be able to compare the risk

premia earned in the equity market and the options market. However, since our focus here

is to understand the relationship between factor loadings and expected stock returns, and

the evidence clearly shows that the relationship does not reflect a systematic risk premium,

it would make little sense to compare the “risk premia” measured from the two markets.

Our research points to the importance of correctly understanding a beta–return relationship

before questioning the consistency of pricing across different markets. If we cannot be sure

of the source of the systematic risk embedded in the factor that causes its pricing power,

then comparing a cross-sectional risk premium and its factor counterpart would not be a

meaningful exercise.

Although we do not prioritize tradability in our factor design, it is important to point

out that the component, linear index-driven factor, that actually accounts for all the pricing

power of the bear risk factor is the only tradable component in the decomposition. It

amounts to investing in the market index with a time-varying weight that increases with the

implied market volatility—the opposite of the volatility-managed portfolio proposed by

Moreira and Muir (2017).

More generally, our analysis demonstrates that, although certain option-based factors

carry clear economic intuition on their own, using them as asset pricing factors to explain

expected stock returns is far from straightforward. Failing to recognize the exact source of

risk being priced could lead to erroneous interpretations that represent the polar opposite

of the truth. Recently, forceful strides have been made in the asset pricing research on the

front of correctly assessing the statistical significance of empirical findings (see Harvey, Liu,

Zhu, 2015 and Chordia, Goyal, and Saretto, 2020). Our work serves as a reminder that

correctly interpreting a statistically significant result is just as important to asset pricing

research.

While our main objective is to provide a better understanding of the evidence on the

downside risk premium, we also add new evidence to the growing literature on the low-risk

anomalies, where prominent examples include the BaB anomaly and idiosyncratic risk

anomaly. Both market beta and idiosyncratic risk are salient features of stocks, and can eas-

ily attract investors seeking leverage or lottery-like stocks and cause mispricing. It is inter-

esting to find that a subtle feature such as the loading on the linear component has even

stronger pricing power than CAPM beta. It appears that some investors fail to understand

the risk dynamics of certain stocks and are surprised by their poor performance during mar-

ket downturns.

The rest of the article is organized as follows. Section 2 reviews related literature.

Section 3 describes data sources and introduces the factor decomposition. Section 4 identi-

fies the component of the bear risk factor that is responsible for its pricing power. Sections

5 and 6 provide detailed analyses of the risk exposures of the portfolios sorted on the bear

risk factor and its components. Section 7 analyzes bear beta portfolio’s ability to hedge

jump risks. Section 8 examines whether existing resolutions of the BaB puzzle help explain

the current anomaly. Section 9 provides further discussions and robustness tests. Section 10

concludes.
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2. Related Literature

Our article contributes to the broad literature on asset pricing factors. In particular, a grow-

ing group of studies propose factors constructed from option prices. Ang et al. (2006) show

that betas with respect to changes in the VIX index negatively predict stock returns. Barras

and Malkhozov (2016) provide an interesting comparison between the volatility risk pre-

mium measured in the stock market and that in the options market. Barinov (2018) argues

that volatility risk exposure can help explain the low returns of lottery-like stocks. Jones

(2006) uses the exposure to volatility risk and jump risk to explain the average returns of

index options. Chang, Christoffersen, and Jacobs (2013) show that changes in risk-neutral

skewness are also priced in the stock market. Cremers, Halling, and Weinbaum (2015) con-

struct a jump risk factor by taking long–short positions in a pair of straddles to offset their

vega risks and show that this factor is priced in the stock market. Most closely related to

our work is Lu and Murray (2019), who propose a bear risk factor and find that bear betas

negatively predict stock returns. Option-based factors are not only important in under-

standing asset pricing theories, but also in evaluating hedge fund performances, as hedge

fund returns tend to be option-like. Glosten and Jagannathan (1994) are among the first to

introduce this approach. Fung and Hsieh (2015) suggest using look-back straddle returns as

the benchmark to evaluate the performances of trend followers. Agarwal, Arisoy, and Naik

(2017) propose a volatility-of-volatility factor and show that the exposure to it is an im-

portant determinant of hedge fund returns.

Risk-neutral distributions extracted from option prices are also widely studied outside

the framework of asset pricing factors. Examples of methodological contributions include

Bakshi and Madan (2000), Bakshi, Kapadia, and Madan (2003), Carr and Wu (2008),

Chang et al. (2011), and Buss and Vilkov (2012). Risk-neutral moments are often shown to

be good predictors of aggregate market returns. Bollerslev, Tauchen, and Zhou (2009)

show that the variance risk premium positively predicts market returns. Bollerslev,

Todorov, and Xu (2015) and Andersen, Fusari, and Todorov (2015) show that the tail risk

premium predicts market returns. Fan, Xiao, and Zhou (2020) show that the skewnness

and kurtosis risk premia predict market returns. Bakshi, Panayotov, and Skoulakis (2011)

show that the forward variances predict market returns and economic activities.

Risk-neutral moments are also strong predictors in the cross-section. Goyal and Saretto

(2009) show the difference between the IV and historical volatility of a stock negatively pre-

dict straddle returns. An et al. (2014) and Cao et al. (2021) show predictive power on stock

returns and bond returns, respectively.

Our work is also closely related to another strand of research on asset pricing factors

that develops variants of CAPM in an attempt to restore the theoretically appealing beta–

return relationship. In particular, Roy (1952) and Bawa and Lindenberg (1977) provide an

early theoretical framework to emphasize the importance of downside risk. Ang, Chen, and

Xing (2006) examine the relationship between downside betas and average stock returns

and argue that downside betas are associated with a positive risk premium. Lettau,

Maggiori, and Weber (2014) document the downside risk premium in multiple asset

classes. However, Levi and Welch (2019) and Barahona, Driessen, and Frehen (2021) show

that semicovariance-based downside betas are not persistent; therefore, stocks with low

past downside betas do not perform particularly well during subsequent market downturns.

This transient nature of downside betas makes it questionable whether the contemporan-

eous relationship between downside betas and average returns can be interpreted as a risk
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premium. van Oordt and Zhou (2016) and Kapadia et al. (2019) construct alternative

downside risk measures and show that the downside risk premium is close to zero and

negative, respectively.

Our article develops a decomposition of a risk factor in order to reach a deeper under-

standing of the empirically observed beta–return relationship. This approach is inspired by

previous studies such as that of Campbell and Vuolteenaho (2004), which decomposes the

market return into a cash-flow component and a discount-rate component. In options re-

search, Israelov and Kelly (2017) adopt a similar decomposition to our first-tier one to bet-

ter forecast option price distributions. Schneider (2019) provides a decomposition to better

understand what drives the aggregate market returns and finds downside risk to be particu-

larly important.

We also contribute to the large literature on low-risk anomalies. Well-known examples

in this category include the idiosyncratic volatility puzzle in Ang et al. (2006) and the BaB

anomaly in Frazzini and Pedersen (2014). Schneider, Wagner, and Zechner (2020) argue

that these anomalies share the same root of coskewness and can be explained by the ex-

ante skewness factors.

3. Data Sources and Factor Construction

3.1 Data Sources

The information on SPX options from January 1996 to December 2017 is from

OptionMetrics. Because we require 12 months of returns in each regression, the option fac-

tor betas are available from December 1996 to December 2017. Stock prices, returns, and

trading volumes are from The Center for Research in Security Prices. Information on firm

fundamentals is from Compustat. The asset pricing factors in the Fama–French–Carhart

model are downloaded from Kenneth French’s website. We also obtained several asset pric-

ing factors directly from the authors who proposed the factors. These include the risk-

neutral skewness factor in Chang, Christoffersen, and Jacobs (2013) provided by Peter

Christofferson, the tail risk factor in Kelly and Jiang (2014) provided by Bryan Kelly, the

BaB factor in Frazzini and Pedersen (2014) provided by Andrea Frazzini, the jump risk fac-

tor in Cremers, Halling, and Weinbaum (2015) provided by David Weinbaum, the MAX

factor in Bali et al. (2017) provided by Turan Bali, the safe-minus-risky (SMR) factor in

Kapadia et al. (2019) provided by Nishad Kapadia, and the ex-ante skewness factors in

Schneider, Wagner, and Zechner (2020) provided by Paul Schneider. We obtained the divi-

dend yields and credit spreads from Amit Goyal’s website, and these data are developed by

the authors for Welch and Goyal (2007). We thank these authors for generously sharing

their data.

3.2 The Bear Risk Factor

We construct the bear risk factor following the method of LM. To approximate an Arrow–

Debreu security that captures the probability of the S&P 500 index falling below a

predetermined threshold, a bearish spread is constructed at the end of each trading day as

follows. It includes long positions in 1-month SPX put options whose strike prices fall

between 0.75 and 1.25 standard deviations (SDs) below the fair price of an S&P 500

futures contract expiring on the same day as the options. The fair price of the futures con-

tract is given by St � eðr�yÞ�ðT�tÞ, where St is the S&P 500 index level, r and y are the annual-

ized interest rate and dividend yield of the index, and T�t is the time to expiration

Rethink Evidence of Downside Risk Premium 7
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expressed as a fraction of a year. The SD of index returns is calculated using the VIX index

as VIXt=100 �
ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

. When multiple available strike prices fall into the range, the options

are weighted by their trading volume on the day. In a similar manner, the bearish spread

also involves short positions in SPX puts whose strike prices fall between 1.5 and 1.75 SDs

below the fair price of the S&P 500 futures. Each bearish spread is held for five trading

days, leading to overlapping 5-day returns at the daily frequency.

3.3 Factor Decomposition

We first describe how to decompose the return of a single put option and then extend the

method to decompose bearish spread returns.

3.3.a Put options

We begin by decomposing the return of a put option into an index-driven component,

rPut;Index, and an IV-driven one, rPut;IV. A 5-day return of the option can be written as:

rPut ¼
Ptþ5

Pt
� 1 ¼ BSðStþ5;K; IVtþ5; rtþ5; ytþ5;T � t � 5Þ

BSðSt;K; IVt; rt; yt;T � tÞ � 1

where P denotes the put option prices, BSð�Þ refers to the Black–Scholes formula, S denotes

the index levels, K is the strike price, IV denotes the Black–Scholes IVs, r denotes the risk-

free rates, y denotes the dividend yields, and T represents the expiration day.

The index-driven component is obtained by replacing IVtþ5 with IVt in the ending price

Ptþ5, that is,

rPut;Index ¼
BSðStþ5;K; IVt; rtþ5; ytþ5;T � t � 5Þ

BSðSt;K; IVt; rt; yt;T � tÞ � 1:

One can certainly set the values of all the other inputs to their starting values and only

let the index level drive the return. But our analysis shows that doing so has little impact on

the results.

Similarly, the IV-driven component is obtained by keeping the index level constant, that

is,

rPut;IV ¼
BSðSt;K; IVtþ5; rtþ5; ytþ5;T � t � 5Þ

BSðSt;K; IVt; rt; yt;T � tÞ � 1

Because rPut;Index and rPut;IV do not form a complete decomposition of rPut, we denote the

residual variation by rPut;Residual, which is equal to rPut � rPut;Index � rPut;IV. This component

captures the contribution from the interaction between the changes in the index level

and IV.

Next, we further decompose rPut;Index into a linear component, rPut;L, and a nonlinear

one, rPut;NL. The linear component is given by rPut;L ¼ Dt � ðStþ5 � StÞ=Pt, where Dt is the

put option delta at the end of Day t. The nonlinear component is defined as the difference

between rPut;Index and rPut;L. In this decomposition, both rPut;L and rPut;NL are only driven by

the contemporaneous index return, and rPut;NL is responsible for all the convexity.

3.3.b Tradability

In the four-way decomposition of the tradable factor rPut into rPut;IV; rPut;L; rPut;NL, and

rPut;Residual, the only tradable component is rPut;L, because it is a scaled index return, and the
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scaling factor is known at time t. As we show in Section 4.3, investing in rPut;L is equivalent

to scaling up the weight in the market index when the implied market volatility goes up.

3.3.c Bearish spreads

The above decompositions can be applied to bearish spread returns. Since the price of a

bearish spread is the weighted sum of several put option prices, its return from t to tþ5 can

be written as: rBear ¼
P

i
wiPi;tþ5P
i
wiPi;t

� 1, where w’s are the weights based on trading volume.

The index-driven component, rBear;Index, is obtained by replacing each Pi;tþ5 with

BSðStþ5;Ki; IVt; rtþ5; ytþ5;T � t � 5Þ. The IV-driven component, rBear;IV, is obtained by

replacing Pi;tþ5 with BSðSt;Ki; IVtþ5; rtþ5; ytþ5;T � t � 5Þ. The residual component

rBear;Residual ¼ rBear � rBear;IV � rBear;Index.

The linear component, rBear;L, is defined as rBear;L ¼
P

i
wiDi;tðStþ5�StÞP

i
wiPi;t

and the nonlinear

component, rBear;NL, is the difference between rBear;Index and rBear;L.

3.3.d Summary statistics

The summary statistics of the option-based factors are reported in Table I, Panel A. The top

half of the panel covers the bear risk factor and its components, and the bottom half covers

ATM SPX put option returns and their components. Both the bearish spreads and ATM

SPX put options have low average returns at �9.13% and �7.21% per five trading days,

which reflects investors’ willingness to pay a premium to hedge against market downturns

or changing investment opportunities. The second row shows that the IV-driven component

only accounts for a small portion of the variations in the full bear factor, but its contribu-

tion to the average return is important. Rows 3–5 show that the index-driven component

derives most of its average return and volatility from its linear component. The sixth row

shows that the residual component has the lowest contribution to the variation in the bear

risk factor. The next six rows show similar patterns for put returns and their components.

In the regression models that calculate the loadings on these factors, the factors are first

divided by their SDs and then multiplied by the SD of the market return in order to be com-

parable to the market factor itself.

The upper half of Panel B reports the correlation coefficients between the bear factor, its

four components, and the market portfolio return, denoted by rm. The correlation between

the bear factor return and market return is fairly strong at �0.804, which is mainly

accounted for by the index-driven component, especially its linear component. The second

column shows that the full bear risk factor is highly correlated with its linear index-driven

component, while the correlations with the other two components are much weaker. The

lower half of the panel shows the same pattern for put returns and their components.

Together, Panels A and B show that the linear components are the most important

source of variations in the bear factor and the put factor, but they do not account for a pro-

portionally large part of the average returns.

Panel C reports the coefficients of regressing each factor return on the market portfolio

return and its square. This is done to investigate the convexity of the relationships between

the option-based factors and the market factor. In the upper half of the panel, the first col-

umn shows that the bear factor is decreasing and convex in the market return, and the next

two columns show that these properties are shared by both the index-driven and IV-driven

components. The further decomposition of the index-driven component shows that its

Rethink Evidence of Downside Risk Premium 9

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/advance-article/doi/10.1093/rof/rfac006/6516548 by guest on 12 April 2022



Table I. Summary statistics

This table reports the summary statistics and other basic properties of the option-based factors

studied in the article. The main factors are the bear risk factor, rBear, and the put factor, rPut. The

former consists of returns on bearish spreads formed using SPX put options, and the latter con-

sists of returns on ATM SPX put options. Subscripts IV, Index, L, NL, and Residual indicate the

IV-driven, index-driven, linear, nonlinear, and residual components of the full factor, respective-

ly. Panel A reports averages, SDs, and the 25th, 50th, and 75th percentiles of the factor returns.

The values are reported in percentage term. Panel B reports the Pearson correlation coefficients

between the factors and their correlations with the market returns. Panel C reports the coeffi-

cients of regressing the factor returns on the market return and its square. In the parentheses

are Newey and West (1987) t-statistics with four lags.

Panel A: Option-based risk factors

Factors Mean SD 25th Pct. Median 75th Pct.

r Bear �9.13 74.41 �56.59 �28.78 14.99

rBear;IV �14.66 15.89 �24.02 �15.33 �6.02

rBear;Index �4.37 72.99 �49.91 �22.36 20.34

rBear;L �4.42 59.22 �44.09 �8.97 30.24

rBear;NL 0.03 27.88 �11.37 �6.13 3.91

rBear;Residual 9.9 9.79 5.66 8.63 13.09

r Put �7.21 58.58 �47.25 �21.21 18.39

rPut;IV �8.5 10.68 �14.32 �9.1 �3.58

rPut;Index �4.96 56.22 �43.43 �17.35 20.25

rPut;L �4.36 51.2 �39.21 �8.17 26.35

rPut;NL �0.6 14.42 �7.73 �4.22 2.47

rPut;Residual 6.26 5.48 3.85 5.31 7.8

Panel B: Factor return correlations

rm rBear rBear;IV rBear;Index rBear;L rBear;NL

rBear �0.804 – – – –

rBear;IV �0.182 0.415 – – – –

rBear;Index �0.819 0.983 0.274 – – –

rBear;L �0.888 0.910 0.181 0.932 – –

rBear;NL �0.244 0.625 0.334 0.624 0.297 –

rBear;Residual 0.295 �0.424 �0.561 �0.440 �0.328 �0.454

rm rPut rPut;IV rPut;Index rPut;L rPut;NL

rPut �0.852 – – – –

rPut;IV �0.219 0.427 – – – –

rPut;Index �0.861 0.991 0.322 – – –

rPut;L �0.889 0.952 0.226 0.968 – –

rPut;NL �0.180 0.463 0.444 0.441 0.201 –

rPut;Resicual 0.162 �0.335 �0.720 �0.306 �0.203 �0.465

Panel C: Factor returns regressed on market returns

rBear rBear;IV rBear;Index rBear;L rBear;NL rBear;Residual

Intercept �0.10 �0.14 �0.06 �0.01 �0.05 0.10

(�7.81) (�44.81) (�4.65) (�1.45) (�6.28) (54.3)

(continued)
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convexity comes from the nonlinear component. The lower half of the panel shows the

same patterns for put returns.

4. Tracing the Source of the Bear Factor’s Predictive Power

LM show that bear betas negatively predict stock returns and interpret this relationship as

evidence supporting the prediction of a theoretical model, where rational and risk-averse

investors pay a premium to hedge against bear market risk. Their argument, although very

compelling, is not conclusive because the bear risk factor is a convolution of several sources

of variations, and the risk premium-based interpretation implies that loadings on some of

these variations should be primarily responsible for the beta–return relationship. We exam-

ine this issue using the decompositions introduced in Section 3.3.

4.1 Index-Driven Component versus IV-Driven Component

We first replicate the main results of LM regarding the bear risk factor and then re-evaluate

the results after replacing the bear risk factor with either its IV-driven component or index-

driven component. The IV-driven component captures time variations in the risk-neutral dis-

tribution of the S&P 500 index returns. Therefore, loadings on this component potentially re-

flect the stocks’ ability to hedge against such variations. If the bear risk premium can be

largely attributed to this component, then it is consistent with investors paying a premium to

hedge changing investment opportunities. On the other hand, if the index-driven component

is priced, then we must consider alternative explanations. Considering that the index-driven

component is a convex function of the index return, one possibility is that stocks with high

loadings on this component provide a good hedge against realized downside market risk.

To form bear beta portfolios, we sort stocks into deciles based on their bear betas at the

end of each month. The bear beta of a stock is calculated by running the following two-

Table I. Continued

Panel C: Factor returns regressed on market returns

rBear rBear;IV rBear;Index rBear;L rBear;NL rBear;Residual

rm �23.14 �1.14 �23.10 �21.18 �1.93 1.10

(�30.96) (�7.81) (�30.69) (�34.86) (�4.29) (8.71)

r2
m 85.12 5.48 85.86 3.09 82.68 �6.11

(3.52) (2.73) (3.56) (0.17) (6.47) (�2.81)

R2 0.682 0.036 0.708 0.788 0.296 0.097

rPut rPut;IV rPut;Index rPut;L rPut;NL rPut;Residual

Intercept �0.07 �0.09 �0.05 �0.01 �0.03 0.06

(�6.62) (�37.25) (�4.73) (�1.69) (�7.76) (50.97)

rm �19.80 �0.91 �19.22 �18.51 �0.71 0.33

(�34.61) (�8.67) (�34.94) (�35.79) (�3.1) (5.81)

r2
m 54.19 8.01 50.46 2.59 47.87 �4.28

(2.8) (3.42) (2.73) (0.16) (6.61) (�3.49)

R2 0.747 0.062 0.761 0.790 0.307 0.042
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factor5 regression model using daily observations of overlapping 5-day returns from the

prior 12 months:

ri ¼ ai þ bm;i � rm þ bBear;i � rBear þ ei (1)

where ri is the stock return, rm is the market portfolio return and rBear is the bear factor re-

turn. The bear factor is scaled to have the same SD as the market factor, and the same treat-

ment applies to all the option-based factors throughout the paper. We require at least 180

daily observations in each regression and also apply the Bayes shrinkage method to reduce

estimation errors. This part of the analysis is meant to replicate the findings of LM, so we

follow their empirical methods closely.

The average monthly returns and Fama–French–Carhart alphas of the value-weighted

portfolios are reported in Table II, Panel A. The first two rows are for the 1-month holding

period, and the next two are for the 12-month holding period. All the average returns are

reported as percentages per month. For the 12-month holding period, we construct twelve

sets of decile portfolios at the end of Month t using betas measured in Months t � 12 to t �
1, t � 13 to t � 2, etc., and then take the average of the twelve portfolio returns in Month

tþ1 for each decile. The resulting portfolio returns are not overlapping. This approach has

been adopted by previous studies such as Jegadeesh and Titman (1993).

Column high-minus-low (H�L) reports the returns of the H�L portfolio, and the last

column shows their t-statistics. The first two rows show that the high bear beta portfolio

underperforms the low bear beta portfolio by 0.99% per month, and the difference in

alphas is 1.23% per month. The spread in returns diminishes over the 12-month holding

period but remains significant.

After confirming LM’s main finding, we turn to the first decomposition. The bear factor

in Equation (1) is replaced by one of its components at a time,6 which leads to

ri ¼ ai þ bm;i � rm þ bBear;Index;i � rBear;Index þ ei (2)

ri ¼ ai þ bm;i � rm þ bBear;IV;i � rBear;IV þ ei (3)

ri ¼ ai þ bm;i � rm þ bBear;Residual;i � rBear;Residual þ ei (4)

The results for the index-driven factor are reported in Table II, Panel B and those for the

IV-driven factor in Panel C. The index-driven factor delivers nearly identical results as the

bear factor itself, while betas with respect to the IV-driven factor do not significantly pre-

dict stock returns.7 In addition, Panel F confirms that the residual component has no pric-

ing power. The lack of abnormal returns associated with the IV-driven component suggests

that an Intertemporal Capital Asset Pricing Model-like model is unlikely to be the

5 It is necessary to include the market factor in the regression because the bear risk factor is highly

correlated with the market factor and using the bear factor by itself leads to similar results as the

CAPM. As we discuss our factor decompositioin, the intuition will become clear as to what the

option-based factor brings into the model.

6 We consider models with more than two factors in Section 9.2. Doing so does not change our

conclusions.

7 The result for the IV-driven component may seem at odds with existing findings on the volatility

risk premium. Part of the difference can be explained by the different empirical settings adopted

here. We provide some reconciliation with the existing studies in Section 9.2
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Table II. Monthly returns of bear beta portfolios

This table reports the average monthly returns (R ) and Fama–French–Carhart four-factor alphas

(a) of the value-weighted decile portfolios sorted on the loadings on the bear risk factor (Panel

A) or on one of its components (Panels B–F). The sample period is from January 1996 to

December 2017. All the values are reported as percentages per month. At the end of each

month, the factor loadings of a stock are calculated by running two-factor regression models

using the prior 12 months’ 5-day returns observed at the daily frequency. The two factors in

each model are the market factor and one of the option-based factors. The Bayesian shrinkage

method is then applied to reduce the errors in the estimated loadings. Stocks are sorted into de-

cile portfolios based on their loadings on the option-based factor, and each portfolio is held for

either one or 12 months. Returns of the 12-month holding period do not overlap. At the end of

Month t, we form twelve sets of decile portfolios using the loadings calculated from t � 11 to t, t

� 12 to t � 1, t � 13 to t � 2, etc., respectively. This leads to twelve returns in Month tþ 1 for

each portfolio, which are averaged to produce the Month tþ 1 return for the portfolio. Column

“H�L” contains the H�L portfolio returns formed by buying Portfolio 10 and shorting Portfolio

1, and Column “t-stat” contains their Newey–West t-statistics with one lag.

Holding period 1 2 3 4 5 6 7 8 9 10 H�L t-Stat

Panel A: Bear beta portfolios

1 month R 1.27 1.10 0.84 0.77 0.82 0.69 0.68 0.60 0.63 0.28 �0.99 �2.31

a 0.49 0.37 0.15 0.02 0.05 �0.11 �0.13 �0.27 �0.35 �0.74 �1.23 �3.60

12 months R 1.03 0.91 0.80 0.75 0.70 0.66 0.65 0.61 0.50 0.24 �0.78 �2.33

a 0.24 0.20 0.14 0.10 0.06 0.00 �0.05 �0.13 �0.29 �0.60 �0.84 �3.27

Panel B: Index-driven bear beta portfolios

1 month R 1.11 1.10 0.83 0.82 0.73 0.69 0.69 0.74 0.68 0.17 �0.95 �2.14

a 0.31 0.38 0.09 0.10 �0.04 �0.06 �0.13 �0.17 �0.23 �0.84 �1.15 �3.15

12 months R 1.04 0.93 0.80 0.73 0.68 0.66 0.65 0.55 0.45 0.28 �0.77 �2.13

a 0.26 0.22 0.13 0.10 0.03 0.00 �0.03 �0.20 �0.34 �0.58 �0.84 �2.99

Panel C: IV-driven bear beta portfolios

1 month R 0.86 0.84 0.76 0.81 0.73 0.67 0.65 0.94 0.89 0.70 �0.16 �0.55

a 0.03 0.04 0.02 0.12 �0.01 �0.14 �0.11 0.15 0.02 �0.29 �0.31 �1.09

12 months R 0.55 0.62 0.68 0.75 0.70 0.73 0.78 0.76 0.87 0.76 0.21 1.09

a �0.29 �0.11 �0.01 0.07 0.05 0.05 0.11 0.02 0.09 �0.10 0.19 0.98

Panel D: Linear index-driven bear beta portfolios

1 month R 1.14 0.91 0.86 0.75 0.68 0.69 0.69 0.71 0.56 0.30 �0.83 �1.64

a 0.40 0.15 0.16 �0.01 �0.01 �0.12 �0.11 �0.16 �0.39 �0.76 �1.16 �3.13

12 months R 1.09 0.91 0.80 0.72 0.72 0.57 0.61 0.59 0.65 0.43 �0.66 �1.63

a 0.34 0.22 0.08 0.09 0.09 �0.10 �0.08 �0.21 �0.10 �0.44 �0.77 �2.67

Panel E: Non-linear index-driven bear beta portfolios

1 month R 0.92 0.68 0.71 0.98 0.94 0.60 0.81 0.68 0.81 0.87 �0.05 �0.14

a �0.02 �0.20 �0.08 0.21 0.20 �0.14 0.02 �0.14 �0.01 �0.04 �0.02 �0.06

12 months R 0.76 0.68 0.72 0.76 0.70 0.75 0.55 0.84 0.77 0.73 �0.03 �0.12

a �0.04 �0.08 0.00 0.06 0.03 0.05 �0.21 0.08 �0.03 �0.11 �0.07 �0.30

(continued)
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explanation for the bear risk premium. As a result, we focus on understanding why the

index-driven component is priced for the rest of the article.

Because the bearish spreads are constructed from put options, we expect their return

to be decreasing and convex in the index return. This is verified by the regressions in

Table I, Panel C, which show that while both the index- and IV-driven components are

decreasing and convex in the market return, the magnitudes of the coefficients are far

larger for the index-driven component. The convexity of the index-driven component

implies that stocks that are positively correlated with this component likely have lower

downside market betas than upside betas, at least during the portfolio formation

periods, and the downside risk literature suggests that such stocks could be priced at a

premium if investors exhibit loss aversion. Therefore, the bear risk premium could be a

form of downside risk premium. To examine this possibility, we use another decompos-

ition to isolate the convexity of the index-driven factor and see if it is truly responsible

for the risk premium.

4.2 Linear versus Non-linear Component

We further separate the index-driven component of the bear risk factor into a linear

component, rBear;L, and a nonlinear one, rBear;NL, following the procedure described in

Section 3.3.c. Because the nonlinear component is dominated by the quadratic term in

the underlying index return, it should account for most of the convexity in the index-

driven component. Table I, Panel C confirms that rBear;L is mostly linear in the market

return and rBear;NL is highly convex. If the convexity of the factor is responsible for the

bear risk premium, then we expect the premium to be associated with the loadings on

rBear;NL.

Factor loadings are measured using the following regression models:

ri ¼ ai þ bm;i � rm þ bBear;L;i � rBear;L þ ei (5)

ri ¼ ai þ bm;i � rm þ bBear;NL;i � rBear;NL þ ei (6)

Stocks sorted into deciles using bBear;L;i and bBear;NL;i following the same procedure as be-

fore. Table II, Panels D and E report the average returns and alphas of the portfolios sorted

on bBear;L;i and bBear;NL;i, respectively.

Panel D shows that the portfolio returns generated by the linear component are simi-

lar to those generated by the index-driven component and the original bear risk factor,

while Panel E shows that loadings on the nonlinear component do not significantly

predict stock returns.

Table II. Continued

Holding period 1 2 3 4 5 6 7 8 9 10 H�L t-Stat

Panel F: Residual component bear beta portfolios

1 month R 0.72 0.89 0.82 0.69 0.66 0.80 0.79 0.79 0.89 0.76 0.04 0.15

a �0.25 0.02 0.01 �0.10 �0.10 0.05 0.10 0.06 0.11 �0.10 0.15 0.52

12 months R 0.84 0.86 0.83 0.84 0.78 0.75 0.76 0.70 0.68 0.58 �0.27 �1.38

a �0.07 0.03 0.07 0.12 0.08 0.05 0.05 �0.02 �0.11 �0.32 �0.24 �1.25
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Taken together, Table II clearly shows that the only component that is responsible for

the bear risk premium is the linear portion of the index-driven component of the bear risk

factor, and the risk premium is unrelated to changes in index return distribution and the

convexity of the risk factor.

4.3 Interpreting the Linear Component

Now that the linear component is responsible for the bear risk premium, we are faced

with two obvious questions: First, what is the economic meaning of the linear compo-

nent? Second, does this negative beta–return relationship reflect compensation for

systematic risk?

To simplify the discussion, we show in Appendix A that all the empirical patterns gener-

ated by the bear risk factor and its components can be replicated using ATM SPX put op-

tion returns and its components as the factors. The additional complexity of the

approximate A–D securities plays no role in explaining stock returns. Therefore, it is suffi-

cient to study ATM put returns as the factor to understand the bear risk premium, and we

proceed to explain the intuition of the linear component using single put option returns.

In short, the linear component is a scaled version of the market index return and the

scaling factor is an increasing function in the option IV. To see this, consider the linear

component of a 5-day put option return: rPut;L ¼ Dt � ðStþ5 � StÞ=Pt, where Dt is the put

option delta on Day t, S denotes the index level, and Pt is the put option price on Day t.

Replacing the option price and delta by their Black–Scholes formulas, we can write the

factor return as:

rPut;L ¼
�Nð�d1ÞðStþ5 � StÞ

Nð�d2ÞKeðr�yÞðT�tÞ �Nð�d1ÞSt

¼ �Nð�d1ÞðStþ5 � StÞ=St

N �d2ð ÞK
St

eðr�yÞðT�tÞ �Nð�d1Þ

¼ � ðStþ5 � StÞ=St

Nð�d2Þ
Nð�d1Þ

K

St
eðr�yÞðT�tÞ � 1

¼ � 1

Nð�d2Þ
Nð�d1Þ

K

St
eðr�yÞðT�tÞ � 1

� rSP

:¼ f ðrtÞ � rSP

(7)

where rSP is the S&P 500 index return from t to tþ5, Nð�Þ is the cumulative distribution

function (CDF) of the standard normal distribution, r is the interest rate, y is the divi-

dend yield, d1 ¼ lnðSt=KÞþðr�yþr2
t =2ÞðT�tÞ

rt

ffiffiffiffiffiffiffi
T�t
p , d2 ¼ d1 � rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

, and rt is the IV of the option

at time t.

The above equation shows that the linear component of the put return is a scaled ver-

sion of the S&P index return. At the daily frequency, the time variations in the scaling

factor, f ðrtÞ, is mainly driven by rt and K=St. Because we choose ATM puts to construct

the factor, K=St is typically close to 1. Assuming that K¼ St, we have

f ðrtÞ ¼ �1
Nð�d2Þ=Nð�d1Þeðr�yÞðT�tÞ�1

. To gain insight, we further assume that r¼ y. Then we

have Nð�d2Þ=Nð�d1Þ ¼ Nðrt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

=2Þ=Nð�rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

=2Þ. Considering that Nð�Þ is a

CDF function, we can see that Nðrt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

=2Þ=Nð�rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

=2Þ increases in rt.

Therefore, f ðrtÞ also increases in rt.
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In the data, the interest rate and the dividend yield are not always equal, which compli-

cates the properties of f ðrtÞ. In Appendix B, we show numerically that the function is in-

deed increasing for the parameter values observed in the data.

Taken together, the two-factor model that actually delivers the bear risk premium is:

ri ¼ ai þ bm;i � rm þ bPut;L;i � rPut;L þ ei

¼ ai þ bm;i � rm þ bPut;L;i � f ðrtÞ � rSP þ ei;
(8)

where f ðrtÞ is increasing in the IV rt observed at time t and all the returns are from t to

tþ5.

Because the approximate A–D security is a portfolio of put options, Equation (5) can be

transformed in a similar fashion and the scaling factor would be the weighted sum of the

scaling factors of the individual options involved.

To summarize, our analysis so far shows that the factor model responsible for the

observed bear risk premium is in fact a time-varying beta model, where the variation in

beta is positively correlated with the IV of the index option. Stocks with high bBear;L;i (or

equivalently, bPut;L;i) have market risk exposures that increase with market volatility. Such

stocks are typically considered risky, and risk-averse investors should arguably demand

higher returns on them, which implies that bBear;L;i should “positively” predict stock

returns. In a model where investors do not care about the time variations in beta, bBear;L;i

should not predict returns. However, Table II, Panel D shows that bBear;L;i negatively pre-

dicts returns, inconsistent with both scenarios, suggesting that the beta–return relationship

here may not reflect compensation for systematic risk.

Before we can reach a conclusion, the intuition gained from Equation (8) needs to be

verified empirically. In addition, the expected return of a portfolio is also affected by its

average risk exposure, not just how it varies with market volatility. For this, we provide a

comprehensive analysis of the factor loadings of the portfolios during the formation period

and holding period in the next two sections.

5. Formation-Period Factor Loadings

Formation-period factor loadings are reported in Table III, and they are calculated as fol-

lows. First, we calculate the betas for each stock at the end of each month by running

regressions using the overlapping 5-day returns over the lagged 12 months, which is the

same empirical settings for estimating Equation (1) and its variants. Second, we calculate

the value-weighted average betas for each portfolio at the end of each month. Finally, we

calculate the time-series average of each beta for each portfolio. The t-statistics reported in

the last column of Table III are for the time-series averages of the H�L portfolios. We focus

on three issues concerning the holding-period betas. First, the overall market risk carried by

each portfolio. Second, the asymmetry in upside and downside market betas. Finally, the re-

lationship between the market risk of the portfolios and market volatility.

5.1 CAPM beta

Panel A is for the portfolios sorted on LM’s original bear betas, and all the portfolios in this

panel are sorted on bear betas regardless of which average beta is being calculated. The first

two rows report the average betas from the two-factor model in Equation (1). Because the

bear betas, bBear, are used to sort the portfolios, they naturally increase from Portfolios 1 to

10. Interestingly though, the market betas, bm, also increase in the same order. It is

16 T. Wang

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/advance-article/doi/10.1093/rof/rfac006/6516548 by guest on 12 April 2022



Table III. Bear beta portfolios’ factor loadings in formation periods

This table reports the formation-period factor loadings of the portfolios sorted on various betas:

bear betas (Panel A), betas on the index-driven component (Panel B), betas on the IV-driven

component (Panel C), betas on the linear index-driven component (Panel D), betas on the non-

linear component (Panel E), and betas on the residual component (Panel F). At the end of each

month, the factor loadings of a stock are calculated by running regression models using the

prior 12 months’ 5-day returns observed at the daily frequency. Then we calculate the value-

weighted cross-sectional average betas for each portfolio. The time-series averages of these

monthly portfolio betas are reported in the table. The first two rows in Panel A report betas

(bBear and bm) from the two-factor model used to calculate bear betas. The third row reports

one-factor bCAPM. The regression setting for bCAPM is the same as the two-factor model, except

that the bear risk factor is not included. The fourth (fifth) row is for one-factor bCAPM calculated

within the sub-sample where market excess returns are negative (positive). The last column

contains the t-statistics for the long–short portfolio betas. They are calculated using the Newey–

West method, with eleven lags to account for the fact that the adjacent 12-month windows for

beta calculations overlap by 11 months.

1 2 3 4 5 6 7 8 9 10 H�L t-Stat

Panel A: Bear beta portfolios

bBear �0.59 �0.33 �0.19 �0.08 0.01 0.11 0.21 0.33 0.49 0.84 1.43 19.07

bm 0.39 0.61 0.71 0.84 0.96 1.10 1.26 1.48 1.77 2.34 1.95 16.30

bCAPM 0.97 0.92 0.89 0.91 0.94 1.00 1.07 1.16 1.30 1.54 0.57 7.58

bMarketDown 1.27 1.05 0.96 0.94 0.94 0.96 1.00 1.05 1.13 1.21 �0.05 �0.39

bMarketUp 0.60 0.76 0.81 0.89 0.97 1.07 1.19 1.35 1.58 2.06 1.47 15.35

Panel B: Index-driven bear beta portfolios

bBear;Index �0.71 �0.39 �0.22 �0.09 0.02 0.13 0.25 0.40 0.60 1.03 1.74 15.67

bm 0.31 0.56 0.71 0.83 0.96 1.13 1.31 1.57 1.90 2.55 2.24 14.57

bCAPM 0.99 0.92 0.91 0.91 0.94 1.00 1.07 1.19 1.33 1.56 0.57 6.50

bMarketDown 1.27 1.05 0.97 0.94 0.94 0.96 1.01 1.08 1.16 1.25 �0.03 �0.18

bMarketUp 0.61 0.75 0.82 0.89 0.97 1.07 1.20 1.38 1.62 2.12 1.52 15.49

Panel C: IV-driven bear beta portfolios

bBear;IV �0.33 �0.19 �0.12 �0.07 �0.02 0.02 0.07 0.12 0.19 0.32 0.66 24.55

bm 1.09 0.99 0.94 0.93 0.93 0.95 0.98 1.05 1.14 1.33 0.23 4.43

bCAPM 1.19 1.04 0.97 0.95 0.94 0.95 0.96 1.01 1.09 1.24 0.05 1.06

bMarketDown 1.36 1.14 1.02 0.98 0.94 0.94 0.94 0.98 1.02 1.15 �0.21 �2.68

bMarketUp 1.15 1.03 0.96 0.97 0.95 0.99 1.00 1.06 1.13 1.33 0.18 2.26

Panel D: Linear index-driven bear beta portfolios

bBear;L �1.03 �0.50 �0.22 �0.01 0.17 0.37 0.58 0.85 1.22 2.00 3.03 14.62

bm �0.12 0.40 0.70 0.94 1.18 1.46 1.76 2.14 2.69 3.71 3.83 13.97

bCAPM 0.96 0.91 0.92 0.94 0.98 1.05 1.12 1.22 1.37 1.57 0.61 6.39

bMarketDown 0.88 0.89 0.91 0.94 0.99 1.08 1.16 1.29 1.45 1.71 0.83 6.46

bMarketUp 0.85 0.87 0.90 0.95 1.00 1.09 1.19 1.31 1.51 1.86 1.01 7.62

bHighVIX 0.97 0.91 0.90 0.94 0.96 1.04 1.13 1.26 1.45 1.82 0.84 5.13

bLowVIX 1.08 0.97 0.96 0.95 0.98 1.05 1.11 1.19 1.29 1.34 0.26 1.79
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important to keep in mind that the two factors are strongly negatively correlated.

Therefore, the rankings of the two betas have opposite implications: the high bear beta of

Portfolio 10 implies countercyclicality, while its high market beta implies cyclicality.

Because the bear factor is scaled to have the same SD as the market factor, the betas on the

two factors can be compared with each other. Column H�L shows that the spread in bear

betas (1.43) is lower than the spread in market betas (1.95); hence cyclicality prevails, and

the long–short portfolio carries positive market risk. To confirm this net effect, we also re-

port in the third row the one-factor CAPM beta (bCAPM), of each portfolio, and they indeed

increase from Portfolios 1 to 10. This is interesting because the H�L portfolio is meant to

hedge bear market risk, but it ends up carrying positive market risk, making its negative re-

turn puzzling.

Comparing the bCAPM in Panels B and C, we can see that the positive market risk of the

H�L portfolio sorted on bear betas can be mostly attributed to the index-driven component

of the bear risk factor. The third rows of Panels D and E further reveal that the linear

index-driven component is the one responsible. In particular, the third row of Panel D

shows that stocks with high linear-component beta, bBear;L, carry higher market risk than

their low-beta counterparts, and the H�L portfolio has a CAPM beta of 0.61. Together,

Panels C–F of Tables II and III show that the H�L portfolio with the highest market risk

also has the lowest expected return.

The formulation in Section 4.3 further suggests that high linear-component beta stocks

should carry even higher market risk when SPX options’ IVs are high. To examine this

property, we split each 12-month formation period into two equal halves based on the

rankings of daily VIX levels, and then calculate one-factor CAPM betas (bCAPM) within

each half. These split-sample bCAPM are reported in the last two rows of Panel D. From the

H�L column, we can see that the long–short portfolio has a market beta of 0.84 during the

high-VIX period and only 0.26 during the low-VIX period.

The Panel Ds of Tables II and III show that stocks with high linear-component betas

have been exposed to high average market risk and particularly high market risk in volatile

markets. Yet, they delivered low expected returns. While this pattern is reminiscent of the

BaB puzzle, it also has distinct features. In BaB, high-beta stocks and low-beta ones have

Table III. Continued

1 2 3 4 5 6 7 8 9 10 H�L t-Stat

Panel E: Non-linear index-driven bear beta portfolios

bBear;NL �0.42 �0.25 �0.17 �0.11 �0.06 �0.01 0.04 0.10 0.18 0.34 0.76 24.13

bm 1.08 1.00 0.96 0.94 0.94 0.94 0.97 1.05 1.13 1.35 0.27 3.35

bCAPM 1.15 1.05 0.99 0.95 0.94 0.94 0.96 1.02 1.10 1.28 0.12 1.99

bMarketDown 1.88 1.45 1.25 1.12 1.03 0.94 0.89 0.87 0.82 0.74 �1.14 �9.38

bMarketUp 0.56 0.75 0.81 0.86 0.91 0.96 1.05 1.17 1.35 1.78 1.22 15.75

Panel F: Residual component bear beta portfolios

bBear;Residual �0.40 �0.23 �0.14 �0.08 �0.02 0.03 0.08 0.15 0.23 0.40 0.80 23.35

bm 1.36 1.15 1.05 0.99 0.96 0.93 0.92 0.92 0.98 1.08 �0.29 �5.24

bCAPM 1.25 1.09 1.02 0.97 0.95 0.94 0.94 0.96 1.04 1.19 �0.06 �1.22

bMarketDown 1.16 1.03 0.97 0.95 0.94 0.95 0.97 1.01 1.14 1.37 0.21 2.67

bMarketUp 1.35 1.14 1.06 1.02 0.98 0.96 0.96 0.95 1.01 1.14 �0.21 �2.78
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similar average raw returns, so the long–short portfolio has a near-zero average return but

a negative CAPM alpha. Here, even the average return of the high-risk-minus-low-risk

portfolio is negative and its alpha even more so, suggesting a further departure from the ra-

tional framework. We provide a more detailed characterization and explanation of the cur-

rent anomaly in Section 8.

The last three rows in Panel F show that loadings on the residual component do not gen-

erate meaningful spreads in market risk exposure.

5.2 Upside Beta versus Downside Beta

Turning to the asymmetry in betas, the last two rows of Table III, Panel A report the market

risk of the bear beta portfolios measured during up- and down markets, respectively. To

calculate the upside (downside) betas, we run the one-factor CAPM using observations

where 5-day market excess returns are positive (negative). Comparing the last two rows in

the panel, we can see that the high bear beta portfolio (i.e., Portfolio 10’s) upside beta

(2.06) is higher than its downside beta (1.21), while the low bear beta portfolio exhibits the

opposite pattern (0.60 for the upside versus 1.27 for the downside). Column H�L confirms

that the long–short portfolio has a much smaller downside beta (�0.05) than upside beta

(1.47), which seems to be consistent with the notion that high bear beta stocks are good

hedges against downside risk.

The asymmetry is not surprising given that the bear risk factor return is highly convex in

the underlying index return as shown in Table I, Panel C. OLS regressions would assign

high bear betas to stocks whose returns exhibit the same convexity during the formation

period. While the asymmetric betas seem attractive to loss-averse investors, it is unclear if

the asymmetry persists into the holding period, considering that much of the stock return

convexity can be caused by idiosyncratic returns and is not meant to be persistent. We

examine this issue in the next section.

The last two rows of Panel B show that the index-driven component is responsible for

most of the asymmetry in upside and downside betas observed in Panel A. The patterns in

Panel C are qualitatively similar to the previous two panels, but the magnitudes are much

smaller. Panel E further shows that the index-driven component generates the asymmetry

mainly via its nonlinear component as the H�L portfolio sorted on this component has an

upside beta of 1.22 and downside beta of �1.14 in the formation period. In contrast, Panel

D only shows a minor asymmetry generated by the linear component.

Because the asymmetry in market betas is primarily associated with the loadings on the

nonlinear index-driven component, and these loadings do not predict stock returns, it is

clear that the return predictability is not related to in-sample asymmetry in market betas. In

other words, investors do not pay a premium for stocks that exhibit low downside risk in

the past.

6. Holding-Period Factor Loadings

The formation-period betas of the portfolios reveal two important patterns: First, stocks

with high overall market betas and countercyclical betas are the ones earning low expected

returns. Second, the asymmetric market betas are delivered by the nonlinear component

and do not predict stock returns. Next, we examine whether these patterns hold for the

holding-period betas. In addition, we discuss whether the factor loadings in Equations (1)–(6)

are persistent.
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Table IV reports holding-period betas of the portfolios. Considering that the formation-

period betas are calculated using overlapping 5-day returns, we use the same setting to cal-

culate holding-period returns. Specifically, after forming the portfolios at the end of each

month, we calculate the value-weighted 5-day returns of each portfolio in the following

month. Then we run the same regression models as in Table III to calculate the holding-

period betas.8

6.1 CAPM beta

The first two rows of Table IV, Panel A report betas from the two-factor model in Equation

(1). The patterns are qualitatively similar to those in the formation period, though Column

H�L shows that the spreads in betas shrink considerably post-formation. The bear beta of

the H�L portfolio decreases from 1.43 to 0.18 and its market beta from 1.95 to 0.69.

Interestingly, although both betas decrease, their difference remains virtually unchanged

from formation periods to holding periods, leading to a very persistent bCAPM, which is

0.56 in the holding periods and 0.57 in the formation periods. The same pattern can be

observed in Panel D for the linear component. Therefore, even in the holding period, high

bear beta and linear-component beta stocks carry high overall market risk.

The last two rows of Panel D report the holding-period bCAPM within high-VIX and

low-VIX periods, respectively. We assign each month in the holding period into the high-

or low-VIX subsample by ranking its average VIX against the preceding 12 months used for

beta calculations. If the average VIX of the holding month ranks above (below) the median

of the 13 months, then the holding month is classified as a high-VIX (low-VIX) month.

bCAPM are then calculated within each subsample. Betas of the H�L portfolio show that

sorting on linear-component betas still leads to a higher spread in bCAPM amid high market

volatility, though the difference between high-VIX and low-VIX betas (0.58 versus 0.43) is

considerably smaller than the formation-period counterpart.

6.2 Upside Beta versus Downside Beta

The last two rows of Panel A show that, in contrast to the formation period, the H�L port-

folio’s downside market beta (0.60) becomes higher than its upside market beta (0.54) in

the holding period. Therefore, the relatively low downside beta of the H�L portfolio sorted

on bear betas during the formation period is likely completely driven by idiosyncratic

returns. Some stocks’ total returns happen to exhibit convexity during the regression win-

dow, giving them high betas on the convex option factor. But since such convexity is

observed mostly by chance, it disappears in the holding period.

A broad examination of all the portfolios in Tables III and IV confirms a common pat-

tern: the asymmetry in formation-period market betas matches the convexity of the factors

themselves very well, but such asymmetry contains little information about the asymmetry

during the holding period. In most cases, the difference between upside and downside betas

switches sign or practically disappears when moving from the formation to holding period.

The only exception occurs in the non-linear index-driven component (Panel E), where port-

folio H�L’s upside beta remains higher than the downside beta in the holding period,

though the magnitude of the difference shrinks considerably.

8 Many previous studies use contemporaneous daily returns together with a number of lags to calcu-

late Dimson (1979, p. 54) betas. In untabulated results, we find that using Dimson betas with four

lags leads to similar results as ours.
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Table IV. Bear beta portfolios’ factor loadings in holding periods

This table reports the holding-period factor loadings of the portfolios sorted on various betas:

bear betas (Panel A), betas on the index-driven component (Panel B), betas on the IV-driven

component (Panel C), betas on the linear index-driven component (Panel D), betas on the non-

linear component (Panel E), and betas on the residual component (Panel F). At the end of each

month, stocks are sorted into deciles based on their option-factor betas and held for the follow-

ing month, during which value-weighted, overlapping 5-day portfolio returns are calculated at

the daily frequency. The holding period factor loadings are calculated by regressing the port-

folio returns on the factor returns using the entire sample period. The first two rows in each

panel contain betas from the two-factor model with the market factor and one of the option-

based factors. The third row is for one-factor bCAPM. The fourth (fifth) row is for one-factor

bCAPM calculated within the sub-sample where market excess returns are negative (positive).

The last column reports the t-statistics of the factor loadings of the long–short portfolios

adjusted for heteroskedasticity.

1 2 3 4 5 6 7 8 9 10 H�L t-Stat

Panel A: Bear beta portfolios

bBear �0.03 �0.02 �0.03 �0.02 �0.02 0.00 0.02 0.09 0.16 0.16 0.18 3.99

bm 0.98 0.93 0.86 0.89 0.94 0.99 1.10 1.27 1.49 1.67 0.69 11.63

bCAPM 1.00 0.94 0.88 0.91 0.96 1.00 1.09 1.21 1.36 1.55 0.56 15.49

bMarketDown 0.94 0.91 0.84 0.91 0.97 1.02 1.12 1.22 1.38 1.52 0.60 8.46

bMarketUp 0.98 0.98 0.91 0.92 0.98 0.97 1.07 1.23 1.39 1.54 0.54 7.10

Panel B: Index-driven bear beta portfolios

bBear;Index �0.03 �0.03 �0.03 �0.02 �0.01 0.00 0.01 0.13 0.15 0.18 0.20 3.81

bm 1.02 0.93 0.89 0.90 0.94 0.99 1.08 1.35 1.49 1.69 0.67 10.20

bCAPM 1.03 0.95 0.91 0.92 0.95 1.00 1.07 1.25 1.37 1.55 0.52 13.58

bMarketDown 0.98 0.87 0.92 0.91 0.95 1.02 1.10 1.28 1.37 1.52 0.57 7.61

bMarketUp 1.02 0.99 0.91 0.92 0.98 0.98 1.05 1.30 1.38 1.52 0.48 5.94

Panel C: IV-Driven bear beta portfolios

bBear;IV �0.02 �0.02 0.00 �0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.03 1.58

bm 1.18 1.03 0.95 0.94 0.95 0.96 0.95 1.01 1.10 1.23 0.05 1.95

bCAPM 1.19 1.04 0.95 0.94 0.95 0.96 0.95 1.01 1.10 1.23 0.05 1.79

bMarketDown 1.18 1.05 0.92 0.94 0.95 0.97 0.95 0.99 1.08 1.19 0.01 0.11

bMarketUp 1.15 1.01 0.96 0.95 0.96 0.95 0.95 1.05 1.13 1.19 0.03 0.73

Panel D: Linear index-driven bear beta portfolios

bBear;L �0.04 �0.01 �0.04 0.02 �0.01 0.02 0.03 0.13 0.20 0.32 0.35 4.71

bm 1.00 0.94 0.91 0.98 0.99 1.09 1.15 1.33 1.55 1.82 0.82 8.59

bCAPM 1.03 0.94 0.94 0.97 1.00 1.07 1.13 1.22 1.38 1.55 0.52 12.29

bMarketDown 0.95 0.92 0.90 0.99 0.99 1.13 1.13 1.26 1.40 1.55 0.62 7.56

bMarketUp 1.10 1.00 0.98 0.97 1.02 1.00 1.11 1.18 1.33 1.48 0.37 4.03

bHighVIX 1.00 0.94 0.94 0.99 1.00 1.07 1.17 1.23 1.40 1.58 0.58 10.25

bLowVIX 1.10 0.94 0.96 0.95 0.97 1.04 1.07 1.20 1.33 1.52 0.43 7.75
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From a practitioner’s point of view, this evidence might be encouraging, as it offers

some hope in predicting the symmetry in market betas. Nevertheless, the nonlinear compo-

nent is not priced in stocks, so it confirms that investors do not pay a premium for asym-

metric betas.

Focusing on the linear index-driven component in Table IV, Panel D, we can see that

the H�L portfolio’s downside beta (0.62) exceeds its upside beta (0.37) during the holding

period. We argue that this is consistent with the property of the linear component discussed

in Section 4.3, where we show that the high linear-component beta stocks carry particularly

high market risk when the index option’s IV is high. It is well known that the VIX index al-

ways spikes up during market crashes, which means that the high linear-component beta

stocks’ market risk exposure tends to increase during market crashes. In addition, the high

market risk should also increase the discount rates of these stocks and further depress their

prices. The opposite can be said about the low linear-component beta stocks. This panel

confirms the two unattractive aspects of the H�L portfolio sorted on the linear-component

betas: It carries high overall market risk and its market risk is even higher during market

downturns. The asymmetry in betas is likely masked by in-sample fitting during the forma-

tion period.

Examining the first two rows of Panel D in Tables III and IV, we can see that the factor

loadings on the two-factor model involving the linear component are statistically persistent,

and the t-statistic of the linear bear factor bear is 4.71 for the H�L portfolio. Panels C, E,

and F in Table IV show that the factor loadings on the IV-driven, nonlinear index-driven,

and residual components are insignificant for the H�L portfolio during the holding period.

Therefore, out of the four components of the bear risk factor, only loadings on the linear

factor are persistent.

Overall, the persistence in factor loadings is relatively weak with the exception of the

loadings on the market factor. As pointed out by Barahona, Driessen, and Frehen (2021),

rational investors need to know the post-formation betas to make portfolio decisions and

price assets accordingly. Therefore, a predictable large spread in port-formation betas is

particularly important under a rational framework. On the other hand, models involving

Table IV. Continued

1 2 3 4 5 6 7 8 9 10 H�L t-Stat

Panel E: Non-linear index-driven bear beta portfolios

bBear;NL 0.01 0.00 �0.01 �0.01 0.01 �0.01 0.01 0.01 0.02 0.03 0.02 0.88

bm 1.21 1.05 0.97 0.92 0.91 0.91 0.95 1.08 1.14 1.35 0.13 3.46

bCAPM 1.21 1.05 0.98 0.92 0.91 0.92 0.95 1.08 1.14 1.34 0.12 3.16

bMarketDown 1.21 1.04 0.99 0.91 0.88 0.92 0.94 1.11 1.13 1.30 0.08 0.89

bMarketUp 1.15 0.99 0.93 0.90 0.93 0.90 0.99 1.11 1.20 1.41 0.25 3.50

Panel F: Residual component bear beta portfolios

bBear;Residual �0.01 �0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.05 2.39

bm 1.25 1.09 1.02 0.98 0.95 0.93 0.93 0.95 1.04 1.18 �0.07 �2.47

bCAPM 1.24 1.08 1.02 0.98 0.95 0.93 0.93 0.95 1.04 1.19 �0.06 �2.09

bMarketDown 1.21 1.05 1.01 0.98 0.98 0.90 0.92 0.94 1.07 1.18 �0.04 �0.69

bMarketUp 1.19 1.11 1.07 0.98 0.92 0.95 0.95 0.96 0.99 1.16 �0.03 �0.61
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agents who are not fully rational could lead to predictions regarding lagged betas as such

agents may mistakenly extrapolate past betas into the future.

6.3 Is Downside Risk Priced in the Cross-Section of Stocks?

Our research sets out to reconcile the conflict in the evidence concerning the downside risk

premium in the stock market and shows that all the evidence in fact points in the same dir-

ection: downside risk is not priced in the stock market.

While high loadings on the nonlinear component of the bear risk factor seem to predict

lower downside betas than upside betas, these loadings do not predict stock returns.

Loadings on the IV-driven component are not persistent and do not predict stocks returns,

so it is not the changing forward-looking probability of a market downturn that is driving

the bear risk premium.

Finally, the H�L portfolio sorted on the linear-component betas has high average mar-

ket risk, countercyclical market risk, and asymmetric market risk tilting toward the down-

side, and yet it has delivered a low average return, which is clearly an asset pricing

anomaly. Therefore, the bear risk “premium” does not prove that investors pay a premium

to hedge downside or bear market risk.

7. Dissecting Jump Risk

Our analysis so far reveals that bear beta portfolios do not provide a good hedge for market

downside risk. In this section, we provide further analysis to examine whether such port-

folios hedge specific types of market jump risk. Baker et al. (2020) use Wall Street Journal

articles to classify daily jumps in the stock market index since 1900 into categories such as

“monetary policy and central banking” and “regulation.” Their data allow us to examine

whether the bear beta portfolio is particularly good at hedging the risk within certain cate-

gories. We focus on two questions. First, does the bear beta portfolio hedge the ex ante

jump risk within certain categories? If the return of the long–short bear beta portfolio

tracks the probability of an upcoming market crash as hypothesized by LM, then we expect

the portfolio return to negatively predict a market crash index, which is equal to the market

return if a crash occurs and zero otherwise. Second, does the bear beta portfolio hedge the

ex post jump risk of certain categories? This refers to the contemporaneous correlation be-

tween the bear beta portfolio return and the jump index. If the portfolio provides a good

hedge, then the correlation should be negative. Besides the bear risk factor, Kelly and Jiang

(2014) also propose a measure of the fatness of the left tail and show that the exposure to

this factor explains expected stock returns in the cross-section. Their tail risk measure can

be viewed as a measure of ex ante jump risk as it models the shape of the distribution.

Therefore, we examine the hedging performance of the long–short portfolio sorted on their

tail risk betas to provide a more comprehensive view on this topic. Kelly and Jiang’s meas-

ure also allows a longer sample period (1964–2011) for robustness check.

The results are presented in Table V. Panel A explores the hedging of ex ante jump risk,

where we consider three types of market jumps: Macro, Non-Macro, and Earnings

Related. Besides the jump measure of Baker et al. (2020), we also consider one based on an

index of real economic activities—the Aruoba–Diebold–Scotti Business Conditions Index.

To measure jumps, we use unexpected quarterly changes in the index, where an autoregres-

sive model is used to filter out the unexpected changes. This jump index is equal to the
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Table V. Jump risk exposure of the hedging portfolios

Panel A reports the regression coefficients of predicting future market negative jumps with

portfolio returns or the VIX index. “Raw Long-Short Portfolio Return as Regressor” uses the

monthly return of a long–short portfolio to predict the downside jumps over the following

month. In the case of the ADS index, the predicted horizon is the following 3 months, where

the regression is still run at the monthly frequency. The long–short portfolios are sorted on

bear betas or the tail risk betas as in Kelly and Jiang (2014). The dependent variables in the

first six columns are the monthly accumulations of the negative jumps identified and

categorized by Baker et al. (2020). ADS index refers to the quarterly innovations in the

Aruoba–Diebold–Scotti Business Conditions Index. “Market-Hedged Long-Short Portfolio

Return as Regressor” uses the residuals of regressing the long-short portfolio returns on

market return as the predictor. “VIX as Regressor” uses the month-end VIX level as the

predictor. Panel B reports the coefficients of regressing the long–short portfolio returns on

contemporaneous market returns and jump returns. The upper half uses monthly returns

and the lower half uses daily returns.

Panel A: Predict jump risk

Portfolio sorted on Regressor Macro Non-macro Earnings ADS index

Coef t-stat Coef t-stat Coef t-stat Coef t-stat

Raw long–short portfolio return as regressor

Bear beta Intercept �0.011 �4.087 �0.009 �3.966 �0.004 �3.345 �0.073 �1.745

Portfolio return 0.067 2.534 0.056 1.775 0.020 1.117 0.599 1.325

Tail beta Intercept �0.012 �3.986 �0.011 �3.941 �0.005 �3.347 �0.088 �1.763

Portfolio return 0.050 0.843 0.060 1.172 0.021 0.715 0.773 1.103

Market-hedged Long–short portfolio return as regressor

Bear beta Intercept �0.012 �4.104 �0.010 �3.879 �0.004 �3.233 �0.079 �1.743

Portfolio return �0.021 �0.426 �0.021 �0.540 �0.009 �0.563 �0.167 �0.306

Tail beta Intercept �0.012 �3.927 �0.011 �3.899 �0.005 �3.315 �0.089 �1.752

Portfolio return 0.032 0.627 0.045 0.994 0.015 0.560 0.616 1.054

IV-driven bear

beta

Intercept �0.012 �4.095 �0.010 �3.872 �0.004 �3.246 �0.079 �1.741

Portfolio return 0.015 0.321 0.032 0.628 0.043 1.637 0.701 0.890

VIX as regressor

Intercept 0.038 2.932 0.029 3.072 0.014 2.874 0.319 1.507

VIX �0.002 �3.383 �0.002 �3.564 �0.001 �3.138 �0.019 �1.649

Panel B: Hedging contemporaneous jump risk

Monthly Returns

Macro Non-macro Earnings

Bear beta Intercept �0.018 �3.912 �0.018 �3.918 �0.017 �4.022

Jump �0.192 �1.667 �0.177 �1.320 �0.310 �1.230

Market return 0.746 5.351 0.745 5.149 0.731 5.418

Tail beta Intercept �0.004 �1.144 �0.002 �0.688 �0.003 �0.788

Jump �0.088 �0.690 0.007 0.050 �0.029 �0.101

Market return 0.127 1.574 0.098 1.089 0.105 1.137

(continued)
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change if the change is 1.5 SDs below zero and zero otherwise. Further details about the

jumps are provided in Appendix C.

The regression model in Panel A is Jumptþ1 ¼ aþ b � Portfolio Returnt, where Jumptþ1

is the jump index accumulated in Month tþ1, and Portfolio Returnt is the long–short port-

folio return in Month t. In the upper half of the panel, we use the raw portfolio returns as

the regressor. In the lower half, the regressor is the market hedged portfolio return, which

is the residual of regressing the raw return on the market return. Forecasting 1-month ahead

jumps is in line with the choice of time-to-expiration in constructing the bear risk factors. If

the portfolio indeed tracks the probability of the jump risk, then we expect coefficient b to

be negative. The upper half of the panel shows that for both portfolios and all the jump

types, coefficient b is positive. Therefore, the raw returns of these portfolios do not seem to

hedge against ex ante jump risk. The lower half shows that coefficient b turns negative for

the bear beta portfolio when the portfolio is market-hedged. However, the coefficients are

fairly insignificant. For comparison, we show the coefficients of predicting these jumps

using end-of-month VIX levels at the bottom of Panel A. As expected, VIX is a good indica-

tor of the probabilities of these jumps. The weak predictive power of the long–short port-

folio makes it very unlikely that rational investors would pay such a high premium to hold

the long–short portfolio.

It is also puzzling that the long–short portfolio sorted on the loadings on the IV-driven

component of the bear risk factor still carries the wrong sign, as shown in the table, be-

cause, after all, the IV-driven component is specifically designed to capture ex ante bear

market risk. The lack of predictive power from the portfolio associated with this compo-

nent raises the concern that the weak predictive power from the bear beta portfolio is likely

spurious.

Panel B reports the coefficients of the contemporaneous regressions. The upper part is

for monthly regressions and the lower part is for daily. The regression model is

Portfolio Returnt ¼ aþ b � Jumpt þ c �Market Returnt. Because the Jump term is equal to

market return when a jump is identified and zero otherwise, bþ c can be interpreted as the

loading of the portfolio on the market during a jump. If the portfolio is a good hedge of ex

post risk, then we expected bþ c to be negative. At the monthly frequency, the negative

coefficients on Jump suggest that the bear beta portfolio has lower market exposure during

a jump than during a normal period. However, values of bþ c remain highly positive,

Panel B: Hedging contemporaneous jump risk

Daily Returns

Macro Non-macro Earnings

Bear beta Intercept �0.001 �3.617 �0.001 �3.708 �0.001 �3.330

Jump �0.080 �1.329 �0.129 �2.056 0.039 0.384

Market return 0.498 14.329 0.503 14.316 0.482 14.840

Tail beta Intercept 0.000 �0.593 0.000 �0.066 0.000 �0.446

Jump 0.017 0.370 0.172 3.925 0.137 2.762

Market return 0.067 2.944 0.044 2.014 0.062 2.934

Table V. Continued
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suggesting that this hedging portfolio is still positively exposed to ex post jump risk. It is un-

clear why rational investors would be willing to earn a highly negative expected return to

hold such a portfolio. Similar arguments can be made about the tail risk portfolio.

The lower half of the panel runs the regressions using daily returns. Overall, there is still

little evidence that these portfolios hedge ex post jump risk. Therefore, our analysis in this

section confirms the conclusion reached in the previous section: stock portfolios sorted on

bear or tail risk exposure do not provide a meaningful hedge for market risk on the down-

side during the holding period.

8. Resolving the Puzzle

The current anomaly is related to the BaB anomaly because both entail a negative relation-

ship between systematic risk and expected returns. Considering that a rich literature has

been developed to resolve the BaB puzzle, we next investigate whether the existing solutions

can help understand the current anomaly. Overall, we find that the aggregate disagreement

channel proposed by Hong and Sraer (2016) is likely the main cause of the current anom-

aly. In particular, we find that the anomaly would not only disappear but also change sign

if there were no disagreement about the aggregate stock market, which suggests that the

mispricing caused by disagreement overshadows the positive risk–reward relationship pre-

dicted by canonical asset pricing models. We also consider skewness preference as a poten-

tial explanation of the anomaly and leave two other considerations—mispricing (Liu,

Stambaugh, and Yuan, 2018 and conditional CAPM (Boguth et al. (2011))—to the

Supplementary Appendix.

In this section, we focus on the H�L portfolios sorted on the loadings with respect to

the full bear risk factor, and these loadings are denoted by bBear. Conceptually though, the

linear component of the ATM put return is easier to interpret as shown in Equation (8),

and most of our arguments speak directly to this component. In Section 7 of the

Supplementary Appendix of this article, we confirm that the analyses in the current section

indeed lead to qualitatively and quantitatively similar results when applied to portfolios

sorted on the linear component of index put returns.

8.1 Aggregate Disagreement

Hong and Sraer (2016) argue that stocks with high market betas can be overpriced if there

is disagreement about the market return, for such disagreement gives rise to particularly

strong disagreement about high-beta stocks, which, coupled with short-sale constraints,

could lead to overpricing.

As shown in Sections 5 and 6, stocks with high loadings on the linear component of

bear risk factor tend to have high market betas, especially when the market is volatile. If

investors are more likely to disagree about future market returns in a volatile market,

then stocks with high linear-component betas should be particularly susceptible to

disagreement-induced overpricing. If the current anomaly is indeed driven by disagree-

ment, then we expect the return of the long–short portfolio to be particularly low when

the aggregate disagreement level is high. In addition, Hong and Sraer (2016) show that

the effect of aggregate disagreement on overpricing is particularly strong among specula-

tive stocks, that is, stocks whose systematic risk is high relative to their idiosyncratic risk.

We test these two hypothesis in a regression setting.
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Following the steps described in Hong and Sraer (2016), we calculate the aggregate dis-

agreement and stock-level speculativeness. The monthly aggregate disagreement measure is

the beta-weighted cross-sectional average of the SDs of analyst forecasts regarding long-

term earnings growth rates. These SDs are reported in the I/B/E/S unadjusted summary file.

Each month, stocks whose b̂=r̂2 ratios are above(below) the The New York Stock

Exchange (NYSE) median are assigned to the speculative(non-speculative) group, where b̂

is the estimated market beta and r̂2 is the estimated idiosyncratic variance.

We examine whether the aggregate disagreement predicts the return of the H�L port-

folio sorted on bear betas. In addition, we formed the H�L portfolio using speculative

stocks and non-speculative stocks separately and compare the predictive power of disagree-

ment for these two types of stocks.

The regression coefficients are reported in Table VI, Panel A, where results for the port-

folios containing speculative and non-speculative stocks are in the first and last two col-

umns, respectively. We consider three return horizons: 1, 6, and 12 months. Since the

aggregate disagreement is measured at the monthly frequency, predicting 6- and 12-month

ahead returns leads to overlapping observations. Lags in the Newey–West t-statistics are set

to five and eleven to account for the overlap.

The first two columns in Panel A show that, when the portfolio is made of speculative

stocks, aggregate disagreement negative predicts future H�L portfolio returns sorted on bear

betas, meaning the negative risk–reward relationship is particularly strong following high dis-

agreement. The positive intercepts in these regressions suggest that if there were no disagree-

ment about the market, then the positive risk–reward relationship would have been restored.

The results for non-speculative stocks are clearly weaker than those for speculative

ones, consistent with Hong and Sraer (2016)’s prediction. Overall, the evidence in Panel A

strongly supports disagreement-induced overpricing being the main explanation of the

anomaly associated with bear betas.

A key feature of Hong and Sraer (2016) is the tent-shaped relationship between expected re-

turn and market beta. To examine this relationship, we plot the beta–return relationship in

Figure 1. The setting here is similar to Figure 7 in Hong and Sraer (2016), except that our port-

folios are sorted on bear betas. Both the post-ranking average returns and market betas are

measured using 12-month returns. Our figure does not show a pronounced tent shape.

However, it is important to consider the range of market betas, as indicated by the horizontal

axis. Because we do not sort directly on market betas, we do not get the full range in Hong and

Sraer (2016). The lowest post ranking beta in the figure is around 0.8, which roughly corre-

sponds to the location of the top of the tent in Hong and Sraer (2016)’s Figure 7. Therefore, we

only get to observe the downward sloping portion of the relationship.

To further add to the evidence regarding disagreement, we consider another aspect of

the model in Hong and Sraer (2016). The irrational investors in the model need to agree to

disagree with each other and not learn from the asset prices and correct their beliefs. This

can be viewed as a form of overconfidence. In other words, investors not only need to start

with different opinions, but also need to be overconfident enough to hold on to these opin-

ions. It is reasonable to assume that investors are more likely to be overconfident when the

marketwide sentiment is high. Therefore, we argue that the negative relationship between

risk and expected return is likely to be strong during high sentiment periods. In Table VI,

Panel B, we examine how the marketwide sentiment measure of Baker and Wurgler (2006)

predicts bear portfolio returns. Consistent with my argument, we find that the sentiment

negatively forecasts the portfolio returns at all three horizons.
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Table VI. Aggregate disagreement

Panel A reports the coefficients of regressing the returns of the H�L portfolio sorted on bear

betas on lagged aggregate disagreement. The portfolio is formed using only speculative stocks

in the first two columns and non-speculative stocks in the last two. For the definitions of aggre-

gate disagreement and speculative stocks, we follow Hong and Sraer (2016). Each month, the

aggregate disagreement measure is given by the beta-weighted cross-sectional average of the

SDs of analyst forecasts regarding long-term earnings growth rates. These SDs of forecasts are

obtained from the I/B/E/S unadjusted summary file. Speculative(non-speculative) stocks are

those whose b̂=r̂2 ratios are above(below) the NYSE median, where b̂ is the estimated market

beta and r̂2 is the estimated idiosyncratic variance. These time-series regressions use observa-

tions at the monthly frequency. We consider three holding periods: 1, 6, and 12 months. In other

words, we use the aggregate disagreement in Month t to predict portfolio returns in Months

tþ 1, tþ 1 to tþ 6, and tþ 1 to tþ 12, respectively. The 6- and 12-month holding periods result in

overlapping returns, and the numbers of lags used to calculate their Newey–West t-statistics

are 5 and 11, respectively. Panel B reports the regression coefficients of predicting the portfolio

returns using the market sentiment measure of Baker and Wurgler (2006). Panel C reports the

average return of the portfolio within each disagreement–sentiment quadrant.

Panel A: Predict bear beta portfolio return with aggregate disagreement

Return Horizon Speculative Stocks Non-speculative Stocks

Regressor Coef tstat Coef tstat

1 month Intercept 0.061 1.732 –0.002 –0.085

Aggregate disagreement –0.012 –1.700 –0.001 –0.238

6 months Intercept 0.311 2.474 0.102 1.247

Aggregate disagreement –0.062 –2.551 –0.030 –1.956

12 months Intercept 0.450 2.537 0.202 1.390

Aggregate disagreement –0.090 –2.692 –0.052 –1.971

Panel B: Predict bear beta portfolio return with sentiment

1 month Intercept 0.000 0.016 –0.008 –2.084

Sentiment –0.019 –1.507 –0.009 –1.074

6 months Intercept –0.012 –1.006 –0.056 –3.730

Sentiment –0.097 –2.748 –0.047 –2.384

12 months Intercept –0.019 –0.863 –0.070 –1.737

Sentiment –0.139 –3.676 –0.082 –2.675

Panel C: Bear beta portfolio return within disagreement–sentiment quadrants

Stock Type Disagreement/sentiment 1 month 6 months 12 months

R tstat R tstat R tstat

Speculative stocks Low/low –0.474 –0.596 –0.103 –0.055 0.009 0.004

Low/high 0.466 1.087 –0.101 –0.078 –1.043 –0.495

High/low 0.273 0.569 –0.567 –0.543 0.781 0.439

High/high –2.327 –1.363 –13.106 –3.653 –21.196 –4.643

Non-speculative stocks Low/low –1.234 –1.386 –6.525 –3.591 –8.356 –3.426

Low/high –1.299 –2.367 –5.898 –4.028 –9.333 –4.124

High/low –0.120 –0.197 –1.994 –1.206 1.196 0.288

High/high –1.568 –1.007 –13.856 –4.792 –22.050 –4.605
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Next, we divide the sample period into four quadrants based on the aggregate disagree-

ment and sentiment to examine the performance of the long–short bear beta portfolio with-

in each quadrant. The average portfolio returns formed on speculative and non-speculative

stocks are reported separately. Panel C of the table shows that the lowest return of the port-

folio typically follows the months in the high sentiment and high disagreement quadrant,

suggesting the interaction between divergence in opinions and overconfidence is an import-

ant cause of the anomaly.

8.2 Preference for Skewness

In a recent study, Schneider, Wagner, and Zechner (2020) propose a novel explanation for

several low-risk anomalies. They show that factors formed on ex ante skewness can explain

Figure 1. Speculative stocks versus non-speculative stocks. This figure plots the relationship between

the 12-month returns of the decile portfolios sorted on bPut;L and their post-formation market betas. The

sample period is sorted into quartiles based on aggregate disagreement and the high-disagreement

(low-disagreement) period refers to the top (bottom) quartile. The monthly aggregate disagreement

measure is the beta-weighted cross-sectional average of the SDs of analyst forecasts of long-term earn-

ings growth rates reported in I/B/E/S unadjusted summary file. Speculative(non-speculative) stocks’

b̂=r̂2 ratios are above (below) the NYSE median, where r̂2 is the estimated idiosyncratic variance.
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the abnormal returns. We add their factors to the Fama–French–Carhart four-factor model

and calculate the alphas of the H�L portfolios formed on bear betas with the 1-month

holding period. To distinguish the current anomaly from the BaB anomaly, we also include

the BaB factor of Frazzini and Pedersen (2014).

The regression coefficients are reported in Table VII, where all the alphas are measured

at the monthly frequency and reported as percentages. The first column only includes the

four factors and the BaB factor, and the significant alpha confirms that the current anomaly

is not a restatement of the BaB anomaly.

The next three columns introduce the Skew factor (SK), Lower-Skew-Minus-Upper-

Skew factor, and Lower-Skew and Upper-Skew factors (LSK and USK), respectively.

Column (4) shows that including both LSK and USK factors reduces the magnitude of the

Table VII. Controlling for ex ante skewness, FMAX, and SMR factors

This table reports the coefficients of regressing the monthly excess returns of the H�L portfolio

sorted on bear betas on the Fama–French factors (rm, SMB, and HML), Carhart factor (UMD),

BaB factor (BaB), ex ante skewness factors (SK, LUSK, USK, and LSK), MAX factor (FMAX), and

SMR factor. t-statistics adjusted for heteroskedasticity are in the parentheses.

[1] [2] [3] [4] [5] [6] [7]

a –1.03 �1.08 �1.02 �0.85 –0.73 –0.89 –0.69

(–2.8***) (�2.68***) (�2.5**) (�2.16**) (–2.08**) (–2.28**) (–1.81*)

rm 0.41 0.29 0.18 0.14 0.10 0.31 0.00

(4.87***) (2.67***) (1.54) (1.37) (1) (3.15***) (0.01)

SMB 0.61 0.32 0.16 0.16 0.25 0.36 –0.02

(5.06***) (2.07**) (1.03) (1.01) (1.72*) (2.23**) (–0.11)

HML –0.46 –0.67 –0.53 –0.51 –0.25 –0.43 –0.37

(–2.77***) (–3.66***) (–2.59**) (–2.48**) (–1.65) (–2.23**) (–1.95*)

UMD 0.01 0.21 0.24 0.24 –0.02 0.04 0.17

(0.05) (1.64) (1.89*) (1.85*) (–0.2) (0.36) (1.4)

BaB –0.32 –0.12 –0.10 –0.09 –0.02 –0.27 0.04

(–2.15**) (–0.83) (–0.65) (–0.62) (–0.12) (–1.72*) (0.21)

SK –0.14 – – –

(�2.37**) – – – – –

LUSK – – –0.14 – – – –

– – (–3.04***) – – – –

USK – – – 0.09 – – 0.03

– – – (0.43) – – (0.16)

LSK – – – –0.39 – – –0.24

– – – (–2.03**) – – (–1.16)

FMAX – – – – 0.55 – 0.33

– – – – (3.79***) – (1.88*)

SMR – – – – – –0.24 –0.08

– – – – – (–2.67***) (–0.79)

Adj. R2 0.451 0.495 0.524 0.531 0.504 0.489 0.550

*p< 0.1,

**p< 0.05,

***p< 0.01.
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alpha of the H�L portfolio by 18 bps per month compared to Column (1), but the alpha

remains significant. Therefore, the theory of Schneider, Wagner, and Zechner (2020) pro-

vides a partial explanation of the anomaly.

Bali et al. (2017) show that a factor based on past maximum stock returns can help re-

solve the BaB puzzle, and they attribute the BaB anomaly to lottery preference. Column (5)

reports the alpha after including the MAX factor. Compared to Column (1), the MAX fac-

tor reduces the magnitude of the alpha by 30 bps per month, suggesting that lottery prefer-

ence plays an important role in the current anomaly.

Kapadia et al. (2019) form a portfolio that longs stocks with low systematic risk and

shorts stocks with high systematic risk and find that this portfolio has a high expected re-

turn. Clearly, their finding shares the same spirit as ours in documenting a negative risk–re-

ward relationship. To examine the relation between the two anomalies, we include their

SMR portfolio in the factor model and report the coefficients in Column (6). Compared to

Column (1), the magnitude of the alpha drops by about 14 pbs to �0.89%, suggesting

some degree of overlap between the two anomalies.

Finally, Column (7) shows that including LSK, USK, MAX, and SMR in the same factor

model barely further reduces the alpha compared to the model that only includes FMAX

(Column (5)), which suggests that there is also some overlap among the explanations of

Schneider, Wagner, and Zechner (2020), Bali et al. (2017), and Kapadia et al. (2019), and

their common component is likely related to skewness or lottery preference.

9. Discussion and Robustness Analysis

In this section, we first discuss the implications of the time-varying market beta model

implied by Equation (8). Then, we conduct two robustness analyses. In the first robustness

analysis, we include all the three components of the bear risk factor in the same factor

model to estimate stocks’ factor loadings and then use these loadings to sort stocks into

portfolios. In the second one, we use Fama and MacBeth (1973) cross-sectional regressions

to ensure that our results are robust to the inclusion of various control variables. In the

Supplementary Appendix, we also confirm that our conclusions are valid in all the liquidity

and size subsamples.

9.1 Time-Varying Betas and Conditional CAPM

Equation (8), ri ¼ ai þ bm;i � rm þ bPut;L;i � f ðrtÞ � rSP þ ei, implies a form of time-varying betas

on stocks. To calculate the betas implied by this equation, we estimate bm;i and bPut;L;i at the

end of Month t for stock i using the lagged 12 months. Then, we evaluate f ðrtÞ using the mar-

ketwide information at the end of month t. Finally, we compute the dynamic beta for stock i at

the end of Month t as: bi;dynamic ¼ ^bm;i þ ^bPut;L;i � f ðrtÞ. Equipped with these betas, we examine

the relationship between betas and expected stock returns, proxied by stock returns in Month

tþ1, using Fama–MacBeth regressions. we also perform the same exercise with simple bCAPM

estimated using 12-month rolling windows. This beta is called static beta in the table.

Table VIII, Panel A reports the estimated lambdas for the dynamic and static beta. The static

beta delivers a negative market risk premium of �14.1 bps per month, while the dynamic beta

generates a positive market risk premium of 22.1 bps per month. Although the latter risk pre-

mium is still not statistically significant and is only one-third of the empirical market risk pre-

mium over the sample (64 bps per month), it does represent an economically meaningful

improvement over the traditional method to measure betas. This encouraging finding points to
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the potential benefit of modeling time-varying betas as a function of market information that is

available at a reasonably high frequency. This method could yield timely measures of systemat-

ic risk and improve pricing performance.

In Panel B, we add the long–short portfolio sorted on the dynamic betas to the Fama–

French three-factor model and examine its ability to explain the abnormal returns of three

prominent anomalies that remain strong in the sample period, namely, momentum, profit-

ability, and investment. The anomaly portfolios are the long–short value-weighted decile

portfolios obtained from Ken French’s data library. Overall, adding the new factor has little

impact on the abnormal returns of the anomalies, suggesting that time-varying betas associ-

ated with IV are not the main contribution to these anomalies.

9.2 Alternative Factor Models

In calculating the betas with respect to the option-based factors, we follow LM’s setting

and use two-factor models that include the market factor and one option-based factor at a

Table VIII. Dynamic beta

Panel A reports the estimated market risk premium from the cross-section of stocks. Dynamic

betas are estimated based on the equation: ri ¼ ai þ bm;i � rm þ bPut;L;i � f ðrt Þ � rSP þ ei . To calcu-

late the dynamic betas, we estimate bm;i and bPut;L;i at the end of Month t for stock i using the

lagged 12 months. Then, we evaluate f ðrt Þ using the marketwide information at the end of

Month t. Finally, we compute the dynamic beta for stock i at the end of Month t as:

bi ;dynamic ¼ ^bm;i þ ^bPut;L;i � f ðrt Þ. The static betas are estimated using the same 12-month win-

dows with the standard CAPM model. The risk premium is estimated using Fama–MacBeth

regressions of Month tþ 1 stock returns on Month t betas. Panel B reports the regression coeffi-

cients of three long–short anomaly returns—momentum, profitability, and investment—on the

Fama–French three factors, or the three factors augmented by long–short portfolio sorted on

the dynamic betas.

Panel A: Estimate market risk premium from the cross-section

Beta k̂ tstat

Dynamic beta 0.221 0.858

Static beta �0.141 �0.481

Panel B: Explain anomaly returns

Momentum Momentum Profitability Profitability Investment Investment

a 1.30 1.11 0.72 0.65 0.37 0.38

(2.87) (2.23) (3.05) (2.68) (1.98) (2.02)

Mkt-Rf �0.70 �0.28 �0.51 �0.37 �0.16 �0.18

(�3.66) (�1.79) (�7.68) (�4.14) (�2.62) (�2.89)

SMB 0.13 0.18 �0.64 �0.62 0.17 0.16

(0.61) (0.82) (�7.13) (�7.32) (1.82) (1.75)

HML �0.64 �0.63 0.34 0.34 0.58 0.58

(�1.91) (�1.91) (3.21) (3.32) (5.4) (5.37)

H�L – �0.32 – �0.11 – 0.02

– (�2.27) – (�2.27) – (0.38)

Adj. R2 0.150 0.199 0.571 0.588 0.308 0.309
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time. A potential concern is whether the results change if we include all the three compo-

nents of an option-based factor in the same model to form a four-factor model and calcu-

late the factor betas all at once. The regression model can be written as

ri ¼ ai þ bm;i � rm þ bBear;IV;i � rBear;IV

þbBear;L;i � rBear;L þ bBear;NL;i � rBear;NL þ ei;
(9)

where ri is the return of stock i, rm is the market return, rBear;L and rBear;NL are the linear and

nonlinear components of the bear risk factor, and rBear;IV is the IV-driven component.

The resulting portfolio returns and alphas are reported in the first two columns of

Table IX. For brevity, we only include the results on the H�L portfolios. Consistent with

our analysis using two-factor models, only the portfolio sorted on rBear;L has significant ab-

normal returns.

So far in the article, we use the IV-driven option returns as the factor that captures vola-

tility shocks. This is somewhat different from the common practice in previous studies such

as Ang et al. (2006), where changes in volatilities are treated as a factor. To understand the

differences between the two choices, we replace rBear;IV in Equation (9) by changes in the VIX

Table IX. Including the three components of bear risk factor in one model

This table reports the average returns and Fama–French–Carhart alphas of the value-weighted

stock portfolios sorted on betas with respect to the three components of bear risk factor returns.

Stocks are sorted into deciles using each beta; only the results for the H�L portfolios are

reported for brevity. Stock betas are calculated following the regression model:

ri ¼ ai þ bm;i � rm þ bVol;i � volatility factorþ bBear;L;i � rBear;L þ bBear;NL;i � rBear;NL þ ei , where ri is the

return of stock i, rm is the market return, and rBear;L and rBear;NL are the linear and nonlinear

index-driven components of bear risk factor. The volatility factor is chosen to be the IV-driven

component of the bear risk factor to produce the results in the first two columns and the

changes in VIX to produce the last two columns. The regression models are estimated using

the prior 12 months of overlapping 5-day returns at the end of each month. Columns titled

“H�L” are returns or alphas. Columns titled “t-Stat” are Newey–West t-statistics with one lag.

Return Horizon IV-driven bear Factor as Vol factor Change in VIX as Vol factor

H�L t-Stat H�L t-Stat

H�L portfolio sorted on bVol

1 month R �0.28 �0.99 �0.58 �1.29

a �0.49 �1.73 �0.95 �2.69

12 months R 0.10 0.54 �0.24 �0.69

a 0.03 0.14 �0.42 �1.80

H�L portfolio sorted on bBear;L

1 month R �0.80 �1.62 �1.14 �2.28

a �1.10 �3.13 �1.48 �4.24

12 months R �0.55 �1.37 �0.65 �1.63

a �0.61 �2.18 �0.74 �2.61

H�L portfolio sorted on bBear;NL

1 month R 0.07 0.20 0.02 0.06

a 0.20 0.64 0.18 0.64

12 months R �0.09 �0.38 �0.01 �0.04

a 0.02 0.08 0.11 0.55
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index and report the results in the last two columns of Table IX. Interestingly, the long–short

portfolio sorted on VIX betas has a significant alpha of �0.95% per month for the 1-month

holding period, which confirms the existing findings in the volatility risk premium literature.

This result also shows that the empirical measures of the volatility risk premium are somewhat

sensitive to the choice of the volatility risk factor. Finally, it is worth noting that the alphas of

the portfolio sorted on rBear;L also become more significant in this setting, which means once

the volatility risk premium is better accounted for, the current puzzle becomes even deeper.

9.3 Cross-sectional Regressions

To control for other well-established stock return predictors, we run cross-sectional regres-

sions of monthly stock returns on their option-factor betas and control variables, imple-

menting the method of Fama and MacBeth (1973). The regression coefficients are reported

in Table X. The main predictors include the bear beta and the betas with respect to the

three components of the bear risk factor calculated using Equation (9). There are two sets

of control variables. Control 1 includes one-factor CAPM beta, market capitalization,

book-to-equity ratio, lagged 12-month stock return, idiosyncratic volatility, Amihud il-

liquidity, annual growth in total assets, operating profitability, downside market beta, VIX

beta, and risk-neutral skewness beta. Control 2 includes co-skewness beta, tail risk beta,

and jump risk beta. Due to space limit, the table omits the coefficients on the control varia-

bles, which can be found in the Supplementary Appendix. Further details of variable con-

struction are also in the Supplementary Appendix. The regressions listed under the same

column have the same control variables even though we only label the controls for the first

set of regressions. All the independent variables are winsorized at 0.5% and 99.5% levels.

The top section of the table reports the coefficients of predicting 1-month-ahead stock

returns. The option-factor betas are available from December 1996 to December 2017,

which determines our full sample period used in Models 1, 2, 4, and 5. The control varia-

bles in Control 2 are provided by the authors of the original papers and have shorter sample

periods than ours. Models 3 and 6 include these controls, and the sample period for these

two models is December 1996 to December 2007. Models 1, 2, and 3 show that bear beta

is a significant predictor in the full sample with Control 1. Models 4, 5, and 6 show that

betas with respect to the linear component are significant in the full sample but not in the

shorter sample, while the other two components are always insignificant.

The next three sections of the table report the results of predicting stock returns that are

3, 6, and 12 months ahead. In predicting 3- and 6-month ahead stock returns, both bear

betas and betas on the linear component are significant in all the settings. Interestingly,

Models 4 and 5 show that the coefficient on the beta with respect to the nonlinear compo-

nent can be significant when it is jointly used with the other predictors, but only at the 6-

month horizon. This probably should only be considered weak evidence for supporting

downside risk premium given the lack of robustness. The results on predicting 12-month-

ahead returns show that all the option-factor betas become insignificant. Overall, the evi-

dence in this table confirms the findings based on portfolio analysis.

10. Conclusion

Implementing a three-way decomposition of index option returns, we show that only betas

on one of the three components of the bear risk factor are significantly correlated with

expected stock returns. Because the component responsible for the pricing power is a linear
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Table X. Cross-sectional regressions

This table reports the coefficients of the cross-sectional regressions of monthly stock returns

on the option-factor betas and control variables using the method of Fama and MacBeth (1973).

The cross-sectional regressions are performed at a monthly frequency. The main predictors in-

clude the bear beta and the betas with respect to the three components of the bear risk factor—

bBear;IV; bBear;L, and bBear;NL. There are two sets of control variables. Control 1 includes one-factor

bCAPM, market capitalization, book-to-equity ratio, lagged 12-month stock return, idiosyncratic

volatility, Amihud illiquidity, corporate investments, operating profitability, downside market

beta, VIX beta, risk-neutral skewness beta. Control 2 includes co-skewness beta, tail risk beta,

and jump risk beta. All the independent variables are winsorized at 0.5 and 99.5% levels. t-statis-

tics based on the Newey–West method with twelve lags are in the parentheses.

[1] [2] [3] [4] [5] [6]

1 month

bBear �0.30 �0.24 �0.20 – – –

(�1.65) (�2.55**) (�1.41) – – –

bBear;IV – – – 0.22 0.25 0.45

– – – (0.76) (1.3) (1.54)

bBear;L – – – �0.22 �0.16 �0.11

– – – (�2.19**) (�2.62***) (�1.18)

bBear;NL – – – 0.07 �0.10 �0.13

– – – (0.28) (�0.54) (�0.5)

Control 1 – X X – X X

Control 2 – – X – – X

3 months

bBear �0.40 �0.32 �0.40

(�2.45**) (�4.02***) (�3.53***)

bBear;IV – – – 0.19 0.23 0.07

– – – (0.7) (1.42) (0.37)

bBear;L – – – �0.25 �0.19 �0.22

– – – (�2.85***) (�3.82***) (�3.11***)

bBear;NL – – – �0.10 �0.21 �0.19

– – – (�0.43) (�1.48) (�0.89)

6 months

bBear �0.53 �0.41 �0.38 – – –

(�2.85***) (�4.14***) (�2.3**) – – –

bBear;IV – – – 0.05 0.04 0.01

– – – (0.18) (0.26) (0.06)

bBear;L – – – �0.25 �0.20 �0.18

– – – (�2.33**) (�3.27***) (�2.47**)

bBear;NL – – – �0.45 �0.53 �0.33

– – – (�1.9*) (�3.4***) (�1.19)

12 months

bBear �0.14 �0.05 �0.19 – – –

(�1.16) (�0.61) (�1.44) – – –

bBear;IV – – – �0.06 0.01 �0.12

– – – (�0.31) (0.09) (�0.57)

bBear;L – – – �0.04 0.00 �0.05

– – – (�0.5) (0.02) (�0.74)

bBear;NL – – – �0.04 0.08 �0.05

– – – (�0.2) (0.6) (�0.22)

*p< 0.1,

**p< 0.05,

***p< 0.01.
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function in the underlying index return conditioning on the lagged IVs, the beta–return rela-

tionship cannot be attributed to premia associated with downside risk protection or time-

varying investment opportunities. The market risk exposures of the stocks with high load-

ings on the linear component are not only high on average but also increasing in the index

options’ IVs. The low expected returns of such stocks, therefore, can be viewed as a vari-

ation of the well-known BaB puzzle.

Following Levi and Welch (2019) and Barahona, Driessen, and Frehen’s (2021)

refusals of ex post downside risk being priced in the cross-section of stocks, we overturn

Lu and Murray’s (2019) interpretation of their findings as support for the pricing of ex

ante downside risk in the cross-section. In addition, we find no evidence that the bear

risk factor or the tail risk factor of Kelly and Jiang (2014) help select stocks with down-

side or tail risk hedging properties. Therefore, the observed relationship between factor

betas and expected returns does not fit rational frameworks where investors pay a pre-

mium to hold stocks that hedge against these risks. We claim that the empirical litera-

ture has yet to produce evidence to support the pricing of any form of downside risk in

the cross-section of stocks.

Consistent with the view of Levi and Welch (2019) and Barahona, Driessen, and Frehen

(2021), we find that the asymmetry in upside and downside market betas is very difficult to

predict, though we do find moderate predictability of this asymmetry using loadings on the

linear and non-linear index-driven components of the bear risk factor or put option returns,

which suggests that future empirical studies could potentially develop techniques to better

forecast the asymmetry. Such predictability would allow asset managers to more precisely

tailor the risk profile of their portfolios.

The abnormal return associated with the linear factor is an interesting asset pricing puz-

zle in its own right. Although it is conceptually related to the BaB puzzle, controlling for

the BaB factor does not affect the abnormal return. After exploring various resolutions, we

find that disagreement about aggregate market returns is likely the most important con-

tributor to the anomaly.

Although this article focuses on analyzing the downside and bear risk premia, the re-

search methodology we develop will benefit future research utilizing risk factors con-

structed from option returns. Option-based factors are not only important for testing

asset pricing theories but also for evaluating the performance of financial institutions

such as hedge funds. Therefore, a clear understanding of why betas with respect to these

factors predict stock returns is important to correctly assess fund performance.

Supplementary Material

Supplementary data are available at Review of Finance online.
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Appendix

A. Replace the Bear Factor with ATM Put Returns

So far in the article, we have focused on LM’s bear risk factor. The fact that it involves long

and short positions in multiple options with different strike prices makes interpreting our

results less straightforward. Before proceeding with further analyses, we show that using

returns on single ATM SPX puts as the factor generates nearly identical results as using the

bear risk factor. Therefore, the added complexity of the bearish spreads is not necessary for

understanding the bear risk premium. Using simple put returns as the factor not only per-

mits easier interpretations of our findings, but also makes our conclusions generally applic-

able to any risk factors constructed from option returns.

To compute the put option returns, we select the monthly SPX put contract that expires

in the following month and has the strike price closest to the index level. Table A1 reports

the returns and betas of the portfolios sorted on betas with respect to the put returns. For

brevity, only the results for the H�L portfolios are shown. The settings of the regressions

are similar to Models (1)–(5), with the bear factor and its components replaced by the put

Table A1. Replace bear risk factor with put returns

The first three panels of this table report the returns and factor loadings of the stock portfolios

sorted on the betas with respect to SPX put option returns and their two components. The table

only reports the results for the H�L portfolios. Panel A reports the average portfolio returns and

Fama–French–Carhart alphas. In the first (middle, last) two columns, stocks are sorted on betas

with respect to SPX put returns (the index-driven component of put returns, the IV-driven com-

ponent of put returns). Panel B reports the formation period factor loadings of the put-beta port-

folios. bPut and bm are calculated using the two-factor models. bPut is replaced by bPut;Index and

bPut;IV in the middle and last two columns, respectively. bCAPM is the one-factor CAPM beta.

bMarketDown and bMarketUp are the bCAPM measured when market excess returns are negative and

positive, respectively. Panel C reports the holding period factor loadings. Panel D reports the

returns and alphas of the bear beta portfolios formed using double-sorts to control for put

betas. Columns titled “t-Stat” are Newey–West t-statistics with one lag in Panels A and D, and

eleven lags in Panel B. The t-statistics in Panel C are adjusted for heteroskedasticity.

Panel A: Put-beta portfolio returns

Holding Period bPut bPut;Index bPut;IV bPut;L bPut;NL

H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat

1 month R �1.02 �2.14 �1.10 �2.26 �0.07 �0.21 �1.01 �1.96 0.09 0.24

a �1.27 �3.43 �1.31 �3.35 �0.19 �0.58 �1.36 �3.54 0.17 0.51

12 months R �0.82 �2.08 �0.81 �2.05 0.27 1.18 �0.78 �1.89 0.02 0.09

a �0.94 �3.20 �0.93 �3.11 0.17 0.73 �0.94 �3.32 0.01 0.07

Panel B: Formation-period betas

bPut bPut;Index bPut;IV bPut;L bPut;NL

Beta H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat

Option beta 1.87 17.71 2.13 15.08 0.69 21.19 3.18 44.42 0.69 83.77

(continued)
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factor and its components. Panel A reports average returns and alphas. Comparing these

values with the corresponding values in the last two columns of Table II, we can see that

put betas generate similar return spreads as bear betas do, and the index-driven component

still accounts for most of the abnormal returns. Panels B and C report the portfolios’ risk

exposures, and the patterns are very similar to those in the last two columns of Tables III

and IV.

To further confirm the equivalence of bear betas and put betas in predicting stock

returns, Table A1 Panel D reports the returns of the bear beta portfolios that are double-

sorted in order to control for put betas. Specifically, stocks are first sorted into deciles by

their put betas, and then further sorted into deciles by bear betas within each put-beta

Table A1. Continued

Panel B: Formation-period betas

bPut bPut;Index bPut;IV bPut;L bPut;NL

Beta H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat

bm 2.55 16.26 2.80 14.90 0.37 5.58 4.04 43.31 0.21 6.45

bCAPM 0.63 7.04 0.63 6.69 0.16 2.88 0.63 18.48 0.10 3.66

bMarketDown 0.60 3.52 0.62 3.56 0.04 0.51 0.80 16.60 �0.51 �12.28

bMarketUp 1.40 10.08 1.37 9.61 0.45 4.64 0.92 18.56 0.78 20.35

Panel C: Holding-period betas

Beta bPut bPut;Index bPut;IV bPut;L bPut;NL

H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat

Option beta 0.28 4.85 0.29 4.72 0.01 0.31 0.38 4.97 0.04 1.27

bm 0.80 10.24 0.79 9.57 0.17 5.51 0.87 8.75 0.11 2.74

bCAPM 0.56 14.05 0.54 13.14 0.16 5.57 0.54 12.69 0.10 2.65

bMarketDown 0.59 7.52 0.62 7.58 0.09 1.47 0.64 8.06 0.06 0.65

bMarketUp 0.50 5.93 0.45 5.15 0.17 2.76 0.36 3.91 0.24 3.54

Panel D: Double-sorted bear beta portfolios controlling for put betas

Holding

period

Sorted on

bBear

Sorted on

bBear;Index

Sorted on

bBear;IV

Sorted on

bBear;L

Sorted on

bBear;NL

Controlling for

bPut

Controlling for

bPut;Index

Controlling for

bPut;IV

Controlling for

bPut;L

Controlling for

bPut;NL

H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat H�L t-Stat

1 month R �0.16 �0.59 �0.06 �0.20 �0.01 �0.02 0.10 0.38 �0.17 �0.64

a �0.09 �0.38 0.03 0.12 �0.04 �0.16 0.12 0.42 �0.26 �0.95

12 months R 0.01 0.06 �0.01 �0.07 0.12 0.55 0.04 0.30 0.03 0.15

a 0.14 0.81 0.12 0.65 0.19 0.95 0.12 0.83 0.01 0.07
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decile. Finally, stocks belonging to the same bear beta decile are collected across the put-

beta deciles and aggregated into one portfolio. For the two components of bear betas, we

use the corresponding components of put betas as the controls. Panel D shows that control-

ling for put betas largely subsumes the predictive power of bear betas; therefore, it is suffi-

cient to study put betas in order to understand why bear betas predict stock returns.

B. the Linear Component of the Put Option Return

Section 4.3 shows that the linear component of the put return can be written as

rPut;L ¼ f ðrtÞ � rS&P500, where f ðrtÞ ¼ � 1
Nð�d2Þ
Nð�d1Þ

K
St

eðr�yÞðT�tÞ�1
, d1 ¼ lnðSt=KÞþðr�yþr2

t =2ÞðT�tÞ
rt

ffiffiffiffiffiffiffi
T�t
p ,

d2 ¼ d1 � rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

, and rt is the IV of the option at time t. Because we choose ATM

options, we assume that St¼K (hence, lnðSt=KÞ ¼ 0), which allows further simplification of

f ðrtÞ:

f rtð Þ ¼ �
1

N �d2ð Þ
N �d1ð Þ

K

St
e r�yð Þ T�tð Þ � 1

¼ � 1

N �d2ð Þ
N �d1ð Þ e

r�yð Þ T�tð Þ � 1

¼ � 1

N � r� y� r2
t =2

� �
T � tð Þ

rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

 !

N � r� yþ r2
t =2

� �
T � tð Þ

rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

 ! e r�yð Þ T�tð Þ � 1

¼ � 1

N rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

=2� r� y

rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

� �

N �rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

=2� r� y

rt

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

� � e r�yð Þ T�tð Þ � 1

If we can assume that r¼ y, then the expression above can be further simplified to

f ðrtÞ ¼ � 1
Nðrt
ffiffiffiffiffi
T�t
p

=2Þ
Nð�rt

ffiffiffiffiffi
T�t
p

=2Þ
�1

, which increases in rt because the ratio between the two CDF func-

tions increases in rt. In our sample period, r�y fluctuates between a minimum of �2.5%

and a maximum of 6.7%, and its median is close to zero at 0.25%. Next, we show numer-

ically that the function is increasing for the two extreme values of r�y. In addition, we

examine the sensitivity of the monotonicity of f ðrÞ to T � t. Because we choose monthly

option contracts that expire in the following month, their time-to-expiration is always be-

tween 2 and 8 weeks. In annual terms, T � t is between 0.038 and 0.15. The following fig-

ure plots the function f ðrtÞ for six situations from the combinations of

r� y 2 f�0:025; 0;0:067g and T � t 2 f0:038; 0:15g. The range of rt is chosen to match

the range of VIX observed in the sample period—from 9.1% to 80%.

The figure shows that f ðrtÞ is an increasing function in rt for all the parameter values, al-

though the shape of the function changes with the values of the parameters.
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C. Categorized Jumps

First, we include all the negative daily jumps categorized as “monetary policy and central

banking” or “macroeconomic news & outlook” to form a Macro Jump Index. There are

eighty-five such jumps between 1996 and 2017, with an average jump size of �3.6%. For

the period of 1964–2011, there are 106 such jumps, with an average size of �3.6%.

Second, we group all the other jumps into a Non-Macro Jump Index. There are seventy

such jumps between 1996 and 2017, with an average size of �3.7%, and ninety-one jumps

between 1964 and 2011, with an average size of �3.9%. Finally, out of all the non-macro

jumps, we examine those labeled as “corporate earnings & outlook.” There are thirty-four

jumps between 1996 and 2017, with an average size of �3.45%, and thirty-nine jumps be-

tween 1964 and 2011, with an average size of �3.47%. While there are several other cate-

gories within non-macro jumps, the number of observations is fairly small for each

category, and we do not consider them separately.

ADS index refers to the quarterly innovations in the Aruoba–Diebold–Scotti Business

Conditions Index. The innovations are the residuals of the following AR model:

ADStþ90 � ADSt ¼ aþ b � ADSt þ c � ADSMA90, where ADSMA90 is the 90-day moving aver-

age of the index. This model accounts for the obvious mean-reverting nature of the index.
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