Legislating from the Minority: An analysis of women's substantive representation in the Oklahoma Legislature

Pritzlaff ${ }^{1}$, Riley \& Herrick ${ }^{1}$, Rebekah
1. Oklahoma State University - Main Campus, Dept. of Political Science, Stillwater, OK

Literature Review and Theoretical Background:

Representation and women's legislative behavior

- Women make up just less than 21% of the Oklahoma Legislature (Center for American Women in Politics 2022).
- Two main types of representation have dominated the literature: mandate and trustee (Pitkin 1967).
- I move past this dichotomy and choose to focus on gyroscopic representation in which the principals (voters) have direct power over the placement of the agent (legislator in this case) but have little direct power over the agent's actions once in office (Mansbridge 2003).
- Literature on whether women focus on "women's issues" shows mixed evidence: work on the US Congress indicates that this is the case, but work on the Maine legislature indicates that this might not be the case (Cook 2012; Volden, Wiseman, and Wittmer 2018).
- Interestingly, work on the Brazilian Chamber of Deputies found that women form strategic ties with other women legislators as opposed to men, supporting my theory that bills addressing women's issues are more likely to have women principal authors (Wojcik and Mullenax 2017).
- I do not distinguish feminist issues from non-feminist issues in this study in order to address conservative representative claims resulting from Oklahoma's Republican supermajority control of the legislature and government trifecta (Celis and Childs 2012).
Legislative success
- In state legislatures, a common race, gender, and ethnicity often predicted whether a legislator would cosponsor a bill (Bratton and Rouse 2011).
- More generally, literature finds that as the number of cosponsors on a bill increases, so does its chance of success (Browne 1985).
Hypotheses:
H1: Bills addressing women's interests will be disproportionately introduced by women.
H2: Successful bills addressing women's issues will have a larger proportion of men authors. H2b: Compared to non-women's issue bills, the number of coauthors needed for women's issues bills to pass are greater
Methodology and Research Design
- Data available from Legiscan (https://legiscan.com/OK/legislation/2020) bill tracker and altered as needed. Used only data for the 2020 legislative session
- Primary dependent variables: Bill issue and success
- Primary independent variables: Gender of author and number of coauthors
- Because both dependent variables are dichotomous, I performed logistic regression. For legislative success, I created two models, one including only women's issue bills, and one excluding women's issue bills.
- Women's issues defined as those that exclusively/disproportionately affect women and NOT men (Gerrity, Osborn, and Mendez 2007).

[^0]Results

- I found strong support for H1. Women's issue bills are more likely to have a woman author (Odds ratio $=2.63$).
- Women's issue bills are also more likely to have women coauthors $($ Odds ratio $=4.07$).
- I found no support for H 2 or H2b. It is likely that H 2 had no significant results due to the sample size of women's issues being so small
- Interestingly, the number of coauthors had no significant impact on success for women's issue bills, but it did for non-women's issue bills.
- For non-women's issues, successful bills had more male authors (Odds ratio $=0.71$), but a smaller amount

VARIABLES	$\begin{gathered} (1) \\ \text { Bill issue } \\ \hline \end{gathered}$	$\begin{gathered} (2)^{\dagger} \\ \text { Success } \\ \hline \end{gathered}$	$(3)^{\dagger \dagger}$ success
Chamber of origin	$\begin{aligned} & -0.0926 \\ & (0.272) \end{aligned}$	$\begin{gathered} 0.239 \\ (0.746) \end{gathered}$	$\begin{gathered} 0.188 \\ (0.119) \end{gathered}$
Num. of coauthors	$\begin{aligned} & 0.00200 \\ & (0.0118) \end{aligned}$	$\begin{gathered} 0.0887 \\ (0.0562) \end{gathered}$	$\begin{gathered} 0.0713^{* * *} \\ (0.0152) \end{gathered}$
Proportion of women coauthors	1.404***		
	(0.344)		
Author lead	$\begin{gathered} 0.399 \\ (0.359) \end{gathered}$	$\begin{gathered} 0.898 \\ (0.951) \end{gathered}$	$\begin{gathered} 0.195 \\ (0.169) \end{gathered}$
Coauthors lead	$\begin{gathered} 0.941 \\ (0.602) \end{gathered}$	$\begin{gathered} -2.104 \\ (1.536) \end{gathered}$	$\begin{gathered} -0.252 \\ (0.423) \end{gathered}$
Success	$\begin{aligned} & 0.405 \\ & (0.276) \end{aligned}$		
Author gender	$\begin{gathered} 0.966^{* * *} \\ (0.201) \end{gathered}$	$\begin{gathered} -0.155 \\ (0.563) \end{gathered}$	$\begin{gathered} -0.340^{* * *} \\ (0.124) \end{gathered}$
Author party	$\begin{gathered} -0.823^{* * *} \\ (0.223) \end{gathered}$	$\begin{gathered} 0.161 \\ (0.644) \end{gathered}$	$\begin{gathered} 0.208 \\ (0.181) \end{gathered}$
Proportion of men coauthors		0.0997	-0.980**
		(1.982)	(0.435)
Constant	$\begin{gathered} -2.897 * * * \\ (0.465) \end{gathered}$	$\begin{aligned} & -1.408 \\ & (2.079) \end{aligned}$	$\begin{gathered} -0.387 \\ (0.547) \end{gathered}$
Observations	1,786	43	1,404
Standard errors in parentheses *** $\mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$			
\dagger This regression included women's issue bills $\dagger \dagger$ This regression excluded women's issue bills			

Descriptive statistics

- This tables gives the summary statistics for all variables that I included in the model. The most interesting summary statistics are number of coauthors, proportion of women coauthors, and proportion of men coauthors.

Descriptive Statistics					
Variable	Ons	Mean	Std. Dev.	Min	Max
Chamber of origin	1834	. 495	.	0	1
Bill issue (women's vs non women's issues)	1832	. 038	19	0	1
Number of coauthors	1833	2.938	${ }^{11.203}$	0	147
Proportion of women coauthors	1834	. 104	. 259	0	1
Does author hold	1828	. 136	343	0	1
leadership? Yes (No)	1834	. 039	. 193	0	1
(Yes/No)					
Did bill succeed (Yes/ No)	1834	${ }^{426}$. 495	0	1
${ }^{\text {Cender of authors }}$ Paty of authors	${ }_{1827}$	1.848	. 409	0	${ }_{2}^{2}$
Proportion of men	1493	. 945	. 142	. 2	1

Discussion:

- While it appears that bills addressing women's issues tend to have more women authors, it will be necessary to expand this dataset to include additional legislative sessions.
- While it appears that the number of coauthors does not predict success for women's issue bills, a larger sample size encompassing more legislative sessions will confirm these results.
- It appears that for non-women's issues, the number of male authors is more predictive of success.
- With more legislative sessions included, I can incorporate Poisson regression to determine whether specific legislators introduce women's issue bills at a disproportionate rate.

[^0]: References:

