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CHAPTER 1 

INTRODUCTION 

New techniques of evaluating solute transport and distribution in saturated 

and unsaturated systems are always needed. These techniques can either be 

variations of existing methods or completely new and unique. Innovative metho­

dology and technology may be in the form of advancing the governing equations 

or variations of an existing apparatus. Examples of areas under current research 

include: macropore affects, fingering, multiphase flow in unsaturated systems, 

and transport and flow in nonhomogeneous systems. 

The original motivation for research presented here was to non-intrusively 

study steady-state flow of solutions in saturated porous media using gamma-ray 

transmission and computed tomography methods. This would include the study 

of macropore effects, preferential flow, and variation in soil density in laboratory 

columns due to packing. System error analysis was to be investigated during the 

course of the various experiments. 

Background 

Prior to this investigation Brown, Stone, and Gazin (1993) designed and 

built a gamma scanner and quantitatively evaluated it in terms of accuracy, 

resolution, and sensitivity. Additionally, Brown et al. (1994) studied small-scale 
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density variations and macropores in 50.8 mm driven cores. Initial research using 

a parallel beam gamma scanner quickly showed that a solution does not, in fact, 

infiltrate uniformly into a "homogeneous" soil. An acrylic test column was packed 

with an aeolian soil and scanned at intervals to establish density variations. A 

flux of water was then uniformly applied and allowed to equilibrate over a period 

of time. Subsequent imaging of the column over the same intervals showed that 

the distribution of moisture had assumed a "finger" geometry. 

Refinements in the scanner led to a non-collinear, dual-source, dual­

energy scanner with a second source-detector pair placed at an angle of 48 

degrees to the primary source-detector pair. This configuration would have 

allowed the simultaneous measurement of dry bulk density and moisture content 

of the test soil. Typical arrangements, however, have the sources in line with one 

another. 

A solution of 100,000 ppm sodium iodide was used in the next series of 

experiments to enhance the density contrast between the solution and soil. A 

low-energy peak was found during preliminary analysis of the offset detector 

data. Subsequent investigation determined it to be the result of primary-energy 

photons interacting with iodide K-shell electrons to produce fluoresced x-rays. 

This peak would have been obscured by Compton haze with an inline, dual­

source, single-detector system. 

At this point it occurred to the author that a repacked laboratory column 

could be analyzed simultaneously, in terms of moisture distribution as well as 

analyte concentration, with a single radioisotope source. 
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Objectives 

The research presented will develop and verify a new technique for the 

analysis of high-Z (atomic number) salt solutions in porous media. It combines 

gamma-ray attenuation and x-ray fluorescence spectroscopy (XRF). All data was 

acquired simultaneously with one source and provided a comprehensive tool for 

analysis of the column physical properties, moisture content, and analyte 

concentration. This approach reduces the time needed for a priori information as 

well as expense and regulatory requirements needed for a second radioisotope 

source. 

During the course of the investigation an attempt was made to: (1) 

calibrate analyte x-ray intensity with concentration and position in the sample; (2) 

determine the location of x-ray generation using Monte Carlo modeling of 

radiation transport theory; (3) obtain information concerning the feasibility of 

simultaneous image and XRF data acquisition; (4) perform system error analysis; 

(5) determine the optimum configuration for a dual purpose, single source 

apparatus to be used for both imaging and XRF; and (6) determine the types of 

experiments for which this system will be practical (static or dynamic flow). 

The end result of this research is intended to enable researchers to have 

access to a relatively low cost multifaceted laboratory tool to supplement more 

traditional means of analyses. 



CHAPTER2 

PHOTON INTERACTIONS 

AND 

GENERATION OF FLUORESCED X-RAYS 

Introduction 

X-ray fluorescence occurs when a beam of photons is impinged on a 

target. Generally, the fluoresced x-rays are of too low an energy to detect unless 

an extremely sensitive detector is being used. If fluoresced x-rays are being 

produced because of the presence of a high-Z element they may not be observed 

due to low intensity and/or a noisy background. 

Fluorescent x-rays can be viewed as an easily obtainable additional source 

of information when doing gamma attenuation or tomography research. The only 

other needed components are an offset detector and a relatively high concen­

tration of a high-Z salt to serve as the target analyte. A brief summary of gamma 

attenuation and computed tomography research in the soil sciences is given to 

pmvide background prior to a discussion of basic photon interactions. 

Gamma Attenuation 

Since van Bavel's (1957) use of gamma-ray attenuation principles for the 
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determination of bulk density in dry soil, numerous researchers have applied this 

technology for the determination of soil-water content. De Vries ( 1969) used 

attenuation data gathered in situ in conjunction with a low impedance tensiometer 

to construct a partial water retention curve. He also discussed the effect of 

collimation (restriction of the beam on both the source and detector) on photon 

counting statistics. Topp (1969) used gamma attenuation to measure the soil­

water content of a repacked column (sandy loam) for his soil-water hysteresis 

studies. Fritton ( 1969) evaluated the resolving time, mass absorption coefficient, 

and water content of soils. Gardner et. al. (1972) used a dual-source (two 

sources, two photon energies) arrangement for the simultaneous determination of 

water content and soil bulk density as well as evaluating the systematic error 

involved in dual-source measurements. Reginato and Jackson (1971) measured 

soil-water content under field conditions using temperature-compensated gamma­

ray transmission. A gamma-ray transmission method was also used by Elzeftawy 

and Mansell (1975) to determine soil-water content during the course of their 

study of unsaturated steady-state and transient flow in sand. Nofziger (1978) 

thoroughly evaluated errors associated with dual-source determinations of soil­

water content and bulk density in non-uniform soils. Grismer (1984) used a dual­

source gamma-ray configuration to investigate the transport of various salts in 

unsaturated soils. Stillwater and Klute (1988) presented a method for the 

determination of the precision and accuracy of soil-water content and bulk density 

using a collinear, dual-source system. 

Gamma attenuation devices allow non-destructive determination of soil-
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water content and solute concentration. These values, however, are averaged 

across the diameter of the sample. The internal properties of the sample within 

the collimated beam remain unknown. These properties can be determined by 

constructing a parallel beam gamma-ray computed tomography system. The 

basic assemblage consists of a 3-axis positioning system (x-y and rotation, x-z 

and rotation, or y-z and rotation), multichannel analyzer, detector, and appropriate 

computer software. 

Computed Tomography 

In computed tomography (CT) attenuation data is taken at intervals across 

the sample. The sample is then rotated and data again taken. After an N X N 

matrix of data has been collected it is processed by an image reconstruction 

algorithm. The resultant image yields a visual map of linear attenuation 

coefficients throughout the sample. Density values are derived from this data set 

based on a priori knowledge of the sample. The original data, represented by the 

N X N matrix, is the Radon Transform of the attenuation within the sample cross 

section (Radon, 1917). The reconstructed data is the Inverse Radon Transform 

of those attenuations. The resolution of the image is based on the density of data 

points and the diameter of the photon beam. The accuracy of each voxel 

(volume element) in the image is a function of the reconstruction algorithm and 

photon statistics. 

An example application of this technique is the quantitative determination 

of soil-water content. A repacked column is imaged to establish the dry bulk 
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density at a predetermined resolution. A solution is then introduced and allowed 

to equilibrate. The column is again imaged at the same resolution and compared 

to the initial data set. The change in density at each position within the sample is 

directly related to the increase in moisture content and an image of soil moisture 

can be generated. 

CT was first applied to soil investigations using commercial x-ray 

scanners. Petrovic, Siebert, and Rieke (1982) used an American Science and 

Engineering CT scanner at the Michigan State University Clinical Center to study 

the precision, spatial resolution, and limitations with respect to soil bulk density. 

Hainsworth and Aylmore (1983) used both a commercial x-ray CT scanner as 

well as a gamma scanner to determine spatial changes in soil-water content with 

time. Crestana et. al. (1985) initially used a medical CT scanner to evaluate the 

feasibility of imaging soils and, because of the complexity and cost of a 

commercial medical scanner, built a gamma-ray miniscanner. Warner and Nieber 

(1988) used a commercial CT scanner to investigate the size and number of 

macropores in undisturbed soil cores. Hopmans et. al. (1994) used x-ray CT to 

study temporal variability of soil moisture in draining soil cores as well as to 

characterize the variability of porosity in soil cores. Grevers and de Jong ( 1994) 

utilized geostatistical analysis on CT data to study the spatial variability of 

macropores and Peyton et. al. ( 1994) established a soil-core breakthrough curve 

using CT. 
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X-ray Fluorescence 

The attenuation effects mentioned above also have bearing on the 

generation of fluoresced x-rays. If a photon's energy is great enough it is 

possible to eject a K-shell electron from the target atom's orbit. Subsequent 

reordering of the remaining electrons yields either an Auger electron or an energy 

emission. If an emission occurs it is known as a fluoresced x-ray. This process 

lends itself to the non-destructive determination of concentration of certain 

solutes in solution. 

The implication of above is given a typical parallel beam arrangement, it is 

possible to use a single source to both image the target and perform a laboratory 

column breakthrough curve experiment. One data set necessarily provides a 

check against the other. In other words, two independent sets of data can be 

obtained simultaneously from a single radioisotope source: one data set being 

attenuation data from the inline detector and the other being fluorescence data 

from an offset detector. 

A primary goal of this chapter, then, is to define the nature of photon 

interactions as they pass through target material. This will then be applied to the 

problem of predicting the probability and intensity of x-ray fluorescence events. 

Consideration will be given to heterogeneous column matrices and target salts in 

solution. The development of the theory of basic photon interactions in this 

chapter is based on the current parallel-beam gamma tomography system. The 

source emits gamma rays with an energy of 0.662 MeV. The detector is a 2" 



thallium-activated sodium iodide crystal (Nal) coupled to a photomultiplier and 

multichannel analyzer. 

General Interactions 

9 

As a photon travels through matter it will either pass unimpeded or interact 

in some manner with the atomic structure of the material through which it is 

passing (Jenkins and De Vries, 1969). A given interaction is classified by the 

kind of target and the type of event. Targets are electrons, atorns, or nuclei, and 

events are absorption, scattering, or pair production (Hubbel and Berger, 1968). 

The sum of these three effects contribute to the mass absorption coefficient; the 

potential for a photon to be removed from the primary beam. 

Photoelectric absorption is dominant at photon energies at or below the K­

shell absorption edge energies of high-2 elements. This corresponds to the 

energy region below approximately 1. 1 MeV. Inelastic Compton scattering occurs 

when the incident photon energy exceeds the absorption edge energy of the 

target but is not sufficient to initiate pair production. Scattering is dominant in the 

range of approximately 60 keV to 1 . 02 MeV. Pair production occurs when an 

incident photon with an energy of at least 1.02 MeV, the lower threshold energy 

for pair production, strikes an electron. The photon strikes the electron and 

moves it into a positive state at which time it becomes a positron. Because 

positrons are unstable in the presence of free electrons they annihilate one 

another with the subsequent emission of annihilation radiation. An annihilation 

emission is composed of two 0.511 MeV photons emitted in opposite directions. 
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The Mass Attenuation Coefficient 

The photoelectric effect, Compton effect, and pair production all contribute 

to the attenuation of a photon beam as it passes through a substance. These 

three parameters comprise the mass attenuation coefficient, (µ/p, cm2/g), where 

µ is the linear attenuation coefficient (cm-1) and pis the density (g/cm3). The 

mass attenuation coefficient can be calculated for an element, compound, or 

heterogenous mixture. One way of viewing the mass attenuation coefficient is as 

the probability of photon absorption and scattering based on the effective atomic 

weight of the target and the energy of the incident photon. 

On a mass basis the attenuation coefficient is the same for an element in 

the gas, liquid, and solid phases. A more detailed analysis of the components of 

the mass attenuation coefficient is needed in order to analyze the dependence of 

µ/p on energy and atomic number. 

The Photoelectric Absorption Cross Section. The probability of photon 

absorption is determined by the photoelectric cross section (T pe,b/atom)_ of the 

atom. Photon absorption occurs when the energy of an incident photon 

approaches the absorption edge energy of an electron shell from the high-energy 

side. On absorption of a photon by an electron, the electron is either ejected or 

placed into an outer shell vacancy. In both cases a hole state is created. This 

results in ionization of the atom. The remaining electrons reorder themselves to 

accommodate this new vacancy and energy is emitted in the form of an Auger 

electron or fluoresced x-ray during the reordering process. 
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The emitted x-ray spectral series is designated by the shell in which the 

electron transitions finalize (Tertian and Claisse, 1982). For example, if a K-shell 

electron were ejected the resultant emitted photons would be characteristic K x­

rays since electron transitions finalized in the K shell. This x-ray series is the 

unique spectral signature of each element. 

Characteristic x-rays are further subdivided based on their relative 

intensities with the most intense being the Ka x-ray. This line is the most 

desirable because of its intensity and energy. The total photoelectric absorption 

cross section is obtained by summing the contribution of each electron shell (T K + 

TL+ ... ). From this definition it can be seen that the photoelectric cross section is 

highly dependent on Z. 

The Compton Cross Section. The probability of photon scattering is 

given by the Compton scattering cross section (oc, b/atom orb/electron). This 

cross section is largely dependent on the energy of the incident photon and only 

weakly dep~ndent on Z. For this reason Oc is considered to be the same for all 

elements. The important point about Compton scattering is that an incident 

photon of energy, E, will have a reduced energy, E', after a scattering event. 

This, in effect, removes the photon from the beam even if detected since it is no 

longer a primary energy photon. 

The relationship between the photon's angle of scatter (8) and change in 

energy is given by 
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E 1 

E' 1 +(E/mc2)(1-cos9) 
2.1 ---------

where E and E' are in MeV. The relativistic electron rest energy is denoted by 

mc2. Through the conservation of momentum the kinetic energy imparted to the 

electron is E - E'. 

Generating Detectable Fluoresced X-Rays 

Probabilistic parameters must be evaluated when determining whether or 

notan analyte is capable of producing a practical number of detectable 

fluoresced x-rays. As already mentioned, the probability of a photon being 

absorbed or scattered is governed by the mass attenuation coefficient, µ/p. The 

probability that the photon interacts with an analyte electron in a mixture is 

2.2 

where CA is the mass concentration of the analyte, and subscripts A,E and M,E 

identify the attenuation coefficients for the analyte and matrix, respectively, at a 

given energy. 

X-ray generation is based on three factors if an analyte electron is struck 

by an incident photon: (1) the absorption jump ratio, (2) fluorescent yield, and (3) 

the probability of orbital electron transition. These three terms are generally 

combined and called the excitation factor, PA (Bertin, 1975). Values for items ( 1) 
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and (2) may be found in Bertin (1975). Values for determining orbital electron 

transition probabilities may be found in ASTM Data Series DS 37 (1965). 

Absorption Jump Ratio. Tthe probability of creating an electron vacancy 

in the K shell of an analyte atom is known as the absorption jump ratio, J K• and is 

defined as 

2.3 

where rK is the ratio of the photoelectric absorption cross sections at the K-

absorption edge discontinuity defined by 

2.4 

and the subscripts on T refer to the various electron shells and subshells. 

Fluorescent Yield. The fluorescent yield (w) is the ratio of fluoresced x-

rays that actually leave the atom, n,, to the number of primary photons absorbed, 

n, calculated as 

n, 
W==-

n 
2.5 

where w decreases with increasing distance from the K shell and increases with 

increasing Z. 
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Orbital Electron Transitions. The probability of orbital electron 

transitions for the K shell, gKai is the ratio of the intensity of the Ka lines to all 

other Klines. It is defined as 

2.6 

Equations 2.2, 2.3, 2.5, and 2.6 may now be combined to give the total 

probability of generating a detectable fluorescent x-ray 

2.7 

Detecting Fluoresced X-Rays 

Fluoresced x-rays are emitted isotropically and are themselves subject to 

attenuation along their path out of the sample. Factors affecting the detection of 

fluoresced x-rays include: (1) the intensity (photons/unit time) of the incident 

beam which affects the number of fluoresced x-rays generated, (2) the mass 

attenuation coefficient of the matrix; which can be viewed as a mixture of 

compounds, (3) the mass attenuation of the analyte ( either an element or 

compound), (4) the depth of x-ray production, and (4) detector collimation and 

position. 
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Intensity of Primary Photons. The number of primary-energy photons 

that can be detected at some distance, L, from a point source is a function of the 

source activity, source and detector geometry, and pathlength. A radioisotope 

emits photons isotropically into a 4n region at a rate determined by the activity of 

the source. Source activity is given in Curies (Ci) with one Ci= 3.7 x 1010 

transformations per second (s-1). The number of photons that can escape the 

shielding is determined by the angle subtended by the collimator (d0/4n) 

multiplied by the source strength. 

The photons of a well-collimated source-detector pair can essentially be 

considered a parallel beam. With increasing distance from the source, photons 

are further attenuated by divergence before reaching the detector (assuming 

transmission through air). This form of attenuation follows the inverse square law 

and defined as 

where 11 and 12 are the intensities at distances D1 and D2 from the source, 

respectively. 

2.8 

The number of incident photons penetrating the target is also a function of 

target density, mass attenuation coefficient as well as depth of penetration. The 

equation defining the net intensity, /, of incident photons, /0 , reaching a unit 

volume is known as Lambert's Law and is written 



/-/ e -(µ/p)px 
- 0 

where p (cm3g-1) is the density of the target material. 
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2.9 

Calculating Mass Attenuation Coefficients. Since the incident beam 

and fluoresced x-rays will be attenuated by the matrix which is rarely, or never 

composed of just one element, it is necessary to evaluate µ/p for compounds and 

mixtures. Attenuation coefficients for the elements and some mixtures may be 

found in practically any text on radiatibn shielding (such as Jaeger, 1968) as well 

as references on nuclear engineering (such as Etherington, 1958). These 

references also give the method for determining µ/p for any compound or mixture 

for which the chemical formula is known. 

The mass attenuation coefficient for a compound is obtained from the 

expression 

2.10 

where W; is the weight percent ofthe ith element and µ/pi is the coefficient for the 

constituent elements. Calculating the coefficient for a mixture.is similar to that of 

a compound. In the case of mixtures, µ/p for each compound is weighted by the 

mass fraction present in the mixture. 
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Detector Collimation and Position. Detector collimation is determined 

by the desired type of analysis. In a parallel-beam configuration collimation of the 

detector and source should be the same, especially if computed tomography or 

attenuation data is desired. Depending on source activity and energy a collinear 

detector may be neither practical nor efficient for spectroscopy purposes. Data 

collected with the current configuration indicate that when the energy of the 

fluoresced line is very much below the energy of the incident beam the line is 

obscured by Compton scatter. 

Evaluation of Equation 2. 1 is one means of establishing the ideal detector 

position. By rearranging and evaluating E 'at different values of 8 (0<8<180) a 

symmetric field of Compton-scattered energies (corresponding to a distribution of 

Compton edges) can be constructed. Making E 'the dependent variable yields 

E'=,=( 1 +~(1-cose)J -l mc2 
2.11 

Optimum detector placement would theoretically be at one of the positions of 

local minima; of course physical constraints could make ideal placement 

impossible. 

Detectable Analytes 

Many of the factors affecting the efficiency of fluorescent x-ray production 

have been discussed. However, one remaining component has yet to be 

mentioned. As previously noted, each element emits a characteristic line at a 

particular energy. It may be possible to fluoresce K x-rays from any element but 



may not be possible to detect the emissions if the proper detector is not in use. 

The type and sensitivity of detector is an important component when 

considering which analytes are to be used in a study. The Nal(TI) detectors 

currently being used in this study are generally most useful at energies above 

about 6 keV (Jenkins, et al., 1981);however, this is not a practical lower limit in 

actual practice. 
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Since x-ray generation is less efficient and yields lower energy x-rays with 

decreasing Z, a less intense spectrum will be detected because the resultant 

photons will not have the penetrative energy to escape a thick target. In all 

likelihood the analyte peak will be masked by the Compton scatter spectrum. For 

this reason iodide is a good choice for use as a target. 

Suggested Analytes 

Analytes used in XRF analysis with the current system should have 

characteristics which contribute to optimum x-ray production. They should have a 

high excitation potential (w, JK, gKa) and yield fluoresced photons of high enough 

energy to penetrate thick targets. Suggested lower and upper bounds in terms of 

Z are silver (Ag: Z=47) and lead (Pb: Z=82). Several ideal analytes are 

compounds of iodide, cesium, and tungsten. Compounds that are not acceptable 

for use with the current system are those with EKa less than approximately 1 O 

keV. These include elements with Z < 30 such as zinc, copper, and iron. 

Elements in the range 30 < Z < 4 7 are problematic. 



Environmental Contaminants. XRF is particularly useful in the 

determination of heavy metals. In most aqueous systems mercury, (Hg(aq)) is 

stable as a free metal (Hem, 1985). Past and present sources of mercury are 

electrolysis cells, smelting, and automobile emissions. Another heavy metal 

commonly found in the environment is lead. Until the recent past lead was a 

common additive in fuels and was also part of auto emissions. Both lead and 

mercury can be adsorbed by, or complexed with, organics. If in a mobile form 

both are very good candidates for monitoring solute transport in porous media 

due to their characteristics. 

Summary 

Gamma ray attenuation instrumentation can be adapted to more fully 

utilize the radioisotope source in use. As has been shown, the attenuation 

process is composed primarily of absorption and scattering. The absorption 

aspect of attenuation can be used, in conjunction with a suitable analyte, to 

generate fluoresced x-rays. These x-rays are essentially an additional source 

that can be used for imaging and quantitative analysis of analyte concentration. 

Unlike the principal source; however, this induced x-ray source requires no 

additional licensing, storage, handling, or eventual disposal. 
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CHAPTER 3 

MODELING PHOTON INTERACTIONS 

AND 

GENERATION OF FLUORESCENT X-RAYS 

Introduction 

Monte Carlo modeling was implemented to simulate radiation transport and 

x-ray generation in test columns. The goal of modeling the system was not to 

establish whether or not the generation of fluorescent x-rays was possible since 

this had been established in Chapter I. Rather, the aim was to qualitatively 

and/or quantitatively answer the following questions based on simulating the 

processes involved in x-ray generation: 

1. Where are the x-rays generated within the column? 
2. Where are the x-rays generated that are detected? 
3. What is the expected rate of x-ray generation based on solute concentration? 
4. What is the optimum detector placement? 
5. Is it possible to construct a calibration curve? 
6. How does the modeled response compare to what is actually seen? 

Model Background and Development 

The Gamma Ray Absorption-Transmission-Emission (GRATE) model was 

written by the author and is loosely based on the MONTEREY Mark I (MMI) code 

written by Wood ( 1982) which in tum was apparently based on pseudocode 
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presented in Jaeger (1968). MMI is a FORTRAN program designed to simulate 

the transmission and reflection of photons. The system geometry assumes a 

uniform gamma ray source incident on an infinite homogeneous plane shield of 

varying thickness. MMI implements the Monte Carlo technique to model the life 

histories of a large number of photons. 

The original program calculated total albedo (a measure of the reflective 

properties of the shield material) and build-up factor (a measure of how the 

transmitted photons are altered by Compton scattering processes). Data was 

output as spectra. Survival weights were assigned to each particle as a means of 

removing bias at the low-energy range of the spectrum. Neither the photoelectric 

effect nor pair production were considered. 

GRATE was originally MMI translated into Microsoft QuickBasic 4.0. Rad­

ical changes were made after debugging and the program eventually evolved to 

the point that only the program flow resembled MMI. Major changes made 

include: (1) source geometry, (2) target geometry, (3) target type, (4) scoring, (5) 

interpolation method, (6) incorporation of the photoelectric effect, (7) 

incorporation of high-Z salt solutions, and (8) archival of x-ray generation sites. 

After successfully implementing GRATE it was again transformed by the 

author to accommodate the transmission, absorption, and detection of x-rays. As 

with GRATE, XRAY was written in Microsoft QuickBasic 4.0. XRAY utilizes 

output from GRATE to model the life histories of x-rays gen~rated as a result of 

the photoelectric effect. Each site of x-ray generation, stored by GRATE as x,y,z 

coordinates, is treated as an isotropic point source yielding one x-ray emission 



per site. The x-ray is emitted randomly into a 4n solid angle and its life history 

tracked. XRAY proceeds to the next site after scoring. More than 1.3 billion 

gamma- and x-rays were simulated using GRATE and XRAY. Minor 

modifications to both programs were made to improve efficiency at which time 

they were then reprogrammed in the Microsoft VisualBasic Professional 3.0 

environment. 

General Overview of Function 
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GRATE is essentially a statistical reconstruction of photons and the target 

material thrqugh which they are traveling. The physical system being modeled 

consists of an isotropic point source with pencil beam collimation, a collimated 

detector aligned with the parallel beam, and a collimated detector placed normal 

to the beam path. The target consists of a 5.1-cm I.D. acrylic column filled with 

sand packed to a dry bulk density of 1.68 g/cm3 and saturated with a solution of 

potassium iodide. The iodide concentration is changed with each set of 

simulations in order to establish a theoretical calibration curve. 

At the start of each simulation a photon of initial energy, Ea, and position 

(Xa, Ya, Za) is assigned a randomly determined pathlength, L, to travel. A 

determination is made at L as to whether or not the particle is in the target. The 

particle is binned in terms of energy and angular location if it is outside the target 

and in a scorable position. If the particle is still within the target and has an 

energy greater than or equal to the energy required to generate an x-ray it 

undergoes another procedure to determine if an x-ray is generated. On x-ray 
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generation the coordinates are written to file and a new history is initiated. 

If an x-ray is not generated the particle is scattered. At this point a 

scattering angle and Compton shift in energy is formulated, the particle is given a 

new path length, and once again tested for position, energy, and probability of 

generating an x-ray. A particle can be "killed" if its energy falls below a certain 

cutoff energy, it generates an x-ray, or if it exits the system on a vector which 

precludes scoring. At the conclusion of the simulation the accumulated contents 

of each bin are written to file. The contents are then loaded into a spreadsheet 

and viewed as a spectrum. 

Constructing the Model 

General Considerations 

Factors which must be considered when attempting to simulate this 

physical system are source-detector geometry, target geometry, and the 

relationship of the source and detectors to the target. The source must be 

assigned an initial energy, collimation, and geometry. Detector parameters to be 

considered are collimation, distance from target, and angular position with 

respect to the target. Establishing the above parameters is relatively 

straightforward. 

The target components must be constructed in terms of how they appear 

to incident photons of energy, E. For elements one would go to the tables of 

photon cross sections found in radiation shielding manuals and find a mass 

attenuation coefficient for the appropriate energy. While values are given for 



some compounds and heterogeneous mixtures, values of interest must usually 

be calculated from basic data. 

Basic Mass Attenuation Coefficients 

In the present case the target is composed of sand (assumed to be pure 

silica - Si02), water (H20), and potassium iodide (Kl). The approach taken for 

calculating µ/p is; ( 1) find µ/p for each component, (2) calculate µ/p for the 

compounds, and (3) calculate µ/p for the heterogeneous mixture. 
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Values of µ/p for H, 0, Si, K, and I for a range of energies are shown in 

Table 3.1. Figure 3.1 is a graphical representation of these values for energies 

ranging from 2.0 to .015 MeV. An additional energy is needed at the K-absorp­

tion edge for iodide which occurs at 0.033166 MeV. Any incident photon above 

this energy is capable of initiating the photoelectric process. Also, at this energy 

iodide has two values of µ/p with the larger value representing the upper 

absorption edge and the smaller representing the lower. 

As the energy of incident photons approaches the upper absorption edge 

energy (E(photon) > E(absorption edge)) the probability of photoelectric 

absorption increases and the probability of Compton scattering decreases. 

Generation of iodide K x-rays is not possible at photon energies below the 

absorption edge although the photoelectric process is dominant over Compton 

scattering. 



E 
(MeV) 

2.000 

1.500 

1.000 

0.800 

0.600 

0.500 

0.400 

0.300 

0.200 

0.150 

0.100 

0.080 

0.060 

0.050 

0.040 

0.033 

0.033 

0.030 

0.020 

0.015 

TABLE 3.1 

MASS ATTENUATION COEFFICIENTS OF 
TARGET ELEMENTS 

µ/p (cm2g-1) 

H 0 Si K 

0.0872 0.0444 0.0447 0.0439 0.0409 

0.1028 , 0.0515 0.0516 0.0505 0.0459 

0.1261 0.0635 0.0633 0.0619 0.0574 

0.1404 0.0706 0.0702 0.0689 0.0660 

0.1595 0.0804 0.0803 · 0.0786 0.0807 

0.1726 0.0871 0.0868 0.0852 0.0936 

0.1894 0.0952 0.0950 0.0938 0.1160 

0.2109 0.1062 0.1062 0.1060 0.1680 

0.2425 0.1218 0.1232 0.1280 0.3490 

0.2646 0.1331 0.1372 0.1500 0.6730 

0.2940 0.1491 0.1676 0.2160 1.910 

0.3083 0.1583 0.1998 0.2960 3.520 

0.3248 0.1744 0.2802 0.5120 7.550 

0.3341 0.1905 0.3812 0.7770 12.30 

0.3442 0.2244 0.6114 1.390 22.30 

0.3507 0.2917 1.084 1.430 35.83 

0.3507 0.2917 1.084 1.430 6.051 

0.3536 0.3206 1.287 3.140 7.980 

0.3619 0.7441 4.140 10.50 24.70 

0.3648 1.6275 9.783 24.60 53.40 
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Figure 3.1 · Photon Cross Sections of Target Elements. 
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Calculating Mass Attenuation Coefficients of Compounds and Mixtures 

Given the data in Table 3.1, the only additional items needed to calculate 

µ/p of the constituent compounds are the atomic weights of the elements. These 

are found in Table 3.2. 

Element 

Atomic No. 

Atomic Wt. 

TABLE 3.2 

ATOMIC NUMBERS AND WEIGHTS 
OF TARGET ELEMENTS 

H 

1 

1.0079 

0 

8 

15.9994 

Si 

14 

28.0855 

K 

19 

39.0983 

53 

126.9045 

Recalling Equation 2.9, the mass attenuation coefficient of a compound is 

calculated as 

- =[w -( µl n { µil 
P Compound i Pi 

2.9 

where w; is the weight fraction of the ith element. Coefficients for water, silica and 

potassium iodide would be calculated in the same manner. Values for 2.0 MeV:;;; 

E:;;; 0.015 MeV are found in Table 3.3 and the resulting curve in Figure 3.2. 

Calculating the attenuation coefficients. of mixtures is similar to that of com-

pounds. The process can become tedious, however, when dealing with systems 

saturated with a solution of one or more compounds. 



E 
(MeV) 

2.000 

1.500 

1.000 

0.800 

0.600 

0.500 

0.400 

0.300 

0.200 

0.150 

0.100 

0.080 

0.060 

0.050 

0.040 

0.033 

0.033 

0.030 

0.020 

0.015 

TABLE 3.3 

MASS ATTENUATION COEFFICIENTS OF 
TARGET COMPOUNDS AND MIXTURE 

µ/p (cm2g-1) 

H20 Si02 Kl Mixture 

0.0493 0.0446 0.0416 0.0452 

0.0575 0.0518 0.0470 0.0525 

0.0706 0.0635 0.0585 0.0644 

0.0785 0.0707 0.0667 0.0718 

0.0894 0.0805 0.0802 0.0818 

0.0966 0.0871 0.0916 0.0886 

0.1060 0.0954 0.1108 0.0973 

0.1180 0.1070 0.1534 0.1095 

0.1360 0.1239 0.2969 0.1292 

0.1490 0.1368 0.5498 0.1468 

0.1680 0.1618 1.511 0.1894 

0.1790 0.1836 2.760 0.2339 

0.1970 0.2329 5.892 0.3396" 

0.2140 0.2911 9.586 0.4635 

0.2480 0.4225 17.37 0.7318 

0.2845 0.4287 27.73 0.9477 

0.2845 0.4287 4.297 0.4838 

0.3370 0.7907 6.840 0.8418 

0.7110 2.364 21.35 2.490 

1.480 5.523 46.61 5.724 
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Figure 3.2 Photon Cross Sections of Target Compounds. 



GRATE is based on a sand target saturated with a Kl solution. Some a 

priori data must be known before calculating the attenuation coefficient of the 

system. The rryass attenuation coefficient of a heterogeneous mixture is a 

weighted summation of each component based on the mass fraction present. 

Therefore, to calculate the mass fraction of each component one must have 

knowledge of the dry bulk density (Pb) and porosity (<I>) of the sand, density of 

silica (quartz: = 2.65 g/cm3), and concentration of the solute. 
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The experimental column was designed to be tested with sand packed to a 

uniform bulk density of 1.68 g/cm3. Assuming constant packing and pure quartz 

grains the porosity may be estimated (Freeze and Cherry, 1979) by 

<1>= 1- Pb 
Ps 

3.1 

where Ps is the assumed density of quartz in the target material. This yields an 

estimated porosity of 36.6%. On a unit volume basis the amount of solution 

present would be 0.366 cm3/cm3, or 0.366 ml/cm3 . For the case in which the 

concentration of Kl in terms of I is 100,000 mg/I the mole fractions of both iodine 

and potassium must be known in order to calculate the mass of K present in a 

unit volume of solution. 

The mass of iodine present in 1 liter is 1g. Since there are 126.9045 

g/mole the number of moles iodide is 126.9045-1, or 0.0088 mole. With one mole 

of potassium per mole iodine there are 0.0088 mole* 39.0983 g/mole K, or 

0.3081 g/1 K. This yields a total mass (Kl) of 1.3081 g/1 (0.0013 g/ml). The total 
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mass of Kl present in 0.366 ml would be 0.00048 g (K: 0.113 mg/ml; I: 0.367 

mg/ml). 

The attenuation coefficient of the target itself can be determined after 

having calculated the mass attenuation coefficients of the compounds composing 

the target. The total mass coefficient ofthe target (H 20 + Si02 + Kl) is 

calculated as 

where S refers to the target material, M is the mass of the component, and E is 

the energy at which the coefficient is evaluated. Coefficient values are tabulated 

in Table 3.3 and shown graphically in Figure 3.3 for 0.015 5: E 5: 2.0 MeV. 

Defining System Geometry 

System geometry is an important component of GRATE because the 

model tracks photon life histories through 3-dimensional space. A framework 

must be established in order to provide an absolute reference of the photon to the 

source, target, and detectors. A photon's coordinates are constantly updated 

until it is absorbed, scored, or exits the system. 

The target is based on the actual laboratory column currently in use. It is 

an acrylic column with an I.D. of 51 mm. The Y-axis of the model construct is 

aligned with, and parallel to, the source beam. The target height is defined as 

one cm and is centered such that the top and bottom of the target is located at Z 
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Figure 3.3 Photon Cross Sections of Target Mixture. 
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= ±0.5 cm. A point source is located at (0, -R, 0) with the photon's initial line of 

flight being in the positive Y-direction. 

A number of angular locations are designated as detectors. The angle 

subtended at each position is a function of detector collimation and distance of 

the detector from the target. Collimation was modeled to approximate that of the 

actual system in which the collimation of the offset detector is 3 cm wide and 1 

cm in height. Due to symmetry, counts scored at equivalent angles are summed 

together. For example, counts scored at 45° and 135° are scored together. This 

was implemented in order to more quickly build a significant spectrum and is 

explained in more detail in the next section. A schematic of the system is shown 

in Figure 3.4. 

Translation of Theory into Code 

Model efficiency is not necessarily critical if limited simulations are 

expected to be performed. Efficiency does become important, however, as the 

complexity. of the system and/or the number of simulations increases. For this 

reason the approach used in MMI was maintained. That is, all constants were 

precalculated and stored in arrays. Coarse mesh attenuation tables, which are 

part of the initial input data, are interpolated into fine mesh tables. The same 

holds with sine and cosine tables used in calculating new azimuthal scattering 

angles. Also, since a particle's energy can only decrease through its history, 

flags were formulated in the look up table. These flags mark the point at which to 

begin a search for an attenuation coefficient based on the new energy after 
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scattering. 

GRATE is composed of 13 subroutines in addition to the main module. 

These subroutines can be grouped into three broad functional categories 1) data 

input, 2) precalculation of the fine mesh energy grid, fine mesh linear attenuation 

coefficients and data bins, and 3) the actual simulations. The following sections 

concern the functionality of each subroutine. Any applicable theory is presented 

concurrently with the code. Variable names are included in parentheses after 

each item as it is discussed. A complete program listing is located in Appendix A. 

Initial Setup Subroutines 

Subroutine ConCalc. The ConCalc subroutine is used to construct the 

mass attenuation coefficient of the target based on: 1) concentration of iodine 

(Canel), 2) mass of sand (MassSand), and 3) mass of water (MassWater). 

Standard stoichiometric procedures are instituted to calculate the total mass of Kl 

(MassKI) present. The total mass of the system (MassSystem) is then calculated 

which, given the volume of the target (VolumeSample), leads to the calculation of 

target density (Rho). Mass fractions (MassConcl, MassConcKI, MassConc­

Water, MassConcSand) of each constituent are used in conjunction with their 

respective mass attenuation coefficients (using Equation 3.2) to establish the 

target mass attenuation coefficient at the course-mesh energy points,. 

Target(MAT), where MAT is the index (I= 1 to MAT) of the arrays. 

Subroutine lnputData. The lnputData subroutine contains the input 

parameters of the model. These include: number of particles to track (IMAX), 
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minimum and maximum photon energies (EMIN, EMAX), and basic atomic data 

for the system components (H20(MAT), Kl(MAT), S102(MAT)). Bookkeeping 

· items include counters and array sizes of the course-mesh and fine-mesh mass 

attenuation data arrays. The counters, Bounce and XrayCounter, are integer 

variables initially set to zero and updated with every Compton interaction, 

Bounce, or x-ray generation, XrayCounter. 

Equation 2. 7 is implemented after the coarse-mesh target mass 

attenuation coefficients have been established (Target(MAT)) .. It is also 

necessary that the mass concentration of iodide be known. The coded constants 

used to calculate the excitation factor, ESubl, are: JumpRatio ( 0.838), Fyield 

(0.869), and Gkalfa (0.810). A new array (Pxray(MAT)) is then constructed. The 

coded formulation is 

Pxray(l)=MassConcl*ESubl*( IO(I) ) 
Target(/) 

for I= 1 to MAT. Pxray(I) is later interpolated in the Prelim and Evaluate 

subroutines to form a fine-mesh grid of data points (Pkxray(JAT)). 

Data Precalculation Subroutines 

3.3 

Subroutine Prelim. The primary function of the Prelim subroutine is a 

once-for-all calculation of data used during simulations. Sine and cosine tables 

(CCH(I), SCH(I): I = 1 to 360) are constructed on a 1-degree mesh width 

(calculated at mid-mesh point) since photons are tracked using spherical 



trigonometric methods. EMIN and EMAX are converted to Compton 

wavelengths, WMAX and WMIN, respectively (WMAX = 0.511/EMIN, WMIN = 

0.511/EMAX). This establishes the upper and lower wavelength boundaries of 

the simulation and maintains units when sampling the Klein-Nishina function. 
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Spectral resolution is obtained by creating a fine-wavelength mesh (WB(I): 

I = 1 to N) since the original data consists of only 20 data points. Wavelength 

bands (indexed by integer JGO) are created with varying mesh intervals from 

band to band to preserve linearity. The mesh interval of each band is a function 

of the integer number of steps required to fill between the endpoints while giving 

the desired resolution. In this instance it was decided to use the same number of 

discretized "channels" as the multichannel analyzer, 1024. 

Subroutine Evaluate. Once the fine mesh is established subroutine 

Evaluate is used to interpolate the mass coefficient data. Interpolation is done 

using the Newton Divided Difference method. The coefficients are mapped one 

on one to the Compton wavelength fine mesh grid. Before coefficient values are 

passed to Evaluate they are natural log-transformed to linearize the data within 

each wavelength band. On returning to the Prelim subroutine the values are 

transformed back by taking the antilog. Each value is then multiplied by the 

target density to yield the linear attenuation coefficient (cm·1) at each wavelength 

(Figure 3.5). 



Energy (MeV) 

Figure 3.5 Linear Attenuation Coefficient of Target Matrix- Fine 
Mesh Energy Grid. 
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Photon Life Histories 

Subroutine Angles. An azimuthal scattering angle must be assigned 

after the photon has been given a new scattering angle in the Scatter subroutine. 

This new angle is drawn randomly to give a value lying between O and 360 

degrees. A pathlength, based on the energy of the scattered particle, is then 

formulated in the NextStep subroutine. 

Subroutine History. The History subroutine provides the overall program 

flow. A new photon is defined by calling Start. NextStep is then called to 

calculate the pathlength to the next collision. Score is called to determine 

whether the particle has exited the system, been absorbed, or scattered. If the 

particle has been absorbed a flag (Status) is set in Score and on return to History 

a new particle is initiated. If the particle is not absorbed the Scatter subroutine is 

called. The new wavelength is compared to WMAX (TestW = W-WMAX) and 

based on the sign of TestW the particle is passed to the Angles subroutine or it is 

terminated. The Angles subroutine is called if the test variable is positive and the 

particle is terminated if negative. If Angles is called a new set of direction cosines 

is formulated and the particles' history is resumed by again calling the NextStep 

subroutine. A new particle is initiated by calling Start if the test proved negative. 

This process continues until the target number of particles has been attained 

(PhotonNumber = 1 to IMAX). 

Subroutine NextStep. As already noted a photon's history begins by 

defining the initial energy and position of the source (Subroutine: Start). The next 
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step is to calculate the random path length the particle will travel between 

collisions (Subroutine: NextStep). This is accomplished with a random number 

and the concept of the Mean Free Path (MFP). The MFP is defined as 

1 >..=-
µ 

3.4 

where>.. (cm) is the MFP and µ (cm.-1) is the linear attenuation coefficient. MFP 

values for a target mixture (100,000 mg/I I and density of 2.04 g/cm3) are shown 

in Figure 3.6 for E = 2.0 to 0.015 MeV. 

Equation 3.4 actually represents the first moment of the probability density 

function (PDF) defining the probability for a collision at some distance, /, from the 

source. The derivation of the MFP may be found in Cashwell and Everett (1959) 

as well as Lux and Koblinger (1991). In practice it is desired to randomly select 

the path length the photon travels to the next collision. This is done by randomly 

sampling the uniform distribution which yields numbers in the interval O ~ RA ~ 1. 

Positive-valued data is obtained by taking the negative natural logarithm of RA (in 

code, -RAL) which results in realistic values of path lengths. The random path 

length is calculated using 

S -RAL 
µ 

3.5 

where Sis the path length given the linear attenuation coefficient at some energy, 

E. The range of S is more a function of µ than -RAL since the range of -RAL is 
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Figure 3.6 Mean Free Path for Target Mixture. 
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independent of µ and is the same regardless of whether the attenuation 

coefficient increases or decreases in value. · 

Subroutine Scatter. The primary function of the Scatter subroutine is the 

determination of the new wavelength of a scattered photon. The method used for 

sampling the Klein-Nishina pdf is that suggested by Kahn (1954) and implement-

ed by Wood (1982). According to Wood it is valid for any energy of incident 

photon and does not rely on approximation. 

If equation 2.1 is rewritten in terms of Compton wavelengths (A= 0.511/E) 

it takes the form 

A-A =1-cos8 
0 3.6 

where A0 and A are the wavelengths of the incident and scattered photon, 

respectively. The maximum shift in wavelength is two Compton units and takes 

place when the photon has been scattered through 180°. In deriving the Klein-

Nishina pdf, energy- and angular-dependence is removed by substituting X = >JA0 

and integrating with respect to the Compton cross section, Oc. The function is 

now expressed in terms of X. 

Subroutine Score. After Sis established a new set of coordinates (XN, 

YN, ZN) are calculated and the Score subroutine is called. A set of conditions is 

then tested at the new coordinates: 1) Is the particle in or out of the target?, 2) 

If the particle is outside the target is it in scoring position?, 3) If the particle is 

inside the target what is the probability that an x-ray is generated? 
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The particle scoring procedure involves calculating the intersection of line 

(X, Y, Z)-(XN, YN, ZN) with the target boundaries. If the photon line of flight 

intersects the upper or lower target surfaces it is not scored. If the photon line of 

flight intersects the vertical target walls the exit angle is calculated and the 

energy-binned counter, EB(JE), is incremented for the detector whose field of 

view includes the exit angle. 

Subroutine Start. The coding of the Start subroutine is straightforward. 

The wavelength, W, is set to WMIN which is the shortest wavelength that can 

occur during the simulation. The wavelength band (JGO) in which WMIN is 

located is also defined in order to save time. In addition to WMIN, source 

geometry, location, and direction cosines are defined for future use. 

Subroutine Xray. There are three possible outcomes if the particle lies 

inside the target: 1) the photon is absorbed with resultant x-ray emission, 2) the 

photon is not absorbed, but scattered, and 3) the photon's energy has reached 

the minimum cut-off energy and is killed. 

If the photon energy is greater than or equal to the energy required for x­

ray generation subroutine XRA Y is called to test for the probability of generating 

an x-ray. If x-ray generation tests true the coordinates are written to file and the 

photon is killed. At this point a new life history is begun. Should x-ray generation 

test false and the photon energy is greater than the cut-off energy the particle is 

scattered. If the photon's energy has reached a predefined cut-off point it is killed 

and a new history is started. 
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Results of Simulations 

A total of 1.3 billion photons with an initial energy of 662 keV were 

simulated. All parameters but [Kl] were held constant throughout these tests. 

Simulations of 100 million incident photons were conducted at four concentrations 

of iodide: 25,000, 50,000, 75,000, and 100,000 mg/I. All simulations placed the 

photon source/inline detector pair on the target centerline. Additional simulations 

were carried out at the highest concentration which simulated the target being 

passed.through a beam of gamma rays as found in a tomography system. Since 

symmetry is assumed, the additional paths were spaced from the target edge to 

the centerline. Results were evaluated in terms of x-rays detected as a function 

of solute concentration, detector placement and pathlength of the incident beam 

through the target. 

Site of X-ray Generation 

As each x-ray was generated it's location was written to file. Each location 

was then treated as a point source for the next set of simulations. This data was 

later binned at 0.1 mm resolution to yield an x-ray generation distribution map. 

Figure 3. 7 shows the distribution and intensity of x-rays at maximum solute 

concentration. Incident beam placement is on the column centerline. A total of 

829,455 x-rays were generated. It can be seen that the majority of x-rays are 

generated along the axis of the incident beam. Also, the intensity of x-ray 

generation varies as the intensity of incident photons decreases. This is to be 

expected when the Lambert Law is considered. 



Figure 3. 7 X-ray Generation Sites and Intensity Map. 
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X-ray Detection as a Function of Concentration and Detector Placement 

The intensity of x-rays varies with detector placement as well as solute 

concentration. A graph of detected x-rays as a function of concentration and 

detector placement is shown in Figure 3.8 (data in Table 3.4). Intensities range 

from highest to lowest at theta equal to 270, 90, 225, 135, and 180 degrees, 

respectively. This is a reasonable outcome when Figure 3.8 is compared to the 

distribution of x-ray generation (Figure 3. 7). 

The actual experiment was performed with the detector placed at 180 

degrees. A plot of detected x-rays versus concentration at this position is shown 

in Figure 3.9. Data for the suite of centerline simulations is found in Table 3.4. 

Linear regression of count as a function of concentration leads to the expression 

Count=0.003972*[~+0.6 3.7 

where [/] is in mg/I. 

Comparison of Simulated to Measured X-ray Yields 

To gain an understanding of how the simulation compared to the 

experiment, it was decided to compare the source fluxes in terms of x-rays 

detected/incident gamma ray. An estimated real time for the simulation can then 

be estimated. The incident flux at the column edge was 100 million photons for 

the simulation. No actual photon flux for the source in the experiment has been 

calculated due to the difficulty in the measurement. Although the apparent 

source strength with the collimation used has not been measured, measurements 
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Figure 3.9 Xray Count vs Iodide Concentration. 
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TABLE 3.4 

SUMMARY OF XRAY COUNT AS A FUNCTION OF 
CONCENTRATION AND DETECTOR PLACEMENT 

Detector Angular Position 

90 135 180 225 

1724 145 107 163 

3334 224 189 342 

4632 342 300 457 

6620 453 400 592 

270 

3594 

6639 

9898 

12887 



48 

with other collimations would indicate a strength of 1.0 Ci, or 3. 7 X 1010 

disintegrations/s. Cesium 137 has an efficient yield of 85. 1 % (Lide, 1995) which 

gives an effective activity of 0.851 Ci. 

The rate of incident photons exiting the collimation can be estimated by 

calculating d0/4n. With a source collimation of 5 mm and a distance from the 

source to the collimation edge of 7.1 cm, the flux is estimated to be approximately 

9.6 X 106 photons/s. A mean net x-ray count of 21367 x-rays in 600 s was 

observed during the experiment that occurred at maximum iodide concentration. 

The ratio of detected x-rays per incident photon is estimated to be 3. 7 X 10-5 x­

rays/incident photon. A total of 400 x-rays were detected by the offset detector in 

the simulations. This yields an x-ray/incident photon ratio of 4.0 X 10-5 which is 

7.5% higher than measured. The live time of the simulation is estimated to be 

approximately 1 O s. 

An x-ray detection rate of 3.2 X 1 o-e x-rays/incident photon was measured. 

Simulations resulted in a rate of 4.0 X 10-e. This implies that the real system has 

a lower x-ray measuring efficiency, as can be expected. The probable causes for 

the discrepancy can be attributed to the actual source collimation and detector 

efficiency. Although the source is collimated it is actually vertically divergent. 

The simulated collimation is "perfect" in that every incident photon's initial path is 

the same. Additionally, the simulation asssumed a perfect detector with 100% 

collection efficiency. 
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X-ray Detection as a Function of Pathlength 

Five additional simulations were performed at maximum solute 

concentration. These runs were performed to illustrate how x-ray intensity varies 

with pathlength through the target. Symmetry was not assumed in these cases. 

Detectors at O and 180 degrees were used independently as the traverse was 

made from 0.1 O cm to the centerline. This essentially allowed evaluation of x-ray 

penetration through the column diameter. Data is summarized in Table 3.5 and is 

shown graphically in Figure 3.1 O. 

TABLE 3.5 

SUMMARY OF OFFSET SOURCE SIMULATIONS 

Offset Count 
(cm) 

0.10 31504 

0.59 5916 

1.08 1933 

1.57 885 

2.06 478 

2.55 400 

3.04 251 

3.53 144 

4.02 133 

4.51 70 

5.00 8 
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Origin of Detected X-rays 

The XRA Y modification of GRATE tracked the origin of every scoring 

particle regardless of energy. Analysis of the offset detector data (8 = 180°) 

shows that O. 17 5% ( 1454 particles) of the total x-rays generated scored. Of 

these scoring particles, 400 (27.5%) were Ka x-rays. In terms of the total 

number, only 0.048% of the x-rays generated were detected. The distribution of 

scoring 28.612 keV x-rays is shown in Figure 3.11. 

Only 3.6% of the scoring x-rays originate at the centerline. The majority of 

scoring, 28.612 keV x-rays originate at a distance of greater than 2.0 cm from the 

column centerline. It is assumed that Compton scattered photons are the primary 

mechansim of generating xrays at this distance from the centerline. 

The detector position located 45 ° from the in line detector was also 

evaluated (Figure 3.12). A total of 2,359 (0.284% of the total generated) photons 

scored. Of these, 453 (19.2%, 0.054% of the total) were 28.612 keV x-rays. 

Among the scoring x-rays, approximately 15.2% originated at the column 

centerline. Most of the remainder scored from near the column edge. 

It could be interpreted from Figures 3.11 and 3.12 that scoring, 28.612 keV 

x-rays are generated primarily along the column edge. This is not the case in this 

instance. Output from GRATE consisted of the coordinates where x-rays were 

generated. These were used as individual sources for XRA Y. In keeping with 

the randomness of the emission process, each x-ray's initial trajectory into a 4n 

region was randomly computed. Those x-rays generated along the column edge 

have a much greater probability of scoring than those lying away from the edge 



Figure 3.11 Origin of Scoring X-rays Detected Normal to Incident Beam. 

Figure 3. 12 Origin of Scoring X-rays Detected Between In Line and Offset 
Detectors. 
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since d0/4n is largest near the detector and decreases with distance. 

Additionally, the probability of attenuation (scattering and absorption) is much 

lower because of the shorter path length through the target. 

Effects of Source Energy on Origin of Detected Xrays 

An additional simulation of 50 million photons was implemented to 

determine the effect of source energy o·n the distribution of the origin of x-rays. 

The simulation was conducted on the column centerline at maximum iodide 

concentration. Source energy was that of the gamma ray emitted by 241Am, 

59.536 keV. All other parameters were consistent with those of the previous 

simulations. 
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Approximately 3% of the incident photons were detected by the in line 

detector. The high attenuation resulted in the production of 29 million x-rays. 

Sites of x-ray generation are shown in Figure 3.13. Detected x-rays as a function 

of angular detector placement is found in Figure 3.14. To be consistent with 

previous simulations, detected x-rays were evaluated at 45 and 90 degrees to the 

incident beam. 

A total of 40,000 x-rays scored at the detector positioned normal to the 

incident beam. Of the scoring particles, 8300 (20.7%, 0.028% of total x-rays 

generated) were 28.612 keV x-rays. The distribution of these particles is shown 

in Figure 3. 15. Photons scoring from the column center line accounted for 4. 1 % 

(343) of the scoring 28.612 keV particles. This is approximately the same 

percentage as that of the original simulations. 



Figure 3.13 X-ray Generation Sites and Intensity Map - Americium Source. 

-c 
:, 
0 
0 

1000000 

100000 

10000 

1000+--~~t--~--+~~---t-~~--+-~~-+-~~-;-~~+-~---------1~~--+~~--1 

54 

80 100 120 140 160 180 200 220 240 260 280 

Angular Detector Position (Degrees) 

Figure 3.14 Detected X-rays as a Function of Detector Placement - Americium 
Source. 



Figure 3. 15 Origin of Scoring X-rays Detected Normal to Incident Beam -
Americium Source. 

Figure 3.16 Origin of Scoring X-rays Detected Between In Line and Offset 
Detectors - Americium Source. 
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A total of 38,000 particles were detected at a position 45 degrees to the 

incident beam. The percentage of 28.612 keV x-rays scoring was 20.4% 

(0.026% of total generated) with 7.6% originating at the column center line 

(Figure 3. 16). Percentages are approximately the same as those of the original 

simulations with one exception. On a percent basis, photons originating at the 

column center line are one-half that of the original simulations. 

Summary 
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The application of GRATE proved beneficial in providing practical 

information concerning the laboratory column used in the current study . ., Results 

clearly indicate that x-rays are generated in sufficient quantity to be detected. 

Mapping of x-ray generation sites provided useful information in future detector 

placement and collimation. 

Data clearly shows that x-ray generation decreases (following the Lambert 

Law) with distance through the column. This is directly related to the decrease in 

the.number of incident photons as a function of the linear attenuation coefficient 

and pathlength into the column. Additionally, analysis of scoring photons indicate 

that a high percentage of scoring primary energy particles are Compton­

generated. 

Simulations using a lower energy source yielded predictable but significant 

information. Although only one-half the incident photons were simulated, there 

was a 21-fold increase in the number of 28.612 keV x-rays detected at the offset 

detector position. A 17-fold increase was noted at the position 45 degrees to the 
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incident beam. 

Theoretically, the best detector placement would be either on the source 

or in line detector side of the test column. This is not possible in a practical 

sense. Compton haze would obscure any signal from the inline position. For 

obvious reasons the detector cannot be placed between the incident beam and 

the target. Positions 45 degrees off the incident beam on the source side of the 

target are likewise not possible given the current configuration. The size of the 

detector/shielding assembly precludes this location. There is room to place the 

detector 45 degrees off the inline detector but the potential for increased 

background is likely. This would decrease the signal to noise ratio. It is the 

opinion of the author that placement of the detector normal to the incident beam 

is the optimum for the current configuration. 

Regression of data from the offset detector position (normal to the incident 

beam) shows that a linear relationship exists between ·detected x-rays and solute 

concentration. This allowed the construction of a theoretical calibration curve that 

is compared with.the actual experimental data in Chapter 6. Finally, the data 

generated by simulating a CT scanner traversing the column indicates that 

fluoresced x-rays have sufficient energy to penetrate the diameter of the column. 



CHAPTER4 

METHODS 

AND 

PROCEDURES 

Introduction 

Experimentation dealt exclusively with the quantitative, non-destructive 

determination of the concentration of Kl in solution passing through a saturated 

porous medium of known bulk density. The concepts of the previous chapters, 

x-ray generation and radiation transport modeling, are brought together to design 

appropriate experimental techniques and procedures. 

The current system arrangement consists of a pencil beam gamma 

scanner modified to accept additional detectors and electronics. It is composed 

of 1.2 Curie (Ci) 137Cs and 0.20 Ci 241Am gamma-ray sources, source shielding, 

detector assemblies, data acquisition boards, positioning equipment, and 

personal computer (Figure 4.1 ). Available photon energies are 662 and 60 keV 

respectively, for cesium and americium sources. 

An open-ended design was implemented to allow for a wider range of 

modifications to the scanner with minimal investment in time and cost. This 

proved valuable when adding components for conversion of the system to include 

non-collinear, dual-source scanning· and attenuation studies as well as x-ray 
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fluorescent x-ray spectroscopy. Additionally, source collimation was designed 

such that future modification to fan-beam geometry should be relatively simple. 

Source and Detector Shielding 

Source Shielding 
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Source shielding (Figure 4.2) is modular in nature to allow for relatively 

easy transport and assembly as well as maximum safety from exposure when 

modifying collimation or while in operation. Overall dimensions are 30.5 cm x 

30.5 cm x 35.5 cm with a total weight of approximately 800 lbs. The housing 

consists of six lead components which were cast and machined for as accurate 

and tight a fit as possible to minimize leakage with the minimum shield thickness 

being approximately 13 cm on all but the detector side. 

The detector side of the housing is composed of a 7 cm-thick plate through 

bolted to the main source housing. This front plate also serves as the collimation 

carrier. A 6.35 cm diameter lead insert is centrally located and designed to hold a 

removable 1.9 cm diameter by 5 cm long tungsten pencil beam collimator. 

A 137Cs source is situated in nested shielding and can be removed through 

the collimation insert without dissembling the overall shield. Again, this was done 

to minimize exposure while installing the source and during operation of the 

scanner. The source carrier, which is located in a two-part housing fabricated 

with the appropriate size cavity, consists of a 1 O cm x 1 O cm x 1 O cm solid lead 

receptacle machined to accept the source. Both the bottom of the carrier and the 

cavity are lined with 0.6 cm-thick plates of polypropylene to provide a smooth 
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bearing for the source subassembly. It is moved in and out of alignment with the 

collimator by means of an attached brass bar that passes through the outer 

shielding. 

The 241Am source is mounted in a brass carrier rod and placed such that 

both sources can be used simultaneously. A slotted hole milled in the rod allows 

unimpeded transmission of cesium photons when the americium source is not in 

use. The carrier itself is mounted in a recess milled into the back of the front 

shielding plate. As designed, the source can be moved in and out of collimation 

without interfering with the primary 137Cs source. This feature provides sub­

stantial flexibility in allowing one to change sources without being exposed. The 

source is self-aligning with the shielding collimation and as with the 137Cs source 

can be removed without dissembling any shielding. 

Remaining shielding consists of two lead plates through-bolted to the back 

of the 2-part upper and lower primary housing. All plates average approximately 

170 lbs weight and contain threaded inserts for attachment of eye bolts to aid in 

transport and setup. 

Detector Shielding 

An in line detector is located behind a 5 cm-thick lead shield in which the 

tungsten collimator is centrally located. Collimation is identical with that of the 

source. The detector and shielding are contained in an aluminum column 

mounted parallel to the primary photon beam. Attachment points allow · 

substantial latitude in adjustment for the purpose of aligning the source and 
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detector collimation necessary for a pencil beam geometry. 

An offset detector used for spectroscopy is shielded in a 1 cm-thick lead 

cap large enough to completely shield the detector crystal. Collimation consists 

of a 1 cm diameter by 3 cm long aperture which is centrally located in the cap 

face. The thickness of the cap shield is substantial in order to preclude Compton 

radiation reaching the detector. 

Collimation Alignment 

Collimation alignment must be as exact as possible in order to obtain 

maximum count rates as well as preserve the pencil beam geometry of the 

system. The author determined that this alignment could be done relatively easily 

by using an acrylic collimator in conjunction with a low-wattage laser. 

An acrylic rod having the same diameter as the tungsten collimators but 

twice the length was procured. A 2 mm diameter hole was then drilled down the 

center and this acrylic collimator was placed in the source collimator carrier. A 

helium-neon laser with a beam diameter of approximately 2 mm was then situated 

on the posterior side of the detector collimator. The detector housing was aligned 

until the laser beam, after passing unobstructed through the detector collimator, 

only appeared at the terminal end of the hole that had been drilled in the acrylic 

rod. If the beam did not touch the sides of the hole, it was assumed that the two 

collimators were in alignment. This method appears to provide satisfactory 

accuracy. 

The offset detector used for spectroscopy is located at a point equal to 
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one half the distance between the source and in line detector. This assembly is 

attached to a carrier which in turn is mounted to a floor-mounted frame that has 

been centered with respect to the pencil beam system. The geometry of the 

entire assembly forms a plane which is normal to the primary energy beam. 

The carrier-frame attach point is a pivot which allows for tilting as well as 

rotation of the carrier assembly. Suspended from the pivot point attach plate is 

an aluminum beam which has had matching channels milled into both sides near 

the bottom edge. The original purpose of this beam was that of a detector-source 

carrier for non-collinear, dual-source scanning with the channels insuring proper 

alignment of source and detector. For spectroscopy purposes the carrier was 

rotated normal to the primary beam and lowered to the same elevation resulting 

in a three-point plane composed of the primary source collimator, primary 

detector, and offset detector. 

The Positioning System 

General Description 

The positioning system consists of two stepper motor-driven rail tables and 

a stepper motor-driven rotary table. Two rail tables are attached perpendicularly 

to one another allowing 12" of travel in both the vertical and horizontal directions. 

A rotary table is mounted normal to the vertical rail table and the entire 

positioning assembly is located between the source and detector. This 

arrangement allows the target to be rotated and translated through the primary 

photon beam. The stepper motors are controlled by a stepper motor controller 
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which in turn is controlled by the host computer. 

Table Characteristics 

The following descriptions and specifications are those of the 

manufacturers, Daedal, Inc. Each rail table, which has overall dimensions of 6" 

width and 20" length, carries a 5" x 5" stage that is supported on twin rails the full 

length of travel. Drive is via a 0.20" (5 pitch) lead ball screw with a recirculating 

bearing system connected to a standard NEMA 23 motor flange. Maximum load 

capacities are 200 and 100 lbs. for horizontal and inverted orientations, 

respectively. Both linear tables have a positioning accuracy of ±0.0002" and 

repeatability of ±0.00025 in/in with incorporated limit and home switches. 

The rotary table has overall dimensions of 6" x 6" with a 5" diameter 

rotating mounting plate which has a travel range of 360° continuous with 

accuracy and repeatability of 10.0 and 0.5 arc-minutes, respectively. Reported 

runout is 0.003" and concentricity 0.0005". Load capacities are 25 lbs. horizontal 

and 1 O lbs. vertical. An input of 15 in.-oz. torque is required with the 90: 1 gear 

ratio. As with the rail tables the rotary table is furnished with a NEMA 23 motor 

mount. 

·Stepper Motors 

Each positioning table, linear and rotary, is driven by a 5Vdc/phase double 

shaft extension stepper motor. These motors have step angles of 1. 8 ° /step with 

a total of 200 steps per revolution. With respect to the positioning tables this 
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results in a minimum translation of 0.0254 mm/step for the linear tables and 

0.02°/step for the rotational table. Maximum axial and radial loads are 26.4 and 

15.4 lbs. respectively, with a step angle tolerance of ±7%. 

Stepper Motor Control. The basic stepper motor positioning system is 

composed of the stepper motor, power supply, and indexer. A power supply and 

associated electronics, composed of resistors and solid state relays, maintains 

the proper sequence of voltages to the stepper motor windings controlled by the 

indexer. The indexer as currently configured receives motion commands from a 

PC. 

The indexer is an ACROSYSTEMS (now Analogic Corporation) ACR0-

400, a 64180-based data acquisition and control unit. Programmable digital 1/0 

lines (TTL, 1 load, user-definable direction by byte) are connected to the power 

supplies and a solid state relay (SSR) board populated with 12-5Vdc SSR's (four 

per stepper motor). Each stepper motor requires four 1/0 lines plus ground and 

5Vdc power. A memory-resident AGRO-BASIC program, written in-house, 

configures the ports and controls each digital output line such that the stepper 

motor windings are energized in the proper sequence for the desired direction of 

motion. 

The indexer receives its commands from a PC over the serial 

communications port (RS-232, 9600 baud). Direction and magnitude of 

movement is sent by the PC to the ACR0-400 basic program which then 

sequences the stepper motors. Synchronous communications are maintained via 

software handshaking. 
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Detection and Data Acquisition Components 

General Description 

Acquisition and subsequent spectral analysis of radiation data require a 

detector, amplifier, and multichannel analyzer (MCA). The system utilizes EG&G 

Ortec hardware consisting of a 2" sodium iodide, thallium-activated (Nal(TI)) 

detector crystal connected to a photomultiplier tube (PMT) and Ortec 266 

photomultiplier base (PMB) which is powered by an amplifier and bias supply. A 

single channel analyzer is incorporated into the control unit. The amplifier is 

spectroscopy shaping and provides a 1 O volt linear output signal. This signal is 

transformed by the MCA into a histogram representing counts in the O to 1 OV 

range. 

Amplifier and Bias Supply 

The amplifier and bias supply in use is the EG&G Ortec ACEMate Model 

925 SCINT. A switchable preamplifier allows an external preamplifier to be 

coupled to the amplifier via a BNC input connector. The amplifier has a 

continuous adjustment from 5 to 1250 using a coarse-gain switch and fine-gain 

potentiometer. Pulse shape is semigaussian bipolar with a peaking time of 2 µs. 

The coarse- and fine-gain adjustments allow the user to center the desired 

energy spectrum in the 1 O volt window. 

A bias potentiometer, which is the high voltage output to the PMB, is 

continuously adjustable from 50 to 2000 volts and has an output load capacity of 
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1 mA, <0.02% regulation, <15 mV rms at 1 kV, 1 mA load and <0.01%/°C 

stability. The unit also incorporates a single-channel analyzer (SCA) with user­

definable upper and lower limits (0.05-9.99 V) and LED rate meter with a range of 

0-99.9 thousand counts per second (kcps). It is connected to the PMB by the 

high voltage, linear input, and preamplifier lines and to the MCA by a linear output 

line. 

Settings for the amplifier and bias supply are generally dependent on the 

individual system and source energy. The settings, which are the same for the 

inline and offset detectors, are: bias~ 0.8 kV, coarse gain - 10, and fine gain -

7.5. With this configuration both the gamma- and x-ray peaks are in the same 

window. 

Detector, PMT, and PMB 

Detectors utilizing Nal(TI) crystals are known as scintillation counters. 

These types of detectors are generally used for high-energy gamma rays but also 

function relatively well at ambient temperatures for higher energy x-rays 

generated from the fluorescence of high-Z elements (2~53). 

The Nal(TI) crystal is an inorganic, impurity-activated phosphor with the 

incorporated impurity serving as the source of the luminescent property of the 

crystal. Typically, the crystal is enclosed in a thin aluminum canister approxi­

mately 0.1 mm thick. This housing isolates the crystal from light and moisture 

contamination. The crystal is highly polished on one side and is optically 

mounted to the photomultiplier using either oil or transparent grease having the 
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proper index of refraction to allow maximum light transmission. 

When an incident photon strikes the crystal, a visible light photon is 

emitted. The visible light photon then strikes the photocathode of the 

photomultiplier where its intensity is increased multiplicatively at successive 

dynodes by secondary emission. This causes a negative charge at the anode 

which yields a voltage pulse. The pulse is then differentiated, amplified, and 

analyzed. Similar to a proportional counter the pulse is proportional to the energy 

of the incident photon. 

The decay constant of the crystal is a measure of the time needed for 

luminescence to terminate. The total decay is composed of the principal and 

secondary luminescent decay times of 0.23 and 1.5, respectively. 

Multichannel Analyzer 

The PC board being used is the EG&G 916A MCB. This is a 1% slot PC 

card consisting of a successive approximation analog-digital convertor (ADC), 

ZBOA microprocessor, and memory. There is one card per detector used with 

data stored in a maximum of 2048 "channels" over a 1 O volt range. The number 

of channels ranges from 28 to 211 with intermediate values of 29 and 210• The 

maximum number of counts per channel is 223-1. 

Communication between the MCB and host PC is by dual-ported memory 

with base address HDOOO (page D). Commands are sent to the MCB and read at 

this address. The dual-ported memory also allows the MCB to almost 

simultaneously dump its data to be read by the PC thereby providing real time 



processing capabilities. Data is stored in either binary or decimal format at the 

discretion of the user. 

MCA Characteristics 
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Two MCA's are currently being used, one for attenuation and imaging and 

one for spectroscopy. Since they are two different models there are some minor 

differences. The older model has a dead time of 25 versus 15 µs for the new as 

well as being hardware-dependent for the 1 O volt discretization of channels. 

As already stated, pulse height analysis is accomplished using successive 

approximation ADC. According to the manufacturer's specifications integral non­

linearity is <±0.05% over 99% dynamic range and differential non-linearity is 

<±1 % over the top 99% dynamic range. 

Preparation and Experimental Procedures 

Dougherty sand, a Thermic Arenic Haplustalf, was collected near Perkins, 

Oklahoma at a site not far from the north bank of the Cimmarron River. This soil 

was chosen because of its reported low clay and organic content. The collection 

site is a commercial sand quarry. 

Analysis shows the soil to be composed of 98% sand and 2% silt and clay. 

It has a pH of 5.9, and a cation exchange capacity (CEC) of about 5 meq/100 g. 

There is an organic content of 0.07% with 0.7% ferric oxide present and a 

specific surface of 21.8 m2/g. Extractable bases (meq/100 g) are: Na+ - 1.4, K+ -

0.14, Ca2+ - 2.4, and Mg2+ - 0.0. 
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Sample Preparation 

A_ quantity of soil was triple-washed using de-ionized water and oven-dried. 

The triple-wash removed clays, silts, and much of the organics. After drying, the 

sand was sieved to isolate the fraction greater than 60- and less than 40-mesh 

(250 µm < sample fraction< 425 µm) to make the sample grain size distribution 

as homogeneous as practical. Finally, the soil sample was oven-stored to 

prevent moisture gain while preparing for the experiment. 

Laboratory Column 

The column used in the breakthrough curve experiment is a cylindrical flow 

cell 255 mm in length with an inside diameter of 51 mm. A water-tight column, 

made of acrylic (Lexan), was originally designed for transmission gamma ray 

tomographic imaging of moisture redistribution in an initially dry soil. The outside 

walls were milled down to give a final wall thickness of 3.2 mm to improve 

transmission of the 28 keV iodide K x-rays. Further reduction was not attempted 

for fear of breaking the flow cell during the milling process_ 

The cylinder has an incorporated base plate used for mounting the column 

to the positioning system. A 2° stilling well was milled into each cap to uniformly 

distribute flow. Mounting provisions are not required for the top cap so its 

diameter is the same as the 0.0. of the column itself. Both are secured to the 

column with four recessed cap head screws. A neoprene gasket is placed 

between each cap and the column to provide a watertight seal. Each cap is fitted 

with a 1.4 mm 1.0. nylon nipple with a tapered 0.0. for accepting spaghetti 
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tubing. 

The column is completed by the addition of a perforated Lexan flow plate 

and fine-mesh brass screen at each end. These are situated between the soil 

sample and the stilling well and serve to further distribute flow while keeping 

grains out of the cavities. 

Pre-Test Preparation 

Pre-test preparations can essentially be placed into four broad categories: 

column preparation, solution preparation, establishing test and data acquisition 

parameters and, finally, test set-up. The intention of this section is describe the 

steps taken and methodology used to prepare for the solute breakthrough curve 

experiment. 

Column Preparation. Parameters such as target porosity and dry bulk 

density must be determined before actually packing the column. Due to the 

nature of the material, dry sand can pose problems when attempting to achieve 

too high a dry bulk density. For this reason, several practice columns were 

packed to obtain an optimal packing density. After several trials it became 

apparent that a pb of 1.68 g cm-3 would be the optimum density. Assuming a 

mineral density of 2.65 g cm-3 , the porosity was calculated to be approximately 

36.6%. The 520.9 cm3 column was packed with 875.14 g of soil with a final 

packing density of 1.68 g cm-3. 



73 

Kl Solution. Solutions containing iodine compounds, usually potassium or 

sodium iodide, have been used extensively in gamma ray transmission studies. 

As previously mentioned, the original intent of this study was the gamma ray 

tomographic imaging of macropore flow and fingering effects in porous media. 

Both potassium and sodium iodide had been chosen as the initial solutes in order 

to enhance the contrast in density of the solution with that of the porous media 

and existing pore water. The potassium form was chosen over sodium based on 

cost and availability. Accordingly, a solution of Kl ([I] = 100,000 mg/I) was 

prepared for the fluorescence breakthrough curve experiment. 

The concentration of the solute was verified with 1 O ml samples of the 

100,000 mg/I Kl as well as samples diluted to 75,000, 50,000, and 25,000 mg/I 

iodide. Total dissolved solids were measured by oven drying. The results are 

shown in Table 4.1. 

Parameters. Test parameters for this particular experiment fall into three 

categories: electronics associated with counting, flow rate, and column packing. 

Parameters involved with column packing, namely dry bulk density, porosity, and 

pore volume were covered in the previous section and need no further 

discussion. There still remains to be some discussion of the data acquisition 

settings and flow rate, however. 
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TABLE 4.1 

ANALYSIS OF TARGET SOLUTION' 

Target [I] Volume Mass Mass [K] [I] 

(mg/I) (ml) Solution (g) Precip. (g) (mg/I) (mg/I) 

25000 10 10.1799 0.3312 7662 24872 

50000 10 10.4004 0.6773 15338 49784 

75000 10 10.6442 1.0383 22974 74571 

100000 10 10.8907 1.4181 30668 99543 

Electronics Settings. The basic detection system is composed of a 

detector assembly (detector crystal, photomultiplier tube, and base), linear 

preamp/amplifier, high voltage bias supply, and data acquisition board. The 

purpose of the bias supply is to provide high voltage to the dynode of the 

photomultiplier tube. An increase or decrease in voltage to the PMT results in an 

increase or decrease in gain of the PMT. The required high voltage setting 

changes with the energy of the incident photon and typically is found through a 

"trial and error'' process if not known from past experience. In this case, both 

amplifiers are set at 800 volts which is sufficient to provide a good signal for both 

667 keV and 28 keV photons. 

The linear amplifier is responsible for pulse shaping and amplitude gain. 

The output is a shaped pulse over a O - 1 O volt span and is variable over a wide 

range through fine- and coarse-gain controls. The desired energy peak can be 

centered in the 10-volt window by implementing the proper combination of gains. 

It should be noted that too high a gain setting results in distortion as well as 

greatly increased dead time. A coarse gain of 10.0 and fine gain of 7.0 was 
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found to work well with both detectors. 

After centering using gain controls the signal can be discretized over the 

10 volt range into a number of bins or "channels". The purpose of discretization 

is to control the energy resolution at which the incoming signal is binned. For 

example, coarse binning may result in minor peaks being lost in the accompany­

ing Compton haze whereas finer binning may allow the peak to be discriminated. 

The options available with the current hardware allow a minimum of 256 and a 

maximum of 2048 channels. Given the peak energies of this study, 0.661 MeV 

and 0.028 MeV, both systems were set at 1024 channels. 

Flow Rate. Flow is provided by a detachable-head peristaltic pump set to 

0.4 ml/min. A calibration run of the pump over a 64 minute period indicated a 

flow rate of 0.6 ml/min. The actual flow rate attained is determined during the 

experiment. 

Test Setup. The acrylic test column was packed in lifts to the 

predetermined dry-bulk density. Double-distilled, de-ionized water was then 

introduced to the column after deoxygenation. Removal of as much oxygen as 

possible was necessary to prevent the formation of microbubbles in the column 

while flushing preparatory to the experiment. Bubbles of any size would not only 

affect the uniformity of flow but attenuation data as well. 

After mounting the column to the positioning tables the parastaltic pump 

was plumbed in and flow was initiated. Deaired, deionized water was flushed 

through the column to eliminate air bubbles. Flow was discontinued after two 
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pore volumes; this being considered sufficient to flush out any entrapped air. At 

this point the reservoir was switched over to the Kl test solution source. 

Data Collection. The experiment was designed to incorporate as many 

checks on data as possible. Data collected are from four sources: attenuation 

data of transmitted primary photons by the in-line detector, generated x-rays by 

the offset detector, conductivity probe analysis of the effluent, and oven-dried 

weight of the effluent. This allows three checks of the x-ray data. An additional 

check becomes available on comparing the experimental data with the theoretical 

breakthrough curve. 

The data collection schedule had to be designed to accommodate two 

discrete and independent counting systems: the inline and offset detectors. It 

was decided to fix the sampling regimen based on a pre-determined live time of 

the inline detector. The live time used, 1 O minutes, was based on an estimation 

of the time required to count 106 unimpeded 0.662 MeV photons. At the high 

count rates encountered, a dead time of approximately 35-40% could be 

expected resulting in a real time of around 14 minutes. 

The data acquisition board was set to trigger at this live time. On 

triggering, software stopped acquisition of both the inline and offset detectors. 

The data acquisition boards controlling both were then reset and counting 

resumed. Data was downloaded from memory to hard disk. 

Effluent was collected in 40 ml EPA volatile organic vials. The vial was 

replaced after triggering. Between sample changes the most recently collected 

sample was weighed, conductivity taken, and then weighed again. The 
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conductivity probe was checked for calibration at regular intervals throughout the 

experiment. Also, the probe was checked against standards made up of the 

reservoir solution. 



CHAPTER 5 

ERROR ANALYSIS 

Introduction 

Experimentation focused on steady-state, saturated flow regimes in which 

transport mechanisms are limited to advection, mechanical dispersion, and 

minimal molecular diffusion. These concepts are applied to the data in 

breakthrough curve analysis. Several factors may affect the integrity of the 

experimental data. Items needing some discussion are system error and bias, 

counting error, and characteristics of the porous medium. 

System Error and Bias 

Unidentified bias results in errors and identified bias is dealt with through 

calibration curves. Unless noted otherwise, it should be stressed that the 

procedural elements were developed specifically for this system. 

Potential sources of error should be identified before actually initiating data 

collection. The sources of errors in the data will depend on the hardware being 

used as well as preparation, experimental method, and procedures. This implies 

that errors can be placed into two broad categories: those errors associated with 

hardware and those associated with preparation, experimental method, and 

procedures. Accuracy of the data will depend on knowledge of the accuracy of 
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the equipment and the procedures used. 

System Error 

The total error of a system can be decomposed into two components: bias 

and imprecision (Doebelin, 1990). If bias can be identified and removed by 

calibration or some other method then the total magnitude of the error is the 

result of the statistical imprecision associated with the measuring process. This 

implies that upper and lower limits of certainty, ±3s or most probable error (ep), 

can be placed on the quantity being measured. 

The counting process is Poisson in nature (Jenkins and De Vries, 1973). 

Sample variance ( a 2) is equal to the sample mean ( count, N) and sample 

standard deviation ( a) is the square root of count. The 3s precision of the system 

is therefore N ± 3*(N)°"5. Precision has no meaning, however, if because of bias it 

does not accurately reflect the true estimate of the count. Accuracy is 

established by evaluating all practical sources of bias and removing them either 

through calibration or other methods. Having done this, accuracy can be said to 

equal count with a precision as defined above. 

System Bias 

As described in Chapter 4 the combined tomography and spectroscopy 

system is composed of five essential elements: source, collimation, positioning 

system, detectors with associated electronics, and data acquisition boards with 

multichannel analyzers. Each of these components is a potential source of 



system error and should be evaluated. 

Collimation. Additional bias can be attributable to improper or changing 

source collimation. Since x-ray generation is based on the flux of incident 

exciting photons, it is necessary to carry out experiments using the same 

collimation used in the construction of the calibration curves. Decreasing 

collimation by one half results in an approximate fourfold decrease in incident 

photons which decreases x-ray yield proportionately. Therefore, maintaining 

constant source and detector collimation is necessary. 
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Positioning System. Positioning system bias can be introduced in a 

number of ways. These errors are associated with two general categories: 

hardware and software. Assuming that software is sending the proper number of 

steps to the stepper motors and that hardware is in good ~ndition, error in 

sample placement is controlled by the accuracy and repeatability of positioning 

tables and stepper motors. As discussed in Chapter 4, the linear tables have a 

bidirectional positional repeatability of ±0.0002 in. (0.005 mm) and a positional 

accuracy of ±0.00025 in.fin. (0.00635 mm/mm). The stepper motors translate the 

linear tables at a rate of 0.0254 mm/step (stepper motor shaft revolution of 

1. 8 °/step) which is more than 200 times less than the positional accuracy of the 

tables. It is concluded, therefore, that bias attributed to hardware can be 

effectively ignored as long as the linear positioning tables are maintained in 

proper working condition. 

Detectors and Associated Electronics. That scintillation detectors are 
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subject to drift with changes in temperature is well documented in the literature. 

This was also noted with the current system while running long-term tests. To 

investigate count-rate variation as a function of temperature, thermocouples were 

placed at the detector, amplifier and bias supplies, computer, and on two walls at 

detector height. Temperatures were logged at constant time intervals while 

acquiring photon counts. Graphs were then constructed showing the variation in 

count with increasing temperature. The results showed a linear relationship 

between count and temperature. 

There are at least three means of dealing with temperature-effect bias: 

construction of a detector response vs. temperature curve, detector cooling, and 

climate control. The first option is, in effect, the construction of calibration curves 

that are dependent not only on analyte concentration but temperature as well. 

Detector cooling can be accomplished by wrapping the detector in tubing which is 

connected to a constant temperature bath thereby providing a heat exchange 

mechanism. Climate control of the work space can be accomplished by means 

such as a dedicated air conditioner or by tapping a relatively constant-tempera­

ture reservoir. 

Bias removal through construction of additional calibration curves is an 

unnecessary hindrance to data acquisition and a potential source of additional 

error. The installation of a dedicated air conditioner was considered but would 

have required structural changes to a load-bearing wall. After analyzing detector 

sensitivity vs. temperature, it was decided that the most practical means of 

climate control was to cycle air with the adjoining laboratory on a continuous 
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basis. This allowed air to be exchanged approximately ten times per hour with 

the relatively constant-temperature air of the outer laboratory. 

Sources of Imprecision 

With the removal of bias any imprecision in the data is a function of the 

randomness of photon emissions. Assuming a perfect sample, stable electronics, 

and an accurate counting interval, each individual count in a succession of 

intervals will still vary. This is an important consideration when quantitative 

analysis based on calibration curves is being implemented. The analysis of error 

associated with photon statistics is treated in the following sections. 

Counting Error 

Error analysis in fluorescence spectroscopy is straightforward assuming 

that neither wavelength enhancement nor secondary excitation of lower-Z 

elements is occurring due to matrix effects and incorporated similar-Z materials . 

. The type of analysis, although similar in both cases, depends on whether the data 

is in the form of count as in this study, or intensity. In both cases the background 

count is taken into consideration. 

Two types of error can be calculated: standard counting error (a N) and 

relative counting error (~ N) (Bertin, 1978). For a single count the standard 

counting error is given by 

a =N112 
N 5.1 
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and relative counting error as, 

- aN_N112 - 1 
~ ------

N N N N1/2 5.2 

Assuming the same live time for the peak and background counts the standard 

and relative errors are 

a =fa 2+a 2)1'2=(N +N )1,2 
N~P B. P B 5.3 

and 

5.4 

where Np is the net count and N8 is the background count. 

In instances in which the accumulated count from a sample (Nx) is to be 

compared with that from a standard (N5), assuming that both counts were 

acquired using the same live time, a ratio method is used for determining the 

relative counting error. For counts uncorrected for background the relative error 

is, 

5.5 

and the relative error corrected for background is given by, 
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5.6 

When replicate counts of the same standard or sample are made the standard 

counting error and relative fractional error is calculated as, 

and 

1 ta) =-a 
\ N n 1/2 N n 

where n is the number of replicates. 

System Precision, Accuracy and Sensitivity 

5.7 

5.8 

System accuracy, precision, and sensitivity are determined through photon 

statistics and a calibration curve. A typical approach would be to construct a set 

of standards with a range of concentration equaling that of the expected 

distribution of the experiment. Statistical precision is then calculated based on 

fluorescence data of these standards. These same data points are then used to 

construct the calibration curve. 

Precision. Repeated measurements are made at each concentration to 

determine the standard deviation, S, from the mean, x, of then results, x 

(Jenkins and De Vries, 1973). The coefficient of variation, ~, is then calculated 
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based on the value of S. These are stated in equation form as, 

-( I,d2) 112 
S--

n-2 
5.9 

and 

5.10 

where dis the deviation from the individual result, xi. Bertin (1978) states that the 

standard deviation; S, relates to absolute precision and the coefficient of 

variation,~. is a measure of precision relative to the concentration of analyte 

present. 

Accuracy~ A calibration curve must be established to determine 

concentration given an x-ray count. Linear regression is used to establish the 

best fit line describing the data after establishing a number of data points (x-ray 

count vs. concentration). The regression line is then assumed to represent the 

"true" representation of concentration given count, N. Accuracy, which is the 

degree of deviation of the measured concentration, C;, and the true concentration, 

c, is expressed as 

( C--CJ CT=~ 100 5.11 

where Cr is the percent difference relative to the true value. Accuracy can be 
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tested by acquiring data on a standard composed of a concentration other than 

those used in the construction of the calibration curve. The concentration, c;, 

calculated from the derived calibration curve 

c.=mx+b 
I 5.12 

· where m is the slope, x is the count, and b is the background count (intercept) 

can then be used in equation 5. 11 to obtain the percent accuracy. 

Parameters are live time, sample position, sample dry bulk density, sample 

moisture content, and collimation of source and detector. Count rate not only 

depends on concentration but on position in the sample as well. Therefore, for 

multiple data points, a curve must be constructed for the expected count rate vs. 

concentration and position in the sample. 

Sensitivity. There are essentially two goals in determining the sensitivity 

of a measurement in the counting process: establishing the minimum detectable 

limit (MDL) and the rate of change of count with respect to analyte concentration. 

Birks (1969) defines the MDL, based on a fixed counting time, as the amount of 

analyte giving a net count equal to three times the square root of the background 

count. Statistically this would be three times the standard error of the 

background count or, 3o8 _ Sensitivity can be increased by decreasing the back-

ground count that lowers the MDL. This is accomplished through collimation and 

using a more sensitive detector. 
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Summary 

The sources of bias discussed above can, in general, be removed without 

the aid of a calibration curve. Background interference as a result of interelement 

matrix effects, however, must be removed through the use of a calibration curve. 

Error from detector drift as a result of change in temperature is the only likely 

source of bias to be encountered and is easily checked by taking numerous air 

counts of the unattenuated beam during the data acquisition process. A steadily 

decreasing count rate is also indicative of temperature drift. 



CHAPTER6 

RESULTS 

AND 

DISCUSSION 

Introduction 

The experiment resulted in 34 data sets acquired over a period of 

approximately eight hours. Data consists of gamma- and x-ray spectra, effluent 

mass flow rates, effluent conductivity, and total dissolved solids. Data analysis 

consists of plotting breakthrough curves (BTC) based on the five sets of 

experimental data. Relationships between these curves, as well as with the 

theoretical BTC are shown. Results of these comparisons are then used to 

determine the effectiveness of x-ray fluorescence as a quantitative tool in 

laboratory column breakthrough tests. A brief overview of breakthrough curve 

theory is given after presentation of experimental data. Comparisons between 

the experimental and theoretical curves are then presented based on concepts 

developed in the BTC overview. 

Gamma and X-ray Results 

Data collection intervals are based on a 10-minute live time trigger initiated 

by the in line detector. At the end of each interval spectral data is written to hard 
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disk and the effluent vial is replaced. Each sample has associated with it four 

experimental, and one theoretical, data sets. Attenuation and fluorescence data 

are acquired in real time while the conductivity and weight of the effluent are 

taken while the next data set is being acquired. Experimental parameters are 

summarized in Table 6.1. 

Property 

Column Position 
Flow Direction 
Flow Rate (ml/min) 
Mass of Soil (g) 
Bulk Density (g/cm3) 

Porosity (calculated) 
Pore Volume (cm3) 

Initial Moisture Content 

Gamma Data 

TABLE 6.1 

TEST PARAMETERS 

State 

Vertical 
Upwards 

0.483 ± 1.4% 
874.7 
1.68 

0.366 
190.6 

Saturated 

Inspection of the gamma data showed that peak shifting toward the high-

energy end of the spectrum had occurred during the experiment. The electronic 

drift was a result of temperature changes and count rate variation. This shift 

resulted in widening the peak and decreasing the maximum channel count that in 

turn induced decreasing count with time. A post-count rubber band algorithm, 

which is the same algorithm used by the system during CT scanning (Brown, et 

al., 1996), was applied to correct this peak shift phenomenon. Maximum 

channel values vs. sample number for each peak are shown in Figure 6. 1. The 
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degree of peak shift and change in peak geometry are illustrated in Figure 6.2. 

The solute front was first detected by the in line detector during the time 

interval 5.35 < T < 5.58 hours {sample 24). Total attenuation of the primary 662 

keV beam was approximately 0.85% the initial intensity at the point of maximum 

solute concentration beginning with sample 30 at T = 6. 98 hours. Mean total 

peak areas corresponding to replicate samples of minimum and maximum solute 

concentrations are 5,432,643 and 5,386,308 counts, respectively. The minimal 

degree of attenuation is a strong indication that too high an energy was used for 

attenuation purposes. 

A signal's magnitude is determined by the difference between the mean 

maximum and mean minimum counts. For this study, the standard counting error 

to signal ratio ranges from 5 to 15% (1 to 3o). This translates into a ±3o standard 

counting error spanning 1 O to 30% of the signal. Although this study is not 

dependent on transmission-attenuation data it was hoped that it would serve as 

an additional independent, quantitative data set which would support the 

fluorescence data. This is not possible, however, due to insensitivity. Raw and 

adjusted values of gamma data versus sample number based on data found in 

Table 6.2 are presented graphically in Figure 6.3. 

X-ray Data 

X-ray data was much more stable than the attenuation data; no post test 

processing was required. Electronics had stabilized approximately 97 minutes 

into the experiment. Spectra 8 through 21 were used to establish the background 
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TABLE 6.2 

ATTENUATION AND FLUORESCENCE DATA 

Sample Elapsed Gamma Count X-Ray Count 
No. (mm:ss) Raw Adjusted Gross Net 
1 13:51 5505586 5456461 104294 0 
2 27:50 5506127 5457435 103623 0 
3 41:47 5506094 5457931 103258 0 
4 55:45 5498993 5451040 102791 0 
5 69:43 5494309 5456311 102382 0 
6 83:41 5485878 5447557 102238 0 
7 97:39 5481027 5443040 102561 0 
8 111 :37 5471917 5433736 101543 0 
9 125:35 5478315 5440986 101906 0 

10 139:33 5473499 5445685 102204 0 
11 153:31 5463771 5435778 101630 0 
12 167:29 5465436 5437120 102106 0 
13 181 :27 5458610 5430706 101552 0 
14 195:26 5454796 5435968 101923 0 
15 209:24 5450821 5432375 102054 0 
16 223:22 5452878 5434440 101699 0 
17 237:21 5445744 5427218 101655 0 
18 251 :20 5452127 5433893 101709 0 
19 265:18 5446996 5428723 102225 0 
20 278:17 5450632 5432346 101733 0 
21 293:16 5438262 5429064 101554 0 
22 307:15 5442640 5433572 102367 0 
23 321: 14 5445187 5436287 103792 1971 
24 335:12 5434287 5425223 109933 8112 
25 349:11 5410581 5401518 117945 16124 
26 363:09 5401587 5392602 121874 20053 
27 377:08 5399562 5390630 122743 20922 
28 391 :06 5388739 5388739 123233 21412 
29 405:05 5393097 5393097 123040 21219 
30 419:03 5384903 5384903 122979 21158 
31 433:02 5384188 5384188 123340 21519 
32 447:01 5389554 5389554 122812 20991 
33 461:00 5384658 5384658 123338 21517 
34 475:00 5388240 5388240 123576 21755 
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count within the region of interest (ROI) containing the fluoresced x-ray peak 

(Table 6.2). The mean background count was established by summing the 

channel contents within the ROI for each spectrum and calculating the mean. A 

typical background spectrum with ROI is found in Figure 6.4. 

The first statistically significant peak was detected during acquisition of 

sample 23. This was determined visually and by comparing the net peak area 

with the minimum detectable limit (MDL) defined in Chapter 5 as 

6.1 

which states that a peak can be discriminated if its area exceeds the sum of the 

background and three times its standard counting error. Based on a mean 

background count of 101,821 and standard counting error of 319, the MDL was 

determined to be 102,778 counts. Background counts used in calculating the 

mean are presented in Figure 6.5 and x-ray data in the form of total count is 

found in Figure 6.6. A summary of counting statistics for spectra 22 through 34 is 

found in Table 6.3. Plots of Np vs. o and Np vs.~ are shown in Figures 6.7 and 

6.8, respectively. 

X-ray Peak Analysis. Theoretically, fluoresced net peak area is a linear 

function of solute concentration. This was illustrated by model output in Chapter 

3. It was also shown that when net peak area is plotted versus concentration the 

slope varies with x-ray intensity. Intensity dependence is removed by using the 

ratio of fluoresced net to maximum (Nmax) peak areas. Further determination of 

linearity was to have been made through construction of a calibration curve 

based on four standards (Chapter 5). 
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TABLE 6.3 

SUMMARY STATISTICS FOR FLUORESCENCE DATA 

Sample No. Gross Count Net Count Std. Error % Rel. Error 

(Na+ Ne) (Ne) (o) (~) 
22 102367 0 N/A N/A 
23 103792 1971 322 16.35 
24 109933 8112 332 4.09 
25 117945 16124 343 2.13 
26 121874 20053 349 1.74 
27 122743 20922 350 1.67 
28 123233 21412 351 1.64 
29 123040 21219 351 1.65 
30 122979 21158 351 1.66 
31 123340 21519 351 1.63 
32 122812 20991 350 1.67 
33 123338 21517 351 1.63 
34 123576 21755 352 1.62 

The calibration curve was based on incorrect geometry and was not useful 

in determining count versus concentration of the experimental data. It did provide 

evidence for a linear relationship between concentration and x-ray net peak area, 

however. Therefore, it was decided to compare the theoretical calibration curve 

with BTC data. Linearity in both actual and modeled data implies the relationship 

6.2 

where C is the solute concentration at count Np and C0 is the maximum 

concentration at N MAX· 

Regression of the modeled output leads to the expression 
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6.3 

in which the slope term of 0.0025 corresponds to the inverse of NMAX (=400 

counts). This lends support to the relationship stated in Equation 6.2. 

Rearranging Equation 6.3 to solve for C yields 

6.4 

Equation 6.4 shows that, given a net count, concentrations can be determined 

without the aid of a calibration curve. The only a priori data needed is the 

maximum concentration of solute introduced into the system. 

A check on both modeled and experimental data was made by estimating 

the counts at standard concentrations. Modeled counts are based on C0 and 

NMAX values of 100,000 mg/I iodide and 400 counts, respectively. BTC values 

were obtained with Equation 6.2. These are shown in Table 6.4. Also found in 

the table is a scale factor determined by dividing the experimental count by the 

modeled count at each standard concentration. This factor was then 

incorporated into Equation 6.4 to predict counts of the same magnitude as those 

found in the experimental data. A plot of Np versus C for both data sets is shown 

in Figure 6.9. Figure 6.10 represents concentrations based on Equation 6.6 and 

Np of Table 6. 3. 
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TABLE 6.4 

MODELED AND EXPERIMENTAL COUNTS 

C Net Count (Np) Scale Percent 

(mg/I) Model BTC Scaled Factor Difference 
24872 99 5325 5328 53.52 0.056 
49784 199 10677 10665 53.65 0.065 
74571 298 15965 15975 53.52 0.062 
99543 398 21311 21324 53.52 0.061 

Breakthrough Curve Theory 

The solute BTC is a graphical representation of solute concentration 

versus transport time or distance. Time can be expressed in terms of pore 

volume. The shape of the curve is affected by advection, mechanical dispersion, 

and molecular diffusion. Initial moisture content ranges from oven dry to 

saturated with initial conditions based on the properties being evaluated. 

In a saturated column, non-reactive solutes are transported by advection 

and dispersion. The governing equation for 1-D saturated flow with non-reactive 

solute (no retardation) is: 

6.5 

where DL is the dispersion coefficient, a lumped sum combining the effects of 

dispersion and diffusion, t is time, x is distance and C is concentration. 

Determination of the dominant process, diffusion, dispersion or both, can be 



obtained by calculating the Peclet number. This is defined as 

vop 
P=­

e D 
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6.6 

where DP is the particle diameter. Diffusion dominates if Pe< 1; if 1<Pe<1000, 

diffusion transitions to dispersion with increasing values of Pe; and with Pe > 1000 

dispersion dominates. Using the Peclet diagram, the ratio of D/D can then be 

determined. lf dispersion is dominant, DL can be approximated from the BTC as 

6.7 

where the subscripts .84 and .16 refer to the x-position at time t and C/C0 = .84 

and .16 (assuming a Gaussian-distributed breakthrough curve). It should be 

noted that this method is valid only for sampling within the column. After 

calculating Dv the solution to equation 6.1 is obtained by (van Genuchten, 1981) 

where erfc is the complementary error function. With increasing flow length 

Equation 6.8 reduces to (Fetter, 1993) 

_ C0 [ 1 L-vxf ll C-- ern 
2 2.JtfJ 

6.9 



with initial condition 

and boundary conditions 

C(x,O) = 0 

( ac) =(finite) 
ax x~oo 

Breakthrough Curve Results 
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Experimental data used in BTC analysis consists of mass flow rates, total 

dissolved solids, and solute concentrations. Total dissolved solids were 

obtained from outlet samples with conductivities being used as a qualitative 

check. Gamma attenuation data was not used for reasons previously mentioned. 

Volumetric flow rates were derived from mass flow rates that were then used as 

one of the parameters in calculating the error function solution. 

The first step in BTC analysis consists of determining the dominant 

transport process. This is done by plotting C/C0 versus pore volume (Figure 

6. 11) and using equation 6. 7 to establish DL. Dispersion was the dominant 

process in this case. A theoretical breakthrough curve is then calculated using 

equation 6.8. The actual and calculated BTC's are plotted versus pore volume to 

determine the validity of the model. The two curves correspond if the 

experimental and modeled data describe the same process. 
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Figure 6.11 C/C0 vs Pore Volume for Determining DL. 
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Presentation and Discussion of BTC Data 

Data was analyzed at two positions in the column: x = 23.0 cm (fluor­

escence data) and x = L = 25.4 cm (effluent data). The error function solution 

was calibrated using the derived DL value (0.0013 cm2/min) as a starting point. 

The seepage velocity was varied iteratively until C/C0 = 0.5 at one pore volume 

was obtained. Pore volumes were then calculated based on the predicted 

velocity (v = 0.48362 cm/min). Resulting pore volumes, based on a porosity of 

0.342 cm3/cm3, were 162.0 and 177.8 ml for the fluorescence and effluent sample 

locations. These values correspond to column sample positions (x, and x = L) of 

23.18 and 25.4 cm. 

Plots of C/C0 versus pore volume for the fluorescence and effluent data 

(Figures 6.12 and 6.13) were constructed based on these parameters. The 

figures also show the calculated BTC based on the error function solution. Data 

is presented in Table 6.5. Adjustment of the x-axis (pore volume) of both plots is 

necessary because of dead space: the storage in the tubing, fittings, and wells at 

the inlet and outlet. In the current configuration, this amounts to 2.4 ml at the 

inlet and 1.5 ml at the outlet for a total of 3.9 ml. 

The measured BTC is well fitted by the error function solution in both 

instances. There is not a direct correspondence of individual data points 

between the measured and fitted curves in either case, however. For the effluent 

data this is most probably attributable to: 1) dispersion effects in the outlet cavity, 

2) silt being washed from the sample, and 3) inadequate laboratory analytic 

technique of the author. It should be noted that the curves themselves fit closely. 
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Figure 6.12 C/C0 vs Pore Volume - Fluorescence Data. 
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TABLE 6.5 

SUMMARY OF BREAKTHROUGH CURVE TEST DATA 

Elapsed Fluorescence Data Effluent Data 
Time vt/L C C/C0 vt/L C C/C0 

(min.) (mg/I) (mg/I) 

0 0.000 0 0 0.000 0 0 
13.51 0.026 0 0 0.015 0 0 
27.50 0.067 0 0 0.053 0 0 
41.47 0.109 0 0 0.091 0 0 
55.45 0.151 0 0 0.129 0 0 
69.43 0.192 0 0 0.167 0 0 
83.41 0.234 0 0 0.205 0 0 
97.39 0.276 0 0 0.243 0 0 

111.37 0.318 0 0 0.281 0 0 
125.35 0.359 0 0 0.319 0 0 
139.33 0.401 0 0 0.357 0 0 
153.31 0.443 0 0 0.395 0 0 
167.29 0.485 0 0 0.433 0 0 
181.27 0.526 0 0 0.471 0 0 

195.26 0.568 0 0 0.509 0 0 

209.24 0.610 0 0 0.547 0 0 

223.22 0.652 0 0 0.585 0 0 

237.21 0.693 0 0 0.623 0 0 

251.20 0.735 0 0 0.661 0 0 

265.18 0.777 0 0 0.699 0 0 

279.17 0.819 0 0 0.737 0 0 

293.16 0:860 0 0 0.775 0 0 

307.15 0.902 0 0 0.813 0 0 

321.14 0.944 9206 0.092 0.851 0 0 

335.12 0.986 37889 0.380 0.889 0 0 

349.11 1.027 75312 0.756 0.927 794 0.008 

363.09 1.069 93664 0.940 0.965 14498 0.146 

377.08 1.111 97723 0.981 1.004 53974 0.542 

391.06 1.153 100011 1.004 1.042 84450 0.848 

405.05 1.194 99110 0.995 1.080 97727 0.982 

419.03 1.236 98825 0.992 1.118 99558 1.000 

433.02 1.278 100511 1.009 1.156 99848 1.003 

447.01 1.320 98045 0.984 1.194 99957 1.004 
461.00 1.361 100502 1.009 1.232 99973 1.004 
475.00 1.403 101613 1.020 1.270 100057 1.005 
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The differences between measured and fitted curves for the fluorescence 

data is related to the resolution of the system. It was stated earlier that the offset 

detector was placed at x = 24.9 cm that is 0.5 cm below the top of the column. 

The effective position in terms of analysis was calculated to be x = 23. 18 cm with 

the actual position being x = 23.0 cm. This is shown is Figure 6.14. It can be 

seen from the figure that the lower limit of the field of view (FOV) corresponds to 

x = 23.0 cm where it crosses the centerline of the column. So, the effective FOV 

corresponds to the position at x = 24.9 - 0.5 * 8 * Beam Diameter(= 0.5 cm)= 

22.9 cm. Only one half the FOV is actually in the column. This means that a 

substantial number of counts were missed. Proper placement would have 

allowed the entire FOV to be in the column. Any discrepancies between the 

curves, then, can be attributed to the averaging effect due to the volume of the 

column in the detector's FOV. Volume averaging could probably be minimized by 

decreasing the vertical collimation component. 

SUMMARY 

The use of x-ray fluorescence of high-z salts has been shown to be 

feasible in nondestructive, in situ laboratory column BTC studies. BTC analysis 

of effluent data confirmed results of fluorescence data acquired within the 

column. Additionally, it was shown that in the current configuration it is 

unnecessary to establish calibration curves to relate fluoresced x-ray count to 

solute concentration. This is also verified by Monte Carlo modeling. Finally, BTC 

analysis coupled with analysis of system geometry show that detector placement 
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should be at a position defined by 

6.10 

where Lis the column length, dis the distance from the column centerline to the 

detector face, and a is the angle defining the point where one half the FOV 

intersects the column centerline. 



CHAPTER 7 

SUMMARY, CONCLUSIONS 

AND 

RECOMMENDATIONS 

Summary 

In situ, nondestructive examination of porous media is of interest to soil 

scientists and engineers studying transport processes. The common tool used in 

studying these processes has typically been some form of a laboratory column. 

The goal of this research has been to develop a new technique of 

nondestructively detecting and analyzing, by means of x-ray fluorescence, the 

transport of high-Z salts in saturated systems. X-ray fluorescence by itself is not 

new. However, application of this technique to the study of solute breakthrough 

curves in laboratory columns is new. 

Theoretical evaluation of x-ray fluorescence processes showed that this 

approach would be feasible. The experimental system was simulated by using 

the theory of photon interactions in Monte Carlo modeling. Output provided 

important information concerning x-ray generation loci, detector response and 

construction of a theoretical calibration curve. The generated calibration curve 

was within approximately 0.065% that resulting from experimental data. 

X-ray data from the BTC experiment was well fitted by the error function 
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solution. Effluent data was used to provide an independent check of the x-ray 

results. Gamma ray data was to have been used as well. Unfortunately, the 

source was too energetic and provided unacceptable error in signal response in 

terms of attenuation versus solute concentration. Fluorescence was more 

sensitive than gamma transmittance in this case. Lower concentrations of solute 

were measured with less error than with the traditional gamma attenuation 

method. 

The feasibility of simultaneous CT imaging was considered throughout the 

progression of this research. Therefore, close attention was given to minimum 

data acquisition times and detector placement. It is the opinion of the author that 

simultaneous imaging/XRF is feasible with either the incorporation of more 

detectors or replacement of the current one with more sensitivity. 

Conclusions 

Breakthrough curve analysis is feasible with the system as currently 

configured. An understanding of the nature of photon interactions permitted data 

to be collected so that post acquisition processing was minimized. Problems 

normally associated with traditional x-ray fluorescence such as secondary and 

tertiary fluorescence, beam hardening, and non-monochromatic excitation were 

avoided through the use of a high-energy, high-activity radioisotope source and a 

single high-Z salt. Compton haze was minimized through the use of collimation 

on the source and detector. 

Detector efficiency is the major limiting factor with this system. The lowest 
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fluoresced concentration of solute detected was approximately 9200 mg/I 

compared with approximately 800 mg/I from effluent. This can be reduced to 

about 4600 mg/I by repositioning the detector while keeping all other parameters 

constant. The minimum detectable limit can be further lowered by either 

incorporating more detectors or installing a more efficient detector. 

Constraints affecting the overall success of this method as applied to 

solute breakthrough curves are the need for a high-Z salt at large concentrations 

and a high-activity, high-energy source. Considerations in source selection must 

take into account the activity versus analyte excitation efficiency problem. An 

additional constraint is one of time. The researcher must be aware of the time 

needed for statistically significant data acquisition relative to the rate of 

advancement of the solute front. Ideally, data should be acquired as quickly as 

possible to construct a well-defined breakthrough curve. 

CT imaging can be done simultaneously with XRF BTC testing if a more 

efficient offset detector is incorporated. Photon emission tomography is possible 

if a ring detector system is in place. This would allow two forms of imaging as 

well as XRF. 

Overall, system performance was as expected. Hardware, experimental 

setup, and implementation were straightforward. The goal of providing a 

multipurpose research tool requiring minimal specialized equipment was met. 

Recommendations 

Suggestions for future modifications are made in view of maintaining 
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simplicity and minimizing cost. As with computed tomography, time of data 

acquisition is one of the most important factors in dynamic fluorescence research. 

The four most important components concerning the rate of acquisition are: 

detector efficiency and collimation, source strength, and source activity. 

1. Investigate Improving the MDL. Improving the total count by 

upgrading to a high-efficiency detector such as a large area geranium detector is 

a simple solution to part of the time problem. When considering efficiency it 

should be known what lower limit of detection is required and/or needed. If the 

lower limit is in the mg/I range, then a detector requiring cooling will probably be 

needed. That may not be the case if a lower limit in the hundreds of mg/I is 

required. It is the opinion of the author that trace analysis is not the concern in 

the type of research presented here. 

2. Investigate Improving System Resolution. Signal strength can be 

improved by careful design of detector collimation. Background can be minimized 

by selecting a collimation geometry that will preclude most of the scattered 

radiation from reaching the detector. The horizontal collimation width of the 

current configuration is three cm. After analysis of the data it was determined 

that one cm would have been the optimum width. To some degree, this would 

result in lowering the MDL and increasing the relative net peak area of the 

fluoresced x-rays. 

3. Investigate Other Excitation Sources. Excitation efficiency depends 

on source energy. The closer the incident photon energy is to the analyte 

absorption edge the greater the probability of excitation. To be remembered, 
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however, is that absorption increases with decreasing photon energy. So, 

although excitation efficiency may improve with a lower energy source, the overall 

rate of excitation will decrease because fewer incident photons will penetrate the 

target. A tradeoff must be reached between excitation efficiency as a function of 

incident photon energy and as a function of the rate of higher-energy incident 

photons. 

Increasing the number of lower-energy incident photons is not just a matter 

of increasing the source size (activity). The source itself must be viewed as a 

high-Z absorber. There is a point at which the number of emitted photons cannot 

be increased despite source activity. Americium-241 is a good example of this 

limitation. 

An additional consideration, when selecting the most effective source is 

the half-life. It is likely that the perfect source can be found but it may have a 

half-life of only a few days. Also, custom sources are usually extremely 

expensive and short-lived which would preclude long-term research projects. 

4. Determine General Guidelines for MDL. The MDL, as a function of 

Z, concentration, counting time and excitation activity, can be evaluated using the 

equations and sources presented in Chapter 2 as well as the model described in 

Chapter 3. Optimizing all parameters for the most efficient fluorescence should 

be possible. 
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'QB TRANSLATION FROM FORTRAN OF MONTEREY MARK I BY 
'J. WOOD, U. OF L., 1980. XLATION AND CHANGES BY J. GAZIN, 
'OSU Biosystems Engineering. 
'THIS PROGRAM APPLIES THE MONTE CARLO METHOD TO GAMMA 
'PHOTON TRANSPORT. IT SIMULATES THE TRANSMISSION AND 
'REFLECTION OF GAMMA RAYS INCIDENT ON A TARGET MATERIAL. 
'PAIR PRODUCTION PHENOMENA ARE TREATED AS ABSORPTION. 
'ANYTHING DEALING WITH DOSAGE AND ALBEDO HAVE BEEN RE­
'MOVED TO SPEED UP SIMULATIONS. MODEL CONVERTED TO DEAL 
'WITH A CYLINDRICAL TARGET OF CONSTANT HETEROGENOUS COM­
'POSITION. IF XRAYS ARE GENERA TED AN AUXILIARY FILE IS 
'CREATED AND SIMULATIONS RAN AFTER INITIAL PHOTONS HAVE 
'BEEN SCORED. 

DECLARE SUB Angles () 
DECLARE SUB ConCalc {) 
DECLARE SUB Evaluate {) 
DECLARE SUB History {) 
DECLARE SUB lnputData () 
DECLARE SUB NextStep {) 
DECLARE SUB Prelim () 
DECLARE SUB Scatter() 
DECLARE SUB Score () 
DECLARE SUB Start() 
DECLARE SUB XRay () 
DECLARE SUB WriteData () 
DIM SHARED Target(1300), Pkxray(1300), Y(1300), WB(1300) 
DIM SHARED F(25), 10(25), K(25), Kl(25), H20(25), Pxray(25), SI02(25), TargetMu(25), 0(5) 
DIM SHARED Escaping0(1025), Escaping45(1025), Escaping90(1025), EB(1025) 
DIM SHARED Escaping225(1025); Escaping270(1025), CCH(360), SCH(360) 
DIM SHARED CriticalW, CDPH, CIMAX, COSM, CPH, CPHN, CTH, CTHN 
DIM SHARED EMAX, EMIN, ESubl, Height, I, IMAX, JAT, JAZ, JB, JGO, MassConcl, MAT 
DIM SHARED MEN, Pi, Pi0vr2, Radius, RadToOeg, Rho, R2, Rhol, SDPH, Status 
DIM SHARED SOM, SPH, SPHN, StepCounter, STH, STHN, UX, UY, UZ 
DIM SHARED W, WMAX, WMIN, X, XN, Y, YN, Z, ZN, ZSC,ZSubl 
DIM SHARED PhotonNumber AS LONG, RecordNumber AS LONG, NoXrays AS LONG, 
DIM SHARED Convert1, Convert2, Convert3, · Convert4, Converts, Convert6 
DIM SHARED WB1 Upper, WB1 Lower, WB2Upper, WB2Lower, WB3Upper, WB3Lower 
DIM SHARED WB4Upper, WB4Lower, WB5Upper, WB5Lower, WB6Upper, WB6Lower 

'OPEN FILE TO WHERE X-RAY COORDINATES WILL BE WRITTEN. 

TYPE XPosition 
XASSINGLE 
YASSINGLE 
ZAS SINGLE 

END TYPE 

DIM SHARED XRecord AS XPosition 
OPEN FileName FOR RANDOM AS #6 LEN = LEN(XRecord) 
RecordNumber = LOF(6) \ LEN(XRecord) 

'OPEN FILES FOR ENERGY SPECTRA AT EACH 
'DETECTOR POSITION. 

OPEN "Path\0_ 100.DAT" FOR APPEND AS #1 
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OPEN "Path\45_ 100.DAT" FOR APPEND AS #2 
OPEN "Path\90_ 100.DAT" FOR APPEND AS #3 
OPEN "Path\225_100.DAT" FOR APPEND AS #4 
OPEN "Path\270_ 100.DAT' FOR APPEND AS #5 

END 

lnputData 
Prelim 

FOR PhotonNumber = 1 TO IMAX 
History 

NEXT PhotonNumber 
Write Data 

CLOSE#1 
CLOSE#2 
CLOSE#3 
CLOSE#4 
CLOSE#5 
CLOSE '116 

SUB Angles 

'AZIMUTHAL ANGLE OF SCATTERING IS RANDOMLY CHOSEN 
'BETWEEN O - 360 DEGREES. 

RA= RND 
JAZ = INT(360! * RA) 

'NEW VALUES OF PHOTON'S DIRECTION VARIABLES ARE OBTAINED 
'FROM STD. RELATIONSHIPS IN SPHERICAL TRIG. USE IS MADE 
'OF PREVIOUSLY CONSTRUCTED COS AND SIN TABLES TO EVAL. 
'NECESSARY TRIG FUNCTIONS. 

'VARIABLES USED 
'CCH/SCH - COS(PHl) ... LOCAL AZIMUTHAL ANGLE OF COMPTON SCA TIERING 
'CDPH/SDPH -COS(PHl(N+1)- PHl(N)) ... PHOTON'S DIRECTION OF MOTION 
' BEFORE AND AFTER NTH SCATTERING. . 
'COSM/SOM - COS(THETA) ... DEFLECTION ANGLE OF COMPTON SCATTERING 
'CPH/SPH - COS(PHl) ... AZIMUTHAL ANGLE OF PARTICLES'S DIR. OF MOTION 
'CPHN/SPHN - NEW VALUE AFTER A SCATTERING 
'CTH/STH - COS(THETA) ... OBLIQUITY ANGLE OF PARTICLE'S DIR. OF MOTION 
'CTHN/STHN - NEW VALUES AFTER A COLLISION 
'JAZ - INDEX FOR PICKING COS AND SIN OF AN ANGLE UNIFORMLY 

'UX 
'UY 
'UZ 
'X/Y/Z 
'XN/YN/ZN 
'ZSC 

DISTRIBUTED BETWEEN O - 360 DEGREES 
- DIRECTION COSINE. .. COS(PHl)*SIN(THETA) 
- DIRECTION COSINE. .. SIN(THETA)*SIN(PHI) 
- DIRECTION COSINE. .. COS(THETA) 
- X, Y AND Z COORDINATES (CM.) OF PHOTON 
- POSTULATED COORD.S AT NEXT COLLISION 
- HGT. (CM.) OF PHOTON EMERGING FROM TARGET 

CTHN = CTH * COSM + STH *SOM* CCH(JAZ + 1) 
Fixlt = 1 ! - CTHN * CTHN 
STHN = SQR(Fixlt) 
DENOM = STH * STHN 
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'IF THE DENOMINATOR IS TOO LOW AN ALTERNATIVE PROC. 
'IS FOLLOWED TO PRESERVE ACCURACY. 

Condition = ABS(DENOM) - .000001 
SELECT CASE Condition 

CASE IS <=O 
CDPH = -CCH(JAZ + 1) 
SDPH = SCH(JAZ + 1) 

CASE IS >O 
CDPH = (COSM - CTH * CTHN) I DENOM 
SDPH = SOM * SCH(JAZ + 1) I STHN 

CASE ELSE 
END SELECT 
CPHN=CPH*CDPH-SPH*SDPH 
SPHN = SPH * CDPH + CPH * SDPH 

'UPDATE VALUES OF ANGULAR VARIABLES 

CTH = CTHN 
STH =STHN 
CPH=CPHN 
SPH=SPHN 

'PHOTON'S NEW DIRECTION COSINES ARE COMPUTED. THIS IS 
'ESSENTIAL INFO REQ. BY SUBS NextStep AND Score. 
'EQ. 7.16, P. 277, COMPUTATIONAL METHODS IN REACTOR 
'SHIELDING. 

UZ= CTH 
UY= STH * SPH 
UX=STH *CPH 

END SUB 

SUBConCalc 

'EXIT TO History 

'GIVEN CONC. OF IODIDE IN MG/L, THIS MODULE 
'CALCULATES THE MASS OF I AND KIN THE SYSTEM 
'WHICH ALLOWS MuOvrRho OF THE SYSTEM TO BE 
'CALCULATED. THIS IS ONLY FOR THIS SYSTEM. 

Cenci = 100000 
MassSand = 43.79: MassWater = 8!: VolumeSample = 26.066 
GramsPerMoll = 126.9045: GramsPerMolK = 39.0983 
Cenci = Cenci / 1000 'MG OR PPM TO GRAMS 
Massi = Cenci * (Mass Water/ 1000) 'G/L * # OF LITERS (8/1000) 
Molsl = Cenci I GramsPerMoll 
MassK = Molsl * GramsPerMolK * (Mass Water/ 1000) 
MassKI = MassK + Massi 

'CALCULATE MASS CONCENTRATIONS OF ALL 
'COMPONENTS IN THE SYSTEM 

MassSystem = MassSand + MassWater + MassKI 
MassConcl = Massi I MassSystem 
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MassConcKI = MassKI I MassSystem 
MassConcWater = MassWater I MassSystem 
MassConcSand = MassSand I MassSystem 

'CALCULATE DENSITY OF SAMPLE 

Rho = MassSystem I VolumeSample 

'CALCULATE Mu/Rho OF MIXTURE BASED ON C[I]. 

FOR I = 1 TO MAT 
TargetMu(I) = SI02(1) * MassConcSand + Kl(I) * MassConcKI + H20(1) * 

MassConcWater 
NEXTI 

END SUB 

SUB Evaluate 
DIM J, StartValue AS INTEGER 

'CONSTRUCT FINE MESH TABLE FOR THE VARIOUS ATTEN. COEFF. 
'USING NEWTON DIVIDED DIFFERENCE INTERPOLATION OF COARSE 
'MESH DATA IN BOTH THE INDEPENDENT VARIABLE AND FUNCTION. 
'USE A 3RD DEGREE FIT ON 4 KNOWN POINTS AT A TIME TO MIN-
'IMIZE ERROR. X(3) BECOMES X(O) OF THE NEXT GROUP OF POINTS 
'EXCEPT AT THE ABSORPTION EDGE WHERE X(O) HAS BEEN ARBITRAR­
'IL Y SET AT 0.0331 SO THAT THE SAME POINT WILL NOT HAVE 2 
'F(l)'S. ALL VALUES IN MeV. 
I 

A B C D E F 
'X(O) 2.0 0.8 0.40 0.15 0.06 0.0331 
'X(1) 1.5 0.6 0.30 0.10 0.05 0.03 
'X(2) 1.0 0.5 0.20 0.08 0.04 0.02 
'X(3) 0.8 0.4 0.15 0.06 0.033166 0.015 

'DeltaX = -0.0025 MeV FOR GROUPS A THRU D AND -0.0001 MeV 
'FOR GROUPS E THRU F. 

'COARSE MESH PHOTON ENERGY TABLE (MeV) 

EB(1) = 2!: EB(2) = 1.5: EB(3) = 1 !: EB(4) = .8: EB(5) = .6: EB(6) = .5 
EB(7) = .4: EB(8) = .3: EB(9) = .2: EB(10) = .15: EB(11) = .1: EB(12) = .08 
EB(13) = .06: EB(14) = .05: EB(15) = .04: EB(16) = .033166: EB(17) = .0331 
EB(18) = .03: EB(19) = .02: EB(20) = .015 

DO 

A = 1: B = 2: C = 3: D = 4: E = 5: F = 6 
GROUP=A 
StepCounter = O 
DEGREE= 3 

SELECT CASE GROUP 
CASE IS =A 

UPPER= EB(1): LOWER= EB(4) 
NumberOfSteps = 480: StartValue = 1 
DeltaX = -(UPPER - LOWER)/NumberOfSteps 
GROUP= B 

CASE IS= B 
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UPPER= LOWER: LOWER = EB(?) 
NumberOfSteps = 160: StartValue = 4 

DelteX = -(UPPER - LOWER)/NumberOfSteps 
GROUP=C 

CASE IS=C 
UPPER= LOWER: LOWER= EB(10) 
NumberOfSteps = 100: StartValue = 7 

Deltax = -(UPPER - LOWER)/NumberOfSteps 
GROUP= D 

CASE IS= D 
UPPER= LOWER: LOWER= EB(13) 
NumberOfSteps = 36: StartValue = 1 O 
Deltax = -(UPPER - LOWER)/NumberOfSteps 

GROUP= E 
CASEIS=E 

UPPER= LOWER: LOWER= EB(16) 
NumberOfSteps = 267: StartValue = 13 
DeltaX = -{UPPER - LOWER)/NumberOfSteps 

GROUP= F 
CASE IS= F 

UPPER= EB(17): LOWER= EB(20) 
NumberOfSteps = 181: StartValue = 17 
DeltaX = -(UPPER - LOWER)/NumberOfSteps 

GROUP=Z 
CASE ELSE 

EXIT DO 
END SELECT 

FOR I = 0 TO DEGREE 
D(I) = F(StartValue + I) 
EB(I) = EB(StartValue + I) 

NEXTI 

'CONSTRUCT DIVIDED DIFFERENCE TABLE 
'FOR HIGHER ORDER DIFFERENCES. 

FOR I = 1 TO DEGREE 
FOR J = DEGREE TO I STEP-1 

D(J) = (D(J) - D(J - 1)) I (EB(J) - EB(J - I)) 
NEXT J 

NEXTI 

'EVALUATE AT DESIRED POINTS 

FOR J = 1 TO NumberOfSteps 
K =UPPER+ (J -1) * Deltax 
StepCounter = StepCounter + 1 
Answer= 0(3) 
FOR I= (DEGREE -1) TOO STEP -1 

Answer= D(I) + (K - EB(I)) * Answer 
Y(StepCounter) = Answer 

NEXTI 
NEXT J 

LOOP 
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K =UPPER+ (J - 1) * DeltaX 
StepCounter = StepCounter + 1 
Answer= 0(3) 
FOR I= (DEGREE -1) TOO SiEP -1 

Answer= D(I) + (K - EB(I)) * Answer 
Y(StepCounter) = Answer 

NEXTI 
END SUB 

SUB History 
Start 'A PHOTON'S INITIAL STATE IS DEFINED 

5 NextStep 'PATHLENGTH TO NEXT COLLISION IS FOUND 

Score 

'SEE IF PHOTON CROSSES BOUNDARIES. IF IT DOES, STATUS 
'IS SET TO 1. IF NOT STATUS IS SET TOO AND PHOTON 
'IS SCA TIERED AGAIN. IF AN XRAY IS GENERATED, XN, YN, ZN 
'ARE WRITIEN TO FILE SO THAT THE SCA TIERED PHOTON'S LIFE 
'CAN STILL BE FOLLOWED. AFTERWARDS, THE XRAY FILE WILL 
'BE READ AND SIMULATIONS STARTED AT COORDINATES OF EACH 
'XRAY WITH E = 28 keV. 

IF Status= 1 THEN GOTO 500 
Scatter 

'IF E < EMIN THEN HISTORY IS TERMINATED 

TestW = W - WMAX 
SELECT CASE TestW 

CASE IS<= 0 
'ASCERTAIN PHOTON'S DIRECTIONS 
Angles 
GOT05 

CASE ELSE 
END SELECT 

500 'EXIT TO PARTICLE FOR START OF NEW PHOTON 
END SUB 

SUB lnputData 
IMAX= 1000000 'NUMBER OF PARTICLES TO TRACK. 
Rhol = 4.94 'DENSITY OF IODIDE 
EMAX = .662 'MAX. ENERGY IN MeV (EMAX L TE. 10) 
EMIN = .02 'CUT-OFF ENERGY (MeV). PHOTON'S LIFE HISTORY IS TERMINATED 

'WHEN ITS ENERGY IS REDUCED TO < EMIN (EMIN GTE. 0.018) 
MEN= 1024 'NO. OF INTERVALS REQUIRED IN PHOTON ENERGY SPECTRUM TABLE 
MAT= 20 TOTAL NO. OF COARSH MESH ENERGIES FOR BASIC X-SECTION DATA 
Radius= 2.55 'RADIUS OF TARGET (CM.) 
R2 = Radius * Radius 
Height= .638 'HALF-HEIGHT OF TARGET (CM.) 
Bounce = 0 'COUNTER THAT KEEPS TRACK OF TOT AL NUMBER OF INTERACTIONS. 

XRayCounter= 0 'COUNTER THAT KEEPS TRACK OF NUMBER OF X-RAYS GENERATED. 
JumpRatio = .838 'ABSORPTION JUMP RATIO: (R - 1) I R 
FYield = .869 'FLUORESCENCE YIELD OF IODIDE K SHELLS 
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GKalfa = .8108 'RATIO OF KALFA X-RAYS TO TOTAL K X-RAYS (INTENSITIES) 
ESubl = JumpRatio * FYield * GKalfa 

'ALL A TIENUATION COEFF'S OBTAINED EITHER DIRECTLY OR DERIVED 
'FROM 4.1-3, PP. 173-177 IN ENGINEERING COMPENDIUM ON RADl­
'ATION SHIELDING, VOL. 1 (1968). THIS Mu/Rho DATA DO NOT 
'INCLUDE COHERENT SCATIERING (RAYLEIGH X-SECTION) BECAUSE 
'PAIR PRODUCTION WILL NOT OCCUR AT Cs137 ENERGIES. 

'COARSE MESH MASS ATIEN. COEFF. FOR IODIDE (CMA2/G) 

10(1) = .0409: 10(2) = .0459: 10(3) = .0574: 10(4) = .066: 10(5) = .0807 
10(6) = .0936: 10(7) = .116: 10(8) = .168: 10(9) = .349: 10(10) = .673 
10(11) = 1.91: 10(12) = 3.52: 10(13) = 7.55: 10(14) = 12.3: 10(15) = 22.3 . 
10(16) = 35.8397: 10(17) = 6.0509: 10(18) = 7.98: 10(19) = 24.7: 10(20) = 53.4 

'COARSE MESH MASS ATIEN. COEFF. FOR POTASSIUM (CM/\2/G) 

K(1) = .0439: K(2) = .0505: K(3) = .0619: K(4) = .0689: K(5) = .0786 
K(6) = .0852: K(7) = .0938: K(8) = .106: K(9) = .128: K(10) = .15 
K(11) = .216: K(12) = .296: K(13) = .512: K(14) = .777: K(15) = 1.39 
K(16) = 1.4305: K(17) = 1.4313: K(18) = 3.14: K(19) = 10.5: K(20) = 24.6 

'COARSE MESH MASS ATIEN. COEFF. FOR Kl (CM/\2/G) 

Kl(1) = .0416: Kl(2) = .047: Kl(3) = .0585: Kl(4) = .0667: Kl(5) = .0802 
Kl(6) = .0916: Kl(?)= .1108: Kl(8) = .1534: Kl(9) = .2969: Kl(10) = .5498 
Kl(11) = 1.511: Kl(12) = 2.7607: Kl(13) = 5.8924: Kl(14) = 9.586: Kl(15) = 17.3751 
Kl(16) = 27.7354: Kl(17) = 4.2971: Kl(18) = 6.84: Kl(19) = 21.3555: Kl(20) = 46.618 

'COARSE MESH MASS ATIEN. COEFF. FOR SILICA (CM/\2/G) 

Sl02(1) = .0446: SI02(2) = .0518: Sl02(3) = .0635: SI02(4) = .0707: Sl02(5) = .0805 
Sl02(6) = .0871: SI02(7) = .0954: Sl02(8) = .107: 5102(9) = .1239: Sl02(10) = .1368 
SI02(11) = .1618: SI02(12) = .1836 SI02(13) = .2329: SI02(14) = .2911: Sl02(15) = .4225 
5102(16) = .4287: 5102(17) = .429 SI02(18) = .7907: Sl02(19) = 2.3648: 5102(20) = 5.5231 

'COARSE MESH MASS ATIEN. COEFF. FOR WATER (CMA2/G) 

H20(1) = .0493: H20(2) = .0575: H20(3) = .0706: H20(4) = .0785: H20(5) = .0894 
H20(6) = .0966: H20(7) = .106: H20(8) = .118: H20(9) = .136: H20(10) = .149 
H20(11) = .168: H20(12) = .179: H20(13) = .197: H20(14) = .214: H20(15) = .248 
H20(16) = .2845: H0(17) = .2851: H20(18) = .337: H20(19) = .711: H20(20) = 1.48 

'GOTO SUB ConCalc TO CALCULATE TargetMu(I) 

ConCalc 

'FRACTION ABSORBED BY IODIDE AND P(X-RAY) WILL BE EQUAL TO 
'C[I] * ESubl * (Mu/Rho (I))/ (Mu/Rho (Sample)) 

FOR I = 1 TO MAT 
Pxray(I) = MassConcl * ESubl * (10(1) I TargetMu(I)) 

NEXTI 
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'EXIT TO PARTICLE 
END SUB 

SUB NextStep 
'JGO HELPS TABLE LOOK-UP BY CAUSING SEARCH FOR JAT 
'TO START WITHIN APPROPRIATE BAND TO PHOTONS PREV­
'IOUS VALUE OF W. LOWER VALUES OF JGO ARE EXCLUDED 
'SINCE W CAN ONLY INCREASE WITH SCA TIERING. 

TempE = .5110034 / W 
DO 

SELECT CASE JGO 
CASE IS= 1 

'FIRST BAND SEARCHED 
Test1 = TempE - WB1 Lower 
SELECT CASE Test1 

CASE IS >=O 
JAT = Convert1 * ABS(TempE -W81Upper) 
JAT = CINT(JAT + 1) 
EXIT DO 

CASE IS <O 
JG0=2 

CASE ELSE 
END SELECT 

CASE IS =2 
'SECOND BAND SEARCHED 

Test2 = TempE -WB2Lower 
SELECT CASE Test2 

CASE IS >=O 
JAT = Convert2 * ABS(TempE -W82Upper) 
JAT = CINT(JAT + 480) 
EXIT DO 

CASEIS<O 
JG0=3 

CASE ELSE 
END SELECT 

CASE IS=3 
'THIRD BAND SEARCHED 

Test3 = TempE - WB3Lower 
SELECT CASE Test3 

CASE IS >=O 
JAT = Convert3 * ABS(TempE -W83Upper) 
JAT = CINT(JAT + 640) 
EXIT DO 

CASE IS <O 
JG0=4 

CASE ELSE 
END SELECT 

CASE IS =4 
'FOURTH BAND SEARCHED 

Test4 = TempE - WB4Lower · 
SELECT CASE Test4 

CASE IS>= 0 
JAT = Convert4 * ABS(TempE - WB4Upper) 
JAT = CINT(JAT + 740) 
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EXIT DO 
CASE IS< 0 

JG0=5 
CASE ELSE 

END SELECT 
CASE IS= 5 

'FIFTH BAND SEARCHED 
Test5 = TempE - WB5Lower 
SELECT CASE Test5 

CASE IS >=O 
JAT = Convert5 * ABS(TempE - WB5Upper) 
JAT = CINT(JAT + 776) 
EXIT DO 

CASE IS <O 
JG0=6 

CASE ELSE 
END SELECT 

CASE IS =6 
'SIXTH BAND SEARCHED 

JAT = Convert6 * ABS(TempE - WB6Upper) 
JAT = CINT(JAT + 1044) 
EXIT DO 

CASE ELSE 
END SELECT 

LOOP 

'S, PATHLENGTH TO NEXT COLLISION IS DETERMINED 
'BY RANDOM SAMPLING. 

RA= RND 
RAL = LOG(RA) 
S = -RAL I Target( JA T) 

'COORD'S OF NEXT COLLISION POINT ARE TENT. FIXED 

XN = X+ S * UX 
YN = Y + S * UY 
ZN= Z + S * UZ 

END SUB 

SUB Prelim 

'EXIT TO HISTORY 

DIM J, StartValue, XCounter AS INTEGER 
Pi= 3.141592 
Pi0vr2 = Pi I 2 
RadToDeg = 180 I Pi 
CIMAX = IMAX 'NO. OF PARTICLE HISTORIES TO BE TRACKED 

'CONDITION FOR CASE JB = 1 
RANDOMIZE TIMER 

'EVALUATE MAX AND MIN PHOTON WAVELENGTHS IN COMPTON UNITS 
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WMIN = .5110034# I EMAX 
WMAX = .5110034# I EMIN 
CriticalW = .5110034# / .033167 

'CONSTRUCT SINE AND COSINE TABLES FOR MESH WIDTH= 1 DEGREE 

'COMPUTED AT MID-MESH POINT 

CH =-.5 
FOR I = 1 TO 360 

CH= CH+ 1 
CCH(I) = COS(Pi * CH / 180) 
SCH(I) = SIN(Pi * CH / 180) 

NEXT! 

'CONSTRUCT FINE WAVELENGTH MESH OF 6 BANDS. 
'BANDS 1 THRU 4 HAVE THE SAME ENERGY MESH WIDTH. 
'BANDS 5 AND 6 HAVE THE SAME ENERGY MESH WIDTH. 

'JGO ENERGY RANGE WBRANGE MESH INTERVAL 

'1 
'2 
'3 
'4 
'5 
'6 

(MeV) 
2.0 - .8025 0.26- 0.63 
0.8 - .4025 0.63 - 1.27 
0.4 - .1525 1.27- 3.35 
0.15 - .0625 3.35- 8.17 
0.06 - .033166 8.51 -15.34 
0.0331 - .015 15.43 - 34.06 

'BAND 1 

WB(1) = 2! 
FOR I = 2 TO 480 

WB(I) = 2! + ((1-1) * -.0025) 
NEXT! 
WB1 Upper= 2!: WB1 Lower= .8025 
Meshlnterval1 = (WB(1) - WB(480)) / 479 
Convert1 = 1 I Meshlnterval1 

'BAND2 

FOR I = 481 TO 640 
WB(I) = 2! + ((I - 1) * -.0025) 

NEXT! 
WB2Upper=.8:WB2Lower=.4025 
Meshlnterval2 = (WB(481) - WB(640)) / 158 
Convert2 = 1 I Meshlnterval2 

'BAND3 

FOR I= 641 TO 740 
WB(I) = 2! + ((1-1) * -.0025) 

NEXTI 
WB3Upper=.4:VVB3Lower=.1525 
Meshlnterval3 = (VVB(641)-VVB(740)) /98 
Convert3 = 1 I Meshlnterval3 

0.0008 
0.004 
0.02 
0.13 
0.025 
0.102 
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'BAND4 

FOR I= 741 TO 776 
WB(I) = 2! + ((I - 1) * -.0025) 

NEXTI 
WB4Upper=.15:WB4Lower=.0625 
Meshlnterval4 = (WB(741) -WB(776)) / 34 
Convert4 = 1 I Meshlnterval4 

'BANDS 

Stepper= 1 
WB(777) = .06 
FOR I= 778 TO 1044 

WB(I) = .06 + (Stepper* -.000100502#) 
Stepper= Stepper + 1 

NEXTI 
WBSUpper=.06:WBSLower=.033166 
Meshlnterval5 = (WB(777) - WB(1044)) / 266 
Converts = 1 I Meshlnterval5 

'BAND6 

Stepper= 1 
WB(1045) = .0331 
FOR I= 1046 TO 1226 

WB(I) = .0331 + (Stepper* -.0001) 
Stepper= Stepper + 1 

NEXTI 
WB6Upper= .0331: WB6Lower= .015 
Meshlnterval6 = (WB(1045)- WB(1226)) / 180 
Convert6 = 1 I Meshlnterval6 

'INTERPOLATE DATA ONE SET AT A TIME. 

SetNumber = 1 
DO 

SELECT CASE SetNumber 
CASE IS= 0 

EXIT DO 
CASE IS= 1 

FOR I = 1 TO MAT 
F(I) = LOG(Pxray(I)) 

NEXTI 
Evaluate 
FOR I = 1 TO StepCounter 

Pkxray(I) = EXP(Y(I)) 
IF Xray(I) > 1 ! THEN Pkxray(I) = 1 ! 

NEXTI 
SetNumber = 2 

CASE IS=2 
FOR I = 1 TO MAT 

F(I) = LOG(TargetMu(I)) 
NEXTI 
Evaluate 
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FOR I = 1 TO StepCounter 
Target(I) = Rho *EXP( Y(I)) 

NEXTI 
SetNumber = O 

CASE ELSE 
END SELECT 

LOOP 

'PHOTON CURRENT ENERGY SPECTRUM MESH CONSTRUCTED 
'IN EB WITH INTERVAL= EMAX/MEN (Energy bins). 

MATO= MEN 
MEN= MEN+ 1 
EB(1) = EMAX 
FOR JE = 1 TO MEN 

IF JE > MATO THEN GOTO 80 
EB(JE + 1) = EB(JE) - EMAX I MATO 

80 NEXT JE 
EB(MEN) = O! 

'PHOTON LIFE HISTORIES CAN START NOW. EXIT TO PARTICLE 
END SUB 

SUB Scatter 

DO 

'WAVELENGTH, W, OF SCATTERED PHOTON IS OBTAINED BY THE 
'METHOD SUGGESTED BY KAHN FOR SAMPLING THE KLEIN-NISHINA 
'PDF. THIS RELIES ON A REJECTION/ACCEPTANCE TECHNIQUE 
'TO FIND A SUITABLE VALUE OF R = (NEW W)/(OLD W) AND 
'HENCE THE NEW W. 

RA= RND 
T=2! /W 
Condition1 = RA - (1 ! + T) I (9! + T) 
SELECT CASE Condition1 

CASE IS <=O 
RA= RND 
R=1!+RA*T 
RA= RND 
Condition1A = RA - 4! * (R - 1 !) I (R * R) 
SELECT CASE Condition1A . 

CASE IS <=O 
EXIT DO 

CASE ELSE 
END SELECT 

CASE IS> 0 
RA= RND 
R = (1 ! + T) I (1 ! + RA* T) 
RA= RND 
Condition1A = RA - .5 * ((W - R * W + 1 !) 11 2 + (1 ! IR)) 
SELECT CASE Condition1A 

CASE IS <=O 
EXIT DO 

CASE ELSE 
END SELECT 

CASE ELSE 

132 



END SELECT 
LOOP 

'ACCEPTABLE VALUE OF R FOUND. NEW WAVELENGTH IS COMPUTED 
'FROM WHICH THE COMPTON ANGLE OF SCA TIERING CAN BE DET. 

WOLD=W 
W=R*WOLD 
COSM = 1! -W+ WOLD 
SOM = SQR(1 ! - COSM * COSM) 

'EXIT TO HISTORY 
END SUB 

SUB Score 
R2Prime = XN * XN + YN * YN 
SELECT CASE R2Prime 

CASE IS< R2 
SELECT CASE ABS(ZN) 

CASE IS < Height 
X = XN: Y = YN: Z = ZN 
SELECT CASE W 

CASE IS<= CriticalW 
XRay 

CASE ELSE 
END SELECT 
Status= O 
GOT0400 

CASE IS >= Height 
SELECT CASE ZN 

CASE IS <= -Height 
'ZSC = -Height:Theta = 362 
GOT0395 

CASE IS >= Height 
'ZSC = Height:Theta = 361 
GOT0395 

CASE ELSE 
END SELECT 

CASE ELSE 
END SELECT 

CASE IS>= R2 
RPrime = SQR(R2Prime) 
PhiPrime = ATN(ZN I RPrime) 
SELECT CASE ABS(PhiPrime) 

CASE IS> .2451632 
SELECT CASE PhiPrime 

CASE IS < -.2451632 
'ZSC = -Height: Theta = 362 
GOT0395 

CASE IS> .2451632 
'ZSC = Height: Theta= 361 
GOTO 395 

CASE ELSE 
END SELECT 

CASE IS<= .2451632 
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ZSC = 2.55 * TAN(PhiPrime) 
CASE ELSE 

END SELECT 
XP = X: YP = Y: XPN = XN: YPN = YN 
DO 

MPX = (XP + XPN) / 2!: MPY = (YP + VPN)/ 2! 
MPX2 = MPX * MPX: MPY2 = MPY * MPY 
RP2 = MPX2 + MPY2 
R2High = R2 + .001 
R2Low = R2 - .001 
SELECT CASE RP2 

CASE IS < R2Low 
XP = MPX: YP = MPY 

CASE IS > R2High 
XPN = MPX: YPN = MPY 

CASE ELSE 
XSC = MPX: YSC = MPY 
Theta= ATN(YSC I XSC) * RadToDeg 
EXIT DO 

END SELECT 
LOOP 

CASE ELSE 
END SELECT 

'BASED ON XSC, YSC, AND E DETERMINE ANGLE WITH ORIGIN 
'THAT SCORING COMPTON PHOTON LEAVES SYSTEM. UNCOLLIDED 
'FLUX IS ASSUMED TO LIE ON POSITIVE Y-AXIS. 
'ORIGIN= 0,0,0 BASED ON CYLINDRICAL COORDINATES. 

E = .5110034#/W 
SELECT CASE E 

CASE IS = .662 
Theta= 90! 
xsc =O! 
YSC=2.55 
ZSC=O! 

CASE IS < .662 
SELECT CASE XSC 

CASE IS>= 0 
SELECT CASE YSC 

'QUADRANT 1 
CASE IS>= 0 

Theta = INT(Theta) 
'QUADRANT4 

CASE IS< 0 
Theta = INT(360 + Theta) 

CASE ELSE 
END SELECT 

CASE IS< 0 
SELECT CASE YSC 

'QUADRANT2 
CASE IS>= 0 

Theta = INT(180 + Theta) 
'QUADRANT3 

CASE IS< 0 
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Theta= INT(180 + Theta) 
CASE ELSE 

END SELECT 
CASE ELSE 

END SELECT 
CASE ELSE 

END SELECT 

'BIN THE ENERGY LEVEL 

FOR JE = 1 TO MEN 
IF E >= EB(JE) THEN EXIT FOR 

NEXT JE 

'DETECTOR IS AT 3 POSITIONS. ARC LENGTH CORRESPONDING 
'TO DETECTOR COLLIMATION IS 1 CM. WINDOW OF INTEREST 
'IS 90,135, AND 180 DEGREES +/-11 DEGREES. ZSC RANGE 
'IS ALSO 1 CM. THEREFORE, ZSC RANGE IS -.5 TO .5 CM. 

SELECT CASE Theta 
CASE 79 TO 101 

Escaping90(JE) = Escaping90(JE) + 1 
CASE OTO 11 

EscapingO(JE) = EscapingO(JE) + 1 
CASE 34 T056 

Escaping45(JE) = Escaping45(JE) + 1 
CASE 124 TO 146 

Escaping45(JE) = Esqaping45(JE) + 1 
CASE 169 TO 191 

EscapingO(JE) = Escaping90(JE) + 1 
CASE 214 TO 236 

Escaping225{JE) = Escaping225(JE) + 1 
CASE 259 TO 281 

Escaping270(JE) = Escaping270(JE) + 1 
CASE 304 TO 326 

Escaping225(JE) = Escaping225(JE) + 1 
CASE 349 TO 360 . 

EscapingO(JE) = EscapingO(JE) + 1 
CASE ELSE 

END SELECT 
395 Status = 1 
400 'EXIT TO HISTORY 

END SUB 

SUB Start 
'INITIAL WAVELENGTH 

W=WMIN 

'INITIAL WAVELENGTH BAND 

JG0=2 

'DEFINE SOURCE GEOMETRY 
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CTH = COS(.5 * Pi): STH = SIN(.5 * Pi) 
CPH = COS(.5 * Pi): SPH = SIN(.5 * Pi) 

'INITIALIZE COORDINATES OF SOURCE 

X = O!: Y = -2.55: Z = O! 

'DEFINE DIRECTION COSINES 

UZ = CTH: UY = STH * SPH: UX = STH * CPH 
COSM = 1! 

'EXIT TO HISTORY 
END SUB 

SUB WriteData 

'SPECTRUM FOR THETA= 349 TO 11 AND 169 TO 191 DEG. 

WRITE #1, Rho,NoXrays: 
FOR JE = 1 TO MEN 

WRITE #1, EB(JE); EscapingO(JE): 
NEXT JE 

'SPECTRUM FOR THETA= 34 TO 56 AND 124 TO 146 DEG. 

WRITE #2, Rho, NoXrays: 
FOR JE = 1 TO MEN 

WRITE #2, EB(JE); Escaping45(JE): 
NEXT JE 

'SPECTRUM SPECTRUM FOR 79 TO 91 DEG. 

WRITE #3, Rho, NoXrays: 
FOR JE = 1 TO MEN 

WRITE #3, EB(JE); Escaping90(JE): 
NEXT JE 

'SPECTRUM SPECTRUM FOR 214 TO 236 AND 324 TO 346 DEG. 

WRITE #4, Rho, NoXrays: 
FOR JE = 1 TO MEN 

WRITE #4, EB(JE); Escaping225(JE): 
NEXT JE 

'SPECTRUM FOR BACKSCA TIER THETA = 259 TO 281 DEG. 

WRITE #5, Rho, NoXrays: 
FOR JE = 1 TO MEN 

WRITE #5, EB(JE); Escaping270(JE): 
NEXT JE 

END SUB 

SUB XRay 
RA= RND 
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TestRA = Pkxray(JAT) 
SELECT CASE RA 

CASE IS<= TestRA 
RecordNumber = Record Number + 1 & 
XRecord.X = X 
XRecord.Y = Y 
XRecord.Z = Z 
PUT #16, RecordNumber, XRecord 
NoXrays = NoXrays + 1 

CASE ELSE 
END SELECT 

END SUB 
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Note: The following changes are made to GRATE to run simulations on the generated x-rays. Also, 
the author is aware that the random number generator in QuickBasic is banded. It was the author's 
opinion that effects would be neglible in this type of model. The results bore this out. 

PROGRAM NAME : XRAY 

Sub lnputData Changes 

1. Change EMAX to 0.028612 
2. Omit IMAX, JumpRatio, Fyield 
3. Omit For .. Next loop 

Sub Main Changes 

Open "Path\File" for Random as# LEN = LEN(XRecord) 
NumberOfRecords = LOF(#)\LEN(XRecord) 
l=O 
For RecordNumber = 1 to NumberOfRecords 

Get#, RecordNumber, Xrecord 
X=XRecord.X: Y=XRecord.Y: Z=XRecord.Z 
XO = X: YO = Y: ZO = Z 
History 

Next RecordNumber 
Close#· 

Sub Score Changes 

Select Case Theta 
CASE 79 TO 101 

Escaping90(JE) = Escaping90(JE) + 1 
Write #, XO, YO, ZO, E 

CASE 124 TO 135 
Escaping135(JE) = Escaping135(JE) + 1 
Write#, XO, YO, ZO, E 

CASE 169 TO 191 
Escaping180(JE) = Escaping180(JE) + 1 
Write#, XO, YO, ZO, E 

CASE 214 TO 236 
Escaping225(JE) = Escaping225(JE) + 1 
Write#, XO, YO, ZO, E 

CASE 259 TO 281 
Escaping270(JE) = Escaping270(JE) + 1 
Write #, XO, YO, ZO, E 

CASE ELSE 
END SELECT 

Sub Start Changes 

Ra= RND 
RaTheta = Ra * Pi 
Ra= RND 
RaPhi = Ra * Pi 

Define Source Geometry 



CTH = COS(RaTheta): STH = SIN(RaTheta) 
CPH = COS(RaPhi): SPH = SIN(RaPhi) 

Define Direction Cosines 

UZ = CTH: UY= STH*SPH: UX = STH*CPH 
COSM = 1! 

Initial energy is in Band 6 

JG0=6 
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