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ABSTRACT

Two computer programs are developed for the finite

element analysis of nonlinear elasto-plastic problems

using i 1 1 The
first computer program predicts initiation and prope=
gation of yielding, and the complete load-displacement
history of the structure up to failure due to excessive

yielding. The second computer program is an extension of

the firat ome, and p initiation and of
yielding, ecrack initiavion, stable and unstable crack
growth, ultimate fracture failure load and the complete
lead-displacement history of the structure up to ultimate
fracture failure. The Prandtl-Reuss incremental plasti-
city equations are used with the von Mises yield criter-
fon in the analytical formulations describing the be-
havier in the plastic range. Small displacement theory
iz considered to be valid.

In the first computer program a small assused load
increment is applied and the strain and stress components
are computed for each element. These are used to ccegute
the load fncrement reguired to cause yielding of the most
stressed elastic element, while the previcusly yielded



elements move along the nonlinear portion of the unisxial
stress-strain curve of the material based on isotropic
hardening plasticity model. Once an clement yields, it's
elasto-plasticity macrix is used to formulate it's new
stiffpess matrix. Thus, the analysis is repeated, in
cycles, with the application of incremental load in each
lcad cycle and the computation of the updated system
stiffness matrix which depends on the state of stres

3
and strain of the yielded elements corresponding to the
leading acting. The analysis is continued until the in-
eremental plastic strain becomes negative for any yielded
slement, and then the program execution is terminated and
the final total load computed is defined as the failure
load of the systes,

In the second computer program the incremental

elasto-plastic analysis is carried out until an element

fractures. fore application of any further external

load, the internal enersy of the fractured element is re-

di to the system by an
“element nodal load release” method developed in this
study. If another elesent fractures during the energy
redistributicn process of a fractured element, then un-
stable crack growth is said to occur. The total load at
this stage is reported as the ultimate fracture failure

load and the program execution is verminated.

A test Venotched tension specimen is considered



mumerical example for verification of the first computer
progran and a center pre-cracked rectangular panel tem—
sion is as a ical example for

verification of the second computer program. The results
predicted by the two computer programs compare well with
the results reported in the literature for similar numer-

ical exampl
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CHAPTER 1
INTRODUCTION

1.1 GEMERAL

The demands imposed on today's design of structural
components often extend to include plastic analysis &n
order to ensure their safety, reliability, and the most
efficient use of the material. Alsc, defects in the

manufacturing proc

or use over an extended pericd of
time often lead to crack initiavion amd propagation when
loads are applied, thus reducing the load carrying capa-
city of the and failure.

The study of fracture mechanics is of critical importance
in the design of aircraft, nuclear power plants, and
drilling rigs, etc. Many theories have been developed to

cbtain better solutions for thess problems, The finite
element method is a computer oriented tool for amalysis,

which has enhanced research in the &

of plastic ama-
lysis and fracture mechanics, With easy access to more
sophisticated computatiomal devices, more extensive
applications are develeping in these areas. The present

study is an attempt to apply the finite elesent method to



lysis of elasto-plastiec £ hanics prob-

using an incremental plasticity forsulation.

1.3 LITERATURE REVIEW

1.2.1 Plastic Analysis
one of the most commonly used methods in plastic

analysis is the incremental flow theory of plasticity, in
which the yielding of the material is described by the
following: (i) a work-hardening model, (ii) a yield sur-
face, and (iii) a flow law. The carliest model used is
the isotropic hardening model proposed by Hill [12)°,
which assumes that equal hardening occurs in  all
directions. This model will be depicted in the stress
space as expansion (for increasing loads) of initially
congruent yield surfaces about their common origin. This
model gives reascnably good results for monmotonically in-
creasing loads but does not account for the Bauschinger
effect. To overcome this difficulty, Prager [29] sug-
gested the kinematic hardening model, which was later
modified by Zeigler [34]. Prager [29] cossidered a
single yield surface and attespted to represent strain
hardening by the rigid body translatiom of the yield sur-
face in the stress space. The translation iz assumed

nmormal to the yield surface and in the direction of the

* wusber in [] refers to nusber in




incremental plastic strain vector. Zedgler [34] ahewed
that Prager’s model ir not invariant with respect te the
reduction in dimensions in the stress space, i.e., when

one or more stress vanish. He this

by assuming that the translation of the yield surface is
in the direceiom of the vector joining the stress point
on the yleld surface to the center of the yield surface.
Moz [25,26] combined both the isotropic and the
kinematic hardesing medels, In this medel the uniaxial

stres

strain curve of the material is represented by a
nunber of linear segments and each steess poiRt in this
idealized curve is represented by a yield surface in the
molei-axial stress space, Im this model hardening is
represented by the sisultanesus expansion and translation
of the yield surfaces,

The fourth medel suggested for plasticity probless
is the mechanical sublayer model proposed origimally by
Duwez |11] and developed in detail by Iwan [16]. In this
model, again the uniaxial stress-strain curve of the
material is idealized by linear segments and the material
behavior is so modeled such that it is represented by a
linear elastic elements conanected in  parallel  to

perfectly plastic elements with different yield stress

The areas and values of the yield stresses of the layered

wlements are so chosen that they predict the input

uniaxial str strain curve.




Dafalias and Popov [9] have propesed am alternative
but conceptually similar model to that proposed by Mroz
[25,26]. Instead of defining a series of yield surfaces,
they have defined only two surfaces: a bounding or lim-
iting surface and a losding surface. The paramsters
required te describe the plastic pro=
are obtained by defining expressions thar, among

other factors, depend on these two surfaces. As a Tesult

the model is considerably simplified as compared to the
uror [25,26) medel.

The i ic and

models have been tested by varicus researchers, includ-

ing, Marcal and King [23]), Yamada et al. [32), Armen et

al, [1], Nayak and Zeinkiwicz [28) and Barsoum [2].
Marcal and King [23] used the tangent-modulus

b for ehe of ol plasti b1 by

the finite element method, For the stiffness analysis in
their incremental load approach, they used partial stiff-

ness which were by pareially aif-
i 1 Lkl

in ome of the three dimensions. They umed that the

incremental strain components for the next load increment
are equal to the incrementsl strain components obtained
for the current load level as & first guess if the same
load increment is applied. Otherwise, they have sug-

gested to scale thes based on the difference between the



current and the next load increment values taken. The
strain increments for the next load cycle are nesded to
compute the mean partial stiffness coefficients. Thus,

in this approach the total load is  divided inte

incremental load steps, and incremental elasto-plastic
analysis ir each successive load step is conducted to
compute the nedal displacesents and element stresses
until the full (kmewn) load level is achieved. No
failure criterion is suggested in this work to stop the
analysis at any time,

Yamada et al. [32], made medifications in the work
done by Mareal and King (23] so as to cose up with o
analytical technigque in which the incremental load is so
computed that the most stressed elastic elesent ylelds,
while the previcusly yielded elements move along the nom-
lirear [plastic] portion of the uniaxial stress-strain
curve based on an isotropic hardening plasticity flow
model. They used the Prandtl-Reuss equation for relating

the plastic strain increments to the deviatoric strain

components and the von Mises yleld criterion as the

failure law in the £ Llat of the P i

material law to be used to march aleng the monlisear part
of the uniaxial stress-strain curve of the material.

They have presented explicit expressions for the elasto-
eP,
1.

plastic material matrix, | for a general three-

dimensional probles and for a plane stress problem. A



small

umed load increment is applied and incremsstal
strain and stred

components of esch element of the
finite elesent mesh are computed. These are used to
compute the incremental effective stress of each clement,
which in turn is used to find the most stressed elastic
element. Then a load scaling factor is computed such
that Lf the

sumed incremental load is multiplied by
this scaling factor the most seressed slastic element
will yield, Then the slement stiffness matsix of the
yielded elemert is changed using the elaste-plastic
material law, i.e., using the elasto-plastic material
mateix [0%F). The scaling factor is also used te sulti-
Ply the ineremental strain and stress compoments computed
for the assumed incresental load and the results are
added to the strain and stress components computed at the
end of the previess lead cycle, to yield the current
total strain and stress cosponents of each elesent. In
this sanner, ome elesent at & tise is made to yield and
the smalysis proceeds, Failure is said to occur when the
incremental plastic strain value, computed at the end of

the present load cycle, becomes negative. This basically

that yielding has d and the
structure does not have sufficient stiffness left to
resist any further increase in the losding. The load,
when such a situation occurs, has been termed by Yamada
et al. [32], as the 'collapse’ load. They have reported



results for 1y in ing loads and

for materials which exhibit a well defined yield plateau.

Armen et al. [1], applied Zeigler's [34] model for
the analysis of structures subjected to cyelic loads
causing stress reversal into the plasticity range. They
developed an analysis procedure which is capable of
treating materials whose behavior can be categorized as
elasto-plastic, limear, nonlinear strain hardening or
limited strain hardering.

The mechanical sublayer model has been implemented
by Bayak and Zeinkiwic: [28] and they have found thar i
predicts hysteresis loops better than the hardening mod-
els suggested by Prager [29] and Zeigler [34].

Barsoun [2] applied FPrager's kinematic hardening

rule for the of the el plasti lysis of
pressure vessels subjected to cyclic, sechanical and
thermal loading.

1.2.2 Fracture Analysis

The study of fracture mechanics problema can be
divided into two brosd groups. First, it may be termed
&8 the microscopic approach which deals with only local-
ized behavior in certain selected most stressed regions,
and the second may be tersed as the macroscopic approach

which deals with the effect of fracture growth on the

load carrying capacity of the total structural system.



In the microscopic studies only certain regicns of
the structural systes are considered to determine crack
growth in the structure. The regions are selected based
on the value of & factor called as stress intensity fac-
tor. This factor depands on the loading and the geometry
of both the crack and the bedy, It is defined in terms
of the stress distribution near the crack tip and i
genarally denoted

Ey, for mode 1 [(opening sode) frace
ture. By definition, the crack growth is supposed to

secur when
By = Be .

where Ky. is & property of the material and does not de-
perd on the gecmetry of the body or crack. Im Eq. (1.1),
Bpo is defined as the critical stress-intensity factor
under conditions of plastic strain for slow loading and
linear elastic behavier [30). The value of Ky, is ex-
perimentally determined for a material.. Other parameters
considering the plastic deformations near the crack tip
include an energy line-integral, called the J-imtegral,
which is an average measure of the elasto-plastic stress-
strain field ahesd of a crack [30]: and the crack cpening
displacement (COD], which is & measure of the pre=-
fracture deforsation at the tip of a sharp crack under

conditions of inel.

tic behavior [30). A crack propaga-

ticn is assumed to occur wher J attains a certain value,



Jygr vhich can be given in terms of K., Yourg's modulus
of elasticity, E, and Poissen's ratio, v, as [20)

2
Jg = 1 ¥ i1.2)

Concerning COD, it is assumed that the crack imstability
oocurs when the computed value of COD reaches a critical
value, dencted as &, and given by [30]
]
3
ic
-k 1.3}

¥
¥

where r, is the yield stress of the material.
The finite element method has been applied by vari-

archers for computations of the stress intensity

factor and other related paramsters for elasto-plastic
problems. Lynn et al. [22), used quadratic iscparametric
elements for the determination of the stress singulariey
near the crack tip., M

in et al. [14], simulated the
singularity in the stress field using the finite element
method, The crack tip was modeled using special crack
tip finite elements. They have been reported that the
concepts presented in their study cannct be easily ex=
terded te three-dimensional cases without considering
additional parameters.

Karabin and Sweldon [19], used the finite element
method to determine path indeperdence of the J- integral



using a model which employs a variable singularity at the
crack tip that keeps track of changes in the material re-
sponse during the loading proce

. They concluded twe
zeasons for the path independence of J, i.e., non-
proportionality of stress field local to the crack tip
and relative resharpening of the crack in a manner pecu-
liar to the overall geometry. Dodds et al. [10] carried
eut analytical studies using the finite elesent method to
predict J- integral values in single-edge-notch tensile
panels. They studied the effects of pear-tip-stiffness
on the results for elastic and fully plastic response at
the predicted limic loads.

Numerous other researches have besn reported in the
azea of numerical modeling to predict the behavior mear
the crack tip both under momotonic and cyelic loads.
Most of these studies irvolve comparison of numerical
results with experimental observations. A large volume
of this literature has been published in the recent past.
But, since this study does not deal solely with this ares
of research, sc these works have not been reviewsd here.

In the macroscopic approsch the structural system is
analyred as a whole to predict the load-displacement his-
tory and the ultimate fracture failure load. GSome per-
tinent references on the application of the finite

welement method for the elasto-plastic analysis of

fracture probl are in the sub-




sequent paragraphs.

Miller et al. [24] performed an incremental elasto-
plastic analysis of a center pre-cracked rectangular
pamel tension specimen subjected to & monotonically
increasing applied stress. They used a tangent stiffness
formulation for each load step. The finite element

modeling of triangular
elements, The wven Mises yield ecriterion and Prandtl-
Rew:

i were used for
the solution of the nonlinear plasticity problems,
Whenever any crack tip element fractures the crack tip
needs to be extended. In the method suggested by them,
the crack tip node, which would previcusly be constrained
in the direction perpendicular to the crackline, is re-
leased and the crack tip is advanced to the next node on
the crack line. A nodal release method is applied to
redistribute the energy of the released node. This is

done in two ways

In cone sethod, the esesgy of the
released node is di;

ipated to the system in cne step,
and in the other methsd, this process is done in ten
equal steps. The ultisate failure stress for both of the
sbove methods are sempared to the experimental results,
which were alsc conducted by them. The ultimste failure
strass found by the first method was 28 kel and by the
#econd method 30 kai

compared to the test pamel fail-
ure stress 24 ksi. It is concluded that the discrepancy



12z

between the experimental and analytical results may be
attributed to the thickness effect of the test panel.
Belie (3] developed a finite element program to

selve 1 el plastic fracture
problems for the prediction of ultimate fracture failure
loads. Only plane stress conditions and uniaxial loading
were considersd in the anslysis. The nonlinear uniaxial
material stress-strain curve was divided inte varicus

Lim

£ segments, with the sodulus of elasticity and the
Poissen®s ratio defined for each segment in terms of the
values of the stresses and strains at the end points of
the segment. The equaticn suggested by Bere ee al, [4],
and Hadai [27] was used to compute the Polsson's retio.
The values of modulus of elasticity and the Poissen's
ratic are updated for an element each time it enters a
new segment. When an element fractures, the energy of
the fractured element is redistributed to the remaining
unfractured system by a method which is referred to as
“zero-modulus-unload-reload® method. In this method the
structure is artificially unloaded following the elastic
Tesponse of the unfractured specimen. The fractured
element is then made imert by setting its modulus of
slasticity equal te zerc and Poisson's ratio equal to
©,5. The structure is then reloaded back to its original
lead level. Further load is applied after reloading of
i crack growth is assumed




to ocour if another elesment fractures before the full
load level is achieved during the reloading phase of
distributing the ermergy of the element. If unstable
crack growth occurs then the structure is considered to
have collapsed and the correspording load level is ze-
ferred to as the ultimate fracture failure load. Belie
concluded that a very fine mesh is usually needed near
the crack tip, as well as, along the expected crack path,

in order to obtain stable crack growth. He used the

trianqular elements
and a1l the mesh layout was manually prepared.

Iranmanesh [15], developed a finite element fracture
program using an automated mesh generator and the “zerc-
modulus-unload-reload® method to predict ultimate frac-
ture failure load and the load-displacement history. A
library of dif

srent two-dimensional elements was used,
including three-noded triangular elements and feur- apd
eight-noded iscparametric elements. The mesh processor
program was able to generate these elements as desired by
the user. He used the same approach as Belie (3] to
approximate the nonlinear uniaxial material stress-strain
curve and to rediseribute the energy of the fractured

slement (i » the zerc-modulus-unload=reload method).

The program had the option so that both plame stress and
plane strain problems could be asalyzed. Both von Mises

and St. Verant yield criteria were used to determine the



element yielding. It was cbserved that hoeh yisld eri-
teria giveabout similar results for metallic struictures.
It was also concluded that the yield pattern is very much
dependent on the type of mesh used. A finer mesh gives
better results than a eruder one, especially if the mesh
in the higher stress regiens consists of very fine
elements. Considering the use of the different types of
two-dimensional elements, it was concluded that higher
order elements give better results, but the computer time
also increases significantly. The four-moded isopara=
metric quadrilateral element is suggested to be the best
considering both accuracy and computational cests,

Humar [20] applied the concepts presented by Belie

131 ana 1151 to problems,
The eig d element by Levy
121) was used to model an elasto-plastic structural

To represent the nonlinear uniaxial material

train curve, two types of piece-wise linear
approximations were presented using the tangent modulus
ard the secant modulus concepts. He had the cption te
use von Mises and $t. Venant yield theories both in terms
of stress computations and strain computations. The

thres-dimensicnal input mesh was prepared manually. It

was found that the results of a crude three-dimensional
mesh cempares very well to the results frem a very fine
problem. It is

twe-disensfcnal mesh for a plane str



Teported that a three-dimensiomal finite elesent mesh
using about 100 times larger elements than the
two-dimensicnal finite element mesh gives the same degree
of accuracy for the results.

Shammaa [31] used the concepts presented by Belie
[3) amd Iranmaresh [15] to develop a computer progras
which has an autemated logic to refine the mesh gradually

as one advances aleng the uniaxial stress-strain curve of

the material in the plastic region. The input mesh con-
sisted of trlangal

elements. The points on  the

curve, which were used to desmarcate these segments, are
called "yisld points®. A comprehensive pesh refinesent
scheme is included which refines the currest sesh in the
regions of high stress concentratien. The refinesent is
done based on effective stre:

of the element compared to
the stress at the corresponding yield poimes and the
minimum ares specified at each of the yield points. To
confine the mesh refinement locally, special five-noded
triangular elements are developed, which engulf the re-
fined regions. The two extra nodes, which are created on
the two adjacent sides to the refined elements, are con-
sidered to be the average of the original nodes, to avoid

any incompatibility. Options for both von Mi and St.

Venant yield criteria are used to predict yielding of
elements. He concluded that the autcmated mesh

£ine=



ment significantly improves the results. In particular,
the ultimate fracture fail load predicted is very
accurate. Regarding the size of the elements he cbserved
that as the ares is decreased, the results converge
towards the accurate solution. But after a certain
limit, when the areas are smaller, the solution mo longer

converges becaw

ef significant round-off errors that
ooour during the selvieg of & very large number of limear
simaltaneous equaticns to obtain the incremental dis-

placements during each lead ineresent.

1.3 OBSERVATIONE

From the 1 review in
1.1.1 and 1.1.2 the following pertirent observaticns are
summarized.
(1} The isctropic hardening mocdel sesns to give
good results for structural systems subjected

to only monotonically increasing loads and

plastic Yamada et al.
[32], have - h
which can be conveniently automated and which

predicts the incremental load needed to yield

the most stressed elastic element, one at a

time, whereas, the yielded (i.e., plastic) ele

ment move along the monlinear part of the uni-

axial stress-strain curve using the lsotropic
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hardening incremental plasticity model. This
method could be extended to analyze fracture
problems alse by simply redefining the mode of
failure, which would ba different tham that
suggested by Yamada et al. [32].

Hiller et al. [24), have presented a methed to

the of a p struc-
tural system using the Prandel-Reuss Aincre-
mental 1 the

ven Mises yield criterion, and an isotropic
work hardening model, To march along the non-

linear portion of the uniaxial stress-strain

curve, a tangential stiffn approach is used

with a P

g scheme
in each incremental load step. When the str

at the node of the crack tip exceeds the
material fracture stress then that node is com-
sidered te be fractured. In this manner the
erack tip is extended. Before the next load
increment is applied and the mew cracked nmode
is treated

fres node for further analysis,

it's reaction is put an equal and epposite

load on the system and a new stress analysis is
pecforned. The new state of stresses of the
elements are then taken as the initial stresses
for the next load increment. In this manner



the energy of the fractured node is redistri-
buted into the unfractured system, The main
drawback of this approach, in which fracturing

of a node is considered,

that the crack path
is po

fixed, which may not be correct for the
problem analyzed, and, above all, may not be
possible to be pre-determined for problems with
complicated geemetry and loadirg, This probles
can be overcome if the fracturing of an element
is considered instead of fracturing of a node.
©f course, the premise being that the areas of
the elements in the yield zone, which has an
effective stress value close to the fracture
stress value for the material, are of a reason-
ably small value in the finite element mesh
used for the problem. Belie [3), has presented
& technique in which fracturing of an element
is considered. The nenlinear portion of the
uni=axial stress-strain curve of the material
is divided into linear segments and each seg-
ment 4is characterized by its own elastic
Young's modulus of elasticity and Poisson's
ratic. The element in cach segment is con=
sidered as an elastic element. In thiz ap-
proach, an incremental load factor is #5 com—
puted such that all the elements in a particu-



lar linear segment move along the stre

~strain
curve to an effective stress value oqual to the
yield stress value of the end-point of that
segment. Thus, plastic deformation theory is
mot used in this formulation, but the element
stiffness matrices are recomputed depending on
which linear segment the elesent lies in. So
in order to cbtain accurate and realistic re-
sults for the yield patterns, the rate of
yielding, and the load-displacement history up
to fracture or failure, it is important to
consider a large number of segments, 8o that
the linearized stress-strain curve is close o
the actual uniaxial stress-strain curve. 8o,
one problem that one would always be eenfrented
with this approach would be to decide on how
many segments in the stress-strain curve one
should consider to model the behavier accurate-
1y. This is of special concern since fracture
analysis for even simple problems is a costly
process even on todsy's fast computers.

The unloading and rseloading method used by
Bolie [3], and later by Iranmanesh [15), Kumar
[20] and Shasman [31], is sctually an arcifi-
cial unloading, since the actual specimen never
experiences this. Also, it has been reported



by Kumar [20] and Shammaa [31], that after com-
plete unloading of the fractured element still
sore small residual compr

ive stress remains
in that element, which was igrored, This
effect would asccumulate if in any problem a

large nusber of elements fracture suce

ively
durirg esch stable crack growth cycle. This
may cause localized buckling phenomencn to
occur. Also, in this approach, it has been
reported [3, 15, 20, 31) that a very fine mesh
near the crack tip is needed in order to obtain
stable crack growth. For the pre-cracked
rectangular panel tersien specimen previcusly
analyzed by Miller [24], Delie [3] h

reported
that stable crack growth prediction wi

cbtained for a minimum crack tip area of 0.01

#qg. in., whereas, Kumar [20] and Shamsaa [J1)

have reported that they did not obtain any

stable crack growth for even a sminimum crack

tip area of 0.001 sq. in. for the same problem.

From the literature review, thus, it is concluded
that there is a need to develop a better analysis proce-
dure to predict crack initiation, its growth and behavier
till ultimate fracture failure of a structural systes,

The formulation should be based on the well tablished

L 1 so that the actual




21

terial uniaxial in curve is followed during

the analysis. A more raticrale procedure is needed to be
encorporated to redistribute the snergy of the fractured
zone into the remaining unfractured pare, befere the
fractured zone is removed from the analysis and the ex-

ternal loading acting on the system is increased further.

1.4 OBJECTIVES AND SCOPE OF THE PRESENT STUDY

The primary objective of this study is to develop an
analytical procedure to predict fracture initiation and
its growth till wltisate fracture fallure of a two-
dimensional structure occurs, if it is subjected to

menotonically increasing loading which produces plastic

deformations. To model the plastic behavior, it is

to use an i model with the ven

Mises yield eriterion, and the solusien algoritha
suggested by Yamada et al. [32] to mareh aleng the uni-
axial stress-strain curve of the =aterial. The two-

d. 1 domain is 44 using finite element

theory amd the computer program is developed for only

triangul 1 It is assumed that all

deformations are such that small displacement theory is
valid. Alsc, it is assumed that no local buckling and
closure of cracks cccur due to compression. If the
sffective stress of an elsment, computed using the von
Mises yield criterion, becomes equal to or exceeds the
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fracture str

ebtained from the uniaxial test of the
material, then that element is considered to have frac-
tured. At this stage, the nodal loads of the fractured
element are computed, which are later used to redistribe
ute the internal energy of the fractured element into the
resaining unfractured systes. Then this element is made
inert by taking its modulus of elasticity, E, equal to
zerc and Poisson's ratio, v, equal to 0.5 im computation
©f its element stiffness matrix, With ne external loads
acting and keeping the state of stresses of the remaining
unfractured elements, as computed before, the negative of
the nodal loads, computed for the fractured slement are
proposed to be iteratively applied in increments to re-
distribute the internal energy of the fractured slement
into the remaining unfractured plastic or elastic
elements. The stresses in the elements in the vicimity
of the fractured element will thus increamse. This
procedure, developed in this study, will be called as
"element nodal load release” methed. It is completely
different than the “zerc-modulus-unload-relosd” method

suggeated by Belie [3] and the “nodal release” method
suggested by Miller [24]). Curing the process of re-
distributing the internal energy of the fractured ele-
ment, it may be found that (based on the numerical re-
sults predicted), some plastic elements get artificially

unloaded. Thus, indicating that elastic stiffness matrix
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should be used for such elements. It is proposed to
iteratively model such a behavicr, if it occurs, and make

sure that element stresses do not decrease during the

energy re-distribution phas If during any energy re

distribution phase, before the fractured elemest's full
nedal loads have besn applied, another element fractures,
then unstable erack growth would be said to have cccurred
and the analysis is proposed to be terminated. The tozal
fracture load just prior to this phencmencn would be
defined as the collapse or the ultimate fracture failure
load of the structus

To achiove the aforementioned cbjectives, the study
is divided intc the following two tasks:

1. |Task I: Develop a plasticity computer program fol=

lowing the algoriths suggested by Yamada et al. [32]
and possessing the following capabilicies:

(i) Locate the initiation of yielding and the
initial yield load.

(1i) Predict the yielding patterns of the
structural system.

{iii) Predict the failure load based on the
failure criterion suggested by Yamsds et
al. [32], in which failure is said to take
place when excessive yielding occurs.

[iv} Predict the load-displacement history of

the strocture up to failure.



Verify and validate this computer program by
comparing the results predicted for the V-notched
tension specimen analyzed by Yamads et al. [32].
Since only three-noded triangular elements are
proposed to be used in this study for fracture probe

lems, & very fine finite element mesh will be needed

in the region next to the tip of the crask to obtain
accurate results. Also, it is well known that it is
advantagesus to use equilateral trisngular elements
to obtain faster convergence with mesh refinement.
S0, the plasticity computer program developed would
be wverified for the V-potched tension specimen
example problem with regard to the following: (i)
convergence of results dus to mesh refinement; and
1£4) effect on resules predicted by changing the
shape and the size of the elements in the expected
yielded region,

Task II: Modify the plasticity computer program,

developed in Task I, to possess the following addi-
tional capabilities:
1] Locate the crack initistion and predict
the path of the crack propagation.
(ii) Predict stable and unstable crack growth.
{1ii) Predict the load-displacement history up

to colla or fracture failure of the

structure. It should be noted that the



mode of failure here is defined different-
1y than that defined by Yamsda st al.
[32).

{iv) Directly predict the ultimate fracture
failure load and  the corresponding
deflection of structures comprised of
wlasto-plastic materials,

Verify and wvalidate the computer program by
comparing the results predicted for the center pre-
crack rectangular panel tension specimen analyzed by
uiller (24), Belie [3), Xumar [20] and Shazmsa [31].
Experimental results for this example problem have
been reported by Miller [24] for only the ultimate

fracture failure load.



CHAPTER 11

AND MODELING TS USED

2.1 INTRODUCTI
In any structural mechanics problem one is generally

i in the of stresses due to

external loads acting on the structure or due to secon-

dary effeces such as  temperature change, prestrain,

and ary displ . The
stress variation can be computed if the variation of
strain in the continuas and the material law describing
the stress-strain relationship for the material used are
known, The strain variation can be computed 1f the vari-

ation of or along the

global x-, y- and z-axis are known, Thus, the problem

reduces to ef the at

any peint of the continuus. These can be computed by

selving the 1 for the

prebles so as to satisfy a given set of boundary com-
ditions. If the geometry of the structure and its bound=
ary conditions are complex, then it is ofter impassible
te find clesed-form sclueions of the governing

2%



differential equations for the problem. In such a situa-
tion cne has to adopt a numerical solution procedure such
as the finite difference or the finite element method to
obtain the variation of displacements. I this study the
finite element method is used since it has the flexibil-
ity of sccommodating varistion of material properties in
the continuum, it can conveniently solve problems with
irregular shaped boundaries, and, above all, it can be
automated.

The first and the most important step in any finite
element analysis is te discretize the structural comtinu-
um. To achieve this the structure is divided inte a
finite number of elements of varicus shapes (e.g., trian-
gles, quadrilaterals, ezc.), connected at discrete points
called "nodes®™. The cheiew of the shape and the type of
elements (i.e., the number of nodes it has) depends on
the shaps or geometry of the given structural continuum
and also on the degree-of-accuracy desired. For planar

bl these ol ts rarge from th ded trisngular
shaped elements to four= and eight- noded isoparametric
quadrilateral elements. In the present study only three=
noded trianguiar elements are used, which are also re-
ferred to as constant stress and constant strain ele-
ments.

This chaptes the af

the Finite Element Method (FEM) used in this study. In
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Section 1.2, the finite element formulation for elastic
problems and the nomenclature used are presented, In
Section 2.3, the extension of these concepts to solve

plasticicy problems is presented. In this section the

analysis using the i 1 "plastic flow
law® are discussed. This is followed by Section 2.4, in
which the application of the FEM, developed in Section

2.3 for plasticity o to solve frac-

ture mechanics problems.

2.2 FINITE ELEMENT MODELING FOR ELASTIC PROBLEMS
2.2.1 General Requirements

For linear elastic problems, any finite element for-

mulation invelves the following steps:

(1) Definition of the constitutive law or the stress-
strain relationship ased.

12) Element formulation for a typical element (or ele=

mants] used to discretize the continuum. This gives

element its behavi

i3] Assesbly of the element matrices so

to satisfy
compatibility and equilibriem at common nodes. This
gives the stiffness equilibrium equation of the con-
tinuum, in which the displacesents of the nodes
{ealled *"nodal di ) are the

“

Solution of the system stiffness equilibrium
equation for nodal displacements.
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(5) Computation of strains and stresses for each element

at the nodes and/or at any other selected points.

2.2.2 Choice of

fore starting on the element forsulation some

o rel have to be a5 they
form the basis of the formulation. According to Hooke's
law the uniaxial stress ,o,, and the uniaxial strain, e,

can be related as follows:

=Ee, 2.1

where E is the Young's modulus of elasticity of the mate-
rial, For linear isotropic material, this can be extend-
#d to a general three-dimensional case by making use of

another materisl property called the Poisson's ratio

and denoted by v. These relationships are:

1 v v 090 0 e
Tz T-%v x
. v 1 v o 0 0 «
¥ = = ¥
a v v 1 o 0 0 L
= == =
E
S )
v [ ] 6 1z 0 o Yoyl
Sy o o b0 12 0 Yool
o o o P 0 0 12 e



ELY

or dencted as
fo} = D] {e} 2.3

in which the str

vector, lcl, contains the normal

stress components °., 9, and o acting alons the x-, y-,

* x
and z=directions, respectively, and the shear stress

components T, T, and T,

Lo O o
zx-planes, respectively. Similarly the strain vector,

x Acting in the xy-, y=- and

{c}, contains the three mormal SErain components €, €,

and ¢ acting in the x-, y=, and s-directions, respec-

!
tively, and the three shear straln components Y,

v vz
and v, acting in the xy-, yz- and ax-planes, respec-
tively. In Eg. {2.3), (D] is called as the elasticity
material matrix for the three-dimensional problem.

In this study orly two-dimensional problems are con-
sidered These problems may be classified into two

categoris

. namely, plane stress and plane strain
problems. If the thickness of the elastic body (taken
aleng z-axis] is constant and very small in comparison to
the other lateral disensions and the loading acts in the

xy-plane only, then this preblem is characterized as a

plane stress problem. 1In this case the stress components
related to the z-axis vanishes, which means that

o wr,_ =T, =0 2.4

Substituting Bg. (2.4) into Eq. (2.2), gives



o, 1 v 0 e,
LR ._l}. v 1 o 12.5)
1-v AEd
T o (]
*¥) =
or
fel = [0} lel [2.61

where [0 is called ag the elssticity material satrix for
the plane stress problems and is given as

1 v o
o] - ;L, v 1 0 2.7
o o

If the elastic body is very long (say along the z-axis)
in comparison to its cross-sectional dimensions and the
loading is constant aleng the z-axis, then this problem
is characterized as a plane strain problem. In this case
all the strains related to z-axis vanish, which means

that

Ny Ym0 (2.8

Substituting Eg. (2.B) into Eg. (2.2), gives

oy 1=« v 0 [
& —, v 1l=v 0 . iz2.9)
¥ (1+vh {1-2%) 1=2% "

1 =y

xy H



{e} = [0] {e) {2.100
where (D] is called as the elasticity material matrix for

plane strain problems and is given as

D) = 1= 0 (2.11)

PR —
1+v) (1-2v)

2.2.3

Consider a planer triangular finite element which
has three “nodes®, i, i and k (also called as nodes 1, 2

and 3, and two deg f-freedom at each
node, dencted as x-translation (u-displacement) and
y-translation (v-displacesent), as shown in Fig. 2.1.

These deg: f-freedom will be to the nodal

displacements. As shown in this figure, for convenience
of the rathematical formulation the origin for the

element coordi

¢ system, (x,y), is taken to be at the
slement local node "i". Alse, the element coordinate
system, (x,y}, i taken parallel to the global coordinate
systen, {%,¥), which is used to describe the gesmetry of
the finite element mesh adopted to discretize the demain.

For the convergence of the finite element solutien,
the choice of functions giving the variation of the dis=

placement components within the element has to satisfy
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Fig. 21  Typical Three-Noded Triangular Finite Element



following requirements, [€]:

It should consider the rigid body displacement of
the element.

It should allew the comstant strain condition of the
element to be achieved.

It should ider the tinuity of displ

within the element and amcng adjacent elements.

Based on these reguirements, the displacement field

at any point within the element can be taken as

ulx,y) = ay +

x4 ayy 2.12a)

Vi) = ey +agx +agy 12,128

where &), 8, ..., &g are called as the element gener-
alized In matrix notati Egs. (2.1Za) and
12.12b] can be written as

w o
—_—
B ow
e

o (%, ¥) 1 x y 6 0
v (x5 ¢ 6 0 1 x

[z.13

using subsceipt "n® to dencte the guantities pertainisg

to a typical nth element, Eq. (2.13] is abbreviated as

41, = ¥, 12.14)

where
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i)
o}, = 12.15)
vix.y)

is the element displacement vector;

g [2.16)

"
is the element generalized coordinates vector; and

1 x oy 0 o o
w0, - (2.7
(2x6) $ oy

is the element shape function matrix with respect to the
element generalized coordinates vector, {al.

Substituting the coordinates of the nodes i, j and k
from Fig. 2.1, a relationship cam be developed between
the element nodal displacements and the element gener-

alized coordinates, as follows:

L 1 e o [ L] ay
T ¢ 0 o0 1 o ay
uy 1xy oy 0 o Ja, (2.18)
¥y = o 01 ox oy a,
w 12 v 0 0 of |a
v o 0 0 1% on| (%



which can be dencted for an element "n", as follows:

fek, = (A}, {a}) 12.19)
in which {#]_ is called as the element nodal displacement
vector, and its transpese is given as
0T - s w v u v v o (2.20)
a Tl Bl e g
where symbol < > is used to dencte a row matrix, and
matrix (A} is given as

Al = 12.21)
00 0 1 ooy
1y 0 o o0
¢ 0 0 1ox oy
Inverting Eg. (2.1%), gives
tal, = 3 (e, (2.22)
where, in view of By, (2.18)
4, o ¢ 0o 0o o
Yig 0 ¥ 0 vy O
bo-x, 0 x, O
izt e | TR * 3 (2.23)
i o & 0 0 0 O



in which .
&, = 2 (area of the elemental triangle) 12.248)
Yy = V5 - ¥y 12,240
in - *k L *j 12.24c)

Substituting Eq. (2.22) into Eq. (2.14) gives the
desired element displacement field vector in terms of the

element nodal displacements, as follows:

" =1
el = (B1, 1AIZ° d6l, = ), (), 12.25)

in which [, = 1Al [A1;'4s called as the element shape
funceion matrix with respect to the slement nodal dis-
placemant vestor, (8] .

Using small displacement theory, the strain com-
ponents for a two-dimensicnal elasticity problem are
given by

6, =8 12.26)
e (2.265)
Wy

B v
Yyt e H (2.26¢)

which can be weitten in matrix fors for an element “n®,

as follows:



]
€, - o uix, ¥l
x
x
3
gy =0 e vix,y) [2.27)
3
¥
] i
¥ — il
=y
Ly ]
or
3
= L]
x
i ]
= [N 12.28)
¥
S ]
-l-"' "“
in which
Fx
ted, = (e, 2,29}
Ty

is called as the element strain wector. Substituting
Egs. (2.19) and (2.22) inte Eq. (2.28) gives the element
strain vector, {el,, in terms of the element nodal dis-
placenent vector, {81, as follows:

tel, = 1B], (MY (a0, = (B, (61, 12,300

in which



]
o e 1 o o 0 o
x
s
By, =0 = H, = 6 ¢ 0 o 0 1
¥
¥ 3
ey — LI | ¢ 1 0
Yy *
12.31)

is the element strain-displacement transformaticn matrix
with respect to {a},, and
-1

18], = (B1, (Al 12.32)
ie the element strain-displacesent transformation matrix
with respect te (4],

Using either Eq. (2.6} or Eq. (2.10), the variation
of stresses within the element *n* is given by

o}, = D], Qely (2.3
Substituting Bq. (2.30) into Eg. (2.33), gives the ele-
ment stress vecter, [e} , in terms of the element nodal
displacenent vector, (4}, 43

= -1

foby, = (01, Bl IAI" i6}, 12341

Mow, if the clement is subjected to & set of body
W,

forces and surface tractions, the internsl work dom
by them will be given by the following expression:
W= H!‘,“ 1Xu + Yvh av_ + ”sa (R, &+ R, v} 83,
12.35)
where X and Y are the body forces per unit velume along

the x- and y-directions, respectivelys R, and R are the



surface tracticns per unit area along the x- and y-
directions, respectively; and 5 and V, dencte the e

ment boundary surface areas and element volume, respec-

tively. For an element + Eg. (2,35} can be written in

terms of the element displacemsnt field vector, fe} . as

- T -
Yo = ily UR txd, av, + 11

(41T IR} as
Sn n B

12.38)
12.37a)
12.370)

12.37)

Substituting Eq. (2.25) into Bg. (2.36), gives
F i T
LA rrrv“ fedy M), AX} av « JJ H {61, Wl iR}, as

12.38)

The interral work dome, U, by the element stresses
i# given by the follewing expression:

1 T
LR | m‘,“ fely loly v 12.39)

Substituting Eqs. (2.30) and (2.34) Emte Eg. (2.39) gives

1 T T
o, =3 .r.rJ‘,'| ey (Bl (D1, (B}, (8}, ev, 12.40]



since vestor, (4], contains scalar nusbers, Bg. (2.40)
can be rearranged to give

3 1 T T
R R

The total potenrtial energy functicnal, =, for the
wlement i given by

U= 12.42)
Substituting Egs. (2.38) and (2.41) inte Bgs. (2.42),
gives the potential energy functional in terms of the

element nodal displacensents, as follows:
L o T
LR AL :,an (el [0}, [B], av) {&l)

T T r T
- [l]a l)')'s“ "ﬂa ‘X}” dsa + ;’xsn [lf],| [Iﬂn dsn]
12.43)
For equilibrium to be satiefied, the potential energy
functional should be a minimm, which requires
dw
—2 . 12,441
atal,
This reduces Bq. (2.43) to
T o T
Uity (817 (0], (8], AV (8, = S0y WG D0, &,

T

+ ”sa I8l (R} a8, 12.4%)
This can be written in abbreviated form as follows:

- 2.46

m, 18, = (P}, (2461

matrix, which is

where (K], is the élsment stiffn



given by
T
R}, = siry UB1G (01, (B, dv, 247
i
and (P}, is the element nodal force vector, which is
given by

T

L I Y 1 S N P LN I~
n n

[2.48)

2.2.4 of the Element

The system stiffness matrix, [K], is assembled using

the element stiffness matric

[Kl.'s by the “direct
stiffness method®. This assesbly procedure accounts for
the fact that displacements of two adjacent elements
sharing a node must be equal at that node. Each element
stiffness matrix, IEl . is, therefore, assembled in the
system stiffness matrix, [K], comsidering the element
connectivity, which gives the relationship of element
local nodes to the system degrees-cf-freedom. In the

same manner the system load vectoer, P},

forsulated by
esbling the element load vectors, (F}_ in such a man-

ner that equilibrium at nodes is satisfied.

An imporeant characteristic of the systesm stiffne
matrix is that it is always symmetric, and depending on
the modal numbering scheme adopted it is generally band-

.d. ng these only the upper or

the lower half band of the system stiffness matrix, (K],
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meeds to be assembled. This assesbly procedure fimally
yields the systes stiffness equilibrium equation, which
relates

K] (4] = (P} 12,45

where [K] is the system sti

ess matrix, (F] is the sys-
tem load wector and {f} is the syster nodal displacement

vector,

2.2.5 Solution of th ilibrium
n

Equation (2.4%) developed in the previous section is
solved for the unknown system nodal displacement vector,
18}, by either a direct elinination sethod or am itera=
tive precedure. In this study, this eguation is solved
using the modified Gauss Elimination procedure. In this

procedure the banded system stifin matrix is modified

to an upper triangular matrix. The solution wvector, {é},
which contains the unknown system displacements, is then
computed by using & back substitution procedure. The
element strain vector, f{el , aad the element stress
vector, lal,, can then be computed using Egs. (2.30) and
12.3

. respectively.

2.3 FINITE ELEMENT MODELING FOR PLASTICITY PROBLEMS

2.3.1 Plaseici Used in the Stody

All the derivations ir the previous sectien held
good only if the material stresses and strains aze within



the elastic limit and small displacement theory is valid,
Then if any one, or both, are not true the problem is
said to be nonlinear. Thus, nonlinear problems can be
characterized as the following three types:

1) material nonlinearity

) geometric nonlinearity, and

3 combined material asd gecmetric monlin

Tity.
In the material nonlinearity problems, the material

L i 1 is beyond the pro-
porticnal or the elastic limit, and if the material is
unloaded beyond the slastic limit then it is found that
the stress-strain curve is not traced back, but & residu-
al strain (called plastic strain) is left on complete un-

leading. In the nonl the

kinematic hardening of the material is considered due to
large displacements. The combined effect of the wwo is
considered in the third type of nonlimearity. In this

study, only materisl nonl is and small

displacement thecry is assumed to be valid in all the
formulations.

For the material nonlinearity problems, still the
displacement continuity and the equilibrium requiresents
have to be satisfied at all points. In this situaticn,

the linear slastic constitutive law (Eq. 1.1} is replaced

by a nonlinear relationship which gives a relation be-

tween the str vector, (e}, and the strain vector, [cl,
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at any point. This relationship can be expressed as a
function B, as follows:

R {{o}, (e]) = 0 12,500
This is called as the “plastic flow law®. This form of

the plastic flow law umes that the material hardening
is isotropic, i.e., equal hardening cccurs in all direc-

tions.

Contrary to the linear analy

#, one important char=
acteristic of the nonlinear problems is that the solution
is not unique. Thus, a small-step incremental approach
is essential to arrive to the solution. In this study,
the mathematical formulations first suggested by wvom
Mises [12), 4

ning the plastic strain increment in re-
lation to the yield surface, and later extended by
Prandtl and Reoss [12], are used.

Prandtl and Reuss assumed that the principal direc=
tion of the plastic strain components coincide with the
principal direction of the current state of Stresses.

This condition gives the followirg relationship [12]:

P r P
a & a
e R R R (2.51)
8, 8, T

in which def and a.; are the normal plastic strain incre-
ment eocmponents, in the = and y-directicns, respective-

ty; ach, is the engineering plastic sheas strain incre-

¥

P
ment in the xy-plane (note: u-;'q = 2y ) 5, and 5y



are the devistoric stress components along the x- and y-
directions, respectively; Ty is shear stress in the xy-

plane; and di is a constant,

The total strain energy of & material can be divided
inte two compoments. One is called as the hydrostatic
component, which accounts for volume change only, and the
other is called

the deviatoric compoment, which
accounts for distoreion emergy only. So while consider-

ing the deviatoric stre

components, the velume change
ie comsidered as zere., For a planer problem the
deviatoric stress components, £, and 5, are expressed

in terms of the normal stress components, o, and o, as

x ¥
follows:
N NN (2.528)
5, =% (20, ~ 0 ) (2528
y "3y T % 3

Substituting Egs. (2.52a) and (2.52b) inte Eq.
(2.51), the plastic strain increment compoRents aXe given

by

2o, = ¢
aep =5 @ = "—!im (2.53a)

20, = o,
m.; "5, @ - _.Y3_* an 12.53b)



®
Begy = Tyy G4 [2.53c)
hecording te von Mises, yielding occurs when the ef-
fective stress, 3, becomes equal to the material yield

stress, of
5= F, 54
2 12.54)

whare F, is the material yield stre and 3 for a planar

probles L9 defined as

2z

= [ey 32 12.55)

* ‘3 i
in which o, and o, are the major and minor principal

stresses, respectively, which are related to the car-

tesian stress components, S*r G)_ and ")" by the follow=-
ing expression:
12
Ty + @, a, =9, 2
A ¥ AT LR (2,56}
2 2

1,2 xy

Substituting Bg. (2.56) ineo Eg. (2.55), the effective
can be expressed in terms of the cartesian
s follows:

stre T

SETRES COMPOMENtE, 5. 8, MM T
HERC 25 ml, 1M 2,87,
T leg = ooy * ey ¥ gy ) (2,57
Using Eg. (2.6) or Eg. {1.10), the cartesian stress
components, o, o and 1, can be related to the strain
components ¢, e, 884 y,.. in the xy- plane by the fol-

lowing general equatien:



By " Dyt t By ok 12.58a)

=By by * Py vy 12.580)
Ty = Day ¥ (2.58c)
xy " P33 Ty

where Dy, Dy, and Dy, are material constants. Substi-
tuting these eguations into Eq. (2.37), the total ef-
fective stress,

, an be expr

ed as
~ G W 2
oL RN B YRR

2 2
=Bl TR

2
12 B22? 5y
* (23By) Dy * 2033 Dyy = Byy By3
2 z 2
- Bigh bty * Y 12,59}

For a plare stre

problem, in view of Eg. (2.7), the co-
officients D), Dy, and Dy, are given by

E
nll - :! - Dﬂﬂ (z.60a)
9y, = = (2, 60m)
I Rl :

] (2.60e)

Substituting Egs. (2.60a) to (2.60c) inte BEq. (2.58),
g
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2
- e R
=y mw + ST el e cD)
n-yh? Ty
- ¥ - o 3i1=yh? 2
+ 4w R T =¥ B e 1]

where ¢, is the engineering shear strain, which is re-
lated to the shear strain, vy, . by the following rela-

xy
tionship:

N
Gy = =X 2,62}
xy 2

In view of this, and dividing throughout Eg. (2.61) by
2

EY, gives
1
P rrome  SLLECR B ek s eh
B I R Te E B B C )

where § is called as the total effective strain, which is
given by

(2.64)

The [ 1 form of Eg.

(2.63) can be written as

1
az? v o titmy + o8 el + ﬂ::}

2 2
+ v = el deg deg v 3= el 1 2.em



where 4t is the effective strain increment and de. dey,
and d‘xy are the cartesian strain increments im the xy=-
plane.

In the plastic range since the material is incom-
pressible, so taking -.} in Bg. (2.65), gives the ef=

fective plastic strain incresent, di', follows:

2 2 2
=P o2 P’ P PP P
de” = ; [de, + d(r + dey dgy + ﬂ‘xy 1 12.66)

P P
wheze dey, &,

ana 44:), are the plastic strain increment
componenta  in  the xy-plane, Mow substituting Egs.
i2.53a] to (2.53c) into Eq. (2.66), gives the effective
plastic strain increment, di’, in terms of the cartesiss

BLress compORents, oy and T, as follows:

T

@, 12
v+ er,l di 12.67)

which, in view of Eq. (2.57), can be simplified to

atadia (2.68)

Computing the scalar di from this equation, gives

-7
3 odar

.- — 12.89)
2

H



The incremental (differential increment] form of Eq.
(2,57} can be written as

T e 2 z
@317 = aol - g0, do, + dof + ML, 12.70)

where do is the effective stress increment, and de, 2o,
and dr, are the cartesian stress increment compocnents in

the xy-plane

For the material under consideration, a curve can be
drawn for cumulative effective plastic strain, ©, versus

the effective str

#, 5. The slope, W', of this curve,
which is expressed by

45
o 12.71)
ae

is called as the Heils' function. An approximation of H®
st any state of stress can be taken a8 3 times the
plastic slope of the uniaxial stress-strain curve, at

that state, d from the 1 data [1B].
This gives
2 R
B oe= ' 12.72)
2 E-E

where E is the slope of the elastic region of the uni=
axial stress-strain curve, defined as the Young's modulus

of sl

ticity, and E, is the slope of the tangent to the

uniaxisl stre

train curve taken in the plastic region



iveyond the elastic limit). E, is also referred to

the tangent medulus of elasticity. Thus, using Eq.

12.71), the effective stress increment, 45, can be ex-

pressed in terms of the equivalent plastic strain incre-
sene, a7, as follows:

4 -
e

12.73)

Substituting Eq. (2.73) into Eq. (2.69), reduces it to

3 47
fGe- — 12.74)
2 o8B
It should be noted that this equation is applicable for
both plane stress and plane strain problems.

The total strain increment vector, {de}, &8s egual to
the summation of the elastic strain-increment-vector,
{4¢®), and the plastic strain increment vector, (dc'},
i.e.,

tae) = 14:%) + {27} (2.75)
From Hooke's Law the total increment stress vector, {de),
can be related te the elastic straim increment vector,
{4e}, as follow

(ge) = [0°] (ac®) 12,76}
where (0% is the elasticity material matrix, which is

given by Bg. (2,7} for a plane stress problem and by Eq.

(2.11) for s plane strain probles. Substiruting Eq.
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12.75) for {dc®} into Bg. (2.76), gives
(4o} = (0% (ide) = (&'} (2.9

The plastic strain increment vector, {dc¥1, according to

the Frandtl-Reuss equation, Bg. (2.51), can be written as

dey L
3 3
)= -
4" a(; s, a 12,781
Sry Tog,

Substituting Eq. (2.69), for ‘di, into Eq. (2.78), gives
the components of the plastic strain increment vecter,
(47}, in terms of the sffective plastic strain incre-

ment, dif, as follows

1473 = gy 4 (2.79)
where
3 F
L) == i2.800
= | %
2‘*!

substituting Eg. (2.79) into Eq. [2.771, gives
tde) = [0%) (0de) - (21857 (2,81}

In order to use this eguation te develep the incremental

stress-strain relationship in the plastic range, the af-
=F

fective plastic strain increment, di , has to be related

to the strain increment vector, {del.



The effective stress, o, is a function of the stress

components o, o, and T,
Thus, from calculus d7 can be written as

o e, § s fle,, Syr Teyle

] ¥
* — Y + e— 12.82)
¥e Wy ¥

in which, substituting Eg. (2.57) for ¥ to evaluate the

partial derivatives, gives
= 1
G = = [(20g = o) ey + t2oy - o, day

* lﬁlxri d“Y 1 12.83)

In view of Eqs. (2.5Za] and (2.32b), this equation can be

simplified and written in matrix form as follow

_ 3

G s, By Iy [eo
t 2.84
oy i b
dryy

In view of the definition of (A} by Eg. {2.80), Eg.

(2.84) can be expressed as

a5 = (17 [0} (2.85)

where



{do} = do, {2.86)

is the stress increment vector.
Substituting Bg. (2.73) for d7, and Bg. [2.81) for
fdo} inte Bg. (2.85), gives the desired relationship

relating dif to ide), as

e (417 (0%
a7 m e jac} [2.87)
H o+ (41 0% d8)
ar
d_P
e = (W] {de} (2.8}
where
t? ®
W] - (2.89
u o+ (07T 0%

For a plane stress problem, substituting Bg. (2.7) fer

(0%) and Eq. (2.20] for (A} into Eq. (2.89), giw W] as

1
] = ; U5, + W8) (vB, 4+ S’J “-'“*)‘ > (2.90)

(1x3) ¥
where
3 (1) -2 2
am— [ ———— F e e nES,
g SE

+Ey+ 20-veg ) 12.91)



For a plane strain problem, substituting Eg. (2.11) fer
10%] ana Bq. (2,80} fer (L} intc Eg. (2.89), gives (W] as

1
W] == - l - =
w1 m [Q=v}5, + uE.)  [(1=v18, + v&,]

1x3}
[I—Zvjtxr » (2.92)
where
3 4R
B== I 32+ 52 » 2055,
20 5 i L2
2 2 2 2
. + + 201~ .
Sr visx E,I 211 2“"'7 ] 2.93)

Finally, substituting Bg. (2.88) imte EBg. (2.81),

gives the desired incremental stress-strain law in the

plastic range, as follows:
ided = [D%] ({de} - {8} [W] {deh)

= 110%1 - (0% (4} (W1 ide) 12,94}
ar
e = (0°F) fac) 12.95)

where [0°F] is called as the elasto-plasticity ma

matrix, which is given by
107 = (0% - (%) (A} (W) (2.96)

Substituting Bgs. (2.7), (2.80) and (2.50) for [0%1, {a}
and (W], respectively, into Eg. (2.96), gives the elasto-

plasticity material matrix, [0%F), for a plame stress
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problem, as
Bl
T . p—
N e .
wh- = 5y @ 2
S, Lk 'n\ e
Tor Ton P
12.97)
where
. H
b T
P - S (2.58a)
9E 14y
2,
Q=R+ 2{1=u")P 12.98b)
R=slsaves + 8l (2.980)
* 2 e

Similarly, substituting Egs. (2.11), (2.8) and (2.52) for
10%], {a) and (W), respectively, into Eq. (2.96} gives

the slasto-plasticity material matrix, [0°F], for the

plane strain leﬂ,
e P,

e . =
e | s, e e £« 2=t
[T 'y .
“"‘-.“‘ o 4

ol 1 . HinE, 2e e emwi
ST R TR A A
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where
A w B+ 201ev] (1=2u)P 12.100a]
B = (1-v)S2 & 2uE, 5, + (1-wsd (2.1008}
x xy ¥ .

and P is given by Eq. (2.98a).

luklnw use of either the elastic material matrix,
[6%, or the elasto-plastic material matrix, [0°F], in
Eq. (2.42), the elastic element stiffness matrix, IK']“

can be obtained from
£ PR PR
s n

1817 1%, (81, dv, (2.101)

n

or the elasto-plastic element stiffn
can be cbtained from

mavrix, (271,

P, T or
(K5, = IR L PR 12,102}

In the subsequent parsgraphs few additional plasti-
city relatienships are presented which are used in the

analysis steps in the

2.3.2. In the analysis procedure described in this sub-

secticn an incremental load (i.e., a finite load incre-
mene) i3 predicted such that the most stressed elastic
element yields. During this finite (but small) lead in-

'] the

crement, the str

tal effective stre and the incresental plastic strain




are computed for each element. Since all the

quan-
tities computed are finite, they will now be denoted by
the symbol "3", instead of the symbol *d" used to denote
s difs ial in  the d Lyed

formalation presented. Thus, 47 means the incremental

effective str

produced due to the incremental load

aceing on the system. The additional relationships are

given as follow
(1) Using Eqe. (2.57) and (2.70), an incremental rela=
tionship can be formed relating an element's total
effective stress, ;', produced after the applicaticn

of the previ load i t to the 1
effective stress, 43, produced due to the current
load The total stress

after the application of the currest load increment

is

3w a3 = ol +ao? - lep + s dtey ¢ tay)

2 z
+ lol + 800" + e+ av )
= =y

¥ ¥ l‘ 12,1031

where oy, oy and 1. are the cartesian components of
the tetal stress produced in the element after the
application of the previous load increment, and fs,.
by and s, are the cartesian incremental stress
components produced due to the application of the

current load imcrement. Bolving for a7, frem Eg.



[#]

12.99), gives
85 = Lo} + 20 ) 4 (o v boydlel + to,)
x x M x5y ¥
. {o} z . gpif2
fog v 1?4 3t 4 ar )
=-a t2.104)

In order to predict the load required to yield the

ement, a factor r is comput-

ed for each elastic element such that
@ er AT F, 12,105}

where 3' is the total effective stress produced in
the element after the application of the previcus
load increment, 47 is the incremental effective
stress produced in the element by the current
applied load increment, and ¥

4
) of the material. Thus,

is the yield stress

tproportional limit str

the minimum value of r for all the elastic elements
gives the scaling factor whieh is used to multiply
the present load incresent s as to predict the new
yield load. To develop the expression for r, refer
to Fig. 2.2, which shows for an elesent the follow-
ing failure (yielding) envelopes obtained using the
won Mises yield criterion: (1) after the applica-

tion of the load (the
ellipse), (ii) at the initfial yield [the in-between



Lagtndi———  Faiure anvalope aher the  appication
ol the prevics ioad increeent

Failure envalope a1 inilial yaid

Fadure envalopa atier he appkcation of
1he current laad increment

Fig. 2.2 Failure Envelopes Obtained for an Element
on von Mises Yield Criterion at Different
Seages of Loading



ellips

1, and (iii) after the application of the
current load increment (the cutermest ellipsel. It
is desired to predice r such that the failure enve
lope corresponding te (ii) and (iii) coincide. The
equations for these three failure envelopes are
given below:

14 Aft lication of p load

ey ¢ 3nyi e 12,106}

[46) At initial yield or after scaling the applied
lead increment by the factor =3

.. 2 . 2. .
foy = Tagy)” + loy + rae,) foy + ool lay + rae )

* 31(;‘? + Tit (2.107

xy’

which on expansion, regrouping of terms, and
substitution of Eg, [2.106), reduces to

Tredg? g p—
2501757+ [120) = oyl Aoy + [2my = w) de,
. +ir -
+ By dty lz+a B =0 12.108)
where
- ERLLE
[T | ag: + u§ = by bay * derg, 1 12,108}

{iii} After application of the current applied load

increment:



63

tog *+ so0% o (o + u,g’ = o) + Be,l ey + doy)

e L R T b (2,110

which on expansicn, regroupirg of terms, and

substitution of Eqs. (2.106) and (2.109), re-

duces to
HE it "
F + 4o + i!a‘ nyl Ly
= -2
+ (20! = o) 8o+ 6r' ar = (2" + a2)
bd ¥ xy T xy
(2,111
This cperation gives
I?G; et n;,] boy * i"ﬂ; - u;] he),
*er an 12.112)
wheze
v = 0500% - 27 47 - aa? 12,113}

Substituting Bg. (2.113) into Bq. (2.108) gives a
quadratic equation in r, a8 follows:

rz‘rf-ll’;—a

is | =0 (2.134)

which on substituting for r, gives

R L e ]

FITHE)

12.11%)

It should ke roted that enly the positive sign



cutside the square root quantity has been con-
sidered, since the negative sign would give a nega-
tive value of r, which is not possible for monoton-
ically increasing loads.

(3) In order to compute the value of incremental effec-
eive plastic strain, ai', Eq. {2.88) can be used.
Substituting Eg. (2.90) for (W] into Eg, (2.88), the
incremental effective plastic strain, &¢ . for &
plane stress problen is obtained as
-5

2
s === I8, + us,p dey + [s, + va} “Y

oAt

il-vl‘“, Bryy 1 (2.116)

And substituting Bg. (2,92} for (W] into Eq. (2.88),
the incremental effective plastic strain, oi’, for a
plane strain problem is cbtained as

=P

z
AE" m o= = [[{l=v)8, + w5 ] e,
3

¥

>

+ l[l—\dsy + vE, | ey * U‘ZUH’Y By ¥

12,1171

In Eqs. (2.116] and ({2,117} 5, and S, are the

deviatoric stress cosponents aleng the x- and y-axis,

zespectivelys 1, is the shear stress) ar,, sc and sy,

are the incremental strain components in the x-y plame: O



is given by Eq. (2.98b), and A is given by Eg. (Z.100a).

2.3.2 Steps to Find Fail Uging the

Based on the feal £ Lakl 15

gection 2.2 and Subsection 2.3.1, the steps for finding

the failure load (5] due to excessive yielding are as

followst

110 Apply a unit load to the system and solve the elas-
tic system stiffness eguilibrium equatiocn, Eq.
(2.46), to compute the system nodal displacement
vector, {6},

{2] Using the comnectivity indic

for each element, ex-
tract the element nodal displacement vector, (4},
from the systes modal displacement vector, (6}, and
compute the element strain vector, tlia, and the el-
ement Stress veotor, hln’ using Egs. (2.30) and
12.34), respectively. From the element stress
vector, (sl compute the sffective stress, 3., for

each slement using Eq. 2.57). Since all str

are in the elastic range, this effective stress is

called as elastic effecti: and is denoted as

st

z*
.
(3] For each element compute the factor £¥ given as

(2.218)

o



{3}

where P, is the yield stress (proporticnal limit
stre

} of the material, Compute the minimum of all
the r®'s computed for the elements in the input
finite element mesh. As F, is & constant, the
minimum ¥® will secur for that element for which the
ective stress, on
This meximem value is denoted as (50

elastic

+ is a maximum wvalue.
nay’ and the
element having this stress is the most stressed
element for this load cycle.

Seale-up the stre

s of all the elements so that
the post stressed element is made to yield by set-
ting its effective stress, =7, equal to yield
stress, . As a unit load was applied at this load
eyele, so =® is the load required to cause the ini=
tial yield to occur. Store this value as the total
load (L} at this stage. Denote the total stress
vector and the effective stress of each elesent
corresponding to this load as (o'}, and g}, respec-
tively.

compute [0°F] for the yielded element(s] using the
total stresses at this stage and Eq. (2.87). For
each yielded element compute its mew elasto-plastic
stiffnoss matrix, (K°F1, using Bq. (2.102) and
assemble the new system stiffness matrix, [K].

Apply am incremental load, say {sl}, to the systes.

Solve the system stiffress equilibrium equation, Eq.



(1]

i#

i10h

2,46}, to compute the incremental system nodal dis-
placement vector, {8d).

Using the connectivity indices, for each element,
extract the element nodal displacement vector,
{8obys from the system nodal displacement vector,
fagi, and compute the incremental element strain
vector, {4cl., ARd the Incremantsl stress Vector,
{47),e by substituting these nodal displacement val-
ues into Eqs. (2.30) and (2.34), respectively.

For all the elastic elements compute the factor r
using Bq. (2.111).

Compute the minimur value, I

min
all the elastic elements. The elesent having this

. of the factor r for

value is the most stressed elastic element, and
Toinlsl} is the value of the incremental load
required to just cause yielding of this element.
For all the elements, multiply the incresental
element strain vecter, lacl,, and the incresental
olemert stress components vector, (sl . as obtained
in Step (7), by r.. Compute the total elesent
serain vector, (e}, and the total element stress
vector, {el,, by adding the incremental value
to the value at the

end of the previcus load cyele, i.e.,

fedy = fe'ly + Epgplaedy 2,119



111}

(B+3]

1an

114}

fal, = do'dy + Iy glsely (z.1200

Compute the total effective stress, 3., for esch el=
ement by substituting taly, obtained from Step (10)
into Eq. (2.57). The effective stress in the ele-
mant with £,
equal te F.

Iwhich was found in Step (9)) will be

compute  the total lead by adding r_, (s} to the

previous load level, i.e.,
[L) = (L'} + £gy laL} (2,121

whers {L') is the total load applied at the end of
the previcus load increment.
For all the yielded elements, compute the equivalent

tic strain increment, ai’

Pl » using Eq. (2.112).

If for any yielded clement, ai'

is negative, then
failure is said to cccur. Then the analysis is ter-
sinated and the total load is printed as the failure
load of the specimen. If i’ for all the yielded
elements is positive, then denote the total stress
vector and the effective stress for each elemsnt as
oz} and ;;. respoctively, and return to Step (5).

Tt should be noted that after the execution of Step

{11}, whereas, the element with £ .. will have its effec-

tive

stross equal to the yleld stress, F , thexe may be



&9

& few more elastic elements (their number increases as
the specinen is near its failure) whose effective stress
is very close to F . Yielding them one by one in later

cycles will only iner

the computational cost at the
expense of o small increase in the total load, Theze-
fore, it was decided to medify Step (11) o as to find
all the elastic elements having the effective stress, 3,

greater than or equal to 0.995F, and yield all these e

ments together by setting their respective total effec-

tive stress egual ko F.

2.4 FINITE ELEMENT MODELING FOR FRACTURE MECHANICS

In this study it is proposed to use the analysis

steps presented in Bection 2.3.2 to march aleng the
uniaxial stress-strain curve of the material up to the

fracture stress value. This can be done by eliminating

Step (13) and also modifying Step (14) (which now becomes
Step (131] to read as follows in the procedure suggested:
*{13} ©n the basis of Step (11} find the most
stressed slement, i.e., the element having maximum
. Ian] » and check the

valus of total effective str
following: (a) If the maxisum valus of this stress

of the material

ie greater than the fracture str

as obtained from the uniaxial stress-strain curve,
ther discard this run and repeat Steps (61 to (13}

by decreasing the incresental load {&L}, in Step (6)



to 1/2 {aL}. Otherwise, procesd to (b}, which

follows. (b} If the value of the effective stress

t;“ln* is within a preset allowable tolerance limit

ix 0.5%) of the fracture stress, as cbtained from

the material uniaxial stress-strain curve, then

this most stressed element is said to  have
fractured.”

At the stage of loading, when the first element
fractures, the structure as s whole may still be capable
of withstanding some additional lead. So the load pre-
dicted at first fracture cannot be called as the failure
load. Definitely the element which has fractured is not
capable of withstanding any more loads. This effect is
propesed to be modeled by not assesbling the element
stiffress matrix of the fractured elesent into the system
stiffness matrix for further analysis. In addition to
this, the strain energy of the fractured element is

to be to the ining

elements in the system before amy further load increment
is applied te the system.

In this study, the redistribution of the load
carried by the fractured element to the remaining us-
fractured system is proposed to be done by 8 sethod
called as "slement nodal losd relesse” method. In this
method the strain energy of the fractured element is
proposed to be redistributed to the remaining unfractured



ki

elements in the following steps:

(1] The nodal forces, (PPl , of the fractured slement

2

are computed from
£ 2
(), = sty 0 {aT) Ay, (2123
n

where [a‘hn denotes the stress components vector of
the fractured element; [B), is its  strain-
displacement transformation matrix, which is given
a8 Bg. (2.32); apd V. {4 the volums of this element.

For the constant stre:

strain trisngular element,
since the element strain-displacement transformation
matrix, [Bl ., and the clement stress vector, ef ar

are constants, so Eg. (2.109) reduces to

trfy, = tnoeap vl ety 12.123)

where B is the thickness of the element and A is

the area of the element.

Hegative of these nodal forces are applied at the

systen nodes belonging te the fractured element, as

follows:

{i) The wector containing the negative nodal forces
is first normalized with respect to the maximum
value {absocluce} appearing in this vester. Say
this maxisum value is denoted as PEMAX.

[£] The systes load vecter is assembled by applying
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(iv)

v

wi)

ividi)

these normalized nodal loads acting at the s

tem degrees-of-freedom related to the fractured
element. MNote that no other exterral loads are
taken to be acting.

& small increment of PHMAX, say olPNMAX), i

applied to the system, where a i# a very small

number (say 10

The systes stiffness matrix, (K], is assesmbled,
such that the fractured element is not con-
sidered in the assembly, and the other element
stiffness natrices are the same as computed in

the end of the previous load cycle.

The system seiffness equilibrium equaticn, Eq.
(2.49), is solved for the system nodal dis-
placements vector, {28},

Using the connectivity indices, extract the

element nodal displacement veetor, {a¢]. . for

ch element from the systes nodal displacement
vector, {46}, and compute the incremental
element strain veetor. f{sc),, and the element
incremental stress vector, [iel, by substitue-
ing these nodal displacement values into Egs.
12.30) and {2.34), respectively.

For each element, compute the total element

st vector, (e}, by adding the incremental

valus computed in the preceding step to the
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corresponding value predicted at the end of the
previcus redistribution load cycle, and compute

total effective ser

8, 5., using Bg. (2.57).
ALl yielded elements whose total effective

stress, o, computed in Step (vii) is lesser

than their total effective stress, o}, at the
end of the previcus redistribution load cycle,
are called unloading yield elements. For these
elomants the elastic element stiffn
(%], has to be used (Eq. (2.57)) instead of

matrix,

the elasto-plastic element stiffress maerix,
(E°F1 L (2. (2.98)).

In Step (viii) if any unloading yielded element
is present, then this redistribution cycle has
to be discarded and Steps (iv] and (viii) are
repeated in cycles until this eclement again
starts loading. It is reported by Miller [24)
that these elements again start reloading in
wwo cycles. Therefore, in this study it was
decided to put a limir of four eycles to exam-
ime whether the unloading yielded clements
start again loading., If at the end of the
first four redistribution cycles, there are any
unloading elements present, they are treated
like all the other (loading) yielded elements

and the analysis is continued.
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Ix] The total load achieved for the fractured ele=

ment is computed as
Py o= Py o+ @ PHMAX i2.124)

where P, is set equal to zero during the first
load cycle used to redistribute the energy of
the fractured element.

ixi) Steps (i) to [x] are repeated until P, becomes
equal te PHMAX within s tolerante limit of 2
0.005%. When this load has been achieved, then
it is considered that the strain energy of the

fractured element has been di

ipated inte the
unfractured system,

(31 If any other element fractures before the strain

energy of the element is ai

sipated, then this state is known as the state of

"unstable crack growth®. In that case the analysis

is terminated and the ultimate fracture failure of

the structure is said to occur. The toral load at
this setage iz called as the ultimate Iracture
failure load of the structure.

After the redistribution of the strain energy of the
first fractured element has been completed, then & fur-
ther external incremental load is applied to the system
ard analysis Steps (6] to (1) of Secties 2.2 and (13) of

Section (2.3) are repeated until another element frac-
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tures. Then the strain energy of this new fractured ele-
ment is dissipated inte the unfractured system using
Steps (1) to (3] of the preceding paragraph of this sec-
tion. This process of application of incremental ex-
vernal loade and the dissipation of the energy of the
fractured element is continued until unstable crack
growth is achieved.

It has to be noted that if all the elements sur-
rounding any node fracture, then the system stiffness
matrix becomes singular. But, this may not inrdicate that

the ultimate fracture failure of the structurs has

i.e., the 1 may still be
capable of resisting additicnal external loads acting on
the system. To activate the analysis further, in order

to whether such a situation is pessible, this node is

and the iysis is until another

element fractures.



CHAPTER III
DESCRIPTION OF THE COMPUTER FROGRAM DEVELOPED

3.1 INTRODUCTION

In the present study two computer programs are de-
veloped. They are written in Fortran 77 fer the
University of Oklahoma's IBM 3081 computer. The first

program, ealled “PLAST®, uses an isotropic pl

ticity
hardening model to march along the nonlinear material

& in curve and failure load due to ex-

cessive yielding. It uses the plastic flow concepts pre-
sented by Yamada et al. [32], as described in the previ-
ous chapter. In this model failure is said to occur when

during an applied load increment the incremental pl

tic
strain becomes less than zerc (i.e., negstive). The
second program, called *CRACK®, is the extension of the
first program te predice crack Imitiation and ultimate
fracture failure load. The same isotropic plasticicy
Bardening model is used to march along the stress-strain
curve until fracture occurs in one elesent. The strain
energy of the fractured slement is then released inte the
system by an "slement nodal load release™ method and then

7%



it is made inert. In this manner this computer program

redistributes the strain enezgy of the fracturel slement

as each alament erack
growth or ultimate fracture failure of the specimen
analyzed is said to occur if ancther element fracture
during the process of releasing of the energy of the last
fractured alement, Both the prograns predict a complete
load-displacement history ard the yield patterns for

structural s

ams subjected to momotonically increasing
loads.

The general features of the computer program FLAST
are presented in Section 3.1, The flow charts of the
main program and the important subroutines of this com-
puter program are presented in Section 3.3, Section 3.4
contains the general festures of the computer progras
CRACK. The flow charts of the main program and the sub=
routines of this computer program are presented in
Section 3.5.

3.2 GENEI FEATURES OF TH| ITER PROGRAM PLAST

The computes program PLAST is divided inte six main
stages, as shown in Fig. 3.1. The functions of each of
these stages are described in the subsequent sub-

sections.

3.2.1 Stage I: I and Set
The finite element mesh data, which is either gen-



STAGE |
INPUT AND SETTINGALP

¥

STAGE I
EANDWIDITH OPTIMETION

¥

STAGE W
APPUCATION OF INCREMENTAL LOAD
¥

HTAGE W
COMPUTATION OF ELEMENT STRFNESS
MATRICES AND ASSEMILY OF SYSTEM
STFFNESS MATREC

¥

STAGE YV

SOLUTION FOR SYSTEMDISPLACEMENTS

Fig. 3.1 Main Stages of the Computer Program PLAST
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& mesh pre-processor or coded manually, is read

by the main program in this stage. The follewing infer-

mation is

i

3

15)

wWith

input im this stage:

Main information about the generated mesh and
other input variables to control the progran's
execution. This includes: total mumber of
nodes, HUMNP; total number of elements, NUMEL)
maximum node 4ifference, IDIFF; a flag to in-
dicate the type of analysis to be performed,
HCODE (NCODE = 0 for plane strain and BCODE = 1

for plane stress); thickne

of the specimen,
THM; and the wvalue of the incremental load
applied, ALFA.

Hodal coordipates, X(I), ¥(I), I = 1, 2, ...y
NUMHP .

The element connectivity indices for each ele-
ment (which are the system nodes belenging to
an element) are resd in an arzey WI(I,.J), I =
1, 2, ..., NUMEL and J = 1, 2, 3. The ith row
of this array contains the indices of the three
system nodes that the ith element belongs to.
Total number of comstrained degrees-of-fresdom,

NCD.

An array i the ined deg:
froedom nusbers, NOORS(I), I = 1, I, ..., WCD.
the aforementioned inpat data two arrays are
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generated by the computer program, which &

11)  Asray IDOFII,J), I = 1, 2, ..., BUMKNF, and J =
1, 21 which stores the two degree-of-freedom
numbers for each system node. It's Ith row

the x- deg! ¢ number in the

first column and the y- degree-of-freedom num-
ber in the second column for the Ith system
node.

i2) Array IBF(I}, I =1, 2, ..., 2 * NP, the Ith

row of which repr

nts the boundary comdition
for the Ith system degree-of-freedom. A value
of «1 is stored to denote a constrained degree-
of-freedom and a value of -1 iz stored to

denote a free degree-of-fresdesm,

3.2.2 Stage 11: Band Width

As the system stiffness matrix is syssetric and
banded, only either the upper half band or the lower half
band nesds to be stored in a rectangular array. Thus, in
order to reduce the dimensions of this array [i.e., re-
duce the number of columns in this array), & bandwidth
cptimization festure is kept in the program so as to
incresss its computational efficiercy. In this stage,
the input nodal degree-cf-freedom nusbers are rearranged
50 as to yield the minimus half bandwidth for the systes
stiffness matrix. It calls subroutines JSET, SETUR and
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OPTNUM. These subroutines are described in the subse-
quent paragraphs.

Subroutine JSET: This subroutine computes the half
bandwidth for the nodal numbering schemes of the input
mesh. Specifically it performs the following functions:
(L

{1} Forms an array, JMI), I = 1, 2, .

HUMEL] containing five rows for each element,
in which it stores the elesent node numbers

The computer program has provisions to analyre

a mesh taini and

il 1 ror 1 "

in the vector (JT! zeros are inserted in the
fourth and the fifth rows.

(2) Finde the difference betwser the highest and
the lowest node nusbers for each element using
the above array, and then finds the maximum
walue of this node difference, IDIFF, for the
whole mesh, The value of IDIFF is the optimum
value of the hal! bandwidth for the input
finite element mesh.

Subroutine SETUP: This subroutine forsulates the
arrays (JMEM) amd [MEMIT}, which are used in the sub-
routine OPTHNUM. Specifically it performs the follewing
functions:

{1) Initializes the arrays JMEM(J), J = 1, 2, ...y

NUMNP, and MEMIT(I}, I = 1, 2, . (z =+
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WIRF) to contain zeros,

12) Stares the do loop for the elements.

(3] Finds the nusber of element edges coming to
each system node and forms a vector {JMEM}, in
which the Jeh row contairs the number of ele-
ment edges coming into the Jeh system node.

(4) Forms a wvector {MEMIT} which has 12 rows for
oach system node. In this program the maxisum
number of edges that can come into & node is
considered to be 12. The elements of the vecs
tor (MEMJT) are generated as follows:

For any systes node J it first reads the
number £n the Jth row of the vector {JMEM}.
Bay this number is K. Then it reserves K rows,
starting from (12 * (J-1) + 1) te (12 * (J=1) +
K], and stores the node numbers of these K
nodes associsted to the Jth system node in the
wector {MEMJT). If K < 12, then the remaining
rows reserved for the Jeh system node, ..,
(12 * (J=1) + K + 1lth to (12 * J)th rows are
filled with zeros.

[S} Steps (3] ané (4] are repeated till all the
elements are covered.

Subroutine OPTNUM: This subroutine makes use of the

dwidth by Collins [8) to

obtain the nodal pumbering scheme which gives the minimum



half bandwidth fer the input finite element mesh. Spe-
eifically it performs the following ste

{1} Starcs the do loop for all the nodes.

(2] Takes the mode number 1 of the existing number-
ing system and nusbers it a new node number 1.

3

Using the vector (JMEM} it first finds the
nusber of nodes coming to this system node (

¥
it is K) and then gets these node numbers from

the vector (MEMJT}. Th

nedes are renumbared
starting from 2 to (K + 1),

18} It computes the half bandwidth, IBD, of this
new nusbering scheme from the following ex=

pression:
IBD = 2 * [IDIFF + 1} a1

(8] If the half bandwidth with this numbering sys-
tem is less than the previous half bandwideh,
then all the nodes connected 5o the nexe higher
node are renumbered. The process is contimued
with the next node in Step (2), and Steps (2)
to (5] are repeated. But, if this half bard-
width is greater than the previcus [for the old

+ then this scheme 18 aban-

doned and the analysis goes to Step (2), and
steps (2) te (5} are repested for the mext

node.



Steps (2) to (5}

o repested so that all the
nodes are covered, and NUMNP nodal numbering
schemes are obtained.

{70 The program then stores the nodal numbering
scheme giving the minimum half bandwidth in an

array JRT(I), I = 1, 2, » HUBNP, so that its

Ith row denctes the new node nusbers for the
Ith nede of the eriginal nusbering schese.

3.2.2 Stage I11: Application of the I 1 Load

In this stage subroutine LODING is called by the
main program to assemble the system load vector. In the
present version of the program, this stage is writtem to
amalyze a tension specimen subjected to uniformly dis-
tributed load acting on two opposite edges of the speci-
men. As enly the gquarter panel is considered, there is
only one edge whers the load is applied. In the present
version of the program the loaded edge is the right side
vertical edge, as shown in Fig. 4.2 of Chapter IV.

The subreotine LODING isvelves the following steps:

(1) Total number of loaded nod WNC, is computed,

which imeludes all the nodes on the loaded
sdge.

(2} Total nusber of loaded element edges is com-

puted as (NNC=1].

(3] Length of these loaded element edges are stored
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in an array YL{I}, I = 1, 2, ..., (NNC-1} using
the following eguation:

¥LAI) = Y(IB} - Y(IA} 13.2)

where Y(IB) and ¥(IA] are the y-coordinates of
the first and the second node, respectively,
belonging to the loaded edge.

The rows of the total load, PLII), I = 1, 2,
eass [HEC=1), belonging to the degrees-of-
freedom of the nodes lying on the loaded edge I
is computed as

PL{I} = ALFA * YL(I)/2 03.3)

where ALFA is the increment of the total load
applied, which is read as an input variable.
To apply & unit load in the first cycle ALFA is
set squal to 1 for this cycle.

Using vector {FL] the nodal load °P", applied
at a loaded node I, is computed as follows:

PL{I}, for the first and the last node i3.4)
PLII} = PLII-1), for all the other nodes (3.5)

The degrees-of-freedom along which these loads

are are spplied are extracted using the vectors

{J¥T} and {IDOF), which have been described
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warlier.

Using this information the systen load vector
BF{I), I = 1, 2, ..., NDOF is assesbled, where
WDOF is total number of degrees-of-freedom,

which is computed as

KDOF = 2 * KGP 13.6)

The Ith row of the vector {BF} demotes the load

applied at the Ith &

en degrec-of-fresdom,

In case the applied loading consists of concentrated

losds acting at some nodes, then the following changes

have to be made:

1

(H]

All the loads are normalized with respect to
the largest concentrated nodal lcad {dencted as
PEMAX) acting on the system. The normalized
concentrated nodsl loads are stored in an array
PHOD(I), I = 1, 2, ..., NG, where HEC is the
total number of loaded nodes.

The system load vector (DF) is assesbled by
applying th normalized esncemtrated nodal
loads at their respective systes degrees-of-

fresdom such that at the Jth degree-cf-freedom,
belonging to Ith loaded node, the load applied

is given by

BF(J} = ALFA * PEMAX * PKOD (I} 3.7}



where ALFA is the load increment, described

sarlier (ALFA = 1 for the first load cycle}.

This stage calls subroutines CYCLE, CYCLEl and
TRIANZ. It invelves the following staps:

{11 It first finds the total number of degrees-of-
freedom, MDF, for each element and then con-
structs a vector MID(I), I = 1, 2, ..., MDF,
which contains the indices of these degrec-of-
fresdom nusbers. This step is accomplished in
subroutine CYCLE or CYCLEl in the first load
snalysis cycle and in subroutine EDOF in the
later load analysis cycles.

{2) The element stiffness matrix, [EX), is then
computed by calling subroutine TRIAND for each
element.

(3] The system stiffn

matrix, [A], is finally

assenbled. This step is sccomplished in sub-

routine CYCLE or CYCLEL.
The subroutines invelved in this stage are described in
the subsequent paragraphs.
Subroutine CYCLElL: The main function of this sub-
routine is to assemble the system stiffness matrix. Spe-

cifically, it performs the following steps:



(3]

(]

n

L3

It formulates the vector {MID} ecomtaining the

indices of the nodal degres-cf-freedcm numbers

for each element. For the first load cycle it

welt

the contents of this wvector on the
direct access file 101, and in later load
cycles it reads it from this direct access
file.

It next the element matrix

for

ch element. In the firet load cycle the
element stiffn

matrices are computed by
calling the subroutine TRIAN) and are written
on the direct access file I01 and in later load
cyeles it reads them from this direct access
file.

The system stiffnpess matrix, [A], is embled

using the element stiffness matrices, [EE]'s,
and  the element degrees-of=-freedom vecter,
iMID}.

following
n

TRIANZ: This the
elemental guantitl

The element elasticity material matrix, [0%],
using Eqs. (2.7) and (2.11) of Chapter 1I for
plane stress and plane strain problems, re
spectively, if the element iz an elastic ele-
ment, or the element elasto-plasticity material
matrix, (0°F], using Eqs. (2.37) and [2.89) of
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After the

formed on

following
m

(¢4}

89

Chapter II, for plane stress and plane strain
problems, respectively, if the slenent has
yielded,

The element stiffness matrix, EK(I,J), I = 1,
2, «eoy WDP3 J = 1, 2, ..., MOF, using the
results of Eqs. (2,101} and (2.102) of Chapter
11 for elastic and  yielded  elements,
®

pactively.

The element strai son

matrix, [BB], as given by Eq. {2.32} of Chapter
I,

The element stress-displacement transformation

matrix, [DB), which is computed as

[ce] = (D] (B8] i3.8)

where [b] and (BB] are computed in Steps (1)
and (3], respectively.

execution of this subroutine four records are
the direct access file I01, which are in the
order:

MM, MDF, MID(I}), I = 1, 2, + MDF, where s

is the slement mumber and other variables have
been defined earlier.

ER(I,3), T = 1, 2, ..., HDF a;nd 3 = 1, 2, ...
MDF.

pa(z,J1, I=1, 2, 3 and J = 1, 2, ..., MOF.



i) BBR(IJ), I=1,2, JandJ =1, 2,

CYCLE: This performs the saze

function as subroutime CYCLEl, but it is called by the
main program when the total degrees-of-freedom are great-
or than 2000 and/or when MDD is greater than 200, where

KBD = 3 * (IDIFF + 1) (3.9

It w

an out-of-core storage to increase the computer
efficiency, Specifically, it performs the following
BapE:

(1) It divides the system stiffness matrix into a
number of blocks. Each block is a square
matrix of size (KBD x NBD}. The total number
of blocks, NBL, is computed from

KEL = 1 4 (NDOF = 1}/KI

13.100

(2) A8 the system stiffness matrix is origimally
banded and symmetric, therefore, only 2 * KBED

equations [i.e., two blocks) are needed at one

time in the main computer core memory to per-

ferm the Gaul

elimination procedure for one
bleek. Also, some of the element stiffness sa-
trices will be assenbled into the rows and col=
umns  belenging to two consecutive blocks,
Thus, at any instance twe blocks are needed to

be in-core, Both during the assembly and the



sclution phases. The first block would contain

having deg nusbers any
n 1 to NBD, and the second block

would contain el having deg: £-freed

where bets

Fusbers from (KBD + 1} to (2 * NBD).

i3} As soon as all the element stiffness matrices
belonging to the first block have been assem-
bled, then that block is stored in a seguential
£ile 102, and the second block is brought up in
the place of the firet bleck. Subseguently,
the place of the second block & filled by
bringing-up the mext bleck in line.

(4] This procedure iz repeated until all the blocks

have besn covered.

3.2.5 Step Vi lution for Syetem Displ =

This stage calls either the subroutine SOLVE or the
subroutime SOLVEl, depending on the total number of
degrees-of-freedom and the value of ¥ID. The functions
of these subroutines are described next.

Subroutine SOLVEL: This subroutine is called when
the computer in-core storage memory is used. Its purpose
is to solve the system stiffness egquilibrium equationm,
Eq. (2.4%) of Chapter II. Specifically, it performs the
following stepst

{1) It modifies the symmetric and banded systes
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stiffrness equilibrium equation to am upper tri-
angular form using the Gau

elimination proce-
dure.

It then computes the umknown Sisplacement vec-
tor, BII), I = 1, 2, ..., NDOF by back substi-
tution procedure.

Subroutine SOLVE: This subroutine is called when

the total

than 2000

It uses the system stiffme;

degrees-of-freedom of the systen are greater

andfor the value of NBD is greater than 200.

matrix formulated by the

subroutine CYCLE to selve the systen stiffness equilibri-

um equations. Specifically, it performa the following

functions:

(b3}

[z

[EL]

It w

s two blocks of equations at a time by
bring thes in-cere, and then triangularizes
them to an upper triangular form using the
Gauss elimination procedure.

Afeer the first block has been completely
triangularized it is written back to the
out-of-gore file. Then the second block is
made to take the position of the first block
and the next block is read-in in its pla

Steps (1) o (2) are repeated until all the

blocks are triangularized.

Nodal displacements (the soluticn wvestor] are
d by back 1 by
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bringing in the last two blocks in=core and
first solving for all the nodal displacements

belonging to the last block. Then the second-

t Block fs shifted up to oocupy the place of
the first block and the third-last block is
brought in-core as the second block. The
procedurs is continued till all nodal displace-

Stage VI; © tation of Elemant Stres:
ORpORentE, Total Load an 5y for Failure

Subroutine PLASFL is called by the main progras to

compute the element stress components. This subroutine

calls subroutines STRES and subroutine CHECK. Specifi-

cally,

step

the subroutine PLASFL performs the following

of-freedom numbers

It reads the element degr

from the direct access file 01 and using these

the element nodal displacement vecter, EF(I}, I

-1, 2, . MDF, is extracted out frem the

system displacement vector, {B}.

It then calls subroutine STRES to compute the
elemsnt incremental train components vector,
components

{STRANE}, and the element str
vector, {SICMA}, using the following equaticns,

respectively:

{STRANE} = [BB] {EF} 13.11)
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{SIGMA} = [DB] {EF} (3.12)

where [BE] is the element strain-displacement
transformation matrix and  [DB] is the ele-
ment stress-displacemcnt tramsformation matrix,
These have been read from the direct access
file 101 im Step (1).

The incremental stresses are computed and
stored in an array SEL{I,J), I = 1, 2, ...y
KUMEL and J = 1, 2, 3, 4. In this array the
element incremental stress components, Aa,. e

¥

and 5, for the element I are stored in its

firse e{ru colusns, respectively, whereas, in

the fourth column the incremental stress, 83'",

of the element is stored, which is computed us=

ing Eq. (2.109) of Chapter II.

{a]l FPeor the first load cycle the factor YLOAD
is computed using the following ex-
pression:

50
YLOAD = ————— 13.13)
BELIK, 4}
whers S0 is the material yield stress
(dencted as PY in Chapter II, but denoted
as 50 in the computer program) and K is

the elesent number.
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Steps (1) to (4) are repeated for all the
elemsnts and the minimum value of YLOAD
for the finite element mesh is computed
and stored as XLOAD, The element number
having this value of the load is also
stored as WYEL. So, XLOAD is the incre=
mental load for the first cycle, which
causes the element mumber NYEL to yield.

All the element stresses are scaled by
multiplying the element stress compoments,
computed in Step (3) by XLOAD. The stress
components of each element are stored in

an array STI(N,I), M = 1, 2, . HUMEL,

and I = 1, 2, 3, 4. The configuration of
this array is the same as the array {SEL),
defined earlier. Thus, matrix [5T] con=
taing the toral [(cumulative) stress compo=
nents for all the elements and also their
effective stress in the last column.

¥ow the most stressed element (nunber =
MYEL) is made te yield by making its
effective stress, STINYEL, 4], equal to
the material yield stress, S0, and its
nunber is stored in an array NPL(T), J =
1, 2, ..., NYE, where NYE is total mnumber

of yielded elements. 5o, the vector {NPL}
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containg the element numbers of the yield-
ed sloments.

The incremental load which causes the most
stressed element of the previcus step to
yield is rnow computed. As  the load
applied for the first load cycle L unity,
so XLOAD is the incremental load, XP,
i.e.,

XP = XLOAD 13.14)

The total load, PLOAD, is computed at the

ond of the current load cycle from
PLOAD = PLOAD « XP 13.15)

where PLOAD is

t equal to zero at the
stare of the program.

The valus of the total load, FLOAD, is
printed and the program execution returns

back to the main program.

For later load eycles Steps (1) to (3] ave re-

peated for all the elements, Then the program
execution proceeds to the next step.

For all the elastic elements the value of RMIN

is computed by using Eg. (2.115) of Chapter IL.

The variable 'r' of this egquaticn is called as

RMIN in the CORpUter Program.
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The minimum of all the RMIN values is found for
the finite element mesh and iz stored as XLOAD.
The element nusber of the element having this

value

£ the load is also stored as NWYEL, the
sost-stressed element.

The element incremental stress compenents
(computed in Step (3}] for this load cyele are
multiplied by XLOAD and the results added to
the appropriste rows of the previcusly computed

total str

matrix, [5T].

The total effective stress for each element, 7,
is computed by substituting the total stress
components computed in Step (8], into Eq.
12.57) of Chapter II. This value is stored isn
the sppropriste row of the fourth column of the
matrix [ST].

The most stressed element found in Step (7) is
made to yield by setting its effective stress
equal to the material yleld stress, 50. The
element number of this element is also stored
tor added) in the vector (NPL}, Alsc based on

values of the element effective stress computed
in Step (9}, all elastic elements whose effec-
tive stress is greater than or equal to 0.9%3 *
50 are made to yield together by setting their

respective effective stresses equal to the ma-
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cerial yield str

The incremental load, which had caused the most
stressed element in Step (7} to yleld in this
load cyele, is next computed from the following

equation:
XP = XLOAD * ALFA 13.16)

where ALFA is the applied load increment, which
has been read-in a8 input (see Section 3.2.1).
Finally, the total load at the end of the cur-
rent load cycle is computed by updating FLOAD
in Bq. {3.18).

Te check whether failure has occurred or not,
subroutine CHECK is called to compute the value
of aZP for all the yielded elements (given by
Egs. (2.118) amd (2.117) of Chapter II for
plane stress and plane strain problems, respec-
tively). The variable af, is coded as 'EP' in
the computer program. If, for amy element the
value of EF is negative then the value of FLOAD
is printed as the "failure load® and the execu-
tion of the program is stopped. If EF i posi-
tive then the execution of the program returns
to the main program for the applicstion of the
next load increment, ALFA, and the whole analy-

#is is repeated for the next incremental load.
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3.3 FLOWCHARTS E_MAIN PROGRAM AND THE SUS| NES

In this

ction the flowcharts of the main program
and some of the important subroutines are presented. The
flowchart of the main program is shown in Fig. 3.2. The
flowcharts of the subroutines PLASFL, TRIAN}, CYCLEl and
LODING are shown in Figs. 1.3, 3.4, 3.5 and 3.6, respec-
tively. These and other subroutines have been described

earlier in Section 3.2.

3.4 CENERML FERNTURES OF TRE PROGIAN CRACK
A mentioned in Secticn 3.1, the computer program
CRACK is an extension of the first computer program,
PLAST, s0 as to solve fracture mechanics problems for
ultimate fracture failure load. It is divided into six
main stages, as shown in Fig. 3.7, These stages are
d in the

3.4.1 Seage I: Input and Setting=-Up

This stage is the same as Stage I of the computer
program PLAST as far as reading of the input sesh infor-
mation is concerned. After reading of the data, in addi-
tion to the information set-up, as described in Section
3.2.1, the following variables are alsc generated:

(1} IRANGE: This is a flag which is initially se:

equal te zerc for all the elements. Later as

the total effective stress for any yielded ele-



START

/ FIEAD NUNP, NUMEL. THM, ALFA, ALPHA /

'

READ X[NJ, ¥IHG N = 1, 2, NUMKS
NHLIE = 8, 2 HUMEL, Ja1.2,3

1) NCD
FMCONSI), 1= 1, 2, ..., NCD

COMSTRT ARPIAY FOR DEGREE OF FREEDOM
HUMBERS, 1D, 4,
LER}  RUNNPE J =t 3

Fig 3.2 Flowchan of the Main Program PLAST



Fig.3.2 (Contd) Flowchart of the Main Program PLAST
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DEGREES-OF FREEDOM
DRECT ACCESS FLE 0t

EF{l), | = 1, 2...MDF

STORE BLEMENT NCREMENTAL STRESS COMPONENTE N
SELN J).J= 1,23 AND COMPUTE INCREMENTAL
EFFECTIVE STRESS AS SELN, 4)

Fig. 3.3 Flowchan of Subroutine PLASFL



STIN. J = SEL (M. ) * YLOAD + STIN. ),
a1l 2 _WIE:Jai 23

usmnsmswa;“

COMPUTE TOTAL EFFECTIVE STRESE OF EACH
ELEMENT AND ETORE IN ST, 4,
N=12 . KTE

VIELD ALL ELASTIC ELEMENTS MAVING EFFECIVE
STRESS GE 09.5% OF 50

COMPUTE TOTAL LOAD:
PLOAD = PLOAD + AP

COMPUTE TOTAL DEFLECTION:
OFL = DFL + F{ NN | * XLOAD
W = IDF | NEWTYL 1)

PRINT TOTAL LOAD AKD
DEFLECTICN

Fig.3.3(Cont'd} Flowehart of Subroutine PLASFL




COMPUTE DBl MATRIX COMPUTE (D8] MATRIX
FOR THAEEHO0ED ELASTC
ELENENTS

YES 5
MOF =62,
C ]
O DRECT. FILE 101

ACCESS

Fig. 34 Flowchar of Subroutine TRIANI



CALL TRIANS TO COMPUTE [EX]. (B8]
D [ MATRICES FOR THE ELENENT

!
/mmmm.m:wa onommer [/ ok
AGCESS FILE K1 )

[ - READ ELEMENT MWOF, [ MID] AND [EX) —_—
FROM DIRECT ACCESS FLE 1
H e i
AND NOOEY

APPLY BOUNDARY COMDTIONS.
SYSTEM SFFENESS MATRLX [A] AND
e

¥STEMLOAD VECTOR [8)

Fig. 3.5 Flowchart of Subroutine CYCLET
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COMPUITE TOTAL WLMEIER OF LOADED!
mmmmnmnmn
o1&

L AES

o = [HNC1 |
L
OF EDGE

&) COMPUITE LENGTH
YLD = YR - YilAy
=HEW

COMPUTE LOAD |

18 = HEW[1)
L FOR EDGE &
PLN = ALFA * U2

COMPUTE LOWD AT NODE AS:
PaPLM) IF Hal OR HeNHC,
P« LN} + PL{t-1| FOR ALL OTHER S

SYSTEM LOAD VEGTOR LISHG:
L = IDEHEWL. 1}

ABSEVELE
BFLI=P .

Fig.3.8 Flawchart of Subroutine LODING
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ment exceeds BEV (value arbitraily fixed) of
the material fracture stress then IRANGE is set
equal to 1.

i2) FPREV: This variable is used when IRANGE = 1.
KPREV = 1 indicates that the analysis is to be
discarded. This happens if the total effective
stress of any element becomes greater than the
material fracture stress. KPREV = 0 means that
the analysis is acceptable.

[3) LOOPF: This variable is used as a flag to in=
dicate if the redistribution of the energy of

the fractured element is in process, which is

indicated by LOOPF = 1, otherwise LOGPF = 0.
Thus, if the energy of the fractured element

has been completely dissipated then LOOFF = 0.

342 Stage II:

This stage is the same as Stage IT of the computer
program PLAST (see Fig. 3.1}, as described in Secticn

3.2.2.

3.4.3 Stage IIT: lication of the 1 Load

In this stage Subroutine LODING is called to assen-
ble the system load vector, BFII}, I = 1, 2, ..., WDOF.
Until the fracture of any elesent occurs, the analysis
procedure follows Steps (1} to (7) of Section J.2.3.

When an element fractures, its energy has to be re=



COMPUTE TOTAL LOAD, TOTAL

. AND ELEMENT
EFFECTIVE STRESS AND PRINT
RESLLTS

Fig. 37 Main Stages Of the Computer Program CRACK
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distributed to the unfractured system. This is dome by
applying negative of the nodal loads of the fractured el-
ement, in increments, until either all the energy is @is=
tributed into the unfractured system or an unstable erack
growth occurs. The computation of the nodal loads of the
fractured element is explained later in Sub-section J.4.6
under the title Subroutine NODFOR. During the process of
redistribution of the energy of the fractured slement no
external loads are applied to the system. The flag LOOPF

remains equal to 1 until the energy of the fractured ele-

iy ai The adopted is

(1} LOOPF is set equal to 1 in subroutine NODFOR
when an element fractures.

{2} The system deg f-freedom of the

slement are found using the vector IFDOFII), I
=1, 2, ..., 6, which contains the six degrees-
of-freedom pertaining to the fractured element.
(3) The system load vector, {BF}, 4is assembled by

applying the negative of the nodal foro

somputed for the fractured element and stored
as the wector {PAPPLY}. This vector is for-
mulated in the subroutine NODFOR, which is
deseribed in Sub-section 3.4.6.

{4] The system stiffmess matrix is assembled by
calling either subroutine CYCLEl or subroutine
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CYCLE depending on the size of the systes
stiffness matrix, u;ich is assembled with the
fractured element removed.

Steps (1) to (4) are repeated until all the en-
ergy of the fractured slement Ls redistributed
into the unfractured system and then LOOPF is
again set egual to zere in subroutine NODFOR.

Sta Vs tation of the Element Stiffness
mtrfcn and n“m‘lg of the System Stiffness

Hatrix

This stage the same funced as

in the Section 3.2.4. The main changes are summarized

follow
31

12

Since an incremental approach is used to march
along the uniaxial stress-strain curve of the
material till fracture occurs, there is a like-
likood that at a certain incremental load step
an elenent's effective stress may become great-

er than the material fracture stress. The

results of this analysis have to be discarded
and this analysis has to be repeated with a
smaller value of the assumed incremental load.
The check for this situation is made in svery
load eyele after the flag IRANGE (described in
Section 3.4.1) becomes equal te 1.

In every load cyecle after IRANGE = 1 all the
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element records formed in subroutine TRIANI are
copled on a scratch file named 103,
1f the effective str

©f any element is not
greater than the material fracturs stress then
the records of such slements are copied on the
file I01 (described in Sub-section 1.2.4), and
the analysis is continued for the next load im-
crement. But, if the effective stre

sf any
elenent becones greater than the material frac-
ture stress then the results {and also the
elenent records in I03) are discarded. The
load imcrement, ALFA, is reduced to half of the
current value and the analysis is repeated
using the previous element stiffness matrices
records in file I01. This process is continued

till the effective stress of the most stressed

yielded element is within 0.955 * SIGMAF ¢
SIGMAF < 1.005 * SIGMAP, where SIGMAF iz the

material fracture stress. This algorithm is

in the PLASFL

in Sub-section 3.4.6).

1f an element fractures, its stiffness matrix
should not be assembled into the system stiff-
ness matrix. This is accosplished by making
use of a vecter IFRACTIZI, I = 1, 2, ...s

WFRACT, where NFRACT is total number of frac-



tured elements amd centains the element nusbers
of the fractured elements. This wecter is
formed in the subroutine PLASFL (described in
Sub=section J.4.6).

1.4.5 Stage Vi 1 for Systes Displ

This stage is the same as Stage V of the computer

program FLAST, which was deseribed in Sub-section 3.2.5.

J.4.6. i Vi tation of Element Stress Com-
ants, Check for Element Fracture stri-
bution of Energy of Fraceured Elemsnmt. and
Computation o TotaT fend s
Subroutine PLASFL is called by the main program to

compute the element sty

compoRents, to check fer frac-
ture of an element, to redistribute the energy of the
fractured element, and to compute the totsl load. This
subroutine calls subroutines STRES, FRCTUR, NODFOR and
UPFDAT. Specifically, the subroutine PLASFL performs the
follewing functions:

Subroutine PLASFL:

(1) It reads the element degree-of-freedom numbers

from the direct access £ile 101 and using th

the slement nodal displacesent vector, EF(I), I
= 1, 2, .... MDF, is extracted ocut from the
systen displacement vector, iB}.

{2) It then calls subroutine STRES to compute the

element incremental Strain COSPORERtS Vector,
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{STRANE}, and the

emant stre

components
vector, {SIGMA}, using the following equations,

respectively,
{STRANE} = [BB] (EF) 13.17)
{stgun} = (DB] {EF) 13.18)

where [BB] is the element strain-displacesent

transformation matrix and (DB] is the elessnt

matrix.
These have been resd from the direct access
file 01 in Step (1),

The 1 are and

stored in an array SELIIJ), I = 1, 2, .

WOMEL and & = 1, 2, 3, 4. 1In this array the
element incrementsl stress components, if, iz

and 87, for the elsment I are stored in its

first t:m columns, respectively, whersas, in

the fourth column the incremental stress, 83'',

of the elemant is stored, which is computed us-

ing Eq. (2.108) of Chapter IV.

s} For the first load ecycle the facter,
YLOAD, is cemputed using the following ex-

pression:

50
YLOAD ® (3.19)
SEL(N,4)
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where 50 is the material yield stress and
N is the element number.

Steps (1) to (4] are repeated for all the
elements and the ninisum wvalue of YLOAD
for the finite element mesh is computed
and stored as XLOAD. The element number
having this value of the load is also

stored as WYEL. So XLOAD &s the imer

meneal load which causes the element
nrusmber NYEL to yield in the first cycle.

A1l the element stresses are scaled by
multiplying the element stress components

computed in Step (3) by XLOAD. The e

ment stress components are stored in an
arzay STIN,I), H = 1, 2, ..., NUMEL and I
= 1, 2, 3, 4. The configuration of this
array is the same 88 the array {SEL}
defined earlier. Thus, matrix ([ST] conm-
tains the total (cumulative) stress compo-
nents for all the elesents and alss their
effective stress in the last column.

Now, the most stressed element (number =
NYEL) is made to yleld by making its
effective stress, STINYEL, 4], equal to
the material yield stress, 50, and its
nusber is stored in an arzey ¥PLIT), J =
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1, 2, ..., WYE, where NYE is total number

of ylelded elements. So the vestor {NPL]
containg the element numbers of the yield-
o elements.

The incremental load which causes the most

stressed element of the previous step to

yield is mow computed. As the load
applied for the first load cycle is unity,
# XLOAD is the incresental load, XP,

i.e.,
XP = XLOAD 13.200

The total load, PLOAD, is computed at the

end of the curzent load cycle from
PLOAD = PLOAD < XP 13.21)

where PLOAD is set equal to zero at the
start of the program. i

The value of the total load, PLOAD, is
printed and the progras execution returns

back to the main program.

por later load cycles Steps (1) to (3} are

repeated for all the elements. If LOOFF = 1

then the execution of the Computer Program goes

to Step (B), othervise, it goes to the next

step.
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For all the elastic elements the value of RMIN
is computed (given as r in Eg. (2.115) of
Chapter II).

The minimum of all the FMIN values is found and
stored as XLOAD, The element number of the
element having this value is stored as NYEL,
which is the element nusber of the most
stressed elastic element.

Steps (1) to (7} are repeated for all the sle-
ments. Then the incremencal load for this load
cycle is computed from

XP = XLOAD * ALFA 13.22)

if LOOPF = 1, Then subroutine NOOFOR is called
and the execution of the computer program re-
turns to the main program, otherwiss, it goes
to the mext step.

1f IRAMGE = 1 the cosputer program execution
goes to the next step, otherwise, it goes to
Step (15).

The total stress components for each element
are computed and stored in a scratch array,
[5TF), which is ebtained frem

STFN,J) = SELIN.J) + STIN,J) 13.23)

where ¥ is the element mumber ard J = 1, 2, 3.
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The total effective stre

of each element is

computed usirg the stress valu

in the array
[STF] amd Bq. (2.57) of Chapter II. The effec-
tive stress of each element is stored in the
fourth column of the array [§7F]. The row num-
ber in this array corresponds to the slement
number.

The nusber of the element having the maximum
value in the fourth column of the arcay [STF]
is found and stored as WYEL, which is the most
stressed element. Then the subroutine FRCTUR
is called to perform the follewing checks:

fa} If STF(MMOST,4) is within : 0,58 of the

rial fracture stress, SIGMAF, then the

element nusber, WMOST, is considered

fractured element and KERR is set squal to

1

(b} If STP(NMOST, 4] » SIGMAF the results of
this run have to be discarded and the
snalysis has to be repeated using the
previous  element  stiffmess  matrices
{stored in £ile 101}, and setting the
value of the incremental load applied,
ALPEA, to ALFA/Z and the flag KPREV = 1.

(e} If STF(KMOST, 4] < SIGMAF then the results

of this run are acceptable and the flag
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EPREV is

t equal to zerc.
If Step (12a) is true, i.e., an element has
fractured, then the program execution goes to

Step {14). If Step (lib) is true then the

progran ion is to the

main program. If Step (12c) is true then the

computer program execution goes te Step (15).

{al The element number of the fractured ele-
ment iz stored in the arcay IFRACT(I], I =
1, 2, ..., BFRACT, where HFRACT is the
total number of fractured elements.

() The degre

of-freedom of the latest
fractured slament are stered in the array
IFDOF(I), I = 1, 2, ...s 6.

{c} The nodal forces of the fractured element
are compated by calling subroutine KODFOR,
which is described later in this section.

The element 1  stress

(stored in the first three columns of the ma-
trix [SEL]] and the corresponding imcremental
wffective stress {computed in Step (3} for this
load cyclel for all the elements are multiplied
by XLOAD. Then these are then added to the
appropriate Tows of the previsusly computed
total stress matrix, [§T]. This step is done
for all the eolements except the fractured
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1%

elenents.

The most str

ed elastic element and all the

elastic elements having their total element

affective str greater than or equal to 0.9%5
* 50 are made to yield together by setting
their effective stress equal to the material
yield stress, 50.
If IRANGE is not equal to 1 then the execution
of the program goes to Step (18), otherwise,
the element having the maximun value of the
total effective stress (computed im Step (16})
is located and the follewing are checked for
its
(a) If SIGEFF : SIGMAF then a message to
choose a lower load increment is printed
ard the program execution is terminated.
(8} If SIGEFF » (§6%) * SIGMAF then IRANGE is
#et ogual to one and the computer program
execution goss to Step (18).
If LOOPF #1 then the computer program sxecuticn
goes to the mext step, otheswise, it returns to
the main program.
The total load is cemputed by updating PLOAD in
Eq. (3.21) and the computer proyram execution

seturns to the main program.
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ubroutine NODFOR:

The purpese of this subroutine is to accomplish
the fellowing: compute the nodal forees of the
fractured element; apply the negative of these nodal

forces to the systen fn i until

the full load levels are reached; and to check for

unstable crack growth. Specifically, it performs

the following steps:

(1) If LOOFF = 1 then the execution of the computer
progran goes to Step (8).

{2] The current total effective stress, ST(N.4}, of
all the yielded elements are stored im an array
FY{¥), ® = 1, 2, ..., NYE, where NYE is the
total number of yielded elements.

{3) The nodal forces of the fractured element, M,

are computed using the follewing relatioaship:
PH{I) = THM * ARER * [BB{I,J) * STP(N,J1] (3.24)

wheze I = 1, 2, +.uy 6F 3= 1, 2, 3: THM is the
thickress; AREA is the ares of the element;
|eB] is the element strain-displacement trans-
formation matrix (as given by Bg. (2.32) of
chapter II); and matrix [STF] contains the

values of the total stre

components of the
elesent in its first three columas and the

value of the total effective stress of the ele-
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ment in its fourth column.
The negative of the vector (PN} is saved as

vector FRODII), I =1, 2, ..., 6.

The element in wvector (PHOD} which has the
largest magnitude is located and desigmated as
FNMAX. Say it occurs in the Kth row of the
wector {FNOD}.

The vector ({PNOD} is normalized such that its
¥th row element is set equal to 1 and all the
other row sntries are divided by PHMAX.

The incremental load, DELW, is computed from
DELW = ALPHA * PHMAX 13.28)

Then LOOFF is set equal to one and the computer
progran execution goes to Step (15).
The total stress components of all the un-

are and stored in a

scracch array, [STF), as follows:
ETFI¥,J) = SEL(N,J} * STIN.J] 13.26)

where N is the element nusber; J = 1, 2, 3
[SEL] is element incrementsl SEXess Component

array; and [ST] is the element total str

components array cbtained frem the previcus
1sad cycle.
The toral effeceive stress is computed for all
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the elements using EBy. (2.57) of Chapter II and
is stored im the respective row of the foureh
colurn of the matrix [§TF).

The most stressed elastic element, M, is the
one for which the effective stress value is
largest. If the value of the effective stress

of this element is greater than the material

yield stress, S0, then the run is discarded,
and a new analysis is initiated after setting
the value of the incremental load applied,
ALPHA, to ALFHA/Z. Then execution of the
computer program returns to the subroutine
PLASFL.

When the next load increment is applied it =ay
nappen that some of the yielded elements mear
the ecrask tip start getting unloaded rather
than pickirg up the load, 1If an element um-
loads then its medulus of elasticity should be
taken equal to the elastic modulus of slas-
ticity of the materisl. Thus, the original
elastic slement stiffness matrix has to be used
for such ar element. The unloading elements
are detected by comparing the new total effec-
tive stress of the yielded slements, computed
at the end of the incremental load cycle, with
its wvalue at the end of the previous incre-



mental load cycls. If the former value is less
than the latter value then that element is said
to be an unloading element and the element
nusber of these elements are stored in an array
ISE(K}), K = 1, 2, ..., BSE, where NSE is the
total mumber of unloading yielded elements. If
such an element ccours during an incremental
lead eyele then the aralysis performed for this

incrementsl load cycle is discarded. The new

system stiffn matrix of the uonfractored
system is computed using the elastic stiffness
matrix for the unloading element. The incre-
mental nodsl loads are again reapplied and the
Steps (1) to (10} are repeated. Then it would
be found that the unloading element will start
picking up load and will move elasticity till
it intersects the nonlinear portion of the
uniaxial stress-strain curve of the material.
[This iz ascertained by comparing the value of
the toral effective stress of the element with
the value in the corresponding row of the
vector {FY}, which is formed im Step (2) of
subroutine NODFOR.) Then the stiffness matrix

of this element will be changed to be equal to

the original elasto-plastic stiffmess matrix,

which it possessed just before unloading
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occurred. There may be a situation in which,
during an incremental load cycle, as an unload=
ing element is made to become a loading element
by using its elastic element stiffness matrix
ancther element may star: unloading, So the
1ly
till all unfractured elements become loading

procedure has to be repeated in cycles id

elements, To keep computer costs down, in the

computer progran developed a limit on the

musber of such oycl four. It s

is put
sxpected that by the end of this process of re-

peating the four re-sdjustment cycles for am
incremental losd cycle there would be no un-
loading elemsnts. 1f this does mot occur then
the remaining unlesding elements are treated as
loading elements with their element stiffness

matrices equal to their respective el

plastic element stiffness matrices. Then some

error would be carried over te the nexr load
increment.

The total stress componemts of all the un-
frastured elements are computed by adding the
incremental stresses computed for this load
cycle to the total stresses already computed at
the beginning of this load cycle, f.e., by
using the following relationship:
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(14}

115)

§TIN,J) = SEL(K,J) + BT(N,J) {3.27)

where ¥ is the element number and J = 1, 2, 3.

Hext, the total sffective stress for all the

1 is ard stored in
the fourth column of the matrix [ST1. The ele-
ment having the maximum value of the total
effective stress is now located. This i3 the
most stressed yielded element.

If the total effective stress of the most
stressed yielded element is greater than or
equal to the material fracture stress then un=
stable crack growth is said to occur. Then
KERR is set equal tc one and the ewecution of
the computer program is made to return to the
subroutine PLASFL and finally terminated.
Otherwi

the execution procesds to the next
steop.

Using the valuss of the total effective ser

cosputed in Step (12}, all the elastic elements

having the total effective stress valus,
ETiN,4), within 0.9%5 B0 < ST(K,4) £ SO are
made to yield together by setting their total
affective stress value egual te the material

yield stre s0.

The load achisved for the fractured element is
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updated and stored as PRTEMP, which is computed

from

PKTEMP = PHLOAD + DELNW 13.28)

where DELW is the incremental load applied
given by Eq. (3.19).

ta)

(L1

(]

1f PWTEMP is within an allowance of %
0.000% * PNMAX then the energy of fracture

element is id to h

been distributed

inte the unfractured system. If this is
true then LOOPF £s set equal to zero and
the computer program execution returns to
the subroutine PLASFL.

If PNTEMP is greater than or equal to 0.9
* PNMAX then the next incremental load to
be spplied is computed as follows: Efirst
DELW is computed using

DELK = PYMAX - PHLOAD 13.29)

and then the fractien of incremental load

applied, ALPEA, is computed using
ALPHA = DELW/ENMAX 13.30)

If the above two checks are not found to
be true then PNTEMP £ stored as PHLOAD.
Thus, PKLOAD iz the total load achisved



during the energy distribueion.
117) The incremental nodal forees of the fractured

element are computed from
PAPPLY(I) = ALFHA * PHMAX * PNEL(I) 13.31)

where I = 1, 2, «r §. Then the execution of

the computer program returns to the subroutine

PLASFL.

LOWCHARTS OF MATN PROGRAM AND SUBROUTINES FOR

This sectien presents the flowcharts of the main
program and scme of the important subroutines for comput-
er program CRACK. The flowchart of the main program is
shown in Fig. 3.8. The flowcharts of the subroutine
PLASFL and NWODFOR are shown in Figs. 3.9 amd 3.10, re-
spectively. These ard the other subroutines have been
described earlier in Sectien 3.4,
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Fig. 3.8 Flowchart of the Main Program GRAGK
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Fig. 2.8 (Confd] Flowchart of the Main Program CRACH



130

| FAPPLY = ALPHA ® PHMAX * | PEL | !

Fig 3.9 Flowchart of Subrouting NODFOR
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FORMULATE ELEWENT DISPLACEMENT VECTOR
EF{ll, =12 .. MDF

Fig. 2.10 Flowchart of Subroutine PLASFL
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CHAPTER IV
HUMERICAL VERIFICATIONS

4.1 INTRODUCTION

in this chapter, the mathematical fermulations pre-
sented in Chapter II and the two CoRputer programs
described in Chapter III are verified with the help of
twe pumerical examples. The first numerical example is
concerned with the failure lead analysis of & Venotched
sension specimen using the computer progran PLAST. The
results of this example problem have been also presented
by Yamasda et al. [32], The second numerical example is
concerned with the ultimace fracture lead analysis of a
center pre-cracked rectangular panel tension specimen
using the computer program CRACE. Experimental results
for this example problem have been presented by Miller st
al. (241,

In Section 4.2, the gecoetry and material properties
of the first example, the V-potched tension specimen, are
given. Details of the finite element modelling for this
specimen are presented in Section 4.3. Fimally, in

Section 4.4, the numerical results cbtained for this

136



preblem using the computer program PLAST are pressnted
and compared with results available in literature.
In Section 4.5, the gecmetry and material properties

for the

cond rumerical example, the center pre-cracked
rectangular panel tension specimen, are given. Details
of the finite element modelling for this specimen are
presented in Section 4.6. Finally, in Section 4.7, the
numerical results cbtained for this problem using the
computer program CRACK are presented asd compared with
results available in the lirerature.

The d4 tension L1 as P by

Yasada et al. [32], is chosen as the numerical example to
verify the results predicted by the computer program
FLAST developed in this study. The gecmetry of the spec-
1. Due to its symmetry

imen chosen ism shown in Fig.
about both the x- and the y- axis, cnly a guarter panel
nesds to ba analyzed, The boundary conditions thus
imposed on this quarter panel are shown im Fig. 4.2. The
load P in this figure repressnts the total load per half
width of the actual specimen.

The material iz considered to be elastic perfectly

F.. equal to 30 Kg/mml.

plastic with yield st ¥
Poiason's ratic, v, is taken egual to 0.3 and the Young's

modulus of elasticity, E, is taken equal te 20,000
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Fig. 42 Boundary Conditions for the Quarter
Panel Considered for the Analysis of
the Test Venoiched Tension Specimen
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Fg/sm®. The material str

strain curve used is shown

in Fig. 4.3.

4.3 FIKITE ELEMENT MODELING OF THE T V=NOTCHED

The quarter panel, shown in Fig, 4.2, is modeled

using in triangular shaped finite el-
ements. Six meshes are considersd, They will be re-
ferred to as mesh #1 through mesh #6 throughout this dis-
o

ion. The geometric configuration of these meshes are
shown in Fig. 4.4 and the salient festures of these
meshes are summarized in Table 4.1. In all the mesh pat-
terns, smaller elements have been taken in the region ex-

pected to yield (i.

the region near the V-notchd.

A8 can be seen from Table 4.1, the following factors
have besn considered in choosing the varicus finite ele-
ment meshes:

(1} Grading of mesh: To investigate the conver=
gence of the results, for the same mesh pat-
tern, the size of the smallest element in the
sesh was decreased. Thus, in mesh #'s 1 and 4,
in mesh #'s 2 and 5, and in mesh #'s 3 and 6,
the minimum area of the element is decressed in

each of the latter cases by about 44% in com-

To im=

parison to the respective former &
vestigate convergence of results, rather than

refining mesh #'s 4 and § furcher, it was
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Fig. 43 Material Stress-Strain Curve for the
Test V-Noiched Tensson Specimen



Fig. 4.4 Meshes Corsidersd for Analysis of the Test
yepseched Tension Specimen
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Table 4.1 Mesh Grading and Element Orientation For
the Test V-noiched Tension Specimen

Mesh . Mash Number Number Minimum
Designation|  pattern of Nodes | of Elementq Area
fmen ")

# A %8 180 128
2 N 9% 180 125
3 (| 180 320 625
#4 z 174 az20 5.54
s N 174 300 554
P E 327 600 276
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decided to compare these results with those
obtained by mesh #6, in which the minimumm ele-
ment ares is 50% of the former meshes.

12) Grientation of the elesents: It should be

noted that in mesh #'s 1 and 2 land similarly

in mesh #

4 and %) the shape of the elements
is a right angled iscsceles triargle. But, the

orientaticn of these triangles is d4iff

rent in
the two meshes. These meshes are used to in-
wvestigate the effect of the element crientaticn
on the results predicted.

3 s of the elemente: In mesh #3, equilateral
trisngular elements are used in the expected
yield zone, whereas, in mesh #'s 4 and 5, zight
angled isosceles triangular elements are used.
In both these mesh patterns the number of ele-
ments are about the same. The minimum area of
the element in mesh 43 is about 113% of that
used in mesh #'s 4 and 5. These meshes Are
seed to investigate the effect of the shape of
the slement on the resules predicted.

4.4 NERICM néim.'rs OBTAINED FOR THE TEST HED

The six meshes chosen for the test V-notched tension
specimen (see Fig. 4.4) were analysed using the computer
program PLAST and the results for the following ltems are



presented:

1] Load-displacement histery,

(2] first yield load and failure load,

(3h yield patterns, and

(4) Central Precessor Unit [CPU) computer time

taken to perform each analysis,

The results cbtained are compared with similar re-
sults# reported by Yamada et al. [32], wherever possible.
The results obtained are di

ussed in the light of the
shree factors used as & basis for selecting the six
meshes, which have been discussed earlier in Section 4.3.

4.4.1 ion of L lacement History

The values of the load level and the corresponding
saximum displacement predicted by the computer program
PLAST were plotted until failure occurred in the speci-
men. These plots of load ver

displacement are re-
ferred to as the load-displacement history and give an
idea about the ductility of the material.

To investigate the convergence trend of the fesules

di d, the t histories obtained for

mesh #'s 1 and 4, mesh #'s 2 and 5, and mesh #'s 3 and €,

are plotted separately as Figs. 4.5(a), 4.5(b) and

4.5(e), respectively, Referzing te Fig. 4.4, it sheuld
be noted that in each of thess mesh groupings the mesh
element pattern is the same except that one mesh is much
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finer than the other. 1In Figs. 4.5{(a] to 4.5(j) the

horizontal dotted line the failure load level

reported by ¥Yamada et al. [32]. As expected, in each
e, it can be

6 that the cruder mesh predicted
higher load values for the same displacement. As the
mesh is refined, in each case, the failure load predic-
tion shows a converging trend towards the value reported
by Yamada et al. [32]. However, the cruder mesh predicts
a muoch higher displacement (11.97% higher for mesh #1
ever mesh #4, and 30.91% higher for mesh #3 cver mesh #6)
just before failure ooccurs. The walue of the inivial
yield, the failure load and the corresponding faflure
defloction predicted by all the six meshes and those
reporead by Yanada et al, [32] are summarized im Table
4.2. The percentage difference between these results and
those reported by Yamads et al. [32] are given in Table
4.3, Each of the meshes studied predicted a higher
failure load level thar that reported by Yamada et al.
[32]. The load-levels predicted by mesh #1 are farthost
away, whereas, those predicted by mesh #6 are closest o
those reported by Yamada et al. [32]. The results
cbeaimed for mesh #3 are in-between the two curves. To
relatively compare the thres sesh patterns, in which mesh
= 12.5 =¥}, and

#1 is the crudest (minimum element ar
=osh #6 is the finest (minimus element area = 2.74 =),

their lead-displacement histories are grouped together in
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Fig. 4.5(i). 1In this figure the plus (+) sign represent
the values picked up from the plots given by Yamada et
al. [32]. From this figure it can be concluded that as
the mesh is refined, particularly in the expected yield
zone, the finite elesent results will converge. In the
paper published by Yamada et al. [32] the mesh grading
used for the quarter panel has not been reported. Be-
cause of computer costs involved no further refinement in
mesh grading was tried, since the cbjective of this study
was to simply verify the pl.

wicity computer pregram
(PLAST) before extending it to analyre fracture mechanics
problems,

To investigate the effect of element crientaticn on

the predicticn of 1 history, results for

mesh #'s 1 and 2 and for mesh #'s 4 and 5 are grouped
together ané are shown as Figs. 4.5{c) and 4.50d), re-
spectively. It should be noted from Fig. 4.4, that in
sach group of these meshes enly the oriestation of the
wlements changes - mesh grading is the sase in both the
cases grouped together. From Figs. 4.5(c] and 4.5(d) and
Tabl

4.2 and 4.3 it can be concluded that mes s 2

ard 5 {i.e., [§ ) predict better results than mash s
1 and 4 (i.e., [F] ), respectively, for failure load
whes compared with the results roported by Yamads et al.
{32]. But, when comparing the difference in the results
cbtained for mesh d's 1 with 2 and mesh #'s & with 5 it
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is cbserved that the results predicted by the two element
orientations is not very significant for failure locad,
It is interesting to note that mesh #4 predicted a much
higher (about &.4% higher) failure deflecticn thas that
predicted by mesh #3. However, the reve

happens when
comparing the failure deflection results predicted by
mesh #°s 1 and 2. This shows that for the element orien-
tation uvsed in mesh #1 as the mesh is refined the
numerical model obtained is more ductile than the cae
ebtained by refining mesh 92, Thus, though the failure
load predictions are about the seme, the fallure deflec-
tion predictions will vary with the change in element
orientation. The results predicted by mesh #5, both for
failure load and deflection, are closer to thess reported
by Yamada et al. [32].

To investigate the effect of the shape of the trian-
gular elements chosen on the prediction of load-
displacement history, results for mesh #'s 3, 4, 5 and €
are grouped together in Fig. 4.5(j}. The results report-
#d by Yamada et al, [32] sre alsc indicated in this fig-
ure with a plus (+) sign. In mesh #'s 3 and 6 equi-
lateral triangular elements are used in the expected

in mesh #'s 4 and 5

yield zone (see Fig. 4.4), where
right angled iscsceles eriangular elesents are used (see

Fig. 4.4]. Also, referring to Table 4.1, it can be
that the mesh grading level for mesh #'s 3, 4 and 5 is



about the same, with mesh #) having a slightly larger
{11% larger than mesh ¢'s 4 and %) minimum element area.
Keeping these facts in mind and comparing the results
shown in Fig. 4.5 and Table 4.3, it is concluded that

mesh #) predicted better resules for load levels than

mesh #'s 4 and 5. Dut, mesh 43 predicted a much larger
failure deflection than that predicted by mesh #'s 4 and
4. This may be due to the lorger elemental area used in
the expected yield zone and the element orientation
pattern used for mesh #3. The results of mesh #6, which
is composed of equilateral triangular elements in the
yield zone is the closest to those reported by Yamada et
al. 132]. For this mesh the difference in the result
predicted by the computer program PLAST and that reported
by Yamada et al. [32) for initial yield load is +0.5% and

that for failure load is +1.

In susmary, the aforesentioned discussion shows that
if a crude finite element pesh composed of three-noded
triangular elemonts is used, then the shape and orien-

tation of cthe el used to d the d

yield zone would effect move the failure deflection pre-
diction than the failure load predicticn. However, as
the meshes are reficed, within the limit, results would

converge to about the same values,
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Predicrion of Initial Yield lLoad and Failure

The results for the initial yield load and the

ilure load for the six meshes predicted by the computer

progran PLAST and those reported by Yamada ot al. [32)

have been presented earlier in Tables 4.2 and 4.3. From

these tables the follewing is concluded:

4.4.3

m

(F1]

4)

As the mesh is refired the results predicted
for both the initisl yield and the failure
lcads show a convergence trend.

A eruder mesh predicts a much higher initial
yield load,

The error in the initial yield losd predicted
by a crude mesh is much more than the error in
the predicted failure load.

Use of eguilateral triangular shaped elements
in the expected yield zone seems to predict
petter both the initial yield load and the
failore load. As the mesh is refined faster
convergence may be expected by the use of such
elements in the mesh. Acute argled triangular
shaped elements should be avoided,

Prediction of Yield Patterns

Considering the yield patterns pressnted in Figs.

Al to A.6 of Appendix A, it can be observed that the

location of the initial yield is independent of the =esh



Table 42 Summary of bad and Deflection Results
For test V-Notched Tension Specimen

Mesh Initial Yield| Failure Deflection
Dasignation | Load Load at failure
(g} (kg.)

1 416.8 774 0.131
#2 426.7 m 0.135
w3 3366 741 D.144
#4 342.7 748 0.117
LES 3517 745 0.110
¥E 278.5 7es 0.110
Yamada' Frrd] 7153 0.120

* From Reference [32 ]




Table 4.3
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Summary of Percent Difference Of the Initial
Yield Load, Failure Load , and Deflection Predicted
at Failure by the Computer Program PLAST with
the Results reported by Yamada et al. [32] for the

Test V-notched tension Specimen

Mesh Initial Failure Deaflection
Designation | Yield Lead at Failure
LAl 50.4 82 8.2
w2 53.9 78 125
Lk 21.4 ar 20.0
m 23.8 48 25
#5 6.9 4 e
- 05 14 8.9

Megative sign denates that the value predicled
by the computer program PLAST is lower than

that reported by Yamada et al. [32]
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grading or the mesh orientation (see part (a) of each of
the Figs. A.l to A.6 of Appendix A). In all the six
cases studied the firse yield starts at the tip of the
v-notch, which is obvious because the highest stresses
are developed at this lecation due to the application of
the load,

To study the rate of yielding plote for load versus
ares yielded are drawn, as shown in Pige. 4.6al to
4.60g). These figures are drawn using the results tab-
ulated in Table €.1 of Apperdix C. The interpretation of
these figures is done such that a curve having more steps
shows & mere gradual (or better) tremd in yielding as
compared to a curve having big jusps and, therefors, &
lesser number of steps.

From Figs. 4.61a) to 4.6(g) it can be seen that the
finer meshes show & better trend in yielding than the
cosrser meshes, This is due to the fact that in the
method used yielding of an element is considered rather

than yielding of & material peint. In & coar

T mesh,
since larger size slements are used, a larger area yields
at a particular load level. Considering the effect of
mesh grading on the rate of yielding, the results for
mesh #'s 1 and 4, mesh #'s 2 and 5, and mesh ¥'s 3 and 6
are compared (see Figs. d.6[al, 4.61b) and d.6le),
. the finer mesh

respectively). In all three set of ca
shows o more gradual tresd in yielding than the coarse
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fa) Plot for mesh #s 1 and 4

(1] Plot for, mesh 48 2 ad 5

4.6 Load Versus Area Yielded Curves for the Test
Wenotehed Terdicn Specisen
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one, Looking at the effect of mesh orientation on the
rate of yielding (see Pigs. 4.6(c) and 4.604)), it can be
seen that mesh #'s 2 and § show a Dbetter trend in
yielding than mesh #'s 1 and 4, respectively. Thus, it
can be deduced that the element orientation of mesh #'s 2
and 5, (i.e. [§ ) predicts a gradual rate of yielding

than the element orientation of mesh #'s 1 and 4, (4

B 1. 1Ia Pig. 4.6(h) results obtained for mesh #'s 3,
4 and & are compared to study the effect of the shape of
the elements on the rate of yielding. It is chserved
that the mesh with equilstersl triangular elements shows
a gradusl tresd for the rate of yielding than the mesh

eonsisting of right angled triangular elesent In the

same plot (Fig. 4.6(h)) curve for mesh #6 iz alsc drawn,
which gives the best trend as far as the rate of yielding
is concerned.

Considering the yield patterns as the yielding pro-
geesses, Figs. A.l to A6 of Appendix A show that each

fentation of the elements gives & inct yield pat-

rn. In mesh #'s 1 and 4 f{see Figs. A.1 and A.4 of
Appendix A) the yielding progresses in vertical strips,
first downwards and then extends towards the right. In
mesh #'s 2 and % (see Figs. A.2 and A.5 of Appendix A)
and also in mesh #'s 3 and § (see Figs. A.3 and A.6 of

Appendix A), the y g P diagonally dowsvards

starting from the V-potch. Yield patterns of mesh 46



(see Fig. A.6 of Appendix A) compare well with the yield
patterns presented by Yamada et al. [32].
From Figs. A.l to A.6 of Appendix A it can alsoc be

n that the yield patterss cbeained just before failure
is scmewhat similar in all the six meshes considered.
Comparing the ylelded area under the V-noteh with the
total area under the V-notch, the following is comcluded:
For the quarter panel considered, mesh #1 predicts the
highest (18.3%) ylelded area, whereas, mesh #6 predicts

the lowest (13.6%] yielded area (s Table C.1 of

Appendix C). Considering the total ares yielded juse
before faflure, the values in the last column of Table
€.1 of Appendix € for cach mesh are compared. Mesh #'s 1
and 4, mesh #'s 2 and 5, and mesh #°'s 3 and & are come
pared to evaluate the effect of grading of the mesh on

the total yielded ares predicted just before failure. It

can be sesn that by decreasing the clement area to about

504 the total yielded ares just before failure decre

by 13%, 16% and 14%, respectively. Alse comparing the
walues zeported in Table C.1 of Appendix C for mesh #'s
3, 4 and § which have about the same mesh grading, it is
shserved that the total area yielded just befors failure
for these moshes is 17.2%, 15.9% and 16.6%, respectively,
of the guarter specimen area. This shows that by the
effect of slement erientation (i.e., comparing Bl te
B ) and the effect of element shape (i.e., isosceles



right angled triangle to an equilateral triangle} is not
significant on the prediction of the total yielded ares
provided the mesh grading is kept the same in all the
comparisons made. For the same mesh pattern a cruder
mesh would predict a higher total yielded area.
Considering the effect of meah orientation on the
total yielded area predicted just before failure it can
be 8

n by referring to Table C.1 of Appendix C that mesh
#2 predicts a 8% higher value than mesh #1 and mesh #3
predicts a 4% higher value than mesh #1.

Finally, it can be concluded that a finer mesh pre-
dicts better yield patterns tham a cruder mesh. Further-
more, a sesh composed of equilateral triangular elements
in the expected yield zone predicts better results than
the mesh composed of isosceles right angled triamgular

eluments.

44 P Time

As mentioned in Chapter III, the computer progras
PLAST developed 4in this stody is executed on  the
University of Oklahoma's IBM 3081 computer. The computer
progran developed by Yamada et al. [32] was run on an IBK
7030 computer, 5o a relative cemparison of the CPU tise
for the executien of the two computer programs is mot
very appropriate. But a comparison of the CPU times
taken to amalyze the six meshes used in this study is
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made in this sub-section. The CPU time taken to analyze

these mesl

by the computer program PLAST are tabulated

in Table 4.4 and are categorized as follows:

i

2

3

CPU time for initisl data preparation: This
includes the CPU time taken in reading of the
imput mesh information, setting-up of certain
arrays needed to control the program execution
and in the optimization of the nodal numbering
scheme 8¢ as to yield a minimum half bandwideh
for an input mesh.

Average CPU time por load cycle: This includes
the CFU time taken to compute the elesent

stiffness matrices, ai

mble the system stiff-
ness matrix, solve the resulting system stiff-

equilibrius equations for nodal displace-
ments, computation of the element incremental
stresses and updating of the element total
stresses in cach incremental load cycle.

Toral CPU time for the program executien: This
is the cumulative of the time taken to perform
the amalysis for all the lesd cycles till fail-

ure oecurs.

From Table 4.4 it can be observed that the CTU tine

taken to conduct a complete failure analysis depends

largely on the total mumber of elements used in the £i=

nite element mesh. For a finer mesh more computer time



is needed to read the input data and in setting-up of the
arrays which contrel the progras execution (for e.g..
nodal degree-cf=-freedom numbers). In addition, at this
stage the CPU time taken will alsc be a function of the
node numbering scheme adopted for the input mesh, The
computer program PLAST u

a bandwidth optimization sub-
roatine. For an input mesh which is constructed using a
grid pattern (for e.g., mesh #°s 1, 2, 5 and € it is
easy to visualize the node numberinrg scheme which would
yield & minimum half bandwidth ef the system stiffness
matrix, but that may not be the situation for other mesh
patterns (for e.g., mesh #'s 3 and §). For the

x mesh=
w8 studied Table 4.5 summarizes the maximun node differ-
ence, IDIFF, before (i.0., of input meshl and after the
bandwidth eptimizavion. It can be seen that for mesh #°s
3 and 6 additional CPU time is used to renusber the inpat
o8k nodes in order to yield s minimum half bandwidth.
This is an important step to be dome since the CPU time
taken to solve the system equilibrium equation at each
load increment will be greater if the half bandwidth is
greater.

From Table 4.4 it can alsc be concluded that &s the
mesh is refined the number of load cycles needed to con-
duct the failure apalysis increases. In the plasticiey
logic used to develop the coRputer program PLAST in each
lcad cycle the load increment is computed so as to yield



Table 4.4

CPU Time Taken for the Execution of the
Computer Program PLAST

Mesh Number | Number | CPU Time Average Total Total CPU
Designation|  o¢ of for Input  |CPU Time| Cycles | Time for
Nodes Elements [ and Setting-|Per Load | Till Program
-up Cycle Failure | Execution
(sec.) (sec.) (sec.)
#1 98 160 3.3 22 23 52
#2 98 160 3.0 25 18 62
#2 180 320 95 72 36 287
#4 174 300 7.6 5.5 28 162
#5 174 300 7.2 5.0 55 168
#6 327 600 24.4 19.0 47 955

91



Table 45 CPU Time Taken for Input and Setting-up
by Computer Program PLAST
Mesh Number | Number IDIFF IDIFF CPU Time
Designation | of of Before After for Input
Nodes | Elements | Optimization [Optimization ﬂSd Setting-
L )
P (sec)
#1 98 160 9 9 3.3
#2 98 160 10 10 3.0
#3 180 320 98 18 9.5
#4 174 300 13 13 7.6
#5 174 300 14 14 7.2
#6 32t 600 174 23 24.4

89T
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the remaining elastic elements in which the effective
streas, o e falla within the range 0.995 P % o ., <F,,
whers F, i8 the yield stress of the material. For each
of these elements, and for each of the previously yielded
elements, the element stiffness matrix has to be updated

te compute the i 1 strains and

due te this incremental load. Thus, in this manner the

lding of the For a finer mesh
since smaller size elements will yield in each successive
load cycle so more load cycles will be needed to reach
the yield pattern at failure. This was the reason that

the CPU time for mesh #

1 and z is about the same (2.2
to 2.5 sec.). Similarly, the CPU time in mesh #'s 3, 4,
amd 5 is about the same (5.0 to 7.25 sec.). The CPU time
for mesh #6 is the highest (19.0 sec.) because it has the
lesst olement area and the maximum nusber of elements.
From Table 4.4 it can alsc be chserved that the mesh
pattern used for mesh #'s 1 and 4 (i.e., A 1 takes
lesser total CPU time than the mesh patterns used for
mosh #'s 2 and § (f.e., [ ). Looking at the effect
of the shape of clement it can be cencluded that the use
of equilateral triangular elements in the yield zene in
mesh #3 increased the total CPU time to about 74% as
compared to the isosceles right angled triasgular
slements used in mesh #'s 4 and 5, although the total
mumber of elements and the minimum area for the three
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meshes is about the same,

Finally, relating the discussion in this sub-section
to that of Sub=section d.4.1, it can be concluded that
the use of a finer finite element mesh, especially with
equilateral triangular elements cost more CPU time than a
mesh with isosceles right angled triangulsr elements,
but, the results converge towards the exact selution
faster as the mesh is refined. So there is 4 trade-off
between the computer cost and the degree of accuracy

required.

The center pre-cracked rectangular panel temsion
specisen, as presented by Miller et al. [24], and later
also analysed by Belie [3], Kumar [20] and Shammaa [31],
s chosen as the numerical example to verify the computer
progeam CRACK developed in this study. The gecmerry of
the specimen chosen is shown in Fig. 4.7. Due to its
symmetry about both the x- and the y-axis, oaly a guarter
panel needs to be analyzed. The guarter panel and the
boundary conditicns thus impesed are shown in Fig. 4.8.
The B a lar panel dered is subjected

to s tensile load uniformly Adistributed on the edge
areas. It should be noted that the modal leads applied
are parallel te the y-axis. To incorporate this type of
loading necessary changes had been made in the Subroutine
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Pre-crack length =23 in.

Fig. 48 Cuarter Panel Considered For The
Analysis of Center Pre-Cracked
Rectangular Panel Tension Specimen
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LODING, as described in Secticn 3.2.2 of Chapeer IIL.

The test specimen is made of I024-T3 alumirum. The
uniaxisl st

strain curve for this material fs given
in Fig. 4.9. The nonlinear portion of the curve is
divided into five linear segments. The values for the
modulii of elasticity, the stress and strain of the end
points of these segnents are given in Table 4.6. The

linearization of the material stry

-strain curve is enly
needed in the pr

nt study to compute the value of the
Heil's fumceion, ' (as gives by Bg. 12.72) of Chapter
11}, for yielded elements .

The differest points selected om the material
stress-strain curve are called yield points. The modulus
of elasticity, E;, for the ith linearized segment ir
obtained from (3, 15, 20, 311

oy =%
o e 4 14.1)

b i ]

where o and ¢, are the engineering stress and the
engineering strain, respectively, for the ith yisld paint

on the ial uniaxial ® in curve, In crder
to compute the value of B' for & yielded element, Eq.
[2.72) of Chapter II is used. In this equation the value
of E is taken as E, [as given in Table 4.€] and the value
of E, is taken a5 equal to E; (as givem In Table 4.6 for
4= 32, 3, 4), where i denotes the segment number in which
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Table 4.6 Material Properties of 2024-T3 Aluminum

Yield Strain Stress ield Moduilus
Point Region | of Elasti-,
Humber Number | city, E |
finin.) i) ki)
L] 0.0 0.0
Efastic 10427.0
0.0045 92!
! i 1 5797
2 0.02175 56.923
2 205
3 0.06375 55304
3 435
4 0.10650 69.615
4 oo
019500 73.462

*  Taken from reference [31]
= Subscript T Denctes linearized segment rumber




the total

ctive stress (3] of the element falls

within (L.e., oy 4 28 2 040

4.6 ;{nn ELEMENT MODELING OF THE CENTER PRE-CRACKED

The guarter panel shewn im Fig. 4.8 is modeled using

trianguolar As stated
sarlier, a very fine sesh is needed near the crack-tip
where the yielding is expected to oceur. In order to ob-

tain a mesh configuration which has finer elements where

g the program by Shammaa [31]
is used. This computer program has a meving mesh refine-
ment eapability. In this pregram the crude input mesh is
gradually refined according to the values of the total
effective stress of the yielded elemsnt. Three different
finite element meshes were selected from Refereace [31]
to execute the computer program, CRACK, developed in this
study. The minimum element areas taken for the different

‘yield points' selected om the uniaxial str strain

curve (see Fig. 4.9) for these three =0 considered
are given in Table 4.7. In this table a value of minisum
ares egual to 999.0 indicates the fracture point on the

-strain curve of the material. A& cride

uniaxial stres
finite elemsnt mesh shown in Fig. 4.10 and the minimunm

avens specified in Table 4.7 were imput in the computer

program developed by Shasmaa [31] for the ultimate frac=
ture failure analysis. The gecmetric data of thess
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Fig. 4.10 Crude Finite Elesent Mesh Used to Prep
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Table 4.7 Minumum Elemant Area Required
at the Yield Points Salectpd On
the Stress-Sirain Curve

Input Minimum Areas (in®)
Yield
Point
Mumber P - s
Mesh #1 Mesh 11 Mash #1
] 0.781 0.781 0.781
1 0.700 0.700 0.700
2 0.700 0.100 0.100
3 0.700 0.100 0.030
4 0.700 0.100 0.010
5 0.700 0.100 9.003
& 209.0 289.0 990.0

Taken trom Raterance [31]
Shammaa's Run #2
Shammaa's Run #3
Shammaa's Run #5
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finite element meshes obtained from this computer program
for each data set of Table 4.7 were saved, The three
finite element meshes #¢ obtained are taken as input
meshes for the computer program CRACK developed in the
present study. The details of these three meshes, called

mesh #1,

sh #2 and mesh #), are summarized in Table

4.6, and the mesh configurations are shown in Fig.
411,

The three input meshes, as described in Section 4.6,

were analyzed using the computer program CRACK. Results

for the various are in

the subsequent paragraphs in this sectien.

4.7.1 First Yield Load and F re Failure
Load

The values for the firse yleld load ard the ultimate
fracture failure load, predicted by the computer program
CRACK are summarized in Table 4.9 for the three meshes.
In this table the results predicted by analyzing these
meshes by the computer program developed by Shammaa [31)
and those reported by Miller et al, [24] are also re-
ported, Comparing the ultimate fracture failure load ob-
tained in the present study to the experimental value re-
ported by Miller et al. it was cbserved that the computer
program predicted 451, 39% and 290 higher values for



Table 48  Input Meshes Used In The Analysis of the
Center Pre-Cracked Rectangular Panel
Tension Specimen

Mash HNumber Nurnber Minimum
Designation of of Area at the
Nodes Elements ‘i!’ﬂfik]'ﬁp
in.
1 189 3z 0.1953
2 G608 1077 0.0488
3 o771 1548 0.00005




mesh #'s 1, 2 and 3, respectively. The ultimate fracture
failure losd predicted by the computer program CRACK for
mesh #'s 1, 2 and 3 is 318, 23% and 11%, respectively,
higher than the analytical value reported by Miller et

al. Cemparing the ultimate fracture failure load pr

dicted by the present study for mesh #'s 1, 2 and 3 with
mesh #'s 2, ) and 6 of Shamnss [a® referenced by Shammaa

., ¥ the p dai is +TEN,

+65% and +51%, respectively. Comparing the ultimate
fracture failure load predicted by the computer program
CRACE for mesh #3 to the ultimate fracture failure load
predicted by the Shammaa's program using mesh #3 a3 the
input mesh it is seen that the former predicts a 54%
higher value than the later one.

Comparing relatively the resules reported for mesh
#°s 1, 2 and 3 in Table 4.9 it can be observed that mesh
#1 (which has a 75% higher minimum element area tham that
for mesh #2) predicts a 38% higher valus for the firet
yield load than mesh #2. And, mesh #3 [which has &
minisum element area that is 976 times lower than mesh
#2) predicts sbout a 5 times lower value for the first
yield load than mesh #2. Feor the ultimate fracture
failore load mesh #2 predicted s 12% lower and 14% higher
1 and 3, respectively.

valus than mesh



Table 4.9 Summary of the First Yield Load And Ultimate Fracture Failure Load
Predicted for the Center Pre-Cracked Rectangular PanelTension Specimen

Results Predicted by the
Computer Program CRACK

Resulls Predicted by Shammaa's
Computer Program [ 31 ]

Ultimate Fracture Failure

Load Reported by

Y

Miller et al. [ 24 ]

% First | Ultimate | Displacement | First | Ultimale -} Displacement
= Yield Fracture | at Ulimate Yield | Fracture | at Ultimate
esionation | 1 oeq Failure | Fracture Load | Failure | Fracture
Load Failure Load Failure Experimental | Analytical
(ksi) (ksi) (in.) (ksi) (ksi) (in.) (ksi) (ksi)
#1 | 1e.601 43.716 0326 | 104 | 248 o5
] 14.161 | 39.197 0.254 10.1 238 0.22 24.0 30.0
#3 | 2877 | 33839 0080 |01/ [ 224 L)ooy g
148" 21.9 0.1

Using crude mesh as input mesh and gradually refining

as per values indicated in the third column of Table 4.7

Using Mesh #3 as the input mesh

€81
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4.7.2 Losad-Displacement History

The load-displacemsnt histories obtained for the
finite element meshes considered are given in Figs. 4.12
and  4.13. In Figs. 4.120(a) to 4.12(c) the load-
displacement histories for mesh #'s 1, 2 and 3, respec-
tively, obtained from the computer program CRACK are
compared to those cbtained by the computer program devel-
oped by Shammas [31]. It can be observed from Figs.
4.12{a) to 4.12{c) that the computer program developed by
Shammaa [31) predicts lower values of loads when compared
with similar results predicted by the computer program
CRACK, whereas, the values cbtained for displacements at
the ultimate failure are about the same by the two

computer programs. The main reason for this difference

ms to be dus to the differences in the analysis
procedures adopted in the two studies. For the ron-

linear region of the material uniaxial str train

curve Shammas performs an slastic analysis by simply

changing the values of the modulus of elasticity, E, and
the Poissen's ratis, v, of the yielded elements deperding
on which linear segment their effective stress lies with-
i, On the other hand, in the present study an incre-
mental plasticity approach is used to model the behavior
of the yielded elements in the nonlinear region of the
material uniaxial stress-strain curve. Thus, in the pre=

sent study the material behavior in the nonlinear range
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is modeled more differently.
It can be cbserved from Fig, 4.12{c) that there is a
significant difference in the failure displacement pre-

dicted by the two curves. The reason for the difference

can be explained by locking at the values tabulated in
Table 4.7, in which mesh #) is cbtained from Shammaa's
computer program [31] by graduslly refining the yieldsd
elemgnt area from 0.7 sq. in. at first (initial) yield to
©0.003 sg. in. at fracture. In Fig. 4.12i(c) the load-
displacement curve by Shammas is for this graduslly

refined mesh, whereas, the load-displacement curve Ie=

ported by the present study is the case when the fimal
refined mesh is analyzed by the computer program CRACK.

This comparison shows that the load-displacement results

d are greatly on the element area used
net only for the fractured elements but alse for the
yielded slements. To confirm this it was decided to
re-run mesh #3 (used for computer program CRACK] as the
input mesh for the Shammaa's computer program and not

1 for any The load-displ t

curve for this run is plotted with the load-displacement
curve cbtained by the present study in Fig. 4.124d).
From this figure it cap be seen that using the refined
mesh (as used for the present stody) the computer program
develeped by Shasmaa and that developed in this study
predict similar displacement values at the ultimate



fracture failure.
In Fig. 4.13 the load-displacement histories ob-
tained by the computer program CRACK for the three meshes

analyzed are plotted and compared with the experimental

ult cbtained by Miller et al. [24], which is shown by
the horizontal line in this figure. Miller et al. have
net reported any displacement results. It can be ob-
served from this figure that all the curves have about
the same slope in the linear portion. Alse, it can be
inferred from this figure that ss the mesh is refined the
failure load decreases and approsches towards the experi-
mental value reported by Miller et al. [24).

4.7.3 Yield Patterns

The yield patterns for the meshes considered to ana=
lyze the pre-cracked rectangular panel tension specizen
are given in Figs. B.1 to B.) of Appendix B. The yielded
elements are represented by the shaded area in these
figures. Considering the location of the first yield it
can be cbasrved from part (a] of Figs. B.1 to B.J of
Appendix B that all the three meshes predicted the
initial yield to occur in an element at the crack tip.

From Figs. B.1 to B.J of Appendix B, it can also be
sbaerved that the yielding progresses towards the portien
of the specimen above the uncracked length. The shape of
the yielded zome predicted feox mesh #'s 1 and 2 (see
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timate Fracture Failure
Loed {experimental) Reported
By Hﬂlir etal, [#4]

Fig. 4.13 LMG I'Hln‘i“l!nt Mﬂnry Comparision for the
Considered for the Center Pre-Cracked
ne:nnquh\- Panel Tensfon Specimen



Figs. B.l and B.2 of Appendix B) look somewhat similar:
triangular region above uncracked length (along x-axis)
yields. But the shape of the yield zome predicted for
mesh #3 is differemt: yielding progresses diagorally
upwards from the crack tip. At the ultimate fracture
fracture, in all the three meshes, about 30W of the area
above the uncracked length (along x-axis) yields (see
part (f) of Figs. B.l to B.) of Appendix B).

Redistribution of the Energy of the Frastured
Yamgrt e

As discussed in Section 2.4 of Chapter II, when an

element fractures it's energy has to be redistributed o
the remaining unfractured system. In this study this Is
done by applyirg the negative of the nodal loads of the
fractured element to the system in small increments. The
nodal loads of & fractured element are computed and
stored in a vector called {PNOD) in the computer program
CRACK. The largest element in this vector is found and
called PHMAX. The elements of the vector (PNOD] are mor-
melized by dividing each value in this vector by PHMAX.
The pormalized load vector is then applied in increments
to the system such that an increment of PHMAX is applied

at

ch lead redistribution step till the full lead
[PEMAX) is applied to the system. In the present study
mesh #1 A4id not give any stable crack growth (1

before the complete nodal load level, PMMAX of the



firse fractured element could be achieved ancther element
fractured), mesh #2 and mesh 43 gave two and three stable
crack growths, respectively. Figs. 4.14 and .13 show
the load level achisved at the end of each load redistri-
H
and 3, respectively. The horizental line in these fig-

bution step for each stable crack growth for mesh

ures shows the maximum value of the load to be achieved
IPKMAX) for each fractured element. It can be cbserved
from these figures that the desired full load level is
achisved within the specified tolerames limits thus ip-
dicating that the dissipation of the energy of the
fractured element into the unfractured system has bean
completed for each stable crack growth. It should be
noted that all the meshes when analyzed by the computer
program developed by Shasmmaa [31] predicted unstable

erack growth,

4.7.5 Crack P ation and Boundary C: ons
Zor Each Feabls Crad T'ETY_M‘SLLxm

etion, out of the

A5 mentioned in the previous sub
three meshes considered for the analysis of the center
pre-cracked rectangular panel tersicn specisen, mesh #1
4id not give any stable crack growth, whereas, mesh #'s 2
and 3 gave two and three stable crack growths, respec-
tively. As mentioned in Subsection 3.4.6 of Chapter III,
if the fractured element is at the crack tip it's node at
the crack tip (if the element node is on x-axis) is
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Rectangular Panel Temsion Specimen



g
i.-\
o seoalh) i
{8} For first fractured lesent

-
P
i\-

0 = B ]
) wiapsll)

{b) For second fractured element

Fig. 4.15 Nmber of Load Steps Fequined o to Redistribute the
wolmm—nwwﬂw
few the Conter PreCracked Rectancular Pane!

Tension Specimen



shepa(f)

e} For taird fractured olement

Fig. 4.15 (oone'd)™= m-bm- of Load Steps Beguired to Redistribute
he Energy of Fractured f.l-nuﬂr Meshil
tvnsiame for the Center Pre-Cracl
Rectangular Panel Tension Sum!-n



195

rel

9d after the redistribution of the energy of the
fractured element into the unfractured system. Dus to
the release of the node at the crack eip the boundary
conditions change for the subsequent incremental load
cyele analysis. In this manner the boundary conditions
are medoled at each stable crack growth, Fige, 4,16 and
4.17 show the boundary conditions imposed at the end of
each stable crack growth for mesh #'s 2 and 3, respec-

tively. In the

figures the elements that fracture have
been shaded in black. It should be noted that these
figures have not been drawn to scale and simply dencte
the results qualitatively. It can be observed from Figs.
4,16 and 4.17 that 4in both the meshes one node is

rel:

ed after the first stable crack growsh and after
that ne other nede is released until the ultimate
fracture failure oceurs. This is becauss in both the
cages after the first element fractures the subsequent
slements that fracture do mot have a new nede (l.e., &
node which was not previously released) on the x-axis,
which is cne of the axis of symmetry. In the studies
reporeed by Miller et al. [24] and Belie [3] for this
problem, the crack length at any load level iz measured
up to the first roller support along the x-axis [see
Pigs. 4.16 and 4.17}. In this study since fracturing of
an element is considered rather than Iracturing of a
mode, as done by Miller et al., it would be appro-
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priate to not enly lock at the propagaticn of the afore-
menticned crack length but to also consider the area of
the elements that fracture. The more refimed the mesh
is, it should be then expected that the crack propagation
path would be modeled more accurately. The results
obtained for crack length and the ares fractured for the
three meshes analyzed in this study are shown in Figs.

4.16 and

17 and are also summarized in Table 4.10.
These results are further explained and compared to
results  Tep in the 1 in the

paragraphs of this sub-section.

As mesh #1 did not give amy stable crack growth
thus, there is no propagation in the crack length. For
mesh #2, which gave two stable crack growths, the node at
the crack tip is released after the first stable frac-
ture, which equals to a crack propagation of about 0.3125
in. and the new crack length beccmes equal to 2.612% im.
And, since after that me further node is released (see
fracture path for mesh #3 in Fig. 4.17) the crack length
fractuve failure remains at 2.8125

just before ultims
in. The same is true for mesh #3, (see Tig, 4.17) which
has & crack propagation of 0.01%5 in. after the first
stable crack growsh and so the aew crack lengeh becomes
equal to 2.5195 in., which resains the same until the
uleimate fracture failure of the structure ooours isee

Fig. €.18). Belis [3] obtained & crack lengeh of 2.766



Table 4.10

Summary of Total Load, Total Area Fractured and Crack Length

At Each Successive Fracture For The Center Pre-Cracked
Ractangular Panel Tension Specimen

. For Mesh _#1 For Mesh #2 For Mesh #3
e [Total Total Total
Number Total  |ara Crack Total | Area Crack Total | Area Crack
load |orooired | Lenath | 10 [Fractured | Length | Load | Fractured| Length
- ”
(ksi) (in.%) (in) (ksiy | @ 2) (in) (ksi) @3 | G
1 43.716 | 0.1953 |2.5000 38.006 | 0.0488 | 2.5000 | 32.927 |g goo19 | 2-5000
2 = . L 38.198 | 0.0076 | 2.8125 | 33.473 [0.00024 | 25195
4 = I, - 39.107"| 0.1465 | 2.8125 | 33.772 [0.00020 | 25198
4 2 ” . o e = 33.839 |go0a3 | 2:5195

Load at ultimate Fracture Failure

66T



in. st ultimate fracture failure by using three noded

ri lar finite o the probles,
Both Shammas [31] and Kumar [20] did not obtain any crack
propagation for this problem since in their anslyses the
specinen failed just after the first element fracture
occurred. It should be noted that all the three latter
studies used “zerc modulus-unload-reload” method te
distribute the energy of the fractured element into the
nonfractured system.

As mentioned in Sub-section 1.3 of Chapter I in the
method suggested by Miller et al. [24]) fracturing of a
mode is considered and the method is applisd to model the
failure along the lines of symmetry. Thus, the analysis
of the center pre-cracked rectangular panel tension spec-
imen by the method suggested by Miller et al. pre-fixes
the direction of the crack propagation. In the present
study since the fracture of an element is considered so

the Eracture path (i.e., areal is not pre-iixed.

4.7.8 Frageure Path and Load at Bach

The fracture path for mesh #'s 2 and 3, drawm to
scale, is shown in Figs. 4.18 and 4.19, respectively. Im

th figures the fractured slements are shaded in black.

It can be cbserved frem these figures that the fracture
stares at the crack tip and procesds diagonally upwards
over the uncracked lemgth. A similar fracture pattern
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Initial crack length

Fracture Path Predicted For Mesh#2 for the
Center PresCracked Rectangular Panel Tensiom
Specimen
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) e Enlarged View of the

/ AR tircled Porticn

Initial crack length

Fig. 4.29 Fﬂﬂll?l Path Predicted For Meshid for the
P Pro-Cracked Rectangular Panel
Tennen Specimen
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has been reported by Belie (3],

The total loads as each successive elesent fracturs
oceurs for mesh #'s 2 and 3 are tabulated in Table 4.10.
In mesh #2 the total load incresses by 0.5% and 2.5V,
respectively, beyond the initial fracture load during the
two successive fracture growth cycles, whereas, in mesh
#3 iwhich is much finer that the former mesh) the total
load incres

by 1.63%, 0.9% amd 0.2y, respectively,
beyond the initial fracture load during the three succes=

sive stable fracture growsh eycles.

47,7 Computer CPU Time

The eeeputer CFU time taken by the three meshes
analyzed by the computer program CRACK developed in the
present study are summarized in Table 4.11. In this
table the computer CPU time taken by the computer program
developed by Shammaa [31] are also indicated.

From Table 4.11 comparing the CPU times taken by
mesh #'s 1 and 2 amalyzed by the computer progran CRACK

e meshes using

to the CPU times taken by executing th
the computer program developed by Shammaa, it can be
observed that the computer program CRACK takes 7.14% less
CPU time for mesh #1 and 48.%5%, i.e. more CPU time for
mesh #2. In Table 4.11 for mesh #3 two CPU times are
reported for executing the computer program developed by
Shammas. The first CPU time (45.0 min.) i the time



Table 411 CPU Time Taken To Analyze The Center
Pre-Cracked Rectangular Tension Speciman
Mesh CPU Time Taken CPU Time Taken
Designation | By Program CRAGK | By Program Developed
By Shammaa [31]
(min.) {rmin.}
#1 4.2 4.5
#2 53.7 27.7
#3 283.4 176.0 /2505

Using crude mesh as input mesh and gradually
refining as per values indicated in the third
column of Table 4.7

**  Using Mesh #3 as the input mesh
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caken to analyze the crude mesh (see Fig. 4.10 and Table
4.7) and the second CPU time (250.5 min.) is the CPU time
taken when mesh #3 ie taken as the inpat mesh. Comparing
the CPU time taken for analyzing mesh #) by the cosputer
program CRACK to the CPU time taken for amalysis the
similar mesh by Shammaa's computer program it is found
that the latter took 11.61% less CPU time. Since the
computer time ard costs for mesh #3 itself were guite
significant no further cases of mesh refinement were
executed using the computer program CRACK. From Fig.
4.13 it can be seen that as the finite element mesh is
refined for the center pre-cracked rectangular tension
specimen the results predicted do show a cenvergent trend
toward the 1 uitimate failure load

reported by Miller et al. [24]. Hence, it is expected
that a much finer mesh than mesh #3 in the expected yield
zone would predict the failure load closer to the experi-

mental value.



CHAPTER V
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 SRy
In the presest study twe computer programs are
develeped to analyze nonlinear elasto-plastic probl

5
using the finite element method. The first computer
program is called *PLAST". It's analytical formalation
is developed based on the incremental plasticity theory
and it has the following capabilities:
{£) Locates initistion of yielding and the iniedal
yield losd based on a selected yield criterice.
144} Pred the yield at diff 1ead

levels of the structural systesm.

fiii)Predices the failure load based on the failure
criterion suggested by Yamads et al. (321, im
which failure is said to ooour when the incre-
mental plastic strain becomes a negative number
during any load increment.

{iv} Predicts the load-displacement histary of the
structure up to failure.

The second computer program developed is called

206
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TCRACK". It is an extension of the computer program
FLAST sc as to possess the following additional

capabilicl

(i) Locate the crack initiation and predict the
path of crack propagation.

(i1} Predict stable and unstable crack growth.

{iii)Predict the load-displacement history of the
structure up to collapse or ultimate fracture
failure of the structure. It should be noted
that the mode of failure here is defined dif-
ferently than that defimed by Yamada et al.
13zy.

{iv) Directly predict the ultimate fracture load and

the cor flection of the
comprised of slasto-plastic materials.
The two ecmputer programs are written in FORTRAN 77 for
the IB% 3081 computer at the University of Oklahoma.

The first computer program PLAST uses an isotropis
plasticity hardening model to march along the nonlinear
portion of the material unimxial stress-strain curve.
Incremental plasticity theory and the von Mises yield
criterion are used for the analytical formulation. Con=

stant stress-strain triangular finite elements are used

to discretize the structural systes and small displa

ment theory is used to ibe the

relationships.
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To start the analysis a unit load is applied to the
system and the systes nodal displacements are computed,
which are used to compute the incremental strain and the
inoremental stress components for each element. The
incremental effective stress for cach element is then
computed and the element having the maximum value of this
effoctive stress is made to yield by setting it's effec-
tive stress equal to the material yield (initial yield)

stre The stre

8 of all the remaining e

ments are scaled accordingly. Then a small a
cremental load is applied and the analysis is carried cut

using the elaste-plastic material matrix, [o% for the

yielded element, The system incremental modal dlsplace-
ments are computed, which are used to cospute the im-
cremental strain and stress components for each element.
The incremental effective stress of each element is then
computed, which is used to find the most stressed elastic
element, as dene before. A load scaling factor is then
computed such that if the sssumed incremental load is
multiplied by this scaling factor the mest RNighly
stressed elastic element will yield. All the incremental
strain and stress compenents computed for the assuned
incremental load are then mulriplied by this scaling
facter and the results are added to the strain and stress
components computed at the end of the previcus load
eycle. This gives the total strain and stress components



for each element, which are used to compute the total

sffective stre

©f each element. Finally, the incre-
mental plastic strain is computed for all the yielded
elements as the final quantity for this load cycle. If
this value is negative for any yielded element then
failure due to excessive yielding is said to occur [32].
The total load at the end of this load cycle is reported
as the failure lead and the execution of the computer
program is terminated. 1f the valus of the incremental
plastic strain is positive for all the yielded elements
then the analysis proceeds with the application of the
incremental losd applied for the next lesd cycle. This
process is continued till the failure of the structure
cecurs due to excessive ylelding, as defined before in
each load cycle an autcmated logic is encorporated in the
computer pregram to locate the elastic elemsnts which

have a totsl effective strel 1

F.zr' than or egual
to 59.50 F, and yield them all together by setting their
total effective stress equal to the material yleld
stress, F. This is done simply to speed up the program
execution.

In the cemputer program CRACE the failure eriterion
suggested by Yamadn ot al, [32] is removed and replaced

by the ecriterion that if the effective stress of an

element computed based on vea Mises theory becomes equal

to the fracture stress of the material then that element



will be considered to have fractured. Thus, the analysis
is carried out on similar lines, as described for the
computer program PLAST, until the total effective stress
©f an element becomes equal to the material fracture
stress. Defore application of any further load the
strain energy of this element has toc be redistributed
into the remaining unfractured elements. This is done by
using an "element rodal load releass” method, in which
the negative of the nodal loads of the fractured element
are applied to the system in increments till the full
load levels are achieved. This would prestress the
remaining unfractured elements in the vicinity of the
fractured element. This procedure is described in the
subsequent paragraph.

In the "element modal load release” method first the
nedal loads of the fractured element are computed and am
array containing the negative of these nodal leads is
formed. This array is mormalized with respect to the
maximum value in the array, say PHMAX. The system load
vector is assembled using this normalized array and con-

sidering that these loads are only acting at the nodal

g of the element. A small in-
crement of PHMAX is applied to the system (without appli-
cation of any external leads}. The system stiffness
mateix is assembled such that the fractured element is

not congidered in the assembly. The system stiffness



equilibriun equations, so cbtained, are molved for the

system nodal displacements, which are used to compute the

incremental stress components for each element. Thess
are added to the total stress components which were com-
puted at the end of the previcus load cycle (i.e., when

fracture occurred) to give the total str

components
for sach element for the current load cycle. The total
effective stress for each slesent is then computed. All
the yielded elements having thelr tosal effective stress

for the current load cycle less than their total effec-

tive stress at the end of the previcus load cycle are
called unloading yielded elements. If there is any such
unloading yielded element present then that load re-

a cycle is and the systes stiffress

matrix is reassesbled using the elastic element stiffness
matrix for such elements. The analysis is repeated using
thiz new system stiffness matrix and the previcus system

load wector. To decre computer costs this procedure

of ehecking for unleading yielded slements is performed
for & pre-fixed (say four) nusber of iteration cycles

iteration

with the expectation that by the erd of the
eycles the unloading yielded elements will start picking
up the stress and becoss loading elements (which they
should be). The total load achieved by the fractured
element 4s then computed by adding the increments of
PIOX applied. The emergy redistribution is sald to be



completed when the total load achieved by the fractured
element becomes equal to the PHMAX, within some allowable
tolerance limit. Further external load increments are
then applied until another element fractures. Again the
strain energy of this element is redistributed into the

systes, crack growth is
said to occur if another elesent fractures before the
strain energy of a fractured element has been completely
redistributed into the unfractured system. The total
load at this stage is reported as the ultimate fracture
failure load of the system and the execution of the
computed program is terminated.

The computer program PLAST is verified for the
Y-notched tension specimen presemted by Yamada et al.
[32). The computer program CRACK is wverified for the
center pre-cracked rectangular panel tension Specimen,

presented by Miller et al. [24] and which has been alss

analysed by Belie [3], Xumar [20] and Shammaa [31].

5.2 COBCLUSIONS
The following conclusions are drawn by using the
computer program PLAST for the analysis of the V-notched
tension specimen:
(1) The computer progrem pradicted results for ini-
tial yielding, losd-displacement history and
failure load due to excessive yielding that
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compared very well with the results reported by
Yamada et al. [32].

The computer program was also suce

fully ver-
ified to ascertain the effect of the use of the
three-noded triangular finite elements, as far
as mesh grading, orientaticn and shape of ele-
ments are concerned, on the prediction of the
results. Thres mesh patterns [orientation and
shape of olement are kept the same in a mesh
pattern only mesh grading is changed) were
adopted to analyze the test V-notched temsicn
specimen, The following conclusiens are drawni
ta) In each case, as expected, & coarser mesh
predicted a higher value of the failure
lead than a finer mesh. Kesping the mesh
pattern the same as a mesh is refined the
load-displacement history shows an upper
bound convergence trend.
ib) Por the same order of mesh grading it was
found that a mesh cortaining equilateral
trinngular shaped elements in the expected
yield zone predicted better results for
failure load and yield patterns. However,
the computational cost for such a mesh
would gemerally be greater than the mesh
obtained By joinimg the disgonals of a
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geid.  This is due to the faot that the
half bandwidth of the system stiffness
matrix for a mesh containing equilateral
triangular shaped elesents would usually
be larges.

{e]l The choice of the shape and the orienta-
tion of the triangular elements in the
yield zone have a greater sffect cn the
results predicted by & coarser mesh. This

effect was observed to be more significant

for the maximen displacement predicted
just before failure rather than the load
level predicted at failure. Thus, §t Sa
recommended that Lf & coarser mesh has to
be used, based on limitations of computa-
tional costs, the use of equilatersl tri-
angular elements in the expected yield
zone may be a better cholce to cbtain more
accurate results.

id4) Due to mesh refinement, In the limit, the
load-displ t  history by

different mesh patterns weuld tend to com-

verge towards the same answers.
The following conclusions are drawn by using the
somputer program CRACK for the analysis the center pre-

cracked rectangular panel tension specimen:
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The computer program FLAST when extended to
perform fracture analysis gave satisfactory
results for prediction of initial fracture,
stable crack growth and load-displacement his-
tory up to ultimate fracture failure. To ex-
tend the program PLAST to predict crack ini-
tistion the yielding failure criterion sug-
gested by Yamada et al. [32] was removed and
replaced by the criterien that if the effective

str

of an element, cosputed based on von

Mises yield theory, becomes equal to the

fracture st then the elesent would be

to have This failure

criterion p results that with

the analytical resslts reported by Miller el
al. [24], Belie [3], Fumar ([20] and Shammaa
[31] for the same probles.

As the mesh in the expected yield zone was
refined the load-displacement history predicted
showed an upper bound convergence trend. In
this study the problem was analyzed for enly
three mesh gradings, dus to high cosputer costs
invelved (the erudest mesh took about 4 minutes
of computer CPU time and cost §56, whereas, the
fimer mesh tock about 283 minutes of computer

CPy time and cost §3,%62). It is expected that
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the results would have improved more lespecial-
1y the prediction of the failure losd level) if
the area of the yielded elements in the mesh
was decreased further. The finest finite
element mesh analyzed by the computer program
CRACK predicted 25 higher ultimate fracture
failure lcad as compared to the experimental
value reported by Miller et al. [24).

The level of grading of the mesh in the expect-
ed yield zone significantly effects the value
predicted for the maximum displacement at fail-

ure. Both the computer programs, i.e., the

computer program CRACE developed in this study
and the moving mesh refinement computer program
developed by Shammaa [31], predicted a higher
value for a cruder mesh relative to that pre-
diceed by s finer one. However, it was ob-

served that if the gradual mesh refinement

option is implemented using Shazmas's computer
progran then a much larger (for the mesh #3 in
this study it was found to be twice as large)
maximun failure displacement value is scmetines
cbtained, relative to the wvalue predicted if
the mesh was refined such that the area of each

yielded element {i. at first yield) is equal

to the desired fracture element area. Thus, it
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17

may be desirable to refine the input coarser
finite element mesh such that when any element
yields for the firse time then it is sub-
divided (i.e., it is refined) such that the

minimum sub-elemental a

inside this element
become equal to the minimom element area for
the fractured element, The smaller the area
adopted, the more sccurately the fracture path
would be modelled.

A significant difference is cbserved between
the load-8isplacement histeries predicted by
the computer program CRACE and that predicted
by executing the computer program developed by
Shammss [31] for the same mesh. The reasons
for this difference can be sttributed to the
difference in the modeling of the material
behavior in the nonlinear range of the uniaxial
material stress-strain curve and the procedure
adopted to redistribute the energy of the
fractured element inte the unfractured system.
Shammas approwimated the material uniaxial
stross-strain curve of linear segments with

each segment material properties being unigue,

defined by its modulus of elasticity, E; (=
slope of the segment), and its Foisson's ratio,
Thus, during any incremental load cycle

i

IVERSITY GF OKLAHOMA
LIHIVERSITY CE
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Shammas performs an elastic analysis by simply
changing the values of the modulus of elasti-
city, E;, and the Polsson's ratie, v, of the

yielded elements depending on which lin

T
segment their effective stress lies within. om
the other hand, in the present study an in-
cremantal pl

ticity appresch and won Ml

yield criterion are used to =model the behavior
of the ylelded elenents in the nonlinear region

of the uniaxial material stres:

strain curve.
Thus, in the present study the material be-

navior in the nonlinear ramge is modeled

differently.

The fracture mechanics computer program devel-
eped  in this etedy predicted stable crack
groweh for two of the meshes for which
Shamsmaa's [31] methed failed to do se. In the
"glement nodal losd release® method presented
the enersy of the fractured element is gradual-
1y re-distributed inte the unfractured system
within the specified error limits.

In the formulation presented by Miller et al.
[24] fracture of a node is modeled such that
the crack is propagated in a pre-fixed direc-
tion. ©n the other hand, in the present study

since the fracturing of an element is con-



sidered, so the fracture path [i.e., area]l is

not pre-fixed,

AECOMMENDATICNS
The following reccssendstions are made for the ex—

tensicns of the study presented in this thesis:

In the lasticity model

in this study the tangential stiffress at the
beginrning of the load increment is used to com-

pute the element stiffne

matrix of the yield-
ed slements. This would produce some disbal-
ance in the syster equilibrius eguations ard
this error would sccumulate as the musber of
incremental load steps increases. In the prob-
lems analyzed, since the load incremsnts wers
computed te be very ssall this error was not
much., HBut this may not be the case for all

problems. 8o, it may be appropriate to incor-
porate an iterative logic to update the element
stiffress matrix of the yielded elements such
that during each load analysis cycle the dis-
balanee is within some specified tolerance.

of course, would imcrease computer the

costs in order to gain accuracy.

{2) & general kinematic hardening model sheuld be

4, whick nts for both
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and translation of the yield surfac

Also,
apply these for different failure thecries, for
®.5., von Mises, St. Venant, Tresca, Mohr
Coulonb, ete,

Incorporate & library of two- and three-
dimensional finite elements in the computer
program, such as, four- and elght-noded
two=dimensional quadrilateral isoparametric
elements, three-dimensional eight-noded iso-
parametric brick elesents, ete.

Incorporate the effecte of changes in thickness
and temperature.

Extend the analysis to model the behavior of

structural systems which have more than one

crack present. Modeling of opening and closing
of such cracks, depending on the level, should

be considered.
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APFENDIX A

Yield Patterns for the Test V-Fotched
Tensicn Specimen
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{a} Ax Inirisl Yield= 4:6.5 kg- (b) At Load = 718.5 kg,

(&) At Load = 768.7 kg, (4) At Lesd = T7L5 kg

!
P |
777 {
==
(o) At Load = 7734 kg () At Failure = 773.% k3.

Fig, A1 Tield Pacterns For Mesk #I for the
Test V-Notched Tensice Specimes



N)

() At Inirial Yield = 426.7kg. (b} Ar Load= 728.6. ka.

/'-‘\\\ e
o NN,

T
[ S ot b Lol )
(c) At Load = 7305 kg, () At Load =763.4 kg
NN, TSI
¢ > ] T
1 T T
It ) |
S TRNSSS
e AN
(o) At Losd = TEB.E kg () At Failure = 770.8 K.

Fig. A4 Yield Paccerns For Mesh #2 for the
Test T-Notched Tension Specisen



=

(o) At Load = 735.5 kg {6} At Tailuse = TALS kg

Fig. A3 Yield Parterns For Mesh #3 for the
Test V-Norched Tension Specimen
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.

Ay

Jhtk
I
\/

2l

AN

W

LA

e} At load = 7I8.7 kg (d) At Load = TIB.7 kg.

[ARAEAR

'

Y
x

(e} Ac Load = 715.9 kg (f) At Fallure = TAL.S kg

Fig. A3 Yield Farterns For Mesh #3 for the
Test v-Botehed Temsion Specimen
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il
ALY
s
L1y

&
AL

() At Initfal Tield= 362.7 kg, (b} At load = E39.8 kg

= KE}

(c) At Load = &86.0

& d) Ar lesd = M5 ke

== =
== =

= =

— - =

= = e

= =

i = '
(&) Az Load = TII.T kg. () At lead =73 kg.

Fig. A.4 Y¥ield Patterns for Mesh 4 for the Test
Werptched  Tengion Specimen



a’ e |
A
e =
= g
(g} At Load = 740.3 kg. (W) At Load = 7434 kg.
= y
Ted. 8 iy (4) At Losd = T46.5 kg.

= R

e = ,‘#—.‘ﬁ

= = ==

(k) Ar Load = 748.2 kg (1} A Faflure = 748.6 ikg.

Fig. A.4 (font'd) Yield Patterns For Mesh 4 for che
Test v-Hotched Tension Specimen
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(e} Ar Initisl Yield= J5L.7 kg. (b) At Load = 579.4 g,

s
)
==
T - K
o, =555 =
fe) At load = 638.9 kg @) A Load = 709.8 kg.

= ]
= 1
et

e
=T
e

(#) At Losd = 729.7 kg, {f) At Load = 731.7 kg.

Fig. A5, Yield Patterns for Mesh 45 for the Twt
YeNotched Tension Specimen



=]

(6) At load = 733.4 kg (h} At Load = TM.0 kg

LAadl

() At lesd = T42.5 kg

(k) Ar Load = Teb.3 kg (1) At Fallure = T45.0 kg.

. A x'a) Ti4ld Parcerms Fox Mesh #5 for the
Fo: kb 4 ® V-Botched Temelon Specisen



AT
T
,'A'A’a-' mmyn»'¢~
oS an =)
e

) At load = 637.91 kg.

G M»o‘-»"qp_—-b'—-dp-__-q
=]

(o) ar Losd = 609.% kg

Fig. A.6 Yield Patterns for Mesh #§ for the Test
Verotched Tension Specimen



(g) At Load = 707.5 kg. (B} At Lead = TO9.P kg

) At Load = 720.4 kg

(k} At Load = 722.6 kp. {1} Ar Fallure =724.7 kg,

Fig. A.6 (Donz'd) Tield Paccerns For Hesh #6 for the
Test VeNorched Tension Specimen



APPENDIX B

Tield Patterns for the Center Pre-Cracked
Rectangular Panel Tensicn Specimen



(8}

At Initial Yieldw 20.7 ksi (&) At Loads 28.9 ksi

N

g} At Loads 34.6 kst {d) At Load= 37.2 ksi

Fig. B.1 yield Patterns for Mesh #1 for the Analysis of
Contar Pre-Cracked Rectanspular Panel Tension



{g) At Load= 42,1 ksi {h} At Ultismate Fracture Fatlure
=437 kst

Fig. B.2 (Conz*dNield Patterns For Meshdl For The Asalysis
of Centor Pre-Cracked Rectangular Pass
Tension Specimen



239

(e} At Loads 25.3 ksi {d]) At Load= 33.3 ksi

Fig. 1.2 Yield Pattems for Wesh 42 for the Malysis
umm—mﬁmwm



g} At Losd= 38.0 ksi (h) At Uitimate Fracture Failure
=39.2 ksi

. B 0 Yield patterns For MeshiZ For The Analysis
Flg. B2 oont'd) - Rf e Pre-Crackes Rectangalar Panel
Tensfon Specimen
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Enlla View of The Circled
Pur::z:dnl' Fig. (&}

(8} At Initial Tield 2.9 ksi

N 0N i P P T
DAL
ddd

e Enla Wiew of The Circled
Sartion of Fia. (5)

{b) At Loade 17.4 ksi

Fig. B.3 Yield Pattemns for Mesh #1 for the inalysis
of Center Pre—Cracked Rectangular Pasel
Tensicn Specimen
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(2] At Load= 20.7 ksi (d) At Load= 25.8 kei

N

(e} At Loags 32.9 ks (f) At Loads 33.5 ksi

Fig. B.3 (Cont'd) Yield Fatterms for Mesh #3 for the Analysis
of Center Pré—Cracked Fectanqular Panel
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(9] At Losde 33.7 ksf 1h} At Ultimate Fracture Failure
*33.8 kst

Fig. B.3 (Cont®@)  Yield Patterns For Meshil For the Analysis
of Conter Pro-Cracked Rectangular Pany
Tension Specisen



APPENDIX €

Summary of Load and Area Yielded for Each
Load Cycle for the Test V-Hotched
Tension Specime



Table C.1  Summary of Load and Area Yielded for Each Load Cycle for the
Test V-notched Tension Specimen
; 2
Mesh Load Level ( Kg ) / Area Yielded ( mni )
#
Cycle
1 2 3 4 5 6 7 8
#
1 416.8/” [a82.6/" [522.0 [633.4 718, 751.7, 755, 769:2
125 25.0 37.5 625 75.0 %7.5 Ts0.0 | 750
728.6
2 426 480, 536, 650 672, 691 711
125 25.0 37.5 50.0 75.0 87.5 112.5 137.5
3 336.6, b2, 475.1, 515.4, 598., 604 609, 635,
6.2 125 8.7 25.0 31.2 37.5 43.7 50.0
. [342.7 402.2 528.0, 539.9, 629.8 681, 686, 8889,
55 1.4 16.6 22.2 33.2 38.8 60.9 66.5
5 351.7 399.2 448.5 555.6, 579 617.3 638.9 687.1,
55 1.1 6.6 27.7 33.2 38.8 443 A%:9
6 278 343. 400, a2, 115 517 534 550,
2.8 85 8.3 10 13.8 6.6 19.3 22.1

sz



Table C.1 (Contd)

Test V-notched Tension Specimen

Summary of Load and Area Yielded for Each Load Cycle for the

2
Mesh Load Level ( kg.) / Area Yielded ( mm. )
#
Cycle
# 9 10 1 12 13 14 15 16
y 760.5 763.3 764.7, 766.3 [167.8 7708/ | 7715, 772.7
212.5] 250.0 287.5 325.0 362.5 375.0 387.5 400.0
743.1 7475/ |753.3 757.3 758.8 759.5 761.4 762.1
2 150.0 187.5| 225.0 250.0 287.5 300.0| 3250 B850.0
3 651.. 657.4, 680.. 689.8, 694.2 701, 705. 709.;
56.2 68.7 75.0 81.2 93.7 100.0 118.7 137.5
4 721.! 724. 731.1 732.8, 734.8, 736.4, 783 739.5
77.6 83.1 110.8 123.9 160.7 193.9 221.6 243.8
692.8 703.5, 709.. 723.6, 725.1 726.2 729.7, 730.9,
5
83.1 94.2 105.3 127.4 138.5 144.0 160.7 193.9
A s61.27 |s92, 505, 610:2 611 632 637 651,
24.8 30.4 33.1 35.9 38.6 41.4 44.2 52.4

9vz



Table C.1 (Contd) Summary of Load and Area Yielded for Each Load Cycle for the
Test V-notched Tension Specimen

Mesh
#

2
Load Level ( Kg ) / Area Yielded ( mm )

Cycle
:; 17 18 19 20 21 22 23 24
1 773. 773. i A d 1= 7
425.0 437.5 -
2 76347 765, I766. 767, 768, Fes. 770, =
375.0 412.5 425.0 437.5| /450.0 462.5 475.0 T
3 7114 713.6 7162, 717.3, 718.7, 722.0 723.4 7262
1437 150.0 162.5 181.2 193.7 2000 | 218.7 243.7
7403 7409 743.4 7442 7445 745.6 7465 748.2
4
265.9 2036 3102 3379|3435 3490 360.1 3656
" 731.7 7324 733.4, 734.9, [736.0 737.7 740.7 741.
232.
10.5 216.1 7 38.2 77.0 404.7 321.3 332.4
654.9 665.9 669.9 l680.4 6829 686.5 691.6 694.2
6
552 579 635 66.2 69.0 745 914 994

Lz



Table C.1 (Cont'd)

Test V-notched Tension Specimen

Summary of Load and Area Yielded for Each Load Cycle for the

Load Level ( kg. ) / Area Yielded (mm ? )

Mesh
#
Cycle| 25 26 27 28 29 30 31 32
#
i N - = = < = -
2 - - , = - = =
7266 728.7 730.0 731.8 7329 7336 7359 736.3
3
256.2 275.0 293.7 306.2 325.0 343.7 368.7 375.0|
7484 = = & = -
4
82.3 - - - - ~ - -
7425 7429 744.3 745.0 - = = =
5
365.6 3712 387.8 398.9) 4 A .
700.2 702.7 704.8 [705.8 707.5 709.9 709.9 7108
6
107.6 1214 1325 157.3 165.6 184.9 193.2| 198.7

8ve



Table C.1 (Contd) Summary of Load and Area Yielded for Each Load Cycle for the
Test V-notched Tension Specimen

Mesh Load Level ( kg. ) / Area Yielded ( mm.? )
#
le

?’C 33 34 35 36 37 38 39 40

1 . . = s 7=

2 v, ’ / / / gl

3 736, 737.8, 7398/ 17415, - - - >
381.2 | “387.5 | 393.7 | 4125 . = - -

- > J / -

5 5 > 7 &l

5 711 718.2 7144 715.4 716. 17.4, 718.2, 19.2,
207.0 229.1 234:6 242.9 259.4 | 267.7 273.2 |,/ 287.0

69z



Table C.1 (Contd)

Summary of Load and Area Yielded for Each Cycle for the
Test V-notched Tension Specimen

Load Level ( kg ) / Area Yielded ( mm.?)

Mesh

#
Cycle | 41 42 43 44 45 46 47 48
! / P . y 3 / » - . =
2 A | A | | | o= | L= | -
3 / > / / / / 7= e
4 N =l | Ao | s | o= | | A | -
B ~ J »” 7 &’ 7 - > =
6 [720.4, 720.9, 721.5, 722.1 22.6 723, 724.7 _

300.8 311.9 317.4 333.9 342.2 | /347.8 353.3

0sz
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