
A FAST EDGE PRESERVING FRACTAL SYSTEM 

By 

NIKKI McCLATCHEY BRUNER 

Bachelor of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1987 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1991 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOR OF PHILOSOPHY 
May, 1998 



A FAST EDGE PRESERVING FRACTAL SYSTEM 

11 



ACKNOWLEDGMENTS 

First, I would like to express my sincere gratitude and appreciation to Dr. Rao 

Yarlagadda, my thesis advisor, for his guidance, support, and friendship during the entire 

period of my dissertation research. His mentoring paved the way for the successful 

completion of this thesis. In addition, I would like to express my appreciation to my 

other committee members, Dr. Keith Teague, Dr. Scott Acton, and Dr. John Wolfe for 

their help and support. 

I want to acknowledge that this work was supported by U.S. Army Research 

Office, contract #DAAH04-95-l-0463, Sandia National Laboratories, contract #AE-

9595, and the Southern Regional Education Board Minority Doctoral Scholars Programs. 

Finally, I want to give my thanks to my husband, Martin Bruner, for his 

invaluable support ofmy work. For all my success, I am grateful to my parents, George 

and Saroeun McClatchey, for their love and help. Finally, I would like to recognize my 

daughters, Jordan and Sierra, who provided the primary motivation for this endeavor. 

111 



TABLE OF CONTENTS 

Chapter Page 

1 IN"TRODUCTION ..................................................................................................... 1 

1.1 CLASSIFICATION OF FRACTAL IMAGE COMPRESSION ........................................... 4 

1.2 QUANTITATIVE MEASURES .................................................................................... 6 

1.3 OVERVIEW OF RESEARCH ...................................................................................... 8 

2 LITERARY SURVEY ............................................................................................ 10 

2.1 FRACTAL IMAGE COMPRESSION .......................................................................... 10 

2.1.1 Algorithms ..................................................................................................... 10 

2.1.2 Partitioning ................................................................................................... 13 

2.1.3 Computational Complexity ........................................................................... 14 

2.1.4 Mathematical Support ................................................................................... 15 

2.2 JACQUIN'S FRACTAL BLOCK CODING ................................................................. 16 

2.3 R-TREES DATA STRUCTURES ............................................................................... 19 

2.4 DIFFUSION TECHNIQUES ...................................................................................... 21 

2.5 SUMMARY OF LITERARY SURVEY ....................................................................... 23 

3 FRA.CTAL BLOCK CODERS .............................................................................. 24 

3.1 MATHEMATICAL BASIS FOR ITERATED FUNCTION SYSTEMS ............................. 24 

3.2 FIXED BLOCK FRACTAL CODER ........................................................................... 30 

3.3 ERROR DUE TO INACCURATE MAPPINGS ............................................................. 35 

3.4 METRIC BASED QUAD-TREE FRACTAL CODER ................................................... 42 

3.5 FAST FRACTAL IMAGE COMPRESSION USING R-TREES ...................................... 46 

IV 



3.6 SUMMARY OF CURRENT METHODS ...................................................................... 49 

4 A FAST EDGE PRESERVING FRACTAL SYSTEM ....................................... 51 

4.1 lTERA TIVE ERROR COMPENSATION TECHNIQUE ................................................. 52 

4.2 WAVELET R-TREE SEARCH FOR FRACTAL CODERS ............................................ 58 

4.3 EDGE BASED QUAD-TREE PARTITIONING METHOD ............................................ 61 

4.4 EDGE PRESERVING DIFFUSION TECHNIQUES ....................................................... 69 

4.4.1 Mathematical Development .......................................................................... 69 

4. 4. 2 Using the Original Image as a Scalar Function in Diffusion Equation . . . . . . . 71 

4.4.3 Edge Based Scalar Function ......................................................................... 75 

5 CONCLUSIONS ....................... , ............................................................................. 81 

5 .1 CONTRIBUTIONS OF FEPFS .................................................................................. 82 

5.2 FUTURE AREAS OF RESEARCH ............................................................................. 84 

REFERENCES ................................................................................................................ 86 

V 



LIST OF TABLES 

Page 

Table 1.1: Number of bits for fractal code paramters ...................................................... 7 

Table 2.1: Transformations for fractal block coding ...................................................... 18 

Table 3 .1: Eight symmetries in local contraction transformations ................................ 29 

Table 3.2: Partial listing of fractal code ......................................................................... 31 

Table 3.3: Results for using 8x8 and 16x16 range sizes ................................................ 34 

Table 4.1: Comparison of quantitative measures for diffusion ...................................... 78 

Table 4.2: Quantitative measures for splitting level without diffusion .......................... 79 

Table 5.1: Comparison ofresults for 512 x 512 Lena .................................................... 82 

Vl 



LIST OF FIGURES 

Page 

Figure 1.1: Example of a fractal image ............................................................................. 2 

Figure 2.1: Collection of data objects into r-tree structure ............................................. 20 

Figure 2.2: Spatial representation of data objects ........................................................... 20 

Figure 3 .1: Iterations of the fractal code ......................................................................... 33 

Figure 3.2: Attractor of fractor code for different range block size ................................ 34 

Figure 3.3: Comparision of 'Lena' (128xl28) with the attractor ..................................... 36 

Figure 3.4: Block PSNR versus Error Metric .................................................................. 37 

Figure 3.5: Classification of the original image into areas of PSNR values ................... 39 

Figure 3.6: Representations of the error metric and PSNR for image blocks ................. 40 

Figure 3.7: Residual error image ..................................................................................... 41 

Figure 3.8: Comparison of the attractor at different error tolerance levels ..................... 44 

Figure 3.9: PSNR versus error tolerance for metric based quad-tree coder .................... 45 

Figure 3 .10: Compression versus error tolerance for a metric based quad-tree coder ...... 45 

Figure 3.11: PSNR versus compression for a metric based quad-tree coder .................... 46 

Figure 3.12: Encoding time for different fractal coders.[ 40] ............................................ 47 

Figure 4.1: Results for different block sizes in fractal block coding .............................. 53 

Figure 4.2: Flowchart of the iterative error compensation technique ............................. 55 

Figure 4.3: Results of the iterative error compensation technique .................................. 57 

Figure 4.4: PSNR versus dimensions .............................................................................. 60 

Figure 4.5: Search time versus dimensions ..................................................................... 60 

Figure 4.6: Edge images for 'Lena' ................................................................................. 63 

vu 



Figure 4.7: Comparison attractor at different edge splitting level. ................................. 64 

Figure 4.8: PSNR versus edge level in edge based partitioning ..................................... 65 

Figure 4.9: Compression versus edge level in edge based partitioning .......................... 66 

Figure 4.10: PSNR versus compression for edge based partitioning ................................ 67 

Figure 4.11: Attractors of different partitioning methods ................................................. 68 

Figure 4.12:Laplacian and gradient images of Lena ........................................................ 72 

Figure 4.13: Residual image for diffusion ......................................................................... 73 

Figure 4.14: Comparison of attractor diffused at different levels ..................................... 74 

Figure 4.15:Comparison of the attractor (a) and the diffused image (b) .......................... 77 

vm 



FEPFS 

FFIC 

IFS 

PSNR 

LIST OF IMPORTANT ACRONYMS 

Fast Edge Preserving Fractal System 

Fast Fractal Image Compression 

Iterated function system 

Peak signal to noise ratio 

IX 



CHAPTER I 

1 INTRODUCTION 

The advances in computer technology in the last decade have redefined computer 

information from mainly text to a multimedia format of text, sounds, and images. 

Multimedia applications are no longer limited to 'high-ended' workstations, but are 

currently being used on 'entry-level' personal computers in the home. Data compression 

techniques have played a part in this historic event by providing methods for sounds and 

images to be stored compactly and processed efficiently. The amount of data generated 

to represent sounds or images can be significant affecting storage requirements and 

processing time. 

Data compression addresses the problem of reducing the amount of data it 

requires to represent information like text, sounds, and images. Image compression deals 

with the reduction of data required to represent digital images. Generally, there are two 

types of compression, lossless and lossy. In lossless compression, the data can be 

recovered without loosing any information. In the lossy case, information like images 

are represented in a manner such that the reconstructed images are acceptable to the end 

user. This allows for greater reduction in the information; although, the images may be 

degraded. This research focuses on the potential of fractal image compression, a lossy 

technique, for compressing digital images for 'real time' applications. 

Almost everyone has seen the exciting computer generated images of mountain 

ranges, interplanetary scenes, exotic plants, and alien landscapes. Figure 1.1 illustrates a 

fractal image example. A computer program using very little base information to start 

1 



with constructs these seemingly real images. Not surprisingly, the creation of these 

images is based upon a class of geometry known as fractals. 

Figure 1.1 : Example of a fractal image. 

Fractals are fixed points to certain equation sets [3]. The self-similar property of 

fractals allowed it to be used to describe natural features like clouds, leaves on a tree and 

other natural phenomenon. Clouds are considered self-similar since parts of a cloud 

compared with the whole are very much the same. Although digital images as a whole 

are not self-similar, there are regions of self-similarity [66]. 

In a digital image, numerous smaller regions look like larger regions in the image. 

Fractal image compression relates these areas of local self-similarity at different scale 

2 



[ 49]. Taking advantage of this correlation, the fractal code pairs up similar regions 

creating a list of 'optimal' pairs. Due to the sizes of digital images, searching for 

'optimal' pairs of similar blocks in the image constitutes the major computation load for 

fractal coders. The prohibitive CPU time needed for searching for the 'optimal' pairs is a 

major obstacle to the use of fractal image compression for 'real time' applications. 

Applying this list of fractal transform parameters approximates the original 

image. The reconstructed image is the attractor of the fractal code. The accuracy of the 

attractor depends on the degree of similarity between the larger to smaller mapping. In 

order to increase the degree of similarity, the first automatic fractal coder proposed by 

Jacquin [35] uses quad-tree splitting to partition the image into two block sizes. The 

quad-tree splitting method divides a large square or block into four equal sized smaller 

squares. In smooth areas of the image, using the larger block size gives higher 

compression ratios. In areas of edges, the smaller block size increases the accuracy of 

the fractal mapping. 

Degradation of edges and loss of edge information occur in the attractor due to 

the limitation of fractal code to describe the similarities in the image with contractive 

affine transformations. The limitation of accurately describing the image at large block 

sizes reduces the effective compression ratios of fractal coders. 

In order to create a fast edge preserving fractal system for compression of digital 

images in the field, our research deals with overcoming these limitations. We will 

investigate ways of decreasing the encoding times and increasing the preservation of 

edge information. First, we will classify fractal image compression, provide the 

quantitative measure used in our research, and give an overview of our research. 

3 



1.1 Classification of Fractal Image Compression 

This section presents a simple classification of fractal image compression relative 

to current compression methods [40]. As mentioned earlier, image compression methods 

are categorized into two major areas: lossless and lossy methods. Inlossless methods, an 

exact duplicate of the original image can be reconstructed from the compressed data. In 

lossy methods, the attractor of the fractal code approximates the original, thus allowing 

for higher compression ratios. Compression ratio measures the number of bits 

representing the coded image with respect to the original image. A high compression 

ratio means it takes fewer bits to represent the digital image in the coded format than in 

the original format. Although there is loss of fidelity due to artifacts and distortion, this 

loss is minimized such that the attractor of the fractal code still 'looks good' to the 

human eye. 

In lossy methods, there are two sub-categories of interest: transform and vector 

quantization techniques. Transform techniques constitute the broadest area of lossy 

methods. Although transform techniques can be lossless, the methods generally achieve 

compression by eliminating certain coefficients in the transform. This area includes the 

Discrete Fourier Transform (DFT), the Discrete Cosine Transform (DCT), wavelets, 

Karhunen-Loeve Transform (KLT), and others. The popular JPEG, Joint Photographic 

Experts Group, standard for sequential compression is based on the DCT method [ 5]. 

The image is divided into smaller blocks (generally 8x8 pixels). Each block is 

transformed using the FDCT (forward Discrete Cosine Transform) resulting in a set of 

quantized coefficients. Coefficients below a certain 'user-defined' level are discarded. 

The remaining set is entropy-encoded using arithmetic or Huffman coding. The entropy

encoded DCT coefficients represent the image in a format that requires less memory 

storage than the original image. In a performance study by Fisher, Rogovin, and Shen 

4 



[23], fractal image compression proves itself viable in comparison with transform 

methods by giving comparable compression ratios and fidelity results. 

Wavelet image compression consists of the image data decorrelating transform 

and the data symbol entropy [ 46]. The wavelet decompositions are obtained using two 

approaches: mutiresolution analysis and scaling functions [48]. In general, wavelet 

compression algorithms are based on decorrelating the image using subband 

decomposition and biorthogonal wavelet functions. The significant coefficients 

approximating the image are entropy coded. In comparison to wavelet compression, 

fractal coding techniques are comparable for compressing (512x512) images [21]. 

Wavelet techniques perform better in terms of PSNR at lower compression ratios (less 

than 5) however, the wavelet and fractal techniques perform roughly the same for higher 

compression ratios. 

Like the transform techniques, vector quantization (VQ) techniques also partition 

the image into an array of blocks or smaller sections. In the standard VQ methods, these 

image blocks are compared to a predefined indexed set of image blocks. Each image 

block is coded by the index number of the block that most closely approximates it based 

on some criteria such as least squares. Since the image is reconstructed from this set of 

blocks, this set must be transmitted or installed at the decoding site. 

Although fractal image compression has been called 'self-VQ' [22], it differs 

from the standard VQ techniques by the contractive nature of the fractal mapping and the 

necessity of the predefined set of image blocks. In order to achieve high compression 

ratios, fractal coders use information contained in large blocks or regions of the image to 

fill in small-scale details. By copying and shrinking these large blocks, these coders 

approximate smaller scaled blocks in the image, creating a list of fractal mappings. 

Applying these mappings on any initial image approximates the original image. Since 

these mappings only approximate the original image, fractal image compression is a 

lossy method. 

5 



1.2 Quantitative Measures 

Three quantitative measures, compression ratio, peak signal to noise ratio 

(PSNR), and a measure of edge preservation (~), provide a quantitative evaluation of our 

research. We use these measures to compare our methods with other techniques and to 

gauge the performance of our research. The amount of compression gained and the 

closeness of the attractor of the fractal code, v, to the original image, u, dictate the 

performance. 

For fractal image compression, compression ratio is 

# of bits in the original image : 1 . 

# of bits in the fractal code 
(1.1) 

According to ( 1.1 ), the number of bits in the fractal code determines the compression 

ratio. For our research, Table 1.1 gives approximately the number of bits required to 

represent the different parameters used in the fractal code for coding images [20]. Since 

the fractal code is a list of parameters, entropy coding the fractal code can produce higher 

compression ratio. 

An example of entropy coding for image coders is run-length/Huffman coding. 

Run length encoding [58] compresses runs of identical symbols in the data. It encodes 

the run of symbols as a symbol and a count. Huffman coding [58] encodes the symbols 

in the data in proportion to its information content. Fewer bits are used to code symbols 

with higher probability of occurrence while more bits are used to code symbols with 

lower probability of occurrence in the data set. These are lossless techniques used to 

compress information like text. Entropy coding the fractal parameters gives further 

compress10n. 

Peak signal-to-noise ratio, PSNR, is a measure of fidelity commonly used in 

image compression. PSNR gives general indication of the quality of the attractor of the 

fractal code in respect to the original image. PSNR [19] is 

6 



PSNR = 20 log10 (__!!_) 
rms 

(1.2) 

where b is the largest possible value of the signal and rms is the usual root mean square 

difference between the original image and the attractor of the fractal code. 

Table 1.1: Number of bits for fractal code paramters. 

Coefficients Number of Bits 

Scaling Term 5 

Offset Term 7 

Domain Position 14 

Symmetry 3 

Quad-tree 1 

We use a measure of edge preservation developed by Sattar, Floreby, 

Salomonsson, and Lovstrom [68] to measure the correlation of edge information between 

the original image and the attractor of the fractal code. The measure of edge preservation 

(~) is 

L Av'Au' <; = x,y 

L Av'Av'L Au'Au' 
x,y x,y 

(1.3) 

where Au' and Av' are sharpened (high pass filtered) versions of the original image and 

7 



attractor of the fractal code normalized by their means. The measure of edge 

preservation approaches unity when the approximation is close to the original image. 

1.3 Overview of Research 

The need for a fast compression image system with high compression ratio for 

'real time' applications like surveillance is the primary motivation for this research. Due 

to its strength of high compression ratios, fractal image compression is a viable choice. 

Although these applications require less fidelity, the attractor of the fractal code must 

provide enough detail to identify objects of interest in the image. A significant amount 

of information needed for identification is in the 'edges' of the image. The need for high 

compression ratio dictates the use of large block sizes in fractal compression. Inaccurate 

fractal mappings at large block sizes increase losses of edge information, discontinuities 

at boundaries and blocking effects. This research focuses on finding a method of 

preserving edges to a reasonable extent in the attractor of the fractal codes while 

maintaining high compression ratios with a fast fractal compression scheme. 

A fast edge preserving fractal system, FEPFS, is produced by our research. Since 

searching for 'optimal' pairs of similar blocks in the image constitutes the major 

computation load for fractal coding, FEPFS uses a wavelet r-tree search engine to reduce 

the searching time to seconds. Incorporation of an edge based quad-tree partitioning 

allows the image to be partitioned along edges to help preserve edges. This partitioning 

scheme also provides a front-end loader for the search engine. Since partitioning does 

not insure the retention of significant edges, FEPFS uses diffusion techniques to preserve 

significant edge information. By expanding the basic diffusion equation to contain a 

scalar function based on the edges of the original image, FEPFS directs the diffusion 

process to smooth along the direction of significant edges and sharpen in the direction of 

8 



the edges. In this manner, FEPFS restores edge information and reduces discontinuities 

and blocking effects. 

This dissertation assesses the contributions of FEPFS by providing a literary 

survey of fractal image compression research, reviewing current implementations in 

fractal block coding, and detailing the development and performance of an edge based 

quad-tree partitioning scheme, a wavelet based r-tree search engine, and diffusion 

techniques in FEPFS. In conclusion, the contributions of our research along with future 

research directions in the area of fractal image compression are summarized. 

9 



CHAPTER II 

2 LITERARY SURVEY 

This chapter provides a survey of the research in fractal image compression, r

trees, and diffusion techniques. This survey deals mainly with fractal image compression 

although it briefly deals with r-trees and diffusion techniques. 

2.1 Fractal Image Compression 

In this section, we categorize the current literature on fractal image compression 

into four major areas of research, algorithms, partitioning, computation complexity, and 

mathematical support. Although many of the papers overlap several areas, the papers are 

categorized according to their major contribution. 

2.1.1 Algorithms 

The idea of using fractal techniques to exploit the local regions of self-similarity 

in digital images was introduced by Michael Barnsley in 1988 [6]. Barnsley modeled 

digital images as mathematical spaces and used fractal techniques to represent images as 

sets of equations. Barnsley introduced fractal compression as a better way to compress 

digitized images, promising compression ratios in the range of 10,000. He achieved this 

compression ratio only for very specialized images and not for real life digital images. 

Barnsley [5] later developed the theory of iterated function systems (IFS) as an extension 

10 



of classical geometry. Using affine transformations ( combinations of rotation, scaling, 

and translation of the coordinate axes in a metric space) to relate parts of the image, 

digital images were coded by these relationships forming the basis for fractal block 

coding. 

A student of Barnsley, Arnaud Jacquin [35],[36],[37] simplified this complicated 

process for gray scale images. In 1990, Jacquin [35] presented the first fully automated 

practical implementation of encoding gray scale images called fractal block coding. His 

fully automated algorithm for fractal image compression provided the substructure for 

many current fractal compression techniques including FEPFS. 

Results [37]ofthe fractal block coding observed by Jacquin showed overall good 

fidelity between the decoded image and the original. He attributed blocky artifacts in the 

attractor of the fractal code to the use of square range blocks. The quality of the decoded 

image depended heavily on block classification and analysis. Large blocks, blocks with 

weak edges and blocks with strongly contrasted textures were more prone to distortion or 

error in the attractor of the fractal code. 

Oien, Lepsoy, and Ramstad [63] introduced an optimization procedure for finding 

the optimal transform within a class of affine transformations using the inner product 

space theory. Using the projection theorem, they determined the optimal coefficients for 

their optimal transform by solving a set of orthogonality equations. These equations 

were created from the inner product of the error measure and the basis sets. Oien, 

Lepsoy, and Ramstad [64] reduced the complexity of their fractal coder by combining 

their orthogonalization procedure with an automatic block classification procedure. Oien 

[ 61] detailed the quantization of parameters for their block based fractal coders. 

Gharavi-Alkhansari and Huang [26] developed an orthonormal basis approach for 

fractal block coding. Using the Gram-Schmidt procedure, a set of orthonormal basis 

vectors was created. The fractal code was created from the projection of the image 

blocks onto this basis. 

11 



Monro and Dudbridge [53],[54] introduced a least-square approximation method 

of fractal coding, known as the Bath fractal transform. Monro [51],[52] coined his 

method as 'hybrid fractal transform' since it was self-tiling. Monro and Woolley 

[55],[56],[74] extended and optimized this method. They encoded digital images by 

tiling each block in the images with a reduced copy of itself using a least-squares 

criterion. They developed a system of linear equations based on taking the partial 

derivatives with respect to the fractal parameters and setting them equal to zero. Solving 

the system of linear equations resulted in the least squares approximation to an image 

block tiled by itself. This algorithm resulted in faster encoding time, lower compression 

ratios and less fidelity than fractal block coding. 

Incorporation of pyramid methods in fractal coding [1],[8],[10],[13],[17] 

emphasized the properties of self-similarity at different resolutions. The property of self

similarity at different resolutions is not represented in the general fractal transform used 

in fractal block coding. Baharav, Malah, and Karin [1] modified the basis fractal 

transform to include this property. In general, they described the relation between two 

different fixed points in the attractor, when the attractor is halved or doubled. These 

interpretations were extended to wavelet representations of fractal compression [14],[72]. 

Davis [15] generalized fractal block coding as a Haar wavelet subtree quantization 

scheme. He showed that fractal coders are effective due to their ability to efficiently 

represent wavelet zerotrees. 

Unifying fractal compression algorithm with other image compression algorithms 

provided a different representation or viewpoint for fractal transforms. Barthel, 

Schuttemeyer, Voye, and Noll [7] extended the luminance transformation used in fractal 

image coding to the frequency domain. They reported a reduction of encoding time due 

to larger block sizes and an improvement in the subjective quality of the image. Lin [38] 

showed that fractal image coding could be viewed as a generalized form of predictive 

image coding. Gharavi-Alkhansari and Huang [27] developed a generalized image 

12 



block-coding algorithm in which fractal image techniques, block transform and vector 

quantization methods were special cases of this algorithm. 

Decoding a fractal code was generally simple and fast; therefore, most of the 

research in fractal image compression dealt with finding the fractal transformation 

describing an image block. Forte [24],[25] referred to the problem of finding the fractal 

transform to describe an image as the 'inverse problem'. Pei, and Tseng, and Lin [65] 

developed a method to decode the subimages of a fractal code in parallel with no 

transient behaviors common to some decoders. Lepsoy, Oien, and Ramstad [44] 

implemented a fractal coder with a fast non-iterative decoding algorithm. Using 'cut and 

paste' mappings, the composition of the mappings was applied to the entire image rather 

than individual blocks. In this method, the coder mimics the decoder sequence. A new 

map was chosen at every step to keep the approximations close to the original vector. 

Use of fractal coding in video applications [9],[22],[43],[59] required the 

extension of the fractal transform into higher dimensional representation to handle the 

time component of video frames. Three-dimensional image [57] for solid or volume 

representation of objects also required extension of the fractal transform to higher 

dimensions. 

2.1.2 Partitioning 

In current techniques, fractal coders use partitioning to determine the largest 

range block possible for a given region in the image based on some fidelity criterion [66]. 

Partitioning schemes directly affect the compression ratio, coder complexity, and fidelity. 

Looking at an image, there are regions of detail difficult to cover with a contractive 

transformation at large block sizes. In these regions, coders use smaller blocks to 

maintain accuracy in the mappings. In smooth regions of the image, coders use larger 

block sizes for higher compression ratios. There are three basic methods of 

13 



partitioning[66]: quad-tree partitioning, HV (horizontal-vertical) partitioning, and 

triangular partitioning. 

Quad-tree partitioning [71] divides large image blocks into four equally sized 

sub-blocks in order to meet the fidelity criterion. This process can be repeated on the 

sub-blocks until the smallest subdivision of the blocks had occurred or the fidelity 

criterion has been met. 

The quad-tree partitioning is a simple partitioning scheme that requires only one 

bit per block of overhead. A weakness of the quad-tree partitioning method is that it does 

not try to partition the blocks based on its contents whereas HV partitioning [66] does. In 

HV partitioning, larger range blocks are recursively partitioned either horizontally or 

vertically into rectangular blocks. A key point used to determine the size and orientation 

of the rectangular blocks is the location of the edges. 

The adaptive triangle partitioning [ 16] developed by Davoine, Bertin, and 

Chassery uses a split and merge approach. This approach guides the evolution and 

location of triangles. The adaptive triangle partitioning improves the quality of the 

attractor or decoded image. It reduces the 'tiling' or 'blocky' artifacts common with the 

square and rectangular methods. 

These methods, HV partitioning and triangle partitioning, are more complicated 

to implement. They require additional information in the fractal code, thus reducing 

compression ratios. 

ll...3. Computational Complexity 

Fractal coders suffer from high computational complexity due to the extensive 

library or domain block searches for optimal pairing of blocks in the fractal transform. 

Computational complexity is directly related to the time it takes for a computer to 

14 



compress an image. Some methods to reduce the search time include limiting the search 

space and using heuristic search techniques. 

Limiting the search space includes restricting the domain blocks to nearest 

neighbors [73], pruning the transform space [69], and using clustering techniques to 

group the library blocks [11],[64]. One library-clustering algorithm [64] uses a vector 

quantization algorithm to cluster vectors according to a small set of centroids. Another 

clustering technique [11] uses a Kohonen neural network to cluster like image blocks. 

They issued a self-organizing feature map to organize similar features in different 

resolution of the image. After training the network, the different patterns or features in 

the image tend to cluster into groups. 

The direction of current trends [2],[38],[ 41 ],[ 46] for search techniques has been 

the incorporation of data tree structures. In the tree structure, similar library vectors are 

located near each other in parent-children node arrangement based on a set of 

characteristics. Using the range characteristics, a best match vector or set of vectors can 

be found for the range vector by searching the nodes of the tree. In Section 2.2, the r-

trees data structures are detailed. 

2.1.4 Mathematical Support 

Bondarendo and Dolnikov [12] expanded on the mathematical concepts and 

assertions that form the basis for fractal image compression. Oien, Baharav, Lepsoy, 

Kamin, and Malah [62] extended the collage theorem to multi-resolution fractal image 

coding. They validated and extended the fundamental mathematical support of fractal 

. . 
image compress10n. 

Contractivity factors [31],[32],[33] provided the mathematical support of the 

convergence of the fractal transforms to a fixed point. Using spectral theory, the 
·, 

condition for contractivity was satisfied if the spectral radius of the transformation matrix 

15 



was less than one. Although, Jacobs, Fisher, and Boss [34] showed that the attractor of 

the overall IFS system approximates the original image better if some of the 

transformations in the IFS are allowed to be non-contractive,. They concluded it was not 

necessary that the individual transformation wi be contractive. The overall IFS system 

converged to a fixed point when the mapping W of the overall IFS were eventually 

contractive. The mapping W was composed of a union of the individual transformation 

Wj, If the contractive wi eventually dominated the expansive ones, the mapping W was 

eventually contractive. 

2.2 Jacquin's Fractal Block Coding 

Because of its importance to our research, we present Jacquin's fractal block 

coding [37] in detail. For fractal block coding, data compression ratios ranges from 10:1 

to 50: 1 depending on the images. This method codes images with a class of discrete 

image transformations that are contractive with respect to the L2 metric or measure. 

Iterating the transformations on any initial image recover an approximation of the 

original image. 

Fractal block coding partitions the image into non-overlapping square range 

blocks of two different sizes (BxB, B/2xB/2). The two different sizes allow for regions 

containing more details to be encoded using the smaller size and for regions containing 

lesser detail to be coded using the larger size. The smaller size results in less error in the 

attractor of the fractal code while the larger size yields higher compression ratio. 

In order to reduce the coder complexity, fractal block coding classifies domain 

blocks, Di, and range blocks, Ri, by their perceptual geometric features. The domain 

blocks are classified into pools based on edge content in order to reduce the search time. 

This minimizes the number of comparisons between range blocks and transformed 

domain blocks to find the 'optimal' pair of domain and range blocks. 

16 



Three discrete transformations or mappings describe the three categories of image 

blocks. These categories include shade blocks, midrange blocks, and edge blocks. Shade 

blocks are blocks with uniform levels of intensity. Edge blocks contain some degree of 

edge information. The rest of the blocks consist of midrange blocks. 

Shade blocks are coded using just the absorption transformation, 

(2.1) 

where g0 was the average gray level of the range blocks. Midrange range blocks are 

coded using spatially contracting transformations. The spatially contracting 

transformation is given by 

r;=a;S;(D;)+b..g; (2.2) 

where a;, is a contrast scaling factor between O and 1 and b..gi is the difference between 

the average gray level of the Ri and Di. The geometric part, Si, represents the spatial 

contraction of the image blocks from a domain block size to a range block size. These 

transformations are compositions of contrast scaling, luminance shifts, and spatial 

reductions. For 'edge' range blocks, isometries, shown in Table 2.1, generates 

geometrically related transformed blocks used to describe details in the image. The 

transformation takes the form of 

(2.3) 

where (2.2) has been expanded to contain ii, an isometry. 

Since the image is coded as a list of transformation parameters, fractal block 

coding uses entropy coding to compress the list for higher compression ratios. In image 

compression, quantized parameters or coefficients are generally encoded to increase the 

compression ratio. 

17 



Table 2.1: Transformations for fractal block coding. 

Transformation Equations 

Absorption (8µ)i,j = go 

Luminance shift (-cµ) .. = µ .. +8g l,J l,J 

Contrast scaling (crµ) .. =aµ .. 
l,J l,J 

Isometries {ik}o:s:k:s: 7 

identity 
Cioµ). · = µ. · l,J l,J 

orthogonal reflection about mid-vertical 
(4µ)i,j = µi,B-1-j axis of block 

orthogonal reflection about mid-horizontal 
(izµ)i,j = µB-1-i,j axis of block 

orthogonal reflection about first diagonal 
(i3µ)i,j = µ j,i (i = i ) of block 

orthogonal reflection about second 
(i4µ)i,j = µB-1-j,B--1-i diagonal (i +j = B-1) of block 

rotation around center of block by +90° 
Cisµ)i,j = µj,B-1-i 

rotation around center of block by +180° 
(i6µ )i,j = µB-l-i,B-1-j 

rotation around center of block by -90° 
(i7µ);,j = µB-1-i,j 

Legend: 
µ pixel gray levels of an image block 

go average gray level of an image block 

fXj contrast scaling factor between O and 1 

8g difference between two average gray levels 

i; isometries 

8 absorption 

'C luminance 

cr contrast 

18 



2.3 R-trees Data Structures 

Kominek [ 41] uses r-trees to reduce the search time to seconds for block sizes of 

4x4. An r-tree is a dynamic index structure for spatial searching of large databases. 

Examples of spatial data are lines in 2-dimensional space and volumes in 3-dimensional 

space[29]. Since spatial data objects cover regions in a multi-dimensional space, the 

index in r-trees is based on the spatial locations of the data objects [30]. If each record in 

the database is thought of as a point in a multi-dimensional space, records in database can 

be retrieved based on their spatial location efficiently and quickly. 

Extending this concept to fractal image compression, an image block is a vector 

in a multi-dimensional space. Searching for the optimal pairing ofrange and domain 

blocks consists of finding the record in the library or domain database that best correlates 

to the range vector. 

The data structure for r-trees is a height-balance tree containing leafs of indexed 

records pointing to the spatial data objects. All the leaf nodes exist at the same level in 

the tree. The entry of the leaf node consists of the form (X; , ~ , I) where X; and ~ are 

the coordinates of the smallest rectangle that bounds the data object and I is the identifier 

that points to the data object. Non-leaf nodes are of the form (X; , ~ , P) where X; and ~ 

are the coordinates of the smallest rectangle that bounds all the rectangles in the child 

nodes that P points to. 

Figure 2.1 show the collection of the data in to a tree structure. In Figure 2.2, the 

bounding rectangles for the nodes and the data objects are shown in a spatial 

representation. The tree is searched from the top node or root down to the lowest level. 

Using the indexed tree structure, only the objects in space of interest are examined. 

Although m_ore than one of the sub-trees under a node may need to be searched, the tree 

is maintained in a manner to minimize the search space. A detail description on the 

implementation of the r-tree structure can be found in [29]. 

19 



R3 .R4 

a b d g 

Figure 2.1: Collection of data objects into r-tree structure. 

ea be R2 
RS e 

g 

R3 ei 
e e R6 

d e 

ec R4 e .f 
eh 

j e 
Rl 

Figure 2.2: Spatial representation of data objects. 

20 



2.4 Diffusion Techniques 

Current diffusion techniques [18],[42],[70],[76] are used for segmenting images, 

detecting edges, enhancing images, and restoring images. Choosing a diffusion 

coefficient as a function of the image gradient results in image enhancement. 

Enhancement occurs due to smoothing of flat regions to eliminate noise through forward 

diffusion and sharpening of edge regions through backward diffusion. Forward diffusion 

is diffusion occurring in the direction orthogonal to the gradient and backward diffusion 

is in the direction of the local gradient. Unfortunately, current techniques that allow 

backward diffusion tend to be ill-posed [60][75] causing undesirable results. To 

overcome this, diffusion techniques based on evolution of curves [18],[42] embedded in 

higher dimensional surfaces [50] use just forward diffusion to smooth along the direction 

of the edges to eliminate noise while preserving edges. 

This section examines the nonlinear diffusion filtering developed by Perona and 

Malik [ 67]. The anisotropic diffusion equation used by Perona and Malik is 

11 = div(c(x,y,t)VI) 

where div is the divergence operator and Vis the gradient operator. Choosing the 

conduction coefficient c(x, y, t) to be 

c(x,y,t) = g~IVI(x,y,t)II) 

(2.4) 

(2.5) 

will preserve and sharpen the edges for the brightness function l(x, y, t) of the image if 

g( · ) is chosen properly. Discrete implementation of (2.4) by Perona and Malik is given 

as 

21 



where 

and the conduction coefficients are 

VNJ. . = I. I . -I . . Z,J z- ,J l,J 

Vs!. . = I. , . -I . . l,J z+ ,J Z,J 

V Eli,j - Ii,j+I - Ii,j 

Vwl·. = I..' -1.. l,J l,J- l,J 

ct 
N;,i = g~V Nl:,jl) 

ct 
S;,i = g~V sl:,jl) 

ct 
E;,i = g~V El:,jl) 

ct 
Wi,j 

<= g~V wl:.jl) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Two functions used by Perona and Malik [ 67] for g( · ) with some constant K are 

g(VI) = e(-~Jw1KJJf) (2.15) 

and 

g(VI)= 1 
(2.16) 

I +(11;11)' 

High contrast edges are favored over low contrast edges in (2.15); while, (2.16) favors 

wide regions over smaller ones. Using either (2.15), or (2.16), the edges tend to remain · 

sharp in the absence of noise. The presence of noise influences Perona and Malik 

technique since noise-related gradients are not distinguished from edge-related gradients. 

In Chapter 3, we expand the basic diffusion equation to contain a scalar function based 

on the edges of the original image, alleviating this problem. 

22 



2.5 Summary of Literary Survey 

Barnsley's iterated function system, IFS, theory provides the mathematical 

background for fractal image compression. Fractal compression algorithms that are 

based on partitioned or local IFS theory include fractal block coding (Jacquin's method), 

orthogonal basis iterated function systems, the Bath fractal transform, and hierarchical 

iterated function systems. 

Most of these algorithms use partitioning to maintain a level of accuracy in the 

fractal mappings. The accuracy of the mapping dictates the quality of the attractor of the 

fractal code. Because of the limitation of defining images in terms of a small set of 

affine transformations, coders partition larger regions into smaller regions with small 

block sizes in the fractal mapping to minimize error. Due to ease of implementation, 

many coders still use the quad-tree-partitioning scheme. 

The major computational complexity in terms of time is the search for the optimal 

pairs of range and domain blocks for the fractal transformations. The computational 

complexity in finding these fractal transformations in many coders restricts them from 

being used in 'real time' applications. Current research into tree structure searching 

algorithm shows significant reduction in time. Using r-tree data structures for spatial 

searches reduces the search time down to seconds. 

In the next chapter, we examine the mathematical basis for IFS and apply this 

theory to create a fractal block coder. We show the results of implementing two essential 

elements needed for a gray scale fractal coder. The two essential elements are a metric 

based quad-tree partitioning and r-tree data structure for searching. In addition, we look 

at the sources of error in the attractor which lead to the incorporation of the diffusion 

techniques into our fractal system for error reduction. By examining these issues, we 

establish the foundation for our research. 

23 



CHAPTER III 

3 FRACTAL BLOCK CODERS 

Fractal block coders are based on an iterated function system. Iterated function 

system is a collection of contractive affine transformations that maps any source image 

onto a desired target image. By modeling these digital images as mathematical spaces, 

fractal block coding techniques represent digital images as sets of contractive image 

transformations. The collage theorem developed by Barnsley [5] states that the more 

accurate the description of the image in terms of contractive image transformations, the 

closer the attractor of local iterated function system approximates the original image. 

Before proceeding with the results for our fractal block coder, the next section reviews 

the mathematical basis for iterated function systems. 

3 .1 Mathematical Basis for Iterated Function Systems 

In order to present the contraction mapping principle, the basic principle in 

iterated function systems theory, several important concepts need to be defined. This 

section presents the mathematical concepts of metric spaces, affine transformations, and 

contraction mappings as defined in [5]. Barnsley [4] and Peitgen [66] give a more 

extensive background of fractal geometry and techniques. 

In fractal geometry, digital images are objects belonging to a complete metric 

space. A complete metric space is a set or space in which distance can be measured 

24 



between any two members of the set and a limit belonging to the set exits for every 

Cauchy sequence in the set. 

Definition [5]: A metric space (X, d) is a space, or a set, X together with 

a real-valued function d: Xx X ~9t, which measures the distance 

between a pair of points x and y in X. Suppose that d has the 

following properties: 

(i) d(x,y) = d(y,x), V x, y E X. 

(ii) 0< d(x,y) <oo, V x,y EX, xt=y. 

(iii) d(x,x) = 0, V x EX. 

(iv) d(x,y) :'.5; d(x,z) + d(z,y), V x, y, z EX. 

Then d is called a metric on the space X. 

Definition [ 5]: A sequence {xn} ;=1 of points in a metric space (X,d) is 

called a Cauchy sequence if,for any given number&> 0, there is 

an integer N > 0 such that 

for all n, m > N 

Definition [5]: A metric space (X,d) is complete if every Cauchy 

sequence {xn} ;=1 in X has a limit x E X. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Transformations are mathematical operations for mapping points in a space to 

other points either in the same space or in a different space. Affine transformations used 

in fractal image compression are linear transformations with translation that can scale, 

rotate, stretch, and skew points in the image space. 

Definition [5]: A transformation w: 9t2 ~ 9t2 of the form 

w(x,y) =(ax+ by+ e,cx + dy + j), 

25 

(3.6) 



where 

and 

where a, b, c, d, e, and fare real numbers is called a (two

dimensional) affine transformation. 

The following notations [5]can be used to represent an affine transformation: 

(3.7) 

A-(: !J (3.8) 

T-(;) (3.9) 

The Contraction Mapping Theorem is the foundation of iterated function systems. 

Using this theorem, an iterated function system is a collection of contractive mappings 

defining a unique attractor. When the contractive mappings are iteratively applied to any 

initial point in the space, the attractor or fixed point of the iterated function system is the 

limit point that the mappings will approach. 

Definition [ 5]: Let f X ~ X be a transformation on a space. A point 

XjE X such that f(x1) = Xf is called the fixed point of the 

transformation. 

Definition [5]: Letf X ~ X be a transformation on a metric space (X, 

d) is called contractive or a contraction mapping if there is a 

constant, s, 0 :S:: s < 1, such that 

d(f(x),f(y)) :S:: s · d(x,y)Vx,y EX. 

Any such number s is called a contractivity factor for f 

26 

(3.10) 



Theorem (The Contraction Mapping Theorem) [5]: Letf X ~ X be a 

contraction mapping on a metric space (X, d). Then f possesses 

exactly one fixed point x1 EX, and for any point x E X, the 

sequence {i(x): n = 1,2, ... } converges to Xf that 

is, 

for each x E X. 

Representing a digital image as a collage of smaller images, IFS uses the 

Contraction Mapping Theorem to define a digital image as an attractor to a set of 

(3.11) 

equations. The local IFS is a collection of local contraction mappings called W; on a 

complete metric space denoted by (X, d), where X is the space of discrete domain, 

finitely bounded, real valued signals (image space) and d is the metric or distance 

measure. 

An image is divided into regions or blocks Di. The transformations, wi: Di ~ X, 

will map the blocks onto the image for (i = 1, 2, ... , N) where N is a finite positive 

integer. Let S denote a subset ofX. Using the IFS theory, a contractive operator Wis 

defined as 

N 

W(B) = LJw;(D; nB), (3.12) 
i=l 

for all B E S such that the attractor A ( decompressed image) of W satisfies the condition 

limAn =A (3.13) 
n-->oo 

where 

N 

An= LJw;(D; nAn_1) (3.14) 
i=l 

27 



for (N= 1, 2, 3, ... ) and 

N 

A= LJwi(D; nA) = W(A). (3.15) 
i=l 

Comparing Eq. 3 .13 to Eq. 3 .11, we see that the attractor is the fixed point to a set 

of contraction mappings defined by blocks in the image. Fractal block coding 

compresses images by finding a set of local contraction mapping W;. This set is found by 

minimizing the error distance of each mapping leading to the target image being 

approximated by attractor A of Won the image space. 

For the compression of gray scale images [66], the contractive transformation 

takes the form 

(3.16) 

The coefficients a;, b;,, c;, and d; act on the position of the pixel (x, y) according to one of 

the symmetries presented in Table 3 .1 with the translation ( e;, f; ). The coefficient si scales 

the intensity of the pixel z controlling the contrast of the block while oi offset the 

intensity of the pixel controlling the brightness of the block. 

Applying Fisher's optimization [36] with respect to root mean square metric, drms 

[61], 

n 

drms(x,y) =II x-y 112= ~)x; - Y;) 2 , (3.17) 
i=l 

the scale s is 

(3.18) 

28 



Table 3.1: Eight symmetries in local contraction transformations. 

Symmetry Matrix Description 

0 [~ ~] identity 

1 [ ~I ~] reflection in y-axis 

2 [~ ~1] reflection in x-axis 

3 [ ~I ~1] 180° rotation counter-clockwise 

4 [~ ~] reflection in line y = x 

5 [ ~I ~] 90° rotation counter-clockwise 

6 [~ ~I] 270° rotation counter-clockwise 

7 [ 0 -IJ reflection in line y = -x 

-1 0 

29 



and the offset o is 

(3.19) 

where ri and di are the intensity values of two blocks containing n pixels. If 

n "n d.2 -('°'n d.)2 = 0 
L...i=l l L...i=l l 

(3.20) 

then s is set to zero and o is 

Ln 
r. 

i=l l o= . (3.21) 
n 

These equations provide a mathematical robust representation for fractal image 

compression. Although the next section presents a simple fixed block fractal coder based 

on a more simplified representation for the fractal transformation, these mathematical 

concepts still apply for our fractal coder. 

3.2 Fixed Block Fractal Coder 

In this section, we implemented a simple fixed block fractal coder. For ease of 

implementation, we modeled the fractal transformation of each range block R as 

(3.22) 

where Wx,y is a spatially reduced version of the domain block D located at pixel location 

x andy, s controls the contrast of the block, o controls the brightness of the block, f'; 

represent one of the symmetries in 

Table 3 .1. For each pixel in W x,y, we averaged four pixels in D creating a half 

scale version of D. We spatially reduced the domain blocks by half for mapping to a 

range block. 

30 



To encode the image, our coder followed the steps outlined below: 

1. Input a digital image with intensities values from O to 1. 

(Note: The gray levels represented by Oto 255 have been 

scaled to values from O to 1.) 

2. Partition the image into non-overlapping range blocks. 

3. Partition the image into overlapping domain blocks. 

4. For each range block, search through the transformed 

domain blocks for the one that minimized error distance of 

mapping D on to R using Eq. 3 .22. 

5. Generate the fractal code. 

For a 256x256 version of 'Lena', the fractal code contained 1026 lines of fractal 

coefficients (Table 3.2 contains the first five lines.) for range blocks of size 8x8. Each 

line consisted of x, y, i, s, and o, the coefficients needed for Eq. 3.22. 

Table 3.2: Partial listing of fractal code. 

X y Symmetry s 0 

25 97 6 0.04 0.49 

41 77 3 -0.13 0.60 

97 117 4 0.02 0.50 

5 85 1 -0.58 0.82 

73 69 0 -0.32 0.69 

31 



Since we processed the range blocks sequentially, we decoded the image by 

applying Eq. 3.22 in the same order. The steps we took to decode the image were as 

followed: 

1. Initialize an image to a constant gray level of .5. 

(Note: The gray levels represented by Oto 255 have been 

scaled to values from O to 1.) 

2. Partition the image into non-overlapping range blocks. 

3. Partition the image into overlapping domain blocks. 

4. To create each new range block, apply Eq. 3.22 to the 

domain block located at x and y using the corresponding 

values for sand a. 

5. Bound the intensity values of the new range block to 

between O and 1, inclusively. 

6. Repeat steps 2 through 5, until the image converges. 

For example, for the first range block in the image of 'Lena', the coder fetched the 

spatially reduced domain block starting at pixel locations, x = 25 and y = 97. The coder 

multiplied the pixel intensity values of the spatially reduced domain block by 0.04 and 

added 0.49 to the intensity values. The coder rotated the pixels in the block clock-wise 

by 270 degree. The coder bounded intensity levels to values from O to 1 by simply 

clipping the intensity levels outside these values to O or 1. The coder replaced the 

intensity values of the first range block with these new intensity levels. This sequence is 

applied for the entire list and repeated until convergence. 

Figure 3 .1 shows the convergence of iteratively applying the fractal code for three 

test images: 'Lena', 'Goldhill', and 'camera man'. Results in Figure 3.1 shows that the 

attractor of the fractal code usually converged in less than five iterations. For 

comparison, Figure 3.2 shows the attractors of the coder for range block size 8x8 and 

16x16 and the quantitative measures are contained in Table 3.3 for these sizes. 

32 



Inital Image: 

Iteration 1: 

Iteration 2: 

Iteration 3: 

Iteration 4: 

-0 

!20 

'I.. 
i, 
\\ 
\· 
\'. 
\\ 
"' 

Convergence of Attractors 

-- Lena 

- - Gold hill 

·-· -Cameraman 

10 ~-~~"'-'-_-s~:-:..-'=-~-'=-:;:;-z_-~---='-....:.'"=·-=~-,;;;---=:....;-:--=:_-=-~--=--==---'::_· ~-~-==_...,:;._-=-~~=--~--~---=s-_.,i_="2.·-:s.-~--==--=-...;_:-'=-....:.::::;-__ :!.-=::_. -~-_:.,..: __ ::~.;:;_-_;.;~-:::-:-__ ~-:-~-~-_-3-
0 2 4 6 9 10 

Iterations 
12 14 

Figure 3 .1 : Iterations of the fractal code 

33 

16 19 20 



(a) Attractor of 8x8 range size. (b) Attractor of 16x 16 range size. 

Figure 3.2: Attractor of fractor code for different range block size. 

Table 3.3: Results for using 8x8 and 16x16 range sizes. 

I 

' 

Range size Compression PSNR I; 
Ratio 

8x8 17.65 27.2 0.57 

16x16 70.62 23.3 0.39 

34 



These results show the relationship range block sizes have on the compression 

ratio, PSNR, and the edge preservation measure. Compression ratio was four times 

higher for the 16x16 range block than the 8x8 range block but PSNR and~ were 

significantly lower. Smaller block sizes increase image fidelity at the cost of lower 

compression ratios. 

In order to optimize the trade off between compression ratio and image fidelity, 

we implemented quad-tree partitioning in our fractal coder to determine the maximum 

size of the range block based on a fidelity criterion in Section 3.4. Before presenting this 

implementation, we examined the error distance and PSNR in the attractor for a reduced 

version of 'Lena' in the next section. 

3 .3 Error Due to Inaccurate Mappings 

For examining error distance and PSNR in the attractor, the fixed block fractal 

coder uses only 8x8 range block size with no partitioning scheme. In addition, the target 

image is a reduced version (128x128 pixels) of 'Lena' in order to provide a higher 

concentration of details. The higher concentration of details emphasizes the errors in the 

attractor of fractal block coding. Figure 3.3 illustrates the attractor of the fractal code or 

approximation of the target for range block size of 8x8 for the reduced version of 'Lena'. 

In comparison to the attractors in Figure 3.2, we notice that the errors in the attractor in 

Figure 3.3 are more pronounced. 

In addition, the coder uses a brute force search technique to search the library 

blocks for a domain block that meets an error tolerance criterion. Instead of searching 

the entire set of domain blocks, the search will terminate when error distance is less than 

the error tolerance level. If it does not find a domain block that meets this requirement 

after searching the entire set of domain blocks, it will choose the domain block that 

resulted in the least error distance. The error distance is the root mean square metric, 

35 



drms, defined by (3.17). Using an error tolerance of 0.001 allows reduction of search time 

while still maintaining a high degree of fidelity. 

(a) Original Image (b) Attractor 

Figure 3.3: Comparision of 'Lena' (128x128) with the attractor. 

Since the target image of 'Lena' is 128x128, with 8 bpp (bits per pixel) image, the 

number of bits in the original image is 128 * 128 * 8 or 131072 bits. With fixed range 

blocks of 8x8, a 128x 128 target image requires 256 transformations to represent it; 

therefore, the number of bits in the fractal code is 256 * 29 or 7424 bits. The 

compression ratio for the image in Figure 3.3 is 17.65. The PSNR for the attractor in 

Figure 3.3 is 22.86 dB. Comparing these values to the results for the 8x8 range block 

size in Table 3.3, PSNR drops from 27.2 to 22.86. This drop in PSNR corresponds to the 

reduction of the image from 256x256 to 128x128. Higher concentration of details in the 

128x128 image leads to inaccurate mappings as shown later in this section. 

Visually inspecting images in Figure 3.3 shows the loss of details in the 

decompressed image. Areas containing texture like the feathery region of the hat suffer 

36 



the most while smooth areas suffer the least. In terms of the loss of edges, areas of 

strong straight edges have less distortion than areas of weak edges. 

The error metric measures the error distance between the range block and the 

mapping of the domain block. Figure 3.4 shows the PSNR for each block related to the 

accuracy of the mapping the domain block onto the range block. In general, the smaller 

error distance resulted in higher PSNR for the range block in the attractor of the fractal 

code. 

Block PSNR versus Error Metric 

45 

40 

35 

~ 30 
z 
(/) 
p._ 
~ 25 

C) 
0 ...... 

t::Q 

20 

15 

.?,. 
• 41""."t • 

•'!'.-,..~ -.. , • • *· ..... . ·~·· .. • •••• • 

10 
0 0.005 O.Ql O.Q15 0.02 0.025 0.03 0.035 

Error Metric 

Figure 3.4: Block PSNR versus Error Metric. 

37 



Figure 3.5 categorizes the blocks in the original image into three images 

depending on the PSNR of the related blocks in the attractor of the fractal code. Figure 

3.5b contains blocks of the original image that were reconstructed with a PSNR greater 

than 30. Figure 3.5c contains blocks that were reconstructed with a PSNR between 20 

and 30 inclusively. Figure 3.5d contains blocks that were reconstructed with a PSNR 

below 20. Quantitatively, Figure 3.5 shows that smooth regions are reconstructed with 

the least amount of distortion while high detailed regions are reconstructed with the most 

amount of distortion. 

In order to see the relationships of the error metric and PSNR in the different 

regions of the original image, Figure 3.6 contains calculated images of the PSNR and the 

error metric. In these images, a corresponding gray level between O and 255 replaced the 

numerical values. In the PSNR image, Figure 3.6c, the white regions represent the 

highest PSNR values while the black regions represent the lowest values. In Figure 3.6b, 

the error image, the darker regions represent higher error distances. Counting from the 

lower left-hand comer of Figure 3.6b, the grid box with the highest error is six boxes to 

the right and six boxes up. In the same location in Figure 3.6a, this area contains three 

different textural regions, hair, feathers, and part of the brim of the hat. In the same 

location in Figure 3.6c, the grid box shows a low PSNR value. 

Figure 3.7 shows the residual error image created by subtracting the attractor 

from the original image and scaling to fit within the image space. The residual error 

shows that the major portion of errors occurs at edge locations. The accuracy of the 

attractor of the fractal code depends on the degree of similarity between the larger to 

smaller blocks mapping. Due to the limitation of the fractal transform mappings, we see 

loss of edge information, discontinuity at boundaries and blocking artifacts in the 

attractor at high compression ratio. These degradations and spurious artifacts limit 

fractal coders. 

38 



• 

I 

(a) Original Image (b) Block PSNR > 30 

(c) 20 :s; Block PSNR ~ 30 ( d) Block PSNR < 20 

Figure 3.5: Classification of the original image into areas of PSNR values. 

39 



(a) Original Image 

~ 
: 

~1; ~ I 
L I I I I 

(b) Error Metric Image 

( c) PSNR Image 

Figure 3.6: Representations of the error metric and PSNR for image blocks. 

40 



Figure 3.7: Residual error image. 

In order to increase the degree of similarity, the next section implements a metric 

based quad-tree partitioning similar to the one proposed by Jacquin [35]. Although, use 

of smaller blocks sizes reduce the loss of detail, it is important only to use these smaller 

blocks when needed. Each smaller level of partitioning decreases the compression ratio 

or increases the bpp (bi ts per pixel rate) by a factor of four for that region. 

Partitioning increases the probability of restoring edges in the attractor; however, 

it does not insure the retention of edges. Even with smaller block sizes, degradation of 

edges and loss of edge information occur in the attractor due to the limitation of fractal 

code to describe the similarities in the image with contractive affine transformations. In 

addition, the iterative nature of spatially reducing larger regions to smaller regions tends 

to "flatten" or "blur" the attractor even more [ 46]. Finally, the independent processing of 

41 



each block by the fractal transform causes blocking effects in terms of artificial block 

boundaries and discontinuities between adjacent blocks. 

The next section presents the results of the implementation of a metric quad-tree 

partitioning similar to the partitioning used by Jacquin to compensate for the error 

distances. In the next chapter, we address the problem ofrestoring lost edge information. 

3.4 Metric Based Quad-tree Fractal Coder 

Based on earlier works of Jacquin and Fisher [36][18], implementation of a quad

tree partitioning improves the basic fractal technique. Quad-tree partitioning provides a 

simple method to determine the areas that need smaller blocks. The overhead of using 

quad-tree partitioning is small since it only requires one bit extra per transformation. 

Based on Table 1.1, the bits required for each transformation increases from 29 for a 

fixed block coder to 30 for a quad-tree coder. However, the impact on compression is 

significant. With the quad-tree method, compression ratio in a region decreases by a 

factor of four when that region needs to be partitioned to maintain a level of accuracy. In 

order to reconstruct that region, the fractal code requires four additional lines of fractal 

code instead of one. Assuming each line in the fractal code requires 29 bits [20], 

covering an 8x8 pixel image block with 8 bpp (bits per pixel) results in a compression 

ratio of 17.65 or bpp rate of 0.45. Splitting this block into four 4x4 pixel blocks causes 

the compression ratio to be reduced to 4.4 or a bpp rate of 1.8. 

The coder starts with the largest range block size. It searches through the 

corresponding set of domain blocks or library for the domain block that meets the error 

tolerance criterion. If a domain block according to that size cannot be found with an 

error tolerance criterion, the range,block is divided into four equal size sub-blocks. This 

process is repeated until either a domain block is found meeting the criterion or the range 

blocks have reached the minimum allowed block size. For this analysis, the fractal coder 

42 



incorporated only a two level quad-tree partition. The target image is a reduced version 

(128x128) of 'Lena'. The fractal coder uses two range block sizes of 8x8 and 4x4. The 

coder uses the error tolerance level to determine if the 8x8 block needs to be spilt into 

four 4x4 blocks. 

In Figure 3.8, a significant improvement in image fidelity is seen in the attractor 

of the fractal code at an error tolerance level of 0.001. The cost of increasing the image 

fidelity to this level (PSNR = 25.86 dB) was the reduction of the compression ratio to 

5.5: 1. From the images in Figure 3.8, rapid degradation of the image occurs as the error 

tolerance level is increased. The plots in Figure 3 .9 and Figure 3 .10 give the impact on 

PSNR and compression for the different error tolerance levels. Lowering the error 

tolerance level does increase image fidelity measured by PSNR at the cost of lowering 

compression ratio. Figure 3.11 graphically shows the cost of PSNR versus compression 

ratio. If a straight line approximates PSNR in Figure 3 .11, its slope is approximately 

-0.63. Using this approximation, the cost of increasing the compression ratio by one 

would result in a drop of0.63 dB in PSNR. 

Increasing the size of the image to the more standard 256x256 or 512x512 pixels 

would greatly increase fidelity since the library search space is greater and the details in 

the image are less concentrated [20]. For the larger images, the quad-tree level can be 

expanded to include larger block sizes, thus increasing the compression ratio. For 

example, in a four level quad-tree structure, a 32x32 image block can be divided into a 

combination of 16x16, 8x8, and 4x4 image blocks. Increasing the size of the image 

increases the search time due to the increase in the number of range and domain blocks. 

In the next section, r-tree data structures will be used to reduce the search time. 

43 



(a) Original Image 

( c) Reconstruction at level = .005 
PSNR = 23.56 dB 
Compression Ratio = 8.5 : 1 

(e) Reconstruction at level = .01 
PSNR = 21.4 7 dB 
Compression Ratio = 11.5 : 1 

(b) Reconstruction at level= .001 
PSNR = 25.86 dB 
Compression Ratio= 5.5 : 1 

(d) Reconstruction at level = .007 
PSNR = 22.48 dB 
Compression Ratio = 9.4 : 1 

(f) Reconstruction at level = .03 
PSNR = 19.15 dB 
Compression Ratio = 16.9: 1 

Figure 3.8: Comparison of the attractor at different error tolerance levels. 

44 



30 

25 

~ 
20 

z 
(/) 

15 p.. 

10 

5 

0 

0 0.01 0.02 0.03 0.04 0.05 

Error Tolerance 

Figure 3.9: PSNR versus error tolerance for metric based quad-tree coder. 

18 

0 16 ..... 
14 ~ 

I=:: 12 
0 10 ..... 
00 
00 

8 ~ 

s" 6 
0 4 u 

2 
0 

0 0.01 0.02 0.03 0.04 0.05 

Error Tolerance 

Figure 3.10: Compression versus error tolerance for a metric based quad-tree coder. 

45 



26 

25 

24 

23 

~ 22 
CZl 
p.. 21 

20 

19 

18 

17 
4.00 9.00 14.00 19.00 

Compression 

Figure 3.11: PSNR versus compression for a metric based quad-tree coder. 

3.5 Fast Fractal Image Compression Using R-trees. 

One major obstacle to the widespread use of fractal image compression is the 

prohibitive CPU time needed in the compression stage. Searching for 'optimal' pairs of 

similar blocks in the image constitutes the major computation load for fractal coders. R

trees overcome this obstacle by reducing search time to seconds. R-tree is a dynamic 

multi-dimensional index data structure capable of fast retrieval of data objects based on 

their spatial locations. 

The search for this optimal pairing can produce an enormous computational load. 

For example, an image size of 2nx2n using four rotations and four reflections can create 

[(2n - 2m + 1) 2 * 8] different 2mx2m domain blocks and (2n/ 2P)2 different 2Px2P range 

46 



blocks. Numerous pair comparison of domain and range blocks can produce search time 

from minutes to days for full search or brute force coders depending on the size of the 

image and its associated search space. Figure 3.12 illustrates the encoding times 

compiled by Kominek [ 40] for different fractal coders. The time it takes to compress an 

image ranges from seconds to days. 

Time (s) 

100000 

10000 

1000 

100 

10 

Legend: 

-
2 3 4 5 

1. Even on a fast PC, brute force algorithms take over a day to compress an image. 

2. Light brute force algorithms use a simple scheme to reduce the computational load. 
Compression takes 1-5 hours, times typical of the academic programs. 

3. Iterated Systems' commercial software reduces the times to the range of3-30 minutes. 

4. Iterated Systems also sells add-in hardware boards that bring the compression times 
down to the range of 1-10 seconds. 

5. With the recent development of the Fast Fractal Image Compression (FFIC) algorithm, 
an all-software method now exists capable of compressing images in 1-10 seconds. 

Figure 3.12: Encoding time for different fractal coders.[40] 

47 



Kominek [41] uses r-trees, dynamic multi-dimensional index data structures, in 

his Fast Fractal Image Compression (FFIC) method to reduce the time to seconds for 4x4 

range block size. This section examines the Kominek's FFIC method. Although we 

implemented this method for 4x4 blocks, the size of the r-tree structure at large block 

sizes increases the difficulties of implementation into our fractal system. In the next 

chapter, we enhance this method to simplify the implementation. 

The Fast Fractal Image Compression, FFIC, algorithm uses the pixel values 

directly to compose the position vector in the indexed multi-dimensional space. 

Therefore, a 16 dimensional position vector represents a 4x4 image block. In order to 

use the r-tree structure to search, we need to normalize the pixel values in all the blocks 

to a fixed mean and variance. Normalization of the vectors establishes a common for 

valid comparison between range and domain blocks. 

Mathematically, we form a vector x, 

(3.23) 

from the 4x4 image blockX, 

Pi P2 P3 P4 

X= Ps P6 P1 Ps (3.24) 
P9 P10 P11 P12 

P13 P14 Pis Pi6 

consisting of pixel intensities Pi· The coder creates the position vector y by normalizing 

the vector x such that the mean of y, µ, is equal to a constant c1 

1 n 

µ=-Iy=ci 
n i=t 

and the variance, (72, is equal to a constant, c2 

2 1 ~ 2 
(J = - Li (y - µ) = Cz • 

n i=t 

48 

(3.25) 

(3.26) 



The r-tree algorithm organizes the domain position so nearby vectors are similar 

in the position space. The r-tree structure arranges the domain position vectors in a 

nested manner. Due to the r-tree structure, the coder examines only a few of the domain 

data objects need to find domain data object that minimizes the error distance for any 

range data objects. The average search time [ 41] for his method is approximately 

proportional to a logb(a) where a is the number of domain data objects and bis the 

maximum data objects bounded by any rectangle. 

Using pixel values to define the position vectors, block sizes of the order 

2°x2° would require 220 dimensional position vectors to define its spatial location. 

Clearly, larger block sizes increase the complexity of the r-trees requiring more 

time and memory to process. Since fractal compression relies on using large 

blocks for high compression ratios, we need to develop a more effective method 

for spatial location representation of the blocks. 

3.6 Summary of Current Methods 

Fractal coders compress digital images by relating areas of local self-similarity at 

different scales in the images. In an image, numerous smaller regions look like larger 

regions in the image; for example, a small cloud looks like a large cloud. Taking 

advantage of this correlation, the fractal code pairs up similar regions creating a list of 

fractal mappings. The attractor of this code approximates the original image. The 

closeness of the attractor to the original image depends on similarity between the larger 

to smaller mapping. 

Searching for 'optimal' pairs of similar blocks in the image constitutes the major 

computational load for fractal coders. Numerous pair comparison of domain and range 

blocks can produce search time from seconds to days for full search or brute force coders 

depending on the size of the image, its associated search space, and search algorithms. 

49 



To overcome long encoding time, FFIC uses r-trees, dynamic multi-dimensional index 

data structures, to reduce the time to seconds for 4x4 range block sizes. Due to the 

spatial representation of the image block in this method, the efficiency decreases and the 

complexity of the r-tree search algorithm increases for larger block sizes. 

In order to increase the degree of similarity, fractal coders use quad-tree splitting 

to partition the image into different block sizes. The quad-tree splitting method divides a 

large square or block into four equal sized smaller squares. In smooth areas of the image, 

using the larger block size gives higher compression ratios. In areas of edges, the smaller 

block size increases the accuracy of the fractal mapping. Compression ratio in a region 

decreases by a factor of four when that region is partitioned down to maintain accuracy. 

In order to maintain high compression ratio, the coder needs to minimize partitioning 

down to smaller blocks. 

Partitioning increases the probability of restoring edges in the attractor; however, 

it does not insure the retention of edges. Degradation of edges and loss of edge 

information occur in the attractor due to the limitation of fractal code to describe the 

similarities in the image with contractive affine transformations. In addition, the iterative 

nature of spatially reducing larger regions to smaller regions in the attractor for image 

reconstruction tends to "flatten" or "blur" the image even more. 

In the next chapter, our research focuses on overcoming some of the limitation of 

fractal block coding. This is necessary in order to achieve a fast edge preserving fractal 

system for 'real-time' applications like surveillance. 

50 



CHAPTER IV 

4 A FAST EDGE PRESERVING FRACTAL SYSTEM 

This chapter focuses on developing a fast edge preserving fractal system for use 

in 'real-time' identification applications like surveillance. Fractal coders perform well at 

high compression ratio and thus are suitable for these applications; however, long 

encoding time and loss of edge information are major drawbacks. Tradeoffs between 

compression ratio, edge preservation, and encoding time are the major concerns in the 

development of a fast edge preserving fractal system (FEPFS). 

Overcoming these limitations to produce FEPFS is the objective of this research. 

To meet the objectives, the design criteria for FEPFS for compressing 256x256 images 

are as follow: 

1. Compression ratios are above 40: 1. 

2. Encoding times are less than one minute. 

3. The attractor contains significant edge information. 

Before proceeding the achievements of FEPFS in respect to the design criteria, the 

next section presents the iterative error compensation technique. Presentation of the 

iterative error compensation technique developed during the initial stages of our research 

for Sandia National Laboratories gives the foundation for the design criteria. 

51 



4.1 Iterative Error Compensation Technique 

This simple algorithm shows the possibility of using fractal image compression in 

surveillance applications. We develop the iterative error compensation technique to 

improve the attractor of the fractal code of a fixed block fractal coder using large sizes 

and just the identity symmetry. This method is an initial attempt to compensate for the 

loss of edges at large block sizes for high compression ratio and to decrease encoding 

time for satellite field surveillance. 

Figure 4.1 a is an original 256x256 image of a military vehicle provided by Sandia 

National Laboratories for testing. The calculation for the compression ratio is different 

in this section due to the simplification of the fractal transform and the addition of an 

error term. We calculate the compression ratio using the actual file size of the fractal 

code; therefore, compression ratio is equal to the size of the original file divided by size 

of the fractal code. 

Figure 4.lb is the attractor of the fractal code using an 8x8 domain block size 

resulting in a compression ratio of 5.49:1 (12.47 for entropy coded file using PKZIP). 

Figure 4.1 c is the attractor of the fractal code using a 16x 16 domain block size resulting 

in a compression ratio of21.72:1 (40.74:1 for entropy coded file using PKZIP). 

For most applications, the image or attractor produced in Figure 4. lc is not 

acceptable. For the purpose of surveillance, Figure 4.lb is acceptable since trained 

personnel from Sandia National Laboratories could identify the military truck. 

We simplify the fractal transform (3.22) by removing the scale term and allowing 

only the identity symmetry. Simplifying the algorithm, limiting the search space, and 

using large block sizes reduce the compression time from days to minutes for 256x256 

images. Using the large blocks increases the compression ratio and shortens the 

compression time at the cost of attractor quality as shown in Figure 4.1. 

52 



(a) Original 

(b) At 8x8, compression ratio is 12.4. 

(c) At 16xl6, compression ratio is 40.7. 

Figure 4.1 : Results for different block sizes in fractal block coding. 

53 



In Figure 4.1 c, the details such as the windows of the military vehicle were lost in 

the attractor of the fractal code using the 16x 16 block size. Adding error compensation 

to the fractal transform compensates for the reconstruction errors and restores the details 

of the original image to the attractor of the fractal code. The iterative error compensation 

technique is a unique method of restoring high frequency components in the attractor of 

the fractal code. Figure 4.2 is a flowchart of the technique, as it fits into the fractal 

scheme. 

First, the coder partitions the image into non-overlapping range blocks. From the 

set of domain blocks created from the image, the coder determines the best mapping for 

the first range block. The coder forms an error block of O's and 1 's according to a 

threshold criterion. The coder finds an error gain term that minimizes the L2 error 

measure between the range block and its associated domain block. The coder outputs the 

parameters of mapping transformation and the error block. The coder repeats the process 

for every range block. The coder iteratively applies the mapping and the error block in 

the fractal code until the attractor converges. 

From a theoretical viewpoint, the technique uses the error blocks E to minimize 

the L2 , the least squares, distance measure between the fractal transformation R 

R = f'(MJx,y + o) + gE (4.1) 

and the corresponding range block in the original image. The terms in ( 4.1) are defined as 

MJx.y is a spatially reduced version of the domain block, 

Dx,y is located at pixel location (x,y), 

o is the difference in the intensity means of original range and MJx.y, 

f' represents the identity symmetry in 

Table 3.1, and 

g is a gain term for optimization of the error blocks. 

For each pixel in MJx,y, we averaged four pixels in D creating a half scale version of D. 

54 



Figure 4.2: 

.------s e le c tio n 
of 
mapping 

Partition into 
range blocks. 

C re a te d o m a in 
blocks . 

Se le ct a range 
b lo Ck. 

r------l~S e le Ct a 
do m a in bloc k. 

M a p domain 
in to range b lk. 

- - - - .. .-------

r-------.,.A djust error 
gain. 

Iterative 
IT e ch n iq u e ·- - - - - -

Code Error 
B lo c k. _____ .. 
G en er ate 
fr a c ta 1 c o d e . 

Flowchart of the iterative error compensation technique. 

55 



Initially, for each range block, the coder searches for the fractal transformed "best 

fit" domain block as shown in section #1 of Figure 4.2. After choosing the domain 

block, the coder determines E and g to minimize the error distance of the fractal 

transform (4.1) as shown in section #2 of Figure 4.2. The closeness of R to the original 

range block dictates the convergence of the attractor to the original image. The error 

term Eg in ( 4.1) gives us an addition parameter to optimize the accuracy of the 

contractive fractal mapping. 

The error blocks, E, consist of entries, Eij, 

{
O· R~rig > R .. 

E = ' u u 
ij 1,· R~rig < R .. 

y . y 

(4.2) 

where the subscript ij represents the pixel intensity values in the original range blocks 

and the transformed domain blocks. Representing the error information with two 

symbols, (0, 1 ), allows the compensation method to be simple and efficient. 

The coder represents the error blocks by index of the error library generated 

statistically for maximum error compensation. The coder outputs only two addition bytes 

for representing the error information for each block. Integration of the error term into 

the fractal mapping creates a more accurate description of the original image. 

To decode the attractor of fractal code, the coder iteratively applies the error term 

as part of the fractal transformation to reconstruct a more detailed quality image. As can 

be seen by Figure 4.3c, applying (4.1) on a target image causes the target image to 

converge to an approximation of the image. In this manner, the error compensation 

technique takes advantage of the iterative nature of fractal image compression. 

Results for 16x16 block size show considerable improvement in the details of the 

image in the attractor of the fractal code in Figure 4.3c than in Figure 4.3b. Error 

compensation restores the windows of the vehicle in Figure 4.3c. Figure 4.3 shows that 

the primary object of interest, the military truck, is more detailed in the attractor with 

error compensation. 

56 



(a) Original Image 

(b) Attractor of the fractal code with No Error Compensation 

( c) Attractor of the fractal code with Iterative Error Compensation 

Figure 4.3: Results of the iterative error compensation technique. 

57 



Use of the error compensation technique improves the image of the military truck 

significantly. These improvements allow Figure 4.3c to be acceptable for target 

recognition in our surveillance application. The results show that the iterative error 

compensation technique improves the image quality of the attractor of the fractal code at 

large range block sizes. It restores the details of the original image in the attractor of the 

fractal code and, at the same time, maintaining a compression ratio of approximately 

40: 1. This technique allows fractal block coding to be used with large block sizes in 

order to gain the necessary compression ratio. 

Although error compensation method restores the details of 'interest' for this 

application, it requires additional processing and storage in terms of the error blocks. In 

addition, it increases the complexity of the coder. 

Based on the research done during this initial phase, we set our design criteria for 

a fast edge preserving fractal system, FEPFS. The fractal system with iterative error 

compensation proves that compression ratios above 40: 1 are possible for level of fidelity 

set by Sandia National Laboratories. The next goal for FEPFS is to reduce the search 

time to seconds. 

4.2 Wavelet R-tree Search for Fractal Coders 

The wavelet r-tree search for fractal coders uses a new method to represent spatial 

locations of image blocks. This method generates the spatial locations for indexing the 

image blocks from the normalized lower order coefficients of the wavelet transform. 

Based on the Daubechies wavelets, the wavelet transform we used represents the 

intensities in the image block more compactly. 

In comparison to current methods, implementation of the wavelet r-tree method 

reduces the dimensions of the search space. Lower dimensions lead to reductions in 

computational complexity, search time, and memory requirements. The wavelet r-tree 

58 



search engine proves to be an efficient versatile search engine for fractal coders at 

minimal cost to the quality of the image. 

Instead of using the pixel values, the proposed wavelet r-tree search uses the 

lower order coefficients of the wavelet transform of the image blocks to generate the 

position vectors, creating a more efficient r-tree structure. Since wavelet transforms 

concentrate the energy in the lower order coefficients [72], the lower order coefficients 

reflect the majority of the blocks' feature information. The variance of the lower order 

coefficients is much higher than the variance of the higher order coefficients. For 

example, for the 8x8 block wavelet coefficients of a 256x256 version of 'Lena', the 

variance of the lower order coefficients is 0.0588 compared to 0.0027 for higher order 

coefficients. Therefore, the low frequency coefficients have the greatest impact on the 

spatial location comparison between the domain and range blocks. 

The wavelet r-tree search averages neighboring pixel values in the domain blocks 

to reduce the larger domain blocks to the size of the range blocks. This is necessary to 

produce the same dimensional search space. The algorithm calculates the wavelet 

coefficients for each domain block. Because the fractal transform affects the scale and 

offset of the image blocks, the normalization of the wavelet coefficients between O and 1 

allows valid comparison of the position vectors for the fractal transform. 

The algorithm eliminates the higher order wavelet coefficients, thus reducing the 

dimensions of the position vector. It uses the normalized lower order coefficients of the 

wavelet transform to create the position vector for indexing the fractal parameters of each 

block. We modified the r-tree to insure that a domain data object is found for every 

range position vector. 

Figure 4.4 and Figure 4.5 show the results of testing the wavelet r-tree search in a 

fractal coder on a Power Macintosh 6100/66. The fractal coder uses 16x16 domain and 

8x8 range blocks to compress a 256x256 version of 'Lena'. Figure 4.4 shows the effect 

on the peak-signal-to-noise (PSNR) of eliminating the wavelet coefficients in generating 

59 



PSNR 

25 

24.8 

~ 
24.6 

CZl 
P-i 

24.4 

24.2 

24 
16 25 36 49 64 

Dimensions 

Figure 4.4: PSNR versus dimensions. 

Rtree Search Time 

Q) 80 
8 --. 

00 ..... 
"t:l E-- i:: 

..c:I 0 
c..> c..> 
~ Q) 

00 
Q) '--' 

CZl 

40 

16 25 36 49 64 

Dimensions 

Figure 4.5: Search time versus dimensions. 

60 



the position vector. Using all 64 wavelet coefficients to create the position vectors gives 

a PSNR of 24.8 dB comparable to using all 64 pixel values in the blocks to create the 

position vectors. Reduction of the dimensions of the position vector from 64 to 16 by 

eliminating the higher order coefficient results in only a 0.6 dB drop in the PSNR. 

This approach increases the speed of the r-tree search time by a factor of 8 .1 

reducing the search time from 98 to 12 seconds, which is shown in Figure 4.5. It also 

decreases the memory storage requirement of the r-tree significantly. For example, the 

reduction from 64 to 16 position vector of floats ( 4 bytes typical for floats) resulted in a 

decrease from 256 to 64 bytes for each domain block. Due the large number of domain 

blocks used in the r-trees, the memory saving can be significant in the implementation of 

the r-trees. For this test, the memory saving is roughly 28Mbytes. 

Using only the low frequency wavelet coefficients to characterize the spatial 

location of image blocks creates an efficient search engine for fractal coders. Unlike 

using the pixel values, it increases the versatility of the usage of r-trees for larger block 

sizes without significantly increasing the dimensions of the search space. It speeds up 

the search for 'optimal' pairing of similar blocks in the image by reducing the complexity 

of large dimensional search space. It reduces the memory storage requirement for 

implementing the r-trees. 

Using the wavelet r-tree search, FEPFS reduces its search time for compressing 

256x256 images to seconds. By meeting its second design goal, FEPFS has the 

compression speed necessary for near 'real time' applications. 

4.3 Edge Based Quad-tree Partitioning Method 

To lessen the impact of the effects on compression, increase the preservation of 

edges, and provide a front-end loader for our search engine, we developed an edge based 

quad-tree fractal coder. In Figure 3.7, the error image shows that the loss of edges is a 

61 



significant part of the distortion in the attractor of the fractal codes. Considering this 

information, we change the splitting criterion in the quad-tree algorithm from the 

conventional error metric to an edge-based criterion. 

For this analysis in this section, the fractal coder incorporated only a two level 

quad-tree partition. The target image is a reduced version (128x128) of 'Lena'. The 

edge-based two level quad-tree fractal coder uses the edge content of the block to 

determine if the 8x8 block needs to be spilt into four 4x4 blocks. 

By using the edge information the partitioning of the image is independent of the 

fractal mapping unlike the metric based quad-tree method. For an 8x8 block in 128x128 

image, before a full search coder partitions the 8x8 block into four 4x4 blocks, it has 

calculated the error metric for all 102,152 domain blocks. The error metric calculation 

requires 64 subtractions, 64 multiplications, and 63 additions. In this worst case 

scenario, the full search coder performs 19,511,032 math operations before splitting the 

8x8 block into 4x4 blocks. Since the edge-based quad-tree method is independent of the 

fractal mapping, the image blocks are split based on the edge content of the image 

blocks. The edge content of the image is calculated initially before the fractal encoding 

process begins. If the edge content of the range block exceeds the edge threshold, the 

image block will be split. For an 8x8 block, this requires 63 additions before the block 

can be split. It performs this operation only once. 

The coder uses the Sobel operators [28] to detect the vertical and horizontal edges 

in the image. It detects edges from the magnitude of the gradient vector. The gradient 

vector points in the direction of maximum rate of change. Using a threshold value, the 

coder calculated the edge images for the reduced version of 'Lena' in Figure 4.6. For 

each range block, adding the pixel values of the combined edge image gives the edge 

content. If the edge content exceeds a predetermined edge splitting level, the coder 

divides larger block into smaller blocks. 

62 



(a) Original Image 

I .. ~ \0 / 
~ ' \ 1 / 

!-. .::-.--.~~~1.1 
.·1 ~U~ ... ~I .... . - -c7 

: ( ,I ' ~ \"'i., 
J. . .. . /P4~ 

- . ... :-:=:; : < • ,. d . ,' /_. 
-<~7~.;i;i ,•l ·. ~:!..... ~I :, 

~ ,.! ,':' ~ -"J::-1 
':ti- -:f :::~ "".:;:. - ~. ~ fr 
• t ~ ·,';f - \ JI 
... , .=-Y;p=-· ~;;_ 
.... • ~·.: 'P -.,.'P ~ .... - ;,, , .._ ~ ... .. ( . 

( c) Horizontal Edges 

Figure 4.6: 

( d) Vertical + Horizontal Edges 

Edge images for 'Lena'. 

From the images in Figure 4.7, the degradation of the image occurs as the edge 

splitting level increases. Visually, this degradation occurs at a lesser rate than the metric 

based quad-tree partition. Figure 4.8 gives the impact on PSNR for the different edge 

splitting level at two given error tolerance levels, 0.001 and 0.005. Figure 4.9 shows how 

the edge splitting level affected the compression ratio. 

63 



(a) Original Image 

( c) Splitting Level = 15 
PSNR = 25.31 dB 
Compression Ratio = 8.0. 

( e) Splitting level = 30 
PSNR = 23.20 dB 
Compression Ratio = 13.8 : 1 

(b) Splitting level = 5 
PSNR = 26.32 dB 
Compression Ratio= 5.5. 

( d) Splitting level = 25 
PSNR = 22.47 dB 
Compression Ratio = 12.7 

(f) Splitting level = 35 
PSNR = 23.05 dB 
Compression Ratio = 15 .1 : 1 

Figure 4.7: Comparison attractor at different edge splitting level. 

64 



26 

25 

~ 24 
CZl 
p.. 

23 

22 

-+-Edge Toi.= .001 
--Edge Toi. = .005 

21+-~~--+~~~-+-~~----1~~~-+-~~~1--~~-+-~~--l 

5 10 15 20 25 30 35 40 

Edge Level 

Figure 4.8: PSNR versus edge level in edge based partitioning. 

65 



18 

16 

0 14 ..... 
~ 
i:: 12 0 ..... 
r.n 
r.n 
~ 

10 s 
0 
u 

8 

6 

4 
5 10 15 20 25 30 35 40 

Edge Level 

Figure 4.9: Compression versus edge level in edge based partitioning. 

With this partitioning scheme, compression does not depend on error tolerance 

but PSNR does. Figure 4.8 shows using lower error tolerance improves PSNR values. 

Figure 4.10 graphically shows the cost of PSNR versus compression ratio for two 

different error tolerance levels. Approximating the PSNR in Figure 4.10 by a straight 

line gives a slope of -0.32. Using this approximation, the cost of increasing the 

compression ratio by 1 decreases the PSNR by 0.32 dB for the edge based quad-tree 

fractal coder. This cost has been reduced by a factor of2 in comparison with the cost of 

0.63 dB for the metric based quad-tree fractal coder. 

66 



26.5 

26 

25.5 

25 

~ 
24.5 

24 CZl 
·p.. 

23.5 

-+-Edge Toi.= .001 
---Edge Toi.= .005 

23 

22.5 

22 

21.5 
4 9 14 19 

Compression 

Figure 4.10: PSNR versus compression for edge based partitioning. 

For comparison, Figure 4.11 shows the attractor for of the fractal codes for a 

compression ratio of approximately 9 .5 for fixed,· metric-based, and edge-based coders. 

The edge-based fractal coder outperforms the metric based quad-tree fractal coder in 

terms of image fidelity to compression ratio tradeoff. The edge based coder preserves the 

edges better at higher compression ratios. 

Edge based quad-tree partitioning determines the edge regions needing smaller 

blocks totally independent of the fractal equations. Determining the regions needing 

smaller block size according to the edges in original image eliminates fruitless time

consuming searches in larger block sizes library. 

In addition, the edge-based coder provides a front-end loader for the wavelet r-

tree search engine. Knowing optimal block size for each image region, encoding the 

image simply requires the coder to retrieve the optimal domain block for range from the 

corresponding r-tree data structure. 

67 



(a) Original Image (b) Fixed Blocks of 8x8 

(d) Metric Based Quad-tree (c) Edge Based Quad-tree 

Figure 4.11: Attractors of different partitioning methods. 

Inaccurate fractal mappings with large image block sizes increase losses of edge 

information, discontinuities at boundaries and blocking effects. Partitioning the large 

block into smaller blocks reduces the losses of edge information in the attractor. Fractal 

block coding process each range block independently of the neighboring range blocks 

and block coding does not correlate across the boundaries. Therefore, partitioning does 

contribute to discontinuities at the block boundaries and blocking effects. 

68 



Although there are many techniques used to overcome the blocking effects and 

the discontinuities [47],[68], they do not in general restore lost edge information. 

Diffusion techniques provide a method for restoring edges in addition to smoothing noisy 

edges, discontinuities, and blocking artifacts. In the next section, we show how diffusion 

techniques overcome these problems and preserve significant edge information at a lower 

bit rate cost than partitioning down to smaller block sizes. 

4.4 Edge Preserving Diffusion Techniques 

Our diffusion technique uses backward diffusion to restore edges and forward 

diffusion to reduce the artifacts and smooth noisy edges. Expanding the basic diffusion 

equation to contain a scalar function, we direct the diffusion process to smooth along the 

direction of edges and sharpen in the direction of edges. In this manner, we can restore 

edge information and smooth discontinuities and blocking effects. 

4.4.1 Mathematical Development 

Diffusion techniques model the intensity of the image fas an anisotropic diffusion 

[76] in the form of 

df =V•(kVf(x,y,t)) 
dt 

(4.3) 

where V • and V define the divergence and gradient operators. Letting the diffusion 

constant k vary, we control the direction and rate of the diffusion spatially. Substituting k 

in (4.3) by g(x,y,t) gives 

df - = V • (g(x,y,t)Vf(x,y,t)). 
dt 

69 

(4.4) 



Since/and g are scalar functions, using Green's theorem [39], (4.4) reduces to 

df 2 . - = g(x,y,t)V f(x,y,t) + Vg(x,y,t)Vf(x,y,t)) 
dt 

(4.5) 

whereV2 defines the Laplacian operator. Allowing.f(x,Jl,t) to be a twice differentiable 

scalar function, (4.5) can be rewritten as 

since 

df = g(x,y,t)V • Vf(x,y,t) + Vg(x,y,t)Vf(x,y,t) 
dt 

V 2 f(x,y,t) = V • Vf(x,y,t). 

(4.6) 

(4.7) 

The diffusion process can be modeled as an evolution of curves embedded in 

higher dimensional surfaces [ 42]. Representing the gray intensity level z =I (x,Jl) as a 

surface S given by 

S: f(x,y,z) = z-I(x,y) = 0, (4.8) 

implicitly defines the surface S. The implicit function theorem [18] implies that the 

surface defined by f(x,Jl,z) always exists and the differential off(x,Jl,z) does not vanish. 

By definition [39], the normal vector of Sat point Pis given by the gradient off 

at point P and the divergence of this gradient gives a vector that is orthogonal to the 

normal vector. In order to retain maximum edge information, we need to smooth along 

the direction of the edge and not across the edge [42]. Based on this information, (4.6) 

can be used to control the diffusion process. We want to forward diffuse in the direction 

given by the divergence of the gradient off, i.e. the direction given by the first term of 

(4.6). In order to backward diffuse or sharpen, we want to diffuse parallel to the normal 

vector represented by the second term in ( 4.6) with a negative coefficient, i.e. in the 

opposite direction. To implement ( 4.6) for edge restoration, we want a scalar function 

that backward diffuses only at the edge locations. 

70 



4.4.2 Using the Original Image as .!! Scalar Function in Diffusion Equation 

In our first attempt to define a scalar function, we chose the scalar function in 

(4.5) to be the original image. Choosing this scalar function causes our diffusion 

coefficient to be a function of the gradient of the original image and the gradient 

attractor. We also have the relationship that the attractor approximates the original. 

Ideally, as we approach convergence, the attractor should approach the original image. 

Applying scalar function in ( 4.6) allows us to forward diffuse in the direction of 

Laplacian of the original image ( orthogonal to the edge). Also, it allows us to backward 

diffuse in the direction of the gradient of the attractor modified by the gradient of the 

image (normal around edge location and zero otherwise). 

In order to minimize the cost in terms of compression ratio and simplify the 

implementation we assumed the following: 
• Fractal coding degrades the edges in a manner similar to diffusion; 

therefore, we can restore the attractor by iteratively applying the 

changes dictated by (4.6). 

• For images, the gradient image is similar to the Laplacian image; 

therefore, VJ~ V2J. Visually inspecting these images in Figure 

4.12 shows this to be a reasonable assumption for our application 

since the edge content of both images are correlated. Note: For 

the Laplacian image, zero crossings represent edge locations; 

however, in both images, large swings in value represent edge 

information. 

71 



Laplacian Image Gradient Image 

Figure 4.12: Laplacian and gradient images of Lena. 

Applying ( 4.6), we implemented the discrete diffusion in the following manner: 

g(x,y,t + 1) = g(x,y,t) + a[g(x,y,t)V 2 f(x,y,t) + Vg(x,y,t)V 2f(x,y, t)] (4.9) 

where a is the percent change in the cross correlation between the Laplacian of the 

attractor and the image. In (4.8), we reduce the additional information that is needed to 

be sent with the fractal code to just the Laplacian of the original image. 

Since the Laplacian of the attractor g also approximates the Laplacian of the image f, 

only the residual code r given by 

{ 
1· ifV 2 f-V 2g > T 

r(x,y) = _ ;; ifV 2 f - V 2g < T 

O; otherwise, 

(4.10) 

where Tis an error threshold set by the user. For example, the residual information for 

'Lena' shown in Figure 4.13 is calculated using T= 0.18. This nomenclature allows us to 

reduce additional information and to code the information with a smaller number of bits. 

Using structure of the fractal code to handle 4x4 image blocks, we simply embed the 

non-zero residual information in 4x4 blocks into fractal code. 

72 



--- ~ ···---·-··-·--.----.-.-... -.-..r..OH,-~o~ •----

Figure 4.13: Residual image for diffusion. 

Figure 4.14 shows the results of the diffusion process for a 256x256 gray level 

version of 'Lena', validating the usage of ( 4.8) for image restoration. An approximation 

of 'Lena ' from a simple fixed 8x8 block fractal coder, Figure 4.14a, shows image 

degradation in terms of blurring, some loss of edge information, and reconstruction 

artifacts. For clarification, we refer to attractor as the decoded image before applying 

any post processing or diffusion. We restore the attractor at different threshold values 

based on the standard deviation of intensity values in the Laplacian image. PSNR is 26.3 

dB and ~ is 0.81 for the restored image using the full Laplacian image (Figure 4.14b) in 

comparison to 26.4 dB and 0.55, respectively. Because PSNR value only gives general 

indication of image quality and not edge preservation, the changes in PSNR values are 

not significant. There is a significant increase in ~ from the restoration of the edges. 

73 



(a) Attactor for fixed 8x8 range block. (b) Diffused using the full Laplacian image. 

(c) Diffused at T = cr2. ( d) Diffused at T = 2cr2 

Figure 4.14: Comparison of attractor diffused at different levels. 

The other two images, Figure 4.14c and Figure 4.14d, have approximately the 

same ~ at around 0.72 with PSNR values around 26.2. However, we transfer less 

Laplacian information for Figure 4.14d. From our experiments, we found that ninety 

percent ofLaplacian information was zero or near zero for 'Lena' . Using a 4x4 block for 

comparison, the average number of bits required would be 0.9*4*4 +2*0.1 *4*4 or 17.6 

74 



bits for sending this information. The bits per pixel (bpp) rate would be 1.1 (17.6/4/4) 

which is less than the bpp rate of 1.8 for the quad-tree split. In addition, the number of 

4x4 residual blocks is roughly from 30 to 90 percent less than the number of 4x4 

partitioned image block needed to achieve a certain value of s and error threshold set by 

the user. For Figure 4.14d, we use 316 residual blocks in comparison to 776 image 

blocks needed when partitioning down to 4x4 block size, roughly a 40 percent reduction. 

To reduce the additional information needed for the diffusion process and to 

simplify the algorithm, we examine a scalar function based on edge information in the 

next section. 

4.4.3 Edge Based Scalar Function 

To simplify and automate the diffusion process, we base our scalar function in 

(4.4) on the edge map of the original image. In this manner, we can limit the backward 

diffusion process to the significant edges, thus controlling the diffusion process without a 

user define threshold. Since we wanted the diffusion to occur at only edges, we chose the 

diffusion coefficient scalar function Gx,y-

Gx,y = a(lx,y -Ex,y) (4.11) 

where Ex,y is a map of the edges defined by the zero-crossings of the Laplacian operator 

[3], lx,y is a matrix of ones of dimensions x by y, and a is a scaling constant. 

In order to smooth while preserving edges, we implement a surface curvature 

diffusion local filter kernel similar to El-Fallah and Ford in [1] but we expand it to 

accommodate the scalar function Gx,y 

I I 

Fn+I = Fn + ~ ~ W . .Fn. . - JJ(VG VFn ) 
x,y x,y L... L... 1,1 x+1,y+ J x,y x,y (4.12) 

i=-lj=-1 

75 



where 

Wo,o ;i=O&j=O 
1 

;otherwise (4.13) 

8llv G x+i,y+ j,, 11 

and~ is a scaling constant. Note that w0,0 is one minus the sum of all the other weights 

w;,j· We use Sobel operators to create gradients of the attractor, Fx,y, and surface 

representation of the edge map, Gx+i,y+j,I. 

Modeling the degradation of the edges in the attractor of the fractal code as a 

diffusion process, we restore some of the edges by iteratively applying the changes 

dictated by (4.12). In each iteration, we restore and sharpen some of the edges; as well as 

smooth reconstruction artifacts, blocking effects and discontinuities. 

We minimize the cost of the Ex,y by just sending lost edge information E,cx.y,z) given 

by 

E =E -E l(x,y,z) x,y f(x,y,z)' (4.10/ 

ince the attractor contains a significant amount of the edge information, EJCx,y,z)· To further 

minimize the impact on the compression ratio, we embed the edge information in the 

fractal code because the position of the pairing within the fractal code gives the pixel 

reference location for the edges. We send only the 4x4 pixel edge blocks that contain 

significant information unlike the quad-tree partitioning which requires all four sub-

blocks of a partitioned block to be sent. 

Using a 256x256 test image of 'Lena', the results in Figure 4.15 validate the 

usage of (4.12) for image restoration. Figure 4.15a is the attractor, approximation of 

'Lena', of the fractal code and Figure 4.15b is the restored image from applying (4.12). 

The attractor shows image degradation in terms of blurring, some loss of edge 

information, discontinuities, and reconstruction artifacts. The restored attractor using the 

76 



diffusion technique shows some degree of enhancement and restoration. From Figure 

4.15b, we see the following results: 

(1) Smoothing by forward diffusion eliminates some of blocking effect in 

flat intensity regions like the shoulder and cheek areas. 

(2) Sharpening by backward diffusion restores some of the nostril edge 

information in the nose region. 

(3) A combination of smoothing and sharpening lessens the visual 

appearance of the discontinuities in the feather region. 

Table 4.1 provides a quantitative evaluation of our experiments; the results of 

applying (4.12) on the attractor of 'Lena' compressed at three different splitting levels 

given in the first column. We calculate the splitting from the amount of edge information 

contained in each block and normalize it by the size of the block. 

(a) Attractor (b) Diffused Image 

Figure 4.15: Comparison of the attractor (a) and the diffused image (b). 

77 



Table 4.1: Comparison of quantitative measures for diffusion. 

Splitting With no post processing. Restored with diffusion. 

Level Ratio PSNR I; Ratio PSNR I; 

.3 101.6 19.2 0.29 45.7 19.4 0.34 

.2 61.9 20.2 0.31 37.4 20.5 0.37 

.1 25 .28 24.75 0.51 22.2 24.9 0.55 

For evaluation purposes, we maintain the same splitting threshold for the three 

level of partitioning allowed: 32x32, 16x16, and 8x8 block sizes. Columns 2, 3, and 4 in 

Table 4.1 give the compression ratio, PSNR, and ~ of the attractor of the fractal code. 

Columns 5, 6, and 7 in Table 4.1 give the compression ratio, PSNR, and~ ofrestoring 

the attractor with the diffusion technique. 

Because of the smoothing involved in the diffusion equation, we see little change 

in the PSNR values. From our experiences, although smoothing increases the visual 

appeal of the image to the viewer, it generally decreases the PSNR. Using this method, 

we see approximately an increase of 10 percent in edge preservation. 

The impact of sending the additional edge information is considerably less than 

using the next lower partitioning level of 4x4 block size as shown in Table 4.2. In Table 

4.2, we allow the 8x8 blocks to be split into 4x4 blocks to show the impact on 

compression ratio. In order to achieve an edge measure of 0.55 , the splitting threshold 

level needs to be between 0.15 and 0.16. The corresponding compression ratios are 

12.09 and 13 .97. 

78 



compression ratio. In order to achieve an edge measure of 0.55, the splitting threshold 

level needs to be between 0.15 and 0.16. The corresponding compression ratios are 

12.09 and 13.97. 

In comparison, using the diffusion method to achieve an edge measure of 0.55 

reduces the compression ratio to 22.2. The impact of using this method on the 

compression ratio directly related to the splitting level. Lowering the splitting level 

increase the amount of edge information contained in the reconstruction image; therefore, 

less edge information needs to be sent. 

Diffusion techniques enhance the attractor of fractal coders. These techniques 

smooth the artificial block boundaries imposed by the fractal transform. The gradient 

information of the image allows the image to be smooth along the edges and, thus 

reducing some of the discontinuities at block boundaries. Using the backward diffusion 

at edge location restores some of the significant edge information. 

Table 4.2: Quantitative measures for splitting level without diffusion. 

Level Ratio PSNR ~ 

.30 37.8 19.2 0.33 

.20 20.0 20.5 0.43 

.16 14.0 21.5 0.52 

.15 12.1 22.9 0.59 

.10 7.7 27.2 0.76 

79 



Results in this section show diffusion techniques are viable image enhancement 

and restoration tools for fractal coders. Our work shows that the diffusion techniques 

enhance the quality of the attractor by restoring lost edge information and reducing 

reconstruction artifacts. 

FEPFS leverage diffusion techniques to create a more robust image compression 

system. Using the diffusion techniques, FEPFS increases the edge correlation between 

the original image and the attractor significantly; therefore, achieving the criterion of 

edge preservation. FEPFS achieves preservation at a lower bpp rate cost than using the 

current quad-tree partition method. In the next chapter, we conclude with a summary of 

the contributions ofFEPFS and future areas of research. 

80 



CHAPTER V 

5 CONCLUSIONS 

The focus of this research is the development of a Fast Edge Preserving Fractal 

System (FEPFS) for 'real time' applications like satellite surveillance. Current fractal 

image compression schemes suffer from losses of edge information at high compression 

ratio and long search time due to computational complexity of finding optimal parings in 

the fractal mappings. Fractal coders compress digital images by relating areas of local 

self-similarity at different scales in the image. Taking advantage of this correlation, the 

fractal code pairs up similar regions creating a list of fractal mappings. The attractor of 

the fractal code represents an approximation of the original image. Table 5.1 compares a 

quadtree fractal coder to a JPEG coder and a wavelet coder at compression ratios above 

40:1. 

In the attractor, there are three major sources of errors: loss of edge information, 

discontinuity at boundaries and blocking artifacts. These errors are more significant in 

larger block sizes used to obtain higher compression ratios. In addition, there is no 

methodology in current fractal coders to insure the retention of significant edges. 

Many academic fractal coders take minutes to hours to compress a 256x256 

image. Although there is a commercial fractal coder that only takes seconds, it requires 

specialized hardware to achieve its fast encoding times. These limitations need to be 

overcome in order to create a viable compression system for 'real time' applications. 

In the next section, our contributions on overcoming the limitations of current 

fractal coders are summarized. Our compression system, FEPFS, compresses 256x256 

81 



digital images at compression ratios greater than 40 in less than one minute while 

minimizing edge discontinuities and blocking effects and restoring some of the 

significant edge information. 

Compression PSNR 

Ratio Fractal JPEG Wavelet 

40 29.3 28.9 30.7 

50 28.4 26.5 29.2 

60 27.8 <25 28.6 

70 26.8 <25 27.7 

80 26.4 <25 26.9 

90 26.1 <25 26.3 

Table 5.1: Comparison ofresults for 512 x 512 Lena [21]. 

5.1 Contributions of FEPFS 

The fast edge preserving fractal system, FEPFS, provides a practical, viable, 

robust compression methodology for 'real time' application like surveillance. These 

applications dictate the need for high compression ratio, fast encoding times, and edge 

preservation. FEPFS obtains compression ratios above 40: 1 by using large block sizes 

and entropy coding the fractal code. 

To minimize the distortion in high detailed areas, FEPFS uses a four level edge 

quad-tree partitioning scheme to determine the optimal size of the blocks. The block 

sizes will range from 32x32 to 8x8. This allows us to use the smaller blocks sizes along 

the edges to maximize retention of edge information and minimize the cost of our 

82 



diffusion technique. FEPFS uses a diffusion technique to overcome edge degradation and 

spurious artifacts at large block sizes. It also uses a edge map to control the diffusion 

technique for restoring some of the lost edge information and insuring the retention of 

some of the significant edges. Using this technique, FEPFS is able to improve the 

attractor image quality at lower bit rate cost than partitioning down to 4x4 block sizes. 

Partitioning down to 4x4 and 2x2 block sizes is the current way that fractal coders try to 

overcome errors in the attractor. 

By expanding the basic diffusion equation to contain a scalar function based on 

the edges of the original image, FEPFS directs the diffusion process to smooth along the 

direction of significant edges and sharpen in the direction of the edges. Choosing a scalar 

function based on the edge map of the original image controls the backward diffusion to 

the edge location overcoming the problems with backward diffusion in current diffusion 

techniques. Using this method of diffusion, FEPFS restores edge information and smooth 

discontinuities and blocking effects. 

Searching for 'optimal' pairs constitutes the major computation load for fractal 

coders. Implementation of the wavelet r-tree search engine in FEPFS reduces the 

computational complexity, search time, and memory requirements. R-tree data structures 

provide an efficient heuristic searching mechanism for spatial data. Modifying the basic 

algorithm ofr-tree to search for 'best fit' data objects allows us to use it to search for our 

fractal pairings. Current fractal coders use the pixel intensity values of the image block to 

create the tree structure. This method is inefficient and complex for large block sizes. It 

also does not lend itself to quad-tree partitioning. Unlike these current tree methods in 

fractal coding, we use the lower order coefficients of the wavelet transform to create our 

spatial index for our tree. This allows our tree structure to be more compact and efficient 

resulting in faster search time. In addition, we can create similar tree structures for the 

different block sizes predetermined by our edge based partitioning method. 

83 



In summary, the contributions of the research include: 

1. In comparison to full search quadtree fractal coder, FEPFS reduces the 

encoding times from hours to seconds. 

2. With an edge based quadtree partitioning scheme, FEPFS reduces the 

cost in term of PSNR for increasing the compression ratio by a factor 

of 2 over standard metric based quadtree partitioning. 

3. Using diffusion techniques, FEPFS reduces the bbp rate to 1.8 (using 

4x4 blocks) to 1.1. For 256x256 Lena, the compression ratio was 

increased by a factor of 1.6 for the same edge measure value. 

4. Using diffusion techniques, FEPFS restored the edges in 256x256 

Lena attractor to an edge measure of 0.81 from an edge measure of 

0.55. 

With edge based partitioning, diffusion techniques, and wavelet r-tree search 

engine, we have overcome some of the limitations of current fractal block coders. We 

have created a viable system for compressing digital images. In the next section, we look 

at future areas of research for further improvements in fractal coders. 

5 .2 Future Areas of Research 

This research addresses many of the tradeoffs related in creating a working 

compress.ion system. Our diffusion technique provides a method to preserve edges in 

large block size mappings in fractal block coding. However, the technique adds 

additional information to the fractal code and increases the complexity of the fractal 

system. 

In order to minimize the additional edge information, identifying the edge regions 

that benefit most from this technique would allow us to reduce the edge information. 

Identification of significant edges is a separate but relevant issue for reduction of edge 

84 



information. If we can identify the edges of the target we want to examine, we could 

send only those edges rather than sending all the edges. This would greatly reduce the 

amount of additional information and increase compression ratio. 

To simplify complexity of implementing the diffusion process, we are striving to 

create an adaptive diffusion filter based on the local gradient components and statistical 

properties of the image. We may be able to integrate this filter into the fractal transforms 

to describe the similarities in the image more accurately. 

Currently, we embed the edge information in 4x4 blocks in the fractal code. Since 

the edge information is binary ( consists of only O and 1 ), we need to investigate other 

compression methods used to compress binary images. Overall, we may find a more 

efficient method to code the edge information. 

85 



REFERENCES 

[1] Baharav Z., Malah D., and Kamin E. "Hierarchical Interpretation of Fractal Image 
Coding and Its Applications," Fractal Image Compression: Theory and 
Application, Yuval Fisher (editor), pp. 91-117, 1995. 

[2] Bani-Eqbal B. "Speeding up Fractal Image Compression," Internal Report, 
University of Manchester, 1994. 

[3] Barnsley M.F. "Lecture notes on Iterated Function Systems", Proceedings of 
Symposia in Applied Mathematics Vol. 39: Chaos and Fractals The Mathematics 
Behind the Computer Graphics, R. L. Devaney and L. Keen (eds.), American 
Mathematical Society, Providence, RI, pp. 127-144, 1989. 

[4] Barnsley M.F. Fractal Everywhere, Academic Press Professional: Boston 1993. 

[5] Barnsley M.F. and Hurd L.P. Fractal Image Compression, AK Peters: Wellesley, 
Massachusetts, 1993. 

[6] Barnsley M.F. and Sloan A. "A Better Way to Compress Images," BYTE Magazine, 
Jan. 1988. 

[7] Barthel K.U., Schuttemeyer J., Voye T., and Noll P. "A New Image Coding 
Technique Unifying Fractal and Transform Coding," Proc. ICIP-94, vol. III, pp. 
112-116, 1994. 

[8] Bogdan A. "Multiscale Fractal Image Coding and the Two-Scale Difference 
Equation," Columbia University Technical Report, TR 358-94-05, pp. 1-14, 1994. 

[9] Bogdan A. "Multiscale (Inter/Intra-Frame) Fractal Video Coding," IEEE 
International Conference on Image Processing ICIP '94, 1994. 

[10] Bogdan A. "The Fractal Pyramid with Applications to Image Coding," IEEE 
Proceedings of ICASSP, 1995. 

[11] Bogdan A. and Meadows H. "Kohonen Neural Network for Image Coding Based 
on Iteration Transformation Theory," Proceedings of the SPIE: Neural and 
Stochastic Methods in Image and Signal Processing, vol. 1766, pp. 425-436, 1992. 

[12] Bondarendo V.A. and Dolnikov V.L. "Fractal Image Compression by the Barnsley
Sloan Method," Automation and Remote Control, vol. 55, no. 5, pp. 623-629, 1994. 

86 



[13] Cheng B. and Zhu X. "Multiresolution Approximation of Fractal Transform," 
Internal Report, University of Kent, 1995. 

[14] Davis G. "Adaptive Self-Quantized Wavelet Subtrees: A Wavelet-based Theory for 
Fractal Image Compression," IEEE Data Compression Conference Proceedings 
'95, James Storer (editor), pp. 232-241, 1995. 

[15] Davis G. "A Wavelet-Based analysis of Fractal Image Compression," IEEE Trans. 
Image Processing, vol.7, no. 2, Feb. 1998. 

[16] Davoine F., Bertin E., and Chassery J. "From Rigidity to Adaptive Tessellations for 
Fractal Image Compression: Comparative Studies," IEEE 8th Workshop on Image 
and Multidimensional Signal Processing, Sept. 1993. 

[17] Dudbridge F. "Fast Image Coding by a Hierarchical Fractal Construction," Internal 
Report, University of California, 1994. 

[18] El-Fallah A.I. and Ford G.E., "Mean Curvature Evolution and Surface Area Scaling 
in Image Filtering," IEEE Trans. Image Processing, vol. 6, no. 5, pp. 750-753, May 
1997. 

[19] Fisher Y. "Fractal Image Compression," SIGGRAPH '92 Course Notes, vol. 12, pp. 
7.1-7.19, 1992. 

[20] Fisher Y. "Fractal Image Compression with Quad-trees," Fractal Image 
Compression: Theory and Application, Y. Fisher (ed.), Springer-Verlag, New York, 
1995. 

[21] Fisher Y. "Comparison of Results," Fractal Image Compression: Theory and 
Application, Y. Fisher (ed.), Springer-Verlag, New York, 1995. 

[22] Fisher Y., Shen T., and Rogovin D. "Fractal (Self-VQ) Video Encoding," 
Proceedings of the SPIE: Visual Communications and Image Processing '94, vol. 
2304, 1994. 

[23] Fisher Y., Shen T., and Rogovin D. "A Comparison of Fractal Metliods with DCT 
and Wavelets," Proceedings of the SPIE: Neural and Stochastic Methods in Image 
and Signal Processing 111, vol. 2304-16, 1994. 

[24] Forte B. and Vrscay E.R. "Inverse Problem Methods for Generalized Fractal 
Transforms," Internal Report, University of Waterloo, 1994. 

[25] Forte and Vrscay E.R. "Solving the Inverse Problem for Measures Using Iterated 
Function Systems: A New Approach," Advances in Applied Probability, 1995. 

[26] Gharavi-Alkhansari M. and Huang T.S. "A Fractal-based Image Block Coding 
Algorithm," IEEE International Conference on Acoustics, Speech, and Signal 
Processing, Minneapolis, vol. 5, pp. 345-348, Apr. 1993. 

87 



[27] Gharavi-Alkhansari M. and Huang T.S. "Fractal-based Techniques for a 
Generalized Image Coding Method," Proc. ICIP-94, vol. III, pp. 122-126, 1994. 

[28] Gonzalez RC. and Woods RE. Digital Image Processing, Addison-Wesley: 
Reading, MA, 1992. 

[29] Guttmean A. "A Dynamic Index Structure for Spatial Searching," Proceedings of 
ACM Sigmoid Conference on Management of Data, pp. 47-57, 1984 .. 

[30] Hoel E.G. and Samet H. "A Qualitative Comparison Study of Data Structures for 
Large Line Segment Databases," Proceedings of ACM Sigmoid Conference, pp. 
205-214, 1992. 

[31] Hurtgen B. "Contractivity of Fractal Transforms for Image Coding," Electronics 
Letters, vol. 29, pp. 1749-1750, Sept. 1993. 

[32] Hurtgen B. and Hain T. "On the Convergence of Fractal Transforms," Proc. 
ICASSP-94, vol. V, pp. 561-564, 1994. 

[33] Hurtgen B. and Simon S.F. "On the Problem of Convergence in Fractal Coding 
Schemes," Proc. ICIP-94, vol. III, pp. 103-J06, 1994. 

[34] Jacobs E.W., Fisher Y., and Boss RD. "Image Compression: A Study of the 
Iterated Transform Method," Signal Processing, vol. 29, pp. 251-263, Dec. 1992. 

[35] Jacquin A. "A Novel Fractal Block-Coding Technique for Digital Images," in Proc. 
ICASSP-90, pp. 2225-2228, 1990. 

[36] Jacquin A. "Image Coding Based on a Fractal Theory oflterated Contractive Image 
Transformations," IEEE Trans. Image Processing, vol. 1, no. 1, pp. 18-30, Jan. 
1992. 

[37] Jacquin A. "Fractal Image Coding: A Review," Proceedings of the IEEE, vol. 81, 
no. 10, pp. 1451-1465, Oct. 1993. 

[38] Kawamata M., Nagahisa M., and Higuchi T. "Multi-resolution Tree Search for 
Iterated Transformation Theory-based Coding," Proc. ICIP-94, vol. III, pp. 137-
141, 1994. 

[39] Kreyszig E. Advanced Engineering Mathematics. John Wiley & Sons, 1993. 

[ 40] Kominek J. ''Understanding Fractal Image Compression," contained in Technical 
Report CS-95-28, Department of Computer Science, University of Waterloo, pp. 1-
44, 1994. 

[41] Kominek J. "Algorithm for Fast Fractal Image Compression," Proceedings of 
SPIE: Digital Video Compression: Algorithms and Technologies 1995, vol. 2419, 
pp. 296-305, 1995. 

88 



[ 42] Kumar A., Tannenbaum A.R., and Balas G.J., "Optical Flow: A Curve Evolution 
Approach", IEEE Trans. Image Processing, vol. 5, pp.598-610, April 1996. 

[43] Lazar M.S. and Bruton L.T. "Fractal Block Coding of Digital Video," IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 4, no. 3, 1994. 

[44] Lepsoy S., Oien G. and Ramstad T. "Attractor Image Compression with a Fast 
Non-iterative Decoding Algorithm," IEEE International Conference on Acoustics, 
Speech, and Signal Processing, Minneapolis, vol. 5, pp. 337-340, Apr. 1993. 

[ 45] Lin D. "Fractal Image Coding as Generalized Predictive Coding," Proc. ICIP-94, 
vol. III, pp. 117-121, 1994. 

[ 46] Lu N. Fractal Imaging. Academic Press: San Diego, 1997. 

[47] Luo J., Chen C.W., Parker K. J., and Huang T.S., "Artifact Reduction in Low Bit 
Rate DCT-Based Image Compression", IEEE Trans. Image Processing, vol. 5, pp. 
1368-1369, Sep 1996. 

[48] Massopust P. Fractal Functions, Fractal Surfaces, and Wavelets. Academic Press: 
San Diego, 1994. 

[ 49] McGregor D.R., Fryer R.J., Cockshott P ., and Murray P. "Faster Fractal 
Compression," Dr. Dobb 's Journal, pp. 34-40, Jan. 1996. 

[50] Mokhtarian F. and Mackworth A. "A Theory ofMultiscale, Curvature-Based Shape 
Representation for Planar Cureves," IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 14, no. 8, pp. 789-805, Aug. 1992. 

[51] Monro D.M. "Class of Fractal Transforms," Electronics Letters, vol. 29, no.4, pp. 
362-363, 1993. 

[52] Monro D.M. "A Hybrid Fractal Transform," IEEE Proceedings of ICASSP.· Image 
and Multi-Dimensional Signal Processing, vol. 5, pp. 169-172, 1993. 

[53] Monro D.M. and Dudbridge F. "Fractal Block Coding of Images," Electronic 
Letters, vol. 28, pp. 1053-1055, May 1992. 

[54] Monro D.M. and Dudbridge F. "Fractal Approximation oflmage Blocks," in Proc. 
ICASSP-92, vol. III, pp. 485-488, 1992. 

[55] Monro D.M. and Woolley S.J. "Rate/Distortion in Fractal Compression: Order of 
Transform and Block Symmetries," International Symposium on Speech, Image 
Processing and Neural Networks, 1994. 

[56] Monro D.M. and Woolley SJ. "Fractal Image Compression Without Searching," 
Proceedings ofICASSP, 1994. 

89 



[57] Naemura T. and Harashima H. "Fractal Coding of a Multi-view 3-D Image," Proc. 
ICIP-94, vol. III, pp. 107-111, 1994. 

[58] Nelson M. The Data Compression Book. M&T Publishing: New York, 1992. 

[59] Nicholls J.A. and Monro D.M. "Adaptive Fractal Video," Internal Report, 
University of Bath, 1995. 

[60] Nitzberg M. and Shiota T., "Nonlinear Image Filtering with Edge and Comer 
Enhancement," IEEE Trans. Pattern Analysis and Machine Intelligence, vol 14. no. 
8, Aug. 1992. 

[61] Oien G.E. "Parameter Quantization in Fractal Image Coding," Proc. ICIP-94, vol. 
III, pp. 142-146, 1994. 

[62] Oien G.E., Baharav I., Lepsoy S., Kamin E., and Malah D. "A New Improved 
Collage Theorem with Applications to Multiresolution Fractal Image Coding," 
Proc. ICASSP-94, vol. V, pp. 565-568, 1994. 

[63] Oien G., Lepsoy S., and Ramstad T. "An Inner Product Space Approach to Image 
Coding by Contractive Transformations," IEEE International Conference on 
Acoustics, Speech, and Signal Processing, Toronto, pp. 2773-2776, May 1991. 

[64] Oien G., Lepsoy S., and Ramstad T. "Reducing the Complexity of a Fractal-based 
Image Coder," Signal Processing VI: Theories and Applications, J. Vandevalle, R. 
Boite, M. Moonen and A. Oosterlinck (eds.), Elsevier Science Publishers B.V., pp. 
1353-1356, 1992. 

[65] Pei S., Tseng C., and Lin C. "A Parallel Decoding Algorithm for IFS codes 
Without Transient Behavior," IEEE Trans. Image Processing, vol. 5, no. 3, pp. 
411-415, Mar.1996. 

[66] Peitgen H., Jurgens H. and Saupe D. Chaos and Fractals New Frontiers of Science, 
Springer-Verlag:.New York, 1992. 

[67] Perona P. and Malik J. "Scale-Space and Edge Detection Using Anisotropic 
Diffusion," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 7, 
pp. 629-639, Jul. 1990. 

[68] Sattar F., Floreby L., Salomonsson G., and Lovstrom B. "Image Enhancement 
Based on a Nonlinear Multiscale Method," IEEE Trans. Image Processing, vol. 6, 
no. 6, pp. 888-895, June 1997. 

[69] Thomas L. and Deravi F., "Pruning of the Transform Space in Block Based Fractal 
Image Compression," IEEE International Conference on Acoustics, Speech, and 
Signal Processing, Minneapolis, vol. 5, pp. 341-344, Apr. 1993. 

90 



[70] Torkamani-Azar R. and Tait K.E. "Image Recovery Using the Anisotropic 
Diffusion Equation," IEEE Trans. Image Processing, vol. 6, no. 5, pp. 1573-1578, 
Nov. 1996. 

[71] Vaisey J. and Gersho A. "Image Compression with Variable Block Size 
Segmentation," IEEE Transactions on Signal Processing, vol. 40, no. 8, pp. 2040-
2060, Aug. 1992 

[72] Van de Walle A. "Relating Fractal Image Compression to Transform Methods," 
MS Thesis, University of Waterloo, 1995. 

[73] Vines G. and Hayes III M.H. "Adaptive IFS Image Coding with Proximity Maps," 
IEEE International Conference on Acoustics, Speech, and Signal Processing, 
Minneapolis, vol. 5, pp. 341-344, Apr. 1993. 

[74] Woolley S.J. and Momo D.M. "Optimum Parameters for Hybrid Fractal Image 
Coding," Proceedings of ICASSP, 1995. 

[75] You Y., Kaveh M., Xu W., and Tannenbaum A., "Analysis and Design of 
Anisotropic Diffusion for Image Processing," Proc. ICIP-94, pp. 497-501, 1994. 

[76] You Y., Xu W., Tannenbaum A., and Kaveh M. "Behavioral Analysis of 
Anisotropic Diffusion in Image Processing," IEEE Trans. Image Processing, vol. 6, 
no. 5, pp. 1539-1553, Nov. 1996. 

91 



VITA 

Nikki McClatchey Bruner 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: A FAST EDGE PRESERVING FRACTAL SYSTEM 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born in Denison, Texas, on April 19,1964, the daughter of George 
W. and Saroeun H. McClatchey. 

Education: Received Bachelor of Science degree and Master of Science degree in 
Electrical Engineering from Oklahoma State University, Stillwater, 
Oklahoma in May 1989 and December 1992, respectively; Completed the 
requirements for the Doctor of Philosophy degree at Oklahoma State 
University in May, 1998. 

Professional Experience: Design Engineer, Device Engineering, from October, 
1989 to July, 1990; System Engineer, Electronic Data Systems, from July, 
1990 to July, 1991; Research and Teaching Assistant, Oklahoma State 
University, from August, 1991 to December, 1992, Product Engineer, 
Seagate Technologies, from December,1992 to January, 1996, Research 
Assistant, from November 1994 to Present, Design Engineer, Bruner 
Consulting, from January 1996 to Present.. 


