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Summary While malaria transmission varies seasonally, large inter-annual heterogeneity of malaria incidence occurs.

Variability in entomological parameters, biting rates and entomological inoculation rates (EIR) have been

strongly associated with attack rates in children. The goal of this study was to assess the weather’s impact on

weekly biting and EIR in the endemic area of Kisian, Kenya. Entomological data collected by the U.S. Army

from March 1986 through June 1988 at Kisian, Kenya was analysed with concurrent weather data from

nearby Kisumu airport. A soil moisture model of surface-water availability was used to combine multiple

weather parameters with landcover and soil features to improve disease prediction. Modelling soil moisture

substantially improved prediction of biting rates compared to rainfall; soil moisture lagged two weeks

explained up to 45% of An. gambiae biting variability, compared to 8% for raw precipitation. For An.

funestus, soil moisture explained 32% variability, peaking after a 4-week lag. The interspecies difference in

response to soil moisture was significant (P , 0.00001). A satellite normalized differential vegetation index

(NDVI) of the study site yielded a similar correlation (r2 5 0.42 An. gambiae). Modelled soil moisture

accounted for up to 56% variability of An. gambiae EIR, peaking at a lag of six weeks. The relationship

between temperature and An. gambiae biting rates was less robust; maximum temperature r2 5 20.20, and

minimum temperature r2 5 0.12 after lagging one week. Benefits of hydrological modelling are compared to

raw weather parameters and to satellite NDVI. These findings can improve both current malaria risk

assessments and those based on El Niño forecasts or global climate change model projections.
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Introduction

Of all the mosquito-borne diseases, malaria caused by

Plasmodium falciparum remains the most widespread,

affecting over 110 million people and killing 1–2 million

people annually (Knudsen & Slooff 1992). In 1995, 2.1

million malaria fatalities were reported by WHO (WHO

1996). Drug-resistance persists and antimalarial vaccines have

shown limited efficacy (Institute of Medicine 1991; Valero et

al. 1993; Alonso et al. 1994; Nosten et al. 1996). In many

regions where malaria had been almost eliminated, the

disease has returned, sometimes at levels surpassing earlier

prevalence (Institute of Medicine 1991).

The relationship between weather and malaria has been

validated by entomological models (Garrett-Jones 1964;

Reisen & Boreham 1982) as well as by the analysis of long-

term trends in human malaria cases (Swaroop 1949). In

addition to seasonality, there is substantial interannual
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heterogeneity of malaria incidence around the globe

(Fontenille et al. 1997). Extreme alteration of rainfall patterns

associated with El Niño events (when above-average sea

surface temperatures occur in the eastern equatorial Pacific)

(Ropelewski & Halpert 1987) have been recently identified as

one large-scale climatic driving force behind such malaria

variability (Bouma & van der Kaay 1994, 1996; Bouma et al.

1994, 1997).

In addition to linkages between El Niño events and

malaria, recent trends and future projections of global

climate change (Houghton et al. 1996) have highlighted the

need to re-assess the potential impact of climate on many

public health problems, including vector-borne diseases

(Reeves et al. 1994; Lindsay & Birley 1996; Patz et al. 1996).

Malaria has been identified by the World Health

Organization to be the vector-borne disease most sensitive to

long-term environmental change (WHO 1996).

Vector-borne parasites such as Plasmodium are sensitive to

ambient climate conditions because part of the life cycle

occurs inside an invertebrate host (Bradley 1993), and

weather is considered to be the most important cause of

atypically large epidemics in nonendemic areas (Gilles 1993).

In the laboratory, ambient temperature, which can raise or

lower the internal temperature of poikilothermic vectors,

influences the duration of the gonotrophic cycle (Briegel &

Lea 1975), the extrinsic incubation period of the parasites

and vector survival (Boyd 1949). Surface water availability for

mosquito breeding sites has been known to determine

mosquito densities, and in many regions the seasonality of

malaria is attributed to rainfall patterns. Given these

relationships, malaria transmission intensity still remains

difficult to predict.

Beier et al. (1994) showed a strong relationship between

malaria incidence and concomitant entomological

inoculation rate in Kenya. EIR explained 74% of the attack

rates in child cohorts. The human biting rate (HBR) alone

accounted for 68% of the variability. The purpose of our

study was to determine the effects of weather on these

transmission components in the field. Specifically, we

examined the extent to which temperature and precipitation

affect HBR, sporozoite rates and EIR. We used a soil

moisture model to test whether this methodological tool

could improve predictability of biting rates over that based on

raw precipitation data and the satellite normalized-difference

vegetation index (NDVI).

Methods

Study site

Kisian is in western Kenya, 10 km west of Kisumu, located on

the shore of Lake Victoria (Winam Gulf area). The study site

covered 12.4 km2 and included 660 houses with an estimated

human population of 5280. Rainfall averages 1000–1500 mm

annually, with an extended rainy season from March to May

and a brief rainy season from September to November. The

amount and duration of the rainfall varies markedly from

year to year (Beier et al. 1990).

Malaria is holoendemic in this region and transmitted by

An. gambiae sensu strictu, An. arabiensis and An. funestus

(Petrarca et al. 1991). Larval habitats consist of surface pools

and animal hoof prints. Permanent larval habitats, including

papyrus swamps, also occur in proximity to Lake Victoria.

There was no irrigation in Kisian at the time of the mosquito

collections. During the study period, no mosquito control

measures or large-scale prophylactic programmes against

malaria were in effect.

Entomological data

We used entomological data from a previous study (Beier et

al. 1990) collected weekly from March 1986 through June

1988 in preparation for malaria vaccine trials. The species-

specific mosquito datasets were those of An.gambiae s.l. and

An. funestus. We used a data set of human-biting rate (HBR)

that followed all-night, human-biting collection techniques

per WHO protocol (WHO 1975). Briefly, teams of two men

working in each of three houses collected host-seeking

mosquitoes from one another, for 30 min per hour, from

sunset to sunrise one night per week (Beier et al. 1990). HBR

values estimate the number of female Anopheles bites per

person per night. The sporozoite rate (SR) was the

proportion of female mosquitoes containing infective stage

parasites in their salivary glands upon dissection (Beier et al.

1987). SR multiplied by HBR provides the entomological

inoculation rate (EIR) (Beier et al. 1990).

Weather data

Meteorological data from Kisumu Airport, 5 km from the

study site, were obtained from the U.S. National Climatic

Data Center and included hourly temperature, dew point,

and daily precipitation. Maximum and minimum

temperatures came from dedicated daily maximum/minimum

thermometers. Figure 1 shows the time series of minimum

temperature, along with precipitation and HBR datasets.

All statistical analysis of weather and entomological data

was performed using S-Plus Statistical Software (Becker et al.

1988). Univariate regression analysis was applied to identify

weather parameters with the strongest correlation to EIR,

HBR and SR. The Monte Carlo permutation test was applied

to correlation coefficients to test for statistical significance.

Modelling river runoff and soil moisture

A water balance model (WatBal) (Yates 1996) was used to

estimate the weekly soil moisture and river runoff of the Lake

© 1998 Blackwell Science Ltd 819
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Victoria Basin. WatBal models changes in soil moisture by

taking into account precipitation, runoff, soil characteristic,

and actual evapotranspiration, while using potential

evapotranspiration to drive the extraction of water from the

soil moisture (Figure 2).

Evapotranspiration is a function of potential

evapotranspiration and the soil moisture state of the

watershed. Potential evapotranspiration is modelled by using

the Priestly Taylor method (Shuttleworth 1993). This method

was chosen because of its simplicity and the evidence

supporting such an empirical relationship on a regional basis,

which is the case for river basin modelling. Since detailed data

on the local watershed were unavailable, model parameters

were used from a hydrologic study of the Lake Victoria Basin

(Yates & Strzepek 1997). These parameters were combined

with the climate data (temperature, precipitation, relative

humidity, and solar radiation) to model the weekly soil

moisture state and river runoff. A moving average, with a 5%

filter, was used to ‘smooth’ the HBR dataset. Modelled soil

moisture values represent the percentage of maximum

capacity or relative soil moisture (e.g. 0.8 means that soil

moisture is at 80% of full capacity).
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Figure 1 Time series of human biting rates (HBR) of An. funestus and An. gambiae, minimum temperature, and precipitation over the study

period.
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Normalized difference vegetation index (NDVI)

A monthly NDVI was obtained from Advanced Very High

Resolution Radiometry (AVHRR) satellite images, centred

over Kisumu and including our study site. Monthly values of

NDVI are generally more robust than weekly indices. Weekly

NDVI can be problematic due to missing data from cloud

cover, so we regressed monthly NDVI with averaged weekly

HBR.

Results

Entomological inoculation rates (EIR) and sporozoite

rates (SR)

The correlation coefficients for An. gambiae EIR and

maximum and minimum temperatures, respectively, were: r 5

20.22 (P 5 0.01) and 1 0.026 (NS). Neither maximum nor

minimum temperatures statistically correlated with

sporozoite rates (r 5 1 0.15 and 2 0.09 for maximum and

minimum temperatures, respectively). It is possible that the

small temperature variability at Kisumu during the study

period may have limited determination of any correlations

for temperature alone; 75% of minimum temperature values

were between 16 8C and 19 8C, and 90% of maximum

temperatures lay between 28 8C and 32 8C. Though not

reported here, sporozoite rates for An. funestus were

considerably lower than for An. gambiae and temperature

correlations were not statistically significant.

Human-biting rates (HBR)

Since weak correlations were found for EIR and sporozoite

rates, we focused on weather and biting rate relationships,

and found stronger correlations between HBR and maximum

and minimum temperatures for A gambiae. R 5 2 0.36

(P , 0.001) and 1 0.24 (P 5 0.005), respectively. Using log of

HBR slightly improved correlation for maximum temperature

(r 5 2 0.41), as did one week lagging (r 5 2 0.40 and 1 0.35

for maximum and minimum temperatures, respectively).

To study the effect of precipitation on the HBR, we first

regressed the log of HBR on raw precipitation. There was

high variability of the raw precipitation data, and lagged r2,

which peaked at 4 weeks, reached only 0.13 and 0.05 for An.

gambiae and An. funestus, respectively. Next, we applied the

smoothed precipitation for the two anopheline species, and

linear regressions were fitted. The correlation increased for

An. gambiae (r2 5 0.18) and for An. funestus (r2 5 0.12),

indicating some improvement in the relationship between

smoothed precipitation and biting rate at the study site.

Multiple regression including maximum and minimum

temperatures with smoothed precipitation increased the

correlation for both species, but especially for An. gambiae

Table 1).

Applying the hydrological WatBal model, essentially a

more physically based type of precipitation smoothing that

includes temperature and other weather and landcover

parameters, showed improvement in predicting the biting rate

of the two mosquito species. As an intermediate parameter of

modelled soil moisture, river runoff also was examined.
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Regression of log HBR and river runoff (which should closely

reflect smoothed precipitation) appropriately resulted in an r2

of 0.16 for An. gambiae and 0.12 for An. funestus. Unlagged

regression of log HBR vs. modelled soil moisture increased

the r2 value to 0.31 and 0.06, respectively, for the two species.

Lagging the precipitation values enhanced the robustness

of the correlation with HBR. For An. gambiae, the peak soil

moisture correlation occurred after 2 weeks (r2 5 0.45). For

An. funestus, the correlation progressively increased out to 4

weeks lagging (Table 1).

Figure 3 shows the time series of An. gambiae HBR and

the modelled soil moisture of the Victoria Basin with two

weeks lagging. To compare interspecies differences in

response to soil moisture, a t-test was applied to the slopes of

the regression lines of soil moisture vs. the log of HBR for

An. gambiae and An. funestus. The two species’ response to

soil moisture at this study site (Figure 4) proved to be

significantly different (P , 0.00001).

Modelled soil moisture accounted for up to 56% variability

of An. gambiae EIR. Lagged r2 values steadily rose after one

week, peaking at six weeks, then declined at a similar rate

thereafter Table 2). The normalized-difference Vegetation

Index (NDVI) obtained from AVHRR satellite images

correlated with An. gambiae HBR, yielding an r2 of 0.42.

Discussion

While malaria transmission is known to vary seasonally in

areas of high endemicity, large interannual heterogeneity of

malaria incidence also occurs. This variability has been

attributed to entomological components of transmission

(Fontenille et al. 1997). However, year-to-year predictability

of malaria still remains difficult.

Our study used innovative interdisciplinary methods to

analyse this heterogeneity and documents the weather’s

influence on An. gambiae biting rates and EIR, found

previously to account for up to 74% of attack rates in

children (Beier et al. 1994). In particular, modelled soil

Table 1 Coefficients of determination (r2) for the regression of smoothed log human biting rates (HBR) for An. gambiae with local weather

variables and with modelled soil moisture of the Lake Victoria Basin (for both species), lagged from 0 to 4 weeks. A 5% statistical filter was also

applied to precipitation values

No. of weeks Raw Smoothed Precipitation Precipitation Precipitation and Modelled soil moisture

lagged precipitation precipitation and max. temp. and min. temp. max & min temp A. gambiae A. funestus

0 0.03 0.05 0.27 0.32 0.33 0.31 0.06

1 0.05 0.08 0.22 0.20 0.38 0.40 0.15

2 0.08 0.13 0.21 0.29 0.40 0.45 0.22

3 0.11 0.17 0.21 0.34 0.41 0.42 0.27

4 0.13 0.18 0.20 0.38 0.41 0.36 0.32
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moisture correlations found in our study are biologically

plausible, and these results could improve predictions of

malaria transmission based on weather conditions.

Hydrological modelling can incorporate temperature,

precipitation, landcover, soil type and other environmental

factors highly relevant to mosquito ecology.

Our analysis demonstrated the added benefit of

hydrological modelling compared to reliance on conventional

weather parameters often used by infectious disease

scientists. For An. gambiae, the soil moisture model predicted

up to 45% and 56% of the variability of HBR and EIR,

respectively. The peak in correlation between modelled soil

moisture and HBR occurring at 2 weeks is not inconsistent

with larval development times. Likewise, peak correlation for

EIR at 6 weeks is not inconsistent with development time of

sporozoites (approximately 12–14 days) plus mosquito

survival, averaging 3–4 weeks.

Probably the most important malaria vector in Africa, An.

gambiae is known to breed in swamps and temporary

puddles. High soil moisture conditions and puddles can

remain well after precipitation events depending on the

outflow of water from the watershed via runoff and

evapotranspiration. The outflow is a function of watershed

characteristics and potential evapotranspiration (itself a

function of temperature, wind speed, humidity, and solar

radiation). The modelled soil moisture therefore is likely a

better explanatory variable of mosquito breeding sites than

raw weather variables such as temperature and precipitation.

This methodology would be especially useful under

conditions of extreme rainfall variability, such as those driven

by El Niño/La Niña events. In addition, climatologists are

projecting a more extreme hydrologic cycle to accompany

long-term global warming and climate change; hydrologic

modelling for predicting malaria transmission may therefore

become that much more important.

Considering the difference in geographical scales, soil

moisture modelling could likely be expected to explain even

more variability in entomological transmission factors given

local hydrological parameters for a study site. Modelled soil

moisture for the entire Lake Victoria Basin predicted An.

gambiae biting rates slightly better than the combination of

local temperature, precipitation variables and NDVI. These
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Table 2 Coefficients of determination (r2) for the regression of

smoothed log entomological inoculation rates (EIR) for An. gambiae

with modelled soil moisture of the Lake Victoria Basin, lagged from

0 to 12 weeks

No. of weeks lagged Modelled soil moisture r2

0 0.24

1 0.14

2 0.24

3 0.34

4 0.45

5 0.53

6 0.56

7 0.55

8 0.50

9 0.42

10 0.32

11 0.21

12 0.13
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methods may be particularly useful in regions of Africa where

the malaria incidence is highly variable, and where predictive

models can optimize control measures.

Diverse topography and soil composition worldwide

require better methods for determining surface water

availability for mosquito breeding. For example, the effect of

rainfall over steep rocky terrain would substantially differ

from that of a flat silty area. Soil moisture modelling can

account for landuse changes, such as draining of swamps or

water development projects for agriculture. Raw or smoothed

precipitation data can not account for such changes that

could substantially influence mosquito ecology and

subsequent malaria transmission. Studies in multiple sites

would further test the utility of this type of modelling for use

in malaria prediction.

This study also showed statistically significant interspecies

differences in response to soil moisture. An. gambiae and An.

funestus are known to have different ecological niches; An.

gambiae breeds in surplus surface water, whereas An.

funestus breeds in stagnant water at the edge of rivers (Evans

& Garnham 1936). One would therefore expect An. gambiae

to be more sensitive to soil moisture values and An. funestus

populations to be less so, excepting very wet conditions that

can wash away eggs and larvae from stream edges (Oliver &

Grobler 1992). For example, in Senegal An. funestus

abundance was found to peak during the dry season

(Fontenille et al. 1997). Furthermore, the change in

correlation shown by the different lagging profiles of the two

species (maximum strength at 2 weeks for An. gambiae and

at 4 weeks or longer for An. funestus) is consistent with larval

development rates observed in the laboratory (J. Beier,

unpublished data).

Soil moisture modelling and satellite NDVI nearly equally

predicted HBR. Remote sensing has proved useful in the

prediction of disease distributions and abundance when their

distribution in space and time depends largely on climate and

landscape features (Washino & Wood 1994; Hay et al. 1997,

1998a). Plant composition and activity in a region reflects and

can modify local temperature, precipitation and humidity.

Meterological satellite sensors can measure such climate and

vegetation variables directly (Hay et al. 1996) and the NDVI

has been strongly related to the incidence of severe malaria in

three sites in Kenya (Hay et al. 1998b) and in The Gambia

(Thompson et al. 1996; Thompson et al. 1997).

Hydrological modelling has some advantages over NDVI,

however, in the application to malaria predictions. Firstly,

while NDVI is good for observed historical analysis, it cannot

be used easily for long-term modelled forecasts, such as

general circulation model simulations of climate change.

Secondly, daily and weekly modelled soil moisture can be

calculated, whereas satellite NDVI is most robust at a

monthly timescale and cannot capture weekly variability in

© 1998 Blackwell Science Ltd824

biting rates. The most critical periods to assess surface water

for mosquito breeding sites often occur during the rainy

season; clouds during these periods can impede acquisition of

uninterrupted longitudinal data. A soil moisture model does

not have this limitation. Finally, hydrological modelling is

relatively inexpensive and may be more practical for use by

resident public health scientists who have access to local

streamflow and weather data in areas with disease risk.

NDVI has utility in assessing disease risk over remote

regions where meteorological data may be unavailable. In

such locations, satellite remote sensing can be utilized to

determine soil moisture (Washino & Wood 1994); vegetative

index and surface temperatures provided by satellite can be

used to estimate evapotranspiration. Diurnal temperature

difference obtained from satellites has been used as a

surrogate for soil moisture to predict prevalence of

bancroftian filariasis in the Nile delta (Thompson et al.

1996). Remote sensing has been used to predict malaria

transmission in several endemic regions (Beck et al. 1997).

Warmer sea surface temperatures and variable rainfall

patterns accompanying El Niño events also have been

correlated with malaria epidemics in many regions of the

world (Bouma & van der Kaay 1996), and predictable

temporal cycles of malaria incidence have resulted. For

example, malaria in Surinam and Venezuela recurred so

regularly (on a 5-year cycle) that the term ‘paraquinquennial’

was coined (Gabaldon 1949). Recent findings by Bouma et al.

(1997) show such epidemic periodicity to be linked to the

cyclical phenomenon of El Niño. This further demonstrates

the strong relationship between weather variability and

heterogeneity of malaria transmission, and underscores the

need for more in-depth studies of climatic factors influencing

malaria.

In our study, the strength of the correlation between soil

moisture and HBR dropped after the most extreme dry

period during the study, and HBR was slow to recover (Figure

4). Possible changes in reporting accuracy were looked for,

but none were found. When HBR finally did increase, it

sharply rose to the highest biting rate for the entire study

period. This finding is consistent with past observations of

large epidemics following on the heels of droughts (Gilles

1993). Given the projection of ‘more extremes in the

hydrologic cycle’ as a result of global warming (Karl et al.

1995), our findings are especially relevant to the assessment of

malaria risk under such conditions. Shorter-term El Niño

events offer a natural experiment in extreme climate

variability to apply our methods for gaining insight into such

long-range climate scenarios.

In the laboratory, ookinete development shortens as

temperatures increase from 21 8C to 27 8C, whereas higher

temperatures (30 8C to 32 8C) interfere with the

developmental processes (Noden et al. 1995). Unfortunately,
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there was little temperature variability in Kisian and so

temperature/SR analysis was limited. In addition, mosquitoes

seek microclimates most suitable for their survival (Service

1993). This species-specific natural behaviour may require

greater variability in temperatures to see any relationship

between SR and ambient temperatures in the field. In African

highland areas, temperatures fluctuate more widely. In the

typically nonendemic highlands of Kenya (Garnham 1948),

Rwanda (Loevinsohn 1994), and Zimbabwe (Freeman &

Bradley 1996) increases in ambient temperature and rainfall

have been linked to malaria epidemics. Also in Zimbabwe,

summer/fall temperatures partially determine the severity of

malaria in the following rainy season from December through

March (Freeman & Bradley 1996). In the highlands of

Ethiopia, the increase in falciparum malaria has strongly

correlated with a steady rise in minimum temperatures over a

25-year period (Tulu et al. unpublished observation), the

study controlled for drug-resistance and population

migration. Mathematical models show malaria vectorial

capacity increasing, as global temperatures rise from the

accumulation of greenhouse gases in the atmosphere

(Martens et al. 1995; Martin & Lefebvre 1995; Matsuoka &

Kai 1995; Bryan et al. 1996; Jetten et al. 1996).

Conclusion

The importance of further understanding climate’s impact on

malaria comes from recent communications by climatologists

that the global climate is projected to change substantially

over the coming century (Houghton et al. 1996). The methods

used in our study should improve the assessment of current

and past trends in malaria transmission intensity and

geographical distribution. Use of physical-based soil moisture

models can enhance predictive modelling of malaria,

especially considering how different anopheline species

respond to rainfall. Also, landuse and landcover subtleties at

the local scale can readily be integrated into the models. The

predictive power gained from hydrological modelling can

ultimately help improve the risk assessment of malaria under

near-term weather fluctuations, as well as long-term climate

change scenarios.
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