NONINFECTIOUS SPORozoITES IN THE SALIVARY GLANDS OF A MINIMALLY SUSCEPTIBLE ANopheLine MOSQUITO

Bruce H. Noden*, Charles B. Pumpuni, Jefferson A. Vaughan†, and John C. Beier‡
Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health,
The Johns Hopkins University, 615 N. Wolfe St., Baltimore, Maryland 21205

ABSTRACT: In studies to evaluate vector–malaria parasite relationships, we have found that Anopheles albimanus is minimally susceptible to the rodent malaria parasite Plasmodium yoelii. Normally, less than 10% of A. albimanus develop oocyst infections compared to 80–100% for Anopheles stephensi and Anopheles freeborni mosquitoes. Although sporozoites produced in A. albimanus invade the salivary glands, they are not infectious to BALB/c or ICR mice. In 11 experiments with sporozoites from A. albimanus, intravenous inoculations of up to 24,000 sporozoites in individual mice failed to produce host infections. In contrast, inoculation of 300 sporozoites obtained from the salivary glands of A. stephensi and A. freeborni always infected mice. The noninfectious sporozoites from A. albimanus were morphologically similar to the infectious sporozoites from A. stephensi and yielded 4+ circumsporozoite precipitin reactions when incubated with a monoclonal antibody against the circumsporozoite protein of P. yoelii. The presence of noninfectious sporozoites in the salivary glands of A. albimanus suggests that this minimally susceptible vector either possesses a toxic factor that abolishes sporozoite infectiousness or lacks a critical substance needed by the sporozoite to become infectious. Sporozoite infectiousness was neither attenuated by incubation of infectious sporozoites with A. albimanus salivary glands nor restored when noninfectious sporozoites were incubated with A. stephensi salivary glands. These studies provide a starting point for defining the biological basis of sporozoite infectivity.

Plasmodium yoelii, isolated in the Central African Republic and originally described as a subspecies of Plasmodium berghei (Landau and Chabaud, 1965), was given species status by Killick-Kendrick (1974b). As the natural vector is unknown, several vector competence studies have described the varying degrees of P. yoelii development in different anopheline species (Wéry, 1968; Killick-Kendrick, 1971; Landau and Boulard, 1978; Vaughan et al., 1994). Some anopheline mosquito species do not support the full sporogonic development of P. yoelii. Wéry (1968) reported that sporogonic development was arrested at the oocyst stage in Anopheles atroparvus and Anopheles freeborni. Plasmodium yoelii sporozoites successfully invaded Anopheles aztecs salivary glands, but the sporozoites were not infectious when transmitted to a mouse. Similar findings of noninfectious sporozoites have been reported in various anophelines using Plasmodium berghei berghei (Yoeli, 1973), Plasmodium vinckei brucei wassmanni (Killick-Kendrick, 1975), Plasmodium vinckei vinckei (Bafort, 1971), and Plasmodium aethiopicus (Killick-Kendrick, 1974a).

In general, the infectivity of sporozoites in the salivary glands is influenced only by time (Porter et al., 1954; Vanderberg, 1975) and temperature (Ball and Chao, 1964; Vanderberg and Yoeli, 1966). However, the existence of noninfectious P. yoelii sporozoites in the salivary glands of A. aztecs suggests that additional mechanisms in mosquito vectors may influence the infectiousness of sporozoites. Observations concerning vector modulation of parasite development have recently been reported between Lutzomyia longipalpis and Leishmania spp. Lutzomyia longipalpis saliva reportedly influences Leishmania spp., stages, which occur in the sandfly midgut (Charlab and Ribeiro, 1993), and may also play a role in the severity of Leishmania donovani chagasi infections in humans (Warburg et al., 1994). Although several studies have identified mosquito factors that appear to assist malaria parasite development (Nijhout, 1977; Shahabuddin et al., 1993) and transmission (Champagne, 1994), no studies have examined how sporozoite infectiousness may vary as a function of conditions present in taxonomically diverse Anopheles species.

The present study was initiated to determine whether the infectiousness of a malaria parasite to its vertebrate host could be altered during the course of sporogonic development in a minimally susceptible vector species. Initially, we found that only a small proportion of A. albimanus develop oocysts when infected with P. yoelii. To obtain enough sporozoites for comparative studies, a strain of A. albimanus was selectively bred for susceptibility to infection with P. yoelii.

MATERIALS AND METHODS
Plasmodium yoelii yoelii 17X lethal (L) and nonlethal (NL) strains were maintained by serial blood passage in BALB/c and ICR mice. Gametocyte senescence was controlled by cycling parasites through mosquitoes every fourth blood passage (Vanderberg and Gwadz, 1980). Sporogonic development was examined in 3 species of anopheline mosquitoes: Anopheles albimanus, A. freeborni (Marysville), and A. stephensi.

Mice used for mosquito infections were bled 3–4 days after blood passage and exflagellation (wet mount) was assessed. Mice possessing mature gametocytes were anesthetized (0.05 mg pentobarbital per g body weight intraperitoneally [l.p.]) and placed on the screened tops of cages containing mosquitoes. Two mosquito species were infected simultaneously from the same mouse (coinfection) to reduce intermouse variability in gametocyte infectiousness. Mosquitoes were allowed to engorge and unfed mosquitoes were removed. Mosquitoes were then maintained at 24 C, 60% relative humidity. Oocyst infection rates were determined between days 8 and 10 as described by Vaughan et al. (1992). The salivary glands of mosquitoes from coinfection experiments were dissected 15–18 days after infection. All A. albimanus were dissected, whereas only 5–10 A. stephensi were dissected due to consistently high infection rates. The salivary glands from each mosquito species were dissected in M199 (Mediatech, Washington, D.C.), pooled into separate glass vials (Kontes, Sigma, St. Louis, Missouri) containing M199, and kept on ice. Upon completion of dissection, glands were homogenized
and a portion of the homogenate was removed to determine sporozoite number by hemocytometer (Haustar, Thomas, Swedesboro, New Jersey) under a phase-contrast microscope (Vaughan et al., 1992). Sporozoites were kept on ice less than 30 min from time of dissection until known numbers of sporozoites were inoculated intravenously into mice. Mouse infections were assessed by Geimsa stain 6 days after sporozoite inoculation and continued every other day up to day 14.

Selection of a susceptible line of A. albimanus to P. yoelii 17XNL was initiated by transferring fully engorged A. albimanus females into individual, screen-top, piri-sized cages containing an oviposition cup. Eight days after infection, females that oviposited were dissected to determine the presence of oocysts. Eggs and larvae from oocyst-infected females were pooled to establish the next generation (F1). Sufficient numbers of infected females were obtained by the second generation to set-up several lines from individual females. One line consisted of the progeny from 1 F0 female with 32 oocysts and another line was established from the progeny of 5 infected F1 females with lower numbers of oocysts (range 1–13).

Sporozoite characterization studies on noninfectious sporozoites from selected and nonselected lines of A. albimanus and infectious A. stephensi-derived sporozoites included measurement comparisons and circumsporozoite protein (CSP) assays. Sporozoites used for measurement studies were dried on poly-L-lysine (Sigma)-coated slides and stained with Geimsa (Sigma). Measurements were obtained at 1,000 × under oil immersion on a light microscope. Mean lengths of lethal and nonlethal strains of P. yoelii 17X sporozoites obtained from A. stephensi and A. albimanus were compared by analysis of variance (ANOVA) (SPSS, Inc., Chicago, Illinois). Circumsporozoite precipitation (CSP) experiments, conducted once using P. yoelii 17XNL sporozoites from both nonselected and selected A. albimanus lines and once using 17XL sporozoites from nonselected A. albimanus, followed the protocol described by Vanderberg et al. (1969) using NYSI, a monoclonal antibody directed against SSPI protein on P. yoelii 17XNL sporozoites (Charoenvit et al., 1987). The experiments were done to measure the presence of CSP as well as to observe whether the sporozoites were motile. The indirect fluorescent assay (IFA) using NYSI, conducted twice with each P. yoelii 17X strain, followed methods described by Charoenvit et al. (1987). One of the 2 trials used P. yoelii 17XNL sporozoites derived from the selected line of A. albimanus.

The influence of salivary gland extracts on sporozoite infectivity was tested using 2 approaches. One approach examined the ability of A. albimanus to reduce sporozoite infectiosity by incubating P. yoelii 17XNL sporozoites from A. stephensi with 50 homogenized A. albimanus salivary glands in 20 μl of M199 (Gibco) containing 3% bovine serum albumin (BSA; Sigma) (M-BSA) for 1 hr at room temperature (RT). The positive control consisted of P. yoelii 17XNL sporozoites from A. stephensi incubated for 1 hr at RT in 20 μl of M-BSA. The second approach examined whether factors in A. stephensi salivary glands could “activate” A. albimanus sporozoites by incubating P. yoelii 17XNL sporozoites from the salivary glands of the selected A. albimanus line with 50 homogenized A. stephensi glands in 20 μl of M-BSA for 1 hr at RT. The positive and negative controls consisted of infectious A. stephensi-derived sporozoites and noninfectious A. albimanus-derived sporozoites, respectively, incubated for 1 hr at RT in 20 μl of M-BSA.

RESULTS

In 9 of 10 coinfection experiments, oocyst prevalences for P. yoelii 17XL and 17XNL in A. albimanus did not exceed 10% (Table I). Prevalences were considerably higher in A. stephensi, the species used as the control. In 3 other coinfection experiments using A. freeborni as the control species, oocyst prevalences in A. albimanus were consistently below 5% (data not shown).

Sporozoites from A. stephensi consistently infected mice, but sporozoites from A. albimanus never produced infections, despite inoculations of up to 24,000 sporozoites (Table II). In similar coinfection experiments, 50 sporozoites from A. freeborni salivary glands produced a mouse infection, but 4 trials using 500, 1,000 (2×), and 5,000 sporozoites from A. albimanus did not produce any infections in BALB/c mice (data not shown).

Oocyst prevalences in A. albimanus increased from 3% to 11% in the first selected generation (F1), then up to 22% in the second selected generation (F2). F2 generation prevalences (%) were similar high whether the progeny were derived from 1 F2 female (41%) or a pooled group of eggs from 5 infected F2 females (38%). The F3 generation attained an oocyst prevalence of 70%.

No significant differences in mean lengths were detected for sporozoites from both lethal (F = 0.06, df = 1, 23, P = 0.8) and nonlethal strains (F = 0.43, df = 1, 35, P = 0.52) of P. yoelii 17X when passed through A. stephensi and A. albimanus. Sporozoites obtained from the salivary glands of A. stephensi and A. albimanus produced CSP reactions of +, thereby indicating no difference in the release of CSP protein between infectious and noninfectious sporozoites, respectively. Additionally, IFA experiments indicated the strong presence of CSP protein on infectious sporozoites from A. stephensi and noninfectious A. albimanus sporozoites. For both sporozoite populations, the monoclonal antibody NYSI produced a heavy fluorescent staining over the entire sporozoite surface.

The infectivity of sporozoites from A. stephensi salivary glands was not altered after incubation in A. albimanus salivary gland homogenates (Table III). Additionally, noninfectious P. yoelii sporozoites from the salivary glands of the selected A. albimanus line did not become infectious when incubated with A. stephensi salivary gland homogenates (Table III).

DISCUSSION

Plasmodium yoelii sporozoites obtained from A. albimanus salivary glands consistently failed to produce infections, even when 24,000 sporozoites from the selected line of A. albimanus were inoculated into 1 mouse. Conversely, sporozoites from coinfeated A. stephensi and A. freeborni always produced infections in mice. Noninfectious sporozoites have been reported earlier in the salivary glands of various anophelines, but the observations were either based on single cohort infections and small sample sizes (Wéry, 1968; Bafort, 1971; Yoeli, 1973), or the results were described with no indication of sample size or...
TABLE II. Infectiousness of *Plasmodium yoelii* (17X lethal and nonlethal) sporozoites obtained from the salivary glands of *Anopheles stephensi* and *A. albimanus* and inoculated into mice.

<table>
<thead>
<tr>
<th>Parasite strain no.</th>
<th>Mouse type</th>
<th>A. stephensi</th>
<th>A. albimanus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co-infection experiment</td>
<td>No. sporozoites</td>
<td>Inoculated (±)</td>
</tr>
<tr>
<td>Lethal</td>
<td>BALB/c</td>
<td>8,000</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>BALB/c</td>
<td>1,000</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>BALB/c</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>BALB/c</td>
<td>1,500</td>
<td>100</td>
</tr>
<tr>
<td>Nonlethal</td>
<td>BALB/c</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>BALB/c</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>BALB/c</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>ICR</td>
<td>10,000</td>
<td>6,000</td>
</tr>
<tr>
<td>5</td>
<td>ICR</td>
<td>24,000</td>
<td>24,000</td>
</tr>
</tbody>
</table>

* The reported numbers of sporozoites were inoculated in each of 2 mice.

TABLE III. The effect of *Anopheles stephensi* and *A. albimanus* salivary gland homogenates on *Plasmodium yoelii* 17XNL sporozoite infectivity.

<table>
<thead>
<tr>
<th>Sporozoite source</th>
<th>Salivary gland homogenate source</th>
<th>Experimental group</th>
<th>No. of sporozoites</th>
<th>Infection outcome (±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. albimanus*</td>
<td>A. stephensi</td>
<td>1</td>
<td>Test†</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ Control‡</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ Control‡</td>
<td>1,000</td>
</tr>
<tr>
<td>A. stephensi A. albimanus</td>
<td>1</td>
<td>Test†</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Control‡</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Test†</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Control‡</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Test†</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Control‡</td>
<td>2,000</td>
<td></td>
</tr>
</tbody>
</table>

* Sporozoites obtained from the selected line of *A. albimanus*.
† Test = *P. yoelii* 17XNL sporozoites from 1 species of mosquito with 50 homogenized glands from the other mosquito species in 20 μl of M199 containing 3% BSA for 1 hr at RT.
‡ + Control = *P. yoelii* 17XNL sporozoites from *A. albimanus* salivary glands incubated for 1 hr at RT in 20 μl of M199 containing 3% BSA.

number of infections (Yoeli, 1973; Killick-Kendrick, 1974a, 1975). Small sample sizes from single cohort infections make it difficult to determine whether any sporozoites in the salivary glands were capable of inducing infections in vertebrate hosts (Wéry, 1968). The results from our study, based on observations from infections using both lethal and nonlethal strains of *P. yoelii* 17X and a selected line of *A. albimanus*, have provided the sporozoite densities necessary to establish the presence of noninfectious sporozoites in *A. albimanus* salivary glands.

Initial studies comparing noninfectious sporozoites from *A. albimanus* with infectious sporozoites were impaired by small numbers of noninfectious sporozoites due to low oocyst prevalences. This limitation was overcome by pooling larvae from oocyst-infected *A. albimanus*, i.e., mass selection, and producing a strain of *P. yoelii*-susceptible *A. albimanus* in 4 generations. Subsequently, noninfectious *P. yoelii* sporozoites from *A. albimanus* were found to be similar to infectious sporozoites from *A. stephensi* salivary glands in both size and ability to produce CS protein. The presence of *P. yoelii* sporozoites in *A. albimanus* salivary glands indicated the sporozoites were alive and capable of gland invasion, but were somehow attenuated in their infectiousness to mice. These studies, although basic, provide a foundation from which further comparisons between infectious and noninfectious sporozoites can be made at the biochemical or molecular level.

The presence of noninfectious *P. yoelii* sporozoites in *A. albimanus* salivary glands also provided an opportunity to pursue what causes these sporozoites to be noninfectious. There are 2 general mechanisms by which *P. yoelii* sporozoites can be rendered noninfectious in *A. albimanus*. One possible mechanism involves the action of some toxic or antagonistic mosquito factor, which renders healthy sporozoites noninfectious (Bafort, 1971). Another mechanism may involve the lack of some substance or metabolite in the mosquito needed to "activate" sporozoites (Bafort, 1971). These mechanisms can influence parasite development in any location throughout the mosquito (Weathersly, 1952, 1975). Preliminary in vitro studies focused on whether salivary gland factors influenced sporozoite infectiousness. The influence of "toxic" factors in *A. albimanus* saliva was addressed by incubating *A. stephensi*-derived sporozoites in *A. albimanus* salivary gland extract. Conversely, the incubation of *A. albimanus*-derived sporozoites in *A. stephensi* salivary gland extract examined the possible restoration of an essential sporozoite "activating" factor that might be absent from *A. albimanus* saliva. Neither approach had any effect on the infectiousness nor noninfectiousness of the respective sporozoites. Whereas these results indicate that the site of action may not be in the salivary glands, the influence of salivary gland enzymes on sporozoite infectivity cannot be completely ruled out.

Differences in the levels of various salivary gland enzymes are beginning to be identified between various anopheline species (Cupp et al., 1994). Apyrase levels are considerably higher in *A. freeborni* (Ribiero et al., 1985) and *A. albimanus* (Cupp et al., 1994) compared with *A. stephensi* (Ribiero et al., 1985). As *P. yoelii* sporozoites from *A. freeborni* salivary glands were infectious while *A. albimanus*-derived sporozoites were not infectious, apyrase does not appear to influence the infectivity of *P. yoelii* sporozoites. However, other salivary enzymes may be involved. *Anopheles albimanus* salivary glands have recently been identified as active sites of salivary peroxidase and catechol oxidase activity (Ribiero and Nussenzveig, 1993). Future studies could evaluate the peroxidase activity levels in *A. stephensi* and *A. freeborni* salivary glands and compare activity levels with *A. albimanus* as a possible means to describe the alteration of *P. yoelii* sporozoite infectiousness.

An alternate site where *P. yoelii* sporozoites could be rendered noninfectious is the mosquito hemolymph (Weathersly, 1975). Plasmoidal parasites are continuously exposed to hemolymph for up to 2 wk in developing oocysts and 1–3 days outside the oocysts, prior to salivary gland invasion. However, whereas early studies identified factors in mosquito hemolymph that are toxic to sporozoites (Weathersly, 1975), no further studies have
characterized the biochemical nature of these toxic factors. Future studies should include species comparisons of anopheline hemolymph as a means to define the site of action where P. yoelii sporozoites are rendered noninfectious in A. albimanus.

Despite the questions that remain from this study concerning where and how P. yoelii sporozoite infectivity is altered in A. albimanus, the isolation of noninfectious P. yoelii sporozoites from A. albimanus salivary glands provides a useful system to begin elucidating the influence of mosquito vectors on the infectiousness of sporozoites.

ACKNOWLEDGMENTS

We thank Donna Long and Thomas Makris for their technical assistance, Robert Brown and Jonathan Davis (University of Maryland, Baltimore, Maryland) for rearing many of the A. albimanus, Yupin Charoenvit (Naval Medical Research Institute, Bethesda, Maryland) for providing the NYS1 monoclonal antibodies, Jim DeMaio for helpful review of this manuscript, and Robert Killick-Kendrick for the valuable information and literature provided. This study was supported by NIH AI-29000.

LITERATURE CITED


