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ABSTRACT: Agricultural water management (AWM) is an interdisciplinary concern, cutting across traditional
domains such as agronomy, climatology, geology, economics, and sociology. Each of these disciplines has devel-
oped numerous process-based and empirical models for AWM. However, models that simulate all major hydro-
logic, water quality, and crop growth processes in agricultural systems are still lacking. As computers become
more powerful, more researchers are choosing to integrate existing models to account for these major processes
rather than building new cross-disciplinary models. Model integration carries the hope that, as in a real system,
the sum of the model will be greater than the parts. However, models based upon simplified and unrealistic
assumptions of physical or empirical processes can generate misleading results which are not useful for informing
policy. In this article, we use literature and case studies from the High Plains Aquifer and Southeastern United
States regions to elucidate the challenges and opportunities associated with integrated modeling for AWM and
recommend conditions in which to use integrated models. Additionally, we examine the potential contributions of
integrated modeling to AWM — the actual practice of conserving water while maximizing productivity. Editor’s
note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems.
See the February 2019 issue for the introduction and background to the series.

(KEYWORDS: groundwater; irrigation; water scarcity economics; decision support systems; soil health; water
conservation.)

INTRODUCTION

One of the great challenges of our time is to
safeguard the supply of water for food production
(FAO 2011). This is generally approached through
the adoption of farm management practices and

technologies that are meant to increase water produc-
tivity, often cutting across traditional systems of
study such as agricultural economics, hydrology, and
agronomy. In the past several decades, individual sci-
entific disciplines have developed models, both empir-
ical and process-based, to investigate problems
related to agricultural water management (AWM)
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(e.g., Gisser and Sanchez 1980; Harbaugh et al. 2000;
Neitsch et al. 2011). Advances in computational
power enable researchers to assimilate more aspects
of AWM into models, which in practice results in the
need for models to encompass systems that intersect
several disciplines. Rather than starting from
scratch, research teams often choose to integrate
existing models in whole or part (e.g., Kendall 2009;
Barthel et al. 2012; Dodder et al. 2015; Bailey et al.
2016; Hrozencik et al. 2017, among many others).
The combined models include more components of the
agricultural system and allow researchers to mini-
mize assumptions concerning system components
that previously would have been modeled separately.

The purpose of this paper was to explore the rela-
tionship between a large and complex problem —
AWM — and a large and complex tool — integrated
modeling. Little work has been done to contextualize
integrated modeling within the practical imperatives
of water conservation at field and larger scales. We
attempt to reconcile the needs of agricultural water
managers with the opportunities afforded by inte-
grated modeling.

Unlike many other reviews of integrated modeling,
this article includes the perspectives of non-modelers.
Scientists who build models may be less directly
involved with data collection at the field level or with
the application of modeling results. As models of a
particular area are constructed, integrated, refined,
calibrated, and validated, the people who work at the
field and management scales are simultaneously
developing innovative techniques for water conserva-
tion, thus changing the underlying processes that
AWM models are designed to capture.

This paper attempts to fill the model-praxis gap by
inspecting the relationship between integrated model-
ing and AWM, using examples from the High Plains
Aquifer (HPA) and other regions. We identify situa-
tions in which integrated modeling is likely to be a
good solution for challenges in irrigation manage-
ment, and propose a decision tree to determine
whether integrated modeling is the most appropriate
approach to a problem. We also present a new explicit
definition of integrated modeling and suggest
research directions for integrated models to accu-
rately reflect cutting-edge practices of AWM.

AGRICULTURAL WATER MANAGEMENT

Definition and Scope

AWM is the process of measuring, tracking, and
adjusting the use of groundwater, surface water, and/

or precipitation, to maximize the ratio of crop water
uptake to evaporation, runoff, and deep infiltration
(Smidt et al. 2016). Agronomic techniques for AWM
depend on type of water source and its proximity, soil
characteristics, and the amount and variability of
seasonal rainfall, among many other factors.
Although dryland agriculture also requires intensive
water management, in this paper we focus primarily
on AWM for irrigation management because irriga-
tion is extractive and thus has a more direct impact
on often limited or nonrenewable water resources
than dryland farming. AWM is practiced in the con-
text of the physical environment, economic con-
straints, and framework of governance (Smidt et al.
2016). AWM is highly contingent on the supply of
water for irrigation, the seasonal variability and tim-
ing of rainfall, and the availability of insurance for
drought-tolerant crops or limited irrigation schemes;
it can also depend on whether producers operate on
their own land or rent it, and if credit is available to
invest in new technologies. Small changes can ripple
through agroecosystems: a change in the United
States (U.S.) Department of Agriculture’s Dietary
Guidelines, or the Department of Energy’s biofuel
targets, for example, can significantly change the
incentives for growing different crops. A shift from
distributed rainfall to concentrated rainfall, without
changing the average growing season precipitation,
can alter the amount of water that infiltrates into soil
and groundwater vs. the amount that drains from the
landscape.

The agricultural water cycle is highly complex,
with potentially unintuitive linkages. For example, a
crop that is fed fertilizer will demand more water
than a nutrient-limited crop, and a diseased crop will
demand less water (see Tanner and Sinclair 1983).
Cover crops help to retain soil moisture in some
areas, while depleting the same in other areas (Fage-
ria et al. 2009). Efforts to save water through
changes in management or infrastructure, such as
canal lining and irrigation systems, can reduce with-
drawals while still resulting in little net change in
consumptive water use, because leakage “lost” from
the canals was previously recharging the groundwa-
ter. New technologies, such as advances in high
application efficiency irrigation or improved crop vari-
eties, can enable full irrigation with less water, but
since water users who adopt these practices will gen-
erally retain the same water rights, this “saved”
water is often applied to other fields that may be
water short (Smidt et al. 2016). Generally, conditions
in soil, crop health, and nutrient availability vary
below the field scale (Cano et al. 2018). Thus, inter-
ventions applied at one scale, such as the manage-
ment of tailwater or center pivot wheel ruts, can be
difficult to capture in the same policy or study as
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management at other scales, such as river flow
requirements resulting from interstate compacts.
While there is often a discrepancy between the scales
of water management and agricultural markets (Han-
sen 2015), today’s AWM, usually based on local water
policies, will ultimately impact food supplies on a glo-
bal scale.

Efforts in AWM span several magnitudes of scale,
from individual producers’ irrigation choices to basin-
wide conservation policy implementation. For exam-
ple, a producer might choose to adopt a more efficient
irrigation application method to increase farm profit
and reduce the costs associated with irrigation. This
type of AWM aims to optimize water use at the farm
level with little regard for basin-wide impacts. In con-
trast, a policy maker or water manager may aim to
optimize water use at the basin level by balancing
the cost of current water conservation with the bene-
fits of increased water availability in the future. Pre-
vious research demonstrates that farm-level AWM
can work against the objectives of basin-wide AWM
in that enhanced irrigation efficiency can increase
irrigation demands if more efficient technology
induces adjustments along the extensive margin such
as irrigating more land or planting more acreage of
water-intensive crops (Pfeiffer and Lin 2014).

Crop water productivity, the crop yield per unit of
water applied, includes both “blue water” (from rivers
and aquifers) and “green water” (from precipitation
and soil storage); this distinction enables irrigation
efficiency to be considered as a separate indicator
(Hansen 2015). To secure the highest possible crop
water productivity in a given environment, other
yield limiting factors (nutrients, weeds, pests and dis-
eases, and pollutants) have to be optimally managed
(Van Ittersum and Rabbinge 1997). AWM practices
which promote and depend upon soil productivity by
enhancing long-term soil health — defined as “the
capacity of a soil to function” — and effective nutrient
usage, which will become increasingly important in
the next century (Karlen et al. 2017). In a simulation
study, Ogle et al. (2012) predicted relatively high soil
organic carbon (SOC) stocks in the western-central
Great Plains due to the positive effect of irrigation on
productivity, an effect that has been validated by
observations (Gillabel et al. 2007; Denef et al. 2008).
Although the effect of changes in soil organic matter
on soil water holding capacity appears to be small
(Minasny and McBratney 2018), the importance of
soil health on crop production is undeniable and is
magnified in situations where AWM policies result in
a decrease in irrigation capacity.

Additionally, the promotion of certain management
practices (crop rotations, conservation tillage, cover
crops, forage crops, micro-irrigation/drip irriga-
tion, deficit irrigation, and precision irrigation) can

increase both green and blue water productivity
while minimizing negative environmental impacts
(Hansen 2015; Hatfield 2015; Stewart and Peterson
2015). These practices were not designed to decrease
water use as such, but rather to increase yield for a
given level of water use or crop water productivity. A
growing literature finds evidence that the irrigation
technology adoption can increase total water use
(Ward and Pulido-Velazquez 2008; Pfeiffer and Lin
2014). These results call into question the capacity of
irrigation efficiency improvements to address water
conservation objectives.

Challenges in AWM

Although AWM is beneficial, its development may
present a “wicked problem” (Brown et al. 2010). Con-
servation involves a large number of decisions and
actors at disparate scales, and optimization in one
dimension invariably leads to sacrifices in other
dimensions. For example, in the extreme case of elim-
inating blue water impacts from irrigation, the
resulting reduction in crop yield would likely lead to
the conversion of grasslands or forests to agriculture
to offset the reduction in overall production. Reducing
tillage can conserve soil water, but also may require
farmers to apply more herbicides, which may then
leach to groundwater. Management practices and
technologies are evolving rapidly, such as improved
tillage, variable-rate seeding and irrigation, improved
soil moisture probes, drones, and smartphone apps.
Farmers must decide which practices will be prof-
itable and easy to use, as well as contributing to sus-
tainability of commodity production on their lands.
Policy makers must decide how to use their political
capital in the most efficient way to incentivize adop-
tion of the most effective and least disruptive conser-
vation measures while maintaining trust and
credibility with local farmers.

AWM is a complex, value-laden endeavor, involv-
ing every aspect of farm management and the food
production cycle, and requiring broad consensus to
reach a sustainable use of water resources. Policies
that deal with water demand for sustainable intensi-
fication of agricultural systems include a broad group
of topics ranging across disciplines from plant breed-
ing to farm and crop management (Hansen 2015).
The environmental impact of AWM must also be con-
sidered, including the direct impact of irrigation on
different components of the water balance and also
the impact on the infrastructure associated with it
(Hatfield 2015). Additionally, the HPA is threatened
by contamination of groundwater and nearby surface
waters due to poor water and fertilizer management
(Exner et al. 2014; Juntakut et al. 2018). Agricultural
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pollution (fertilizer, pesticides, and salts) is a major
nonpoint source contaminant and is difficult to
resolve due to the constant necessity of chemical
inputs for conventional agriculture (Bouwer 2000). As
growing demand causes an increase in management
intensity, groundwater quality will become an even
greater challenge.

Conservation may appear straightforward at first
glance: if irrigators pump less water, the aquifer will
support irrigation withdrawals for a longer period,
even indefinitely in some areas. While this concept
has been recognized since the 1930s (Green 1981),
not all areas with heavily impacted water resources
have adopted conservation measures. This is where
the interdisciplinary nature of AWM emerges. Mar-
kets, subsidies, insurance, and loans are all impor-
tant in farmers’ decisions, including with respect to
water management and conservation. Field condi-
tions may inhibit starting or stopping irrigation.
Farmers may aim to maximize yield rather than
water productivity, or resist adopting carbon and
water-conserving no-till practices. When farmers suc-
ceed in supplying only enough water to support crops,
salts may begin to build up in the soil, rather than
flushing to deeper layers. In areas with adequate
recharge, water quality is often a concern, due in part
to return flow from irrigated fields. Clearly, AWM
faces a major challenge of decreasing pumping rates
while concurrently minimizing impacts to the agricul-
tural sector.

One water use limitation strategy, dynamic deficit
irrigation, can be a useful approach to decrease water
use while minimizing the negative impacts on crop
yields. With this technique, irrigation water is only
applied to make up for shortfalls in precipitation,
rather than being treated as the main source of water
for crops (Fereres and Soriano 2007). Many studies
have quantified the impact of deficit irrigation on
yields, profits, and soil quality/health (e.g., Blanco-
Canqui et al. 2010; Halvorson and Schlegel 2012;
Kisekka et al. 2016; Schlegel et al. 2016; Manning
et al. 2018), but the site-specificity of some of these
results prevents them from direct extrapolation to
the entire region and large-scale application (Chai
et al. 2016). Moreover, the economic viability of defi-
cit irrigation will depend on the relationship between
grain price and water costs, and currently, deficit
irrigation is only economically optimal within a given
field season when the cost of water is already high
(Manning et al. 2018). Crop insurance structuring
can also deter the adoption of deficit irrigation. Thus,
the many factors that affect AWM and their interac-
tions should be evaluated to assess the best manage-
ment options to secure sustainable AWM at different
scales: from the farm, to the community, and entire
food system.

Solutions to these AWM challenges must share
some common traits. First, they must be sustainable
by providing for the needs of the present without
compromising future generations (Gleick 1998). Vol-
untary solutions must increase or maintain farmer
profits; otherwise, they will not be adopted (Liu et al.
2018). Ideally, solutions will be fair and equitable
among current and future users. They must be feasi-
ble for implementation (Guilfoos et al. 2016), as well
as enforcement, monitoring, and evaluation; must
consider risks and uncertainties; must be flexible
enough to adapt to future needs; and must comply
with rules and regulations for water use. In practical
terms, they must be beneficial or neutral for the agri-
cultural water cycle as a whole, rather than one-
dimensional fixes that have unintended conse-
quences. This will require assessment from multiple
research disciplines.

As these challenges have escalated, so has avail-
able computational power. Many of the challenges of
AWM can be addressed through modeling. Field
experiments are often costly and time-consuming.
Controlled variation is difficult, as is precise replica-
tion. These are the types of problems that can be
addressed using computer-based experimentation in
concert with field observations. Many papers (e.g.,
Liu et al. 2008; Laniak et al. 2013; Hamilton et al.
2015) have reviewed aspects of integrated modeling.
Some of these (e.g., Barthel et al. 2012; Guzm�an
et al. 2018) have dealt specifically with water for
agriculture. Reviews of integrated modeling generally
focus on the technical and conceptual difficulties (e.g.,
Voinov and Shugart 2013) or the common features of
many integrated modeling studies, such as stake-
holder involvement (Hamilton et al. 2015). Some
(e.g., Janssen et al. 2009) suggest the primacy of cer-
tain aspects of integrated modeling, such as a focus
on model conceptualization and scenario develop-
ment. The next section focuses on integrated model-
ing for AWM, including a new definition of integrated
modeling.

Utility of Models for AWM

Managers of water conservation districts are creat-
ing programs to encourage water conservation in
agriculture, address declining groundwater levels,
and meet interstate compact obligations. Frameworks
in water law can mandate simulations that describe
conditions in the real world. Meanwhile, researchers
and consultants often evaluate hypothetical scenarios
or predict future conditions to inform district pro-
grams. These governance efforts and research teams
increasingly rely on large, complex models. In the
past few decades, many models have become well-
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developed and generated large user bases. Thus,
research groups may opt to use integrated modeling
as combining models can help to avoid “reinventing
the wheel.”

For clarity, we refer to models as mathematical
representations of an empirical or process-based
quantitative framework, usually accessed with com-
puter software. We refer to individual applications of
these models as “simulations,” although in practice
these are also often referred to as “models.” For
example, the Republican River Compact Model (re-
publicanrivercompact.org), which covers parts of the
HPA in Colorado, Kansas, and Nebraska, is a simula-
tion that uses the MODFLOW groundwater model
(Harbaugh et al. 2000).

Models are useful because they are simplified sim-
ulations of reality. Some models are statistical, based
on observed empirical relationships. Many integrated
modeling efforts, on the other hand, attempt to rely
entirely on equations that govern physical processes,
under the principle that empirical relationships may
not hold up across the conceptual underpinnings of
different models: uncertainty or variation may propa-
gate as models are integrated. However, virtually all
models, even process-based models, have some empir-
ical components. For example, some important pro-
cesses take place at a very small scale, such as
transpiration occurring in a leaf, or are highly vari-
able across short distances, such as hydraulic conduc-
tivity. For practical reasons, these parameters are
usually generalized as “effective” values, rather than
modeled at the scale of the process or its variability.
Very large uncertainties can result from the parame-
terization of small-scale processes that cannot be
resolved explicitly by regional models, and it is com-
mon for simulations to be run multiple times for a
single model using different choices for parameters
(Tebaldi and Knutti 2007). Some error is inherent in
calibration and validation data. Process-based models
may also contain constants that are determined
through repeated experiments, such as the Von
K�arm�an constant in fluid dynamics, used to calculate
reference evapotranspiration (ET) in the FAO-56 Pen-
man–Monteith equation (Allen et al. 1998). Ulti-
mately, the values in process-based models have to
come from measurements or estimates, and therefore,
the distinction between process-based and empirical
models is fuzzy.

All models involve one or more systems defined by
conceptual, physical, and temporal boundaries. Models
take data as inputs, perform mathematical operations
meant to reflect physical processes, and generate out-
puts that are meant to represent real or hypothetical
outcomes for the given conditions of the system. Soft-
ware is used to ease translation between “the field”
and “the model of the field.” A model system cannot

encompass every possible process; model developers
must decide which processes are too complex or
tangential for inclusion. The conceptual domain can
vary among simulations built using the same model.
For example, in a crop model such as the Decision
Support System for Agrotechnology Transfer (DSSAT)
(dssat.net), one simulation may assume optimal nitro-
gen management, while another simulation may incor-
porate various methods of nitrogen management in
order to study or account for their effects.

Crop Simulation Models (CSMs) can be used for
research information synthesis, as tools for optimiz-
ing crop system management, and for policy analyses
(Boote et al. 1996). Even among this specific type of
model, many options are in use. CSMs are now avail-
able for almost all major crops of the world that
include but are not limited to wheat, rice, maize,
potatoes, sorghum, millet, peanut, soybean, etc.
Examples of models used include DSSAT (Jones et al.
2003), EPIC (Williams et al. 1989), Aquacrop (Vanuy-
trecht et al. 2014), SALUS (Basso et al. 2006),
APSIM (Keating et al. 2003), and WOFOST (Penning
de Vries et al. 1989) among many others. Models
such as the Scientific Impact assessment and Model-
ing Platform for Advanced Crop and Ecosystem man-
agement (Enders et al. 2010) offer soil water dynamic
simulations that can be combined with root develop-
ment approaches and different crop water uptake
mechanisms. Crop models, defined as collections of
quantitative relationships, simulate the growth,
development, and yield of a crop (Monteith 1996),
may make it easier for users to select a combination
of practices based on climatic conditions, availability
of input data, and conventional water management
techniques. When a researcher or team is fluent with
one model, this may constitute a barrier to adoption
of a new technology, including any model that is cus-
tom-built for a particular study area or research
objective, even when the researcher or team decides
to consider additional system components.

It is possible to integrate models when they encom-
pass overlapping parts of the same conceptual sys-
tem, so that output of one model can be used as input
to another (Rotmans 2009; Voinov and Shugart
2013). Voinov and Shugart (2013) pointed out that
the additional model often takes the place of data
that would otherwise be used for model validation.
This is often for convenience — to extend the time-
frame or spatial extent of the combined model system
— or for sensitivity testing, so that the effects of vari-
ation in a key parameter can be studied in a process-
based framework. Thus, in this context, to decide that
an integrated model is “better” than existing data
means that the model outputs are available exactly
when they are needed, at the desired temporal and
spatial scales, and can be varied to test different
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scenarios. One aim of integrated modeling is to
improve a simulation on a quantitative level, that is,
to better describe a real system; however, validation
of integrated models is particularly difficult, and is
an active area of research (Voinov and Shugart
2013).

INTEGRATED MODELING

Definition and Scope

We define an integrated model as a system com-
prising of sequentially connected two or more models
of natural and/or social systems. There is significant
overlap of natural and social systems in agroecosys-
tems, particularly with respect to producers’ manage-
ment decisions. Models can be integrated to a greater
or lesser degree (Figure 1). Integrated models are dis-
tinct from model ensembles (USGCRP 2017), which
attempt to address the uncertainties associated with
a single model by aggregating outputs from multiple
models of the same system(s). Each field of research
in AWM has a number of existing models that can
simulate various environmental and social processes.
A traditional model will comprise one or more pro-
cesses considered important within a specific scien-
tific subdiscipline. Fundamentally, the purpose of
model integration is to expand the complexity of the
representation of a system.

The definition of integrated modeling is often
vague or broad in the literature. Even some excellent
case studies of integrated models frequently present
their methods without explicitly defining integrated
modeling (e.g., Barthel et al. 2012; Dodder et al.
2015). Hamilton et al. (2015) identified 10 dimensions
of model integration, including drivers, system char-
acteristics, and methodological aspects. Voinov and
Shugart (2013) suggested that either model assembly
or built-to-purpose models may be used for “inte-
grated modeling,” although they introduce the term
“integral” to refer to custom interdisciplinary models
created to encompass multiple systems. Liu et al.
(2008) used a broad definition from the Global Water
Partnership (gwp.org), which asserts that integrated
modeling is any process that seeks to manage envi-
ronmental resources in a sustainable manner. Some,
such as Laniak et al. (2013) and Janssen et al.
(2009), defined integrated modeling as a simulation
tool used in the context of a broader integrated
assessment. Hartkamp et al. (1999) defined integra-
tion of models as “incorporating one system into the
other.” A more holistic definition is given by Arnold
(2013) as a network of activities undertaken by

specialists in modeling methods and tools by collabo-
rating closely with interdisciplinary teams.

Broader definitions of integrated modeling often
incorporate other aspects of the modeling process or
lean heavily on the concept that an “integrated”
model represents multiple systems. Since systems are
usually defined for convenience using disciplinary
boundaries rather than boundaries that exist between
processes in the real world, and all models involve
representation of the real world through simplifying
assumptions, it is more reasonable to refer to a single
“multi-system” model as simply “a model” (or “inte-
gral model,” after Voinov and Shugart 2013). If some
of the model subroutines are optional, then “modular
model” may be the most appropriate term (Figure 1).
We take the “integrated” part of the term “integrated
modeling” to refer to the integration of models rather
than of systems.

One key benefit of integrated models is their use
in analysis of complex functional relationships
between agro-ecological characteristics and decision-
making at local and regional scales (Sch€onhart et al.
2011; Bobojonov and Aw-Hassan 2014). When this
conceptual linkage is misused, the resulting model
may fail to adequately represent reality, even misrep-
resenting the process that the model is meant to elu-
cidate. For example, Gisser and Sanchez (1980)
developed an economic model with a highly simplified
hydrologic component, assuming infinite hydraulic
conductivity and a single groundwater extraction
point (also known as a “bathtub model” for an aqui-
fer). Their highly publicized conclusions, known as
the Gisser and Sanchez paradox, indicated that only
minimal gains are obtained from dynamically optimal
groundwater management. However, more recent lit-
erature has called the Gisser and Sanchez paradox
into question, using more realistic hydrologic models
to show that the economic gains of management are
highly contingent on the realities of the physical
groundwater system (Koundouri 2004; Brozovi�c et al.
2010; see also Case Study 1, below). In this way, inte-
grated modeling can be a straightforward method to
bring together important system features that cut
across scientific disciplines.

Many models have now been integrated or are
actively being developed as coupled models. DSSAT-
RZWQM (Ma et al. 2008), WOFOST-SWAP (Van Wal-
sum 2011), DSSAT-SWAP (Dokoohaki et al. 2016),
and Soil and Water Assessment Tool (SWAT)-MOD-
FLOW (Bailey et al. 2016) have been applied to prob-
lems related to AWM. The coupling approaches have
ranged from external linkage where input and output
data were treated separately rather than using a
computer algorithm, to using code wrapping, essen-
tially bringing one model into another as a module.
Several platforms like OMS3, Python, and the
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Ensemble Kalman Filter method have been used to
achieve integration/coupling of models.

As the in-field evaluation of every water manage-
ment option is not possible in the space and time scales
necessary for agricultural water managers to make an
informed decision, the integration of SOC models
together with crop and groundwater models can be
very beneficial. Some of these models focus on support-
ing processes of soils such as water (fluxes through soil
profile) and nutrient (N, C, P) cycling. For example,
the CENTURY/DAYCENT model (Parton et al. 1988,
1998) focuses on carbon and nutrient dynamics and
has been widely accepted by the ecological and geo-
chemical communities, though they do not use physi-
cally based equations to calculate data. The HYDRUS
1D model (�Simnek et al. 2008, 2016), which simulates
water flow in soils using Richard’s equation, has been
widely used. It has been integrated with various root
growth models (Groenendyk et al. 2012; Pe~na-Haro
et al. 2012; Zhou et al. 2012; Li et al. 2014; Han et al.
2015; Hartmann et al. 2018). Liang et al. (2016) devel-
oped an integrated soil-crop system model called Soil
Water Heat Carbon Nitrogen Simulator, containing
modules to model soil water, soil temperature, soil car-
bon, soil nitrogen, and crop growth in North China. A
DSSAT-HYDRUS 1D coupling was tested to simulate
soil water dynamics along with crop growth and yield
in Florida, USA (Shelia et al. 2018). Since both DSSAT
and HYDRUS 1D are written in FORTRAN, their
source codes were modified so that both the models
could “talk” to each other, a process which is becoming
easier as code is modularized.

Over the past few decades, geographic information
systems (GIS) have emerged as powerful tools to
understand and solve problems over a defined space

by providing visualization and spatial analysis capac-
ities. Agriculture, as a spatial activity, has benefitted
from the use of GIS. Spatial modeling techniques like
reclassification, overlay, and interpolation (Yakuup
1993) can be helpful in analyzing agronomic or crop
processes and their variation at spatial and temporal
scales. Numerous studies have reported on integra-
tion of GIS with various model interfaces that vary
by interface type, data format (raster/vector), and
spatial reference (WOFOST-ArcInfo, Van Lanen et al.
1992; DSSAT-ArcInfo, Luijten and Jones 1997;
DSSAT-IDRIS, Thornton et al. 1997; DSSAT-ArcInfo,
Ines et al. 2002). The strategy to interface models
with GIS depends on the purpose of the application
and the factors that govern these strategies, includ-
ing format and structure of data, complexity of physi-
cal processes being simulated, scale, and relation
between modeled runs and modeled fields (spatial
units) (Hartkamp et al. 1999). There is a tremendous
scope of application of site-specific models like crop
models in risk assessment, climate change/variability
impacts, policy making, and productivity analysis by
combining their strengths with capabilities of GIS.

To help guide the decision-making process on
water conservation strategies under different scenar-
ios of climate change, modelers have integrated the
output from dynamically downscaled global climate
model (GCM) data to a regional scale for a future per-
iod of time to determine the range of hydrologic possi-
bilities that could be expected for their particular
areas of study. These results can highlight the poten-
tial need for conservation strategies in water-limited
regions. Using downscaled data as a key component
in integrated modeling has become popular since the
introduction of large-scale climate modeling projects

FIGURE 1. An integrated modeling continuum. Most models are not designed for integration; if they are designed for integration, they are
typically modular. Large interdisciplinary projects often use linked or coupled models, close to the center of the continuum, which increase
flexibility and take advantage of built-in user bases, but present challenges for software in addition to conceptualization of the combined sys-
tem. Models anywhere on the continuum may be process-based, empirical, or a combination of the two. LHM, Landscape Hydrology Model;
SWAT, Soil and Water Assessment Tool; USGS, United States Geological Survey; OWHM, One Water Hydrologic Flow Model; FMP, Farm
Processes Model.
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such as Coupled Model Intercomparison Project
Phase 5 (CMIP5) (Hayhoe et al. 2017). For example,
multi-model ensembles of Regional Climate Models
(RCMs) have been used to drive the Variable Infiltra-
tion Capacity model to examine projected hydrological
changes in the Southwestern U.S. (Pag�an et al.
2016). Other researchers have used RCM output to
drive crop simulations in central Asia (Bobojonov and
Aw-Hassan 2014) and the Midwestern U.S. (Glotter
et al. 2014) to examine the agronomic response to
changes in regional climate. Researchers have devel-
oped crop models to operate at large spatial scales
integrated with land surface components of GCM
(HadAM3) and to simulate seasonal growth of a sum-
mer annual crop (Osborne et al. 2007).

Integrated models are often used specifically to
evaluate linkages and sensitivities between systems
that are traditionally studied independently and
sometimes in different scientific disciplines. For
example, the Community Climate System Model, first
released in 1996, has been developed into a sophisti-
cated integrated model that consists of atmosphere,
land, ocean, and sea ice components that communi-
cates information on both state and fluxes (Gent
et al. 2011). The exchange of information across the
surface and time integration of the system are con-
trolled by a coupler, providing the central point of
control for dealing with important scientific require-
ments in the model, such as energy conservation and
variable time steps between models (Robert et al.
2005). This integrated model is one of many models
that were used in the CMIP5. The CMIP5 was an
internationally coordinated effort to examine the
mechanisms responsible for poorly understood feed-
backs with the carbon cycle and clouds; climate “pre-
dictability” and the predictive power of models on
decadal time scales; and the variability produced by
models forced to simulate similar conditions (Taylor
et al. 2012). In the short term, these climate models
contain many features that seem unrelated to AWM,
but in fact may exert a controlling influence on agri-
culture in the High Plains; for example, these models
may indicate whether dryland farming will become
riskier in the next several decades, and thus influ-
ence the future value of groundwater in the HPA.

Challenges for Integrated Modeling

Model integration can present several challenges,
some technical and others conceptual (Voinov and
Shugart 2013; Hamilton et al. 2015). In earth
sciences, models are rarely developed with coupling
in mind, which can lead to considerable time and
resource investments for integration (Robert et al.
2005; Liu et al. 2008). All of the challenges that apply

to a single model are also applicable to integrated
models. According to Pearson et al. (2011), integrated
models may not escape the concerns of conceptual
linkage between biophysical and social processes, and
may also miss important threshold values (“tipping
points”) for physical parameters. Research teams
often underestimate the challenges of model integra-
tion (Liu et al. 2008; Janssen et al. 2009).

Technical challenges result from models being
written in different computer languages (e.g.,
MATLAB, FORTRAN, Python) and their dependence
on “legacy code” (Liang et al. 2016), which may no
longer be supported by model creators. Some com-
puter languages and source codes are proprietary
and/or must be compiled prior to running, or may
require extensive setup in an additional software
application. Regardless of the language, access to
model source code is generally needed for tight cou-
pling of models (Figure 1), and someone on the team
must be knowledgeable enough to reformat interme-
diary datasets between models and coax downstream
models into accepting them. Individual models are
often poorly documented because documentation is
challenging, may seem unnecessary, and is poorly
rewarded in traditional academic settings. The docu-
mentation for a single instance of a model may be
hundreds of pages long (e.g., Deeds and Jigmond
2015). Acquiring the requisite programming and soft-
ware expertise may also come at the expense of disci-
plinary depth.

When models are integrated by formatting the out-
put of one model to serve as the input of another
model, this can be done uni- or bidirectionally; also,
information may pass from one model to another dur-
ing the model run, or models may be run in
sequence. Conceptually, models must have parame-
ters in common in order to be integrated, so that the
models can “talk” to one another. These parameters
must be scaled harmoniously in space and time in
addition to formatting requirements. Janssen et al.
(2009) and Voinov and Shugart (2013) also noted the
challenge of ensuring a shared conceptual framework
across all integrated models. For example, when inte-
grating the MODFLOW groundwater model (Lange-
vin et al. 2017) with a surface hydrology model such
as SWAT (Arnold et al. 1998; Neitsch et al. 2011) or
Landscape Hydrology Model (Kendall 2009), it is
vital to ensure that critical processes such as ET are
not duplicated or handled incongruously. Without
sufficient knowledge of model interfaces and input
requirements model integration can create mislead-
ing results. Greater data availability can facilitate
model integration but also presents its own set of
challenges.

Often models are built to incorporate “big data,”
such as datasets comprising hundreds of climate
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reanalysis rasters, thousands of yield observations, or
millions of well records. Big data can test the limita-
tions of software and computer memory. Model out-
puts are often large files, leading to difficulties in
digesting and storing results. This challenge is often
multiplied in integrated models, which may be more
complex than the sum of their parts. The computing
power required of certain models, such as the
Weather Research and Forecasting (WRF) climate
model, generally necessitates the use of high-perfor-
mance computing systems or supercomputers. Super-
computers are subject to downtime for maintenance,
instability, and runtime limitations. Advances in
overall computing power will help but will also enable
greater complexity in data assimilation and modeling,
leading to the potential of the problem scaling along
with its purported solution.

Hardware can also impose a time limitation: model
runs can take anywhere from seconds to months.
Longer model runs become necessary as model com-
plexity increases, but as the length of an individual
run increases, the time necessary for parameter esti-
mation or sensitivity testing increases multiplica-
tively. When running some models such as climate
model simulations, the parameter choices can also
differ in their level of complexity (Okalebo et al.
2016), which can drastically affect run time. AWM
research is increasingly using dynamical downscaling
of GCM data, which can take on the order of days to
weeks depending on the computing resources avail-
able, the experimental design, size and resolution of
the domain, and the length of the simulation period.
Because of the large number of GCMs available and
the time constraints of each downscaled simulation,
researchers are faced with the dilemma of choosing a
subset of models that produce “realistic” conditions
for the evaluation of a historical period or choosing
the entire available ensemble of GCMs to assess the
full range of climatic uncertainties. High-performance
computing can assist but requires additional exper-
tise and access.

Models are sometimes integrated specifically to
derive input to a sequentially linked model. For
example, a complex process-based crop model may
incorporate a simple empirical model to estimate
solar radiation. Nevertheless, integrated models on
the whole have the same data availability challenges
as other models. Some types of data are difficult to
collect, or highly heterogeneous and thus difficult to
scale up from the point of measurement. Examples
include hydraulic conductivity, ET, and individuals’
attitudes toward conservation. Often data are col-
lected at a point, but is needed for a larger area, such
as precipitation from rain gages. Some data are
widely available, but can be difficult to process or
interpret, such as LANDSAT imagery (Deines et al.

2017) or social media mentions (Zipper 2018). Com-
pounding these challenges, different locations often
have different data availability, but similar modeling
needs.

Some integrated modeling challenges are concep-
tual as well as technical. Scale is a constant concern
in integrated modeling. Most AWM models either
cannot capture variation in water applied at a sub-
field scale or do not cover an area large enough to be
relevant for public policy. Rapid innovation at multi-
ple scales limits the capacity of AWM models to
reflect current practice. Meanwhile, most existing
models are created with an expectation that they will
be used at a particular scale, which may or may not
be similar to models in other fields of study. Sensitiv-
ity testing is particularly vital for integrated models,
which are frequently employed with the intention of
investigating sensitivities in real systems (e.g., Dod-
der et al. 2015) without any method of validating the
resulting sensitivity estimates.

Other challenges arise when the understanding of
processes is limited — one of the driving forces for
the development of models in the first place. Though
most chemical, physical, and biological processes are
well documented, the microbial component of soil, for
example, remains a black box in many AWM models,
particularly when it comes to microbial kinetics and
dynamics due to soil environmental changes. Further
research must focus on how to effectively incorporate
soil properties taken at a small scale and incorporate
data at a larger scale such as entire watersheds and
landscapes. Other fields also face difficulties in math-
ematically describing important processes, such as
the role of trust and leadership in water conserva-
tion. These processes need to be integrated into mod-
els used to evaluate water management scenarios.

Case Study 1: Incorporating Complexity through
Integrated Modeling

The HPA is one of the largest and most heavily
utilized aquifers in the world, supplying roughly 30%
of all irrigation water for the continental U.S. (Den-
nehy et al. 2002). Concerns with declining water
tables in Texas in the 1930s eventually led to the call
for efficient agricultural water use throughout the
High Plains region (White et al. 1946; Green 1981).
Despite widespread declines, particularly in the
Southern and Central High Plains, the aquifer
remains an important source of groundwater: Feni-
chel et al. (2016) estimated that from 1996 to 2005,
irrigators in Kansas withdrew groundwater valued at
about $110 million/yr in natural capital. Research
from the HPA may be applicable to other large aqui-
fers such as the Loess Plateau of China (Gates et al.
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2011) and the Murray–Darling Basin of Australia
(Quiggin et al. 2010).

A decrease in water pumping for irrigation in some
areas of the HPA is imperative to prolong or sustain
its use. Steward et al. (2013) calculated that a reduc-
tion of current pumping by 80% will be necessary to
approach natural recharge in the Kansas portion of
the aquifer, while Whittemore et al. (2016) estimated
that a pumping reduction of 36% would suffice to stabi-
lize the water table in most of the Kansas High Plains.
Large reductions in pumping will impact agricultural
production, leading to changes in management prac-
tices, yields, or both. This is problematic considering
that in the near term, low commodity prices and high
input costs encourage farmers to irrigate for maximum
yields, while in the next several decades, demand for
agricultural products is expected to increase globally
(Bouwer 2000). According to Hansen (2015), securing
global food production requires securing water
resources for irrigated agriculture. Despite continual
increases in agricultural water use efficiency, recent
research suggests that additional water savings (up to
and beyond 20%) can be achieved without negatively
impacting cash returns, for example, growing crops
that need less water or focusing irrigation on particu-
lar stages of plant development (Golden and Liebsch
2017). AWM can stave off or ameliorate the effects of
water resource depletion.

Water scarcity concerns (Figure 2) have led
approximately 50 local areas in the HPA to organize
into irrigation management districts, beginning in
the 1950s in Texas. While some of these areas have
avoided implementing policies that directly regulate
water use, many are beginning to place restrictions
to mandate conservation. For example, 11 of 23
Nebraska Natural Resources Districts have imple-
mented irrigation flow allocations as of October 2017
(Upper Big Blue Natural Resources District 2017). In
Kansas, the state government implemented a subsidy
program to encourage the adoption of more efficient,
low pressure irrigation systems (Pfeiffer and Lin
2014). Integrated and traditional modeling studies in
the HPA have informed these policy-making efforts.

The importance and vulnerability of the HPA have
catalyzed an exceptional amount of research investi-
gating strategies for AWM, including some pioneering
instances of integrated modeling for AWM such as
the Coupled Hydrologic Systems (COHYST) simula-
tion of the Platte River Corridor in Nebraska (Cannia
et al. 2006). COHYST was established as a single-
discipline (MODFLOW groundwater) simulation,
followed in recent years by the integration of the orig-
inal groundwater modeling framework with models
for crop growth and surface hydrology.

Water management groups across the HPA seek
strategies to reduce the rate of groundwater decline

while minimizing impacts on producer profitability.
Integrated modeling can help to evaluate strategies
for conservation and agricultural profit. Groundwater
scarcity and a growing interest in collectively pursu-
ing AWM catalyzed producers in the Republican
River Basin of Colorado to form the Water Pre-
servation Partnership (WPP). The WPP consists of
representatives from each of the Basin’s eight
Groundwater Management Districts (GWMD) as well
as other regional natural resource authorities. The
WPP aimed to encourage conservation but deter-
mined that more information on the effects of conser-
vation was necessary to build consensus among the
Basin’s groundwater stakeholders. Specifically, the
WPP wanted to understand the costs and benefits of
several groundwater management policies under con-
sideration. To address this information gap, the WPP
began collaborating with researchers at Colorado
State University (CSU) to better understand the costs
and benefits of conservation policy implementation.

The integrated modeling framework combined a
custom-built economic model, an agronomic model
(Aquacrop), and a MODFLOW simulation, as des-
cribed in Hrozencik et al. (2017). The resulting simu-
lations leverage the expertise of the stakeholder
group with insights of the research team to under-
stand the costs and benefits of groundwater conserva-
tion policies. Model results were shared with the
larger community of groundwater users in the Basin
through a public report as well as a series of informa-
tional meetings held with local GWMDs. GWMDs in
the Basin have used the information provided by the
integrated modeling effort to make the case for con-
servation to their constituents. To date, one of the
Basin’s GWMDs has acted on the model results and
enacted a resolution to reduce groundwater use by
20%.

This example of an integrated hydro-economic
model demonstrates the sensitivity of agro-economic
systems to physical constraints, and vice versa. Any
single disciplinary model — economic, agronomic, or
hydrologic — would traditionally minimize compo-
nents involving other disciplines, and would thereby
miss the features that determine the future of irriga-
tion in the region. In this case, model integration pro-
vided a more holistic picture of the interactions
between yield, profit, and resources.

Case Study 2: Simulating Hydrologic Impacts of
Irrigation

Many parts of the U.S. experience large variations
in surface and soil water availability due to seasonal
evaporative demand and stochastic upstream precipi-
tation. This variability is translated to crop irrigation
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demand, which also depends on factors like interan-
nual and intra-seasonal changes in precipitation,
evaporative losses, and crop growth stage.

McNider et al. (2015) demonstrated the coupling of
a crop model (DSSAT) with a hydrologic model Water
Supply Stress Index (WaSSI) to be used as a decision
support tool to determine when and where an exces-
sive withdrawal is made for irrigation use. The GriD-
SSAT is a gridded version of the DSSAT-CSM, which
can therefore accommodate simulations over a larger
area. The model is used to calculate water require-
ments for a particular crop, and the irrigation water
withdrawal data is fed to the hydrologic model to
determine the extent to which the irrigation demand
can be met by the surface water available in the
watershed. Thus, water stress levels associated with
different crops, climate, and agricultural manage-
ment plans can be determined for a region.

GriDSSAT and WaSSI are coupled at temporal
scales covering long-term historical simulations as
well as real-time short term. In the long-term mode,
the coupled model was used to calculate limits on
expanded irrigation at a regional spatial scale in the
Southeastern U.S. While the Southeastern U.S. has
not historically faced water scarcity, it is vulnerable to
climate change, and its crops are unlikely to be
resilient to variable precipitation and drought. In
addition, blue water resources are used intensively for
irrigation along the Mississippi River, for crops such

as cotton and rice. The coupled GriDSSAT-WaSSI can
help answer the question of how much area can be irri-
gated under past or future climates without jeopardiz-
ing environmental flows. In the real-time short-term
mode, the GriDSSAT can simulate the status of crop
stress due to environmental factors, contribute toward
drought declarations, and support risk assessment for
yield and drought losses. The GriDSSAT-WaSSI sys-
tem can be used to provide information regarding the
capability of the hydrology of the basin to be able to
support irrigation as well as anthropogenic demands
and may offer a decision support tool to impose inter-
mittent water withdrawal restrictions.

The example of GriDSSAT and WaSSI shows
that challenges for integrated modeling can be over-
come to create a useful, practical tool for AWM.
However, even when integrated models are used to
create successful simulations, transferring the inte-
grated model to a new study area can require revis-
iting the conceptual basis for individual model
components.

DISCUSSION

Integrated modeling approaches inherently
acknowledge that AWM does not take place in a

FIGURE 2. Average estimated irrigation demand and water level change for the High Plains Aquifer, 2008–2016. Methods and data sources
for irrigation demand map are in Supporting Information. Water level change: methods from Haacker et al. (2016). Aquifer boundary from

Qi (2009). Crops identified using USDA National Agricultural Statistics Service Cropland Data Layer (2008–2016).
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vacuum and conservation is often driven by combined
agronomic, social, political, and economic forces
(Smidt et al. 2016). Models that attempt to isolate
just a few processes within AWM run the risk of not
being applicable in the real world. Integrated model-
ing can also allow testing of far-flung effects among
processes, like the effect of streamflow depletion on
farm profitability. Since real systems fail to reflect
disciplinary boundaries, this has a great potential to
improve decision-making. It is generally more conve-
nient and efficient for researchers, and less expensive
for management and funding agencies, to integrate
models rather than starting from scratch. However,
representing interrelated processes through inte-
grated modeling is not inherently better than repre-
senting those processes through a single built-for-
purpose interdisciplinary model.

Feedbacks between crop, water, and soil processes
are one example of an area for future research in
integrated modeling. Soil water processes, soil health,
and spatial soil variability (Sharda et al. 2017) are
critical components in crop growth models and an
essential component of most integrated models for
AWM. Vereecken et al. (2016) reviewed these types of
soil modeling options, their role in the evaluation of
ecosystem services, and the challenges associated
with them. They stressed the importance of integrat-
ing soil models into other disciplines. Thus, AWM’s
effect on soil health and the outcome of soil health in
relation to water use efficiency (Cano et al. 2018)
should be integrated into modeling approaches. As a
result of the small scales at which soil processes oper-
ate, and the difficulty in assessing chemical and bio-
logical pathways, soil is often neglected in
agricultural modeling. As has been done in previous
work on the Great Plains region (e.g., Paustian et al.
1995; Robertson et al. 2017), the integration of these
models will allow consideration of not only the effect
of management but also the impact of climate
change.

Agricultural sustainability begins with soil health,
but it does not end there. These applications of inte-
grated modeling provide evidence that integrated
models can have advantages over other tools. One of
the greatest advantages of using integrated modeling
is the ability to incorporate additional models in lieu
of simplifying assumptions. For example, traditional
economic models for AWM often assume that the
effects of drawdown from one well are instantly
transferred to all other wells in the area. Similarly,
hydrogeologic models often make unrealistic assump-
tions about irrigation scheduling or the impact of
depletion on pumping decisions. Hydro-economic
models can improve the conceptual foundation of
complex systems (Hrozencik et al. 2017; Foster et al.
2014).

Integrated modeling is a way of addressing the
fundamental tension between modeling as a reductive
process and AWM as a holistic process. Integrated
models can provide more informed answers to some
dilemmas in AWM, but like any tool, they must be
used with the end in mind. They are not appropriate
for addressing every question, and integrated model-
ing in itself is just one of many tools that are neces-
sary to address long-term sustainability and
resilience of irrigated agricultural systems. Models
are extremely useful — they are the only quantitative
method for examining counterfactuals or predicting
future conditions under different scenarios. To
remain relevant, integrated models should be
designed while keeping in mind the imperatives of
AWM, and the challenges that are of greatest concern
to producers and policy makers. Some of these con-
cerns are difficult to model, such as risk, profitability,
and extreme events. Nevertheless, researchers should
do their best to incorporate the dimensions of AWM
with the greatest potential for sustainable water sav-
ings, and to ensure that models are up-to-date with
current farming praxis.

Three conditions must apply for integrated model-
ing to solve problems in AWM (Figure 3). First, suffi-
cient input and calibration and validation data must
be available. Second, the research question should
require consideration of a complex system with inter-
dependency between processes traditionally studied
as parts of different disciplines, such as economics
and hydrology. And third, models must exist which
together can cover important processes to answer the
research question and enables conceptual combina-
tion of the models. When models are used for applied
problems like AWM, whether integrated or not, they
should be designed in a way to be useful to managers,
farmers, and/or policy makers, either directly through
user interfaces, i.e., decision support tools, or through
generation of useful outputs. To do this well, the
process of integrated modeling requires many of
the other characteristics commonly associated with
integrated modeling, such as stakeholder involvement
and careful scenario development (Janssen et al.
2009; Hamilton et al. 2015).

Integrated model development for AWM is gener-
ally driven by a desire to represent a real system,
suggesting the primacy of practical applications for
these models. Indeed, integrated models can improve
forecasting, “test” the effects of interventions prior
to expensive field trials or policy implementation,
and can compensate for the fact that management
takes place over many orders of magnitude of spa-
tial and temporal scales. However, in order to be
useful, simulations that use integrated (or custom-
built interdisciplinary) models must have conceptual
models that incorporate the latest technologies and
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practices for farm management, appropriate scenarios
that are developed in tandem with stakeholders (Liu
et al. 2008; Janssen et al. 2009), and outputs that
are formatted for effective dissemination. In some
cases, an integrated model is meant to be used as a
decision support tool. In those instances, it is vital
that the user interface is intuitive and easily accessi-
ble. This can be difficult, particularly because the
development of user interfaces is beyond the scope of
traditional scientific disciplines and involves as much
art as science. At the end of a research project, it
may be tempting to leave the model user interface
(along with documentation) for future work, but this
hobbles the utility of scientific advances.

On the other hand, model integration should
only be considered after simpler approaches are
ruled out. When there is limited data or a simple
system, a custom-built statistical model may per-
form better and be easily validated. If one existing
model covers the system of interest, it should be

considered, even if no one on the research team is
an expert in that model. Difficulties with scale may
also suppress certain models from being coupled at
least in certain directions. For example, WRF, a
regional-scale climate model, is typically initialized
with data on a coarse latitude and longitude reso-
lution to generate model output on a local to regio-
nal scale, whereas most widely used crop models,
such as DSSAT, AquaCrop, and SALUS, operate at
a scale of one square meter. While it may be a
good idea to use outputs from WRF in DSSAT, it
would be decidedly challenging to amalgamate
enough simulations in DSSAT to create a useful
input for WRF. Finally, in some cases, farmers
have innovated in ways that are not easily incorpo-
rated into models. For example, variable-rate irri-
gation is becoming more common in the High
Plains, but it is conceptually challenging to vary
water application inputs across a few meters
within a regional-scale model.

FIGURE 3. Flowchart to decide whether integrated modeling is the most appropriate approach to a research problem
in environmental science and management.
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CONCLUSIONS

As H.L. Mencken said, “For every complex prob-
lem, there is an answer that is clear, simple, and
wrong.” If the answers for AWM that arise from
integrated modeling are clear and simple, it is
probably a result of the failure of models to
encompass the entire complexity associated with
the agricultural water cycle. Or, researchers may
not recognize barriers to adoption (e.g., crop insur-
ance, labor costs, tradition) that seem foreign to
physical scientists in particular but are imperative
to agricultural producers. The rise of interdisci-
plinary science in coupled human and natural sys-
tems catalyzed the integration of models across
traditional scientific domains to address pressing
research questions. However, model integration
comes with its own challenges particularly as farm
water management becomes more complicated.
Thus, the technical and conceptual capacity of
models must keep pace with water manager needs
and incorporate the rapidly expanding irrigation
management options.

According to one of the High Plains producers
whose land straddles the Texas–Oklahoma state
lines, some of the prevailing management practices
are innovating ahead of university researchers
(Darren Buck, 2018, personal communication). Inte-
grated modeling can be a step in the right direction,
but it is necessary for researchers to use the model-
ing as a means of escaping their research silos rather
than remaining within their disciplines by continuing
to focus exclusively on the model components that
fall within their own domains. Many agricultural
producers recognize the need for researchers to
engage with practitioners. Integrated modeling, like
modeling in general, remains just one tool in an
arsenal of approaches to AWM.

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: Methods for Figure 2, irrigation demand for
the High Plains Aquifer.
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