
JMAS: A JAVA-BASED MOBILE ACTORSYSTEM

FOR HETEROGENEOUS DISTRIBUTED

PARALLEL COMPUTING

By

LEGAND L. BURGE III

Bachelor of Science

Langston University

Langston, Oklahoma

1992

Master of Science

OklahomaState University

· Stillwater, Oklahoma

1995

Submitted to the Faculty of the

Graduate. Coll~ge of

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

DOCTOR OF PHILOSOPHY

December, 1998

COPYRIGHT

'by

Legand L. Burge III

December, 1998

' . . .

JMAS: A JAVA-BASED MOBILE ACTOR SYSTEM

. FOR HETEROCENEOUS DISTRIBUTED

PARALLEL COMPUTING .·.

Thesis Approved:

.··~

H- .·.a£·

I . .
Dean of the Graduate College

iii

ACKNOWLEDGMENTS

I sincerely thank my graduate adviser Dr. K. M. George for the guidance, help and time he has

given me for the completion of my thesis work. His direction and leadership helped inspire me to

venture into the advanced aspects of this work. Without the encouragement and help he has given

me, the completion of this work would have been impossible. I also sincerely thank Dr. H. Lu, Dr.

George Hedrick, and Dr. Rao Yarlagadda for serving on my committee. Their suggestions have

helped me to improve the quality of this work.

My special thanks goes to Dr. In Hai Ro and President Dr. Ernest L. Holloway, from Langston

University, for the support that they have giving me throughout my studies here at Oklahoma State

University.

My respectful thanks goes to my parents Dr. Legand L. Burge Jr. and Gwenetta V. Burge for

all the love and support they have given me in my life .. I also would like to thank all other members

of my family for the love, encouragement and confidence they have endorsed in me. Finally and

foremost, I thank God for giving me the opportunity to pursue a dream, and for the blessing of all

who made that dream come true.

iv

TABLE OF CONTENTS

Chapter

1. INTRODUCTION ..

1.1 Global Computing

1.2 High-Performance Computing With Java ...

1.3 Mobile Agent Technology

1.4 Thesis

1.5 Organization

2. LITERATURE REV.JEW ..

2.1 Ice T

2.2 JavaDC and ARCADE .

2.2.1 JavaDC

2.2.2 ARCADE . . .

2.3 Java/DSM . .

2.4 WebFlow . .

2.5 Javalin

2.6 Para Web

2.7 ATLAS ...

2.8 Ninfiet

2.9 Popcorn ...

2.10 Parallel Java Agents .

3. PROBLEM STATEMENT

3.1 Theoretical Foundation

.. . .

....

Page

1

2

3

5

7

7

9

9

10

10

12

13

14

15

16

18

19

19

19

20

21

3.2 The Actor Model

3.3 Motivation ...

3.4 The Mobile Actor Paradigm .

4. JMAS: A JAVA-BASED.MOBILE ACTOR SYSTEM .

4.1 Properties of Global Systems

4.1. l Language Support . .

4.1.2 Exploiting Heterogeneity

4.1.3 Consistent Namespace ..

4.1.4 Scheduling and Load Balancing .

4.1.5 Fault Tolerance .

4.1.6 Security

4.2 JMAS Infrastructure .

4.2.1 Language Support in JMAS .

4.2.2 Consistent Mobile Actor Names in JMAS

4.2.3 Scheduling and Load Balancing in JMAS

4.2.4 Security in JMAS

4.2.5 Fault Tolerance in JMAS

5. JMAS ARCHITECTURE. .

5.1 Physical Layer

5.2 Daemon Layer

5.3 Distributed Run-Time Manager .

5.3.1 Message Handler .

5.3.2 Actor Context

5.3.3 Scheduler . . .

5.3.4 ClassLoader . .

5.3.5 Load Balancer

23

25

27

33

33

34

34

34

35

35

35

36

36

37

38

38

38

39

40

41

42

44

44

45

46

..... 48

5.4 Logical Layer

6. PERFORMANCE.EVALUATION.

6.1 Benchmarks

6.2 Factors That Limit Speedup .

6.2.1 Remote Execution of Actors.

6.2.2 Message Passing . . .

6.3 Traveling Salesman Problem .

6.3.1 TSP Algorithm .

6.3.2 Measurements .

6.4 Mersenne Prime Application .

6.4.1 Mersenne Prime Algorithm

6.4.2 Measurements

52

54

55

56

57

58

60

60

61

64

65

66

7. CONCLUSION AND FUTURE WORK. 69

7.1 Conclusion . 69

7.2 Future Work 70

BIBLIOGRAPHY . 72

APPENDIX A: JMAS: INSTALLATION AND USER GUIDE 82

A.I Setting up JMAS on your System . 83

A.2 Starting the JMAS D-RTM . . . 84

A.3 Terminating the JMAS D-RTM . 85

A.4 Compiling Mobile Actor Programs 85

A.5 Executing Mobile Actor Programs

APPENDIX B: JMAS: MOBILE ACTOR API SPECIFICATION

B.1 Elements of the jmas.actor API .

B.1.1 Actor Class

85

87

88

89

B.1.2 MobileActor Class ...

B.2 Elements of the jmas.util AP! .

B.2.1 The ActorAddress Class .

APPENDIX C: EXAMPLE MOBILE ACTOR PROGRAMS

C.l Hello World .

C.2 TravelTime .

C.3 Parallel Sum

C.4 Parallel Quicksort

C.5 Round Robin Migration through Market .

C.6 Traveling Salesman Problem.

C.7 Mersenne Prime

91

92

92

94

95

98

100

103

107

108

117

LIST OF TABLES

Table

3.1 Comparison of Global Computing Frame Works

6.1 Micro benchmarks for a 10 Mbit Ethernet LAN using TCP sockets ..

6.2 Estimating the Performance of TSP.

6.3 Estimating the Performance of Mersenne Prime Test ..

Page

21

56

62

68

LIST OF FIGURES

Figure Page

1.1 Global Computing Infrastructure 1

2.1 Architecture of JavaDC 11

2.2 Architecture of ARCADE System . 13

2.3 Design of WebFlow Management 15

2.4 Javalin Architecture ... 16

2.5 Architecture of Para Web . 17

2.6 Architecture of ATLAS 18

3.1 Diagram of the acquaintances of actors W,X , Y, and Z. 24

3.2 Actions performed by an actor in response to a communication .. 25

3.3 Actorx sends Actory a message referring to a behavior f(). 28

3.4 Actory,.._ 1 executes a becomeremote operation .. 31

3.5 Actor x creates a remote Actory. 33

4.1 Creating Globally Unique Actor Names. 37

5.1 Four Layer Mobile Actor Architecture. 39

5.2 Users Logical View of GlobalSystem. 40

5.3 Message-driven model of execution. . 41

5.4 Distributed Run-Time Manager {D-RTM) .. 43

5.5 Process Flow Diagram of D-RTM. 43

5.6 Message Handler. 44

5.7 Building Objects at Run Time. 45

5.8 Thread Scheduler. 46

5.9 Operation of Java ClassLoader. 47

5.10 Operation of JMAS ClassLoader. 48

5.11 CPU Market Hierarchy. 49

5.12 Host A Notifies Markets of B,C, and D. 50

5.13 Load Balancing Policy. ... 51

5.14 Load Balancing Algorithm .. 52

5.15 Computation Model. 53

5.16 Logical View of Mobile Actor Architectures. 53

6.1 Test Environment. 55

6.2 TSP Algorithm .. 61

6.3 Speedup of TSP. 63

6.4 Execution Time vs Load Time. 63

6.5 CPU Utilization of TSP. 63

6.6 Scalability of TSP. ... 64

6.7 Mersenne Prime Algorithm. 66

6.8 Speedup of Mersenne Prime .. 67

6.9 CPU Utilization of Mersenne Prime. 68

A.1 JMAS Directory Structure. . . . 83

A.2 JMAS Graphical User Interface. 84

B.1 Is-a Relationship of Actors Objects using Inheritance. 89

CHAPTER 1

INTRODUCTION

Multicomputers represent the most promising developments in computer architecture due to

their economic cost and scalability. With the creation of faster digital high bandwidth integrated

networks, heterogeneous multicomputers are becoming an appealing vehicle for parallel computing,

redefining the concept of supercomputing [Tan92, Sta84]. As these high bandwidth connections

become available, they shrink distances and change our models of computation, storage, and inter-

action. With the exponential growth of the World Wide Web (WWW), the web can be used to

exploit global resources, such as CPU cycles, making them available to every user on the Internet

[BL96, Rey97]. The combined resources of millions of computers on the Internet can be harnessed to

form a powerful global computing infrastructure consisting of workstations, PCs, supercomputers,

and computing devices such as WebTelevision (Figure 1.1).

!ml
~
I

;-, __ ·-~
is a

IJ j
~I
~

Figure 1.1 Global Computing Infrastructure.

1

2

1.1 Global Computing

The vision of integrating network computers into a global computing resource is as old as the

Internet[BL96l[Sta84l[GWtLT97]. Such a system should hide the underlying physical infrastructure

from users and from programmers, provide a secure environment for resource owners and users,

support access and location of large integrated objects, be fault tolerant, and scale to millions of

autonomous hosts. Some recent network5()II1p:i,i_ti11g approaches include CONDOR [LL--8.§]., __ MPI
------p~----··-----·--•---··--· - ,. - --~----·--------·-----~-·-_---"·-~--·-----~--- . ·-·---

[GLS94], PVM--[Suii90]_,_fi!~!!ha~[GK92],_MIS.T[S.~Q9I97], NEXUS [LI97], Network of Worksta-
~--------------------~ ··::-·--·- .,, __ , _ ,_ -- ··-·- ---- ,.,_ - •"'• -----------.------------------------·~--------·-··--,--

tions (NOW') [ACP95], Legion [GWtLT97], GLOBUS [FK97], and WebOS [Rey97]. The Message
--·-~-~------------- ----- ·-··--··"-·.--- <-------~-.~- .- ~---------·---------------.--·- ·--------' -~ --~--.,~---·

Passing Interface (MP!) is a standard intended for use by all those who want to write portable mes-

sage passing programs in Fortran 77 and C. The MPI interface is suitable for use by general MIMD

programs, as well as those written in the more restricted style of SIMD. Parallel Virtual Machine
.· . -------

(PVM) is a programming environment for the development and execution of large concurrent or

parallel applications. It permits a heterogeneous collection of UNIX computers hooked together by

a network to be used as a single large parallel computer. The major goal of the Legion project

is to provide secure shared object and namespaces, application-controlled fault-tolerance, improved

response time, and greater throughput. Multiple language support is another goal. CONDOR is a

software package for executing computation intensive type jobs on UNIX workstations connected by

a network. NEXUS is a portable run-time systemfortask-parallel programming languages. It sup-

ports multiple threads of control, dynamic processor acquisition, dynamic address space creation, a

global memory, and asynchronous events. GLOBUS is viewed as a networked virtual supercomputer

also known as a metacomputer: an execution environment in which high-speed networks are used

to connect supercomputers, databases, scientific instruments, and advanced display devices. The

project aims to build a substrate of low~level services such as: communication, resource location

and scheduling, authentication, and data access, on which higher-level metacomputing software can

be built. MIST combines migratable PVM with global scheduling and load monitoring. MIST is

designed to use idle cycles scavenged from shared networks of workstations to run existing PVM

3

programs efficiently and effectively. WebOS is being developed with the objective of providing op

erating system services for wide area applications such as resource discovery and management, a

global namespace, remote process execution, authentication, and security. The goal of Piranha is to

provide adaptive parallelisni, Adaptive parallelism refers to parallel computations on a dynamically

changing set of processors: processors may join or withdraw from the computation as it proceeds.

Networks of fast workstations are the most important setting for adaptive parallelism. Workstations

at most sites are typically idle for significantfractions of the day, and those idle cycles may con

stitute a powerful computing resource. Most of these systems require the user to have login access

to all machines used in the computation. In order to achieve heterogeneity all systems require the

maintenance of binaries for all architectures used in the computations.

1.2 High-Performance Computing With Java

With the recently released standard Java components such as Remote Method Invocation (RMI)

[atoSM96b], Object Serialization [atoSM96a], Java IDL (interface to the CORBA domain), and

performance boosters such as JIT Java compilers, the HPCC community has been rapidly producing

a collection of Java APis in the following areas to support high-performance computing:

• matrix algebra

• image primitives

• PDE primitives

• parallel compiler primitives (e.g. lexers, parsers)

• performance visualization and monitoring

• load balancing resource allocation, and cluster management

Recently, researchers have proposed several approaches to provide a platform independent Java

based high-performance global computing infrastructure. These include Javalin [DoCS96a, DoCS97c],

4

Java/DSM [DoCS97b), WebFlow [aSU97b, FF96b, aSU97a, DoCS97c), IceT [oMCS97), JavaDC

[DoCS97a), Parallel Java [KBW97), Parallel Java Agents [KAB98), ATLAS [BBB96), Charlotte

[BKKW96), Para Web [BSST96), Popcorn [CLNR97), and Niri:fl.et [TMN98). The use of Java as a

means for building distributed systems that execute throughout the Internet has also.been recently

proposed by Chandy et al. [CDL +96), Fox et al. [FF96a) and implemented in [Van97, Ven97).

Javalin is an infrastructure for global computing. The system is based on Internet software that·

is interoperable, in~reasingly secure, and ubiquitous. Javalin's architecture and implementation re-

quire participants to have access to only a Java-enabled Web browser. Javalin is a prototype system

that consists of brokers,· clients, and hosts. Web Flow is a particular programming paradigm im-

plemented over WebVM and follows a data:fl.ow programming model. WebVM is a mesh of servers

that manage and coordinate distributed computations. A WebFlow application is given by a com-
. . .·

putational graph, visually edited by end-users using Java applets. The aim of the IceT project

has been to mutually incorporate approaches and techniques found in Internet programming with

established and evolving distributed computing paradigms. It is a novel fr~mework for collaborative

and high-performance distributed computing which is built upon a Java substrate. IceT addresses

the ideas of harnessing geographically-remote resources for anonymous utilization, portability of

processes and data, and distributed security issues. JavaDC - Java for Distributed Computing - is

a web-based environment for managing the execution of parallel and distributed SIMD applications

written usi!!g_ MPI [GLS94), and PYM [Sun90) and does riot provide support for most distributed
-·--.------. ---·-----------:--~----~-----·-------·--~--:---~-

heterogeneous computing applications. Parallel Java Agents is a framework for parallel computing ____________ ,. ______________ -------·- ~· ·--- - --· ···- -

in locally confined scalable compu~in~ clusters based on . agents that communicate through asyn-

chronous messages. Charlotte supports distributed shared memory, and uses a fork-join model for

parallel programming. Tasks may be sublcitted to several servers, providing fault-tolerance a.I).d ·

ensuring timely execution. Para Web provides two separate implementations of a global computing

infrastructure, each with a different programming model. Their Java Parallel Class Library imple-

mentation provides new Java classes that provide a message-passing framework for spawning threads

on remote machines and sending and receiving messages. Para Web's Java Parallel Runtime System

5

is implemented by modifying the Java interpreter to provide global shared memory and to allow

transparent instantiations of threads on remote machines. ATLAS provides a global computing

model, based on Java that is best suited for tree-based computations. ATLAS ensures scalability

using a hierarchy of managers. POPCORN provides a Java API for writing parallel programs. POP-

CORN applications are decomposed by the programmer into small, self-contained subcomputations,.

called compulets. The API facilitates something like RMI, except the POPCORN application does

not specify a destination on which the compulet is to run the execution. Rather, a "market" which

brings together buyers and sellers of the CPU, determl.ne which seller will run the compulet. Ninflet

facilitates RPC based computing of numerical task in a wide area network. Java/DSM is a platform

for programming heterogeneous environments using· Java .and· software Distributed Shared Memory

(DSM).

1.3 Mobile Agent Technology

Mobile agents are a convenient paradigm for distributed computing [Doc95, DoGS96b, Whi94b,
. .

Whi94a, Inc94, Gra95, BFD96, Rie94, SH97, UoCa.196, Pei97, LDD96, KKT92, oCS96, Age97, rL96,

HBB96, MC96, oT96, Age97]. The agent specifies when and where to migrate, and the system

handles the transmission. This makes mobile agents easier to use than low-level facilities in which

the programmer must explicitly handle c6mmunicatioir, hut more flexible and powerful than schemes

such as process migration in which the system decides when to move a program based on a small

set of fixed criteria. A mobile agent carries all of its internal state with it which eliminates the need

for separate communication steps. The agent migrates to. a machine performs a task, migrates to a

new machine, performs a task that might be dependent on· the outco~e of the previous task and so

on. Mobile agents allow a distributed application to be written as a single program. Mobile agents

can be viewed as extensions of the client/server model. Clients and servers can program each other

and applications can dynamically distribute its server components when it starts execution.

. . ,,

Early mobile agents systems include: Agent Tel [Gra.95], HTTP-based mobile agents [LDD96],

Messengers[UoCa.196], Obliq[fDRC94], Telescript [Whi94b], TACOMA [oT96], and Ara [Pei97].

6

Agent Tel is a prototype system that uses the Tool Command Language (TCL) as the mobile

agent language. Agent Tel is provided with explicit commands to send/receive Tel scripts to/from

remote machines. The infrastructure for HTTP-based mobile agents uses the Hypertext Transfer

Protocol (HTTP) for agent transfer. and communication, taking advantage of this widely accepted,

platform independent protocol. Agents are encapsulated in MIME-like messages for transport. The

TACOMA project focuses on operating system support for mobile agents and how agents can be used

to solve problems that are traditionally done by operating systems. TACOMA is based on UNIX and

TCP. The system currently supports the following languages: C, Tcl/Tk, Perl, Python, and Scheme.

Ara - Agents for Remote Actions - is an application independent and language-neutral execution

platform for mobile agents written in general interpr~ted languages. Obliq is an object-oriented

scripting languagefor distributed computation. Computations are defined in terms of Oblets; active

objects that are distributed over multiple machines. Telescript technology is similar to Agent Tel,

with the exception of more security features imposed in the system. It is used to supplement system

programming languages such as C and C++. Messengers are autonomous objects [BFD96], each

capable of navigating through the underlying virtual network and performing various tasks at each

node. Applications are written from the point of view of the Messenger as they navigate through the

system. Applications therefore can compute in unknown network topologies. Applications that have

been suggested for mobile agents include distributed information retrieval, active documents, active

e-mail, network management, electronic commerce, controlling remote devices, and collaborative

applications.

Some recent mobile agent systems provide support for platform independent Java applications.

These include: ObjectSpaces Voyager [Obj96], General Magics Odyssey [Obj96], and IBM's Aglets

[rL96]. All of the current systems are 100 percent pure Java and use features of JDK 1.1 [DD96,

Inc95]. With the release of mobile agent systems developed using the new standard Java components,

as well as, performance boosters such as JIT Java compilers, Java-based high-performance global

computing may soon become a reality.

7

1.4 Thesis

In this thesis we introduce mobile actors; a parallel programming paradigm for distributed parallel

computing based, on mobile ag~nts and the actor mess~ge passing model [AHP91, BVN91, Hew77].

' .

The Actor-based message ,passing model supports dynamic architecture topologies that make it

ideal for distributed parallel computing. We implement a prototype system (JMAS) based on the

mobile actor i:nodel using Java technology [DD96, Ham96, Inc9p]. In particular, we provide a mobile

actor API (Appli~ation Programming Interface) for writing mobile actor programs. Applications are

' ' '

decomposed by the programmer into sinall, self-contained subcomputations and distributed among a

virtual network of Distributed Run-Time Managers (D-RTM); which execute and manage all mobile
' .

computations. Lastly, we evaluate the performance of our system, and show that our system is well

suited for course grain computations ,in a global heterogeneous environment. Our experiments were

ran using two benchmarks: a Mersenne Prime Application , and theTraveling Salesman Problem.

In summary, this thesis is three-fold:

l. To introduce the mobile actor programming paradigm for global computing based on mobile

agents and the actor message passing model.

2. To implement a prototype system based on mobile actors using Java technology.

3. · To evaluate th~ performance of oU:r mobile actor system ..

1.5 Organization·

· The thesis is divided into the following cpapters:

• Chapter 2: A detailed review of literature related to current Java-based global computing
' . ;

architectures that moti;ate the research conducted in this thesis is presented.

• Chapter 3: Discusses thesis objectives and theoretical foundations on which this research is

based. In particular, we introduce _mobile actors;

8

• Chapter 4: Discusses technical issues associated with the configuration of a Mobile Actor

System. Introduces JMAS: A Java-Based Mobile Actor System.

• Chapter 5: Discuss the implementation specific design of the JMAS architecture. In particular,

we discuss the design of the Distributed Run-Time System and how Java technology is applied:

• Chapter 6: Discusses the performance evaluation 9f our mobile actor system.

• Chapter 7: A summary of the thesis and suggestions for future work are presented.

• Appendix A: Contains a detailed installation/users guide for Jl\fAS.

• Appendix B: Gives the specification for the JMAS Mobile Actor APL

,
• Appendix C: Includes JMAS example programs.

CHAPTER 2

. LITERATURE REVIEW

There has been much work in providingcollaborative use of computational resources over a global

network. As described in Section Ll, some models of global computing use low-level communica-

tion: systems, others use high-level dedicated systems. Although these systems offer heterogeneous

collaboration of multiple systems in parallel, they involve rather complex maintenance of different

binary codes, m~ltiple execution en~ironments; and complex underlying architectures. Distributed

computing over networks (i.e. local networks, intranets, or the internet), has emerged as a technol-

ogy with tremendous promise and potential, owing in part to the emergence of the Java Program-

ming Language and the World Wide Web. Java, because of its platform independence, overcomes
. .

the complexity iss~es of maintaining different binary codes, multiple execution environments, and

complex underlying architectures. It offers the basic infrastructure needed to integrate computers

connected to the Internet into a distributed computational resource for running parallel applicatiorn, ·

on numerous anonymous machines.

In the following sections, we give a detailed description of several Java-based high-performance .

global computing infrastructures that motivate the research conducted in this thesis. The sys-

tems can be largely categorized into two - those. that use active objects [BFD96) [SH97) [CM96)

[fDRC94) as a computing paradigm [DoCS96a)[DoCS97a) [TMN98) [BBB96) [oMCS97] [CLNR97]

[BKKW96][aSU97b), an:d·those which do not [BSST96][DoCS97b] [KAB98).

2~1 Ice T

The aim of the IceT project [oMCS97] has been to incorporate approaches and techniques found

in Internet programming with established and evolving distributed computing paradigms. This in-

chides the ideas of harnessing geographically-remote resources for anonymous utilization, portability

of processes and data, as well as; security issues that may arise. Extended features incorporated into

IceT include: dyna~ic merging and splitting of virtual machines, multi-user awareness, portability

9

10

of processes and data across multiple virtual machines, and a framework for multi-user programs.

IceT builds upon traditional message-passing paradigms found in distributed computing, such as

PVM (Sun90), and combines with it wide accessibility and portability of processes as found in both

Java and Internet programming paradigms. Processes in IceT execute in parallel across multiple

networks, among multiple users, and share information using IceT's message-passing substrate. Un

like PVM, processes need not be provided to each co:tnputational resource in the IceT environment.

Processes are able to transfer and install themselves on remote machines providing unbounded file

system and network access. The major Java components that make up IceT consist of a ClassLoader

class, SecurityManager class, and the Java Virtual Machine (JVM). Through the Java ClassLoader,

processes represented as Java bytecode can be uplqaded, instantiated, and executed on remote hosts.

Programmers must explicitly supply the address of the code to be uploaded. Bytecode executing

on remote hosts has no login or file access and is subject to security restrictions imposed by the

owner of the hosts. The Security Manager class provides a means for imposing elementary security

restrictions. The .JVM provides Java bytecodes with a uniform, system-independent view of the

underlying architecture.

2.2 JavaDC and ARCADE

JavaDC and ARCADE (DoCS97a) are developed with the premises that web is becoming an at

tractive framework for solving distributed applications. This is realized in particular because a

web interface can be made platform independent. The ARCADE environment extends the focus of

JavaDC to more general applications which consists of multiple heterogeneous modules interacting

with each other to solve an overall problem.

2.2.1 JavaDC

JavaDC - Java for Distributed Computing - is a web-based environment for managing the execution

of parallel and distributed SIMD (Single Instruction Multiple Data) applications written using MPI

(GLS94) and PVM (Sun90). Such applications based on this model execute the same program

on different subsets of the program data. JavaDC does not provide support for more distributed

11

heterogeneous computing applications. Users of JavaDC are able to develop a parallel environment

on a high-performance workstation cluster (HPC) in one dor~ain, run an application on the HPC

using executables and input/output files located in another domain, and monitor its progress. As

shown in Figure 2.1, the architecture of J avaDC consists of four components:

• The Web Client is a WWW browser. The Java Client is a g~aphical user.interface which runs

under the browser environment. The Java Client interacts with the user. and communicates

with the Java Server over the network specifying the application an.d resource requirements

for the target systems.

• The Web Server is a HTTP-server. The Java Server is a Java-based server which is the main

working engine of JavaDC. It collects the users specification and executes the application on

the HPC.

• The HPC (High Performance Cluster), is a cluster of workstations which form the execution

environment.

• The application site stores the application executables and data input/output.

I ------ --

1
I
I

ICGII
~ .

:·,

I
I
I
I __________ J

3. Rmi lbupplicmaD

......

(I)

(4)

Figure 2.1 Architecture of JavaDC taken from [DoCS97a].

12

2.2.2 ARCADE

ARCADE is an integrated environment designed to provide support to collaboratively design, ex-

ecute, and monitor multidiscipHnary applications on a distributed heterogeneous network of work-

stations [DoCS97a]. It extends JavaDC to more general applications. The system consists of the

following sub-environments:

• The monitoring and steering interface, allows multiple users to monitor the execution status

of the applications, as well as, examine intermediate and final results of large data sets.

• The resource allocation and execution interface, provides support for specifying the hardware

resources required for the execution of the application. Resources could be chosen statically

or dynamically during the execution by the users or by the system based on the current and

predicted loads of the systems.

• The application design interface, allows the hierarchical specification of the execution modules

and their dependencies. (similar to dataflow) ·

The overall goal of the environment is to provide an easy to use, portable, and easily accessible

environment that provides support through all phases of application development and execution.

As shown in Figure 2.2, the ARCADE system is a three-tier architecture. The front-end consists
. .

of a web browser (client), which interacts with the Java User Interface Server (UIS') that provides

information and services as needed by the client. The UIS also launches an Execution Controller

(EC), which manages the overall execution of the application by starting up user modules on the

specified resources. This is a centralized approach to managing and executing user computations

on HPCs. The EC interacts with the last-tier called the Process Controllers (PCs), which run on

individual resources in the execution environment. All of the logic is embodied in the middle tier,

allowing the front-end and back-end to be very thin, thus making it feasible to run on low-end

machines and keep additional loads on the execution machines to a minimum.

USER!

~
~

HOST!

' ' ' '
' ' ' ' ___________ J,

'

USER2

J'Vebl
~

'1--------

HOSTn .

.------,:
' ' ' ,~--~·

··----------~

Figure 2;2 A~chitecture of ARCADE System taken fro.m [DoCS97a].

2.3 Java/DSM

13

Common parallel programming paradigms consist of shared memory {for multiprocessors), and
. .

message passing {formulticomputers). Shared memory provides the advantage of a convenient

message depository for fast processor to processor communication. Such systems are complex and

are very hard to build. In converse, multicomputer systems are easy to build with. the disadvantage

of a more complex software system. Efforts to combine the advantages of multiprocessors (easy to

p~ogram) and multicomputers (easy to build) have lead to communication paradigms that simulate

shared memory on multicomputer systems. These paradigms allow multicomputers to communicate

through Distributed Shared Memory (DSM) [BN96]. Distributed Shared Memory is an attractive

abstraction because it provides processes with uniform access to local and remote information. This

uniformity of access simplifies programming, eliminating the need for separate mechanisms to access

local state and remote state information. Java/DSM is a system for programming heterogeneous .

computing environments.based upon Java and software DSM [DoCS97b]. Java/DSM transparently

handles the hardware differences and the distributed nature of the system. The underlying software

14

system is complex and· requires costly communication strategies to maintain memory coherence.

Java/DSM consists of a JDK-1.0.2 based parallel Java Virtual Machine on the TreadMarks DSM

system [KCDZ94]. It includes a distributed garbage collector and supports the Java API with very

few changes.

2.4 WebFlow ·

WebFlow [aSU97b,FF96b] is a general purpose Web based visual interactive programming environ

ment for coarse-grain distributed computing built on top of standards such as HTTP, Html, and Java

[LDD96] [Ham96]. The environment consists of a three-tier architecture with the central control

and integration Web VM layer in tier-2, interacting with the visual graph editor applets in tier-I and

legacy systems in tier-3. The WebVM layer (tier-2) is a runtime environment that consists of a mesh

of Java web servers such as Jeeves [Inc97] from J.avasoft or Jigsaw [Con96] from MIT/W3C which

coordinate distributed computation represented as a set of interconnected coarse-grain dataflow .

Java modules. Modules run asynchronously, are mobile and communicate by exchanging Java ob

jects along their dataflow channels. WebFlow is a particular programming paradigm implemented

over Web VM and given by a dataflow programming model. . Modules are written by developers

who need not be concerned with management ~d coordination functions. As shown in Figure 2.3,

WebFlow management isimplemented as three sub-components: SessionManager, ModuleManager,

and ConnectionManager. The SessionManager receives graph specifications froni the graph editor

applet (tier-1), and creates an image of the whole compute-web using module proxy objects called

ModuleRepresentations. WebFlow then decides on the decomposition strategy and notifies the Mod

uleManager to start a Module Wrapper that runs modules and notifies the ConnectionManager about

the connectivity required by a module.

15

Figure 2.3 Design of WebFlow Management taken from [aSU97b].

2.5 Javalin

Javalin is a Java-based global computing infrastructure that consists of three kinds of participating

entities: clients, brokers, and hosts [DoCS96a]. A client is a process seeking computing resources; a

host is a process offering computing resources; and a broker is a process that coordinates the supply

and demand for computing resources. As shown in Figure 2.4, Javalin is a simple architecture which

enables anyone connected to the Internet or and Intranet (via a Web browser) to participate. Clients

register with brokers their tasks to be run, hosts register with brokers their intentions to run tasks.

Brokers assign the tasks to the host and forward the results back to the client. By simply pointing

a hosts browser to a known broker URL, users automatically make their resources available in a

distributed computation. In particular, Javalin software is downloaded to the hosts browser. This

software allows the host to accept tasks to be executed in favor of the broker.

I

. i
I

I
•/

I
I

I
I

I
I

I
I

I
I

-.~ ~
l::J l::J

' ' ',
' ' ' ' ' ' ' ' ' ' '

····················§

Clients

Brokers

Hosts

Figure 2.4 .Javalin Architecture taken from [DoCS96a].

2;6 ParaWeb

16

Within the Para Web framework, users may execute existing unmodified thread-based Java applica-

tions remotely on faster computation resources, or they may execute them in parallel on a variety

of platforms across the Internet [BSST96]. Para Web achieves parallelism in Java through two ap-.

proaches:

1. A Java Parallel Runtime System (JPRS).

2. A Java Parallel Class Library (JPCL).

The JPRS support a distributed shared memory framework, whereas, the JPCL supports message

passing. Executing standard thread-based program across multiple platforms on the JPRS requires

presenting these threads with the illusion of shared memory. Providing communication tnecha-

nisms between remote threads supporte~ only by . the JPCL class library is easiest to do using a

message passing framework. The . parallel class library in Para Web provides mechanisms for the

remote creation and execution of threads, and facilitates communication between them. As shown

in Para Web's architecture (Figure 2.5), .the following sequence of steps are performed in order to

execute a parallel program.

17

l. Each server (i.e. A, B, and CJ start daemons which register with a load scheduling server

(which keeps track of idle servers).

2. Remote threads are created whenthe client contacts the scheduling server to request an address

of a remote idle server.

3. The scheduling server responds with the address of the requested server.

4. The client sends compiled byte-code to the remote server for execution.

5. The remote server returns the results.

6. The client then notifies the scheduling server to inform that it has finished using the remote

server.

Figure 2.5 Architecture of Para We~ ta.ken from [BSST96].

The JPRS is a modified Java interpreter which allows threads to be instantiated on any remote

machine that is running the modified interpreter. The Java interpreter on each machine coordinates

with the other interpreters to maintain the illusion of a global shared address space. Consistency

among replicas in the global shared address space is enforced through a release consistency protocol.

The runtime system relies on existing Java mechanisms for concurrency and synchronization.

18

2.7 ATLAS

The ATLAS system is designed to exploit network resources of the world as a giant distributed

computer, and to develop an infrastructure that exploits idle resource~ [BBB96]. ATLAS realizes

this by combining existing mechanisms and .poli.cies from Java and Cilk [BJK+95] together with

some new mechanisms and policies that extend ATLAS into a global computing infrastructure.· Cilk

is a C-based · parallel :multithreaded programming language together with a runtime system that

provides thread scheduling based on. the technique of work stealing (i.e. idle processors steal threads

froni random machines). Cilk also provides fault-tolerance and adaptive parallelism. ATLAS adapts
. .

the Cilk p~ogramming model to Java (to enforce heterogeneity); it extends the Cilk work-stealing

scheduler; and it borrows mecha~isms to provide ~daptive paralielism and fauit tolerance. The

ATLAS system archi.tecture consists of clients, managers, and compute servers (Figure 2.6).

client

Compute

server.

manager

Compute
server

Compute
•server

Figure 2.6 Architecture of ATLAS taken from [BBB96].

Clients with applications to run contact the local manager to find any idle compute servers. It

then connects to the server to run the application. During execution, idle servers steal work from

those that are busy.

19

2.8 Ninflet

Ninflet is a Java based implementation of the Nin£ (Network infrastructure for global computing)

[TMN98] system which facilitates RPC based computing of numerical task in a wide area network.

It was designed to overcome some of the limitations of Nin£ providing a more uniform, finer-grained

object-based programming model. The Ninflet system consists of three components, a server, dis

patcher, and client. The underlying architecture conceptually resembles that of the Javalin system

[DoCS96a]. Servers in Ninflet are Hosts in Javalin, the dispatcher in Ninflet is represented as a

broker in Javalin, and clients are in both Ninflet and JavaHn.

2.9 Popcorn

The POPCORN project provides an infrastructure for coarse grain globally distributed computation

. over the internet. The infrastructure is designed to harness the millions of processors of the Internet

which care to participate at any given moment. A market-based approach of CPU time underlines

the system which ci;msist of buyers and sellers of CPU time. CPUs that are idle become the open

market, while those that have heavy loads try to sell (or distributed) tasks to other CPUs in the

market. The POPCORN programming paradigm achieves parallelism by concurrently spawning

off many sub-computations, termed compuletes. The underlying system automatically sends these

computelets to a market of CPUs. This is maintained by a centralized manager.

2.10 ParallelJava Agents

Parallel Java Agents [KAB98] is a framework for parallel computing in locally confined (i.e. all ma~

chines are located in close proximity), scalable computing clusters interconnected by a high-speed

LAN. The framework consists of agents which communicate through asynchronous invocations.

Agents are dynamically placed (through migration) using an adaptive placement strategy enforced

by the underlying software system. The framework has not been implemented, but various com

putations have been simulated using the adaptive placement strategy. Future development of the

system utilizes existing Java Agent systems(e.g ObjectSpace's Voyager [Obj96]).

CHAPTER 3

PROBLEM STATEMENT

Table 3.1 shows a comparison of current Java-based global computing frameworks as discussed

in Chapter 2. With the exception of Atlas (BBB96] and Parallel Java Agents [KAB98], none of the

previous proposed systems support process migration. Both Atlas and Parallel Java Agents support

migration through an underlying software system based on complex scheduling algorithms; which

incorporate work stealing and adaptive placement strategies. Each framework is. based on an un

derlying system to distribute processes among processors in the system. Para Web [BSST96] allows

the programmer to explicitly map processes to processors utilizing a Java Parallel Class Library

(JPCL). With the exception of IceT [oMCS97], Javalin [D<>CS96a], ParaWeb, Ninflet [TMN98],

and Popcorn [CLNR97J, all frameworks are restricted to execute on distributed systems consist

ing of High Performance or Scalable Computing Clusters (HPC/SCC), Network of Workstations

(NOWs), or even specific Distributed Shared Memory (DSM) architectures (i.e. TreadMarks system

for Java/DSM (DoCS97b]). All other systems support global architectures interconnected via the

intranet/internet. Most frameworks support a wide variation of programming paradigms. Those

based on active objects (BFD96] (SH97] (CM96] [IDRC94] use a deploy on demand method similar

to Java Applets (Ham96](DD96] to distribute a computation. Or, they consist of an API which

utilize variants of PVM [Sun90], MPI (GLS94], and active objects. Both Para Web and Java/DSM

use a paradigm that allows processes. to share objects through a global name space. Both· frame

works require a complex underlying software system to maintain memory coherence among shared

objects. Webflow (aSU97b, FF96b] and ARCADE (DoCS97a] programming is based on objects

and the dataflow model. Webflow also provides a visual programming tool to develop distributed

applications. Para Web and ATLAS (BBB96] are based on Java Threads (OW97] and require a mod

ified Java interpreter. Parallel Java Agents (KAB98] is developed on top of ObjectSpace's Voyager

(Obj96] Mobile Agent System for scalable computing clusters. It uses a variant of actor (Agh86]

communication among agents. With the exception of Parallel Java Agents, and Java/DSM, each

20

21

framework uses an underlying system that includes a single scheduling server to remotely distribute

threads among distributed computation servers in a network. Although this simplifies the imple-

mentation, this strategy is not efficient and fault-tolerant, as the centralized server may become a

bottleneck and is a single point of failure. In the following section we present a framework for actor-

based distributed mobile computation. This parallel programming paradigm allows computations

to be expressed as a set of actors with additional features of mobility and navigational autonomy.

This model supports fine, medium, and large grain paraHel computations in a scalable high speed in-

terconnection network. I~-~~-~ unclerlyingJramew!?!:lfot mediJ.Lmjl;ug~grain heterogeneous

massively distributed parallel computing via the intei:!JcgL ...
-----~----·---~----------,------

Table 3.1. Comparison of Global Computing Frame Works

Framwork Granularity Migration Proce•s Programming Hardware Software
Placement Paradigm Architecture Architecttl.re

lceT coarse N/A syst.em (Active object) global centralized
using PVM

JavaDC fine/large N/A syst'em (Active' Objects) HPC centralized
(SIMD) using_ PVM/MPI

ARCADE fine/large N/A system data.flow HPC centralized
(SIMD)

Java/DSM coarse/large N/A system Shared objects TreadMarks complexed memory
DSM Machine coherence soft.

Webftow coarse/large N/A system (Web based) mesh of Java centralized
date.flow servers

J.avlin large N/A system Java Applets global centralized
ATLAS coarse/large system syStem Java Threads NOW centralized (modified

Java interpreter)
Ninfl.et fine/large N/A system Java. Threads global centralized
Popcor-n coarse/large N/A system Active Objects global centralized
Par-allel Java fine/large system system actor model sec Voyage·r Mobile
Agent• Agent System
Par-a Web coarse/large N/A user/ system Java. threads global centralized (modified

(DSM) global Java interpreter)

3.1 Theoretical Foundation

economic cost and scala_l:>_ility,_ __ With the creation of many digital high-speed integrated networks

[Tan96], heterogeneous multicomputer systems will be used to .§Qiy_e_mlIDY complex parallel and ------~-- '··------------·-·--~---

distributed computations [Hay88, Sta84]. Initially, researchers followed strictly message passing as
~---------··---.-·---····

a common parallel programming paradigmfor multicomputer systems. Programmers must explicitly

locate processes and communication can be synchronous or asynchronous. Today, several variants

J
rt

22

of the message passing paradigm have been proposed within the literature [Agh89, BFD96, BN84,
~--c--···-·--· ····-··--···- ··-·······--···-··-·----···--···· .. ··-···-·-···-- -----

Rie94, Sta84, BN96]. The remote procedure call paradigm.provides a method of allowing programs

to call procedures located on other machines. Information is transported from the caller to the callee

in parameters that are transparent to the programmer. Procedures are statically placed throughout

the system to be invoked by remote synchronous/asynchronous procedure calls. The communicating

object paradigm regards a distributed system as a set of statically compiled processes communicating

with each other via messages. The system's intelligence is embodied in the processes, while the
___:...--------.:.. ___ ~--·-··--·--·------······---·-----·-·-··-------------';"'--·---~:...__:.._~.-~---··-···-·~-----,,~,-----

messages contain simple, passive pieces of information. Objects are stationary and communicate

through asynchronous messages. This paradigm· has been extended to support dynamic or active

objects which are deployed on demand through the internet/intranet. Active objects make it easy

to write groupware, multiplayer games, and net-centric applications. 1)..§M provides the illusion

of shared memory across a loosely coupled system. Processes communicate through the globally ---·--~=-~~..--- ·~- 0, --~---~-,..__,-~--~~-~-

of consistency with each replica in t~~_.system. Consistency /memory coherence protocols must --------·-----------------------.. --•c"-- -.. ••·-•

be used which require additional communication overhead. Recently, autonomous mobile agents

have begun to be recognized as a. new computing paradigm for distributed systems [Ven97l,[Doc95],

[KZ97]. An ~!2_!!omo9.s. __ ![10bi)e ~g;ent -~~ ~~[am that can change its behavior and migrate
.,,----:

from machine to machine in a heterogeneous network dynamically. Mobile agents have the ability

to adapt to the computing environment. In this research, we present a communication paradigm
-------- - -----------

---~- -- . ____ , ... -. ,.. ·- ' ~~---- _, ___ ,. -- ___ .,. ___,_

among mob_ileagents t~~~-~~~~rporates __ ~c_t~~~b_a~.:~ ~~~-s_ag~ ~as~!~~~~ ~upport dynamic ar:~i~::_ture
1J!J7i\YS

topologies for distributed parallel computations. Through mobility agents are able to migrate and
_.....:........--------.--..... _-----·

adapt to the computing environment. This is ideal for global computation in which applications

can take advantage of under utilized resources and locality of reference of data in such systems

where the communication bandwidth may be smaller, reliability is lower, and latency is higher. The

concept of actors was originally proposed by Hewitt [Hew77], and later by Clinger [Cli81], Agha

[AKP90, AHP91, AMST91, CA91], Sarni [SVN91], Baude [BVN91], Athas [AS88] and in [MC96].

The model has been proposed as a basis for multiparadigm programming in [Ag.\189] and has been

23

used as a programming model for multicomputers in [Agh86, BVN91]. Actors are stationary objects

that communicate through asynchronous messages. Actors can be dynamically created within a

system. We formally define an abstraction of the actor model with the semantics of mobility and

navfgational autonomy. ~~s mobile agents 1:~_actors u!lilL~<:>.bl.l~-~ctor s~tics. Lastly,

we show that our model provides. a new solution to programming massively distributed parallel
. ~-----------. --------------------·--·------.... --

computations. We.provide simple examples to illustrate this method.

3.2 .· The Actor Model ·

. . .

Actors are self-contained, interactive, autonomous components of a computing system that commu-

nicate by asynchronous message passing. Actors are characterized by an identity (i.e. mail address),

a mailbox, and a current behavior. Moreover, a inail add(ess may be included in messages sent

to other actors - this allows those actors to communicate with the actor whose mail address they

have received. The ability to communicate mail addresses of actors implies that the interconnection

network topology of actors is dynamic. The assumption provides generality: a static topology is

a degenerate. case in which system reconfiguration is not allowed. This dynamic interconnection

network topology implies that the underlying resources can be represented as .actors to build a sys-

tern architecture. Each. time an actor processes a communication, it also computes its behavior in

response to the next communication it may process. In general, the replacement behavior of an

actor may represent the creation of new actors, or a simple change of state variables, such as change

in the balance of an account. It may also represent changes in the operations, which are carried

out in response to the message. For example; supp'ose a database actor receives a query request

communication. In response, it will perform the query, which will be used. to process the next mes-

sage. A set of procedures and a list of acquainta,nces define the behavior of an actor. Acquaintances

represent actors whose mail addresses are known to the actor. Because all actor communication is

asynchronous, all messages are buffered in mail queues until the actor is ready to respond to them.

Messages sent are guaranteed to be received with an unbounded but finite delay ..

Each actor may be thought of as having two aspects that characterize·their behavior:

24

1. its acquaintances which is the finite collection of actors that it directly knows about;

Diagrammatically we will represent a situation in which an actor W knows about an actor

X by drawing a directed arc from Wto X (Figure 3.1). Wand X are mutual acquaintances

[Hew77).

W mows alxml X

x mows aoou1 w

\V KllOWS aooul Y

x mows aoou1 Y

Y KllOWS aooul Z

Figure 3.1. Diagram of the acquaintances of actors W,X, Y, and Z.

2. the action it should take when it is sent a message. These actions provide a primitive set of

operations to:

• send messages asynchronsly to specified actors,

• create actors with specified behaviors, and

• become a new actor, assuming a riew behavior to respond to the next message.

All computation in an actor system is the result of processing messages. Therefore, an actor's

behavior is a function of the message accepted. Figure 3.2 illustrates the behavior of an actor

in response to a message[Agh86). The become primitive is used as a mechanism for changing

the current behavior, and for indicating when the actor may begin processing the next message.

[AKP90) proposed a call/return communication operator which provides a simple abstraction

to express process dependence using synchronous communication. In call/return communication,

an object invokes another object and waits for it to return a value before continuing. This is

25

analogous to a synchronous remote procedure call (RPC) [AS88). In order to achieve maximal

concurrency, we generally do not want to block a sender of a call/return message send; if the actor

invoked is located on another node. Therefore, it has .been shown in [AKP90) that call/return··

communication can be transformed to semantically equivalent asynchronous message sends. with

· corresponding continuations.

Address.
ofX

2

mail queue ·

create
' '··. ,· ·,

Address
ofY

' '

mail queue

n . n+l n+2

:2

Figure 3.2. Actions performed by an actor in response to a communication.

3.3 .·. Motivation

The actor primitive operators (i.e. send,· crec,ite, and become) form a simple but powerful set on

which to build a wide range of high~r-level abstractions and concurrent.programming paradigms.

In this paper, we present a communication paradigm among mobile agents that incorporates actor-

based message passing to support dynamic architecture topologies for massively distributed parallel

computations via the Internet. We build upon the actor primitive operators and extend the semantics

of the actor model to support actor mobility and navigational autonomy. Currently, message passing

models provide process mobility /migration through transportable and autonomous mobile agents

26

[BFD96, Gra95, Inc91, Whi94b]. Although agent technology is commercially in use, there has been

no formal characterization of agent performance. Researchers and developers assume that mobile

agents consume fewer network resources than the client/server models, and that they are feasible and

efficient to support large scale distributed, applicatiqns [odal96]. Although the assumptiQn clearly

holds for specific applications [BFD96, Gra95, Inc94, Whi94b], the range of applications for which

it holds is unknown. Therefore; it is difficult to choose a communication paradigm for a distributed

application [oCaI96].

The behavior of the actor model is formally characterized as a feasible and efficient model to pro

gram fine grain parallel applications on multicomputers ~ith a high speed interconnection network.

It has been propof!ed as a concurrent programming language model due to its inherent concurrency

in the evaluation of expressio_ns [Agh86, AKP90, Agh89, AHP91, MC96]. It has been shown that

support for large-scale concurrent systems requires building on simple programming primitives in-

corporated into the actor model to form multiparadigms [Agh89]. Actor architectures for solving

fine grain applications on multicomput~rs [Agh86, AHP91, AS88], as well as, actor-based frame

works for solving large scale applications in a heterogeneous computing system [AP91]. have also

been proposed. Concurrency issues such as: divergence, deadlock, and mutual exclusion have been
. . ·.

addressed in [Agh86], along with the mathematical theory of computation that any kind of discrete

behavior can be physically realized [Hew77]. Although there is sufficient research supporting the

actor model to solve fine/large grain applications on a tightly coupled system, there has been no

actor-based solution to solve large scale data intensive distributed applications which may be inter-
. .

. .
connected by costly communication links. In ordef to support this environment, locality of reference

and resource management (Le. load balancing) must be addressed; as processes must be able to

migrate throughout the syst.em. In the next section, we address the issue of locality ofreference and·

resource management through actor mobility. Current actor-based systems require a tightly coupled

underlying software system which implicitly distributes actors among processors in the system, as
. .

well as transparently provides global access to all behaviors in the system. Through actor mobility

no centralized software system is needed to provide access to all behaviors in the system. Actors and

27

their behaviors are distributed throughout the system explicitly by the programmer using mobile

actor constructs.

3.4 The Mobile Actor Paradigm

In this model, all processes in a heterogeneous system are considered to be actors. There may be

several actors mapped to a processor. Actors encapsulate a single process which is the only process

that may be used to execute an actor's behaviors. This prohibits multiprocessing within actors.

Actors may be partitioned into classes namely primitive and non-primitive.

• Primitive actors correspond to the usual atomic types such as numbers and characters. They

are sent directly in messages. Primitive actors are immutable. Their identity may be rep

resented by their state (i.e. the behavio;r of an actor is the same always and everywhere)

[Agh86].

• Non-primitive· actors have an identity that is represented by a reference, a current behavior

that includes the methods that define the actions that the actor can take upon receipt of

a message, and a set of acquaintances that the actor can communicate with. When a non

primitive actor is sent a message, it is actually the reference to a behavior and it's arguments,

if any, that is sent (Figure 3.3). The behavior being a procedure (method) stored on the

. local machine of the recipient. Since all actor communicati6n is asynchronous, the method of

communication is analogous to the asynchronous remote procedure call (RPC) [AS88].

Figure · 3.3 illustrates a · communication send from Actor x to Actory. In response to the commu

nication, Actory assumes the behavior JO; which executes and returns the result. Notice that

the behavior JO must initially reside on the remote machine B. Step (1): Actorxn on machine

A sends the communication [JO,args ..] to Actory on machine B; Actorxn then becomes a new

actor Actorxn+i (possibly itself or to await the result). Steps (2) and (3): Actorym receives the

communication [JO, args ..], and in response to the communication assumes the behavior JO. Step

28

(4): Actorym returns the result to Actorx on machine A. Lastly, step (5): Actorym becomes

Actorym+i {possibly itself).

:···.
; MACHINE: A '

Address
ofX

2 n n+l n+2

mail queue

; · \ : , (4) send result ;
; MACHINE: B .. I \ : 1 ;
, . m. m+ :
; Address '

~y :

Figure 3.3. Actorx sends Actory a message referring to a behavior/{).

High-level communication, synchronization and coordination abstractions can be formed from

primitive/non-primitive actors collectively. Some examples are synchronization barrier actors or

mutex actors [AP91]. The barrier actor allows processesto synchronize at a specified point within an

execution. A mutex actor would provide synchronization access to a critical section. By developing

these hich level abstractions, it is easy to address concurrency issues such as: divergence, starvation,

deadlock and mutual exclusion [Agh86],

A mobile actor is .a non-primitive actor with the semantics of mobility and navigational auton-.

omy. Navigational autonomy is the degree to· which a message can be viewed as an object with

its own innate behavior, capable of making decisions about .its own destiny. The actor model in-

herently enforces navigational autonomy allowing addresses of actors to be communicated and thus

providing a dynamic interconnection network topology. Such a computing model provides support

29

to deal· with non-deterministic problems which require network reconfigurations, non-deterministic

communication, and dynamic process coordination.

An important degree of flexibility available in actor semantics involves the ability to carefully

control the articulation of details to be included in specifications. That is, the constraints on .the

behavior of a system of actors can be specified in as much or as little detail. Therefore, the behavior

of an actor can be c.liaracterized as large, medium, or fine grain. In many practical distributed

applications, the over_ consumption of local resources don't allciw comput,ations to· be processed

efficiently. A more feasible solution wpuld be to migrate the process to least consumed resources, or

to move the process to a data server or communication partner in order to reduce network load by

accessing a data server or communication partner by local communication. We propose a strategy

for remote execution and process migration m;;ingthe actor-message passing paradigm (i.e. for load

balancing, and loca,Jity of reference of data/behaviors). A remote execution includes the transport

and start of execution of a process on a remote location. Process migration includes the transport

of process code, execution state, ~d data of the. process; processes may be restarted from their

previous state.
. ,

We extend the actor primitive operations in response to a message with s.emantics to support

actor mobility. The semantics of actor mobility are enforced: upon receipt of a message, or when

dynamically creating another actor on a remote location. These extended primitive operations allow .

computations to migrate after expiicit checkpointing by the programme:lr, or the underlying system.

The behavior of mobile actors consists of two kinds of actions in response to a message:

1. becomeremote computes a replacement behavior on the local. machine and migrates to a location

on a remote machine. The migrated actor is characterized by the identity (i.e. it's mail

address), and mailbox of a specified location of an actor on a remote machine.

2. createremote a new actor on the local machine and niigrate to the remote location, assuming

a new behavior to respond to the .next message.

30

Actors and their behaviors to be migrated are known as carried-functions and can be in the form of

source code, or native bytecode [Ham96, Inc95]. Information sent along with the carried-function are

its arguments along with the process state information. The becomeremote primitive operator causes

an actor to receive the local communication, bind to a behavior in response to the communication,

migrate the actor along with it's behavior to the new location, then continue processing at the new

location. The new location is the local machine of an acquaintance. The migrated actor assumes

the identity and mailbQx of an actor which resides at the new location on tl).e remote machine. The

migrated actor no longer exist on the origination machine. This aftows the migrated actor to take.

advantage of accessing local resources (Le. data, and communication with other local actors) at

remote locations.

The become~emote primitive operation provides a convenient method for actors to migrate when

. .
replacing the current · behavior in response to a communication. Explicit checkpointing (i.e. for

load balancing and locality of reference) within the code, or from the underlying system could

. .
occur before a become,.~mote operation; allowing the actor to migrate to the best possible location.

Consider the case where an actor needs to process data maintained on a remote machine. Actors

which reside on the remote machine do not maintain the behavior to continue processing the data.
. .

Data can either be sent to an actor with the desired behavior located on another machine (i.e. using

the send primitive). Or, an actor who resides on the same machine as the needed behavior could

be sent a message to reference the remote data. In response to the communication, the replacement . . .· ··,· ..

behavior could .be migrated to the remote machine for processing: The semantics of the becomeremote

operation are the same as the original bf:!i:ome primitive, if the remote identity and machine are the

same as the initiating actor?s identity.

Figure 3.4 illustrates a becomeremote operation from Actorym-i on machine B. Actorym-i be-

comes a new Actorym and assumes a new behavior f (). Actory,... migrates to machine A assuming

the identity /mailbox of X. All replacement behaviors are computed in response to communications

sent to Actorx on machine A. Notice f() is migrated to machine A and does not need to initially

reside on machine A. Step {1}: Actory,.._1 which assumes behavior g(), executes a becomex,Af()

31

operation. Step {2): Actory,,._ 1 becomes a new Actory,,,, and assumes a new behavior J(). Steps

{3) and (4): In response to communication m, Actory,,, migrates to machine A assuming the iden- .

tity/mailboxof Actorx. Step (5): Actorxn continues executing its currentbehavior J(): Lastly,
. . . .

Step (6): Actorxn computes a replacement behavior in response to communication n + 1.

···-~~~~~~~·;· ·;..-'· ····· ··1

Address
ofX

2

mail queue·

Local Memory . ····~~::~~·············:c.'.l ·

n n+f n'+2

be\:6Jme '---_------,g'
___ ::!. :~--·----'·-·-'· · .. ·1-· l. · · ·~~~~i:t::~~~~ ·: .•. · · · · · · · · · · · · · · .. · · · _.}
................................ ·...... i.""'.'.................... ······················

1(4) migrate(Y ;f().arg(s)) !
MACHINE: B

m m+l

· Address of ' '

; ~~~~! .~.C?!:1:1.<?.r.¥. •.
if'()'{'--~-· .. · .•.• :

l}ch::,:.:: ·•- ;-' ;_.<1>j
!· -~-bec~~jc~ .. : . .: .:.~

·mail que\le
...

(3)

. . r:;---<':§.:0:)
--~

Figure 3.4. Actory,,,_1 executes a becomeremote operation.

Th~ creation of actor~ is not limited to the domain of the. local machine, but may span the global

system. The createremote primitive ope~ation causes the migration ~f a dynamically created actor

with specified behavior(s) (i.e .. its m&il q11eue along with its behavior is created and transferred

to the remote location). _It creates a unique mail address which is returne_d to the initiating actor.

Through the use of the createremote operation, programmers are also able to explicitly map actors

to machines. This is useful when statically placing actors throughout the system; Actors are also

able to spread themselves clynamically across a global system. This may occur if behavior methods

contain createremote statements; allowing actors created remotely to create other actors on remote

machines, and so on. It is also useful during load balancing in which actors· must migrate to least

32

consumed processors. This could occur after an explicit checkpoint within the code or from the

underlying system.

Figure 3.5 illustrates a createremote operation executed as a statement in behavior g() by Actorx,.

on machine A. The remote location is machine B. The new actor's identity is Y on machine B,

and it assumes the new behavior JO in response to a communication. Notice JO is migrated to

machine B and does not need to initially reside on machine B. Step {1}: Actorx,. executes the

statement createBJ{); to create a remote actor assuming the new behavior JO on machine B. Step . .

. . .

(2): The new Actory along with its mailqueue.is created locally on machine A. Step (3): Actory1

along with its mailqueue are migrated to the remote machine B. Steps (4) and (5): Actory1

. .

receives a communication, and assumes the behavior J(). Lastly, Step (6): Actory1 computes its

replacement behavior (possibly itself) in response to communication 2. When developing a mobile

actor system, newly created remote actors could consttuct mailqueties aft.er migration occurs. This

is an implementation issue.

MACHINE: A

· 2 n n+l n+2

mail queue· . ~ r·-·-·-·-·-,·-·-·-·-·-·-·-·-·-·.,

8 ... \2:Y i I! l··········I !
. x,, ____________ j o: f(){ i

(2) J : !
crea~- - - i : . l !

,,. - ·-·-·-·-·-;: ·-·-·-·-·-·-·-·-·-' , . , : , :
' '(3)migrate (Y.mailqueue.f(). arg(s))

t..;.;;,2:ii;:C:t£'' ;. • •...••.•••. ,~............... ... •

· l ... ~;t;;~;;;r~ I~ : .. : :
MACHINE: B ' I

I

Address~
ofY

(5) Execute

Figure 3.5. Actorx creates a remote Actory.

CHAPTER,4
' '

JMAS: A JAVA"'BASED MOBILE ACTOR SYSTEM

4.1 Properties of Global Systems

Exploiting the resources of millions of computers on the Internet to form a powerful global computing

infrastructure is the goal of this research. Such an infrastructure should provide a single interface

. . .

to users that provides large amounts of comp~ting power, while hiding from users the fact that,

the system is composed of hundreds to thousands of machines scattered across the country. Our

vision is to create a system in which a µser sits at a workstation, and has the illusion of a single very

powerful computer, In this section, we discuss the technical issues associated with the construction of

a global computing infrastructure which executes mobile actor computations., A mobile actor system

is a multi-user, heterogeneous, global computing environment for executing distributed actor-based

computations. A mobile actor system must support two basic tasks - the creation and migration

of remote actors, and the communication between actors distributed throughout the system. In

addition the system should:

• provide language support for the mobile actor programming model,

• provide a single consistent namespace for actors within the system,

• provide an efficient execution schedule between actors maintained on the local machine,

·. . . . ,' /

• be able to distribute the l~ad evenly amo~g the machines participating within the distributed

system,

• exploit heterogeneity,

• be fault tolerant, and

• be secure.

33

34

4.1.1 Language Support

The programming language used in a mobile actor system should support the underlying compu- ·

tation' model on heterogeneous machines; therefore, requiring the language to be interpreted to

provide portability. The language should be easy to use; · allowing the user to link in the desired
. .

libraries, or use constructs provided hr an Application Programming Interface (AP!). Language

support should provide constructs to create remote actors throughout the distributed system, as

well as, send communications between actors within the system. Communication in mobile actor

systems is point-to-point, non-blocking; asynchronous, ·buffered, and may con.sist of complex objects.
·. . . .

The language should be able to support the mobile actor communication paradigm. The language

should support static or dynamic placement of actors throughout the distributed system.

4.1.2 Exploiting Heterogeneity ·

Creation of remote actors requires the migration of code along with its state information. In order to

support heterogeneity, migrated code needs to be in a format that is not dependent on the underlying

system. Therefore,·requiring the need and u~e of native machine code or bytecode [BFD96]. Each

machine within the system should contain a server that sends and receives migrated code and state

information of mobile actors.

4.1.3 Consistent Namespace

Sending a message requires the receiver's current locality be known to the sender. In a mobile actor

system, an actor's where-abouts are abstractly represented by its mail address. The entities used to
.. .

define a mail address determin~ the efficiency. of name· translation, as well as, the degree of location

transparency. There are two strategies tha:t could be used:

1. Use of location-dependent entities tightly coupled with actors offers efficient name translation

at the expense of location transparency.

2. Location-independent entities allow location transparency but increase name translation time.

35

4.1.4 Scheduling and Load Balancing

Scheduling and load balandng policies must accommodate the heterogeneous and distributed na

ture of the mobile actor system. An efficient method for. automatically scheduling parallel sub

computations across the distributed system should insure that all machines within the distributed

system are fully utilized; taking advantage of idle CPUs. In general, such a method will need to be

ada:ptive and may require keeping track of the load on different machines and the communication

patterns between different actors. Scheduling on the local system, must insure no starvation among

local processes.

4.1.5 Fault Tolerance

In a global system, it is certain that at any given instant several machines, communication links, and

disks will have failed. Thus dealing with failure and dynamic reconfiguration is a necessity. There

is a trade-off between performance and different levels of fault tolerance. Fault tolerance can occur

within the system itself, or within the application. Fault tolerance should be addressed to the extent

necessary without compromising the performance of the system. In most systems, it is desirable to

just consider fail-stop faults of hardware components, including both processors and thenetwork.

4.1.6 Security

The issue of security is of foremost concern. In most global computing systems, participation

requires either downloading and running an executable, or .downloading unknown source code and

then compiling it. The code may contain bugs or viruses that can destroy or spy on local data. In

addition, objects that are rnigrated between machines within the system may also contain bugs or

viruses. Because mobile actors can migrate from machine to machine, security policies should be

enforced to insure the actor is valid. Such as:

• using cryptographic authentication protocols, or

• using digital signatures.

36

In addition, all messages communicated within the system should be encrypted. Providing security

policies compromises the performance of the system; because,, all- communications and migrated

code must be e11crypted before transmitted, and decrypted before being processed.

4.2 JMAS Infrastructure

JMAS is a globally distributed computing environment for exect:iting mobile .actor computations.

JMAS is designed using Java technology [Inc95], and requires a programming style different from
. . .

commonly used approaches to distributed computing. JMAS allows a programmer to create mobile

actors, initialize their behaviors, and send them mes~ages using constructs provided by the JMAS

Mobile Actor APL As the computation unfolds, mobil~ actors have the ability, to implicitly navigate

autonomously throughout the underlying network. New messages are generated, new actors are

created, and existing actors undergo state chall:ge. JMAS als~ Inakes mobile actor locality visible to

programmers to give them explicit control over actor placement. However, programmers still do not

need to keep track of the location to send a message to a mobHe actor. Data flow and control flow

of a program in JMAS is concurrent and implicit. A programmer think~ in terms of what an actor

does, not about how to thread the execution of different actors. Communication of mobile actors is

point-to-point, non-blocking, asynchronous, and thus buffered.

4.2.1 · Language Support in JMAS

JMAS is b~ed on the Java Programming Language and Virtual Machine of JDKl.1 [Inc95]. JDKl.1
.:

contains mecha~isms tha~ allow objects to be read/written to strea~s (object serialization)[atoSM96a],

as well as, an API that provides constructs to dynamically build objects at run-time (i.e. Reflec

tion package {java.lang.reftect]). We exploit heterogeneity through Java's platform independent (i.e.

write once run anywhere) framework. We provide a Mobile Actor APlfor developing mobile actor

applications using the Java Programming Language. Mobile actor programs are compiled using a

Java compiler that generates Java bytecode. Java bytecode can be. executed on any machine_ con-

taining a Java Virtual Machine. Actors in JMAS are light-weight processes called threads. The

API provides constructs which allow programmers to create mobile actors using static or dynamic

37

placement, to change an actor's state, and to send an actor communications.

4.2.2 Consistent Mobile Actor Names in JMAS

JMAS implements a simple location~d~pendent naming strategy tightly coupled with mobile actors

within the system. Each mobile actor within the system is given a globally unique identifier. This

identifier is bound to only one address by the underlying message system. These bindings may

change over time; if for example, a mobile actor migrates to a different machine. In such a case, ·

messages are forwarded to the new location by the underlying message systeni. It has been shown in

[BN95), that forwarding messages in a distributed system consisting of N mac.hines requires in the

worst case N - 1 message rounds. Our strategy performs fast creation and translation of globally

unique identifiers using the naming function below:

N(ObjectName) = ObjectName +Time+ arig + counter@dest

Where Time is the current time on the local system, arig is the location which invoked the creation

of the new actor, counter is a monotonically increasing local counter, and dest is the destination

machine where the new actor will be created. As illustrated in Figure 4.1, actors which are created

within the system must first register with the local nameservice. Each actor whether created local

or remote maintains a globally unique name. Although this is a simple approach, the disadvantage

is that identifier names could become lon!!:. increasin!!: the communication overhead ..

ActorZ

J. Reg. \V on A

NameSe1"'ice

J.\,lachineA
System time - TA

C'Ollllf el" ""' CA

NameSe1"'\ice

].\,fachineB
System time - T 8

cow1te1· - c8

Figure 4.1. Creating Globally Unique Actor Names.

38

4.2.3 Scheduling and Load Balancing in JMAS

The JVM implements a timeslice schedule of threads .on Window95 systems, and a pre-emptive

priority-based schedule for UNIX/Windows NT systems .. JMAS forces a pre-emptive, priority-based

schedule among threads; regardless of the underlying architecture. The efficiency of an actor-based

computation on a loosely coupled architecture depends on where different actors are placed and the

communication traffic _between them. Thus, the placement and migration of actors can drastically

affect the overall performance. We implement a decentralized fault-tolerant load balancing scheme

based on the CPU market strategy proposed in [CLNR97]. The market strategy is based on CPU-

time. Entities within the system consist of buyers and sellers. A seller allows its· CPU to be used

by other programs. A buyer serves as a machine wanting to off-load-work to a seller. A meeting

place in which buyers and sellers are correlated is known as a. market, This strategy is intended for

coarse-grain applicatfons ..

4.2.4 Security in JMAS

Security issues are not addressed in this prototype system. Policies could be enforced to en-

crypt/decrypt all Java class files and messages sent throughout the system. Use of ariy strategy

will compromise the overall performance of the system.

4.2.5 Fault Tolerance in JMAS

. .

Machines used within the JMAS · infrastructure are fault· tolerant to the . extent necessary with-

out compromising overall system performance. The limit of our concern is with fail-stop faults

of hardware components, and the network. The underlying communication ~ystem will guarantee

the delivery of messages through the tise of reliable, communication-oriented TCP sockets[Tan96].

Further, if a host should fail, then JMAS will remove that host from the current CPU Market con

figuration. Software faults are handled through the use of Java Exceptions [Inc95] and are not of

our concern.

CHAPTERS

JMAS ARCHITECTURE

. . .

The architecture of JMAS is organized as a series of layers or levels, each one buUt upon its

predecessor (Figure 5.1). The lowest level(physical layer) is tlie actual physical network, which

may consist of a LAN/WAN of PCs and/or workstations. It could also represent a global network

such as the Internet.· The second layer (dae:µion layer) consists of the collection of daemons

residing on all physical machines participating in the distributed system. Each daemon listens on a

reserved communication port receiving communkations that could consist .of messages or migrating

computations. Upon receipt of a communication, it is passed to the third layer. The third layer

consists of Distributed Run-Time Managers (D-RTM). The D-RTM is. responsible for message

handling from/to local/remote processes, scheduling and load balancin,g ·of processes. The forth

layer (logicallayer), consist of the actual application specific computations on the local machine.

Computations are exl?ressed as mobile actors. Each actor is encapsulated with a behavior, an

identity, a mail queue, and one thread. The logical· layer shows each actor a.nd its acquaintances

(i.e. A knows about B and C, ... etc).

Logical

Network

D-RTM

Network

Daemon

Network

_Physical

Network ·

~-+--- ~! ,;;,,
~-cif ~"'

~H--j H- _.---I -----,

E)E)E)
[DJ
=

•••••
• • •

cJlesler.ci.obwc.cda

Figure 5.1. Four Layer Mobile Actor Architecture.

39

40

In the following sections, we give a detailed description of the JMAS architecture. In particular, we

discuss the components of each layer, and show how Java technology is applied.

5.1 Physical Layer

The physical layer is the actual physical network, which may consist of a LAN /WAN of PCs and/or

workstations. These systems are referred to as scalable computer clusters (SCCs), or networks of

workstations (NOWs) [ACP95]. Both systems are developed within a trusted environment. There-

fore security issues are not a major concern. The disadvantage is that the scalability of these systems

is limited to the resources available to the system administrator. The physical layer could also rep-

resent a global network such as the Internet. A global framework is dynamic, and scales to millions

of machines. This creates an unsecured environment; prone to malicious mobile code, and computer

hackers. Security is a major concern. Architects of global systems provide security using encryp-

tion/decryption techniques on all communication messages and mobile code within the system. The

JMAS prototype was developed for testing in a secure, trusted environment. As shown in Figure

5.2, users of a global system can have different logical views of the underlying physical network; and

views may overlap.

E"1View

,. ...
(

' -----

Figure 5.2. Users Logical View of Global System.

41

5.2 Daemon Layer

The daemon layer is implemented _as a collection of daemon threads residing on all pliysical nodes

participating in the JMAS distributed environment. The responsibility of the daemon thread is

to continuously monitor the network, receivinglocal/remote communication messages and mobile

computations arriving from other machines. JMAS supports a messages-driven model of execution

(Figure 5.3). There is no local/remote peer-to-peer communication between mobi_le actors within
. .

the system. All communication is routed through a reserved port of a daemon thread residing on the

local machine. The reserved port for JMAS is 9000. Message reception by the daemon thread creates ·

a thread within the actor which executes the specified method with the message as its argument.

Only message reception can initiate thread . execution. . Furthermore, thread· execution· is atomic.

Once successfully launched, a thread execut~s to completion without blocking.

Act01·Co1itext ActorC-011text

l\Iachine A ~--------1- ---------1 l\:Iachine B
P11ysl"1l L»y~r

Figure 5.3. Message-driven model of execution.

42

Communication messages in JMAS are denoted as Tasks. As shown below, a Task contains infor-

mation such as:

• the destination of the Task.

• the origination of the Task.

• the type of Task:.

- a communication from another mobile actor, or

- remote Java bytecode and/or a migrated process.

5.3 Distribut.ed Run,;,Time Manager

The Distributed Run-Time Manager {D-RTM) is the most complex ofthe four layers, It is contained

within each. daemon in the system. Therefore, the daemon layer and D-RTM layer are tightly
. ·.. . ..

coupled. The D-RTM contains the basic underlying software that provides the transparent interface

to the global system. The D-RTM was designed using a layered virtual machine design built on

top of the Java Virtual Machine (JVM) using JDKl.1 [Inc95] {Figure 5.4). The basic sequence of

operations carried out by the D-RTM is shown in Figure 5.5. The D-RTM has several functions:

• To· handle all i'ncoming Tasks {i.e. Message Handler)

• To prepare actor processes to run on the local system (i.e. Actor Context)

• To load java bytecode (e.g. java objects) from local/remote locatfons(i.e. BehvLoader)

• To schedule local/remote threads using a pre-emptive, priority schedule (i.e. Scheduler),

• To manage the CPU load on the local machine (i.e. Load Balancer).

43

j !\fog HandlerHL-----.------~A-c_10_r_c_o1_11_ex_j _______ ______J

Load Balancer Scheduler BehvLoader

Jam Virt1ml l\fachine (J\111)

Renwte

DL'lK

Figure 5.4. Distributed Run-Time Manager (D-RTM).

7,8

IVIessageHan<ller i----3 ____ _ ActorContext
1

2
5

Loa<lBalancer Scheduler BehvLoa<ler

Disk

1. Receive Task
2. If Task is an actor

• Check load
• If load > Threshold, then goto 7

Else if Task is a communication

• Check Message Handler queue for· actor; If forwarded, goto 8

3. If actor, block until communication received, OR If communication, block until actor received

• Prepare actor to run

4. Load class into. interpreter
5. Schedule actor
6. Inform LoadBalancer, goto 1
7. Forward Task, update Message Handler queue of new location, goto 1
8. Forward Task to new location, goto 1

Figure 5.5. Process Flow Diagram of D-RTM.

44

5.3.1 Message Handler

The message handler is responsible for routing Tasks which consist of communications to local actors.

As illustrated in Figure 5.6, messages are stored in a table of message queues (i.e. mailboxes).

A mailbox could have one or more actors within the local actor context associated to it. We

implement the table of mailboxes as a hash table •. We use Java's Hashtable class provided by the

java.util package. Because Java implements its Hashtable as a synchronized object, each access to

the Hashtable is atomic. This is very useful for our multi-threaded environment. Each mail address

hashes to one mailbox in the table. In order to achieve maximum parallelism, the table is accessed

by subprocesses. Messages from a desired mailbox are forwarded asynchronously to actor processes

whose identity is denoted by the mail addresses of the mailbox.

Actot·Context

HA~'H
TABLE

J'dailacldl· .

'\V

]\;lailacldl:

X
I--------!

Mailactdl·

y
t-------1

1\-Iailadcll·

z

------~ I · I

----1 I I
-------, I . I

@8 ... A.c.t,-..· ·. @A.et01_· -GA.ct,.,..·.·.· y z , -x

MESSAGE
QUEUES

Figure 5.6. Message Handler.

5.3.2 Actor Context

I I I
I I I
I I I

The Actor Context is responsible for instantiating an object, wrapping the object within a thread,

and supplying the thread to the Scheduler. It also maintains a table of system information. Such

as:

45

• The actor Identity

• The current behavior

• The current method (communication being executed)

• The total (idle) time actor waited in ready queue before receiving a communication (msec)

• The total time to load the actor (msec:)

• The current running time (msec)

Objects in JMAS are built during runtime. Information about an object during runtime is obtained

using Java Reflection [Inc95]. The classes needed to perform these operations are obtained from

the java.lang.refiect package of the JDKl.l. Figure 5.7 illustrates the procedure of instantiating an

object Hello World and calling its hello method.

Example:

II Instantiating an Object, calling its constructor

Class cl= loadClass("HelloWorld");
Object[] arg = new Object[] { new String("hello") };
Class[] par am = new Class [arg. length] ;
for(int k = O;k< arg.length;k++)
param[k] = arg[k].getClass();

Constructor·x = cl.getConstructor(param);
x.new!nstance(arg);

ll Calling one of the object methods

Method m;
m = cl.getMethod("hello" ,null);
m.invoke(null,null);

Figure 5.7. Building Objects at Run Time.

5.3.3 Scheduler

JMAS implements a pre-emptive, priority-based scheduler among threads. Each thread is assigned a

priority that can only be changed by the programmer. The thread that has the highest priority is the

current running thread. Processes with a lower priority are interrupted. To ensure that starvation

46

does not exists. among threads we implement a round-robin schedule among local processes. As

illustrated in Figure 5.8(a), incoming threads or threads instantiated locally, are given a priority-

initially low. Threads are then placed into a queue data structure. The scheduler dequeues a thread

from the list and assigns it the highest possible priority-causing the this thread to run. After a

given time t, the thread is stopped and inserted back into the list. This process continues until all
'

threads within the list terminate (Figure 5.8(b)). The scheduler could be interrupted by the load

balancer; if the CPU reaches its computation threshold. This will cause the current running thread

to suspend and migrate to a remote machine to continue its execution.

LO\"~PRIORITY

,~=
. . ..

·~.· 3 ·. ·Run~ing
~ thread

LOW_PRIORITY

(b)

J.\IA.\:_PRIORITY

Figure 5.8. Thread Scheduler.

5.3.4 . ClassLoader

Objects needed for execution in a program are loaded to the Java interpreter by the Java classloader.

As shown in Figure 5.9, the Java Classloader loads classes to the interpreter using the following

sequence of operations:

1. Check if the class already exists in the local cache. H not,

47

2. check if the class is a system class. If not,

3. check the local disk. If not found,

4. NoSuchClassFound exception is thrown.

Check
Ja·va C~lassLoader n-------------,.i C~ache

]\lO

Syst"em

.VCJ

Disk

NoCl.-.ssFoundException
.,VC,>

Figure 5.9. Operation of Java ClassLoader.

In order to work around the security restrictions. provided by the JVM and to load classes from

remote locations, we implemented our own classloader, The BehvLoader allows classes to be loaded

over the network and stored within the local cache. The BehvLoader loads classes to the interpreter

using the following sequence of operations (Figure 5.10).

1. Check if the class already exists in the local cache. If not,

2. check if the class is a system class. If not,

3. Check the local disk. If not found,

4. check the remote disk where the request originated. If not found,

5. NoSuchClassFound exception is thrown.

JJVL~S
BehvLoader

Check

NoC:~1.-.ssFoundException

c:ache

1VC)

Sys-ten-.

Ren-.ote

Figure 5.10. Operation of JMAS ClassLoader.

Different features can be added to the BehvLoader to provide security. Such as:

• encryption/decryption of class files

• use of signatures

5.3.5 Load Balancer

48

We implement a load balancing scheme based on the CPU market strategy proposed in [CLNR97).

The market strategy is based on CPU-time. Entities within the system consist of buyers and sellers.

A seller allows its CPU to be used by other programs. A buyer serves as a machine wanting to

offload work to a seller. A meeting place in which buyers and sellers are correlated is known as a

market. CPUs are chosen from the market using three selection policies:

1. Optimal (Best) selection,

2. Round-Robin selection, or

3. Random selection.

Developing a Market of CPUs

We implement a decentralized hierarchical method for organizing the CPU market. Each machine

within the system is responsible for managing a market. Therefore, the process of managing a

49

market is distributed throughout the system-increasing market reliability and availability. When

starting the system, the D-RTM initializes its market by registering itself with machines designated

within a configuration file set by· the system administrator. Those machines willing to sell their

CPU respond with a message SELLER, and are added to the market as sellers. Machines who wish

to buy CPU time respond with a message BUYER, and are added to the market as buyers. Those

who do not respond (i.e. system down) are not added to th~ market. This market maintained by

the D-RTM, contains the secondary machines on which to off-load remote processes. As shown in

Figure 5.11, this creates a logical hierarchy of machines; Each node within the hierarchy, with the

exception of the bottom most nodes, are· denoted as market managers. Communication overhead

is minimal. CPUs wishing to sell their time add themselves to the market by notifying a market

manager (Figure 5.11). Buying from the market is a bottom up process. Nodes at the lowest level

become overloaded faster. Once a given node Xis denoted as a buyer, all nodes who are descendants

of X are also denoted buyers. This approach requires collaboration among system administrators

to organize an optimal hierarchy. This is not suitable for a global environment which must scale to

hundreds or thousands of machines.

SEll.ER SELLER BUYER

D'sl.\Jarket: !!.

Figure 5.11. CPU Market Hierarchy ..

50

We modify the hierarchical method, by allowing market initialization and registration to be

bi-directional. Not only does the D-RTM register itself with machines designated by the system

administrator, but machine also registers itself with the D-RTM. In such a situation, the market

is organized by managers who are logically connected. in a (complete) multidirectional topology.

Because machines belong .to more than one market, this configuratio;n increases the communication

overhead substantially. Communication increased from one message round to an expensive multicast.

As shown in Figure 5.12, not only do machines B, C, and D notify machine Awhen buying or selling

their CPU time, but, machine A must also notify mach.ines B,C, and D when buying or selling its
. .

CPU time. Changes in the CPU ·status (i.e. Buyer/Seller), are notified to all machines within a

market using a weak consistent replication strategy. We use weak consistent replication in order

to reduce the coni~unication over head. Notifications are replicated throughout the system by

piggybacking the CPU status of the current machine along with Tasks that contain communication
. .

sends. For example: when an· actor on machine B receives a communication from and actor on

machine A, the CPU market on machine B is updated with the new CPU status of machine A.

Although, machines are not instantly notified of a market change, use of this weak replication

strategy provide eventual message delivery that is tolerated in our system [BN95].

SELLER

C'sMarket: A

SELLER
A's?darket: B,C.D

SELLER

B's:Market: ~

BCiYER

D's?vfa,·ket: ~

Figure 5.12. Host A Notifies Markets of B,C, and D.

51

Load Balancing. Policy

Each machine within the distributed system maintains a data structure with information about the

current machines within its market. These machines are denoted as buyers, or sellers. The load

factor on the machine is relative to the number of threads currently running on the local machine.

Other factors could also be used to determine the. load. Such as: the total load on the machine,

heuristic information, the actual CPU utilization; arid the size of the computation. Most of these

metrics are more complicated to determine. As shown in Figure 5.13, the Load Balancer maintains

a load below 75% of the threshold, and 25% of the threshold above the minimum load (i.e. zero) .

T...;,..=.25*T
TMAX =.75" T

SELLER

T=THRESHOLD

. T

0

Figure 5.1.3. Load Balancing Policy.

Before starting a thread on the local machine, the load balancer checks the current load to insure

that is within the threshold. IT the load is not within the current threshold, the load balancer

off-loads a local process to machines within its market who wish to sell their CPU (Figure 5.14).

IT there are no sellers. within the market, the load balancer starts th~ process locally, and tries to

. off-load processes later. Note that the D-RTM is now a buyer of CPU time and needs to inform its

market managers of its new status. We use a weak replication strategy by piggybacking the current

status of a machine along with Tasks that contain communication sends. By default the status of a

machine is seller. Therefore this field is changed to status buyer.

Load Balancing Algorithm:

Variable Definitions:

t: Task (communication sent throughout system)
load : Integer to denote the current load on the local machine
Threshold : Integer to denote the load limit on the local machine
BUYER,SELLER : constant to denote the state of .the machine
CPUStatus : enumerator to denote the state of the machine (BUYER/SELLER)
host : contains the host location of an available CPU
scheduleLocal(t) : schedules the Task t (i.e. an actor) on the local machine
scheduleRemote(t, host) : schedules the Task t (i.e: an. actor) at the location host
getAvailHost() : returns an available CPU (SELLER) from the market,
updateMarket(t) : update the CPU Status of the machine fro:i:n which the Task t originated

LoadBalancer :
1. Receive Task t
2. Ht is an actor

if load + l :5 Threshold, then
. set QPUStatus to SELLER

scheduleLocal(t)

Else
increment load by 1

set CPUStatus to BUYER
host = ge~A vailHost()
scheduleRemote(t, host)

Else if t is a communication

updateMarket(t)
forward task to Message Handler

3 .. goto 1

Figure 5.14. Load Balancing Algorithm.

5.4 Logical Layer

52

The logical layer consists of the actual application specific computations that are executing on the

local machines. The computation model consists of mobile actors whkh encapsulate:. a. behavior, an

identity, a mail queue, and one thread (Figure 5.15). Each computation runs in its owri thread, and

may communicate with any other thread on the local/remote machines. Computations are expressed

as Java programs using mobile actor semantics provided by constructs of the JMAS Mobile Actor

API. The mobile actor API gives programmers the ability to create actors, change the state, or

send communications to mobile actors within the global system. The underlying resources can

be logically represented as .mobile actors to build dynamic architecture topologies {Figure 5.16).

This dynamic architecture gives the programmer an illusion of a global computer that can run

53

concurrent, distributed, and parallel applications. Implementation details of the underlying system

are transparent to the programmer in the logical layer. A complete source listing of mobile actor

programs is given in Appendix C.

?,.&Obox '
0::0::::0

.. .

Figure 5.15. Computation Model.

Figure 5.16. Logical View of Mobile Actor.Architectures.

CHAPTER 6

PERFORMANCE EVALUATION

JMAS offers the basic infrastructure needed to integrate computers connected to the Internet into

a distributed computational resource: an infrastructure for running coarse-grain parallel applications

on several anonymous machines. Currently, cluster computing in · a LAN setting are already being

used extensively to run computation intensive applications. Through the efforts of GIMPS (Great

Internet Mersenne Prime Search), a group of IllOre than 700 workstations and PCs computed the

35th known Mersenne prime in 88 hours [Doc98]. In [Las97], the 48-bit RSA code was cracked using

3,500 workstations spread across Europe, and the .56-bit DES was cracked, using ap'proximately

78,000 computers [DES97]. The examples above show that users are willing to participate in global

computing efforts, and that there are applications that can be run. very efficiently in wide area

networks. In this section, we present results of the performance of our JMAS prototype. As shown

in Figure 6.1, we conducted our experiments in a heterogeneous environment consisting of:

• 1 Sun MicroSystems Enterprise 3000, configured with two UltraSparc processors each running

at 256MHz.

• 1 Sun Ultra Spare workstations, configured with one 120 MHz processor.

• 1 Sun Spare 5 workstation, configured with one 120 MHz proc::essor.

• 14 Sun Spare 20 workstations, each confi~ured with one 200 MHz processor.

• 1 Sun Spare 10 workstations, configured with one 166 MHz processor.

Each machine is connected by a 10 and 100 Mbit Ethernet. All experiments were conducted under

the typical daily workloads. We tested each algorithm under a controlled environment of D-RTMs

that were used strictly to run our experiments. CPU selection from the CPU market, was performed

by the D-RTM using a round-robin selectio~ policy. Under our controlied environment, an optimal

54

55

selection policy achieves the same results as round-robin CPU selection. We did not run our exper-

iments using a random CPU selection policy. This was done to insure that all processes mapped to

one and only one machine. In order to obtain a relative performance of our system, we calculate

the average of the execution times over N = 10 experiments, producing an arithmetic mean (AM):

1 N
AM= N LTime;

1

Where Time; is the execution time for the ith experiment. All experiments are compared with

performance metrics obtained from similar computations on stand-alone workstations.

14 - Sl'N :'>'PARC 20's

:'>'l'NEJOOO :··~ .~ ·····.;.\

Jt.J
.

ED

Internet

Sl'N :'>'PARC 5
Sl'N llln·>l :'>'PARC

Figure 6.1. Test Environment.

6.1 Benchmarks

The overhead of migrating actors to remote locations and passing messages between remote actors

are of great interest. We present experimental results for our prototype using two benchmarks: a

Traveling Salesman application, and a Mersenne Prime application. We discuss their implementation

and performance using the JMAS infrastructure.

56

6.2 Factors That Limit Speedup

A number of factors can contribute to limit the speedup achievable by a parallel algorithm executing

in a global infrastructure such as JMAS. An obvious constraint is the size of the input program.

If there is not enough work to be done by the number of processors available, then any parallel

algorithm will not show an increase in speedup. Second, the number of process creations must

be minimized. In particular, we are concerned with the creation of remote actors throughout the

distributed system. Lastly, in a global environment were communication cost is high, the number

and packet size of inter-process communications must be limited. Table 6.1 shows the performance

of two micro-benchmarks to calculate the execution time for communication sends, and remote class

loading using the JMAS prototype. A micro-benchmark is a small experiment used to monitor the

performance of underlying system operations. Results were obtained using a test packet to send a

communication, and load a Java class file between two machines.

Overhead secs
Send .006-.010
Remote Class
Loading .15-.28

Table 6.1. Micro benchmarks for a 10 Mbit Ethernet LAN using TCP sockets.

In general, the total cost of distributing a program for parallel execution is defined as:

Tcost = Total1oadTime + TotalcommTime + TotalexecTime

Where Total1oadTime is the time to load the needed Java class files to each machine within the system,

TotalcommTime is the time spent sending communications between actors, and TotalexecTime is the

time·spent by all machines executing the fraction of the·computation. Moreover, the total time to

distribute the needed Java class files across N machines is:

Total1oadTime = (N - 1) * t1oad

Where tioad is the average time to load the needed Java class files to one machine within the system.

We assume that the machines are organized using a master-slave topology. Such that, the master

57

is used to process a subcomputation, as well as, distribute N - 1 subcomputations and receive the

partial results from the other 1V - 1 slave machines. Assuming we distribute the load evenly among

N machines. Then the time to execute a fraction of the computation is:

TotalexecTime = tseq/N

Where tseq is the total sequential execution time for the application .. Given the load distribu-

tion above, if each subcomputation, sends at most k messages, then the communication overhead
' '

TotalcommTime can be defined as:

' '

1'.otalcommTime = (N - I) * k * tsend

Where tsend is the average time to send a communication between two machines. Given N machines,

we derive a general forinula to define the total cost ofdistribU:ting a program for parallel execution.

Tcost(N) =· (N - 1) * t1oad + (N - 1) * k * tsend + tseq/N Eq.l

We can estimate the performance of a given application using Equation 1. As shown below, in order

to benefit from parallelization the following inequality must hold: ·

Tcost(N) < tseq

(N - 1) * t1oad + (N - 1) * k * tsend + tseq/N < tseq

.

Solving the inequality, we find.that the total cost (i.e. Tcost(N)) is less than the sequential execution

time {i.e. tseq) for:

6.2.1 Remote Execution of Actors

As a mobile actor computation unfolds, mobile actors have the ability to implicitly navigate au-

tonomously throughout the underlying network; causing the migration of code. On each of the .

experiments conducted in this chapter, we calculated the average time to load a Java class file over

the network. On a standard 10 Mbit Ethernet network the time to load a remote class file ranges

58

between .15 and .28 seconds (Table 6.1). On average it. takes .20 seconds to load a class file across

the network. When considering distributing an application across several machines, one must take

into consideration an upper bound on the amount of parallelism that. can be exploited by distribut-

ing processes throughout a global system. In particular, we focus on the overhead associated with

loading Java class files across the. network (i.e. Total1oadTime) . . We can calculate the maximum

number of machines p, needed to distribute the parallel computation without compromising the

performance in speedup by finding the minimum execution time. The minimum execution time is

the minimum value of the continuous function Tcost(P) on a closed bounded interval [l,p]; where

p = tseq / (tioad + k *tsend). We can simplify our calculation by assuming the communication overhead

is minimal (i.e. tsend = 0). Giving the general formula for the total cost,

Tcost(N) == (N - 1) * tioad + tseq/N

Taking the derivative of Tcost(P) with respect top gives:

Setting Tbo~t(P) = 0 and solvingfor p, gives

Therefore, we can estimate the maximum speedup S as:

Giving,

6.2.2 Message Passing

S = tseq/Tcost(p)

S = 2.* .tseqJtseq/tload + tseq
. 4 * tseq - tioad .

Eq.3

As stated in Chapter 5, communication in JMAS is asynchronous, reliable and connection-oriented.

Messages between two actors, must be routed through a D-RTM on the local machine on which

59

the two actors reside. The Java Virtual Machine requires all communication to go through the

. Java network layer (i.e. java. net) and the complete TCP stack of the underlying OS. This causes
I,

a substantial software overhead compared to communication libraries of parallel machines. Using

JMAS, a single message can be sent from one actor to another within .006-.010 seconds on a stan-

<lard 10 Mbit Ethernet LAN (Table 6.1). As long as applications are coarse grained, the over.head

of opening a socket connection can be ignored. Since message passing using Java TCP sockets is

slow compared to dedicated parallel machines, and communication delays of large networks of het-

erogeneous machines is unpredictable, only computation~intensive parallel applications benefit from

the JMAS infrastructure. In particular, we can 'estimate the performance of a parallel computation
.

given the total communication overhead (i.e. TcommTime), anltlie total overhead (i.e. T1oadTime)

associated with loading Java class filesthroughout the network. H k and. ts~nd are constant, then

the communication overhead (i.e~ TcommTime(N) = (N - 1) * k * tsen~Ps a linear function of N;

where N denotes the total machines used. We can calculate the maximum number of machines p

needed to distribute the parallel computation by taking the derivative of Equation .1 with respect

to N; where N = p. Giving;

Setting Tbost(P) = 0 and solving for p, gives

Therefore, we can estimate the maximum speedup S a~: .·

Giving,

S = 2 * tseqJtseq/(tioad + k * tsend) + tseq
4 * tseq - (tioad + k * tsend)

Eq.4

Eq.5

. In the next two sections, we present the experimental applications used for performance evaluation.

60

6.3 Traveling Salesman Problem

()ur first applicationis a parallel solution to the Traveling Salesman Problem (TSP). The Traveling

Salesman Problem is as follows: given a list of n cities along with the distances between each pair

of cities. The goal is to find a tour which starts at the first city, visits each city exactly once and

returns to the first city, such that the distance. traveled is as small as possible. This problem is

known to be NP-complete (i.e. no serial algorithm exists that runs in time polynomial in n, only

in time exponential in n), and it is widely believed that no polynomial· time algorithm exists. In

practice, we want to compute an approximate splution, i.e. a single tour who~e length is as short as

possible, in a given .amount of computation tinie.

More formally, we are given a graph G = (N, V, W) consisting of a set N of n nodes (or cities),

a set of edges V = (i,j) connecting cities, and a set of nonnegative weiglits W = w(i,j) giving

. the length of edge (i,j) (i.e. the distance from city i to city j). The·graph is directed, so that an

edge (i, j) may only be traversed in the direction from i to j, and edge (j, i) may or may not exist,

Similarly, w(i, j) does not necessarily equal w(j, i), if both edges exist.

There are a great many algorithmsfor this important problem, some of which take advantage of

special properties like symmetry (edges (i, j) and (j, i) always exist or do not exist simultaneously,

.and w(i,j) = w(j,i)) and the triangle inequality (w(i,j) <= w(i,k) + w(k,j}Vi,j,k). In this

application we assume none of these properties hold. For simplicity, though, we assume all edges
. .

{i,j) exist, and all w(i,j) are positive integers (note that setting sonie .w(i,j) to be very large

effectively excludes it from appearance in a solution).

6.3.l TSP Algorithm

We take a naive approach to solving the TSP using an Exhaustive-Search. The exhaustive-search

algorithm searches all (n-1) ! possible paths, while keeping the best path searched so far. We generate

all possible paths using a Permutation() function- on the number of cities n. The permutation

function generates a lexicographical ordering of all possible paths. We divide the permutations

equally among a set of processors p; such that each processor searches (n - 1}!/p possible paths

61

(Figure 6.2). Processors are arranged in a master~slave design. A complete source code listing of

the TSP solution using mobile actors is given in Appendix C.6.

Variable Definitions:
n : Integer to denote the number of cities
p : Integer to denote the number of machines
mintour : Integer to denote the permutation of the best tour searched
start : Integer to denote the starting permutation in lexicographical order ·
stop : Integer to denote the ending permutation in lexicographical order
resultTour : Integer to denote the best tour sear:ch for a specified range lexicographically
itself : Actor addtess of itself
cust : Actor address to send result
range : Integer to denote the total permutations (tours} to check
Permutation(i) : Generates the ith tour in lexicographical order

behavior Master :
1. mintour = 0
2. range = (n - 1}!/p
3. for each processor i : 1 to p - 1 do

create. a. Remote actor assume behavior. Slave, return. address of actor as X

send start = (i*range}, stop = ((i+i)*range}, and.the address of itselfto x

4. become itself and wait for p result~
5. for i : 1 to p do

receive resultTour
if Permutation(resultTour) distance $ Permutation(mintour} distance

set mintourto resultTour

behavior Slave :

1. recv start, stop, and address of cust to .send .result
2. mintour = start
3. for i equal start to stop do

if Permutation(i} distance $ Permutation(mintour} distance
set mintour to i

4. send mintour to cust

Figure 6.2. TSP Algorithm.

6.3.2 Measurements

In order to complete our set .of measurements in a reasonable amount of time we chose to test our

TSP solution primality for N = { 4, 5, 10,13}cities. We tonducted th~ experiment in an environment

consisting of up to.15 machines, and compared the results with a sequenti.µ application running on

a SPARC 20 workstation. As shown in Figure 6.3, there is no significant gain in performance for

N < 10. This is due to the overhead associated with loading Java class files across the network.

Figure 6.4 displays the execution time of a TSP solution for N ~ 5 versus its remote Java class

loading time. As the number of machines p increase, the load .time increases, causing the execution

62

time to increase; exceeding the execution time for a sequential solution. Notice we achieve the

best performance for p = 4 machines. For N :::: 10, our TSP solution gives better performance

than serial execution. In particular, for N = 13 the speedup obtained is close to linear. Due to

limited resources, we were unable to test the scalability of the application for large values of p.

We estimate the performance of our TSP application using Equations 1,2 and an average load time

tioad = .15 secs. As illustrated in Table 6.2;the average CPU utilization for the best possible number

of machines pis 50%. As the number of processors p approach (N - 1)!, the speedup obtained will

decrease significantly; due to under utilization of processors and the overhead associated with loading

Java class files across the network (Figure 6.5). The estimates are also reflected in Figure 6.3. These

results show that· our framework is well sui.ted for course grain applications. The TSP application

also scales well to large computation sizes (Figure 6.6).

14

12

10

a.
8 :,

al a. en
6

4

2

0
0

Prob. Size tseq secs Max. p Max. s Utilization
N=5 Cities 3.007 4 2.24 56%
N=lO Cities 24.441 12 6.33 52.7%
N=13 Cities· 36655.848 494 247.42. 50%

Table 6.2. Estimating the Performance of TSP.

Jv1AS Performance of TSP

u r-·+_

-·fO' --· .'N;.13' -+--·
'N~s· -a--
'Na4' -><--

.· ···· . best S

.• ------------~---------L---..... .
.. __ ::.>~~stS _.,.,.::-L . .

,. ::------ ---~----
.x:-· ---s----a----a-. ___ ·-----------...

2 4""' 6
bestp (N=5)

8 10
Processors p 12""' 14

best p (N-10)

Figure 6.3. Speedup of TSP.

16

'[
Cl> s
Cl>
E
F

C
0 .iii
-~
5
~

3

2.5

2

1.5

0.5
.... L

.,+

jMAS Performance of TSP

'Execllme' -
'l..oadllme' ---

0 ~~~-----··~~~~~~~~~~~~~~~~---~~~~~~~~~~~
0 2 4

Figure 6.4.

6 8
Processors p

10 12 14

Execution Time vs Load Time.

16

· jMA.S Performance of TSP
100~~~~~~~~~~~~~~~~~~~~~~~~~~~~

80

\
60 \

',

40

20
\

\
\

---- 'N-10' -
--+-----+------+-----+---+-- 'N=13: ---

··-. s. __ _

·-o .. _____ -(3

---------,~ ::~~:

··--h

------------El

0 '--~~~ ~~~---''--~~~-'--~~~~~~~~~~~~~~~~~
2 4 6 8 10 12 14 16

Processors p

. Figure 6.5. CPU Utilization of TSP .

63

. 14

12

10

C.
8 :,

l
CJ)

6

4

2

0
4 5

JMAS Performance of TSP

10
CitiesN

/

;,.,·' ,
I

Figure 6.6. Scalability of TSP.

/

6.4 . Me:rseline Prime Application

'p=2' .,._,
:p=4:-+/
,JJ=6 ·fil--·
p=S',4'-·

'p=):i'__
/

,.,·'

13

64

For our second application, we implemented a parallel primality test which is used to search for

Mersenne prime numbers [Doc98]. This type of application is well suited for our infrastructure. It

is very coarse grained with low communication overhead.

A ME)rsenne prime is a prime number of the form 2P - 1, where the exponent p itself is prime.
. . .. , .

These are traditionally the largest known primes. · Encryption and decryption methods are typical

applications which utilize large prime numbers .. Searching and verifying Mersenne primes using

computer technology has been conducted since 1952 [Doc98]. To date 37 Mersenne primes have

been discovered. Only up to the 35th Mersenlie prime has been verified. The current record holder

is 21398269 - 1 and was discovered through the use of over 700 PCs and workstations worldwide.

With larger and larger prime exponents, the search for Mersenne primes becomes progressively more

difficult.

6.4.1 Mersenne Prime Algorithm

In our implementation, each prime is tested based on the following theorem:

Lucas-Lehmer Test: For p odd, the Mersenne number 2P - 1 is prime if f 2P - 1

divides S(p - 1); where S(n + 1) = S(n)2 - 2, and S(l) = 4. The proof can be obtained

from [Doc98).

65

We.develop a mobile actor program to test for Mersenne primality, given a range of prime numbers

(Figure 6. 7). Processors are arranged in a master-slave design. As shown below, our application

works as follows:

Given N machines and a range r of prime numbers, we divide the search such that:

each machine tests for a Mersenne prime using the Lucas-Lehmer Test for a range of

primes. Each range is of size r/N.

A complete source listing of the Mersenne Prime application is in Appendix C.7.

Variable Definitions:
r : Integer to denote the amount of primes to test
N : Integer to denote the number of machines
Lucas(x) : Performs Lucas-Lehmer test on x
itself : Actor address of itself
cust : Actor address to .send result
range : Integer to denote the range of primes to check
start : Integer to denote the starting prime number
stop: Integer.to denote the prime number used as a sentinel
reCVcount : Integer to denote the total results received
PRIME : enumerator returned from Lucas(xkif x is a prime number
SINK: message to denote the termination of a subcomputation

behavior Master :
1. range= r/N
2. for each processor i : 1 to N - 1 do -

create a Remote actor assunie behavior Slave, return address of actor as x
send start = (i*range), stop= {{i+l}*range), and the address of itself to x

3. become. itself and wait for N results
4, set reCVcount =· 0
5. receive result
6. if result is SINK

increment reCVcount by 1

Else
print ''2result - 1 is PRIME!"

7. if reCVcount < N, then goto 5

behavior Slave :

1. recv start, stop, and address of cust to send result
2. for i : start to stop do

if Lucas(i) is PRIME
send i to cust

3. send SINK to cust

Figure 6. 7. Mersenne Prime Algorithm.

6.4.2 Measurements

66

For our measurements, we chose to test the Mersenne primality for all exponents between 4000 and

5000. Known primes withui this range are 24253 - 1 and 24423 - 1. The reason for selecting this

range is that:

1. we tried to make the number large enough to simulate the true working conditions of the

application,

2. we wanted to keep them small enough to be able to complete our set of measurements in a

reasonable amount of time.

· 67

We conducted the experiment in an environment consisting of up to 15 machines, and compared the

results with a sequential application running on a SPARC 20 workstation. As shown in Figure 6.8,

our application scales to 15 machines linearly. The speedup obtained is slightly lower than linear

speedup. This is because we_ decompose the range of primes to _be tested unevenly in terms of the

amount of work to be done.

JMAS Performance of Mersenrie Prime Application

14

12

10.

C. a ::,

i
C. en

6

4

2

0
0 2 4 6 8 10 12 14 16

Processors p

Figure 6.8._ Speedup of Mersenne Prime.

For inst~ce, testing if 24000 -1 is prime, can be done_ much faster tha~ testing if 24999 -1 is prime. We

split the ranges in groups such that, the last machine receives the last group consisting of the largest

numbers. Due to limited resources, we were unable to test the scalability of the application for large
. . .

values of p. We estimate the performance ofthe Mersenne Prime application using Equations 1,2;

where the average load _time t1oad ::::; ._20 secs, and the average sequential execution time tseq = 83432

secs. As shown in Table 6.3, results show that the application scales up to 646 machines with an

overall speedup of 323. From our results we can assume that for p > 646, the range of primes to

test decreases causing under utilization of CPUs (Figure 6.9). Also,for every new machine added,

the time to load Java class files increases causing a decrease in performance.

Application tseq secs Max. p Max. S Utilization
Mersenne Prime 83432 323 646 50%

Table 6.3. Estimating the Performance of the Mersenne Prime Test.

JV1AS Performance of Merseme Prime
100.--~~-.-~~~-r-~~---',,--~-'--.-~~~....-~,-----,-~~~-,

'4000-5000'-<>-

80

60

40

20

0 2~~~~4~~~~6~~~-s~~~-,~o~~~~,2~~~~,4~~~~,6

Processors p

Figure 6.9. CPU Utilization of Mersenne Prime.

68

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

. .

In this thesis we introduce mobile actors; a parallel p~ogramming paradigm for distributed parallel

computing based on mobile agents and the actor; :rri.essage passing model (Agh86]. The Actor-based

message passing model supports dynamic architecture· topologies that make it ideal for distributed ---·---------·-- _______________ . __ .. ~-~-· -·--- _, '""':"'""·•, ... ······.-------- ··----~- -·
parallel computing. We implement a prototype system (JMAS) based on the mobile actor model . . .

using Java technology. JMAS is a globally distributed comp,uting environment for executing mobile
. . .

. .

actor computations. JMAS is desig~ed using Ja~a tech~ology (Inc95], and requires a programming

style different from commonly used approaches to distributed computing. JMAS allows a program-

mer to create mobile actors, initialize their behaviors, and send them messages using constructs

provided by .the JMAS Mobile Actor APL As the computation unfolds, mobile actors have the

ability to implicitly navigate autonomously throughout .the underlying net~ork. New messages are

generated, new actors are created, and existing actors undergo state change. We evaluate the per-

formance of our system using two benchmarks: a Mersenne Prime Application, and the Traveling

Salesman Problem. The degree of parallelism obtained from distributing mobile actors throughout

the system is limited due to the overhead associated wi_th migrating Java class files, and the amount

of inter-process communication. In particular, we-are bound by the number of processors . .

.•·

to distribute the parallel computation; where tseq is the sequential execution time of the application,

tioad is the average time to load the needed Java class files to one machine, k is the total message

rounds sent per machine, and tsend is the average time to send a communication between two

machines. Given p we can estimate the speedup S as:

S = tseq/Tcost(P)

69

70

When the enhanced performance using p machines, is denoted as a general formula

Tcost(P) = (p - 1) * tzoad + (p - 1) * k * tsend + tseq/N

the speedup is,

S = 2 * tseq Jtseq/{t1oad + k * tsend) + tseq
4 * tseq - (tzoad + k * tsend) ·

Our estimates for the TSP and Mersenne Prime applications, show· that each application scales

to large numbers of machines N. But for N > p,. we estimate a decrease in performance; due to the

under utilization of CPUs, and the significant overhead associated with loading the needed Java class

files and sending communications thrnughout the system. These results show that our framework is

well suited for course grain applications.

7.2 Future Work

In order to improve the performance of Java programs for high performance computing, the execu-

tion time for interpreting Java bytecode must be addressed. Performance boosters such as a JIT

(just in-time) Java compiler provide a more efficient execution of Java applications [Inc95]. Some

JIT compilers give increases in performance that match the execution of optimized C compiliers.

We suggest the incorporation of a JIT Java compiler to improve the performance of JMAS. Is-

sues such as fault tolerance and security need to be addressed and implemented within the JMAS

framework. High-level communication abstractions should be addressed within the JMAS Mobile

Actor APL Examples are barrier actors, mutex actors, call/return communication, and actorSpaces

[AP91]. Distributed I/0, exception handling, and the intergratiol,1 of mobile actors and sequential

applications using graphical user interfaces, need to be addressed. The prototype also needs to be

tested on machines running Microsoft Windows NT and 95 operating systems. Providing support

for connection-less communication using UDP sockets could improve the performance of actor com-

munication, as opposed to TCP sockets which involve communication overhead to establish and

maintain a reliable connection. A connection-less communication system would be useful in scalable

computing clusters, or networks of workstations. Lastly, more work needs to be done to provide gen-

71

eral formulas for estimating the performance of parallel compuations distributed among a network

of machines unevenly.

[ACP95]

[Age97]

[Agh86]

[Agh89J

[AHP91]

[AKP90]

BIBLIOGRAPHY

T. Anderson, D. Culler, and D. Patterson. A case for now (network of workstations).

In IEEE Microcomputer. IEEE, 1995.

AgentSoft. AgentSoft's · products: LiveAgent and SearchAgent.

http://www.agentsoft.com, 1997.

G. Agha. Actors: A model of concurrent computation in distributed systems. M.I.T.

Press, 1986.

Gul Agha. Supporting inultiparadigm programming on actoi architectures. In Proceed

ings of Parallel Architectures and Languages Europe, pages 1-:-:19. LNCS, 1989.

Gul Agha, Chris Houck, and Rajendra Panwar. Distributed execution of actor pro

grams. In Proceedings of the Fourth Workshop on Languages and Compilers for Parallel

Computing. Santa Clara, 1991.

G. Agha, W. Kim, and R. Panwar. Actor languages for specification of parallel compu

tations. DIMACS Series in Discre~e Mathematics and Theoretical Computer Science,

00, 1990.

[AMST91] Gul Agha; [Mason,$. Smith, and C. Talcott. Towards a theory of actor computation.

[AP91]

In 3rd International Conference on Concu~ncy Theory CONCUR '92, pages 565-579.

LNCS, 1991.

Gul Agha and R. Panwar. An actor-based framework for heterogeneous computing

systems. Journal of Parallel and Distributed Computing, 21, 1991.

72

[AS88]

[aSU97a]

73

W. Athas and C. Seitz. Multicomputers: Message-passing concurrent computers. IEEE

Computer, 2:9-23, 1988.

NPAC at Syracuse University. Computing on the Web: New Approaches to Parallel

Processing Petaop and Exaop Performance in the Year 2007. Online Technical Report,

http://www.npac.syr.edu/users/gcf/petastuff/petaweb/, 1997.

[aSU97b] NPAC at Syracuse University. WebFlow: A Visual Programming Paradigm for Web

and Java Based Coarse Grain Distributed Computing. Online Technical Report,

http://www.npac.syr.edu/projects/javaforcse/cpande/sufurm.ps, 1997.

[atoSM96a] JavaSoft a trademark of Sun Microsystems. Java Object Serialization.

http://chatsubo.javasoft.com/current/serial/index.html, 1996.

[atoSM96b] JavaSoft a trademark of Sun Microsystems. Java Remote Method Invocation (RMI).

http://chatsubo.javasoft.com/current/rmi/index.html, 1996.

[BBB96]

[BFD96]

[BG98]

J. Baldeschwieler, R. Blumofe, and E. Brewer. Atlas: An infrastructure for global

computing. In Proceedings of the 7th ACM SIGOPS European Workshop on System

Support for World Wide Applications. ACM SIGOPS, 1996.

L. Bic, M. Fukuda, and M. Dillencourt. Distributed computing using autonomous

objects. IEEE Computer, 18:55-61, 1996.

L. Burge and K. George. An actor based framework for distributed mobile computa

tion. In PDPTA - Parallel Distributed Processing Techniques and Applications. CSREA,

1998.

[BJK+95] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk: An

efficient multithreaded runtime system. In Proceedings of the 5th ACM SIG PLAN, pages

74

207-216. Symposium on Principles and Practice of Parallel Programming (PPoPP),

· 1995.

[BKKW96] A. Baratloo, M. Karau!, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing on

[BL96]

[BN84]

[BN95]

[BN96J

the web. In Proceedings of the 9th Conference on Parallel and Distributed Computing

Systems. PDCS, 1996.

' .

T. Berners-Lee. Www: Past, present and future. IEEE Computer, 18:69-77, 1996.

A. Birrell and B. J. Nelson. Implementing.remote procedure calls. ACM Transactions

on Computer Systems; 2:39-59, 1984.

L. Burge and M. Neilsen. Variable-rate timestamped anti-entropy. I.n ISMM Interna

tional Conference on Parallel and Distributed Computing and Systems. 7th IAS':I'ED,

1995.

·, ..

L. Burge and M. Neilsen. A qecentralizt1d algorithm for communication efficient dis-

tributed shared memory. In 11th Annual Symposium on Applied Computing - Dis-

tributed and Parallel Processing. SAC, 1996.

[BSST96] R. Brecht, H. Sandhu, M. Shan, and J. Talbot. Paiaweb: · Towards world-'wide super-

[BVN91]

(CA91]

computing: In Proceedings of the ?th ACM SIGOPS European Workshop on System

Support for WorldWide Applications. ACM SIGOPS, 1996.

F. Baude and G. Vidal,-Naquet. Act<;>rs as a parallel programming model. In Proceedings

of the 8th Symposium on theoretical A,spects of Com;uter Science, page 480. LNCS,

1991.

. C. Callsen and G. Agha. Open heterogeneous computing in actorspace. Journal of

Parallel and Distributed Computing, 21:289-300, 1991.

75

[CDL +96] K. Chandy, B. Dimitron, H. Le, J. Mandleson, M. Richardson, A. Rifkin, P. Sivilotti,

W. Tawaka, and L. Weisman. A world-wide distributed system using java and the

internet. In Proceedings of the 5th IEEE Internation Symposium on High Performance

Distributed Computing. IEEE HPDCS, 1996. ··

[Cli81] W. D. Clinger. Foundation of.actor semantics. Technical Report AI-TR-633, MIT

Artificial Intelligence Laboratory, 1981.

[CLNR97] N. Camiel, S. London, N. Nisan, and,O. Regen. The popcorn project: Distribut.ed

computation over the internet in java. In Proceedings of the 5th Internation World

Wide Web Conference. W3, 1997.

. .

[CM96] W. Chang and D. Messerschmitt. Dynamic deployment of peer-ta:-peer networked ap-

plications to existing world wide web browser. Proceedings of the· Telecommunications

Inform~tion Network Architectures {TINA}, 1., 19~6.

[Con96] WWW Consortium. Jigsaw Web Server. http://www.w3.org/pub/www/jigsaw, 1996.

[DD96] H.M Deitel and J. P. Deitel. Java How to Program. Printice Hall, 1996.

[DES97] DESCHALL. Internet-linked computers challenge data encryption standard. Technical

report, Press Release, 1997.

[Doc95J· Online Document. Mobile Agents: Are they· a good idea? http://www.eit.coin

/goodies/1ist/www.lists/www-talk.1995q1/0764.html, 1995'.·

[Doc98] Online Document. Mersenne Primes: History, Theorems and Lists.

http://www.utm.edu/research/primes/mers~nne.shtml, 1998.

[DoCS96a] University of California at Santa Barbara Dept. of Computer Science. Javalin:

76

Internet-Based Parallel Computing Using Java. Online Technical Report,

http://www.cs.ucsb.edu/ danielw /Papers/wjsec97;ps, 1996.

[DoCS96b] University of Maryland College Park Dept. of Computer Science. Network-aware Mobile

Programs. Online Technical Report, http://www.cs.umd.edu/TR/CS-TR-3659, 1996.

[DoCS97a] Old Dominion University Dept. of Computer Science. Web Based Framework for Dis

tributed Computing. Online Technical Report, http://www.cs.odu.edu/ techrep /techre

ports/TR_97-21.ps.Z, 1997.

[DoCS97b] Rice University Dept. of Computer Science. Java/DSM: A Platform for Heteroge

neous Computing. Online Technical Report, http://www.cs.rice.edu/ weimin/papers

/java97.ps, 1997.

[DoCS97c] University of California at Santa Barbara Dept. of Computer Science. Super-

Web: Research Issues in Java-Based Global Computing. Online Technical Report,

http://www.npac.syr.edu/projects/javaforcse/cpande/UCSBsuperweb.ps, 1997.

[fDRC94] L. Cardelli for DEC· Research Center. Obliq: A language with distributed scope.

http://www.research.digital.com/SRC /Obliq/ Obliq.html, 1994.

[FF96a)

[FF96b)

[FK97]

G. Fox and W. Formaski. Towards web/java based high performance distributed com

puting - and evolving virtual machine. In Proceedings of the 5th IEEE Internation

Symposium onHigh Perfo'rmance Distributed Computing. IEEE HPDCS, 1996.

G. Fox and W. Furmanski. Towards web/java based high performance distributed com

puting - an evolving virtual machine. In Conference on High Performance Distributed

Computing, page 10. IEEE, 1996.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Interna

tional Journal of Supercomputer Applications, 1, 1997.

77

[GK92] D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage: Preliminary

experience with piranha. In Proceedings of the 6tfi A CM International Conference on

Supercomputing. ACM, 1992.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MP!: Portable Parallel Programming with

the Message~P(Lssing Interface. MIT Press, 1994.

[Gra95] R. Gray. Agent tel: A transportable agent system. In Proceedings of the CIKM Work-

shop on Intelligent Information Agents . . Fourth International Conference on Information

and Knowledge Management (CIKM '95), 1995. ·

[GWtLT97] A. Grimshaw, W. Wulf, and the Legion Team. The legion vision: of a worldwide virtual

computer. Communications of the ACM, 20:39-45, i997.

[Ham96] M. Hamilton. Java and the shift to net-centric computing. IEEE Computer, 1:31-39,

1996.

[Hay88] J. P. Hayes. Computer Architecture and Organization. McGraw-Hill, Inc, 1988.

[HBB96] D. Halls, J. Bates, and J. Bacon, TUBE: Flexible Distributed Programming Using.

Mobile Code. http://www.cl.cam.ac.uk/users/dah28/position-final/position-final.html,

1996.

[Hew77] C. Hewitt. Viewing control structures as patterns of passing messages .. · Journal of
. . . .

Artificial Intelligence, 8:323_:3(>4, 1977.

[Inc94] Oracle Inc. Oracle pres's release. Technical report, Oracle, 1994.

[Inc95] Sun Microsystems Inc. The Java Virtual Machine Specification. Online Technical

Report, http://java.sun.com, 1995.

[Inc97]

[KAB98]

78

JavaSoft Inc. Jeeves Java-based Web Server. Online Technical Report,

http://www.javasoft.com/javastore/jserv, 1997.

A. Keren and Institute of Computer Science Hebrew University A. Barak. Parallel Java

Agents. http://cs.huji.ac.il/, 1998.

[KBW97] L. Kale', M. Bhandarkar, and T. Wilmarth. Design and implementation of parallel java

with global object space. In PD PTA Intemational Conference, pages 235-244. PD PTA,

1997.

[KCDZ94] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Distributed shared

memory on standard workstations and operating systems. In Proceedings of USENIX.

USENIX, 1994.

[KKT92] H. Koch, L. Krombholz, and 0. Theel. A Brief Introduction into the World of Mobile

Computing (extended abstract). http://www.tm.informatik.th-darmstadt.de/, 1992.

[KZ97] J. Kiniry and D. Zimmerman. A hands~on look at java mobile agents. IEEE Internet

Computing, 1:21-29, 1997.

[Las97]

[LDD96]

(1197]

[LL88]

A. Lash. 48-bit crypto latest to crack. C-NET: The Computer Network.

http://www.news.com/News/Item/0,4, 7849,4000.html, .1997.

A. Lingnau, 0. Drobnik, and P. Dome!. An HTTP-based Infrastructure for Mobile

Agents. http://www.tm.informatikuni-frankfurt.de/agents/www4-paper.html, 1996.

Argonne National Laboratory and USC Information Science Institute. The Nexus Mul

tithreaded Runtime System. http://www.mcs.anl.gov/nexus, 1997.

M. Litzkow and M. Linwy. Condor - a hunter of idle workstations. In Proceedings of

the 8th International Conference of Distributed Computing Systems. ICDCS, 1988.

[MC96]

[Obj96]

[oCaI96]

[oCS96]

Microelectronics and Computer Consortium.

http://www.mcc.com/projects/carnot/rosette, 1996.

79

Rosette Reference Manual.

ObjectSpace. Voyager. http://www.objectspace.com/Voyager, 1996.

University of California at Irvine. MESSENGERS. Online Technical Report,

http:/ /www.ics.uci.edu/ hie/messengers, 1996.

Sewdish Institute of Computer Science.

http://www.sics.se/ps/agents.html, 1996.

AKL, AGENTS, and Penny.

(oMCS97] Dept. of Math and Emory University Computer Science. IceT: Distributed Computing

and Java. Online Technical Report, http://www.mathcs.emory.edu/ gray/, 1997.

(oT96]

(OW97]

(Pei97]

(Rey97]

[Rie94]

(rL96]

University of Tromse's. Tacoma. Online Technical Report,

http://www.cs.uit.no/DOS/Tacoma, 1996.

S. Oaks and H. Wong. Java Threads. O'Reilly, 1997.

H. Peine. Ara - Agents for Remote Action. http://www.uni-kl.de/AG-Nehmer/Ara/,

1997.

F. Reynolds. Evolving an operating system for the web. IEEE Computer, 1:90-92,

1997.

Doug Riecken. M: An architecture of distributed agents. Communications of the A CM,

37:48-53, 1994.

Tokyo research Lab. Aglet Workbench. http://www.trl.ibm.co.jp, 1996.

[SaOGl97] Computer Science and Engineering at Oregon Graduate Institute.

http://www.cse.ogi.edu/DISC/projects/mist/overview.html,.1997.

MIST.

.[SH97]

[Sta84]

[Sun90]

[SVN91]

[Tan92]

80

M. Singh and M. Huhns. Internet-based agents: Application~ and infrastructure. IEEE

Internet Computing, 1:8-9, 1997.

J. A. Stankovic. A perspective on distributed computer systems. IEEE Transactions

on Computers, 33:28-41, 1984.

V. Sunderain. Pvm: .A framework for parallel distributed computing. Concurrency:

Practic.e and Experience, 2, 1990.

Y. Sarni and G. Vidal-Naquet; Formalization ofthe be.havior of actors by colored peri

nets and some applications. Iii Proceedings of Parallel Architectures and Languages

Europe. PARLE, 1991.

A. Tanenbaum. Modern Operating Systems. Englewood Cliffs, N. J. : Prentice Hall,

1992.

[Tan96] A. Tanenbaum. Computer Networks. Englewood Cliffs, N .. J.: Prentice Hall, 1996.

[TMN98] H. Takagi, S. Matsuoka, and H. Nakada. Ninftet: A Migratable Parallel Object Frame

work using Java. http://ninf.etl.go.jp/, 1998.

[UoCal96] Dept. of Computer Science University of California at Irvine. MESSENGERS: A Dis

tributed· Computing Environment for Ay.tonomous Objects. Online Technical Report,

http://www.ics.uci.edu/ hie/messengers, 1996.

[Van97] L. Vanhelsuwe. Create your own supercomputer .• with Java.

http://www.javaworld.com/javaworld/jw-01-1997 /jw-01-dampp.html, 1997.

[Ven97] Bill Venners. Solve real problems with aglets, a type of mobile agent.

http://www.javaworld.com/javaworld/jw-05-1997 /jw-05-hood.html, 1997.

81

[Whi94a] J. White. Mobile agents make a network. an open platform for third party developers.

IEEE Computer, 27:89-90, 1994.

[Whi94b) J. White. Telescript technology: The foundation for the electronic marketplace, general

magic white paper. Technical report, General Magic, 1994.

APPENDIX A

JMAS: INSTALLATION AND USER GUIDE

82

83

A.1 Setting up JMAS on your System

JMAS is distrib.uted as both source and a zipped class library and may be downloaded from the
. .

the following URL: http : / / a.cs.okstate.edu/ "' blegand/ J MAS. JMAS is written entirely in Java.

This release has been developed under JDRL1~3. Due to time constraints it has only been tested

on Sun Solaris. Future testing will include LINUX and Win95/NT. Unless you plan on re-compiling

from the source, setting up JMAS · is easy.· First, unpack the distribution somewhere convenient.

This should create the following tree of directories

MAS

!doc . ljmas !examples !public market.co,,j

Figure A.1. JMAS Directory Structure.

IT you plan on running JMAS from the zipped binaries (JMAS.zip), they are located in the top

level directory. Just include the path of location of the MAS directory in the environment variable

JMASPATH. Next, include the JMAS.zip file in your CLASSPATH. IT you plan on recompiling

from the source, add the location of the MAS directory to your CLASSPATH. For example, if I

unpacked the distribution in my home directory. To work from the zipped binaries, my JMASPATH

and CLASSPATH might be set as follows:.

JMASPATH = $HOME/MAS

CLASSPATII=.$JAVAHOME/lib/classes;,Zip:$JMASPATH/jmas.zip

To work from the recompiled source, my JMASPATH and CLASSPATH would be:

JMASPATH = $HOME/MAS

CLASSPATH = $JAVAHOME/lib/classes.zip: $JMASPATH/jmas

84

Make sure that your CLASSPATH includes the default Java packages as the first entry in the

CLASSPATH.

A .2 Starting the JMAS D-RTM

Before starting JMAS take note that there exists a directory public in the top level directory. All

executables written using JMAS MUST be put into this directory. The directory is a repository

where remote actors can locate publicly available behaviors on your system. You must also denote

any other machine you would like in your market cluster. This information is stored in the mar-

ket.conf, which resides also in the top level directory. Make sure that the machines you list are also

running JMAS. In order to change the current threshold value for your machine, modify the second

parameter within the file jmasd in the $J M ASP AT H /bin directory.

To start JMAS, issue the command jmasd [-i] at the command prompt; where the -i is optional.

To run with the GUI specify the -i option. Once JMAS is up and running you should see a graphical

user interface which displays information about the current processes running on the local machine,

the current CPU market, and a Threshold meter which displays the current load (Figure A.2).

TSP[boot]
TSP[boot]
TSP[result]
TS PSolver[i mp rove]
TSP[result]
TSP[result]
TSP[result]

cs.okstate.edu <SE LlER)
es labsvr. wslab.okstate.e du
eswsO 1.ws lab.okstate.e du
esws02. ws lab.okstate.e du

a.cs.okstate.edu
a.cs.okstate.e du
eslabsvr. ws lab.okstate.e du
a.cs.okstate.edu
eswso 1. ws lab.okstate.e du
esws02. ws lab.okstate.e du
}!sws03. ws lab.okstate.e du

Figure A.2. JMAS Graphical User Interface.

85

A.3 Terminating the JMAS D-RTM

JMAS can be terminated through the GUl (i.e. closing the GUI window), or by issuing a UNIX

system command. Because the JMAS D-RTM runs in the background, a process id must be known

in order to kill the process. For UNIX machines this is obtained using the ps command. To kill the

process, at command prompt issue:

% kill -9 < id >

AA Compiling Mobile A.ctor Programs

Compilation of mobile actor programs follows the same procedure for compilation of standard Java

applications (i.e. javac). Programs may be debugged using the standard Java debugger (i.e. javab).

Programs may be written as a Java application (i.e,. with a main()), or as an mobile actor application

(i.e. using a boot() method). Writing a program using a boot() method will be discussed in a

future section. NOTE: JMAS is not aware of program modifications when _recompiling programs.

Therefore, the system must be rebooted 'in order to remove the last copy of the Java class from the

system cache. Future versions of JMAS will provide a system command to purge the local cache

during recompilation.

A.5 Executing Mobile Actor Programs ·

There are several methods you can use in order to execute actor programs. JMAS can invoke actor

programs that are boot strapped with a boot() method, or you can write a Java program that
. . .

instantiates an actor object f~r use: Invoking ':'-ctor programs through their boot method is very

simple. Given the code provided in the Mobile· Actor API (Appendix B,1.1), we can invoke the

HelloWorld program by issuing the following command at the·system prompt:

% jmas HelloWorld

Process status information can be obtained by issuing the same command with the -ps option. It

can also be viewed visually through the jmasd graphical user interface (Figure A.2). Issuing the

86

command jmas -ps produces the following result.

Process status for [a.cs.okstate.edu] <2.0'l. Load>: 2 Jobs ...

id behv lTime cTime orig.

932343411 HelloWorld[boot] 0.12 4.0 a.cs.okstate.edu

932343412 WorldActor[world] 0.10 10.2 a.cs.okstate.edu

Note: All code must be placed within the public directory. As shown below, in order to integrate

actors within a java application , all you need to do is create an instance of the actor or mobile

actor object. Because actors communicate using asynchronous messages there is no way to obtain

the result back to the main. This feature will be added in future versions of JMAS.

public class StartActor
{

}

public static void main(String args[])
{

}

MobileActor ma= new MobileActor();

ActorAddress ha= ma.c:reateRemote("HelloActor",".a.cs.okstate.edu");
ma.send(ha,"hello");

. ··APPENDIX B ·

JMAS: MOBILE ACTOR API SPECIFICATION

87

88

This section provides the interface to the Mobile · Actor APL The mobile actor AP! consist of

two packages: jmas.actor, and jmas.util. Each package contains the classes.needed inorder to write

mobile actor programs. Both packages must be imported in every mobile actor program.

B.1 Elements of the j~as.acior API

The Mobile Actor AP! provides the methods to interface with actors within the JMAS environment.

This AP! allows users ~o create actors (local or 'remote), replace actor' behavior (local or remote),

terminate an actor, and send a communication between actors. The AP! also provides methods
. ' ,.· '·

. . .

which allow actors to get the available host from the CPU market. There are also methods which
' . .

allow an actor to query the l.oc~ machine, or a remote machine for the current load. Given these

functions, actors can be written as intelligent agents; capable of making their mvn decisions on where

to create remote actors, or. the next location to continue processing.

The classes of the actor AP! are as follows:

• Actor

• MobileActor

Conceptually, an actor can be thought of as an object with the following data member, a mail

address, and the following functional methods:send{},create{}, and become(). The semantics of

these operationsfoHow the standard actor definition of the primitive.operations given in [Agh86].

Objects which extent from this class may only perform their methods on the local machine. These

constructs provide useful mechanisms for writing.concurrerit/p·arallel programs on workstations or

multiprocessor systems which may not have network access to remote re~ources.

A mobile actor has all the characteristics and functionality of basic actors with the extension. of

the following two functional methods: becomeRemote() and createRemote(}. The semantics of these

operations follow those given i.n [BG98]. Objects which extent from this class may perform their

methods on the local, as well as a remote machine. As illustrated in Figure A.I, we can represent

actors and mobile actors using an Inheritance hierarchy. Below we give the interface of the actor AP!

89

for writing actor and mobile actor programs. These interfaces provide the only methods needed in

order to develop actor /mobile actor applications. We also give a simple example of using constructs

from each APL

Actor Class

Figure B.1. ls-a Relationship of Actors Objects using Inheritance.

B.1.1 Actor Class

Class jmas.actor.Actor implements Serializable

Description: Implements actor semantics on the local machine

Data Members:

protected ActorAddress addr;

Constructors:

none

Methods:

public ActorAddress getAddress();
-- returns the address of itself (implied)

public void sink();
-- terminate or destroy actor

public void send(ActorAddress a, String comm);
-- send comm to Actor a

public void send(ActorAddress a , String comm, Object[] param);
-- send comm & param[] to Actor a

public void send(ActorAddress a String comm, Object param);
-- send comm & param to Actor a

public void send(String comm);
-- send comm to itself

public Actor Address create (String behv, Object[] acq)
-.,. create behv· vith acq[] on local machine
-- return identity

public ActorAddress crea.te(String behv, Object acq)
-- create behv vith acq on local machine
-- return identity ·

public ActorAddress create(String behv)
-- create behv on local machine
-- return identity ·

public void become(String behv, Object[] acq).
-- bec_ome nev behv vith. acqt] on locai machine

public void become(String·behv, Object ac9.)
--· become nev behv vi th a~q ·on·.· local machine

public void become(String behv) .
-- become new behv on local.machine

Example of Usage

90

In the following example, the current act~r assumes the behavior HelloActor and receives a commu

nication hello. Upon receipt of the c6mmunication, it. executes the ~ello method. The current actor

then creates a new actor W, which assumes the behavior WorldActm: with acquaintance "Hello" .

. The actor then terminates.·· The· sink{} operation is implied when the life of a thread is over~ The

new actor W, instantiates itself using the constructor that matches the type and number of acquain-

tances. Upon receipt of the communication (method="world", parameter="World!!") it execut~s

the method world .

public class HelioActor extends Actor
{

}

public void boot() {hello(); }

public void hello O
{

}

ActorAd.dress . W = create("WorldActor'', nev String("Hello"));
send(W, "vorld", nev String("'World! !.11)); '

public cl~ss WorldActor extends Actor.
{

String h;

public WorldActor(String x) { h = x;}

public void vorld(String w) { ~ystem.out:println(h + v);}
}

The above example demonstrates the use of the actor API to write an actor program. The output

of the example is - Hello World!! More examples are shown in Appendix C.

B.1.2 MobileActor Class

Class jmas.actor.MobileActor implements Serializable

Description: Implements mobile actor semantics on the local machine

Data Members: Constructors:

none

Methods:

ActorAddress getAvailableHost ();
returns the address of an available machine within the CPU market
(Dynamic placement)

String getLocalHost O; ·.·
-- returns the address of the local machine

public int getLocalLoad()
-- returns the load on the local machine

public int getRemoteLoad(ActorAddress loc)
-- returns the load on the remote machine at loc

91

public ActorAddress createRemote(String behv, ActorAddress loc, Object[] acq)
create remote behv with acq[] on machine loc
return identity ·

public ActorAddress createRemote(Strin~ behv, ActorAddress loc, Object acq)
-- create remote behv with acq on machine loc

return identity

public ActorAddress createRemote(String behv, ActorAddress loc)
create remote behv on machine loc
return identity

public ActorAddress createRemote (String behv, String loc, Object[] acq)
create remote behv with acq[] on machine loc
return identity

public ActorAddress createRemote(Strin~ behv, String loc, Object acq)
-- create remote behv with acq on machine loc

return identity

public ActorAddress createRemote(String behv, String loc)
create .remote behv on machine loc
return identity

public void becomeRemote(String behv, ActorAddress loc ,Object[] acq)
become new behv with acq[] assume identity of loc

public void l>ecomeRemote (String behv, .Actor Address loc, Object acq)
become new behv with acq assume identity of loc

public void becomeRemote(String behv, ActorAddress loc)
become new behv assyme identity of loc

Example of Usage

Example: In the following example, the current actor assumes the behavior Hello World and receives

a communication hello. Upon receipt of the communication, it executes the hello method. The cur-

rent actor then creates a new actor W, on a remote machine, which assumes the behavior Hello World

92

· with .acquaintance "Hello". The actor then terminates. The sink{) operation is implied when the

life of a thread is over. The new actor W, instantiates itself using the constructor that matches

the type and number of acquaintances. Upon receipt of the communication (method="world",

parameter="World!!") it executes the method world.

public c~ass HelloWorld extends MobileActor
{

String h;

public HelloWorld(String x) { h = x;}

public void hello()
{

String acq = new String("Hello"));

ActorAddress W = crea:teRemote("HelloYorld", getAvailHostO, acq);
send(W,"world", new String("World!!"));

}

public void world(String w) {·System;out,.println(h + w);}
}

The above example demonstrates the use of the JE-aAPI to write a mobileactor program. The output
. .

of the example is - Hello World!!. We use the method getAvailHost() to dynamically determine the

remote location on which to create the mobile actor. A static placement strategy could also be

used by explicitly specifying the hostname. Notice that we packaged the method world within the

behavior Hello World. This gets rid ofthe extra network trap.smission needed to load the Behavior

WorldActor over the_network from the original location. When writing programs that involve several

behaviors, take note that access to behaviors whi_ch are not on the local machine need to be loaded

from a remote location causing additional communication overhead. More examples are shown in

Appendix C.

B.2 Elements of the jmas.util API

B.2.1 The ActorAddress Class

The ActorAddress class coiitain_s the 1tddress or identity of an actor. When creating actors an

identity is returned in the following format.

Maiibox@location

Class jmas.util.ActorAddress implements Serializable

Description: contains the address of an actor
Data Members:

private String mailbox;
private String location;

Constructors:

public Actor Address()

public ActorAddress(String mailbox, String loc)
creates an actor address mailbox©loc

public ActorAddress(String id)
creates an actor address id mailbox©location

Methods:

public String getMailboxO
-- return the mailbox of an actor address

public String getLocation()
-- return the location of an actor address

public String getidentityO
return the full actor address

public .void setLocation(String 1)
sets the location= 1 of an actor address

public void setMailbox(String m)
sets the mailbox= m.of an actor address

public void setAddress(String id)
-~ sets the actor address mailbox©location id

public String toString()
-- converts actor address to a string

public boolean equals(Object)
comparison operator

93

APPENDIXC

EXAMPLE MOBILE ACTOR PROGRAMS

94

95

C.1 Hello World

The following example illustrates the use of the boot() method to start an actor program on the

local machine (Line 9). Notice we imported two packages: jmas.util, and jmas.actor(Lines 4,5).

These packages are needed in every actor/mobile actor program. Every actor program must extend

from the Actor class (local computation) or the MobileActor class (distributed computation)(Line

7). All objects in JM.AS must be serialized. Therefore, you must represent all basic data types using

Java objects (Line 13). We create an actor .x assuming the behavior cHelloActor, with a list of

acquaintances acqs (Line 15). We send x a communication "hello" and a parameter - integer[59]

(Line 17).

:::::::::::::: cHello World.Java ::::::::::::::

1 import java. io. *.;
2 import java.lang.*;
3
4 import jmas.util.*;
5 import jmas.actor.*;
6
7 public class cHelloWorld extends Actor
8 {
9
10
11
12
13
14
15
16
17
18
19 }

public void boot()
{

System.out.println("Starting [Concurrent] ");

Object[] acqs = new Object[] { new Integer(10), new Double(34.5) };

ActorAddress x = create("cHelloActor" , acqs);

send(x, "hello" , new Integer(59));
}

Upon creation of an actor assuming the behavior cHelloActor, its constructor is executed in order

to pass the acquaintances as parameters to the object(Line 12). After receiving the communication

["hello" , Integer(59)], it executes the method hello with the integer parameter 59(Line 18). This

method in turn creates two additionalactors with behaviors: cHelloActor, and cWorldActor with

an acquaintance x (Line 22,24). It then sends two communications:

1. ["world" Integer(25)] :::} to the cHelloActor (Line 26)

2. [" hello"] :::} to the cWorldActor (Line 28)

When the cHelloActor receives the communication "world" Integer (25), it executes the world

96

method of the class cHelloActor (Line 32). The "world" method creates an actor with a behav-

ior cWorldActor and an acquaintance x; then sends it a communication ["hello"](Line 38,39).

:::::::::::::: cHelloActor.Java ·•············
1 import
2 import
3
4 import
5 import
6
7 public
8 {
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
32
33
34
35
36
37
38
39
40
41
42
43}

java.io.•;
java.lang.•;

jmas.util.•;
jmas.actor.•;

class cHelloActor extends Actor

int z;
double v;

public cHelloActor(Integer x, Double y) II pass tvo acquaintances ,
{

}

z = x.intValue(); .
'll = y.doubleValue();

public void hello(Integer x)
{

}

System.out.println("Hello [Param] -- ".+ x.intValue() +
II [ACQsl --- II + z + II & II:+ w); '

ActorAddress 'll = create("cHelloActor.").;

ActorAddress h = create("cWorldActor", x);

send(v,"vorld", nev Integer(25));

send(h., "hello");

II since· there are no ·operations· then sink

public void vorld(Integer x)
{

}

System.out.println("WORLD! -- [Parms] " + x.intValueO);

II send a message to the replacement behv

ActorAddress h = create("cWorldActor", x);
send(h, "hello");

II since there are no operations then sink

Upon creation of an actor assuming the behavior cWorldActor, its constructor is executed in order
. . -~

to pass the acquaintances as parameters to the object(Line 13). After receiving the communication
' '

["hello"], it executes ~he niethod "hello()''(Line 18).

:::::::::::::: cWorldActor.java ::::::::::::::

1 import
2 import
3
4 import
5 import
6
7 public

java.io.•;
Java.lllJl,g.•;

jmas. util. *;
jmas.actor.•;

class cWorldActor extends Actor

8 {
9
10
11
12
13
14
15
16
17
18
19
20
21
22}

II Acquaintances

public int z;

public
{

cWorldActor(Integer x)

z = x.intValue();
}

public void hello()
{

System.out.println(11 WORLD! 11 + 11 [acq] 11 + z);
}

97

98

C.2 TravelTime

The following example illustrates how to write a mobile actor program (Line 7). We ran our program

from machine a.cs.okstate.edu. The boot actor creates a remote actor x on machine z.cs.okstate.edu;
- .

assuming the behavior TravelTime (Line 19). It sends an initial communication "Timeit" along with

a parameter "the @ddress of itself" (Line 21). The current actor becomes a new actor assuming

the behavior "TravelTime" with an acquaintance a Long integer (Line 22). Upon receipt of the

communication ["Timeit" and c= "the @) of itself'], actor x executes the method "Timeit" (Line

25). The actor then sends a communication to the actor c, with the communication ["TotalTime"

and an Integer d] (Line 31). The initial actor who replaced its behavior receives the communication

and executes the method "TotalTime" (Line 34).

::::::::::::::::::: TracelTime.java
1 import
2 import
3
4 import
5 import
6
7 public
8 {
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

java.io.•;
java.lang.•;

~mas.util.•;
Jmas.actor.•;

class TravelTime extends MobileAc.tor

long . start = 0;

public TravelTime(Long s){ start s.longValueO; } ·

public void boot()
{

Long t = nev Long(System.currentTimeMillis());
System.out.println(11Starting [Concurrent2]");
System.out .p;rintln(11 \n\n PEEK 11);

ActorAddress x = createReinote(11TravelTime", 11z.cs.okstate.edu 11),;

send(x, 11Timeit 11 , getAddress()).;
become("TravelTime 11 ,t); '

}

public
{

void Timeit(ActorAddress c)

}

{

Long t = nev Lo:ng(System. currentTimeMillisO);

System. out .println(11 \n\:n A ");

send(c,"Totalr'ime 11 , t);

public void TotalTime(Long 1)

System. out .println(11\n\n BOO! ");

long i = l.longValue();

System.out.println("Actor. A: behv[boot) --> behv[Timeit]\n 11);.

System.out.println(11\tit took: 11 + (i - start)/1000.0 + 11 msec 11);

43
44
45
46
47
48
49}

}

99

System.out.println(11 Actor A: behv[Timeit] --> behv[TravelTime]\n11);

long c = System.currentTimeMillis();
System.out.println(11 \t!t took: 11 + (c - i)/1000.0 + 11 msec 11);

System.out.println(11Total Exec Time took: 11 + (c - start)/1000.0 + 11 msec 11);

100

C.3 Parallel Sum

The following example illustrates how mobile actors cari be used to decompose a computation to

sum a set of integers in parallel. Our decomposition process organizes actors as a hierarchy of 2k - 1

nodes; where k is the number of levels in the hierarchy. Each actor with the exception of the root

actor, is responsible for creating two additional actors to handle the subcomputations. We create

a remote actor x using dynamic processor placement by issuing the function getAvailableH ost().

The actor x assumes the behavior Sum, with the acquaintances p: the address to return the sum,

the number of inputs to return, and the granularity of the computation (Line 37). We send x a

communication "decompose" and a parameter - the list of intergers to sum list (Line 39). T.he

. . .
current actor then changes its state to itself, in order to wait for a communication to print the

result.

:::::::::::::::::::: PrintSum.java ::::::::::::::::::::

1 import
2 import
3 import
4
5 import
6 import
7
8 public
9 {
10
11
12
13
14
15
16
17
18
19
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40

java.io.*;
java.util.*;
java.lang. *;

jmas. util. *;
jmas.actor.*;

class PrintSum extends MobileActor

Long time;

final int SIZE~ 10000;
final int procs = 2;

public PrintSum() {}

public PrintSum(Long t) { tiine = t; }

public void boot()
{

System.out.println("Starting [Distributed Sum] ");

Long D list = nev Long [SIZE] ;

Random id= new Random(9000);
long v;

System.out.print("The Sum of " + SIZE + " numbers is: ");

for(int i = O;i < SIZE; i++) { .

v = id.nextLong() Y. 200;
list[i] = new Long(v);

} .

Object D p = new Object[] {getAddress(). new Integer(1).
nev Integer(SIZE/procs)});

ActorAddress x = createRemote("Sum" • getAvailableHostO.

send(x. "decompose" • (Object) list);

p);

41
42
43
45
46
47
48
49
50
51
52
53}

}
become ("PrintSum", new Long(System. currentTimeMillis ()));

public void print(Long sum)
{

}

System. out. println(sum. longVa.lue O);

float £time = System. currentTimeMiHis () - time. longValue O;
System.out.println("\n Processing time:."+ ftime/1000.0 +" sec");
System.out.println("\n Load time: "+ getLoadTimeO +" sec");

101

A mobile actor assuming the behavior Sum that receives the communication "decompose", executes

the method decompose in the class Sum. H the list has .reached a size that is equal to the granularity

of the computation then the summation process begins and the result is returned to the calling actor

(Lines 40-43). H the list has not reached a size equal to the granularity, the list is decomposed again

into two equal p·arts (Lines 50 and 51) and sent to two newly created actors, Actors are dynamically

placed within the system using the function getAvailH ost(). After an actor decomposes the data

set, it changes its state to itself in order to wait for a communication (MultilnputAdder) to receive

the multiple inputs (Lines 49). Because actors perform operations in response to one communication,

we build on the primitive data types in order to implement higher level abstractions such as multiple

input actors (Lines 65-84). In response to a communication "MultilnputAdder", an actor adds in

the result to the partial sum. H the number of communications equal the number of actors created

by the current actor during decomposition, then the sum is returned back to the calling actor (Line

78 or 80). The calling actor could be the root (Line 80), or an intermediate actor for processing

the partial sum (Line 78), H the number of communications does not equal the number of actors

created by the current actor during decomposition, the current actor changes its state to itself in

order to wait for the next input (Line 83).

:: : : : :: :: : ::: :: : :: ::: :: : : Sum.Java
1 import
2 import
3
4 import
5 import
6
7 public
8 {

.9
10
11

java.io.*;
java.lang.*;

jmas.util.*;
jmas.actor.*;

class Sum extends MobileActor

ActorAddress cust = null;
Integer inputs= null;
Integer outputs= null;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28'
29
30
31
32
33
35
36
38
39
40
41
42
43
44
45
46
47
48
49

50

51

52
53
54
55
56
57
58
59
60
61
62
63
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85 }

Long sum= null;
Integer granularity;

public Sum() { .}

public Sum(ActorAddress c, Integer o, Integer g)
{ ..

}

cust = c;
outputs= o;
granularity= g;

public Sum(ActorAddress c, Longs, Integer in, Integer o)
{

}

cust = c;
inputs= in;
outputs= o;
sum = _s;

public void decompose(Long[] list)
{

}

long psum = O;

if (list. length ==·granularity. int Value O)
{

}
else
{

}

for(int i = O;i < list,length;i++)
psum += list [i] . longValueO ;

send(cust,"MultiinputAdder", nev Long(psum));

Long[] 11, 12;

become("Sum", nev Object[] { cust, nev Long(O),
.nev Integer(2), outputs});

ActorAddress p1 = createRemote("Sum", getAvailableHostO,
· nev Object [] {getAddressO, nev Integer(2) ,granularity }) ;

ActorAddress p2 = createRemote("Sum", getAvailableHostO;
nev Object [] {getAddressO, nev Integer(2) ,granularity }) ;

11 = nev Long[list.lengthl2];
12 = nev Long[list.lengthl2];

System.arraycopy(list,0,11,0,list.length/2); .
System.arraycopy(list,list.lengthl2,12,0,list.lengthl2);

send(p1,"decompose", (Object) 11);
send(p2,"decompose", (Object) 12);

public void MultiinputAdder(Long val)
{

}

II send a message to the replacement behv
long .psum = sum.longValueO;
int in = inputs.intValue() ;.
int out= outputs.intValue();

--in;.
psum += val.iritValue();

if(in == 0)
{

}
else

if(out == 2)
send(cust,"MultiinputAdder",nev Long(psum));

el-se
send(cust,"print",nev Long(psum));

become("Sum",nev Object[] {cust,nev Long(psum),
nev Integer(in), outputs});

102

103

C.4 Parallel Quicksort

The following example illustrates how mobile actors can be used to decompose a computation to sort

a set of integers in parallel using the QuickSort Algorithm (Line 89-149). Our decomposition process

organizes actors as a hierarchy of 2k ...:. 1 nodes; where k is the number of levels in the hierarchy. Each

actor with the exception ofthe root actor, is responsible for creating two additional actors to handle

the subcomputations. We create a remote actc1r x ~sing dynamic processor placement by issuing
. .

the function getAvailableHost(). The actor x assumes.the behavior Sort, with the acquaintances:

an address to return the final sorted list, and the number of inputs to retum{Line 35 and 36). We

send x a communicatio~ "decompose" and a parameter - the list of intergers to sort list (Line 37).

The current actor then changes its state to .itself, in order to wait for a communication to. print the

result.

:::::::::::::::::::::·:::: PrintSort.java .:::::::::::::::::::::::::

1 import java.io:•;.
2 import Java.ut1l.•;
3 import java.lang.•;
4
5 impo:i::t jmas.util.•;
6 import jmas.actor.•;
1.
8 public class PrintSort extends MobileActcir
9 {.
10
11
12
13
14
15
16
17
18
19
20
21
22

. 23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Long t illle ;

final int SIZE= 10000;

public Print Sort O {. }

public PrintSort(Long t) { t.illle· = t; }

public void boot()
{ .

System. out. println ("Starting [D_istribU:t.ed Sort] ") ;

}

Long[] list= new Long[SIZE];

Random id= new Random(9000);
long v; · ·

for(int i = O;i < SIZE; i++) { .

v = id.nextLong();
list[i] = new Long(v);

}

ActorAddress x = createRemote(ltSort" , getAvailableHost(),
new Object[] {getAddressO, new Integer(1)});
send(x,. "decompose" , (Object) list);

become("PrintSort", new Long(System.currentTimeMill1s()));

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55}

public void print(Long[] flist)
{

}

System.out.println("\n\nThe Sorted List size"+ SIZE+": ");

float ftime = System. currentTimeMillis () - time. longValue ();

for(int i = O;i < flist,length;i++)
System.out.println(" , ." .+ flist[i]);

System.out.println("\n\n Processing time: "+ ftime/1000.0 +"
System.out,println("\n Load time: II + getLoadTime() + n sec");

104

sec");

A mobile actor assuming the behavior Sort that receives the communication "decompose", executes

the method decompose in the class Sort. If the list has reached the size 500, then the sorting

process begins and the result is returned to the calling actor (Lines 40-43). If the list has not

reached the size 500, the list is decomposed again into two equal parts (Lines 50 and 51) and sent

to two newly created actors. Actors are dynamically placed within the system using the function

getAvailH ost(). After an actor decomposes the data set, it changes its state to itself in order to wait

for a communication (MultilnputSort) to receive the multiple inputs (Lines 49). Because actors

perform operations in response to one communication, we build on the primitive data types in order

to implement higher level abstractions such as multipleinput actors (Lines 65-84). In response to

a communication "MultiinputSort", an actor merges the result of two partial lists that have been

sorted. H the number of communications equal the number of actors created. by the current actor

during decomposition, then the sorted list is returned back to the calling actor (Lines 81 and 83).

The calling actor could be the root (Line 83) , or an interniidiate actor for processing the partial

sum (Line 81). H the number of communications does not equal the number of actors. created by

the current actor during decomposition, the current actor changes its state to itself in order to wait

for the next input (Line 86).

::: :: : :: : :: :: :: :: :::: :::: Sort.Java : : : : :: ::: :: ::::: :: :::::::

1 import java.io.•;
2 import java.lang.*;
3
4 import jmas.util.*;
5 import jmas.actor.•;
6
7 public class Sort extends MobileActor
8 {
9
10

ActorAddress cust = null;
Integer inputs= null;

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

.33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Si
82
83

Integer outputs= null;·
Long[] pl= null;

public Sort O { }

public Sort(ActorAddress c, Integer o)
{

}

cust = c;
outputs= o;

public Sort(ActorAddress c, LongO 1, Integer in, Integer o)
{

}

cust = c.;
inputs=:= in;
outputs= o;
pl= l;

public s·ort(ActorAddress c, Integer in, Integer o)
{

}

cust = c;
inpµts = in;
outputs= o;

public void decompose(Long[] list)
{

}

if(list.length == 500)
{

QuickSort(list, 0, list.length - 1).;
send(cust, "MUltiinputSort", (Object) list);

}
else
{

Long[] 11, 12;

become ("Sort", new Obje.ct [] { cust, new Integer(2), · outputs}) ;
ActorAddress p1 = createRemote("Sort", getAvailableHostO,

new Object [] {getAddress(), new lnteger(2) });
Actor Address· p2 = createRemote ("Sort", getAva.ilableHost (),

· new Object [] {getAddressO, new Integer(2) }) ;

11 = new Long[list.length/21;
12 = new Long[list.length/2];

System.arraycopy(list;0,11,0,list.length/2);
System.arraycopy(list,list.length/2,12,0,list.length/2);

send(p1,"decompose", (Object) 11);
send(p2,"decompose", (Object) 12);

public void Multiinpu'!;Sort(LongO plist)
{

I I send a message to the · r·eplacement behv
int in= inputs.intValue();
int out = outputs. iILtValue O;

--in;

if(in == 0)
{

Long[] list= new Long[pl.length + plist.length];
System. arraycopy (pl, 0, list, 0, pl .. length) ;
System.arraycopy(plist,O;list,pl.length,plist.length);
QuickSort(list, 0, list.length - 1);

if(out == 2)
send(cust, "MultiinputSort", (Objec.t)list);

else
send(cust,''print", (Object)list);

105

84
85
86

87
88
89
90
91
92
93
94
95
96
98
99
100

.101
102
103
.104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122 .
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151}

}
else

}

become("Sort",new Object[] {cust,(Object) plist,
new Integer(in), outputs});

public void QuickSort(Long a[], int loO, int hiO) .
{

}

int lo= loO;
int hi= hiO;
Long mid;

if (hiO > loO).
{

}

I• .Arbitrarily establishing partition element as the midpoint of
• the array.
•I

mid = a [(loO + hi.O) I 2] ;

II loop through the array until indices· cross
while. (lo <= hi)
{ ..

I• find the first e;Lement that.is greater than or equal to
• the partition element starting from· the left Index.
•I . .
while((lo < hiO) && (a[lo].lo~gValue() < mid.longV'alueO))
· ++lo; ·

I• find an element .that is smaller th~ or equal to
• the partition element starting from the right Index.
•I .
while(.(hi > loO) && (a[hil.longValue() > miii.longValue()))

--hi;.

II .if the indexes·have not crossed, swap
if(lo<= hi) { .

swap(a. lo, hi);
++lo;
--hi;

}
}

I• If the right index has not reached the left side of array
• must now sort the left partition.
•I

if(loO <hi)
QuickSort(a, loO, hi);

I• If the left index has not reached the right side of array
• must now sort the right partition.
•l .

.if(lo < hiO)
QuickSort (. a, lo, hiO) ;

private void swap(Long _a[]. int i,· int j)
{

}

Long T;
T = a[i];
a[i] = a[j];
a[j] = T;

106

107

C.5 Round Robin Migration through Market

The following example illustrates how mobile actors can be used to migrate through a network

using an itinerary list. The itinerary list is stored _in the array itin (Lines 10-30). When executing
. .· . : ·.'.-: ... ··. . . .

the following program the currentactor migrates to the ith machine in the itinerary list using

createll,emote() and static placement. This continues until the all.machines in the list have been

visited.

. .

::::::::::::::::::::::::: roundrobin.java ::·::::::::::::::::::::'::::

1 import java.io.•;
2 import java.util.•;
3
4 import jmas.utii.•;
5 import j_mas. actor.*;
6
7 public class roundrobin extends :MobileActor
8 {
9
10
11
12
13
14
15
16
17
18
19
20
21
22

.23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
37
48
49}

Integer machine=
String[] itin =

nU:11;
new String[] { 11 a. cs. okstate. edu 11 ,

: 11esws01.wslab.okstate.edu11 ,

11 EIS·WS02 .wslab .• okstate .. edu"..,
11 esws03.wslab.okstate:edu11 ,

11esws04.wslab.okstate.edu11 ,

, 11eSWS05 • WSlab • OkState • e'dU II i
"esws06.wslab.okstate.edu",
"esws07.wslab.okstate.edu",
".esws08.wslab.okstate.edu",
11 esws09.wslab.okstate.edu11 ,

'.'esws 10. wslab .. okstate. edu •j.,
·11.esws 12. 'wslab. okstate. edu 11 ,

11esws13.wslab.okstate.edu11 ,

11esws14.wslab.okstate.edu11 ,

"esws15. wsla:b .. okstate. edu11 ,

11eslabsvr. wslab. okstate. edu" ,·
11esws09. wslab. okst·ate. edu",
11 a.cs.okstate.edu11 ,

11z.cs.okstate.edu11 ,

11esws06.wslab.okstate.edu11 ,

11 esws13.wslab.okstate.edu11 , };

p'llblic roundrobin() { m;i,chine = new Integer(O); }

public round:tobin(Integer i) .·.
{

machine =·i;
}

p'llblic void boot 0
{ . . .

if (machine. int Value() < i tin. length)
{ . ,, ·. . '

System.out.println(11Hello I'm at machine: 11 + itin[machine.intValue()]);
int num = ma.chine.intValueO + 1; . ·
Actorlddress addr = createRemote(11 roundrobin 11 ,itiri[num], new Integer(num));
send(addr, 11 boot 11); ·

}
}

108

C.6 Traveling Salesman Problem

The following example illustrates how mobile actors are used to compute a solution to the Traveling

Salesman Problem in parallel. Our solution is based on a brute force exhaustive search method.

Given a problem size for N cities and p machines, we decompose all (N - 1)! tours such that each

machine performs a exhaustive search on (N - 1)!/p tours. Machines are organized using a master-

slave design. Given n machines the master distributes the subcomputations to the n - 1 slaves and

waits for the best possible tour computed from each slave. In addition, the master also computes

the best possible tour from a given set of tours. The program below decomposes the a problem size

for N cities across 2 * N processes. The decomposition process is done on Lines (55-71 TSP.java).

Remote actor creation is performed using the function createRemote(); actor placement is dynamic

(Lines 58 and 68 TSP.java). After program decomposition, the current actor changes its state to

itself in order to wait for the result (Line 74 TSP.java). Upon receipt of a communication "result",

the method result in the class "TSP" is executed. Results are collected as multiple inputs and use

a strategy similar to the Parallel Sort/Sum algorithms (Section C.4 and G.5).

: :: ::::: ::::: :::::: :: :::: TSP.Java
1 import java.io.*;
2 import java.util.*;
3
4 import jmas.util.*;
5 import jmas.actor.*;
6
7 public class TSP extends MobileActor
8 {
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

final int N = 13;
final int n =N-1;
final int procs =. 2•n; ·

Long time;
int in;
Permutation best
double bd.;
double load;

public TSP() { }

new Permutation(N-1);

public TSP(Long t, Integer r, String bst, Double b, Double 1)
{

}

time= t;
in = r.intValue();
best.set(bst);
bd = b.doubleValue();
load =LdoubleValue();

public TSP(Long t)
{

time= t;
in= procs;

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

.55
56
57
58
59
60
61
62
63
64
65

.66
67
68
69

. 70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
io2
103

104
105
106
107.

bd = Doubie.MAX_VALUE;
load= 0.0; ·

}

public void boot()
{

}

TSP _Problem prob = new TSP _Problem() ;
. Double[][] distancevector ~ proli,'randomProb(N);
Actor Address addr = new ActorAddress.O;
Object[] parain; ··

int tours ·=·fact(N);

if(procs <= tours)
{

}
else

System.out.printltl('iTSP 2n proc! .. : .. 11);

·Permutation. p ~·-new Peitnutation(n);
Permutation firi riew Permutation(n);

fin.reset();·· .
for(int i = O;:i, < :n;i++)
{ . .

param = new Object[] {distanc~vector, fin.toStringO};
addr. = createRemote("TSPSblver" igetAvailableHostO, param);
int y = n/2; ·
if (nl2 == i) ·

. y++;

:fin.reset(i~y); · .
pa.ram.= new O.bject [] {fin. tC)?tringO, getAdclress ()};
send(addr, "improve;', param); ··

. param ,,;. new Object[] {distancevector. fin. toStringO};
addr = createRemote("TSPSolver" ,getAvailableHostO, parain);
fin.reset(i+1); · ·
param = new Object[] {fin.toStringO, getAddress()};
send(addr, "improve", par.am); · · ·.

}

time = new Long (System. currentTimeMillis ()) ;
become("TSP", time);

System.out,println("<nprocs> <= <N.:.1>!");

public int fact(int .n)
{

II only include n-1! tours

}

int V = 1; ..
for(int i=1;i<n;i++)

V •= i;. .

return·.v;

public, void result (String perm, Double .. bestDistance, D.ouble ld)
{ . .

I I check th~ best dist, , then bec.ome
double bestd = bestDistance. double'value O;

if.(bestd < bd) {

.best.set(perm);
bd = bestd;

}

load += ld.doubleValue();

if(--in > 0) .

else
{

become("TSP", new Object[] { time, new Integer(in),.
best. toString () , new Double (bd) , new Double (load) }) ;

long f = System.currentTimeMillis();
System.out.println("The Optimal solution is<"+

(N..:1) + "> II + best.toStringO);

109

108
109

110

111
112
113 ·
114}

}
}

System.out.println("The Dist~ce is"+ bd);
Syst.em.out.println("Elapse Time: " +

(float)((f - time.longValue())/1000.0) + " secs");
System. out . println.("Y.Load Time: " +

(load + getLoadTime O) + " secs") ;

110

Each subcomputation is an actor TSPSolver (TSPSolver.java). Upon receipt of a communication

"improve", the actor executes an exhaustive search process on a subset of the total possible tours

(Lines 128-142). No .two acto~s perform a search on the same subset. ,After computing the best
. . .

possible tours, this value is returned to the ·master. (Line 141 TSPSolver.java).

::::::::::::::::::::::::.: TSPSolver.java ·························
1 // Solver.java
2 import java.util.Vector;
3 import jmas.util.•; ·
4 import jmas,actor.•;
5
6 I••
7 * Traveling Salesman Problem: a brute-forc.e "exhaustive search".
8 * Solutions are to be represented as Permutations that indicate
9 * the order in. which to visit all but one of the .cities in the
10 * original list. The' last city is kept fixed.
11 •/
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
.44
45
46
47
48
49
50
51

public class TSPSolver extends MobileActor{

public TSPSolver(Double°C][]'d, St~ing begin)
{

}

.distances = d;
size =distances.length;
startSolver(begin);

I** * Create two permutations to encode "to~s" of the cities •. That
* is, each will indicate an order in which the cities are to be
* ~isited. One is use.d to hold the best tour found so far, and
* the other is used as a "temporary" permut11,tion for trying out
* new tours. .The permutations are one shorter than the list. of
* cities, since .we··can keep one city fixed to. simplify the search.
•I .

public void startSolver(String s) {
tmp = new Permutation(size-1);
best= new Permutation(si2e-1);
resetTour(s); ··' ·

}

I** · * Return the distance associated with the best tour so far.
•l

public double distance O {
return'bestDistance;

}

I•• * Return the number of tours (or "configurations") tested so far.
•I

public long configs() {
return count;

}

I** * Go back to the initial random tour by resetting the permutations

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

* back to the identity. Also reset things like the distance.
•I

public void resetTour(String x) {
count= 0;

}

done= false;
best.set(x);
tmp.set(x);
bestDistance = calcDistance(best);

I**
*Tryout a number of new tours (i.e. the number specified by
* "steps"). This.is done in such a way that we will eventually
* try every possible tour with no duplication. If a better tour
* is found, save it along with its length and return true.
* Otherwise, return false.
•I

public boolean exhaustiveimprove(Permutation e) {
double newDist;

}

I**

boolean retval = false;

while(retval == false && done== false) {
newDist = calcDistance(tmp);

}

if (nevDist < bestDistance) {
retval = true;
bestDistance = newDist;
best.set(tmp);

}
++co.wit;
if(tmp.nextO == false 11 tmp.equals(e)) {'

done= true;
break;

}

return retval;

* Return true if the current tour is known to be optimal (e.g. all
* possible tours have been checked).
•I

public String optimality()· {
if(done)

}

I**

return "Optimal";
return "In Progress";

* Return the permutation encoding
* This permutation applies to. all
* fixed.

the best tour discovered so far.
but the last city, which is

•I
public Permutation currentTourO {

}
return best;

II The private Methods:

I•
* Calculates the total dis'l;ance for ·any particular permutation.
* uses table lookup·to get the distances between two points.
•I

private

}

double calcDistanee (Permu'tation p) {
int p1, p2; ··
double accum = O;

pi= p2 = size - 1;
:for(int i = 0; i < size - 1; ++i) {

p2 = p.index(i);

}

accum += distances[p1][p2] .doubleValueO;
pi= p2;

accum += distances [size - 1] [p2] . double Value O;
return accum;

public void improve(String end, ActorAddress cust) {

This

111

129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159}
160

}

boolean improved= true;
Permutation e = new Permutation(size-1);
e.set(end);

while(improved)
{

improved exhaustive!mprove(e);
}

Double ltime = new Double(getLoadTime());

Object[] param = new Object[] { best. toStringO,
new. Double (distance()) , ltime};

send(cust,"result",param);

I I The private data:

* All distances between all points are pre-calculated and stored in
* this array. Math.sqrt() only gets called W212 times total for any
* particular problem.
•I .

private Double distances [l [] ;

private Permutation tmp;
private Permutation: best;
private int size; ·
private int count;
private boolean done;
private double bestDistance;

......................... TSPProblem.Java
1 I I TSP _Problem. java
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import java.util.Vector;
import java.util.Random;
import java.io.•;

I** * This class generates problem instances for the Traveling Salesman
* Problem. Each call to "randomProb" will return a
* Vector of 2D points in the unit square [0,1]x[0,1] which are
* guaranteed to be separated by some small distance (i.e. the points
* will not be too clumped up) ,
•I

class TSP~Problem implements Serializable{
private double SepDist = 0.04; II
private Random rn~;
private Vector points;

Minimum separation of points.

private int seed= 75825;
private int size;

public TSP _Problem() {

}

points = new Vector(); II This will hold new problem instances.
rng = new Random(seed); II This is a random number generator.

II Pick n random points in [0,1]x[0,1] that are separated by
II a small distance (so that we don't get clumps of points).
public Double[][] randomProb(int n) {

size= n;
Point2D Q = new Point2D (); I I This is a temporary variable.
points.removeAllElements(); II Blow away the old vector.
for(int npts = 0; npts '< n;) {

· boolean too_close = false;
Q.set(rng.nextFloat(), rng.nextFloat());
for(int j = 0; j < npts; j++) {

Point2D P = (Point2D)points.elellientAt(j);·
if(P.dist(Q) < SepDist) {

too_close = true;
break;

112

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17}

}

}

·l
} .
if(!too_close) {

}

II Create a new 2D point containing the
II coordinates of Q, and add it to the growing
II vector of points. This, in effect, a:dds a
II pointer to Q,·so it's important to create a
II new Po;nt2D. C)bject to hold the coordinates.
points.addElement(new Point2D(Q));
npts++; ·

return ini tDistances O ;

• Ini ti.alize the distance table. •I . .
private Double[] [] ini tDistances () {

Doubl~CHJ distances= new Double[sizel[size];
Point2D px;

}

Point2D py;

for(int

}

y = O; y < size; ++y) { .
py= (Point2D)points.elemen:tAt(y);
I I _Store the .distances tTtlfce (square matrix) .on:ly
I I calculate them· once. ·
for(int x =;y; x < size; ++x) {

px;. (Point2D)points.eiemeritAt(x);
distaiices [y] [x] ·,;. new Double(px. dist (py));
distances[x] [y] new Double(px.dist(py));

}

return distances;

::::::::::::::::::::::::: Perniutation.jav~ :.::::.:::::::::::::::.:::::

1 I I Permutation; j ava
2
3 import java.io.•;
4 import java.util.•;
5
6 I••
7 · • This clai:;s encapsulates integer permutations of any size. Each
8 • permutation is of the form (.0,1,2, ... ,n-1)., where n is the "size". of
9 • permutation. The method "next" steps the permutation through all.
10. • distinct configurations, hitting each one exactly.once .. Tl!.is is a
11 • convenient method for generating all possible permutations of n
12 • integers. ·
13 •/,
14
15 public
16
17
18
19
20
21
22
23.
24
25
26
27
28
29
30
31
32
33
34
35
36

class Permutation implements. Serializable{
private int pO;
private int n;
private StringBuffer buff;

I**
• This
•I

public

ere.ates a permutation of n integers, 0, 1, . . . , n-1.

}

Permut~tion(int size) {
n = size;
p = new·int[n];
buff= new StringBuffer();
reset();

I**
• Returns the number of elements in the permutation.
• means that the permutation consists of the integers
• (0,1, ... ,n-1).
•I

public int size() {
return n;

A value of n

113

37
38
39
40
41
42
43

· 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

·. 63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

}

I** * Returns the integer in the last position of the current·
* permutation.
•I

public int lastindex () {
return p[n - 1];.

}

I** * Returns the integer in the i'th position of the· current * permutation. .·
•I .

public int. index(int i) {
return p[i];

}

I**
•·creates the "firstll permutation, which is (0,1, ... ;n-1).
•I

public

}

I**

void reset() {
for(int i = O; i < n; i++)

p[i] = i;

* Creates the· .first 11x 11 · Permutation~ which is (;x:, 1, ... ,n~1).
•I

. public

}

void reset(i:nt x) (
int j = 1; ·
,p[O] = x;
for(int i = O; j < n; i++, j++)
{

if(i == x)

else
p[j] ++i;

p[j] i;
}

public void reset(int x, int y) {
int j = 2;

}

I** * set
•I

public

p[O] = x;
if(y == x)

y++;
p[1] = y;

for(int i = O; j < n; i++, j++)
{

}

if(i == X 11 i == y)
{ .

}
else

.i++.; . .
if(i ':'= X II i. == y)

' p[j] ++i;
else

p[j] i;

p[j] = i;

the current permutation based on the string

void set(String s) { .
StringTokenizer tok = new StringTokenizer(s, 11 ");

int si.ze = tok.countTokensO - 2;

if(size == n)
{

tok.nextToken();
for(int t=O;t ·< n;t++)

p[t] = Integer.parseint(tok.nextToken());

114

113
114
115
116
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
189
190
191 .

}
I**

}
else

reset();

* Copy another permutation into this one, even if it is a
* different size; If the size if different, reallocate space for
* the integer array.
*I

public

}

void set(Permutation Q) {
if(n != Q.size()) { ·

n = Q.size();
p = new int[nl;

}
for(int i = O; i < n; i++)

p[i] = Q.index(i); II Copy the permutation Q.

public int[] getArray() {
return p; ·

}

public boolean equalfl(Permutation t)
{

}

boolean eq = .true;

if(n == t.size())
{

int [l tmp = t. get Array () ;
for(int i = O;i < n && eq;i++)

if(p[i] != tmp[i])
e.q = false;

}
else

eq = false;

return eq;

public boolean next()
{

}
I**

int i = n - 1 ·
boolean atend' false;

while (p[i-1] >= p [i])
{

}

i = i-1;
if(i <= 0)
{

}

atend = true;
break;

if(atend)
·return false;

int j = n;

while (p[j-1] <= p[i-1])
j = j-1;

swap(i-1, j-1); I I swap values at positions (i-1) and (j-1)

i++; j = n;
while (i < j)
{

}

swap(i-1, j-1);
i++;
j--;

return true;

* This method creates a representation of the permutation as a
* string. This is useful for demos and for debugging, but is not

115

192
193
194
195
196
197
198
199
200
201
202
203
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227}
228

* normally needed.
•I

public String string() {
buff.setLength(O); //Buildup the string by appending.
buff.append("(");

}
I**

for(int i = O; i < n; i++) {
· buff.append(p[i]);

buff.append(' ');
}
buff.append(")");
return buff.toString();

* This method creates a representation of the permutation as a string.
* This is useful for demos and for debugging, but is not normally
* needed. (It is also useful for "saving" a tour, since it encodes
* all the relevant information. in a printable string . .)
•I

public

}

private

}

String toStringO {
buff.setLength(O); //Buildup
buff.append(."(11);

for(int i =,O; i <.n; i++) {
buff. append(p [i]);

}
buff.~ppend(' ');

buff. append('')");
return buff. toStringO ;

void swap(int
int t = p[il;
p[i] p[j];
p[j] = t;

i, int j) {

the string by appending.

: : : : : : : :: : : : : : : : : : : ::: : : ; Point2D .java : :·::: :·: :.: : : : :: :: : : : :: :: : :
1 import java.io.•;
2 import Java.math.*;
3
4 public class Point2D implements Serializable{
5 public float x, y;
6
7
8
9
10
11
12
13
14
15
16
17
18

. 19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37}

public Point2D() {
X 0;
y = 0;

}

public Point2D(float a, float b) {

}

X a;
y = b;

public void set(float a, float b) {

}

X a;
y = b;

public Point2D(Point2D p) {

}

X p.x;
y = p.y;

public void set(Point2D p) {

}

public

}

X p.x;
y = p.y;

double dist(Point2D p) {
float dx = x ~ p.x;
float dy = y - p.y;
return Math.sqrt(dx•dx + dy•dy);

116

117

C.7 Mersenne Prime

The following example illustrates how mobile actors are used to search for mersenne primes in

parallel. We limit our search to the range 24000 - 1 thru 25000 - J; where N = 1000. The two

known mersenne primes within this range· are 24253 - 1 · and 24423 -'- 1. The primality test is based

on Lucas-Lehmer Test (Doc98]. All multiplication is done using a fast FFT algorithm. Given p

machines, we decompose the problem such that each machine performs a test on a range of size

N / p. Machines are organized using a master.:slave design. Given p machines the master distributes

the subcomputations to the p- 1 slaves and waits for the result of the primality test from each slave.

In addition, the master also performs a primality test. The decomposition process is done on Lines

(38-45 PrimeTest.java). Remote actor creation is performed using the function createRemote();

actor placement is dynamic (Line 42 PrimeTest.java). After program decomposition, the current

actor changes its state to itself in order to. wait for the result (Line 47 PrimeTe$t.java). Upon

receipt of a communication "result", the method result in the class "TSP" is executed. Results are

collected as multiple inputs and use a strategy similar to .the Parallel Sort /Sum algorithms (Section

C.4 and C.5).

: : : : : : : : : : : : : :: :: :: :: :: : : Prime Test .java : :: : : : : : : : : : :.: :: :: ::: :: ::

1 import java.io.•;
2 import java.util.*;
3
4 import jmas. util. *;
5 import jmas.actor.•;
6
7 public class PrimeTest extends MobileActor
8 {
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

:final int from:prime.= 4000;
final int toprime = 5000;
final int dif = toprime - fromprime;

Long time;
int in;
Integer procs = null;

public PrimeTest() {}

public PrimeTest(Long.t, Integer r, Integer c)
{

time= t;
in= r.intValue();
procs = c;

}

public void boot()
{

init(new Integer(2));
}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74}

public void init(Integer p)
{ .

}

ActorAddress addr;
Object[] · param; .
int procs = p.intValue();
int numiter = dif/procs;

System. OU·t. println("Mersenne Prime <" + procs +:" procs> ");
for(int i = O,j = fromprime;i < procs;i++, j+= numiter)
{

param = new Object[] {new Integer(j), new Intege,r((j+:iiumiter)~1)};
addr = createlemote("mersenne" ,getAvail.ableHostO, ·. param);

send(addr, "isPrime", getAddress ());
} .

time = new Long(System.currentTimeMillis());
become("PrimeTest", new Object[] ·{time, p,. p});

public void result(String· status)
{

}

if(status.equals("SINK"))
--'in; · ·

else
System.out.printl:ii(status);

if(in > 0)
become("Prime'test",

elsl[I
new Object[] { time, new Integer(in),procs });

{

}

long f = System. currentTimeMil,lis ();
System.out.println("Eiapse Time;' II + .

(float).((£ - tiine.lcmgVaiue0)/1000,0)

if (procs. intValue () ! = 15)
{

ActorAddress c = create("PrimeTe;:;t");
·if(procs.intValue() == 14)

+ . ." secs\n\n");

· send(c,l'init", new Integer(procs.intValue()+1));
else

send(c, "init", new Integer(procs. intValue()+2));
}

. '

118

Each subcomputation is an actor mersenne (mersenne.java). Upon receipt of a communication

"isPrime", the actor performs a primality test on the given range of numbers. the total possible

tours (Lines 575-614). No two actors search the same range of numbers. If a prime is found the

result is returned to the master· actor {Line 605 mersenne.java) and; the search process continues.

After performing the test a ter~ination message "SINK" is sent to the m~ter machine (Line 612

mersenne.java).

::::::::::::::::::::::::: mersenne.Java
1
2 /•
3
4
5
6
7
8
9

merseµne.java - Discrete Weighted Transform, irrational base method for
Lucas-Lehmer Mersenne test.

References:

Crandall RE and Fagin B 1994; "Discrete Weighted Transforms
· and Large-Integer Arithmetic," Math. Comp. 62, 205, 305-324

Crandall RE 1995; "Topics in Advanced Scientific Computation,"·

10
11 *I
12 import
13 import
14 import
15 import
16 import

TELOS/Springer-Verlag

java.io.*;
java.lang.*;
java. util. *;
jmas. utiL*;
jmas.actor.*;

class mersenne extends MobileActor
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

public
{
final
final
final
final

static double TWOPI = (dciuble)(2*3.1415926535897932384626433);
static double SQRTHALF = (double)(0.707106781186547524400844362104);
static double SQRT2 = (double)(i.414213562373095048801688724209);
static int BITS = 16; ·

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

double[] en, sn, two_to_phi, two_to_minusphi,
double high, low., highinv, lowinv;
int b, c, start, stop;
int[] permute;

public mersenne(Integer st, Integer sp)
{

}

start= st.intValue();
stop = sp.intValue();

scrambled;

public double rint(double x){ return((double)(long)(x+0.5));}

public void print (double[]
{
int printed= 0;

while(N-- > 0} {

x, int N)

if ((x[N]==O) && (printed== 0)) continue;
System.out.print((long)(x[N]) +" ");
printed=!;
}

System. out. println('"');
}

public void
{

init_scramble_real(int n)

int i,j,k,halfn = n>>1;
int .tmp;

for(i=O; i<n; ++i) permute[i]
for(i=O,j=O;i<n-1;i++) {

if(i<j) {

i· .
tmp = permute[i];
permute [i] permute [j];
permute[j] = tmp;

}
}

}
k = halfn;
while(k<=j) {

}
j += k;

j -'= k;
k»=1;

public void init_fft(int n)
{

int j;
double e = (double) (TWOPI/n);

en= new double[nl;
sn = new double[n];
for(j=O;j<n;j++) {

}

cn[j] Math.cos(e*j);
sn[j] = Math.sin(e•j);

permute= new int[n];
scrambled= new double[n];
init_scramble_real(n);

119

86
87 }
88
89 public void fft_real_to_hermitian(double[J z, int n)
90 I* Output is {Re(z-[O]), ... ,Re(z-[n/2) ,Im(z-[n/2-1]), ... ,Im(z-[1]).
91 This is a decimation-in-time, split-radix algorithm.
92 *I
93 {
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

int n4;
double[] x = new double [n+1] ;
double cc1, ss1, cc3, ss3;
int ii, i2, i3, i4, i5, i6, i7, i8,

a, a3, dil;
double ti, t2, t3, t4, t5, t6;
double e;
int nn = n>>1, nminus = n-1, is, id;
int n2, n8, i, j;

System.arraycopy(z,O,x,1,n);
x[O] = 0.0;
is = 1;
id= 4;

do{
for(i2=is;i2<=n;i2+=id) {

ii= i2+1;

}

e = X [i2];
x[i2] = e + x[i1];
x[i1] = e - x[i1];

is= (id«1)-1;
id «= 2;

} while(is<n);
n2 = 2;
nn >>= 1;
while(nn > 0) {

n2 <<= 1·
n4 =: n2>>2;
n8 = n2>>3·
is = 0; '
id = n2«1·
do { '

for(i=is;i<n;i+=id) {
ii i+1;

}

i2 =ii+ n4;
i3 = i2 + n4;
i4 = i3 + n4; ·
ti= x[i4]+x[i3];
X [i4] -= X [i3] ;
x[i3] = x[i1] -' ti;
x[i1] += ti;
if(n4==1) continue;
ii+= n8;
i2 +=n8;
i3 += n8;
i4 += n8; . . .
ti= (x[i3l+x[i4])*SQRTHALF;
t2 = (x [i3] ...,x [i4]) *SQRTHALF;
x[i4] = x[i2] - ti;
x[i3] = -x[i2] - ti;
x[i2] = x[i1] - t2;
x[i1J += t2;

is (id<<1) - n2;
id<<= 2;

} while(is<n);
dil., n/n2;
a= dil;
for(j=2;j<=n8;j++) {

a3 = (a+(a<<1))&(nminus);
cc1 = cn[a];
ss1 = sn[a];
cc3 = cn[a3];
ss3 = sn[a3];
a= (a+dil)&(nminus);
is= O;
id = n2«1;
do {

for(i=is;i<n;i+=id) {
ii= i+j;

120

}
nn >>= 1;
}

}

i2 = i1 + n4;
i3 = i2 + n4;
i4 = i3 + n4;
i5 = i + n4 - j + 2;
i6 = i5 + n4;
i7 = i6 + n4;
i8 = i7 + n4;
t1 = x [i3] *cc1
t2 = x [i7] *cc1
t3 = .x [i4] *cc3
t4 = x [i8] *cc3
t5 = t1 + t3;
t6. = t2 + t4;
t3 = t1 - t3;

+ x[i7]*ss1
- x[i3]*ss1
+ x[i8]*ss3
- x[i4]*ss3

t4 = t2 - t4·
t2 = x[i6J +'ts;
x[i3] = t6 - x[i6];
x[i8] = t2;
t2 = X [i2] - t3;
x[i7] = -x[i2] - t3;
x[i4] = t2;.
t1 = x[i1] + t5;
x[i6] = x[i1] - t5;
x[i1] = t1;
t1 = x[i5] + t4;
x[i5] -= t4;
x[i2] = t1;

is (id<<1) •.n2;
id «= 2·

} while(is<n); '

System.arraycopy(x,1,z,0,n);

public void fftinv_hermitian_to_real(double[] z, int n)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200 }
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

I* Input is {Re(z-[O]), ... ,Re(z- [n/2) ,Im(z- [n/2-1]), ... ,Im(z- [1]).

{

This is a decimation-in-frequency, split""radix algorithm.
*I .. .

int n4;
double cc1, ss1, cc3, ss3;
double t1, t2, t3, t4, t5;
double[] x = new.double[n+1];
int n8, i1, i2, i3, i4, i5, i6, i7, i8, a, a3, dil;
double e;
int nn = n>>1, nminus = n-1, is, id;
int n2, i, j;

System.arraycopy(z,O,x,1,n);
x[O] = 0.0;

n2 = n<.<1;
nn >>= 1;
while(nn > O). {

is= O;
id= n2;
n2 »= 1;
n4 = n2»2;
n8 = n4»1;
do {

for(i=is;i<n;i+=id) {
i1 = i+1;
i2 = i1 + n4;
i3 = i2 + n4;
i4 = i3 + n4;
t1 = x[i1] • x[i3];
X [i1] += X [i3] ;
X [i2] += .X [i2];
x[i3] = t1 - x[i4] - x[i4];
x[i4] = t1 + x[i4] + x[i4];
if(n4==1) continue;
i1 += n8;
i2 += n8;
i3 += n8;
i4 += n8;
t1 = x[i2]-x[i1];

121

244
245
246
247
248
249
250
251
252
253
254
255
256

. 257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

. 280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

}

t2 :: X [i4] +x [i3] ;
X [i1] += X [i2] ;
x[i2] = x[i4]-x[i3];
x[i3] = -SQRT2•(t2+t1);
x[i4] = SQRT2•(t1-t2);

is (id<<1) - ri2;
id«= 2;

} while(is<nmi:nus);
dil = n/n2; .
a = dil;
for(j=2;j<=n8;j++) {

}

a3 = (a+(a«1))&(nminus);
cc1 = cn[a]; ·
ss1 = sn[a];
cc3= cn[a.3];

. ss3 = sn[a3];
a= (a+dil)&(lU!dnus);
is= O·
id= n2<<1;
do {

for(i=is·i<n·i+=id) ·{
. i1 .:. i+j;

i2 =i1+n4;

}

. i3 "'. i2+:n4;
.i4 = i3+n4·
i5 ·= i+n4;.;j+2;
i6 = i5+n4;
i1 = i6+n4.·
i8 = i7+ti.4; .
t1 = x[i1] - x[i6];
X [i1] += X [i6] ;
t2 = x[i5l - x[i2];
X [i5] += x[i2] ;
t3 = x[i8] + x[i3];
X[i6] = X [i8] - X [i3];
t4 = X [i4] + X [i 7] i
x[i2] = x[i4l - x[i7];
t5 = t1.;. t4;
t1 += t4;
t'4 :, t2 . .:. .t3; ,
t2 += t3· .
x [i3] = t5•cc1 + t4•ss1;
x[i7] = -t4•cc1 + t5•ss1;
x[i4] = t1•cc3 - t2•ss3;
x[i8] = t2•cc3 + t1•ss3;

is= (id«1) - n2;
id<<=' 2· .

} while(is<~irius);

nn >>= 1;
}
is= 1·
id= 4;
do {'·

for(i2=1s;i2<=n;i2+=id){
i1 = i2+1;

}

e = xH2l; .
x[i2] = e. + x[i1l;
x[i1] = e -, x[i1];

is (id<<1) - 1;
id «= 2; .

} wli.ilf:I (is<n).;
e = 1/(double)n;
System;arraycopy(x,1,z,0,n);
for(i=O;i<n;i++) z[i] •= e; ··

. 298.
299
300
301
302
303
304
305
306
307
308
309
310
311
312 }
313
314
315
316
317
318
319
320
321
322

public void square_hermitian(double[] b, int n)
{

int k, half= n>>1;
double c, d;

b[O] •= b[O];
b[half] •= b[half];
for(k=1;k<half;k++) {

. C = b[k]; d = b[n-k];

122

323
324
325
326 }
327

}

b[n-k] = 2.0•c.•d;
b[k] = (c+d)•(c-d);

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

public void squareg(double[] x,int size)
{

}

fft_real_to_hermitian(x, size);
square;..he:rmitian(x, size); .···
fftinv_herm;i.tian_to.:..real(x, size);

public void init_lucas(int ·q,int N) ·
{
int j ,qn,a; .
double log2 = Math.log(2.0);

. ·two_to~phi = new double[N]; .
two~to_minusphi = new double[Nl;

356
357
358
359
360 }
361

. .

low = rint(Math.exp(Math.:(loor((double)q/N)•l'og2));
high = ·low+low; · · · ·
lowinv = 1.0/low;
highinv = LO/high;
b = q &: (N-1);
C = N-b; ..

tvo_to_phi[,O]. = 1.0;
two_to""minusphi[Ol ;:: 1.0;
qn ;,,. q&:(N-1);

for(j=1; j<N; ++j) {
a= N - ((j•qn)&:(N-1));
two_to~phi[j] = Math.exp(a•log2/N); .
two_ to_minusphi [jl = 1. 0/two_ to_phi [j] ;
} .

362 public doubl4;1 addsignal (double CJ, x. int N ~ 'int error _log)
363 · {.
364
365.
366
367
368
369
370
371
372
373
374
3.75
376
377
378
379
380
381
382

383
384
385
386
387
388
389
390
391
392

393
394

int k,j,bj,bk,sign_flip,NminusOne = N-1;
double zz,w; · .
int xptr = 0, xxptr = O;
double hi= high, lo= low,

hiinv = highinv, loinv lowinv; ·
double err, maxerr = 0.0;

bk = O;
for(k=O; k<N; ++k) {

if ((zz=x[xptr])<O) {
. zz = Math.floor(0.5 - zz);
,sign_flip = 1;
}

· else { .·
zz = Math.floor(zz+0.5);
sign_flip= O;
} . .· .

if(error_log != 0) { , · ·• .· . · . ·. ·
if(sign_flip == 1) err = Math.ab~(zz + x[xptr] h

else err= Math.abs(zz - x[xptr]);
· if(err > maxerr) maxerr = err; · ·

} - -
x[xptr] ='O;
. = k;.
ij = bk;
.xxptr = xptr++;
do {

1f(j==N) j=O;
if(j==O){xxptr = 0; bj = O; w = Math,floor(zz•hiinv);

if(sign_flip ==·1) x[xxptr] -= (zz-w•hi);
else x[xxptr] += (zz-w•hi);}

else if(j==NminusOne) { w = Math.floor(zz•loinv);
if(sign_flip ==; 1) x[xxptr] -= (zz.,.w•lo);

else x[xxptr] += (zz-w•lo);}

123

395
396

397
398

399
400
401
402
403
404
405
406.

else if (bj >= c) { w = Math.floor(zz•hiinv);
if(sign.;aflip == 1) x[xxptr] -= (zz-w•hi);

e·lse X [xxptr] += (zz-w•hi) ; f
else { w = Math.floor(zz•loinv) .; .

if(sign_flip == 1) x[xxptr] -= (zz-w•lo);
.. else X [xxptr] += (zz-w•lo) ; } .

zz = w;
++j;
++xxptr;
bj += b; if(bj>=N) bj
} ,while (zz !=O. 0); .

bk+= b; if(bk>=N) bk-= N; } .

return(maxerr);

-= N;

407 }
408

.. 409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
.428
429
430
431
432
433
434
435
436
437
438
439
440
441

. 442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

public void patch(double[] x,int·N)
{ .

int j,bj,NminusOne = N-1;
long carry;·· ..
double hi. =: high, lo = low, .highliminv ,· lowliminv, xx;
int px = 0;
double highlim,lowlim, lim, inv,. base;

carry= O;
highlim = hi•0.5;
lowlim = lo•0.5;
highliminv =1.0/highlim;
lowliminv =: ·1.0/lowlim;

xx·= x[px] +. carry; .
if (xx >= highlim) carry .=((long)(xx•highliminv+1))>>1;

else if (xx<-highlim) carry = -(((long) (1-xx•highliminv))»1);
else carry= O;

x [px++] = (double) (xx - ·carry•hi) ;

bj = b;
. for(j=1; j<NminusOne; ++j) {

xx = x [px] +. carry;
if ((bj & NminusOne) >= c) { · . .
. if (xx >= highlim) .carry =((long)(xx•highliminv+1))»1; .

else if (xx<-~ig~lim) carry= -(((long)(1-xx•highliminv))»1);
.. else carry - 0, .
x[px] = (double) (xx - carry•hi);

} else { · ·
if (xx >= lowlim) carry = ((long) (xx•lowliminv+1)) >>1; ·
else if (xx<-lowlim). carry = ..:.(((long) (1-xx•lowliminv))»1);

else carry = 0; · ·
x[px] = (double) (xx -'carry•lo);

}
++px;
bj += b;

}

xx= x[px] + carry;
if (xx>= lowlim) carry= ((long)(xx•lowliminv+1))»1;

else if (xx<-lowlim) ·carry = ,-(((long)(1:..xx•lowliminv))»1);
else carry= O;

x[px] = (double) (icx - carry•i~);

if (carry !=O) {
j = 0;
bj = O;
px = O;
while,(carry != 0) {

xx = x[px] + carry; .
if (j==O) { lim = highlim; inv =: highlimi:ilv; base= hi;}

else if (j==NminusOne) {lim = lowlim; inv = lowliminv; base= lo;}
else if ((bj · & NminusOne) >= c) {lim = highlim; inv = highliminv;

base = hi; } ·
else {lim = lowlim; inv = lowliminv; base= lo;}

if (xx>=lim) carry = ((iong)(xx•inv+1))»1; .
else if (xx<-lim) carry = -(((long) (1-xx•inv))»l);

else carry= 0;

124

}
}

x[px++] = (double)
bj += b;
if (++j == N) {

j = 0;
bj = O;
px = 0;
}

(xx - carry*base);

public void check_balanced(double[] x,int N)
{
int j,bj = O,NminusOne = N-1;
double limit, hi],im,lolim;
int ptrx = O;

hilim = high*0.5;
lolim = low*0:5;
for(j=O; j<N; ++j) {

if (j==O) limit= hilim;
else if (j==NminusOne)· limit= lolim;

467
468
469
470
471
472
473
474
475
476 }
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496 }
497
498
499
500
501
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

elf;e if ((bj & NminusOrie) >= c) limit = hilim;
else limit= lolim;

if (! ((x[ptrxl<=limit) _&& (x[ptrx]>=-limit)))
System.exit (1) ;

++ptrx;
bj+=b;
}

public double lucas_square (double[] x, int N, int error _log)
{

int j, perm= 0, ptrx = 0, ptry = 0, ptrmphi = O;
double err;

for(j=O; j<N; ++j, perm++)
scrambled [ptry++] = x [permute [perm]] * two_ to_phi [permute [perm]] ;

squareg(scrambled,N);

perm= 0;
ptrx = O;
ptrmphi = O;

for(j=O; j<N; ++j)
x [ptrx++] = scrambled [permute [perm++]] * two_ to_minusphi [ptrmphi ++] ;

err= addsignal(x,N, error_log);
patch(x,N);
if (error_log != 0) check_balanced(x,N);

return(err);
}

public int iszero(double[] x,int N)
{

}

int j;

for(j=O; j<N; ++j) if (rint(x[jl) != 0) return O;
return 1;

public void balancedtostdrep(double [] x, int N)
{
int sudden_death = 0, j = 0, NminusOne = N-1, bj

while(true) {
if (x[j] < 0) {

--x[(j+1) & NminusOne];
if (j==O) x[j]+=high;

}

else if (j==NminusOne) x[jl+=low;
else if ((bj & NminusOne) >=c) x[j]+=high;

else x [j] +=low;

else if (sudden_death == 1) break;

0;

125

544
545
546
547
548
549

bj+=b;
if (++j==N) {

sudden_death
j = O;
bj = O;

550 }
}.

551 }

1;

553
554
555
556
557
558

pu.blic void printbits(double[l x, .int q~ int N, int totalbits)
{ '

char[] bits = new char[totalbits];
int j, k, i, word;

559 J .;, O;
560 1 = O·
561 do { ' ,
562 k = (int)(.Math.ceil((double)q•(j+1)/N)
563 if (k>totalbits) k = totalbits.; ·
564 tota.lbits -= k;.
565 word = (int)x[j++l;
566 while (k-- > 0) { .
567 bits[i++].;, (char) ('0' +(word&; 1));
568 word>>=1·
569 } ·. . ' .
570 } while (totaibi ts > 0); .
571 while(i-- > 0) System'.out.print(bits [i]) ;.
572 Systelii.out.println(""); · ·
573 }
574
575 public voidisPr:l..me(Actci:c'Address .cust) ·
576 { . ·
577
578
579
580
581
582

', 583

int q, n, j ,i,k;
double'[] x; · ·
double w, err;
int last,errflag=O;

for(q = start; q <stop;q++)
{

last = q-1;
n = 256;

x = new double[n];
init_fft(n);
init_lucas(q,n);

for(j=O; j<n; j++) x[j] =O;
x[O] = 4.0; .

for(j=1;j<last;j++) {
err= lucas_square(x,n,errflag);

if (errflag > 0) . ·

- Math. ceil((double)q•j/N));

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
602
603
604
605
606
607
608
609
610
611
612
613
614 }
615}

. System.out.printlii(j + " maxerr: " + err);

}

x[0]-=2.0; ·
System.out.println("iter: " + j);
} ' ' ' '

System.out.println(q +" ");
if (iszero(x,ri) == 1). · . .

send(cust, "result" ,new. String(q +· IIIS PRIME")); ·
else { :.: · · , , · ..

· balancedtostdrep(x,n);
printbits(x;q,n,64);
System.out.println("");

} ' '

sen:d(cust, "result" ,new String("SINK"));
sink();

126

1./
VITA

Legand L. Burge III

Candidate for the Degree of

Doctor of Philosophy

Thesis: JMAS: A JAVA~BASED MOBILE ACTOR SYSTEM FOR
HETEROGENEOUS ·pISTRIBUTED PARALLEL COMPUTING

Major Field: Computer Science

Biographical Data: .

Personal Data: Born in Stillwater, Oklahoma on February 5, 1972,
the son of Dr. Legand L. Burge Jr. and Gwenetta V. Burge

Education: Graduated from John Marshall High School, Oklahoma City,
Oklahoma, 1989; received Bachelor of Science in Computer ·
Science/Mathematics from Langston University, Langston, Oklahoma
in 1992. Receive the Master of Science in Computer Science from
Oklahoma State University in July 1995. Completed the
requirements for the Doctor of Philosophy in Computer Science
at Oklahoma State University in December 1998.

Experience: Research Assistant, O.klahoma State University, Department
Oklahoma State University 1992 to 1998. Adjunct Instructor,
Langston University, Department ofComputer and.Information Science
1993 to 1998. Software Engineer, Teubner arid Associates, Stillwater, ·
Oklahoma 1995. Computer An~lyst, National Security Agency, . .

Ft. George G. Meade,Maryland, 1991 to 1995.

