

2013 Extension Cotton Project Annual Report

Southwest Research and Extension Center, Altus

In cooperation with the Oklahoma State University Integrated Pest Management Program

2013 Extension Cotton Report

Randy Boman, Ph.D., Research Director & Cotton Extension Program Leader Shane Osborne, M.S., Associate Extension Specialist, Cotton Larry Bull, Field Foreman I Jerry Goodson, IPM Extension Assistant Ronna Parker, Senior Administrative Assistant

An effective cotton integrated pest management (IPM) program includes all aspects of production. This report contains summarized data from various applied research trials and demonstrations that address many different cotton production components. The drought that began basically at the end of 2010 continues for the heart of cotton country in southwestern Oklahoma (Figure 1).

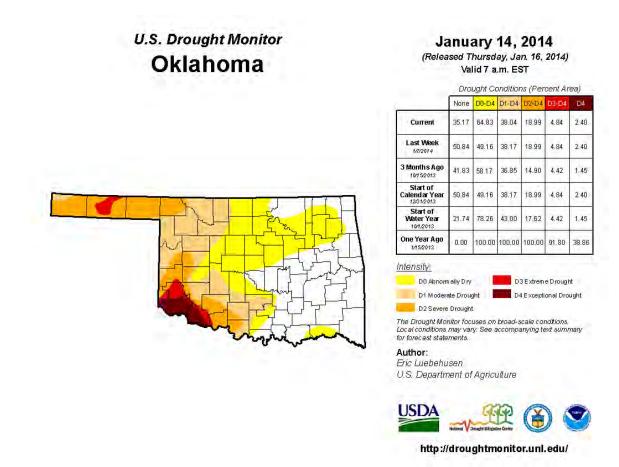


Figure 1. Oklahoma drought situation, January 14, 2014.

Although early season rainfall resulted in good to excellent stands and early season vigor for dryland production, an extensive run of hot dry, conditions resulted in another dryland failure in Jackson, Tillman and Harmon counties. We were basically one rainfall event away from having a good dryland year. According to USDA-NASS, about 185,000 acres were planted in Oklahoma in 2013, with about 170,000 acres harvested. From this harvested acreage, NASS estimates 200,000 bales will be produced. Average yield is expected to be 565 pounds per acre, up 34 pounds from 2012. This was due to extreme drought conditions, mostly in the far southwestern corner of the state. In general the crop emerged and grew off fairly well, but lack of moisture in August resulted in a large number of abandoned acres in three southwestern counties which are essential for high production. Most cotton acreage in Jackson County failed due to drought. This is because there was no irrigation water available to the Lugert-Altus Irrigation District and this would indicate that somewhere around 40,000 acres failed. Tillman County failed a large number of dryland acres, perhaps 10,000 acres. Harmon County also failed some dryland cotton acres. Therefore, we submit that the failed acres in these three counties totals about 50,000-60,000. If we use 60,000 failed acres, then based on 185,000 planted, we should be looking at about 125,000 acres standing for harvest. After informal discussions with our 14 operational gins in December 2013, it was apparent that they were expecting a combined total of about 120,000 bales. This number is substantially lower than what USDA-NASS reported in the December 10 report (200,000 bales). As of February 10, 2014, a total of 126,000 Oklahoma bales had been classed at the USDA-AMS Classing Office in Abilene, TX.

Overall, across the state, Oklahoma producers experienced a roller-coaster year. We still have dry watersheds for important reservoirs in the southwestern corner of the state, and for the second consecutive year, no irrigation water was available to the Lugert-Altus Irrigation District. Some Oklahoma producers which were able to catch some timely rainfall and provide adequate supplemental irrigation, saw record yields. Producers in several counties reported 3-4+ bale/acre irrigated yields. Dryland fields in areas that received excellent summer rainfall produced 1.5 - 2.5 bale/acre crops. For many irrigated producers, the right factors aligned, and resulted in record yields. We attribute this to wise variety selection, the cool-off and rainy spell in late July, then a September that was about 30 percent above normal for cotton heat unit accumulation. Overall, it was great to see this success, and we believe that in 2013, we very likely set a record for the number of growers who have achieved 4 bale/acre production.

The other good news is that the USDA-AMS Classing Office at Abilene is reporting that color and leaf grades, staple, micronaire, strength, uniformity, and bark contamination have all been good to excellent. This is based on classing results for about 126,000 bales of Oklahoma cotton classed through February 10, 86% have been color grades 11, 21 or 31, with 53% with color grade 11 or 21 – the best possible. Leaf grades have averaged 2.7 with 49% exhibiting leaf grade 1 or 2 – the best quality possible. Bark contamination is present in about 26% of the bales classed thus far. Staple (fiber length) has averaged 35.2 32nds. This is good, and we have nearly one-third of the crop with a 37 or longer staple, with an additional 20% classed as a 36. Micronaire (a measure of maturity) averaged 4.0 units, with 82% in the 3.5-4.9 range. Currently our strength average is 30.4 g/tex, with nearly 70% classed as 30 g/tex or higher. The yields and quality of modern genetics is amazing. It is critical that growers make good decisions with respect to varieties. The Extension cotton crop management program is critical to this success. Incidentally, the Oklahoma-ginned bales classed at Abilene thus far from the 2013 crop have the highest average staple and strength averages. The Abilene classing office serves east Texas, a portion of west Texas, Oklahoma, and Kansas. We are very appreciative of the contributions made by the OSU IPM Program. Without their support and participation, much of this work would not be possible. We also appreciate the support from producers and ginners, County Extension Educators, the Oklahoma Cooperative Extension Service, and the Oklahoma Agricultural Experiment Station. Cotton Incorporated, through the Oklahoma State Support Committee, has also provided assistance through partial funding of several projects. We also appreciate the assistance of the Oklahoma Cotton Council, because their continued support of our educational programs is critical to our success. A thank you is extended to the following entities, whose specific contributions make it possible to maintain and expand our research and demonstration programs and distribute results.

Cotton Incorporated Americot/NexGen Monsanto Company Dow AgroSciences Nichino America Worrell Farms BASF Corporation Crop Production Services DuPont Winfield Solutions Syngenta Crop Protection Bayer CropScience Cheminova, Inc. Helena Chemical

We appreciate the interest, cooperation and support of all those involved in the cotton industry in Oklahoma and encourage your comments and suggestions for the improvement of our programs. This report can be accessed via the Internet at the following websites: www.cotton.okstate.edu and www.ntokcotton.org.

OSU Southwest Research & Extension Center, Altus & Caddo Research Station, Fort Cobb

William Kime, Student worker Ryan Strawn, Student Worker Rocky Thacker, Senior Superintendent Toby Kelley, Assistant Superintendent Stella Carson, Administrative Assistant Lynn Halford, Field Assistant Greg Chavez, Field Assistant Robert Weidenmaier, Assistant Superintendent Michael Brantes, Field Foreman I Michael Locke, Field Assistant & Equip. Operator

County Extension Personnel

Gary Strickland, Jackson County Aaron Henson, Tillman County Lawrence Tomah, Harmon County Ron Wright, Custer County Glenn Detweiler, Washita County Greg Hartman, Beckham County David Nowlin, Caddo County Travis Tacker, Kiowa County

Producers and Cooperators

Western Oklahoma State College Danny Davis - Canute Keeff Felty & Natalie Wheeler - Altus Roger Fischer - Frederick Tony Cox – Wellington, TX Kelly Horton – Hollis Greg Strawn - Eldorado Humphreys Co-operative, Altus-Tipton Cotton Growers Co-op, Altus John McCullough - Tipton Merlin Schantz - Hydro Mark Anderson – Snyder Harvey Schroeder - Oklahoma Cotton Council Jack and Jake Damron - Delhi

Table of Contents

Variety Performance	
Site description summary for harvested Extension locations	
Beckham County Irrigated RACE Trial – Damron Farm	
Jackson County Irrigated RACE Trial – Darby Farm	12
Tillman County Irrigated RACE Trial – McCullough Farm	14
Harmon County Irrigated RACE Trial – Cox Farm	16
Custer County Irrigated RACE Trial – Schantz Farm	18
Washita County Dryland RACE Trial – Davis Farm	
RACE Trial Summaries Across Locations	
OSU Irrigated Official Variety Test (OVT) – Caddo Research Station	
Weed Control	27
Herbicide Technology on the Horizon	
Pigweed Control with Engenia	
Cotton Herbicide Suggestions	
Herbicide Program Suggestions for Pigweed Control	51
Understanding Herbicide Mode of Action	53
Horseweed Control Suggestions for No-till Cotton	
Horseweed Control with Zidua and Engenia for No-Till Cotton in Oklahoma	
How to Use Agweather's "Drift Risk Advisor"	61
Entomology and Plant Pathology	63
	63
	64
	65
	66
•	66
, ,	67
	68
Bayer Twinlink Observation	
Flutriafol Evaluation for Section 18 Request.	
Cotton Insect Losses	
Cotton Disease Losses	73
Harvest Aids	75
Cyclanalide Tank-mix Strategies	75
	76
Beltwide Cotton Conference Presentations	78
Preplant Control of Horseweed for No-Till Cotton in Oklahoma	
Performance of ETX, Sharpen and Display as Harvest Aids for Cotton in Oklahoma.	
Field Eval. of Topguard (Flutriafol) for Cotton Root Rot Management in Oklahoma	
Using Yield Monitors to Evaluate Cotton Variety Tests	
Spatial Turnout on Stripper Harvested Cotton.	
Bur Cotton Material Flow Characterization & Parameterization on a Belt Conveyor	
Dur Gotton Material Flow Gharacterization & Parameterization on a Deit Conveyor	104

Peer Reviewed Journal Articles	
Effects of Nitrogen & Planting Seed Size on Cotton Growth, Development, and Yield. 115	1

Appendix	 123
2013 Weather Summary	 124
Evaluating Field Trial Data	 135

Variety Performance

2013 Extension Cotton On-Farm Variety Testing

Extension large-plot on-farm replicated cotton variety trials are an important component in modern germplasm evaluation. Producer-cooperator and industry support for these trials is substantial. These trials enable growers to observe the newest genetics and transgenic traits on their operations, under their

management conditions and are planted and harvested with their equipment. Multiple sites have provided excellent information on which growers can base important variety selection decisions. The objective of this project was to evaluate multiple cotton varieties in producer-cooperator fields under irrigated and dryland management systems.

Six large-plot trials were planted and harvested using grower equipment. The testing locations were Custer, Harmon, Tillman, Jackson, Beckham and Washita Counties. Most trials were established under no-till or strip-till conditions. For the Replicated Agronomic Cotton Evaluation (RACE) trials, typically 6-8 entries (one entry per brand name, plus a grower choice option) were planted at each site, with 3 replicates used. The Cotton Incorporated Core program provided direct support for two trials, the Enhanced Variety Trials, which contained up to 10 entries and 3 replicates (Custer and Harmon Counties). A West Texas Lee weigh wagon (for boll buggies) or Western Forage Systems platform scale (for round modules) was utilized to capture plot weights. At harvest, grab samples were taken from each plot and ginned at the Texas A&M AgriLife Research and Extension Center at Lubbock. Fiber samples were submitted to the Texas Tech University Fiber and Biopolymer Research Institute for high volume instrument (HVI) analysis. Color and leaf grades were set to 21 and 2, respectively, for each sample. HVI data were used to compute the Commodity Credit Corporation (CCC) Loan value for each sample. Final plant heights and visual estimates of storm resistance were taken prior to harvest.

Replicated trials are used in order to obtain multiple independent observations of each variety's performance in comparison with other entries. Statistical analyses of each characteristic reported are represented by "protected" LSD (least significant difference) values given at the bottom of each column in the table. If the difference between the characteristic of concern (i.e. yield, lint turnout, staple, etc) of any two varieties exceeds the LSD (0.05) value provided, then the chances are approximately 95 out of 100 that the difference is real and not a result of other factors such as random error.

The data indicated that in spite of the continuing severe drought situation in far southwestern counties, irrigated cotton performed very well in 2013. This can be attributed to some timely precipitation and cooler temperatures in July and September cotton heat unit accumulation that was about 30% above normal (see appendix for temperatures).

Cultural practices and other information for each site are provided in Table 1. Data summaries for each location are provided in Tables 2-13. Summaries across locations for several important characteristics are provided in Tables 14-22.

Mean lint yields at all irrigated sites exceeded 3 bales/acre, and one site averaged above 4 bales/acre. The single dryland location averaged about 600 lbs/acre. Lint yields from on-farm irrigated trial yields were generally a function of available water and delivery efficiency in these fields, but timely rainfall assisted in producing exceptional yields at some sites. Test average yields ranged from a low of 1570 lb/acre in a furrow irrigated trial to over 2100 lb/acre in a center pivot trial.

Net value/acre in this report is defined as lint loan value on a per acre basis plus seed value, which equals total potential income/acre. Total potential income/acre minus ginning cost/acre and seed and technology fees/acre then defines net value/acre. Net value/acre averaged \$1134/acre across all irrigated sites and ranged from a low of \$967 to a high of \$1362. Within site differences were most expressed at the Custer County location. When comparing the top and bottom producing entries, a difference of about \$600/acre could be attributed to variety selection in this field in 2013. When the four common entries across all locations were compared, it is evident that the Stoneville 4946GLB2 entry was very competitive with PhytoGen 499WRF and NexGen 1511B2RF. Across the 5 sites, the FiberMax 1944GLB2 was about \$100/acre less competitive than the Stoneville 4946GLB2.

Another important attribute producers should consider include storm resistance. Storm resistance ratings were visually scored just prior to harvest. These ratings range from 1 (bolls loose, with considerable seedcotton loss) to 9 (bolls very tight, with no seedcotton loss). The degree of storm tolerance that a grower can accept can vary from one operation to another. The most important consideration is to be aware of the storm tolerance of varieties planted. This is a major component of risk management.

Plant height is another varietal characteristic that producers should investigate. The plant heights provided were measured near the end of the growing season, prior to harvest aid applications. Excessive rainfall and/or irrigation coupled with high nitrogen fertility can result in varieties producing large plants in spite of high doses of mepiquat based plant growth regulators.

Fiber quality among entries was generally good to excellent unless maturity or late season stress (on dryland) was encountered. The HVI data include several important fiber property measurements. Fiber length (staple when expressed as 32nds), micronaire, strength, and uniformity are the fiber properties reported which partially determine the price per pound for lint. Fiber length was measured as the upper half mean (in inches). Those measurements were also converted into 32nds to determine staple. Uniformity was obtained by dividing mean length (also measured in inches) by the upper half mean length and expressing the result as a percentage. Micronaire is actually a confounded measurement of both fiber fineness and maturity. Micronaire was measured in standard micronaire units. Fiber strength was measured in grams-force per tex on a "beard of fibers" during HVI analysis.

Higher values for lint yield, lint turnout, staple, strength, and uniformity are generally more desirable than lower ones. Micronaire is acceptable anywhere within the micronaire "base" range of 3.5 to 4.9 inclusive. The "premium" range is between 3.7 and 4.2 inclusive. If micronaire falls in the "discount" range (below 3.5 or above 4.9), the price per pound of lint is reduced. Penalties tend to be more severe for micronaire values below 3.5 (especially below

3.0) than for those above 4.9. Therefore, producers should probably select varieties with micronaire values toward the upper half of the range, rather than the lower.

The results from these trials indicate that variety selection in 2013 was very important at some sites. Differences in yields (lb/acre) between highest and lowest lint producers were 910, 236, 139, 245, and 525 among irrigated sites. This difference was 167 lb/acre for the dryland site.

ACKNOWLEDGEMENTS

The authors thank our cooperators: Merlin Schantz, Tony Cox, John McCullough, Drew Darby, Jack Damron, and Danny Davis. We also thank Dr. Mark Kelley and Rhett Overman for sample ginning, and the TTU-FBRI personnel for timely assistance with HVI analysis.

 Table 1. 2013 Cultural information for Extension large plot trial sites.

	Irrigated Cotto	n Inc Enhanced Variety		Irrigated RACE		Dryland RACE
County-location	Custer - Hydro	Harmon - Hollis	Tillman - Tipton	Jackson - Duke	Beckham - Delhi	Washita - Elk City
Cooperator	Merlin Schantz	Tony Cox	John McCullough	Drew Darby	Jack Damron	Danny Davis
Tillage system	strip till	minimum till	conventional till	conventional till	strip till	no-till
Planting date	21-May	17-May	23-May	16-May	10-May	4-Jun
Seeding rate	49,000	50,000	37,250	47,000	35,000	30,000
Row spacing	36 inches	40 inches	40 inches	40 inches	40 inches	40 inches
Replicates	3	3	3	3	3	3
Harvested plot width	8 rows	6 rows	4 rows	4 rows	4 rows	6 rows
Harvested plot length	600 ft	1300 ft	1000 ft	750 ft	525 ft	1100 ft
Harvest date	3-Dec	4-Nov	1-Nov	14-Nov	9-Nov	2-Dec
Comments	pivot irrigation	subsurface drip irrigation	furrow irrigation	furrow irrigation	pivot irrigation	good early
		10% defoliation by hail				season, late stress
		on August 16				
Harvester type	stripper	picker	stripper	stripper	stripper	stripper
	with field cleaner		with field cleaner	with field cleaner	with field cleaner	with field cleaner
Entries	FM 1944GLB2	FM 1944GLB2	FM 1944GLB2	FM 1944GLB2	FM 1944GLB2	FM 1944GLB2
	ST 4946GLB2	ST 4946GLB2	ST 4946GLB2	ST 4946GLB2	ST 4946GLB2	ST 4946GLB2
	PHY 499WRF	PHY 499WRF	PHY 499WRF	PHY 499WRF	PHY 499WRF	PHY 499WRF
	CG 3787B2RF	CG 3787B2RF	CG 3156B2RF	CG 3787B2RF	CG 3787B2RF	CG 3156B2RF
	NG 1511B2RF	NG 1511B2RF	NG 1511B2RF	NG 1511B2RF	NG 1511B2RF	NG 1511B2RF
	DP 1044B2RF	DP 1359B2RF	DP 1044B2RF	DP 1044B2RF	DP 1219B2RF	DP 1044B2RF
	DP 0912B2RF	DP 1219B2RF				
	DG 2570B2RF	DP 1044B2RF				
Grower's choice	DP 1219B2RF	none	none	DP 1359B2RF	none	DP 1137B2RF

Entry	Lint turnout	Seed turnout	Bur cotton yield	Lint yield	Seed yield	Lint loan value	Lint value	Seed value	Total value	Ginning cost	Seed/tech cost	Net value	
	9	6		b/acre		\$/lb	-			\$/acre			
Croplan Genetics 3787B2RF	34.1	49.3	6684	2278	3293	0.5798	1321	379	1699	201	50	1448	а
Stoneville 4946GLB2	33.1	53.2	6638	2190	3531	0.5817	1274	406	1680	199	53	1428	а
NexGen 1511B2RF	34.0	49.2	6542	2224	3218	0.5810	1292	370	1662	196	47	1419	а
PhytoGen 499WRF	34.2	51.0	6334	2166	3229	0.5812	1259	371	1630	190	49	1391	а
Deltapine 1219B2RF	31.6	50.6	6651	2103	3361	0.5810	1222	387	1608	200	49	1360	а
FiberMax 1944GLB2	29.3	50.1	5979	1753	2994	0.5800	1017	344	1361	179	53	1128	b
Test average	32.7	50.6	6471	2119	3271	0.5808	1231	376	1607	194	50	1362	
CV, %	2.1	2.6	4.4	4.5	4.5	0.1	4.5	4.5	4.5	4.4		4.6	
OSL	<0.0001	0.0355	0.0850	0.0006	0.0219	0.0357	0.0006	0.0219	0.0018	0.0850		0.0010	
LSD	1.3	2.4	425†	173	266	0.0012	100	31	131	13†		115	

Table 2. Harvest results from the Beckham County irrigated RACE trial, Jack Damron Farm, Delhi, OK, 2013.

For net value/acre, means within a column with the same letter are not significantly different.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

Note: some columns may not add up due to rounding error.

Assumes:

\$3.00/cwt ginning cost.

\$230/ton for seed.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Entry	Final population	Final plant height	Storm resistance	Micronaire	Staple	Strength	Uniformity
	plants/acre	inches	1-9 visual scale*	units	32nds inch	g/tex	%
Croplan Genetics 3787B2RF	25,352	35.2	4.2	4.0	37.3	29.6	81.8
Deltapine 1219B2RF	29,359	38.8	6.2	3.7	38.2	32.9	80.9
FiberMax 1944GLB2	28,140	30.2	6.2	3.8	38.2	30.6	80.7
NexGen 1511B2RF	27,791	31.9	4.8	4.0	36.3	31.6	81.6
PhytoGen 499WRF	27,356	40.0	5.5	4.0	37.1	31.6	81.5
Stoneville 4946GLB2	27,356	32.2	7.2	4.0	37.3	32.0	81.4
Test average	27,559	34.7	5.7	3.9	37.4	31.4	81.3
CV, %	6.2	10.6	5.6	2.8	1.4	1.7	0.7
OSL	0.2083	0.0427	<0.0001	0.011	0.0077	0.0005	0.2208
LSD	NS	6.7	0.6	0.2	0.9	1.0	NS

Table 3. Harvest results from the Beckham County irrigated RACE trial, Jack Damron Farm, Delhi, OK, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

*Visual storm resistance scale: 1=loose, 9=tight.

Assumes:

Entry	Lint turnout	Seed turnout	Bur cotton yield	Lint yield	Seed yield	Lint loan value	Lint value	Seed value	Total value	Ginning cost	Seed/tech cost	Net value	
	9	6		b/acre		\$/lb	-			\$/acre			
PhytoGen 499WRF	35.7	49.2	4767	1701	2344	0.5785	984	270	1254	143	66	1044	а
Grower's Choice Deltapine 1359B2RF	34.8	52.3	4774	1660	2496	0.5777	959	287	1246	143	72	1031	ab
Deltapine 1044B2RF	33.2	51.7	4716	1567	2437	0.5770	904	280	1184	141	65	978	abc
NexGen 1511B2RF	36.7	50.0	4371	1606	2186	0.5623	904	251	1156	131	63	962	bc
Stoneville 4946GLB2	34.2	52.9	4418	1510	2336	0.5803	876	269	1145	133	72	941	с
Croplan Genetics 3787B2RF	36.4	50.8	4094	1489	2078	0.5790	862	239	1101	123	68	911	С
FiberMax 1944GLB2	34.1	52.5	4270	1456	2243	0.5788	843	258	1100	128	72	901	с
Test average	35.0	51.3	4487	1570	2303	0.5762	905	265	1169	135	68	967	
CV, %	3.5	2.9	4.3	4.4	4.3	1.2	4.5	4.3	4.4	4.3		4.8	
OSL	0.0318	0.0696	0.0049	0.0077	0.0033	0.1018	0.0106	0.0032	0.0142	0.0049		0.0142	
LSD	2.1	2.1†	345	124	176	NS	72	20	92	10		82	

Table 4. Harvest results from the Jackson County irrigated RACE trial, Drew Darby Farm, Duke, OK, 2013.

For net value/acre, means within a column with the same letter are not significantly different.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

Note: some columns may not add up due to rounding error.

Assumes:

\$3.00/cwt ginning cost.

\$230/ton for seed.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Entry	Final population	Final plant height	Storm resistance	Micronaire	Staple	Strength	Uniformity
	plants/acre	inches	1-9 visual scale*	units	32nds inch	g/tex	%
Croplan Genetics 3787B2RF	33,541	27.8	4.3	4.4	37.1	29.7	82.0
Deltapine 1044B2RF	40,685	24.9	6.2	4.5	35.8	30.1	81.4
FiberMax 1944GLB2	33,977	24.4	6.7	4.5	37.0	30.3	81.2
Grower's Choice Deltapine 1359B2RF	35,632	28.7	3.7	4.2	37.1	30.6	79.7
NexGen 1511B2RF	39,204	25.4	4.2	4.7	35.0	30.5	81.5
PhytoGen 499WRF	35,371	29.5	5.2	4.6	36.0	31.7	82.5
Stoneville 4946GLB2	35,458	22.8	7.2	4.6	36.9	32.3	82.4
Test average	36,267	26.2	5.3	4.5	36.4	30.7	81.5
CV, %	6.2	9.1	6.0	3.9	1.5	2.5	0.7
OSL	0.0163	0.0400	<0.0001	0.0497	0.0023	0.0163	0.0017
LSD	4,000	4.2	0.6	0.3	1.0	1.4	1.1

 Table 5. Harvest results from the Jackson County irrigated RACE trial, Drew Darby Farm, Duke, OK, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

*Visual storm resistance scale: 1=loose, 9=tight.

Assumes:

Entry	Lint turnout	Seed turnout	Bur cotton yield	Lint yield	Seed yield	Lint loan value	Lint value	Seed value	Total value	Ginning cost	Seed/tech cost	Net value	
	9	6		lb/acre		\$/lb	-			\$/acre			
PhytoGen 499WRF	32.7	47.9	5981	1954	2866	0.5743	1123	330	1453	179	53	1221	а
Stoneville 4946GLB2	30.0	47.4	6488	1944	3074	0.5738	1115	353	1469	195	57	1217	а
FiberMax 1944GLB2	32.2	48.8	5898	1900	2879	0.5722	1089	331	1420	177	57	1186	а
Deltapine 1044B2RF	28.4	49.8	6392	1815	3181	0.5752	1043	366	1409	192	52	1166	а
Croplan Genetics 3156B2RF	29.0	45.6	6540	1895	2983	0.5652	1071	343	1414	196	52	1166	а
NexGen 1511B2RF	32.1	45.7	5900	1893	2696	0.5600	1062	310	1372	177	50	1145	а
Test average	30.7	47.5	6200	1900	2947	0.5701	1084	339	1423	186	53	1183	
CV, %	6.5	6.5	6.3	6.3	6.5	1.9	6.8	6.5	6.6	6.3		7.0	
OSL	0.0973	0.5280	0.1968	0.7552	0.1107	0.4856	0.7422	0.1109	0.8401	0.1963		0.8347	
LSD	2.9†	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	

Table 6. Harvest results from the Tillman County irrigated RACE trial, John McCullough Farm, Tipton, OK, 2013.

For net value/acre, means within a column with the same letter are not significantly different.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

Note: some columns may not add up due to rounding error.

Assumes:

\$3.00/cwt ginning cost.

\$230/ton for seed.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Entry	Final population	Final plant height	Storm resistance	Micronaire	Staple	Strength	Uniformity
	plants/acre	inches	1-9 visual scale*	units	32nds inch	g/tex	%
Croplan Genetics 3156B2RF	38,333	37.3	6.0	4.2	34.8	28.5	79.7
Deltapine 1044B2RF	33,541	39.7	7.0	4.2	35.9	30.5	81.2
FiberMax 1944GLB2	33,803	36.4	7.3	4.5	36.3	30.0	79.9
NexGen 1511B2RF	35,197	38.9	5.0	4.6	35.0	30.4	80.0
PhytoGen 499WRF	34,935	40.2	5.3	4.5	35.4	31.0	81.2
Stoneville 4946GLB2	36,678	38.9	6.0	4.5	36.1	30.7	80.6
Test average	35,414	38.6	6.1	4.4	35.6	30.2	80.5
CV, %	7.4	8.5	5.7	4.7	2.4	3.2	1.2
OSL	0.2952	0.7157	<0.0001	0.1002	0.2690	0.0953	0.3132
LSD	NS	NS	0.6	NS	NS	1.4†	NS

Table 7. Harvest results from the Tillman County irrigated RACE trial, John McCullough Farm, Tipton, OK, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

*Visual storm resistance scale: 1=loose, 9=tight.

Assumes:

Entry	Lint turnout	Seed turnout	Bur cotton yield	Lint yield	Seed yield	Lint loan value	Lint value	Seed value	Total value	Ginning cost	Seed/tech cost	Net value	
	9	%		b/acre		\$/lb	_			\$/acre			
PhytoGen 499WRF	37.2	53.4	5143	1915	2745	0.5802	1111	316	1427	154	71	1202	а
NexGen 1511B2RF	36.9	50.9	5177	1912	2637	0.5783	1105	303	1409	155	67	1186	ab
Deltapine 1044B2RF	34.0	54.6	5356	1819	2924	0.5778	1051	336	1387	161	69	1157	abc
Stoneville 4946GLB2	34.7	55.0	5093	1769	2802	0.5803	1026	322	1349	153	76	1119	abcd
FiberMax 1740B2F	35.7	54.0	4898	1779	2689	0.5740	1021	309	1330	147	69	1115	abcd
FiberMax 1944GLB2	33.9	55.4	4853	1726	2825	0.5783	998	325	1323	146	76	1101	bcd
Deltapine 1219B2RF	35.0	54.3	4987	1743	2708	0.5732	999	311	1310	150	69	1091	cd
Croplan Genetics 3787B2RF	36.1	53.3	4786	1729	2552	0.5790	1001	294	1295	144	72	1079	cd
Deltapine 1359B2RF	34.4	54.3	4886	1679	2654	0.5708	959	305	1264	147	76	1041	d
Test average	35.3	53.9	5020	1786	2726	0.5769	1030	314	1344	151	72	1121	
CV, %	4.1	3.0	5.3	4.3	4.1	1.0	4.3	4.1	4.2	5.3		4.5	
OSL	0.0782	0.1117	0.2525	0.0165	0.0272	0.5084	0.0097	0.0273	0.0421	0.2527		0.0232	
LSD	2.0 +	NS	NS	132	192	NS	77	22	98	14		87	

Table 8. Harvest results from the Harmon County irrigated Cotton Incorporated Enhanced Variety trial, Tony Cox Farm, Hollis, OK, 2013.

For net value/acre, means within a column with the same letter are not significantly different.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

Note: some columns may not add up due to rounding error.

Assumes:

\$3.00/cwt ginning cost.

\$230/ton for seed.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Entry	Final population	Final plant height	Storm resistance	Micronaire	Staple	Strength	Uniformity
	plants/acre	inches	1-9 visual scale*	units	32nds inch	g/tex	%
Croplan Genetics 3787B2RF	35,283	36.4	4.3	4.0	36.8	28.9	81.6
Deltapine 1044B2RF	41,382	40.7	6.7	4.0	36.3	28.9	81.0
Deltapine 1219B2RF	33,977	43.3	5.3	3.5	38.2	31.7	80.4
Deltapine 1359B2RF	38,682	43.5	4.0	3.5	37.6	31.0	79.6
FiberMax 1740B2F	37,810	36.9	6.3	4.0	35.5	29.2	81.1
FiberMax 1944GLB2	33,019	42.1	5.7	3.9	38.0	29.5	80.7
NexGen 1511B2RF	37,462	41.6	4.3	4.3	36.3	30.6	81.8
PhytoGen 499WRF	39,117	40.5	5.7	4.3	36.5	30.4	81.6
Stoneville 4946GLB2	38,943	36.8	7.0	4.0	36.6	30.6	81.8
Test average	37,297	40.2	5.5	3.9	36.9	30.1	81.1
CV, %	10.8	8.0	8.2	3.1	1.3	2.2	0.9
OSL	0.2863	0.0705	<0.0001	<0.0001	<0.0001	0.0008	0.0327
LSD	NS	4.6 †	0.8	0.2	0.8	1.2	1.3

Table 9. Harvest results from the Harmon County irrigated Cotton Incorporated Enhanced Variety trial, Tony Cox Farm, Hollis, OK, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

*Visual storm resistance scale: 1=loose, 9=tight.

Assumes:

Entry	Lint turnout	Seed turnout	Bur cotton yield	Lint yield	Seed yield	Lint loan value	Lint value	Seed value	Total value	Ginning cost	Seed/tech cost	Net value	
	9	%		lb/acre		\$/lb				\$/acre			
Deltapine 0912B2RF	28.3	51.4	7283	2063	3744	0.5265	1086	431	1517	218	72	1227	а
Stoneville 4946GLB2	29.0	53.7	6725	1950	3609	0.5190	1012	415	1427	202	72	1154	ab
FiberMax 1740B2F	28.1	51.6	6841	1923	3529	0.5175	995	406	1401	205	64	1131	bc
Dyna-Gro 2570B2RF	27.2	51.4	6879	1869	3534	0.5173	967	406	1373	206	70	1097	bcd
NexGen 1511B2RF	28.9	49.4	6487	1875	3203	0.5048	947	368	1315	195	63	1058	cd
FiberMax 1944GLB2	26.4	52.5	6548	1730	3441	0.5162	894	396	1289	196	72	1021	d
Croplan Genetics 3787B2RF	25.9	50.7	6167	1598	3128	0.4853	775	360	1135	185	68	882	е
PhytoGen 499WRF	26.6	48.2	5820	1548	2804	0.4983	771	322	1094	175	66	853	е
Deltapine 1044B2RF	24.1	51.1	6011	1447	3072	0.4842	701	353	1054	180	65	808	е
Grower's Choice Deltapine 1219B2RF	23.6	50.8	4875	1153	2475	0.4800	553	285	838	146	65	626	f
Test average	26.8	51.1	6364	1716	3254	0.5049	870	374	1244	191	68	986	
CV, %	5.5	1.4	2.7	2.6	2.7	3.4	5.2	2.7	4.3	2.7		5.0	
OSL	0.0022	<0.0001	<0.0001	<0.0001	<0.0001	0.0225	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	L
LSD	2.5	1.3	296	78	151	0.0290	78	17	92	9		85	

Table 10. Harvest results from the Custer County irrigated Cotton Incorporated Enhanced Variety Trial, Merlin Schantz Farm, Hydro, OK, 2013.

For net value/acre, means within a column with the same letter are not significantly different.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

Note: some columns may not add up due to rounding error.

Assumes:

\$3.00/cwt ginning cost.

\$230/ton for seed.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Entry	Final population	Final plant height	Storm resistance	Micronaire	Staple	Strength	Uniformity
	plants/acre	inches	1-9 visual scale*	units	32nds inch	g/tex	%
Croplan Genetics 3787B2RF	34,461	42.9	4.2	2.5	39.5	29.5	81.1
Dyna-Gro 2570B2RF	31,557	39.7	5.3	2.8	38.7	30.1	81.3
Deltapine 0912B2RF	27,685	39.3	3.8	2.9	37.2	29.8	81.0
Deltapine 1044B2RF	32,912	42.9	5.7	2.4	37.9	30.1	80.5
FiberMax 1740B2F	27,491	38.2	4.7	2.8	38.5	30.9	81.4
FiberMax 1944GLB2	27,588	37.2	5.2	2.8	40.3	30.5	80.8
Grower's Choice Deltapine 1219B2RF	32,041	56.2	4.2	2.2	39.2	31.0	78.4
NexGen 1511B2RF	29,137	41.7	4.2	2.6	37.6	30.3	80.4
PhytoGen 499WRF	35,235	44.1	4.8	2.5	38.8	31.5	81.6
Stoneville 4946GLB2	32,622	38.1	6.3	2.7	39.1	31.6	81.0
Test average	31,073	42.0	4.8	2.6	38.7	30.5	80.7
CV, %	11.8	9.2	9.7	7.3	1.8	3.4	1.3
OSL	0.1202	0.0006	<0.0001	0.0042	0.0011	0.2509	0.0923
LSD	NS	6.7	0.8	0.3	1.2	NS	1.5 †

Table 11. Harvest results from the Custer County irrigated Cotton Incorporated Enhanced Variety Trial, Merlin Schantz Farm, Hydro, OK, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

*Visual storm resistance scale: 1=loose, 9=tight.

Assumes:

Entry	Lint turnout	Seed turnout	Bur cotton yield	Lint yield	Seed yield	Lint loan value	Lint value	Seed value	Total value	Ginning cost	Seed/tech cost	Net value	
	9	6		lb/acre		\$/lb				\$/acre			
Stoneville 4946GLB2	36.3	48.7	1934	702	942	0.5337	375	108	483	58	46	379	а
NexGen 1511B2RF	36.6	46.4	1654	606	767	0.5405	328	88	416	50	40	326	b
FiberMax 1944GLB2	34.4	48.9	1601	551	783	0.5647	311	90	401	48	46	307	bc
Deltapine 1044B2RF	35.5	48.1	1685	597	810	0.4983	297	93	391	51	42	298	cd
Croplan Genetics 3156B2RF	35.5	47.1	1690	600	795	0.4978	299	91	390	51	42	297	cd
PhytoGen 499WRF	36.6	45.8	1568	574	718	0.5198	298	83	381	47	42	292	cd
Grower's Choice Deltapine 1137B2RF	35.4	49.2	1512	535	743	0.5272	282	85	367	45	44	278	d
Test average	35.7	47.7	1663	595	794	0.5260	313	91	404	50	43	311	
CV, %	3.4	1.4	3.2	3.2	3.2	2.5	3.5	3.2	3.2	3.2		3.8	
OSL	0.3599	0.0002	<0.0001	<0.0001	<0.0001	0.0005	<0.0001	<0.0001	<0.0001	<0.0001		<0.000	L
LSD	NS	1.2	95	34	45	0.0231	19	5	23	3		21	

Table 12. Harvest results from the Washita County dryland RACE trial, Danny Davis Farm, Elk City, OK, 2013.

For net value/acre, means within a column with the same letter are not significantly different.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

Note: some columns may not add up due to rounding error.

Assumes:

\$3.00/cwt ginning cost.

\$230/ton for seed.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Entry	Final population	Final plant height	Storm resistance	Micronaire	Staple	Strength	Uniformity
	plants/acre	inches	1-9 visual scale*	units	32nds inch	g/tex	%
Croplan Genetics 3156 B2RF	26,920	31.9	6.3	4.1	32.5	26.5	78.3
Deltapine 1044 B2RF	22,564	31.9	5.3	4.9	33.2	30.8	78.9
FiberMax 1944 GLB2	23,261	31.3	5.3	4.3	35.0	28.6	79.0
Grower's Choice Deltapine 1137 B2RF	24,742	35.3	4.0	4.3	33.2	28.9	80.4
NexGen 1511B2RF	21,867	32.9	3.8	4.7	33.6	31.1	79.5
PhytoGen 499WRF	23,871	38.9	2.7	4.6	32.9	31.6	79.8
Stoneville 4946GLB2	22,564	32.6	6.2	4.6	33.5	31.4	80.3
Test average	23,684	33.5	4.8	4.5	33.4	29.8	79.5
CV, %	10.8	5.4	9.4	3.4	1.6	2.2	1.0
OSL	0.3093	0.0028	<0.0001	0.0005	0.0038	<0.0001	0.0498
LSD	NS	3.2	0.8	0.3	1.0	1.1	1.4

 Table 13. Harvest results from the Washita County dryland RACE trial, Danny Davis Farm, Elk City, OK, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

*Visual storm resistance scale: 1=loose, 9=tight.

Assumes:

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site
Irrigation Type ==>	Pivot	Furrow	Furrow	Pivot	Drip	Mean
Location ==>	Delhi	Duke	Tipon	Hydro	Hollis	for Common
Cooperator ==>	Damron	Darby	McCullough	Schantz	Сох	Entries
Entry			Lint yield	d (lb/acre)		
Croplan Genetics 3787B2RF	2278	1489		1598	1729	
Deltapine 1219B2RF	2103			1153	1743	
FiberMax 1944GLB2	1753	1456	1900	1730	1726	1713
NexGen 1511B2RF	2224	1606	1893	1875	1912	1902
PhytoGen 499WRF	2166	1701	1954	1548	1915	1857
Stoneville 4946GLB2	2190	1510	1944	1950	1769	1873
Deltapine 1044B2RF		1567	1815	1447	1819	
Deltapine 1359B2RF		1660			1679	
Croplan Genetics 3156B2RF			1895			
Deltapine 0912B2RF				2063		
FiberMax 1740B2F				1923	1779	
Dyna-Gro 2570B2RF				1869		
Test average	2119	1570	1900	1716	1786	1836
CV, %	4.5	4.4	6.3	2.6	4.3	
OSL	0.0006	0.0077	0.7552	<0.0001	0.0165	
LSD	173	124	NS	78	132	

 Table 14. Lint yield results from the Extension irrigated RACE trials, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level.

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site
Irrigation Type ==>	Pivot	Furrow	Furrow	Pivot	Drip	Mean
Location ==>	Delhi	Duke	Tipon	Hydro	Hollis	for Common
Cooperator ==>	Damron	Darby	McCullough	Schantz	Сох	Entries
Entry		Stor	m resistance (visual r	ating: 1 loose, 9 tig	ght)	
Croplan Genetics 3787B2RF	4.2	4.3		4.2	4.3	
Deltapine 1219B2RF	6.2			4.2	5.3	
FiberMax 1944GLB2	6.2	6.7	7.3	5.2	5.7	6.2
NexGen 1511B2RF	4.8	4.2	5.0	4.2	4.3	4.5
PhytoGen 499WRF	5.5	5.2	5.3	4.8	5.7	5.3
Stoneville 4946GLB2	7.2	7.2	6.0	6.3	7.0	6.7
Deltapine 1044B2RF		6.2	7.0	5.7	6.7	
Deltapine 1359B2RF		3.7			4.0	
Croplan Genetics 3156B2RF			6.0			
Deltapine 0912B2RF				3.8		
FiberMax 1740B2F				4.7	6.3	
Dyna-Gro 2570B2RF				5.3		
Test average	5.7	5.4	6.1	4.8	5.5	5.7
CV, %	5.6	6.0	5.7	9.7	8.2	
OSL	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
LSD	0.6	0.6	0.6	0.8	0.8	

 Table 15. Storm resistance results from the Extension irrigated RACE trials, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level.

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site
Irrigation Type ==>	Pivot	Furrow	Furrow	Pivot	Drip	Mean
Location ==>	Delhi	Duke	Tipon	Hydro	Hollis	for Common
Cooperator ==>	Damron	Darby	McCullough	Schantz	Сох	Entries
Entry			Plant heigh	nt (inches)		
Croplan Genetics 3787B2RF	35.2	27.8		42.9	36.4	
Deltapine 1219B2RF	38.8			56.2	43.3	
FiberMax 1944GLB2	30.2	24.4	36.4	37.2	42.1	34.1
NexGen 1511B2RF	31.9	25.4	38.9	41.7	41.6	35.9
PhytoGen 499WRF	40.0	29.5	40.2	44.1	40.5	38.9
Stoneville 4946GLB2	32.2	22.8	38.9	38.1	36.8	33.8
Deltapine 1044B2RF		24.9	39.7	42.9	40.7	
Deltapine 1359B2RF		28.7			43.5	
Croplan Genetics 3156B2RF			37.3			
Deltapine 0912B2RF				39.3		
FiberMax 1740B2F				38.2	36.9	
Dyna-Gro 2570B2RF				39.7		
Test average	34.7	26.2	38.6	42.0	40.2	35.6
CV, %	10.6	9.1	8.5	9.2	8.0	
OSL	0.0427	0.0400	0.7157	0.0006	0.0705	
LSD	6.7	4.2	NS	6.7	4.6 †	

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

Table 17. Loan value results from the Extension irrigated RACE trials, 2013.

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site
Irrigation Type ==>	Pivot	Furrow	Furrow	Pivot	Drip	Mean
Location ==>	Delhi	Duke	Tipon	Hydro	Hollis	for Common
Cooperator ==>	Damron	Darby	McCullough	Schantz	Сох	Entries
Entry			Loan valu	e (\$/lb)		
Croplan Genetics 3787B2RF	0.5798	0.5790		0.4853	0.5790	
Deltapine 1219B2RF	0.5810			0.4800	0.5732	
FiberMax 1944GLB2	0.5800	0.5788	0.5722	0.5162	0.5783	0.5651
NexGen 1511B2RF	0.5810	0.5623	0.5600	0.5048	0.5783	0.5573
PhytoGen 499WRF	0.5812	0.5785	0.5743	0.4983	0.5802	0.5625
Stoneville 4946GLB2	0.5817	0.5803	0.5738	0.5190	0.5803	0.5670
Deltapine 1044B2RF		0.5770	0.5752	0.4842	0.5778	
Deltapine 1359B2RF		0.5777			0.5708	
Croplan Genetics 3156B2RF			0.5652			
Deltapine 0912B2RF				0.5265		
FiberMax 1740B2F				0.5175	0.5740	
Dyna-Gro 2570B2RF				0.5173		
Test average	0.5808	0.5762	0.5701	0.5049	0.5769	0.5630
CV, %	0.1	1.2	1.9	3.4	1.0	
OSL	0.0357	0.1018	0.4856	0.0225	0.5084	
LSD	0.0012	NS	NS	0.0290	NS	

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level, NS - not significant.

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site
Irrigation Type ==>	Pivot	Furrow	Furrow	Pivot	Drip	Mean
Location ==>	Delhi	Duke	Tipon	Hydro	Hollis	for Common
Cooperator ==>	Damron	Darby	McCullough	Schantz	Сох	Entries
Entry			Net value	(\$/acre)		
Croplan Genetics 3787B2RF	1448	911		882	1079	
Deltapine 1219B2RF	1360			626	1091	
FiberMax 1944GLB2	1128	901	1186	1021	1101	1067
NexGen 1511B2RF	1419	962	1145	1058	1186	1154
PhytoGen 499WRF	1391	1044	1221	853	1202	1142
Stoneville 4946GLB2	1428	941	1217	1154	1119	1172
Deltapine 1044B2RF		978	1166	808	1157	
Deltapine 1359B2RF		1031			1041	
Croplan Genetics 3156B2RF			1166			
Deltapine 0912B2RF				1227		
FiberMax 1740B2F				1131	1115	
Dyna-Gro 2570B2RF				1097		
Test average	1362	967	1184	986	1121	1134
CV, %	4.6	4.8	7.0	5.0	4.5	
OSL	0.0010	0.0142	0.8347	<0.0001	0.0232	
LSD	115	82	NS	85	87	

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site
Irrigation Type ==>	Pivot	Furrow	Furrow	Pivot	Drip	Mean
Location ==>	Delhi	Duke	Tipon	Hydro	Hollis	for Common
Cooperator ==>	Damron	Darby	McCullough	Schantz	Сох	Entries
Entry			Micronai	re (units)		
Croplan Genetics 3787B2RF	4.0	4.4		2.5	4.0	
Deltapine 1219B2RF	3.7			2.2	3.5	
FiberMax 1944GLB2	3.8	4.5	4.5	2.8	3.9	3.9
NexGen 1511B2RF	4.0	4.7	4.6	2.6	4.3	4.0
PhytoGen 499WRF	4.0	4.6	4.5	2.5	4.3	4.0
Stoneville 4946GLB2	4.0	4.6	4.5	2.7	4.0	4.0
Deltapine 1044B2RF		4.5	4.2	2.4	4.0	
Deltapine 1359B2RF		4.2			3.5	
Croplan Genetics 3156B2RF			4.2			
Deltapine 0912B2RF				2.9		
FiberMax 1740B2F				2.8	4.0	
Dyna-Gro 2570B2RF				2.8		
Test average	3.9	4.5	4.4	2.6	3.9	4.0
CV, %	2.8	3.9	4.7	7.3	3.1	
OSL	0.011	0.0497	0.1002	0.0042	<0.0001	
LSD	0.2	0.3	NS	0.3	0.2	

 Table 19. MIcronaire results from the Extension irrigated RACE trials, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

Table 20, Stable results invin the Extension in Igated NACE thats, 2013,	Table 20.	Staple results fi	rom the Extension	irrigated RACE trials, 2013.
--	-----------	-------------------	-------------------	------------------------------

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site	
Irrigation Type ==>	Pivot	Pivot Furrow Delhi Duke	Furrow	Pivot	Drip	Mean for Common	
Location ==>	Delhi		Tipon	Hydro	Hollis		
Cooperator ==>	Damron	Darby	McCullough	Schantz	Сох	Entries	
Entry			Staple (32	nds inch)			
Croplan Genetics 3787B2RF	37.3	37.1		39.5	36.8		
Deltapine 1219B2RF	38.2			39.2	38.2		
FiberMax 1944GLB2	38.2	37.0	36.3	40.3	38.0	38.0	
NexGen 1511B2RF	36.3	35.0	35.0	37.6	36.3	36.0	
PhytoGen 499WRF	37.1	36.0	35.4	38.8	36.5	36.8	
Stoneville 4946GLB2	37.3	36.9	36.1	39.1	36.6	37.2	
Deltapine 1044B2RF		35.8	35.9	37.9	36.3		
Deltapine 1359B2RF		37.1			37.6		
Croplan Genetics 3156B2RF			34.8				
Deltapine 0912B2RF				37.2			
FiberMax 1740B2F				38.5	35.5		
Dyna-Gro 2570B2RF				38.7			
Test average	37.4	36.4	35.6	38.7	36.9	37.0	
CV, %	1.4	1.5	2.4	1.8	1.3		
OSL	0.0077	0.0023	0.2690	0.0011	<0.0001		
LSD	0.9	1.0	NS	1.2	0.8		

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site	
Irrigation Type ==>	Pivot	Pivot Furrow Delhi Duke	Furrow	Pivot	Drip	Mean for Common	
Location ==>	Delhi		Tipon	Hydro	Hollis		
Cooperator ==>	Damron	Darby	Darby McCullough		Сох	Entries	
Entry			Strength	(g/tex)			
Croplan Genetics 3787B2RF	29.6	29.7		29.5	28.9		
Deltapine 1219B2RF	32.9			31.0	31.7		
FiberMax 1944GLB2	30.6	30.3	30.0	30.5	29.5	30.2	
NexGen 1511B2RF	31.6	30.5	30.4	30.3	30.6	30.7	
PhytoGen 499WRF	31.6	31.7	31.0	31.5	30.4	31.2	
Stoneville 4946GLB2	32.0	32.3	30.7	31.6	30.6	31.4	
Deltapine 1044B2RF		30.1	30.5	30.1	28.9		
Deltapine 1359B2RF		30.6			31.0		
Croplan Genetics 3156B2RF			28.5				
Deltapine 0912B2RF				29.8			
FiberMax 1740B2F				30.9	29.2		
Dyna-Gro 2570B2RF				30.1			
Test average	31.4	30.7	30.2	30.5	30.1	30.9	
CV, %	1.7	2.5	3.2	3.4	2.2		
OSL	0.0005	0.0163	0.0953	0.2509	0.0008		
LSD	1.0	1.4	1.4†	NS	1.2		

 Table 21. Strength results from the Extension irrigated RACE trials, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

County ==>	Beckham	Jackson	Tillman	Custer	Harmon	All-Site	
Irrigation Type ==>	Pivot	Pivot Furrow Delhi Duke	Furrow	Pivot	Drip	Mean for Common	
Location ==>	Delhi		Tipon	Hydro	Hollis		
Cooperator ==>	Damron	Darby	McCullough	Schantz Cox		Entries	
Entry			Uniform	iity (%)			
Croplan Genetics 3787B2RF	81.8	82.0		81.1	81.6		
Deltapine 1219B2RF	80.9			78.4	80.4		
FiberMax 1944GLB2	80.7	81.2	79.9	80.8	80.7	80.7	
NexGen 1511B2RF	81.6	81.5	80.0	80.4	81.8	81.1	
PhytoGen 499WRF	81.5	82.5	81.2	81.6	81.6	81.7	
Stoneville 4946GLB2	81.4	82.4	80.6	81.0	81.8	81.4	
Deltapine 1044B2RF		81.4	81.2	80.5	81.0		
Deltapine 1359B2RF		79.7			79.6		
Croplan Genetics 3156B2RF			79.7				
Deltapine 0912B2RF				81.0			
FiberMax 1740B2F				81.4	81.1		
Dyna-Gro 2570B2RF				81.3			
Test average	81.3	81.5	80.4	80.8	81.1	81.2	
CV, %	0.7	0.7	1.2	1.3	0.9		
OSL	0.2208	0.0017	0.3132	0.0923	0.0327		
LSD	NS	1.1	NS	1.5 †	1.3		

 Table 22. Uniformity results from the Extension irrigated RACE trials, 2013.

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

OSU Cotton Official Variety Tests - 2013

Randy Boman, Research Director and Cotton Extension Program Leader Shane Osborne, Associate Extension Specialist Rocky Thacker, Senior Superintendent Southwest Research and Extension Center, Altus

Bob Weidenmaier, Assistant Station Superintendent Caddo Research Station, Fort Cobb

The Experiment Station cotton official variety tests (OVTs) were planted at the Southwest Research and Extension Center at Altus Center (SWREC) (furrow irrigated), Southwest Agronomy Research Station at Tipton (dryland), and Caddo Research Station at Fort Cobb (center pivot irrigated) in 2012 and 2013. Since the SWREC is located within Lugert-Altus Irrigation District, no irrigation was available in 2013 and the trials there failed. The Tipton dryland location failed due to drought in 2013.

The Fort Cobb site is classified as a Binger fine sandy loam, 1 to 3 percent slopes. The taxonomic classification is: Fine-loamy, mixed, active, thermic Udic Rhodustalfs. The trial consisted of 4 replicates of entries in both 2012 and 2013. Plot size was four 40-inch rows wide by 30 ft in length in 2012. In 2013, row spacing was changed to 36 inches, and plots were four rows wide by 30 ft in length. Harvested area was the center two rows by the length of the plot.

Fort Cobb 2013 OVT results can be found in Tables 1 and 2.

2012 Methodology Change

It should be noted that the methodology for the OVT program was changed in 2012 as compared to previous years. This methodology is similar to other experiment station stripper harvested OVT locations such as Dr. Jane Dever's Texas A&M AgriLife Research program at Lubbock. At harvest, grab samples were taken from each plot in 3 of the 4 replicates. These grab samples were used to determine the lint and seed turnout for each individual entry and were used to convert plot bur cotton weights to lint per acre. Lint from these grab samples was submitted to the Texas Tech University Fiber and Biopolymer Research Institute to obtain high volume instrument (HVI) data. Additionally, 50-boll samples were taken from each plot in 3 of the 4 replicates and other data (including boll sample lint fractions, boll size, seed index, lint index, and seed per boll) were derived from those. Additional collected data included a visual estimate of storm resistance, which is important in our area.

Understanding the Statistics Presented

Replicated trials are used in order to obtain multiple independent observations of each variety's performance in comparison with other entries. Statistical analyses of each characteristic reported are represented by "protected" LSD (least significant difference) values given at the bottom of each column in the table. If the difference between the characteristic of concern (i.e.

yield, lint turnout, fiber length, etc) of any two varieties exceeds the LSD (0.05) value provided, then the chances are approximately 95 out of 100 that the difference is real and not a result of other factors such as random error.

Lint Yield

Yield potential is probably the single most important agronomic characteristic, because pounds do drive profitability and provides for the safety net of higher crop insurance actual production history (APH) in case of catastrophic loss of acres. The benefit this can provide from the crop insurance perspective is important in our high risk area. Yield stability across environments is going to be important, and basically what we want to identify is a variety that has the ability to provide high yield across varying water inputs.

Lint Percentages

Lint percentage (sometimes called "gin turnout" or "lint turnout") influences ginning costs. As mentioned above, a change in methodology in 2012. Since we harvest our plots with a modified stripper, grab sample turnouts are the closest estimate of lint turnout. The fiber from these grab samples also provides the closest estimates of overall fiber quality. Historically, many states have use 50-boll samples to derive these estimates. However, most of these states use picker harvesters in their variety testing programs. Lint percentages from 50-boll boll samples are reported on both a picked and a pulled basis. Picked lint percentage was calculated as the fraction of lint in a sample of seedcotton, while pulled lint percentage was calculated as the fraction of lint in a sample of "snapped" cotton – which includes the bur. Producers who harvest with mechanical pickers should examine picked lint percentages, while those who harvest with strippers should compare pulled lint percentage decreases. In addition, a variety with high lint yield per acre (but with a moderate lint percentage) often gives higher net returns per acre than does a lower yielding variety with a higher lint percentage. Differences in lint yield are considerably more important to net returns than are differences in lint percentage.

Fiber Properties Measured and Their Importance

The classification of U.S. cotton is dependent upon HVI analyses.¹ Lint from ginned grab samples was submitted to the Texas Tech University Fiber and Biopolymer Research Institute to obtain HVI data. The HVI data include several important fiber property measurements. Fiber length, micronaire, and strength are the fiber properties reported here which partially determine the price per pound for lint. While uniformity and elongation are important in the manufacturing process, at present, little or no price incentives are received by producers for either. Fiber length was measured as the upper half mean (in inches). Those measurements were also converted into 32's. Uniformity ratios were obtained by dividing mean length (also measured in inches) by the upper half mean length and expressing the result as a percentage. Micronaire is actually a confounded measurement of both fiber fineness and maturity. Micronaire was measured in standard micronaire units. Fiber strength was measured in grams-force per tex on a "beard of fibers" during HVI analysis. The same "fiber beard" is used to determine elongation (or "stretch") prior to breaking. This measurement was estimated as a percentage of its length prior to breaking. Percentage reflectance (rd) and yellowness (+b) are both components of HVI color grade and are used in its determination. Since color grade is not a quantitative variable, the average reflectance and +b are provided. Higher rd values and lower +b values are desired. In general, the more highly weathered cotton fiber becomes, lower rd values but higher +b values are observed.

Higher values for lint yield, the lint percentages, fiber length, uniformity ratio, fiber strength, elongation, and reflectance are generally more desirable than lower ones. Micronaire is acceptable anywhere within the micronaire "base" range of 3.5 to 4.9 inclusive. The "premium" range is between 3.7 and 4.2 inclusive. If micronaire falls in the "discount" range (below 3.5 or above 4.9), the price per pound of lint is reduced. Penalties tend to be more severe for micronaire values below 3.5 (especially below 3.0) than for those above 4.9. Therefore, producers should probably select varieties with micronaire values toward the upper half of the range, rather than the lower.

In recent years, the demand from international markets for cotton with high fiber quality has forced producers to pay more attention to the quality of fiber they produce. A large percentage of Oklahoma's cotton crop is exported. Therefore, fiber quality must become increasingly important to Oklahoma producers. The general recommendations include "31 color or better; 3 leaf grade or better; 35 staple (1.08-1.10 inches) or better; length uniformity of 81% or higher; 26 grams/tex or stronger and mid-range micronaire of 4.1 to 4.6."² When coupled with other critical management components, including proper harvesting and ginning techniques, many of today's cotton varieties can meet or exceed these criteria.

Other Agronomic Measurements Reported

These additional measurements are useful to better describe the characteristics of varieties planted.

- Boll Size Weight, in grams, of seedcotton per boll.
- Seed Index Weight, in grams, of 100 fuzzy seed.
- Lint Index Weight, in grams, of lint from 100 seed (calculated).
- Seed Per Boll Average number of seed per boll (calculated).
- Storm Resistance Visual estimate rating from 1 (very loose boll type, considerable seed cotton loss) to 9 (very tight boll type, no seed cotton loss).

References

¹ The Classification of Cotton. Agricultural Handbook 566. 2001. Cotton Program, Agricultural Marketing Service, U.S. Department of Agriculture. Wash. D.C.

² US Fiber Advantages, Cotton Grower Plus, November 2004, p. 17-18, 20; see also Estur, G. 2004. Quality Requirements on Export Markets for U.S. Cotton. In Proc. Beltwide Cotton Conf., San Antonio, TX. 5-9 Jan. 2004. Natl. Cotton Counc. Am., Memphis, TN. (Also available at http://www.icac.org/cotton_info/speeches/estur/2004/quality_reqs_us_exp.pdf.)

Site Information and Cultural Practices

Soil Test: pH: 7.7 Surface N: 2 P: 28 K: 194 Ca: 1807 Mg: 174 Fe: 18.7 Zn: 0.98 B: 0.31 Cu: 1.27, Subsoil: pH: 7.0 N: 5

- 4/15 Glyphos @ 1 qt. + Barrage @ 1.5 pt. + Induce @ 3 oz. (terminated wheat cover)
- 4/24 450 lb/acre 140-40-50
- 5/6 Glyphos @ 1 qt. + Induce @ 3 oz.
- 5/23 No-till planted into residue / Prowl H2O @ 1 qt. + Round-Up Power Max @ 1 qt. + 17 lb. AMS/100 gal. water
- 6/3 Orthene @ 2.3 oz.
- 6/7 Roundup Power Max @ 1 qt. + Orthene @ 4 oz.
- 6/27 Vydate @ 8 oz.
- 6/27 Roundup Power Max @ 1 qt. + Medal @ 1.33 pt.
- 7/8 Roundup Power Max @ 1 qt.
- 7/12 Mepiquat chloride PGR @ 8 oz.
- 7/23 Mepiquat chloride PGR @ 8 oz.
- 8/2 Mepiquat chloride PGR @ 16 oz.
- 10/16 Prep 42 oz + Ginstar 12 oz
- 11/7 Paraquat 32 oz + 0.5% NIS
- 11/17 Storm resistance ratings, and boll sampling
- 11/18 Stripped with JD 482 plot stripper, grab samples taken at harvest for turnouts and lint samples for HVI analysis

Center pivot irrigation and rainfall by month in inches:

	May	June	July	Aug	Sept	Oct	Total
Irrigation: Rainfall:	1.25 <u>3.18</u>	1.75 4.69		5.00 2.22	3.00 2.01	 2.14	13.00 20.17
Total:	4.43	6.44	7.93	7.22	5.01	2.14	33.17

Daily temperatures, rainfall, and other weather data are presented in the Mesonet data for the site (see appendix for Fort Cobb Mesonet site). Note: 5 rainfall events totaling 2.22 inches were recorded at the site in August, but due to instrumentation failure were not recorded by the Mesonet.

Table 1. Yield and agronomic results from the OSU cotton official variety test, Caddo Research Station, Fort Cobb, OK 2013.

Entry	Lint yield	Grab samp	ole turnout	Boll sample	lint fraction	Boll	Seed	Lint	Seed per	Storm	Final plant
		Lint	Seed	Picked	Pulled	size	index	index	boll	resistance	height
	lb/acre			%		g seed cotton/boll	g wt 100 fuzzy seed	g wt lint from 100 fuzzy seed	count/boll	visual scale (1=loose, 9=tight)	inches
PhytoGen PHY 333WRF	2358	26.7	44.8	42.9	33.1	8.1	10.3	8.0	33.5	4	42
Deltapine DP 1321B2RF	2350	28.0	44.9	43.9	34.4	7.3	9.9	7.9	31.8	5	40
Deltapine DP 0912B2RF	2264	26.6	45.8	40.5	32.7	7.8	11.1	7.8	32.6	3	37
Dyna-Gro DG 2285B2RF	2216	26.4	47.5	41.9	33.0	7.5	10.7	7.8	31.5	6	40
NexGen NG 1511B2RF	2195	27.6	43.7	43.9	34.3	7.9	10.5	8.5	31.9	5	39
All-Tex CT13125B2RF	2192	26.6	46.1	43.1	33.9	7.8	10.7	8.2	32.1	5	43
PhytoGen PHY 339WRF	2186	27.3	48.3	42.9	33.9	6.9	9.9	7.6	30.6	5	42
PhytoGen PHY 499WRF	2160	26.7	44.0	44.2	35.6	7.5	10.0	7.9	33.5	5	45
Dyna-Gro DG 2595B2RF	2142	27.2	46.6	45.7	33.7	7.3	10.2	7.9	31.2	5	39
Stoneville ST 4747GLB2	2127	26.3	46.3	41.9	32.6	8.1	10.9	8.2	32.4	7	37
PhytoGen PHY 367WRF	2106	25.6	47.3	42.2	32.6	7.3	10.3	7.6	31.3	5	39
All-Tex AT Nitro-44 B2RF	2092	25.4	48.3	41.1	33.2	7.7	10.8	7.8	32.8	7	38
Deltapine DP 1219B2RF	2091	26.3	46.9	42.9	33.4	6.8	9.0	6.8	33.3	5	46
FiberMax FM 2484B2F	2074	26.7	45.9	42.6	33.6	7.4	10.9	8.3	30.0	7	39
All-Tex AT Epic RF	2059	26.5	45.0	43.5	33.8	7.9	10.7	8.5	31.7	4	43
Croplan Genetics CG 3428B2RF	2056	25.1	45.0	43.7	32.7	7.2	9.5	7.5	31.2	5	41
PhytoGen PHY 375WRF	2052	25.3	45.4	44.4	33.4	8.3	10.7	8.1	34.4	3	42
Stoneville ST 5458B2RF	2048	25.3	47.8	40.2	32.0	7.5	11.3	7.8	30.9	5	42
FiberMax FM 2011GT	2012	25.9	45.0	42.3	33.6	8.8	12.3	9.3	31.8	8	39
Deltapine DP 1044B2RF	1997	24.6	48.5	41.6	32.5	6.4	9.6	7.0	29.8	7	40
Dyna-Gro DGCT 12353B2RF	1989	26.4	45.3	43.9	32.5	7.4	10.4	8.4	28.9	7	45
Stoneville ST 4946GLB2	1986	24.2	45.6	41.3	32.7	8.9	11.8	8.6	34.0	7	40
FiberMax FM 9180B2F	1935	23.8	48.9	39.4	31.4	7.9	11.7	7.7	32.0	8	37
Croplan Genetics CG 3156B2RF	1919	25.4	44.6	42.0	32.6	6.9	10.0	7.5	30.2	6	40
Deltapine DP 1359B2RF	1901	26.1	46.7	42.8	33.3	7.3	8.8	6.7	36.1	4	47
Croplan Genetics CG 3787B2RF	1893	25.4	43.8	44.6	34.3	7.9	9.4	7.7	35.3	4	42
FiberMax FM 9058F	1871	24.6	47.1	40.5	31.5	8.5	11.5	7.9	33.7	8	39
NexGen NG 3348B2RF	1870	24.1	51.1	38.6	30.5	7.7	11.7	7.4	31.8	7	36
FiberMax FM 9250GL	1829	23.8	47.6	40.8	31.7	9.1	12.2	8.6	33.4	8	41
NexGen NG 4010B2RF	1753	22.5	46.0	40.5	31.6	7.5	11.0	7.6	31.2	5	41
NexGen NG 4012B2RF	1749	24.3	46.0	41.4	32.3	7.8	10.6	7.7	33.0	5	43
FiberMax FM 1944GLB2	1744	23.9	47.9	40.2	31.8	7.7	11.7	8.3	29.5	6	35
PhytoGen PHY 725RF	1687	23.7	48.8	39.3	31.3	7.7	11.9	7.8	30.6	3	43
Test average	2027	25.6	46.4	42.1	32.9	7.7	10.7	7.9	32.1	6	41
CV, %	6.7	3.3	3.2	3.5	2.9	7.3	5.5	5.3	7.3	9.7	7.5
OSL	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0961	<0.0001	<0.0001
LSD	190	1.4	2.4	2.4	1.6	0.9	1.0	0.7	3.2†	1	4

CV - coefficient of variation.

OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level, † indicates significance at the 0.10 level.

Table 2. Fiber property results from the OSU cotton official variety test, Caddo Research Station, Fort Cobb, OK 2013.

Entry	Micronaire	Length	Staple	Strength	Uniformity	Elongation	Reflectance	Yellowness
	units	inches	32nds inch	g/tex	%	%	rd %	+b %
All-Tex CT13125B2RF	3.6	1.21	38.7	31.1	82.4	9.1	70.1	6.1
All-Tex AT Epic RF	4.3	1.15	36.9	30.9	83.5	9.7	73.4	7.5
All-Tex AT Nitro-44 B2RF	3.6	1.31	42.1	32.9	82.7	8.3	67.1	6.2
Croplan Genetics CG 3156B2RF	3.2	1.18	37.8	30.1	82.3	7.4	68.3	5.8
Croplan Genetics CG 3428B2RF	4.3	1.27	40.6	30.1	83.0	8.4	74.7	6.9
Croplan Genetics CG 3787B2RF	4.1	1.21	38.8	29.7	83.3	8.9	75.6	7.1
Dyna-Gro DG 2285B2RF	4.0	1.22	38.9	31.4	82.7	9.3	69.9	6.6
Dyna-Gro DG 2595B2RF	4.3	1.19	38.1	30.3	81.9	8.3	72.0	6.4
Dyna-Gro DGCT 12353B2RF	4.5	1.17	37.6	31.3	83.2	7.7	75.2	7.3
Deltapine DP 0912B2RF	4.4	1.14	36.4	30.7	82.3	8.9	68.9	6.5
Deltapine DP 1044B2RF	3.8	1.18	37.8	31.9	83.0	9.4	71.2	6.5
Deltapine DP 1219B2RF	3.8	1.21	38.8	32.0	81.0	7.8	72.6	6.7
Deltapine DP 1321B2RF	4.3	1.20	38.4	32.4	83.5	9.7	68.6	6.5
Deltapine DP 1359B2RF	3.7	1.23	39.2	30.7	79.6	8.1	71.5	7.2
FiberMax FM 1944GLB2	3.7	1.24	39.7	32.2	82.6	6.9	72.6	5.8
FiberMax FM 2011GT	3.9	1.22	39.1	31.7	82.5	7.1	69.6	6.4
FiberMax FM 2484B2F	3.5	1.22	39.1	31.0	81.1	7.0	74.1	6.2
FiberMax FM 9058F	3.6	1.25	40.1	31.1	82.5	7.3	70.4	6.3
FiberMax FM 9180B2F	3.8	1.23	39.3	32.1	83.1	7.3	71.9	5.8
FiberMax FM 9250GL	3.9	1.23	39.2	31.3	82.4	6.3	70.6	5.8
NexGen NG 1511B2RF	4.4	1.17	37.4	31.3	82.9	9.4	70.4	6.8
NexGen NG 3348B2RF	3.5	1.19	38.2	30.9	82.1	8.0	67.3	6.1
NexGen NG 4010B2RF	3.8	1.23	39.4	33.9	82.5	8.3	67.5	6.9
NexGen NG 4012B2RF	3.7	1.22	38.9	32.2	82.3	7.4	69.3	6.5
PhytoGen PHY 333WRF	3.6	1.20	38.5	30.5	82.2	7.5	65.6	6.7
PhytoGen PHY 339WRF	3.9	1.21	38.7	31.6	82.2	8.2	71.6	6.2
PhytoGen PHY 367WRF	3.8	1.19	38.0	32.0	81.1	8.6	67.7	6.8
PhytoGen PHY 375WRF	3.7	1.19	38.2	29.1	81.3	8.1	70.1	6.7
PhytoGen PHY 499WRF	4.0	1.20	38.3	33.3	83.0	9.0	66.2	6.6
PhytoGen PHY 725RF	3.9	1.25	40.0	35.1	82.9	8.6	66.6	7.1
Stoneville ST 4747GLB2	4.0	1.24	39.6	29.1	80.6	6.4	68.5	5.3
Stoneville ST 4946GLB2	3.8	1.23	39.3	32.9	83.4	8.8	69.2	6.1
Stoneville ST 5458B2RF	4.2	1.21	38.7	31.2	81.5	7.4	66.9	6.8
Test average	3.9	1.21	38.8	31.5	82.3	8.1	70.2	6.5
CV, %	4.9	2.1	2.1	3.5	1.4	5.7	3.1	4.6
OSL	<0.0001	<0.0001	<0.0001	<0.0001	0.0216	<0.0001	< 0.0001	<0.0001
LSD	0.3	0.04	1.3	1.8	1.9	0.8	0.4	0.5

CV - coefficient of variation.

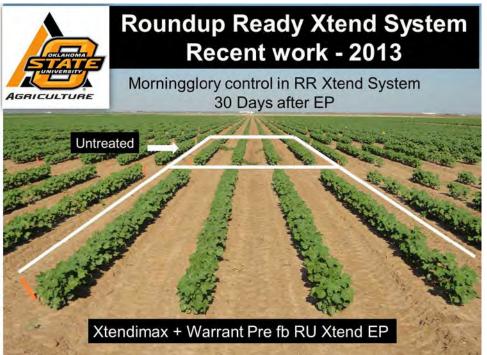
OSL - observed significance level, or probability of a greater F value.

LSD - least significant difference at the 0.05 level.

Weed Control

Results from a recent survey show that Oklahoma cotton producers continue to struggle with tough weeds in their cotton. Despite the fact that weed resistance is growing in most cotton producing regions surrounding Oklahoma, our growers seem committed to limited or no-till production. These production systems depend heavily on effective herbicide programs to remove competitive weeds from their growing environment. When weeds are allowed to exist with the cotton crop, their competitive

nature results in lost plant stands, harvest complications and reduced yields. Maintaining a weed free environment with an effective herbicide program eliminates all of these problems. Recent feedback from Oklahoma growers indicates that horseweed and pigweed are the top two "most difficult to control" weeds in their cotton. Our efforts over the last few years have centered around the control of these two weeds. Unfortunately, according to both OSU testing and grower testimonials, these are the two weeds most reported to be resistant to glyphosate herbicide (Roundup). Managing these challenges with the current technology requires several key elements. Currently there are no in-season herbicides available to growers that effectively control horseweed in a growing cotton crop. Although glufosinate (Liberty) does have activity on horseweed and may be used over-the-top of Liberty Link and Glytol-Liberty Link "stacked" cotton varieties, its inconsistency on pigweed (2nd most difficult to control weed for Oklahoma growers) reduces its appeal as a basis for herbicide programs in Oklahoma. Therefore, in order to effectively control horseweed we must target the window prior to the establishment of a cotton crop. Preplant burndown herbicides can effectively control horseweed when used properly and according to OSU recommendations. Weed size at application time is critical. Horseweed is a winter annual that germinates in the fall or winter and remains in the rosette (flat, prostrate) stage until late spring. During late spring it shifts to vertical growth and begins bolting. Once this weed initiates vertical growth it becomes very difficult to control with available herbicides. Effective control can be achieved when targeting the appropriate weed stage. Dicamba and 2.4-D are the basis for effective preplant control of horseweed ahead of cotton production. Our studies have shown that the inclusion of 1.0 lb ai/A of 2,4-D or 0.25 lb ai/A of dicamba results in effective horseweed control when applied at the appropriate time. Pigweed continues to present problems for many growers in Oklahoma. The rapid spread of glyphosate resistant pigweed around the Cotton Belt and increasing frequency of complaints within Oklahoma require that we adopt an effective pigweed control strategy now rather than ponder the question as to whether or not we have glyphosate resistance. Fortunately there are several options available to growers. Residual herbicides and the inclusion of herbicides with different modes of action are key components of an effective strategy. Specific recommendations for season-long programs can be found within this report. In addition several studies were established in 2013 to evaluate new technologies that may be effective considerations for growers in the future. Most of these projects are focused on the two most difficult to control weeds in Oklahoma cotton, horseweed and pigweed. As stated in the opening letter, some of these projects include treatments that are not currently labeled. Always consult local extension resources for current recommendations and always read and follow all current product labeling.



Herbicide Technology on the Horizon

Throughout cotton's history we can note important, game-changing technological advancements in weed control (Treflan, Caparol, Staple, the BXN System, the Roundup Ready System, the Liberty Link System, Roundup Ready Flex, etc.) Monsanto and Dow Agrosciences expect to release new technologies in 2015 and 2016, pending regulatory approvals, that may be of similar magnitude. Monsanto's Roundup Ready Xtend (RRX) Crop System is expected to be available to cotton producers in 2015. This system will

allow over-the-top applications of glyphosate, glufosinate and dicamba herbicides for weed control. This will be the first triple-stacked herbicide system to enter the marketplace. Currently Bayer Cropsciences offers a double-stacked Glytol-Liberty Link system (glyphosate and glufosinate herbicides). Two new formulations of dicamba (with lower volatility) will be marketed and labeled specifically for use with this herbicide trait package. In addition to Monsanto's proprietary formulation of dicamba (Xtendimax), BASF will also be marketing their own formulation (Engenia) specifically labeled for RRX cotton. This technology was evaluated in Oklahoma in 2013. Excellent crop tolerance of over-the-top broadcast applications of dicamba was observed. In addition, applications of Xtendimax (stand alone dicamba product) and Roundup Xtend (premix combination of glyphosate and dicamba) were evaluated in combination with residual herbicide programs and excellent in-season weed control was observed.

In addition to this technology Dow Agrosciences is planning to release the Enlist Cropping System for cotton in 2016. This would also be a triple stacked herbicide tolerant system utilizing glyphosate, glufosinate and 2,4-D. Similar to the Monsanto system, this trait will require the use of a new, specific herbicide formulation. Dow Agrosciences has developed a new (choline) formulation of 2,4-D reported to have ultra low volatility as compared to currently marketed products. This technology was also evaluated in 2013. As with the previous system excellent crop tolerance of over-the-top broadcast applications of Enlist Duo (premix of 2,4-D + glyphosate) was observed. Additionally, excellent weed control was observed when a residual program (Prowl H2O) was applied preemergence followed by an early postemergence application of Enlist Duo.

Pigweed Control with Engenia

Herbicide resistant weeds continue to garner most of the attention when it comes to weed control in cotton. Although Oklahoma is not plagued with the level of pigweed problems experienced in other parts of the Cotton Belt (Southeast) we are relatively close to problems experienced over the last few years on the South Plains of Texas. Given that our predominant winds

blow from that direction and that equipment is regularly traded across state lines, we fully expect to continue to encounter problems in this area. New technology being developed from Monsanto and Dow AgroSciences should provide grower's with new, effective options for the control of glyphosate resistant pigweed in the near future. Monsanto (pending regulatory approval) is planning to release the Roundup Ready Xtend (RRX) Cotton System in 2015. This system will allow over-the-top broadcast applications of dicamba to cotton varieties with this new trait. In addition, BASF is also scheduled to release (in 2015) a new 5 lb/gallon formulation of dicamba (Engenia) that coincides with the release of the RRX cropping system from Monsanto. This product will also be labeled for over-the-top broadcast applications to RRX cotton. Similar to Monsanto's Xtendimax (3 lb/gallon dicamba), Engenia is reported to be a low volatility formulation delivering the same effective broadleaf weed control to which we are accustomed. This new herbicide technology was evaluated in 2013. The project was conducted on fallow ground (no cotton crop). Six early postemergence treatments were applied on July 11, 2013 to palmer amaranth 2-6 inches in height. Teejet XRC 80015 spray nozzles were used to apply treatments in 10 gallons of water at 38 PSI. Roundup Powermax was applied alone at 22 oz/A. Liberty was applied alone at 29oz/A. Roundup was tank mixed with Liberty at the same rates previously mentioned. Engenia was applied alone at 12.8 oz/A or in combination (at same rate) with either 22 oz/A Roundup Powermax or 29 oz/A Liberty. July 11th was the 7th consecutive day of high temperatures at 100°F or greater. Although the temperature at application (7:15 a.m.) was only 77°F, the high for the day was 106°F with the next two days also reaching 105°F or 106°F. Soil moisture at the time of application was very limited and the pigweeds observed at application time (in the morning) were indicating that they were not completely recovering from the previous day's heat stress. Observations were made at 14 and 30 days after treatment (DAT). Data are presented below in figure 1. Roundup Powermax (RU) applied alone at 22 oz/A controlled palmer amaranth approximately 67% 14 DAT. Similar control was observed from combinations of RU at 22 oz/A + Liberty at 29 oz/A or applications of Engenia alone at 12.8 oz/A 14 DAT. Liberty alone applied at 29 oz/A only provided 22% control of palmer amaranth 14 DAT. Combinations of Engenia at 12.8 oz/A with either RU or Liberty controlled palmer amaranth 90-95% 14 DAT. By 30 DAT the insufficient control observed early on (at 14 DAT) resulted in complete loss of control. A total of 1.7 inches of rainfall was recorded within a week of the application and this led to the recovery of injured palmer amaranth and an additional flush of palmer amaranth in plots that received RU alone, Liberty alone or combinations of RU + Liberty. Essentially no palmer amaranth control was observed from these treatments by 30 DAT. Plots receiving Engenia alone or in combination with RU or Liberty controlled palmer amaranth 83-87% 30 DAT.

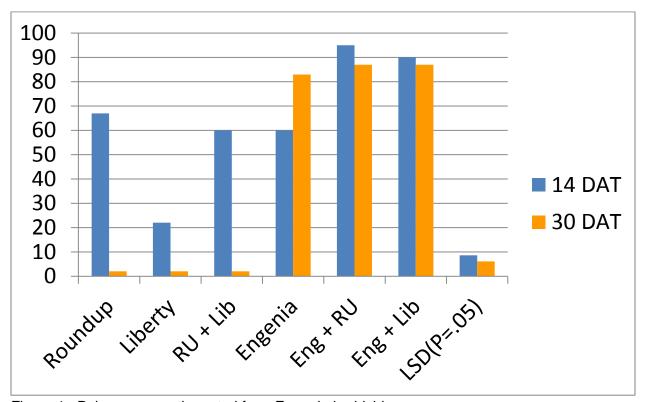


Figure 1. Palmer amaranth control from Engenia herbicide.

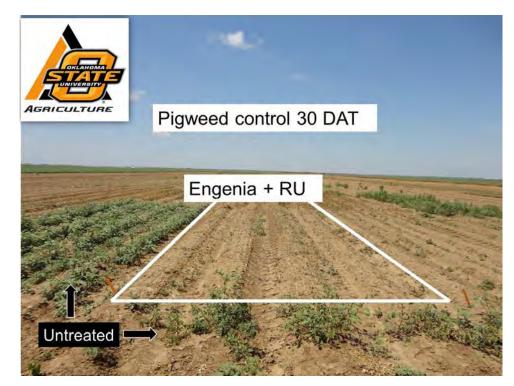


Figure 2. Engenia + Roundup Powermax 30 DAT.

COTTON HERBICIDE SUGGESTIONS

Read and follow all label directions before product use. Products with Residual Control Highlighted in Yellow

Trade Name, Formulation, and Application Rate	Active Ingredient(s), Similar Products and MOA Group	Application Timing(s), EPP-early preplant, PPI-preplant incorporated, PRE-preemergence, or POST-postemergence	Special Instructions and Remarks
2,4-D LV6 5.6 lb ai per gallon All applications: 2/3 – 2 2/3 pt /A For broadleaf weeds only	Active Ingredients: 2,4-Dichlorophenoxyacetic Acid MOA: 4	EARLY PRE-PLANT. Apply at least 30 days prior to planting cotton for control of existing broadleaf weeds or potential for crop injury exists. Tank-mix with glyphosate for additional control of grass species.	Coverage is essential for good control. Do not apply this product through any type of irrigation system. In order to maximize control of horseweed, apply before horseweed passes the rosette stage (prior to upright growth). A minimum of 1.0 lb ai/acre is recommended for optimum horseweed control.
Aim 2 EC 2.0 lb ai per gallon EPP to PRE: Up to 2.0 oz/A Hooded and Post (directed) Up to 1.6 oz/A	Active Ingredients: Carfentrazone Similar Products: None MOA: 14	 EARLY PRE-PLANT to PRE. May be applied no later than one day after cotton planting. Hooded and Post (directed). Cotton less than 12 inches in height requires closed hood applications in order to avoid any contact with cotton stem or 	Aim provides absolutely no grass control therefore tankmixing with glyphosate is recommended when grasses are present. Hooded and Post (directed). Do not apply when winds are above 10 mph or at application speeds above 5 mph. 10 GPA minimum spray volume. Include crop oil concentrate at 1% v/v.
For broadleaf weeds only		foliage or potential for crop injury exists. For layby applications cotton must be at least 12 inches in height and have sufficient bark on stem to avoid contact with green stem tissue.	Coverage is essential for good control. When attempting to control volunteer cotton apply before volunteer reaches 5 leaf stage.
Assure II 0.88 lb ai per gallon	Active Ingredients: Quizalofop	POST. Apply to young, actively growing grasses according to the rate chart listed on the label. If field is to	Do not apply this product through any type of irrigation system. Do not apply within 80 days of harvest. Do not feed forage or hay from treated
POST applications: 5-12 fl oz. /A For grass weeds only	Similar Products: None MOA: 1	be irrigated, apply product after irrigation. Do not apply more than 18 fl oz /A per season.	areas.
Caparol	Active Ingredients:	PRE. Apply at planting or shortly	Do not feed treated forage to livestock, or graze
4 lb ai per gallon	Prometryn	after planting (prior to cotton emergence) at the rate of 2.4 to 4.8	treated areas, or illegal residues may result. Do not use on glandless cotton varieties, or crop
PRE applications: 2.4 pt /A	Similar Products: None	pt/A depending on soil type. See label for soil type and rate restrictions. POST (layby). Prevent spray from	injury will occur. Do not make more than one application per year. POST-layby . Cotton must be at least 12 inches tall. Rates vary from 1.6-3.2
For broadleaf and some grass weeds	MOA: 5	contacting green foliage or injury may occur. Use precision application equipment so the spray is accurately directed to the base of the cotton plants and still thoroughly covers soil and weeds beneath the cotton plants.	pt/A depending on soil classification. See label for rate information according to soil type. Apply before weeds are two inches tall. May be tank- mixed with 2 lb ai/A MSMA at layby for morningglory control. When applying to emerged weeds, add 2 qt of surfactant per 100 gal of spray mixture.
Clarity	Active Ingredients:	EARLY PREPLANT. For best	Do not apply through any type of irrigation
4 lb. ai per gallon	Dicamba	performance, apply when weeds are in the 2-4 leaf stage and rosettes are	equipment. Do not cultivate within 7 days after application. For optimum control of horseweed
EPP applications:	Similar Products:	less than 2" in diameter. Following	apply a minimum of 8 oz/A to 2-4 leaf weeds
8 fl oz /A	Banvel	application and a minimum 1" of	or rosettes less than 2 inches across. Consult
For broadleaf weeds only	Rates may vary due to formulation.	rainfall or overhead irrigation, a waiting interval of 21 days is required per 8 fluid ounces per acre or less. These intervals must be observed prior to planting cotton or potential	label for cotton plant-back interval following application. Tank-mix with glyphosate for additional control of grass species.
	MOA: 4	for crop injury exists.	

COTTON HERBICIDE SUGGESTIONS (CONT'D)

Read and follow all label directions before product use.

Trade Name, Formulation, and Application Rate	Active Ingredient(s), Similar Products and MOA Group	Application Timing(s), EPP-early preplant, PPI-preplant incorporated PRE-preemergence, or POST-postemergence	Special Instructions and Remarks
Dual II Magnum 7.64 lb ai per gallon All applications: 1 to 1.33 pt /A For small-seeded broadleaf and annual grass weeds	Active Ingredients: Metolachlor Similar Products: Dual Magnum Cinch MOA: 15	 PPI. Apply and incorporate into top 1 inch immediately before planting, at planting, or after planting, but before crop or weeds emerge. PRE. Apply to soil surface at planting or after planting, but before weeds or crop emerges. POST. Apply after cotton emergence but prior to weed emergence. Will not control weeds that have already emerged prior to application. All applications. Apply at a rate of 1.0 pt/A on medium soil, or 1.33 pt/A on 	Do not use on sands and loamy sand. Do not feed forage from treated areas to livestock. PPI . PPI application is recommended if furrow irrigation is used or when a period of dry weather after application is expected. Crop should be planted below the level of incorporation; i.e., at least 1 inch on fine soils and 1.5 inches on coarse and medium soils. PRE. Do not apply to areas where water is likely to pond over the bed. Do not make broadcast applications to crops planted in furrows more than 2 inches deep.
		fine soils.	
Fusilade DX 2 lb ai per gallon POST applications: 48 fl oz /A For grass weeds only	Active Ingredients: Fluazifop Similar Products: None MOA: 1	POST. Refer to label for weed specific application rates and timing. Thorough coverage of all grass foliage is important for good activity. Optimum control is achieved when young actively growing grasses are treated that are not under stress from moisture, temperature, low soil fertility, mechanical, or chemical stress. Always add either crop oil concentrate, nonionic surfactant, or other adjuvant.	Do not apply to crop after boll set. Do not harvest within 90 days of application. Do not graze fields or harvest for forage or hay. If applied through irrigation system , apply only through sprinkler systems including center pivot, lateral move, end tow, side (wheel) roller, big gun, solid set, or hand move. Do not apply through any other type of irrigation system.
Fusion 2.56 lb ai per gallon POST applications: 6-12 fl oz /A For grass weeds only	Active Ingredients: Fluazifop Fenoxaprop Similar Products: None MOA: 1 & 1	POST. Best control of susceptible grasses is obtained when applied to actively growing grasses before they exceed the recommended growth stages listed, refer to label for list of grasses and application rates for specific weeds and areas.	Do not apply this product through any type of irrigation system. Do not apply if rainfall is expected within 1 hour. Do not apply more than 24 fluid ounces per acre per season. Do not apply after boll set. Do not harvest within 90 days of application. Do not graze fields or feed treated forage or hay to livestock.
David david David Mari		EADIX DDEDI ANTE 4- DDE Mart	De met en de de met de met temp effenientien
Roundup Power Max 5.5 lb ai per gallon All applications: 22 to 32 oz /A Non-selective control of broadleaf and grass weeds	Active Ingredients: Glyphosate Similar Products: Many Rates may vary due to formulation. MOA: 9	EARLY PREPLANT to PRE. May be applied before, during or after planting crop. POST (conventional cotton). May be applied through hooded sprayers, recirculating sprayers, shielded applicators or wiper applicators. Allow at least 7 days between application and harvest. POST over-the-top (Roundup Ready Flex or GlyTol cotton varieties). Apply anytime from preemergence to 7 days prior to harvest. Late season applications may require directed applications to ensure proper weed coverage.	Do not apply through any type of irrigation system. Do not apply more than 5.3 qt per acre per year. Refer to label for application rates for specific weed types. Do not apply postemergence to any crops other than those listed as Roundup Ready Flex or GlyTol. Do not apply to Roundup Ready Flex or GlyTol crops within 7 days of harvest. For horseweed control apply a tank-mix of 22 oz/A Roundup PowerMax + a minimum of 1.0 lb ai /A 2,4-D or 0.25 lb ai/A of Dicamba. In order to maximize control, apply before horseweed passes the rosette stage .

COTTON HERBICIDE SUGGESTIONS (CONT'D) Read and follow all label directions before product use.

Trade Name, Formulation, and Application Rate	Active Ingredient(s), Similar Products and MOA Group	Application Timing(s), EPP-early preplant, PPI-preplant incorporated PRE-preemergence, or POST-postemergence	Special Instructions and Remarks
Gramoxone Inteon^r 2 lb ai per gallon	Active Ingredients: Paraquat	EARLY PREPLANT to PRE. Apply prior to, during, or after planting, but before crop emergence.	Do not apply this product through any type of irrigation system. Always add nonionic surfactant. Complete coverage is essential for
EPP to PRE applications: 2.5 to 4 pt /A Non-selective control of	Similar Products: Firestorm (3 lb)	For fallow bed treatment, beds should be preformed to permit maximum broadleaf weed and grass emergence prior to treatment. Seeding should be	good control.
broadleaf and grass weeds	MOA: 22	done with minimum soil disturbance.	
Liberty 280 (formerly Ignite) 2.34 lb ai per gallon	Active Ingredients: Glufosinate-ammonium	EARLY PREPLANT to PRE. Apply to actively growing weeds up to 120 prior to planting cotton.	Do not apply more than 43 fl oz/A in a single application. Do not apply more than 87 fl oz/A in a growing season if 22-29 oz/A rates are used.
POST applications: 22 to 29 fl oz /A	Similar Products: None	POST over-the-top. Apply POST, over LibertyLink Cotton varieties only, to actively growing weeds when	Do not apply more than 72 oz/A in a growing season if first application of up to 30-43 oz/A is used. Do not apply within 70 days prior to
Non-selective control of broadleaf and grass weeds	MOA: 10	the cotton has emerged and up to the cotton early bloom stage.	harvest. Herbicide should be applied broadcast in a minimum of 15 gallons of water per acre. Use a spray volume of 20 to 40 gallons per acre for dense weed/crop canopies so that thorough spray coverage will be obtained.
Karmex DF	Active Ingredients:	EARLY PREPLANT. Apply from	Do not spray over the top of crop plants. Do not
80% DF	Diuron	15 to 45 days prior to planting. If weeds are present the addition of a	apply to sand or loamy sand soils. Do not use on soils with less than 1% organic matter as crop
EPP applications: See table	Similar Products: Direx 4L	non-ionic surfactant is recommended. Weeds should be 2 inches or smaller.	injury may result. Do not use in preplant or preemergence applications where soil-applied
PRE applications: See table	Direx 80 DF Diuron 4L	PRE. Do not apply to sand or loamy sand soils. Use only where crop is	organophosphate insecticides are used due to potential for severe crop injury and possible stand
POST applications: 1 to 1.5 lb /A	Diuron 80 DF	planted on flat or raised seedbeds (not planted in a furrow). Apply 1-2 lb/A according to labeled guidelines	loss. Do not allow livestock to graze treated cotton. EPP & PRE. If less than the maximum rate is
For small seeded broadleaf and annual grass weeds	MOA: 7	regarding soil texture. POST-directed applications. Apply 1 to 1.5 lb/A when crop is at least 12" high. In irrigated crops, best control is obtained if the field is irrigated within 3-4 days after application. Apply to soil beneath crop and between rows immediately after last cultivation.	used, a second PRE application can be made, but total can not exceed maximum use rates listed on label. Do not apply PRE if maximum application rate was used in preplant application.

Karmex DF Application Rates					
Soil Texture Rate/Acre Rate/Acre/Season					
Sandy loam, Loam, Silt loam, Silt	1 lb /A	1 lb /A			
Sandy clay loam, Clay loam, Silty clay loam, Sandy clay	1.25 lb /A	1.25 lb /A			
Silty clay, Clay	2 lb /A	2.75 lb /A			

COTTON HERBICIDE SUGGESTIONS (CONT'D)

Read and follow all label directions before product use.

Trade Name, Formulation, and Application Rate	Active Ingredient(s), Similar Products and MOA Group	Application Timing(s), EPP-early preplant, PPI-preplant incorporated PRE-preemergence, or POST-postemergence	Special Instructions and Remarks
MSMA 6.6 6.6 lb ai per gallon	Active Ingredients: MSMA Similar Products:	EARLY PREPLANT. Apply preplant or postplant up to cracking of soil before cotton emergence using ground or aircraft equipment. Apply	Apply over the top of crop only as a salvage operation; apply only to healthy, rapidly growing crops, 3 inches high but no later than 6 inches high.
All applications: 0.5 to 2.5 pt /A	MSMA 6 Plus 120 Herbicide 912 Herbicide	at a rate of 2.5 pt/A of product with a suitable surfactant. POST (over-the-top). Apply over the top when crop is 3 to 6 inches tall or	POST (Directed Spray). Do not apply as a directed spray after the first bloom. A second or repeat application, if needed, should be timed about 1 to 3 weeks after first application.
For broadleaf and grass weeds	MOA: 17	up to early first square stage, apply at a rate of 1 to 1.25 pt/A with a suitable surfactant. Will cause significant leaf burn of the crop. POST (Directed Spray). Applicable as a directed spray with ground equipment when crop is 3 inches tall to first bloom, apply at a rate of 2.5 pt/A with a suitable surfactant.	
Poast Plus 1 lb ai per gallon	Active Ingredients: Sethoxydim	POST. Applications can be made to actively growing weeds as aerial, broadcast, band, or spot spray	Do not apply this product through any type of irrigation system. Do not apply within 40 days of harvest. To achieve consistent weed control.
POST applications: 1.5 to 3.75 pt /A For grass weeds only	Similar Products: Poast <u>Rates may vary due to</u> <u>formulation.</u>	applications. Most effective control is achieved if applied when weeds are small and actively growing.	always use either seed oil or crop oil concentrate. Do not cultivate within 5 days before or 7 days after application. Processed meal may be fed to animals.
	MOA: 1		

COTTON HERBICIDE SUGGESTIONS (CONT'D)

Read and follow all label directions before product use.

Trade Name, Formulation, and Application Rate	Active Ingredient(s), Similar Products and MOA Group	Application Timing(s), EPP-early preplant, PPI-preplant incorporated PRE-preemergence, or POST-postemergence	Special Instructions and Remarks
Prowl 3.3 EC 3.3 lb ai per gallon	Active Ingredients: Pendimethalin	EARLY PREPLANT. Apply up to 15 days prior to planting.	If applied through irrigation system, use only center pivot, lateral move, end tow, side (wheel)
All applications: See table.	Similar Products: Pendimax 3.3 Prowl H2O	PPI. Apply up to 60 days prior to planting and incorporate within 7 days of application; however, immediate incorporation is best.	roll, traveler, big gun, solid set, or hand move irrigation systems. Do not apply this product through any other type of irrigation system for layby applications. Do not apply as a broadcast
For small seeded broadleaf and grass weeds	MOA: 3	 PRE. Apply overlay application at planting or up to 2 days after planting. Total amount applied per acre cannot exceed the highest labeled rate for a given soil type. POST/LAYBY. Apply directly to the soil between rows as a directed spray following the last normal cultivation (layby). Fall Application. May be applied for weed control in cotton in the fall, after Oct. 15 (up to 140 days prior to planting). Apply at a broadcast rate of 1.8 pt /A on coarse soils, 2.4 pt /A on medium soils and 3.6 pt /A on fine soils. 	spray over-the-top of crop. Do not feed forage or graze livestock in treated fields. Product is most effective when adequate rainfall or overhead irrigation is received within 7 days after application. Use higher rates listed for no-tillage applications for control of rhizome johnsongrass in specified soil textures. This use is not recommended for soils with more than 3% organic matter. There must be an interval of at least 60 days between the last application and harvest.
Prowl H2O	Active Ingredients:	EARLY PREPLANT. Apply up to	If applied through irrigation system, use only
3.8 lb ai per gallon	Pendimethalin	15 days prior to planting. PPI. Apply up to 60 days prior to	center pivot, lateral move, end tow, side (wheel) roll, traveler, big gun, solid set, or hand move
All applications: See table.	Similar Products: Pendimax 3.3 Prowl 3.3 EC	planting and incorporate within 7 days of application; however, immediate incorporation is best. PRE. Apply overlay application at	irrigation systems. Do not apply this product through any other type of irrigation system for layby applications. Do not apply as a broadcast spray over the top of crop. Do not feed forage or
For small-seeded broadleaf and grass weeds	MOA: 3	 Plat. Approventay approximation at planting. Total amount applied per acre cannot exceed the highest labeled rate for a given soil type. POST/LAYBY. Apply directly to the soil between rows as a directed spray following the last normal cultivation (layby). Fall Application. May be applied for weed control in cotton in the fall, after Oct. 15 (up to 140 days prior to planting). Apply at a broadcast rate of 1.8 pt /A on coarse soils, 2.4 pt /A on medium soils and 3.6 pt /A on fine soils. 	spiay over the top of etop. Do not receivage of graze livestock in treated fields. Product is most effective when adequate rainfall or overhead irrigation is received within 7 days after applications for control of rhizome johnsongrass in specified soil textures. This use is not recommended for soils with more than 3% organic matter. There must be an interval of at least 60 days between the last application and harvest. Postemergence over-the-top broadcast tank-mix applications with Roundup PowerMax may be made to Roundup Ready Flex or GlyTol cotton varieties between the 4 leaf and 8 leaf growth stages. Over-the-top applications past the 8 leaf stage may result in crop injury and or yield loss. Do not apply over-the-top of cotton with fluid fertilizer or to cotton under stress. Dry ammonium sulfate (at 17 lb/100 gal) or the liquid equivalent must be used when tank-mixing with Roundup PowerMax.

COTTON HERBICIDE SUGGESTIONS (CONT'D) Read and follow all label directions before product use.

EPP, PPI &/or PRE	Prowl 3.3 EC Broadcast Rates pt/A			
	Soil Texture	Conventional or Minimum Tillage	No-Tillage	
	Coarse	1.2 to 2.4 pt /A	1.8 to 2.4 pt /A	
	Medium	1.8 to 2.4 pt /A	2.4 to 3.6 pt /A	
	Fine	2.4 to 3.6 pt /A	3.6 to 4.8 pt /A	
	For heavy clay soils, apply at a broadcast rate of 3.6 pt /A.			
	Total amount applied per	acre cannot exceed the highest labeled	l rate for a given soil type.	

POST/LAYBY	Prowl 3.3 EC Layby Application Use Rates		
	Soil Texture	Use Rate pt /A	
	Coarse	1.2 to 1.8 pt /A	
	Medium	1.8 to 2.4 pt /A	
	Fine	2.4 to 3.6 pt /A	

EPP, PPI &/or PRE & Layby	Prowl H2O 3.8 Broadcast Use Rates			
	Soil Texture	Conventional or Minimum Tillage	No-Tillage	
	Coarse	1 to 2 pt /A	2 pt /A	
	Medium	2 pt /A	3 pt /A	
	Fine	3 pt /A	4 pt /A	
	For heavy clay soils, apply at a broadcast rate of 3 pt /A.			
	Total amount applied per	acre cannot exceed the highest la	beled rate for a given soil type.	
POST alone or tank- mixed with Roundup PowerMax	Prowl H2O 3.8 Broadcast Use Rates Conventional, Minimum or No-till			
	Soil Texture	e	Use Rate pt /A	
	Coarse		1 to 2 pt /A	
	Medium		1.5 to 2 pt /A	
	Fine		2 pt /A	

COTTON HERBICIDE SUGGESTIONS (CONT'D)

Read and follow all label directions before product use.

		label directions before	
Trade Name, Formulation, and Application Rate	Active Ingredient(s), Similar Products and MOA Group	Application Timing(s), EPP-early preplant, PPI-preplant incorporated PRE-preemergence, or POST-postemergence	Special Instructions and Remarks
Select 2 EC 2 lb ai per gallon POST applications: 6 to 16 fl oz /A For grass weeds only	Active Ingredients: Clethodim Similar Products: Prism MOA: 1	POST. Apply to actively growing grasses, refer to label for specific rates for weed type. In arid regions, application should be made as soon as possible after irrigation (within 7 days). A second application will generally provide more effective perennial grass control in arid conditions than a single application. Make second application to actively growing grass 2 to 3 weeks after emergence of new growth.	Do not apply within 60 days of harvest. Do not graze treated fields or feed treated forage or hay to livestock. Do not apply through any type of irrigation system. Do not apply if rainfall is expected within one hour of application. Always use a crop oil concentrate at 1.0 qt /A by ground or 1% v/v in the finished spray volume by air. Refer to label for application rates for specific grass species controlled.
bequence	Active Ingredients:	EARLY PREPLANT. Apply prior to	Do not apply POST to non-Roundup Ready Flex
5.25 lb ai per gallon All applications: 2.5 to 4 pt/A	Metolachlor & Glyphosate Similar Products:	planting for control of emerged actively growing weeds and soil residual activity. Do not incorporate if applied EPP or crop injury will	or non-GlyTol cotton varieties. Do not graze or feed forage or fodder from Sequence treated cotton to livestock. Do not apply EPP or PRE on sand or loamy sand soils.
Non-selective control of broadleaf and grass weeds	None MOA: 15 & 9	result. PRE. Apply after planting in no-till production system for control of emerged actively growing weeds and soil residual activity. POST on Roundup Ready Flex and GlyTol cotton varieties. Apply after crop and weeds have emerged for control of emerged actively growing weeds and soil residual activity.	POST applications on Roundup Ready Flex or GlyTol cotton varieties: Make postemergence applications from cotyledon stage to the 10-leaf stage (not to exceed 12 inches tall) of cotton development. Do not apply later as severe injury, including yield loss, could occur. Do not exceed 2.5 pt of Sequence per acre in a single application on cotton with less than 5 leaves. Apply up to 2.75 pt of Sequence per acre in a single application from the 5-leaf through the 10- leaf stage of cotton. Do not use if cotton plants are under stress.
Sharpen 2.85 lb ai per gallon Early Preplant applications: 1.0 oz/A	Active Ingredients: Saflufenacil Similar Products: None MOA: 14	EARLY PREPLANT. Apply at least 42 days prior to planting cotton for control of emerged actively growing weeds and soil residual activity or crop injury may occur.	Do not plant cotton until 42 days and an accumulation of 1 inch of rainfall has occurred after application in order to avoid crop injury. Do not apply to coarse soils classified as sand with less than 1.5% organic matter or cotton injury may occur. Do not apply Sharpen with other Group 14/GroupE herbicides (such as
For broadleaf weeds only			flumioxazin) as a tank-mix or sequential application within 30 days or crop injury may result. Do not apply sharpen where an at- planting application of an organophosphate or carbamate insecticide(s) is planned because severe injury may result. May be tank-mixed with 0.25 lb ai/A Dicamba or 1.0 lb ai/A 2,4-D for horseweed control. In order to maximize control, apply before horseweed passes the rosette stage (prior to upright growth). For control of grass species tank-mix with glyphosate. Include either a crop oil concentrate or methylated seed oil at 1% v/v plus ammonium sulfate at 8.5 to 17 lb/100 gal.
Staple LX 3.2 lb ai per gallon	Active Ingredients: Pyrithiobac	PRE. May be applied preemergence to aid in the control of many	PRE. Do not apply through any type of irrigation system. Do not use on coarse soils such as sands
PRE applications: 1.3 to 2.1 oz /A	Similar Products: None	problematic weeds. Applications require rainfall or sprinkler irrigation to activate the herbicide. Use the higher application rate for difficult to	or loamy sands. Do not use on coarse soils such as sands or loamy sands. Do not use on soils with less than 0.5% organic matter. Do not use on crops planted in furrows. POST. Use a minimum of 10 gallons of water
POST applications: 2.6 to 3.8 oz/A	MOA: 2	control weeds or in fields where high infestation of weeds occur. POST. Application should be made over-the-top or as a post-directed	per acre by ground or 3 gallons of water per acre by air. All rates are broadcast. Use proportionately less for banded applications. All applications. Do not apply more than 5.1
For broadleaf weeds only		spray to cotton (begin at cotyledon stage) and actively growing weeds.	oz/A per year. Add a non-ionic surfactant at the rate of 0.25-0.5% v/v or a crop oil concentrate at the rate of 1-2% v/v with all postemergence applications. Under arid conditions, a crop oil concentrate is recommended. Weed size at application is critical for optimal control, consult label for appropriate weed sizes.

COTTON HERBICIDE SUGGESTIONS (CONT'D) Read and follow all label directions before product use.

Trade Name, Formulation, and Application Rate	Active Ingredient(s), Similar Products and MOA Group	Application Timing(s), EPP-early preplant, PPI-preplant incorporated PRE-preemergence, or POST-postemergence	Special Instructions and Remarks
Treflan HFP 4.0 lb ai per gallon	Active Ingredients: Trifluralin	Fall applications. Apply to flat ground and incorporate once within 24 hours.	If applying through irrigation system: Apply only through continuously moving center pivot, lateral move, end tow, solid set, or hand move
PPI applications: See table.	Similar Products: Treflan TR-10 Trifluralin HF	Spring applications. Application and incorporation may occur before planting or after planting prior to crop	irrigation systems. Refer to label for additional chemigation instructions. Do not apply to soils that are wet or are subject to prolonged periods of
For small seeded broadleaf and grass weeds	Trust 10G Trust 4EC Trust Herbicide	emergence. Use the lower application rates when sequential applications are anticipated. Layby applications. Application may	flooding as poor weed control may result.
	MOA: 3	be made in established crops from the 4 true leaf stage of growth up to layby, but no less than 90 days before harvest.	

	Treflan HFP Application Rates						
Soil Texture	Spring Application	Fall Application	Chemigation Application	Conservation Tillage	Layby Application		
Coarse	1 pt /A	2 pt /A	1-3 pt /A	1-2 pt /A	1 pt /A		
Medium	1.25-1.5 pt /A	2 pt /A	1.5-4 pt /A	1.5-2 pt /A	1.5 pt /A		
Fine	1.5-2 pt /A	2.5 pt /A	2-4 pt/A	2-4 pt /A	2 pt /A		

COTTON HERBICIDE SUGGESTIONS (CONT'D) Read and follow all label directions before product use.

Valor SX	Active Ingredient:	EARLY PREPLANT. A minimum	Do not graze treated fields or feed treated forage
51% WP	Flumioxazin	of 14 to 30 days must pass prior to	or hay to livestock. Do not incorporate into the
		planting cotton after application	soil after application. Do not apply more than 2
Preplant Burndown	Similar Products:	depending on tillage system and rate	oz/A in a single application or 4 oz/A during a
applications:	Valor	applied, consult label.	single growing season. Do not make a sequential
1 to 2 oz/A		POST-Directed/Hooded	Valor WP application within 30 days of the
	Rates may vary due to	Applications. Precautions should be	previous Valor application. Do not apply within
POST-Directed/Hooded	formulation	taken to avoid contacting the green	60 days of harvest. Do not use on crops grown
applications:	MOA: 14	foliage of cotton plants or severe crop	for seed. Only apply with nonionic surfactant, do
2.0 oz/A		injury may result. Cotton should be at	not apply with crop oil concentrate, methylated
		least 6 inches in height at the time of	seed oil or other types of adjuvants as crop injury
		application. Direct the spray onto the	may result. Valor should be tank-mixed with
For broadleaf and some grass		bottom 2 inches of the cotton stem-	glyphosate or MSMA to provide grass control.
weeds		bark layer. Do not allow spray to	Consult label for rotation intervals to other crops.
		contact green cotton stems.	Spray equipment used to apply VALOR SX
		Layby Application	should not be used to apply other materials to any
		Layby application of VALOR SX	crop foliage
		tank-mixes may be made once cotton	
		has developed a minimum of 4 inches	
		of bark and has reached a minimum of	
		18 inches in height. Cotton that is	
		smaller than 18 inches in height	
		and/or has less than 4 inches of	
		bark may be injured by VALOR	
		SX applications. VALOR SX	
		application must be directed to the	
		lower 2 inches of bark to avoid crop	
		injury. Severe crop injury may result	
		if application is made to green or unbarked stem.	
Warrant	Active Ingredient:	POST. Apply this product	Postemergence to Roundup Ready Flex or
3.0 lb ai/gallon	Acetochlor	postemergence to cotton and	GlyTol cotton varieties. This product may be
DOGT II II		preemergence to weeds at 1.25 to 2	tank-mixed with Roundup agricultural herbicides
POST applications	Similar Products:	qt/A according to soil classification	on Roundup Ready Flex or GlyTol cotton
1.25 to 2 qt/A	None	rate chart listed on label. Application	varieties when cotton is completely emerged until
	101.15	should be made after cotton is	cotton reaches first bloom. The optimum timing
For small-seeded broadleaf and	MOA: 15	completely emerged but before	of application is when cotton is in 2-3 leaf stage.
grass weeds		bloom.	Product may be applied again when cotton is in
			the 5 to 6 leaf stage if directed to the soil. Do not
			make postemergence surface applications
			using sprayable fluid fertilizer as the carrier
			because severe crop injury may occur.

	Warrant Application Rates (Broadcast per acre)					
Soil Texture	Soil TextureLess than 1.5% Organic Matter1.5% or More Organic Matter					
	(quarts)	(quarts)				
Coarse	1.25 to 1.6	1.25 to 1.7				
Medium	1.25 to 1.7	1.25 to 1.9				
Fine	1.25 to 1.9	1.25 to 2.0				

Herbicide Program Suggestions For Fighting/Preventing Glyphosate Resistant Pigweed In Oklahoma Cotton

Production Preplant At-plant Early to Mid-season Late-season System Burndown or Incorporated **Burndown or Preemerge** Postemergence Layby-Hoods 1 Minimum or Dicamba or 2,4-D + Glyphosate + Glyphosate + Aim + Direx Prowl H20 Staple LX No-till Glyphosate 2 Minimum or Dicamba or 2.4-D + Gramoxone SL + Glyphosate + Glyphosate + Valor + Glyphosate Direx Warrant Direx No-till Dicamba or 2,4-D + Glyphosate + Glyphosate + 3 Minimum or Caparol + MSMA Sharpen + Glyphosate Dual II Magnum Prowl H20 No-till Treflan or Prowl H20 Conventional Glyphosate + Valor + MSMA 1 **Caparol** tillage Staple LX Treflan or Prowl H20 Glyphosate + Aim + Caparol 2 Conventional **Direx** tillage Warrant Treflan or Prowl H20 Staple LX Direx + MSMA 3 Conventional Glyphosate +

Weed Control Programs in Glyphosate Tolerant Cotton Varieties (Roundup Ready Flex, GlyTol)

Without the use of residuals Palmer amaranth can emerge all season long...plan ahead!

tillage

Prowl H20

Preventing/Fighting Glyphosate Resistance in Oklahoma Cotton

✓ Plan ahead...devise an effective strategy early.

-Consider season long approach...PPI thru layby
-Develop a spray schedule and consider alternatives
-Purchase chemical ahead of time if possible

Return to the residuals...still several options which have different MOA.*

-Treflan/Prowl, Aim/Valor, Gramoxone Max, Caparol/Direx, Dual Magnum/Warrant, StapleLX/Pyrimax
-Consider potential crop rotational issues when using residuals

Tank-mixing with glyphosate should be a standard consideration
 -Several in-season options, Prowl, Dual, Warrant, Staple, etc.

✓ Scout thoroughlybefore and after applications.

-Weed size at application time is key, check labels -Identifying failures as early as possible can be critical

✓ Make every application count!

-Choose appropriate rate for weed size at app....read labels
-Properly condition water...8-17 lbs/100 gal AMSO4 prior to the addition of glyphosate to the tank

-Use a spray volume that will provide good coverage...dense canopies require more water to effectively reach all weeds

-Speed is your enemy...what good is finishing in an hour if it has to be re-sprayed

-Avoid speeds that generate excess dust

-Avoid spraying in extreme temperatures

Diversify your practices.

-Don't rule out tillage -Rotation may be necessary

Without the use of a residual product Palmer Amaranth can emerge all season...don't save yourself into a disaster!

*It is recommended that at least two different modes of action (MOA) be used in-season in addition to glyphosate.

Herbicide How-to: Understanding Herbicide Mode of Action

Joe Armstrong Extension Weeds Specialist

The large number of herbicide options—new products, old products with new names, new formulations of old products, premixes, and generics—can make weed control a difficult and confusing task. In addition to knowing the crops in which a herbicide can be used, the weeds it will control, the appropriate rate, and any necessary adjuvants to include, it is also important to know and understand the herbicide's mode of action to design a successful weed management program.

What is "Mode of Action?"

The mode of action is the way in which the herbicide controls susceptible plants. It usually describes the biological process or enzyme in the plant that the herbicide interrupts, affecting normal plant growth and development. In other cases, the mode of action may be a general description of the injury symptoms seen on susceptible plants. In Oklahoma crop production, 11 different herbicide modes of action are commonly used, and each is unique in the way it controls susceptible plants. Some herbicide modes of action comprise several chemical families that vary slightly in their chemical composition, but control susceptible plants in the same way and cause similar injury symptoms.

Herbicides can also be classified by their "site of action," or the specific biochemical site that is affected by the herbicide. The site of action is a more precise description of the herbicide's activity; however, the terms "site of action" and "mode of action" are often used interchangeably to describe different groups of herbicides.

Why is it Important to Know the Mode of Action?

Knowing and understanding each herbicide's mode of action is an important step in selecting the proper herbicide for each crop, diagnosing herbicide injury, and designing a successful weed management program for your production system. Over-reliance on a single herbicide active ingredient or mode of action places heavy selection pressure on a weed population and may eventually select for resistant individuals. Over time, the resistant individuals will multiply and become the dominant weeds in the field, resulting in herbicides that are no longer effective for weed control. Simply rotating herbicide active ingredients is not enough to prevent the development of herbicide-resistant weeds. Rotating herbicide modes of action, along with other weed control methods, is necessary to prevent or delay herbicide-resistant weeds. Always read each product's label to determine the mode of action and best management practices for herbicide-resistant weeds.

Oklahoma Cooperative Extension Fact Sheets are also available on our website at: http://osufacts.okstate.edu

Many weeds have developed "cross resistance" and are resistant to multiple herbicides within a single mode of action. Most waterhemp populations in Oklahoma, for example, are cross-resistant to both Scepter (chemical family: imidazolinone) and Classic (chemical family: sulfonylurea). Both of these herbicides are ALS inhibitors, but belong to different chemical families within the same mode of action. Therefore, it is important to not only rotate herbicide active ingredients but also to rotate modes of action to prevent herbicide-resistance weed populations from developing. One of the most effective ways to rotate herbicide modes of action is through crop rotation.

Weeds that have developed "multiple resistance" are resistant to herbicides from two or more modes of action. At this time, there are no weeds in Oklahoma that have been confirmed as resistant to multiple herbicide modes of action; however, instances of weeds with multiple resistance can be found in neighboring states. ALS-resistant, PPO-resistant, and glyphosate-resistant populations of waterhemp have been confirmed in Kansas. As well, Italian ryegrass populations in Arkansas have been confirmed to be resistant to both ALSand ACCase inhibitor herbicides.

How can I Determine the Herbicide's Mode of Action?

Information regarding each product's mode of action can sometimes be found on the front of the herbicide label. Often, the herbicide is described as being a member of a particular numbered group. These numbers refer to a specific mode of action and were developed to consistently organize herbicides based on their mode of action. For example, "Group 1" herbicides are ACCase inhibitors and "Group 2" herbicides are ALS inhibitors. Some herbicides will list the mode of action somewhere in the general instructions or product description in the label. In other situations, products may not mention the mode of action anywhere in the label. If you are unsure of the herbicide's mode of action, contact your local county extension educator for clarification.

What are the Different Modes of Action? What are their Characteristics?

The following is a short description of the 11 most commonly used herbicide modes of action in Oklahoma crop (Continued on page 4)

ACCase Inhibitors

ACCase	Innibitors		
Group	Chemical family	Trade names	Active ingredient
1	Arloxyphenoxypropionate "FOPs"	Assure II Hoelon ^r Fusilade Puma	quizalofop diclofop fluazifop fenoxaprop
1	Cyclohexanedione "DIMs"	Select, Select Max, others Poast, Poast Plus	clethodim sethoxydim
1	Phenylpyrazoline "DENs"	Axial XL	pinoxaden
<mark>ALS Inh</mark>	ibitors		
<mark>Group</mark>	Chemical family	Trade names	Active ingredient
2	Imidazolinone "IMIs"	Beyond, Raptor Cadre Pursuit Scepter	imazamox imazapic imazethapyr imazaquin
2	Sulfonylurea "SUs"	Accent Ally Amber Autumn Beacon Classic Express Glean Harmony Maverick Option Osprey Peak Permit	nicosulfuron metsulfuron triasulfuron primisulfuron chloriumuron tribenuron chlorsulfuron thifensulfuron sulfosulfuron foramsulfuron mesosulfuron prosulfuron halosulfuron
2	Triazolopyrimidine	Resolve FirstRate PowerFlex Python Strongarm	rimsulfuron cloransulam-methyl pyroxsulam flumetsulam diclosulam
2 2	Pyrimidinyl(thio)benzoate Sulfonylaminocarbonyltriazolinones	Staple Everest Olympus	pyrithiobac flucarbazone propoxycarbazone
Root Gr	owth Inhibitors		
Group	Chemical family	Trade names	Active ingredient
3	Dinitroaniline	Treflan, others Prowl, others Sonalan	trifluralin pendimethalin ethafluralin
Growth	Regulators		
Group	Chemical family	Trade names	Active ingredient
4	Phenoxy-carboxylic acid	many Butyrac, others	2,4-D 2,4-DB MCPA
4 4	Benzoic acid Pyridine carboxylic acid	Banvel, Clarity, Status, others Stinger Starane Tordon', Grazon'	dicamba clopyralid fluroxypyr picloram
4	Quinoline carboxylic acid	Paramount	quinclorac

Photosynthesis Inhibitors (Photosystem II)

Group	Chemical family	Trade names	Active ingredient
5	Triazine	Aatrex ^r , atrazine ^r , others	atrazine
		Princep	simazine
		Caparol	prometryn
5	Triazinone	Sencor	metribuzin
		Velpar	hexazinone
5	Uracil	Sinbar	terbacil
6	Nitrile	Buctril, others	bromoxynil
6	Benzothiadiazinone	Basagran	bentazon
7	Urea	Linex, Lorox	linuron
		Karmex	diuron

Shoot Growth Inhibitors

Group	Chemical family	Trade names	Active ingredient
8	Lipid synthesis inhibitor, thiocarbamate	Eptam	EPTC
15	Chloroacetamide	Dual, Cinch, others	metolachlor
		Intrror, Micro-Techr	alachlor
		Harness ^r , Degree ^r , Surpass ^r , others	acetochlor
		Outlook	dimethenamid-P
15	Oxyacetamide	Define	flufenacet

Aromatic Amino Acid Synthesis Inhibitors

Group	Chemical family	Trade names	Active ingredient
9	Glycine	Roundup, Touchdown, others	glyphosate

Glutamine Synthesis Inhibitors

Group	Chemical family	Trade names	Active ingredient
10	Phosphonic acid	Ignite, Liberty	glufosinate

Pigment Synthesis Inhibitors

Group	Chemical family	Trade names	Active ingredient
12	Pyridazinone	Zorial Rapid 80	norflurazon
13	Isoxazolidinone	Command	clomazone
27	Triketone	Callisto	mesotrione
		Laudis	tembotrione
		Impact	topramezone
27	Isoxazole	Balance ^r	isoxaflutole

PPO Inhibitors

G	Group	Chemical family	Trade names	Active ingredient
1	4	Diphenylether	Blazer	acifluorfen
			Reflex, Flexstar	fomesafen
			Cobra	lactofen
			Goal	oxyfluorfen
1	4	N-phenylphthalimide	Valor	flumioxazin
			Resource	flumiclorac
1	4	Thiadiazole	Cadet	fluthiacet
1	4	Triazolinone	Aim	carfentrazone
			Spartan, Authority	sulfentrazone
Ρ	hotosyı	nthesis Inhibitors (Photosystem I)		

Group	Chemical family	Trade names	Active ingredient
22	Bipyridilium	Gramoxone Inteon ^r , others Reglone, others	paraquat diquat

r Restricted use pesticide.

production. The list of herbicides in the accompanying table (found on the inside pages) is not exhaustive and does not account for herbicide premixes that contain two or more active ingredients. If you have questions regarding mode of action, consult the individual product label and support literature from the manufacturer or contact your county agricultural Extension educator for more information.

ACCase Inhibitors (Group 1)

Inhibitors of the ACCase enzyme in plants are used strictly for grass control. As a result, they are used primarily in broadleaf crops or fallow situations, but there are also some products labeled for use in grass crops to control specific grass weeds. These herbicides are commonly referred to by the nicknames of their chemical families, "FOPs," "DIMs," and "DENs."

ALS Inhibitors (Branched-Chain Amino Acid Inhibitors) (Group 2)

ALS inhibitors, or branched-chain amino acid inhibitors, comprise the largest mode of action and include at least one herbicide used in nearly every crop produced in Oklahoma. Many herbicides in this mode of action fall into two chemical families: imidazolinones (or "IMIs") or sulfonylureas (or "SUs"), but there are three other chemical families within the ALS inhibitors. Cross resistance, or herbicide-resistance to multiple chemical families within a single mode of action, is common with ALS inhibitors.

Root Growth Inhibitors (Group 3)

Herbicides in this mode of action inhibit cell division, which stops roots from extending and are distinctive because of the yellow color of their formulations. They are applied preplant incorporated or preemergence in a wide range of agronomic crops, vegetables, turf, and ornamentals for control of grasses and small-seeded broadleaf weeds.

Growth Regulators (Group 4)

This mode of action, also known as synthetic auxins, includes many commonly used plant hormone-type herbicides in wheat, corn, sorghum, and pasture settings. These herbicides are generally selective for broadleaf control in grass crops; however, there are some uses for preplant and in-season weed control in broadleaf crops.

Photosynthesis Inhibitors—Photosystem II (Groups 5, 6, and 7)

These herbicides inhibit Photosystem II, part of the photosynthesis pathway, and are used in a variety of crops for control of grass and broadleaf weeds. Because of their extensive use for several decades, some weeds have developed resistance to these herbicides, particularly atrazine and metribuzin.

Shoot Growth Inhibitors (Groups 8 and 15)

Herbicides in this mode of action are soil-applied herbicides and control weeds that have not emerged from the soil surface. These herbicides generally control grass weeds and small-seeded broadleaf weeds.

Aromatic Amino Acid Inhibitors (Group 9)

The only herbicide included in this mode of action is glyphosate. There are many generic glyphosate and glyphosate-containing products available. Depending on the product, glyphosate can be formulated as ammonium, diammonium, dimethylammonium, isopropylamine, and/or potassium salts. Despite the different salt formulations available, it is important to know that the type of salt formulation does not affect weed control, but rather it indicates the way a particular glyphosate product is formulated. Glyphosate is a generally a non-selective herbicide and will severely injure or kill any living plant tissue that it comes in contact with. However, it can be used selectively in glyphosate-resistant crops, including corn, soybean, cotton, and canola. Like the ALS inhibitors, glyphosate controls susceptible plants by inhibiting amino acid synthesis; however, glyphosate and ALS inhibitors control susceptible plants in completely different ways and should not be considered to be the same mode of action.

Glutamine Synthesis Inhibitors (Group 10)

The only herbicide included in this mode of action is glufosinate. Glufosinate can be used as a non-selective burndown treatment or as an over-the-top postemergence application in Liberty Link® crops (glufosinate resistant).

Pigment Synthesis Inhibitors (Groups 12, 13, 27)

These herbicides are also called "bleachers" because of the characteristic white plant tissue that develops in susceptible plants after application. Several of the pigment synthesis inhibitors (mesotrione, isoxaflutole) are also referred to as HPPD-inhibitors, based on their site of action.

PPO Inhibitors (Groups 14)

PPO inhibitors may also be referred to as cell membrane disruptors and are usually "burner"-type herbicides. Some PPO-inhibitors can be applied preemergence, but most are used for postemergence weed control.

Photosynthesis Inhibitors—Photosystem I (Group 22)

Photosystem I inhibitors include paraquat and diquat and are used for non-selective weed control and crop desiccation prior to harvest. These herbicides are also referred to as "cell membrane disruptors" because of their contact activity.

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, gender, age, religion, disability, or status as a veteran in any of its policies, practices, or procedures. This includes but is not limited to admissions, employment, financial aid, and educational services.

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert E. Whitson, Director of Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma. This publication is printed and issued by Oklahoma State University as authorized by the Vice President, Dean, and Director of the Division of Agricultural Sciences and Natural Resources and has been prepared and distributed at a cost of \$1.35 per copy. 1209 GH

Start Clean and Stay Clean!

Horseweed Control with Zidua and Engenia for No-Till Cotton in Oklahoma

Introduction

This horseweed project focused on the use of two new or emerging products. Zidua is a newly registered herbicide from BASF. Zidua contains the active ingredient Pyroxasulfone. Pyroxasulfone is a group 15 (shoot inhibitor) herbicide providing preemergence or residual control of small-seeded broadleaf and annual grass weeds. Supplemental labeling for 2013 dictates that cotton may not be planted until 4 months have passed after the application of Zidua. This project was initiated in order to evaluate the efficacy of Zidua and to better define the tolerance of cotton to applications made closer to planting. Engenia is a new formulation of Dicamba. Though not currently available to growers, this formulation is expected to be labeled for the use over the top of Roundup Ready Extend cotton. Engenia contains 5 lb/gallon of the active ingredient Dicamba. Therefore use rates will be slightly less than traditional 4 lb products. This project was initiated in order to evaluate the effectiveness of Engenia on horseweed and to compare it to our current standards.

Materials and Methods

This study was established as a randomized complete block design with four replicates and was conducted on a clay loam soil in Tillman County. Broadcast over-the-top applications were made with a compressed air, high-clearance sprayer with a spray volume of 10 gallons per acre (GPA). Treatments were applied on April 1, 2013 utilizing both Zidua and Engenia. A total of ten treatments including an untreated control are listed in figure 1. Two treatments were applied according to OSU's standard recommendations for horseweed control. These were either 21 oz/A of 2,4-D (LV6) or 8 oz/A of Clarity in combination with 22 oz/A of Roundup Powermax. Any time Roundup powermax was applied, spray solutions were conditioned with 8.5 lbs/100 gal of spray grade ammonium sulfate before adding the Roundup Powermax. Engenia was applied with Roundup Powermax at the rate of 6.4 oz/A (equivalent ai to Clarity rate). In addition, both 2,4-D and Engenia were applied in three-way tankmixes with 2 oz/A of Zidua + either 1oz/A of Sharpen or + 0.5 lb ai/A Paraquat. Zidua was also applied with 0.5 lb ai/A paraguat alone. These treatments were also compared to a three way combination of Zidua + Sharpen + Roundup Powermax. The horseweed ranged from 3 to 6 inch rosettes at the time of application. Treatments were applied at 28 psi with flat fan nozzles.

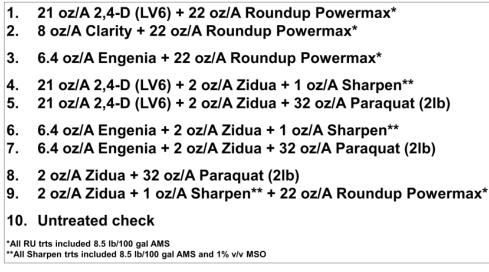


Figure 1. Horseweed treatments evaluated

Results and Discussion

Figure 2 provides the observed treatment performance at 7,14, 28 and 45 days after treatment (DAT). Engenia applied at 6.4 oz/A with Roundup Powermax (RU) controlled horseweed 70% when evaluated 7 days after treatment (DAT). This was similar to the performance of RU combinations including 2,4-D or Clarity (64-66%). As time passed control for all three RU combinations increased. Excellent horseweed control (98-100%) was observed from all three treatments by 45 DAT. All remaining treatments included either Sharpen or Paraquat and controlled horseweed 100% initially and this control held through the 45 day evaluation. Figure 3 presents control observed from applications of both Zidua and Engenia 30 DAT. This data validates the effectiveness of several chemical options for horseweed control when applications are made at the proper growth stage (rosette).

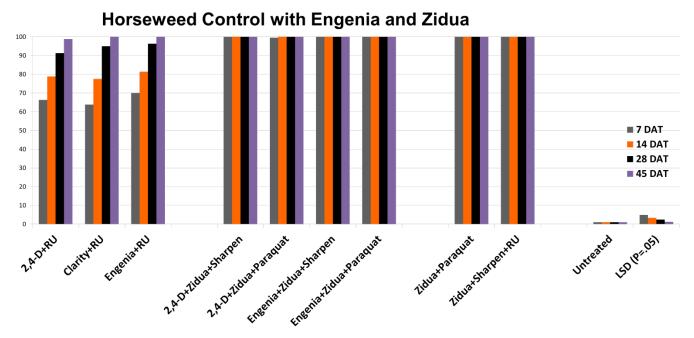


Figure 2. Treatment performance

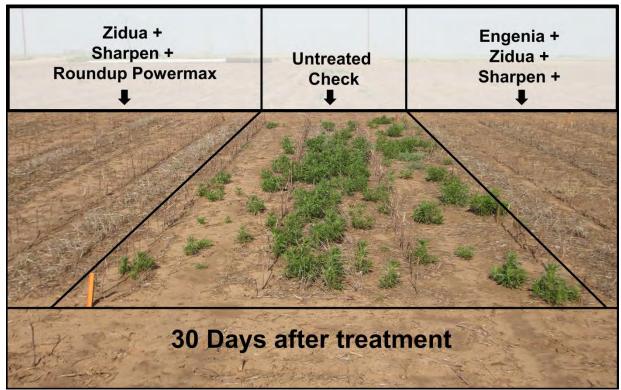


Figure 3. Horseweed control provided by treatments including Zidua and Engenia.

article revised November 2009

Introduction:

Spray applicators are faced with the challenge of avoiding spray drift. Spray drift is defined as "the output from an agricultural crop sprayer that is deflected out of the target area," typically caused by wind. Spray drift can be hazardous to sensitive plants and animals.

To aid applicators in identifying times of higher drift risk due to weather variables, the Oklahoma Mesonet has created a Drift Risk Advisor. This planning tool compares weather variable parameters with an 84-hour forecast matched to each Mesonet site. The Drift Risk Advisor uses the National Weather Service 84-hour North American Model forecast. In addition to weather variables the Drift Risk Advisor has forecasted dispersion conditions.

The Drift Risk Advisor is a weather-based planning tool that provides drift risk guidance, it does not supersede conditions at the field at the time of application that may be different from the forecast. The final

judgement of whether conditions are appropriate for a spray application are the responsibility of the applicator.

Drift Risk Advisor Weather Variables:

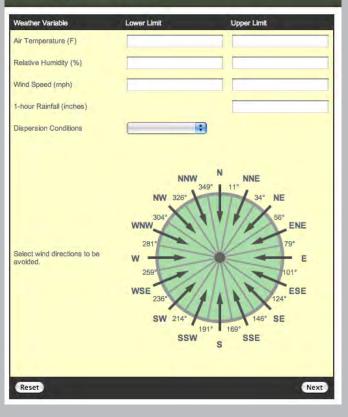
Select "Upper" and "Lower Limits" that are appropriate for the application material. Upper and/or Lower Limits can be entered for one, all or any combination of the Drift Risk weather variables.

- Air temperature (Fahrenheit)
- Relative humidity (percent)
- Average wind speed (miles per hour)
- One hour rainfall (inches per hour)
- Wind direction
- Dispersion conditions

Dispersion conditions are based on the Oklahoma Mesonet Dispersion Advisor. Dispersion conditions are reported as one of six levels of vapor dispersion. These six categories are given text and number designations: Very Poor (1), Poor (2), Moderately Poor (3), Moderately Good (4), Good (5) and Excellent (6).

Finding the Drift Risk Advisor:

The Oklahoma Mesonet Drift Risk Advisor is located on the Agweather Web site (http://agweather.mesonet.org).


- From the main Agweather page, select "Forecast"

- Choose "Drift Risk Advisor"

- From the main Aqweather page, select "Crop"
 - Choose any crop
 - Under Pest Control, select "Drift Risk Advisor" or
- From the main Agweather page, select "Horticulture"
 - Choose any horticulture crop
 - Under Pest Control, select "Drift Risk Advisor"

Drift Risk Advisor

Pesticide Application Planner

AGWEATHER Drift Risk Advisor								
Pesticide Application	Planner							
Date and Time	Criteria Met?	Wind Direction	Wind Direction in degrees	Wind Speed	Air Temperature	Rainfall per Hour	Dispersion Conditions	Relative Humidity
Nov 13, 2009 3:00 pm CST	Yes	SSW	194.7	4 mph	77 °F	0.00 in.	5 (G)	36%
Nov 13, 2009 4:00 pm CST	Yes	S	176.7	3 mph	74°F	0.00 in.	4 (MG)	46%
Nov 13, 2009 5:00 pm CST	Yes	SE	143.5	2 mph	70°F	0.00 in.	3 (MP)	56%
Nov 13, 2009 6:00 pm CST	No	ESE	107.2	2 mph	66°F	0.00 in.	1 (VP)	65%
Nov 13, 2009 7:00 pm CST	No	SE	125.3	2 mph	65°F	0.00 in.	1 (VP)	68%
Nov 13, 2009 8:00 pm CST	No	SE	141.4	3 mph	64°F	0.00 in.	2 (P)	71%
Nov 13, 2009 9:00 pm CST	No	SSE	153.7	3 mph	63°F	0.00 in.	2 (P)	74%
Nov 13, 2009 10:00 pm CST	No	SSE	160.6	2 mph	61°F	0.00 in.	1 (VP)	78%
Nov 13, 2009 11:00 pm CST	No	SSW	194.5	1 mph	59° F	0.00 in.	1 (VP)	82%

Drift Risk Advisor Output Table:

The times when Weather Variables are within the user entered "**Upper and Lower Limits**" will appear as green colored boxes in the output table. When the Weather Variable is outside the Upper and Lower Limits, the box will have a red color. Weather Variables not compared will be shown in the table as column(s) of alternating gray and white boxes.

When all selected "Weather Variables" for a single hour fall within the entered Upper and Lower Limits, the "Criteria Met?" box will be colored green and have "Yes" text. When any one Weather Variable for a single hour falls outside the entered Upper and Lower Limits, the box in the "Criteria Met?" column will have a red color and "No" text.

Examples of Drift Caution Statements on Pesticide Labels

Trade name	Common name	Pesticide group	Drift caution statements
Banvel + 2,4-D	Banvel and 2,4-D	Hormone herbicide	Do not spray near sensitive plants if wind is gusty or in excess of 5 mph and moving in the direction of adjacent sensitive crops
Command 3ME	Clomazone	Preemergecy herbicide	Do not apply in winds about 10 mph. Avoid gusty or windless conditions
Dimethoate 4E	Dimethoate	Organophosphate insec- ticde	Apply only when the wind is less than or equal to 10 mph
Tordon 22K	Picloram	Hormone herbicide	Drift potential is lowest between wind speeds of 2-10 mph. Application should not occur during an inversion because drift potential is high.
Trigard	Cyromazine	Insect growth regulator	To avoid spray drift, do not apply under windy condi- tions
Warrior	Lambda-cyhalothrin	Synthetic pyrethroid insecticde	Do not apply when wind velocity exceeds 15 mph.

Your feedback is important to us. Call us at 405-325-3126.

Our story

In 1982, Oklahoma scientists recognized the need for a statewide weather network.

At OSU, agricultural scientists wanted to upgrade weather instruments at their research sites. Their goal was to expand the use of weather data in agricultural applications.

Meanwhile, scientists from OU and the Oklahoma Climatological Survey were helping to plan and implement a flood-warning system for Tulsa. OSU and OU joined forces in 1987 when they realized that one statewide weather network would help both universities achieve their missions.

No other state or nation is known to have a network that boasts the capabilities of the Oklahoma Mesonet.

Agweather is one Web site that features data from the Oklahoma Mesonet. Agweather provides weather-related products for agriculture and natural resources. Agweather can be found at http://agweather.mesonet.org/.

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, gender, age, rein disability, or status as a veteran in any of its policies, practices or procedures. This includes but is not limited to admissions, employment, financial aid, and educational services. This publication is printed and issued by Oklahoma State University as authorized by the Vice President, Dean, and Director of the Division of Agricultural Sciences and Natural Resources and has been prepared and distributed at a cost of \$25 per copy.

Entomology & Plant Pathology

Outreach – NTOKcotton.org, cotton.okstate.edu, eXtension Cotton Community of Practice, Cotton Comments Newsletter, and Texas Cotton Resource DVD

The NTOK (North Texas, Oklahoma, and Kansas) program and website (<u>www.ntokcotton.org</u>), was maintained for the Oklahoma Cotton Council. This was supported by generation of timely information on important issues during the growing season. Mr. Vic Schoonover provided 10 Talkin' Cotton articles for release to local newspapers and these were also posted to the ntokcotton.org website. Due to a shortage of funds by the Oklahoma Cotton Council, no additional Talkin' Cotton articles were generated after July, 2013. Based on results from ipower.com website traffic analysis software for the ntokcotton.org website, from January 1 through December 31, 2013, the number of unique visitors was 6,152. The total number of visits was 36,190, number of page downloads was 50,756, and total hits was 61,808.

The OSU Extension Cotton Team developed eleven newsletters which were published and emailed directly to 326 recipients. A total of 53 recipients responded to an end-of-season survey. It was evident based on this survey and respondents, that an additional 387 people were forwarded the newsletter. Therefore, the best estimate we have for direct distribution of the newsletter is a total of 7,843 (11 editions x 713 recipients). These newsletters were also published to the websites cotton.okstate.edu and ntokcotton.org. Survey questions were asked pertaining to the value and content of the newsletters. Recipients were asked to rate on a scale of 1 to 5 (1 being not very useful) and 5 (being extremely useful). The result for the newsletter's usefulness was 4.44. With respect to the question of "topics being timely and discussed" the result was 4.44. When asked whether the newsletter should be continued the result was 100% of respondents.

We placed considerable content on the <u>www.cotton.okstate.edu</u> website hosted by a campus server since it was initiated in 2012. We supported this website with our publications and newsletters. This website has a great appearance and we have provided various information tabs containing content or links for the following areas: Cotton Team, Cotton Comments Newsletters, Cotton Extension Annual Reports, Extensive Production Information Links, Variety Tests, Budgets, Irrigation, Sprayer Calibration, Weed Control, Weed Resistance Management, Plant Growth Regulators, Plant Growth and Development, Fertility, Insect Management, Diseases, Yield Estimation, Harvest Aids, Harvesting and Ginning, Fiber Quality, Crop Insurance, No-till Production, Producer Organization Links, Seed and Trait Company Links, Oklahoma Mesonet Tools, and Journal of Cotton Science.

Several years ago cotton specialists from across the Belt participated in conference calls and a meeting in Kansas City to establish the eXtension cotton website. We provided numerous numbered publications to upload to the Website. It was launched at the Beltwide Cotton Conference in Nashville in January, 2008. In 2012, this was still actively supported by our Beltwide Extension Cotton Specialist Working Group, a true multi-state research and extension effort. Dr. Boman is the subject matter editor for the Ginning and Classing section for the

Cotton Community of Practice. All subject matter sections were updated in the fall of 2012 by the various editors. Dr. Guy Collins of the University of Georgia is handling coordination of content updating. We have a direct link on both websites we manage. This website can be found at <u>www.extension.org</u>.

Included in Oklahoma State Support-Cotton Incorporated funding for 2012 was the acquisition of 500 copies of the 2011 Texas Cotton Resource DVD. We worked with Dr. Gaylon Morgan, State Extension Cotton Specialist with Texas A&M AgriLife Extension Service, and were successful in acquiring these DVDs. In addition to copies initially distributed in 2012, more copies were distributed at various meetings during 2013. We will continue to distribute this DVD during subsequent meetings in the state until the supply is exhausted.

Surveys of Crop and Pest Conditions

From the IPM perspective, grasshoppers were the main concern of the 2013 crop. Population was heavy and prolonged but control issues were a concern. Insecticide sprays were generally limited. Early thrips pressure did not develop but cotton fleahopper populations were present. Where insecticide applications were used no control issues developed. Stink bugs and leaf footed bugs appeared late but were confined to areas under adequate irrigation. Cotton bollworm populations were discovered in some of the few non Bt fields but none were reported elsewhere. Overall, the 2013 crop year was one of lightest insect infestations year in memory. Population trends, insect updates, and control tips were published in the Cotton Comments Newsletter and distributed to the state's cotton producers and consultants to help formulate management strategies to enhance profitability. Field surveys were conducted in 9 counties with a total of 20 fields. Insect pressure as well as plant development was recorded and reported in the newsletter. As part of the COTMAN program, nodes above white flower (NAWF) criterion was tracked at each location to assist producers in the identification of the last cohort of bolls that should likely make harvestable lint at each site. This assists with the termination of insecticides for late season pests, and helps determine irrigation termination and harvest aid application dates.

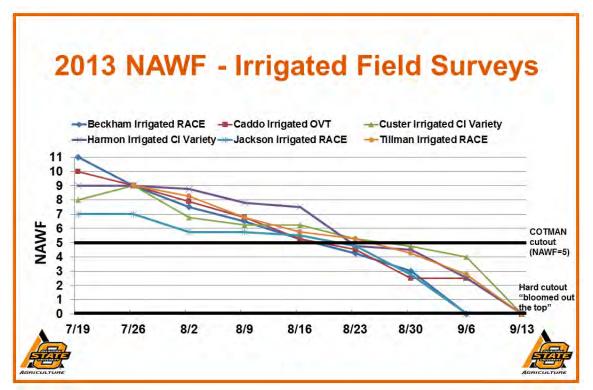


Figure 1. Weekly nodes above white flower (NAWF) in surveyed irrigated fields in 2013.

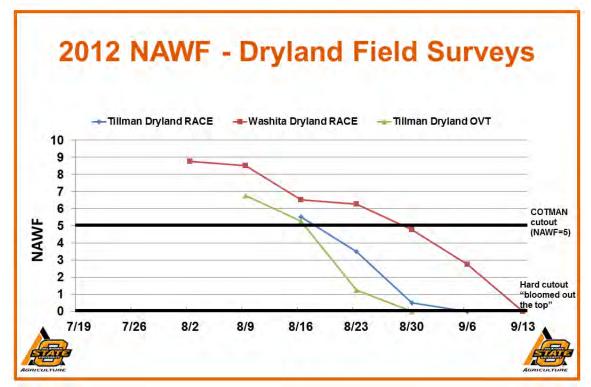


Figure 2. Weekly nodes above white flower (NAWF) in surveyed dryland fields in 2013.

Research Accomplishments

Cotton Bollworm / Tobacco Budworm and Beet Armyworm Monitoring

The bollworm/tobacco budworm complex has historically been the target of annual insecticide applications in Oklahoma cotton. Monitoring moth activities helps determine species ratio and the potential peak ovipositional activity for these insects. Traps were located near the communities of Altus, Ft Cobb, Hollis, Texola and Tipton. In addition to Heliothine activity, beet armyworm catches were also monitored at each location. Traps were maintained between June 1 and October 1, 2013. Although both Heliothine species do coexist and are considered the same by growers, the species ratio is important since tobacco budworms exhibit a higher level of resistance to insecticides than bollworms. Also, it would be important to know this ratio in the event of Bt cotton failures. It is extremely important to detect fluctuations in species ratio of each ovipositional period and adjust insecticide recommendations accordingly for non-Bt cotton fields. A total of 1,066 moths were captured between the weeks of June 1 and October 1. Bollworms comprised 83.67% of the total catch in 2013. Beet armyworm moth catches were extremely light.

Table 1. N	/loth Pheromone 1	Frap Catch Tot	als for Selected	Regions of Oklaho	oma, Summer
2013.					

Bollworm						
<u>Altus</u>	<u>Tipton</u>	<u>Hollis</u>	<u>Ft. Cobb</u>	<u>Delhi</u>		
183	232	227	122	128		
Tobacco Budworm						
<u>Altus</u>	<u>Tipton</u>	Hollis	<u>Ft.Cobb</u>	<u>Delhi</u>		
25	49	62	18	20		
Beet Armyworm						
<u>Altus</u>	Tipton	Hollis	<u>Ft. Cobb</u>	<u>Delhi</u>		
91	113	89	142	150		

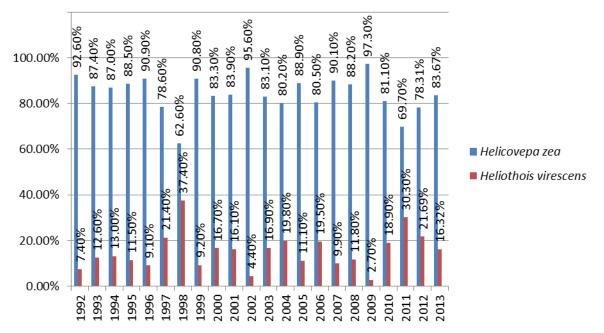


Figure 3. Species composition of moths trapped across Oklahoma, Summer 2013.

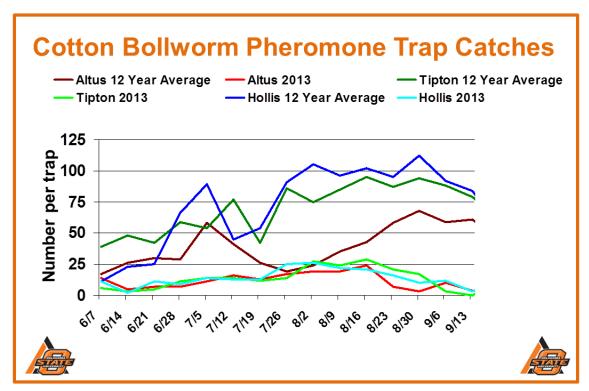


Figure 4. Cotton bollworm moths trapped by week across Oklahoma, Summer 2013.

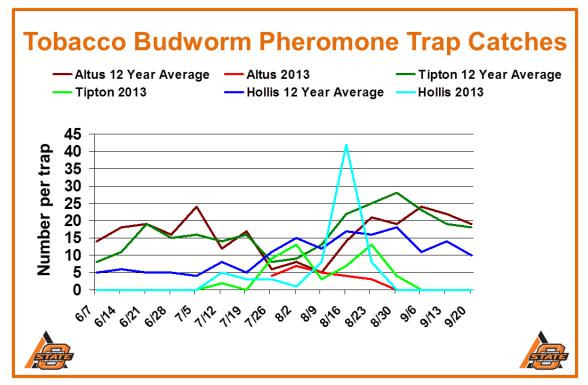


Figure 5. Tobacco budworm moths trapped by week across Oklahoma, Summer 2013.

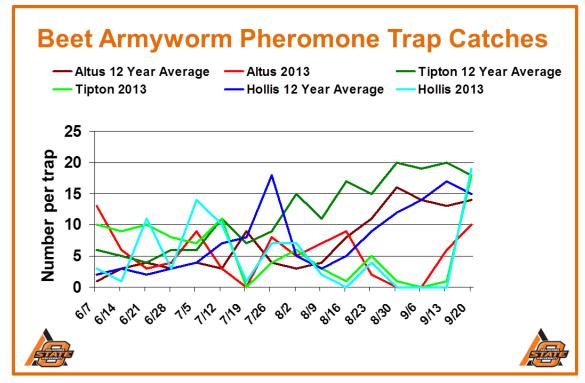


Figure 6. Beet armyworm moths trapped by week across Oklahoma, Summer 2013.

Insecticide Evaluation Trials

Four insecticide product evaluation trials were attempted but due to poor soil moisture all sites no yield data was collected. The Jackson County locations included irrigated trials. However, insufficient water in Lake Lugert resulted in no water being released for irrigation purposes. The Tillman county locations were dryland and with the harsh conditions the site failed to produce harvestable yield.

Bayer CropSciences' TwinLink Bt Observation Trials – Important Tool in Cotton Insect Resistance Management

Working with industry, we initiated two Cotton Agronomic Performance (CAP) trials with Bayer CropScience's proprietary TwinLink technology targeted to control various lepidopterous pests. Although still sourced from Bt, it is a different system than what is currently marketed by Monsanto (Bollgard II, Cry1A + Cry2AB) and Dow AgroSciences (Widestrike, Cry1A + Cry1F). TwinLink (consisting of genes to express Cry1Ab and Cry2Ae proteins) was approved by EPA and USDA in 2013, but at planting time, the company was still waiting for ex-U.S. approval by trading partners. The objective of these trials was to evaluate TwinLink technology in some germplasm lines likely to be sold in 2014. These trials were conducted under a stewardship agreement with Bayer CropScience and were planted in producer-cooperator irrigated fields in Harmon and Blaine Counties. TwinLink Bt was effective in controlling low populations of lepidopterous pests encountered at the sites in 2013.

Evaluation of Flutriafol for Cotton Root Rot Control and Section 18 Request

As part of an overarching IPM responsibility, two *Phymatotrichopsis* (or cotton) root rot (PRR) control trials evaluating Topguard (flutriafol) were established in Kiowa (irrigated) and Tillman (dryland) counties. PRR is caused by the fungus *Phymatotrichopsis omnivora*. Once infected, cotton is rapidly killed by this disease. As a result, yield is severely reduced, and harvesting efficiency declines due to dead stalks becoming entangled in harvester row units, particularly with stripper-type machines.

The project results were presented at 2014 Cotton Beltwide in New Orleans, LA. The Tillman County dryland site failed due to drought. Substantial but spatially variable PRR pressure was encountered at the Kiowa County irrigated site. Results indicated that 0.13 and 0.26 lb/acre flutriafol rates had lower percentage diseased plants than the untreated. The 0.26 lb/acre rate resulted in a lower percentage of diseased plants than the 0.13 lb rate. Although no differences were noted with respect to percentage of diseased plants, the Topguard formulation provided greater lint yield than the CHA-1328 product, the reasons for which are unclear. When compared to the modified in-furrow treatment, T-band application method resulted in a higher number of healthy plants at both 14 and 28 DAP, but this did not result in higher yield at harvest. Lint yields were 1226, 1566, and 1715 lb/acre for the untreated check, and flutriafol rate main effect means of 0.13 and 0.26 lb a.i./acre, respectively. When compared to the untreated check, yields were increased by 340 and 489 lb/acre for the 0.13 and the 0.26 lb a.i./acre rates, respectively. This represents 28 and 40 percent yield increases for flutriafol rates of 0.13 and 0.26 lb a.i./acre, respectively increases for flutriafol rates of 0.13 and 0.26 lb a.i./acre, respectively increases for flutriafol rates of 0.13 and 0.26 lb a.i./acre rates, respectively. This represents 28 and 40 percent yield increases for flutriafol rates of 0.13 and 0.26 lb a.i./acre, respectively increases for flutriafol rates of 0.13 and 0.26 lb a.i./acre, respectively increases for PRR at this site.

Using results from the Kiowa County site, a Section 18 request was made through Dr. Jackie Lee and Dr. John Damicone to the Oklahoma Department of Agriculture, Food and Forestry in early February. This follows Texas' 2012, 2013, and 2014 successful Section 18 requests for flutriafol for cotton root rot control.

Counties in the Section 18 request include Comanche, Cotton, Kiowa, and Tillman. Based on 2013 cotton plantings in these counties, this would potentially affect a maximum of about 50,000 acres (see www.obweo.org/County%20Statistics.htm). It is very likely that a substantially lower number of acres would potentially be treated with this product, because not all fields in those counties have disease pressure. We are optimistic that this request will be successful. For more information on flutriafol see the Beltwide Cotton Conference Proceedings article "Field Evaluation of Topguard (Flutriafol) for Cotton Root Rot Management in Oklahoma.

COTTON INSECT LOSSES 2013

This report is sponsored by a grant from the Cotton Foundation.

Michael R. Williams, Chairman Extension Entomologist Emeritus Cooperative Extension Service Mississippi State University Mississippi State, MS 39762

State Coordinators

Alabama Dr. Timothy Reed	Missouri Dr. Moneen Jones
Arkansas Dr. Gus Lorenz	New Mexico Dr. Jane Pierce
Arizona Dr. Peter Ellsworth	North Carolina Dr. Jack Bacheler
California Dr. Peter Goodell	Oklahoma Mr. Jerry Goodson
Florida Dr. Mike Donahoe	South Carolina Dr. Jeremy Green
Georgia Dr. Phillip Roberts	Tennessee Dr. Scott Stewart
Kansas Dr. Stu Duncan	Texas Dr. Charles Allen
Louisiana Dr. David Kern	Virginia Dr. Ames Herbert

Mississippi --- Dr. Angus Catchot

Highlights

Cotton losses to arthropod pests reduced overall yields by 2.68%. Lygus were the top ranked pest in 2013 reducing yields by 0.782%. Stink bugs were ranked second at 0.684%. Thrips were ranked third at 0.553%. Cotton fleahoppers were fourth at 0.217%. Bollworm/budworm complex caused 0.161% loss and spider mites reduced yields by 0.133%. No other pest exceeded 0.1% loss. Total costs and loss for insects in 2013 were \$724.2 million. Direct management costs for arthropods were \$62.70 per acre.

Table 1. Oklahoma Cotton Insect Losses – 2013.

	acres	acres	#apps/	#apps/ tot			
Pest	infested	treated	acre trtd	acres	cost/ acre	%red	Bales lost
Boll Weevil	0	0	0	0.000	\$0.00	0.00%	0
Bollworm/Budworm	0	0	0	0.000	\$0.00	0.00%	0
Pink Bollworm	0	0	0	0.000	\$0.00	0.00%	0
Cotton Fleahopper	68,840	60,235	1	0.350	\$3.15	0.60%	1,952
Lygus	0	0	0	0.000	\$0.00	0.00%	0
Cotton Leaf Perforator	0	0	0	0.000	\$0.00	0.00%	0
Spider Mites	0	0	0	0.000	\$0.00	0.00%	0
Thrips	77,445	17,210	1	0.100	\$0.20	0.23%	732
Beet Armyworm	0	0	0	0.000	\$0.00	0.00%	0
Fall Armyworm	0	0	0	0.000	\$0.00	0.00%	0
European Cornborer	0	0	0	0.000	\$0.00	0.00%	0
Stink Bugs	8,605	27,426	1	0.010	\$0.09	0.00%	2
Grasshoppers	146,285	60,235	1	0.350	\$3.85	0.04%	138
Saltmarsh Caterpillars	0	0	0	0.000	\$0.00	0.00%	0
Aphids	0	0	0	0.000	\$0.00	0.00%	0
Banded Winged Whitefly	0	0	0	0.000	\$0.00	0.00%	0
Silverleaf Whitefly (Bemesia)	0	0	0	0.000	\$0.00	0.00%	0
Loopers	0	0	0	0.000	\$0.00	0.00%	0
Southern Armyworms	0	0	0	0.000	\$0.00	0.00%	0
Cutworms	0	0	0	0.000	\$0.00	0.00%	0
Clouded Plant bugs	0	0	0	0.000	\$0.00	0.00%	0
Other	0	0	0	0.000	\$0.00	0.00%	0
Other	0	0	0	0.000	\$0.00	0.00%	0
Other	0	0	0	0.000	\$0.00	0.00%	0
Other	0	0	0	0.000	\$0.00	0.00%	0
Other	0	0	0	0.000	\$0.00	0.00%	0
				0.810	\$7.29	0.87%	2,824

Yield & Management Results	
Total Acres	172,100
Total bales Harvested	215,125
yield (lbs/acre)	600
Total bales Lost to Insects	2,824
Percent Yield Loss	0.87%
Yield w/o Insects (lbs/ac)	605
Ave. # Spray Applications	0.81
Bales lost all factors	110,171
% yield loss all factors	33.87%

Economic Results	Total	Per Acre
Foliar Insecticides Costs	\$1,254,609	\$7.29
At Planting Costs	\$1,060,566	\$6.16
In-furrow costs	\$37,862	\$0.22
Scouting costs	\$167,798	\$0.98
Eradication costs	\$344,200	\$2.00
Transgenic cotton	\$1,448,979	\$8.42
Total Costs	\$4,314,013	\$25.07
Yield Lost to insects	\$1,016,486	\$5.91
Total Losses + Costs	\$5,330,500	\$30.97

COTTON DISEASE LOSS ESTIMATE COMMITTEE REPORT, 2013

Kathy S. Lawrence **Auburn University** Mary Olsen **University of Arizona Travis Faske University of Arkansas Robert Hutmacher University of California** John Muller **Clemson University Jim Mario University of Florida Bob Kemerait University of Georgia Charlie Overstreet** Louisiana State University **Gabe Sciumbato & Gary Lawrence Mississippi State University** Sam Atwell **University of Missouri Steve Thomas New Mexico State University Steve Koenning** North Carolina State University Jerry Goodson and Randy Boman **Oklahoma Slate University Heather Young University of Tennessee** Jason Woodward Texas A & M University Hillary L. Mehl Virginia Tech

Abstract

The National Cotton Council Disease Loss committee submitted estimates of the losses due to each disease during the 2013 growing season. Estimates are calculated by cotton specialists in each state discussing disease incidence observed across each state during the year. Yield losses are determined by using the USDA "Crop Production" published at <u>www.usda.gov/nass/PUBS/TODAYRPT/crop1113.pdf</u> which documents cotton acreage planted, harvested, and average yields for each state. Total average percent loss was estimated at 12.54% which is up 3.35% from 2012. Plant parasitic nematodes were the group of pathogens responsible for the largest average percent loss estimated at 4.98% up from the 4.28% in 2012. Georgia and Alabama suffered the greatest disease losses of over 20%; although these states were followed closely by Tennessee, Mississippi, and Missouri which estimated losses near 15%. Oklahoma, New Mexico, and California appeared to have the best growing conditions with the least amount of disease losses.

	Table 1. Cotton disease loss estin	mates for t	he 2013 s	eason.															
	Percent disease loss estimates	AL	AZ	AR	CA	FL	GA	LA	MS	МО	NM	NC	OK	SC	TN	TX	VA	Bales lost	% Bales lost
2013	Fusarium Wilt (F.o. vasinfectum)	0.5	0.0	0.0	1.2	0.0	trace	1.0	trace	0.1	0.0	0.0	0.0	2.0	0.0	0.3	0.0		0.29
2013	Bales lost to Fusarium (x 1,000)	3.1	0.0	0.0	10.9	0.0	0.0	3.4	0.0	0.5	0.0	0.1	0.0	7.0	0.0	12.3	0.0	37.4	
2013	Verticillium Wilt (V. dahliae)	1.5	1.5	1.5	0.2	0.0	0.0	0.0	trace	0.1	1.0	0.0	0.4	0.0	0.0	1.5	0.0		0.71
2013	Bales lost to Verticillium (x 1,000)	9.3	7.1	10.5	1.4	0.0	0.0	0.0	0.0	0.5	0.9	0.1	0.7	0.0	0.0	61.7	0.0	92.2	
2013	Bacterial Blight (X. malvacearum)	0.0	0.0	0.5	0.0	0.0	trace	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	trace	0.0		0.04
2013	Bales lost to Xanthomonas (x 1,000)	0.0	0.0	3.5	0.0	0.0	0.0	0.0	1.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	
2013	Root Rot (P. omnivora)	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	4.0	0.0		1.32
2013	Bales lost to Phymatotrichopsis (x 1,000)	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	164.6	0.0	171.9	
2013	Seedling Diseases (Rhizoctonia & Etc.)	6.0	0.5	2.5	1.0	0.2	2.5	1.0	2.5	5.0	0.5	2.0	0.2	1.0	10.0	0.8	1.0		2.08
2013	Bales lost to Seedling disease (x 1,000)	37.2	2.4	17.5	9.1	0.5	62.5	3.4	16.8	26.3	0.5	15.2	0.3	3.5	43.0	32.9	1.6	272.5	
2013	Ascochyta Blight (A. gossypii)	0.6	0.0	0.0	0.0	2.0	trace	0.0	trace	0.0	0.0	0.0	0.0	0.3	0.5	0.0	0.0		0.09
2013	Bales lost to Ascochyta (x 1,000)	3.7	0.0	0.0	0.0	4.5	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.9	2.2	0.0	0.0	11.4	
2013	Boll Rots (Rhizopus, etc.)	4.0	0.1	1.0	trace	4.0	3.0	1.0	2.0	8.0	0.0	3.0	0.0	0.3	1.0	0.6	0.1		1.74
2013	Bales lost to Rhizopus (x 1,000)	24.8	0.5	7.0	0.0	9.0	75.0	3.4	13.4	42.0	0.0	22.8	0.0	0.9	4.3	24.7	0.2	227.9	
2013	Nematodes (All)	5.0	3.0	4.0	0.1	4.0	13.0	6.0	8.6	1.0	0.5	4.0	0.1	6.0	3.0	2.2	3.0		4.99
2013	Bales lost to Nematodes (x 1,000)	31.0	14.2	28.0	0.9	9.0	325.0	20.4	57.6	5.3	0.5	30.4	0.2	21.0	12.9	90.6	4.8	651.7	
2013	Nematodes (Meloidogyne spp.)	1.0	3.0	2.0	0.0	3.0	10.0	2.0	1.5	1.0	0.5	3.0	0.1	4.0	0.0	1.9	2.0		3.31
2013	Bales lost to Meloidogyne (x 1,000)	6.2	14.2	14.0	0.0	6.8	250.0	6.8	10.1	5.3	0.5	22.8	0.2	14.0	0.0	78.2	3.2	432.1	
2013	Nematodes (Reniform reniformis)	4.0	0.0	2.0	0.0	1.0	2.5	4.0	6.6	0.0	0.0	0.5	0.0	1.0	3.0	0.3	0.0		1.48
2013	Bales lost to Reniform (x 1,000)	24.8	0.0	14.0	0.0	2.3	62.5	13.6	44.2	0.0	0.0	3.8	0.0	3.5	12.9	12.3	0.0	193.9	
2013	Nematodes (Other spp.)	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.5	0.0	0.0	0.5	0.0	1.0	0.0	0.0	1.0		0.19
2013	Bales lost to other Nematodes (x 1,000)	0.0	0.0	0.0	0.0	0.0	12.5	0.0	3.4	0.0	0.0	3.8	0.0	3.5	0.0	0.0	1.6	24.8	
2013	Leaf Spots & Others	3.0	0.0	0.5	0.0	2.5	4.5	0.5	1.5	0.1	0.0	1.0	0.2	0.1	0.5	0.2	0.1		1.31
2013	Bales lost to Leaf spots & Others (x 1,000)	18.6	0.0	3.5	0.0	5.6	112.5	1.7	10.1	0.5	0.0	7.6	0.4	0.4	2.2	8.2	0.2	171.4	
2013	Total Percent Lost	20.6	6.6	10.0	2.5	12.7	23.0	9.5	14.8	14.3	2.0	10.0	0.9	9.6	15.0	9.6	4.2		12.56
2013	Total Bales Lost (x 1,000)	127.7	31.2	70.0	22.3	28.6	575.0	32.3	99.2	75.1	2.3	76.3	1.8	33.6	64.5	395.1	6.7	1641.8	
2013	Total Yield in Bales (x 1,000) (USDA Nov'13)	620.0	472.5	700.0	910.0	225.0	2500.0	340.0	670.0	525.0	92.0	760.0	200.0	350.0	430.0	4116.0	160.0	13070.5	

Comments:

AL Warm dry spring with rainfall in late June and July and a very dry late summer and fall. Nematode damage was greater especially on irrigated land. Fusarium wilt was lower while Verticillium wilt incidence increased. Corynespora leaf spot was found most often in the coastal areas.

GA Very warm spring and wet season with significant increase in damage to nematodes, boll rot and Target/Corynespora leaf spot.

NC Excessive rainfall in July with many field sitting in water.

OK Lack of water was their biggest problem.

SC A very wet June, July, and first half of August. Many fields sat in water for weeks on end. We had more seedling disease, but not as much as you might think. Fusarium and root-knot seem to be higher. Corynespora leaf spot was present, but not nearly as bad.

Harvest Aids

In addition to the variety testing work, we initiated several demonstrations and two trials to test various new cotton inputs. One replicated trial in particular focused on the use of three products, ETX, Sharpen and Display. These results were presented at the Beltwide cotton conference and are presented in the Beltwide Conference Proceedings section of this report. A replicated Bayer CropScience harvest aid protocol was also

implemented. This trial investigated the utility of cyclanilide (AE0195157) as a tank mix with various harvest aid products. Four replicates of harvest aid treatments were applied at 60% open bolls on September 25 in a field adjacent to the Tillman County furrow irrigated RACE trial. Results indicated that at 7 days after treatment (DAT), visually estimated defoliation was enhanced by cyclanilide addition to Ginstar, but not with Adios, a generic product similar to Ginstar (Table 1). At 7 DAT, visually estimated open boll percentage was similarly improved by all chemical treatments when compared to the untreated check. By 14 DAT, defoliation improved considerably for all chemical treatments when compared to the untreated. However, Ginstar and Ginstar + AE0195157 had similar 14 DAT defoliation levels, and the Adios + AE0195157 treatment still lagged behind these treatments. Terminal and basal regrowth were highly variable in the trial, and although significant differences were noted among treatments, these had little practical value.

				10/2/201		10/2/201	_	10/9/201		10/9/2013		10/17/2013		10/17/2013	
				Defoliatio	n	Open Bo	ls	Defoliatio	n	Open Boll	s	Terminal Regro	wth	Basal Regrow	th
Trt			Rate	%		%		%		%		%		%	
No.	Treatment	Rate	Unit	7 DAT	_	7 DAT	_	14 DAT	_	14 DAT		21 DAT		21 DAT	
1	Untreated			0.0	f	55.5	b	0.0	е	85.0	b	0.0	с	0.0	(
2	Finish 6 Pro	21	OZ/A	40.0	c	76.3	а	56.3	с	96.8	а	23.8	ab	25.0	á
3	AE 0195157	5	OZ/A	16.9	е	73.3	а	46.7	d	96.0	а	15.0	bc	12.5	k
3	Prep	16	OZ/A												
4	Ginstar	6	OZ/A	65.0	b	72.3	а	85.0	а	96.3	а	25.0	ab	25.0	i
5	Ginstar	6	OZ/A	81.3	а	79.3	а	91.3	а	96.3	а	21.3	b	32.5	a
5	AE 0195157	5	OZ/A												
6	AE 0195157	7.5	OZ/A	28.8	d	70.8	а	50.0	cd	95.5	а	21.3	b	25.0	ā
6	Prep	24	OZ/A												
7	Adios	6	OZ/A	45.0	С	71.5	а	72.5	b	95.5	а	37.5	а	26.3	a
7	AE 0195157	5	OZ/A												
r>F				0.0001		0.0224		0.0001		0.0002		0.0070		0.0001	
SD (P=.	05)			8.5		12.3		7.0		4.3		16.2		10.9	
:V,%				14.4		11.6		8.2		3.0		53.0		35.1	

inean compansons performed only when AOV meatment P(r) is significant at mean companso

Table 1. Cyclanalide tank-mix strategies for defoliation.

Three harvest aid demonstrations were initiated adjacent to the Tillman County furrow irrigated RACE trial (September 25), the Jackson County furrow irrigated RACE trial, and the Harmon County subsurface drip irrigated RACE trial (October 2). These demonstrations focused on tankmixing various defoliants with ethephon, and consisted of 8 treatments (Table 2). Signs were installed on each treatment at both sites so producers could observe and determine the most effective treatment. The treatments applied are listed in the table below. Plots were 4 rows wide and 150 feet long. All treatments were applied with a high-clearance compressed air, research sprayer at 15 GPA with Turbo Teejet nozzles on 20 inch spacings. Since these plots were not replicated no data was collected (strictly for demonstration purposes only).

Treatment number	Treatment (rates are per acre) (Ethephon was 6 lb/gallon formulation)
1	32 oz ethephon + 16 oz Folex
2	32 oz ethephon + 2.5 oz ET + 1% COC
3	32 oz ethephon + 1 oz Sharpen + 1% MSO + ammonium sulfate
4	32 oz ethephon + 0.8 oz Display + 1% COC
5	32 oz ethephon + 6.4 oz Ginstar
6	21 oz ethephon + 8 oz Ginstar
7	24 oz ethephon + 12 oz Finish 6 Pro + 6.4 oz Ginstar
8	24 oz ethephon + 12 oz Finish 6 Pro + 16 oz Folex

Table 2. Treatments used in 2013 harvest aid demonstrations.

Beltwide Cotton Conference Presentations

Project personnel were involved in several Beltwide Cotton Conference presentations in New Orleans, LA in January 2014.

Horseweed continues to be a troublesome weed for many producers in Oklahoma. One project presented focused on the effectiveness of sulfonylurea herbicides with and without 2,4-D.

Defoliation is an important part of every grower's

management program. A project was presented that focused on the use of three new harvest aid products, ETX, Sharpen and Display, for defoliation.

Topguard (flutriafol) is a triazole fungicide that has been recently granted a Section 18 registration in Texas for the management of cotton root rot. This project was established in a known cotton root rot field and focused on rates, application methodology, and flutriafol formulations.

Working in collaboration with several Extension and researcher personnel across the Cotton Belt, Dr. Randy Taylor led a project investigating the utility of using picker harvesters with yield monitors for determining yield in on-farm cotton variety trials.

The use of yield monitor technology has enabled growers to identify yield variation within a production unit. Natural variability in the field and the condition of cotton at harvest make it difficult to calibrate yield monitors for stripper harvesters. A project was conducted which focused on quantifying the spatial variability of gin turnout within a particular cotton field.

Recent inquiries regarding the effects of commercial stripper harvester designs on fiber quality generated a project recently presented at the Beltwide Cotton Conference. This project evaluated the effects of a wire belt conveyor as a cross auger replacement on several characteristics.

Preplant Control of Horseweed for No-Till Cotton in Oklahoma Shane Osborne Randy Boman Oklahoma State University Department of Plant & Soil Sciences Southwest Research and Extension Center Altus, OK Robert Rupp DuPont Crop Protection Edmond, OK

<u>Abstract</u>

Horseweed continues to be a challenge to control in many no-till cotton fields in Oklahoma due to its competitive nature. Controlling horseweed prior to planting cotton is essential since in-season chemical options are very few and often completely ineffective due to glyphosate resistance. The objectives of this project were to evaluate the effectiveness of FirstShot, Panoflex and Amathon applied alone or in a tank-mix with 2,4-D and glyphosate, and to compare the performance of these products to a standard hormone-based horseweed control program. Broadcast over-the-top applications were made with a compressed air, high-clearance sprayer with a spray volume of 10 gallons per acre (GPA). Four replicates of fifteen treatments were used, including an untreated control. Each of these herbicides were applied alone, in combination with 2,4-D and in combination with both 2,4-D and glyphosate. The 0.6 oz/A rate of FirstShot applied alone did not effectively control horseweed, but control did approach acceptable levels (78%) when the rate was increased to 0.8 oz/A. Regardless of rate, Panoflex applied alone at 0.45 oz/A provided similar control to the higher rate of FirstShot. Amathon was the only product applied alone that provided acceptable control of horseweed (88%). The addition of 2,4-D to any of the sulfonylurea (SU) treatments resulted in excellent control of horseweed. Although no benefit was observed from the addition of glyphosate to any SU/2,4-D combination, 2,4-D + glyphosate did effectively control (100%) horseweed and results suggest that glyphosate resistant horseweed was not present at this site.

Introduction

Horseweed continues to be a challenge to control in many no-till cotton fields in Oklahoma. Due to its competitive nature, a failure to control horseweed prior to planting results in reduced stands, harvest complications and reduced lint yields. Controlling horseweed prior to planting cotton is essential since in-season chemical options are very few and often completely ineffective due to glyphosate resistance. Hormone type herbicides have traditionally been the basis for preplant control programs in cotton, however many producers would prefer not to use them. Once in the sprayer system, it is virtually impossible to completely clean out 2,4-D. In addition, hormone based programs come with lengthy plant-back intervals. Currently, Oklahoma growers are advised to wait 30 days following an application of 2,4-D before planting cotton. Controlling horseweed without hormone-type herbicides would have the benefits of shortening the required plant-back interval and eliminating potential sprayer contamination issues. Sulfonylurea (SU) herbicides offer a different site-of-action compared to glyphosate and have proven to be effective on many additional broadleaf weed species. In addition, some offer shorter plant-back intervals compared to hormone herbicides. This project focused on the use of three SU herbicides: Firstshot, Panoflex and Amathon. FirstShot and Panoflex are currently registered for use ahead of cotton planting and only require 14-21 days (depending on soil type and pH) after application before planting cotton. Amathon's registration is currently pending.

Materials and Methods

This study was established as a randomized complete block design with four replicates and was conducted on a clay loam soil in Tillman County. Broadcast over-the-top applications were made with a compressed air, high-clearance sprayer with a spray volume of 10 gallons per acre (GPA). Treatments were applied on March 13, 2013 utilizing FirstShot, Panoflex and Amathon. A total of fifteen treatments were used, including an untreated control, and are listed in figure 1. Each of these herbicides were applied alone, in combination with 2,4-D (Barrage HF) and in

combination with both 2,4-D and glyphosate (Roundup PowerMax). These treatments were compared to 2,4-D + glyphosate. Although our standard 2,4-D rate for horseweed control is 1.0 lb ai/a, in order to more clearly quantify the benefits of the SU herbicides the rate of 2,4-D used was 0.6 lb ai/A. The horseweed ranged from 2 to 5 inch rosettes at the time of application. Treatments were applied at 28 psi with flat fan nozzles. Figure 3 provides the observed treatment performance at 14, 28 and 45 days after treatment (DAT).

Untreated 0.6 oz/A FirstShot SG 0.6 oz/A FirstShot SG+ 0.6 lb ai/A 2,4-D 0.6 oz/A FirstShot SG + 0.6 lb ai/A 2,4-D + 1.0 lb ai/A glyphosate 0.8 oz/A FirstShot SG 0.45 oz.A Panoflex 0.45 oz/A Panoflex + 0.6 lb ai/A 2,4-D 0.45 oz/A Panoflex + 0.6 lb ai/A 2,4-D + 1.0 lb ai/A glyphosate 0.6 oz/A Panoflex 0.6 oz/A Panoflex + 0.6 lb ai/A 2,4-D 0.6 oz/A Panoflex + 0.6 lb ai/A 2,4-D + 1.0 lb ai/A glyphosate 0.33 oz/A Amathon 0.33 oz/A Amathon + 0.6 lb ai/A 2,4-D 0.33 oz/A Amathon + 0.6 lb ai/A 2,4-D + 1.0 lb ai/A glyphosate 0.6 lb ai/A 2,4-D + 1.0 lb ai/A glyphosate All treatments included 0.25% v/v non-ionic surfactant + 2 lb/A Ammonium Sulfate

Figure 1. Horseweed treatments evaluated

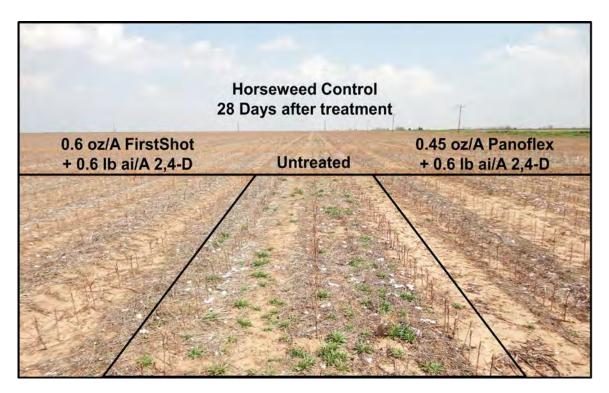


Figure 2. Horseweed control with FirstShot and Panoflex.

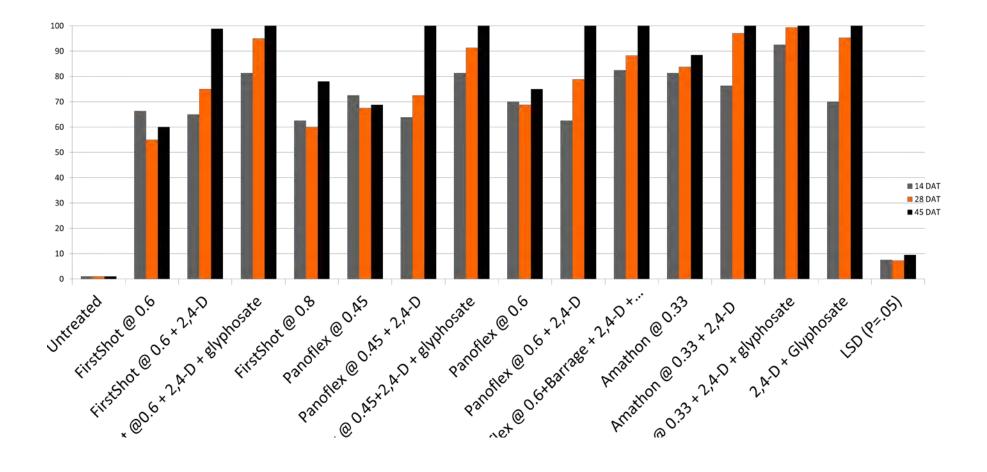


Figure 3. Horseweed Control at 14, 28 and 45 DAT

Results and Discussion

FirstShot applied alone at 0.6 oz/A controlled horseweed 55-65% over the course of all three evaluations (14, 28 and 45 DAT). Increasing the rate of FirstShot to 0.8 oz/A did not significantly increase horseweed control at 14 or 28 DAT. However, by the 45 day evaluation this treatment provided 78% horseweed control, which was significantly greater than the control provided by the lower rate. When 0.6 oz/A of FirstShot was combined with 2,4-D, horseweed was controlled 98% at 45 DAT. Similar control was observed when glyphosate was added to the tankmix of FirstShot + 2,4-D. Panoflex, regardless of rate (0.45 or 0.6 oz/A) controlled horseweed 69-75% 45 DAT. The addition of 2,4-D increased horseweed control to 100%. Similar control was observed when glyphosate was added to the tankmix of Panoflex + 2,4-D. Amathon applied alone at 0.33 oz/A controlled horseweed 88% 45 DAT. The addition of 2,4-D increased horseweed control to 100 %. Similar control was observed when glyphosate was added to the tankmix of Panoflex + 2,4-D. Amathon applied alone at 0.33 oz/A controlled horseweed 88% 45 DAT. The addition of 2,4-D increased horseweed control to 100 %. Similar control was observed when glyphosate was added to the tankmix of Panoflex + 2,4-D. Amathon applied alone at 0.33 oz/A controlled horseweed 88% 45 DAT. The addition of 2,4-D increased horseweed control to 100 %. Similar control was observed when glyphosate was added to the tankmix of Panoflex + 2,4-D. Amathon applied alone at 0.33 oz/A controlled horseweed 88% 45 DAT.

Summary and Conclusions

The lower rate of FirstShot applied alone did not effectively control horseweed. However, control did approach acceptable levels (>80%) when the rate was increased. Regardless of rate, Panoflex applied alone provided similar control to the higher rate of FirstShot. Amathon was the only product applied alone that provided acceptable control of horseweed (88%). The addition of 2,4-D to any of the SU herbicide treatments resulted in excellent control of horseweed. Although no benefit was observed from the addition of glyphosate to any SU/2,4-D combination, 2,4-D + glyphosate did effectively control (100%) horseweed at this location. This does allow for speculation concerning potential control provided by combinations of glyphosate with only the SU products (without 2,4-D). However, the documented presence of glyphosate resistant horseweed in Oklahoma and the incomplete control observed from FirstShot, Panoflex and Amathon applied alone, removes the consideration of programs depending heavily upon glyphosate. It should be noted that the performance of 2,4-D + glyphosate within this study suggests that no glyphosate resistant horseweed was present at this location.

Acknowledgements

Partial funding for this project was provided through the Oklahoma State Support Committee - Cotton Incorporated.

PERFORMANCE OF ETX, DISPLAY AND SHARPEN AS HARVEST AIDS IN OKLAHOMA COTTON Shane Osborne and Randy Boman Oklahoma State University Department of Plant & Soil Sciences Southwest Research and Extension Center Altus, OK Scott Ludwig Nichino America, Inc. Arp, TX

<u>Abstract</u>

ETX is a new formulation of pyraflufen ethyl with lower use rates offered from Nichino America, Inc. ETX is currently registered for use as both a herbicide for weed control and as a cotton harvest aid. The objectives of this project were to evaluate the effectiveness of ETX as a harvest aid and to compare the performance of ETX to other recently registered harvest aid products including Display and Sharpen. Four replicates of 6 treatments were used including an untreated control. ETX was applied at 1.25 and 1.7 oz/A, Display was applied at 0.6 and 0.8 oz/A, and Sharpen was applied at 1.0 oz/A. All treatments were tank mixed with 32 oz/A of ethephon (6 lb/gallon product) and applied to cotton at 12 gallons/acre (GPA) that exhibited approximately 55-60% open bolls. Although Sharpen provided the greatest amount of defoliation observed at 14 DAT there was very little difference between its performance and the remaining treatments. The defoliation observed from Display did improve as the rate increased and ETX provided similar defoliation regardless of rate. This could be attributed to the extremely favorable weather following application. Results indicate that all products evaluated offer effective harvest aid options to Oklahoma cotton producers.

Introduction

ETX is a new formulation of pyraflufen ethyl with lower use rates offered from Nichino America, Inc. Currently ETX is registered for use as both a herbicide for weed control and as a cotton harvest aid for defoliation and desiccation. While many cotton producers may be familiar with the original formulation of pyraflufen ethyl (ET), they have no experience with this new formulation. The new more concentrated formulation allows for a rate structure equivalent to approximately 60% of the previous formulation's rates. In addition, Sharpen and Display are similar chemistries (PPO inhibitors-group 14) that have been recently registered for use as cotton harvest aids. All three of these products offer growers a unique benefit in addition to their performance as harvest aids. Often times when harvest aids are applied to Oklahoma cotton, adjacent fields of small grains are already emerged. Unlike paraquat (a popular cotton harvest aid) these products are relatively safe when used in proximity to adjacent small grain fields. Due to extensive acreage of small grains in Oklahoma these products have a unique fit for cotton producers. This project was established to evaluate the performance of ETX as a harvest aid and to compare the performance of ETX to other recently registered harvest aid products including Display and Sharpen.

Materials and Methods

A randomized complete block design with four replicates was used. The trial was conducted on a clay loam soil. Treatment applications were made with a compressed air, high-clearance sprayer. A spray volume of 12 GPA was applied with Turboteejet nozzles at 60 PSI on September 26, 2013. Cotton was approximately 55-60% open. The site was furrow irrigated, had a yield potential of 2.5-3 bales/acre, and had a moderate canopy at application. ETX was applied at 1.25 and 1.7 oz/A, and each was in combination with 32 oz/A of ethephon (6 lb/gallon product). Similarly, Display was applied at either 0.6 or 0.8 oz/A with 32 oz/A of ethephon. Sharpen was applied at 1.0 oz/A also in combination with 32 oz/A of ethephon. All treatments except Sharpen included crop oil concentrate at ½ % v/v. Sharpen included methylated seed oil at 1% v/v plus ammonium sulfate (17 lbs/100 gallons). Defoliation and open boll visual evaluations were taken 7 and 14 days after treatment. Terminal and basal regrowth were also visually evaluated 21 days after treatment. The data were subjected to analysis of variance and results are presented in figures 1 and 2.

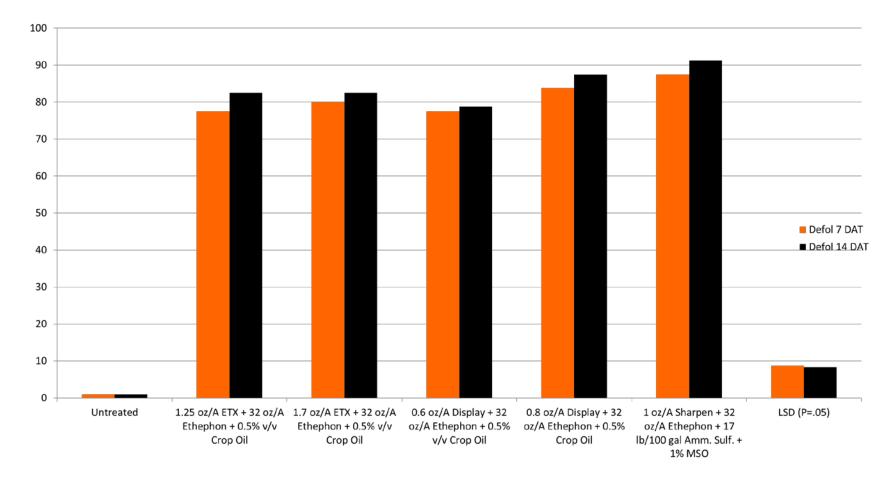


Figure 1. Defoliation 7 and 14 DAT.

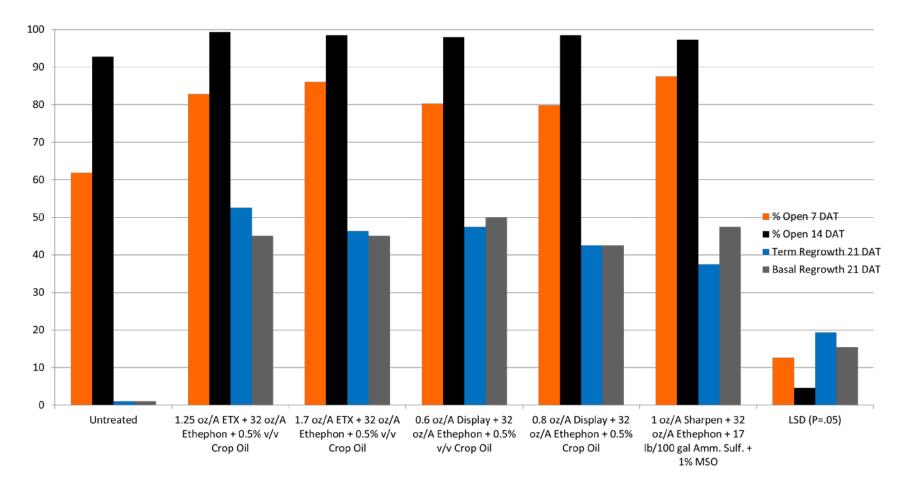


Figure 2. Open boll percentages (7 and 14 DAT) and regrowth (21 DAT).

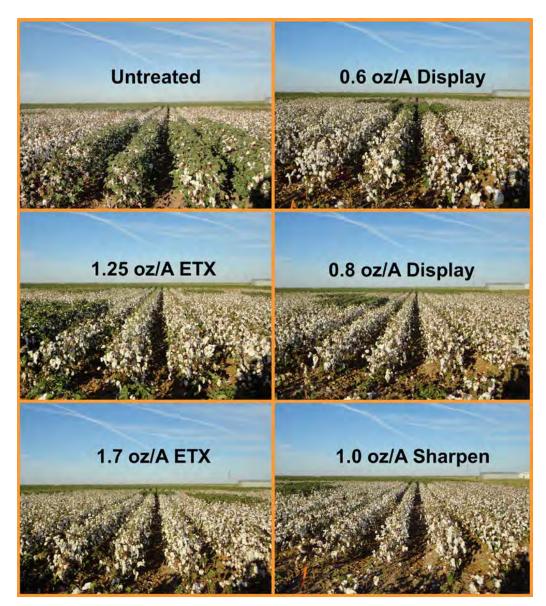


Figure 3. Treatment performance 14 days after application.

Results and Discussion

Defoliation provided by each treatment is presented in figure 1. Seven days after treatment (DAT) the low rate of ETX (1.25 oz/A) provided 78% defoliation. The higher rate of ETX did not significantly increase defoliation (80%) 7 DAT. Similar defoliation (78-84%) was provided by Display. Sharpen provided 88% defoliation 7 DAT. This was significantly greater than the low rates of ETX and Display but similar to higher rates of these products. All treatments provided similar boll opening (80-88%) at 7 DAT, and were significantly higher than the untreated control. ETX (regardless of rate) provided 83% defoliation 14 DAT. Similar defoliation was observed from 0.6 oz/A of Display. The higher rate of Display (0.8 oz/A) defoliated cotton 88% 14 DAT. This was significantly greater than the lower rate. Sharpen provided similar defoliation (91%) 14 DAT. All treatments resulted in > 97%

boll opening 14 DAT. Regrowth evaluations were made 21 DAT. Terminal and Basal evaluations were recorded separately. Terminal regrowth was very inconsistent across replicates. Although numerical evaluations ranged from 38 to 53%, there were no significant differences among treatments. Basal regrowth observations were less variable (ranging from 43-50%), but there were no significant differences among treatments.

Summary and Conclusions

The performance of harvest aids products depends heavily upon two factors. One is the condition of the cotton at application time and the other is the weather experienced following application. As stated earlier this cotton was irrigated throughout the growing season and was not stressed at the time of application. It had a moderate crop canopy, was experiencing natural senescence prior to application, and was 55-60% open. Temperatures following application were extremely favorable and in the seven day period following application, 155 degree days (60 degree base threshold) or DD60 heat units were recorded at the site. Average DD60 accumulation during this period is approximately 91. Heat unit accumulation for all 14 days following application totaled 207 (an additional 52 from days 8-14). This is a 51% increase compared to the longterm average (137). In addition, approximately one inch of rainfall was received during the 14 days following application. Although Sharpen provided the greatest amount of defoliation observed (91%) 14 DAT there was very little difference between its performance and the remaining treatments (< 9%). The defoliation observed from Display did improve as the rate increased. ETX provided similar defoliation (83%) regardless of rate. This could be attributed to the extremely favorable weather following application. All three of these products offer effective harvest aid options to Oklahoma cotton producers. All of the treatments evaluated were considered effective enough to enable an efficient picker harvest without a sequential treatment. However, all treatments would have required a sequential desiccant application in order to enable an efficient stripper harvest.

Acknowledgements

Partial funding for this project was provided through the Oklahoma State Support Committee - Cotton Incorporated.

FIELD EVALUATION OF TOPGUARD (FLUTRIAFOL) FOR COTTON ROOT ROT MANAGEMENT IN OKLAHOMA Jerry Goodson Randy Boman Shane Osborne Oklahoma State University Southwest Research and Extension Center Altus, OK Tom Royer Oklahoma State University Stillwater, OK Richard Minzenmayer Texas A&M AgriLife Extension Service Ballinger, TX

Abstract

Phymatotrichopsis or cotton root rot (PRR) is caused by the fungus Phymatotrichopsis omnivora. Flutriafol (brand name Topguard) fungicide has recently been evaluated as a chemical management option. The objectives of this project were to evaluate the effects of two flutriafol rates (0.13 and 0.26 lb active ingredient/acre), two product formulations (Topguard and CHA-1328), and two application methods (T-band and modified in-furrow). An untreated check was included. In 2013 replicated trials were established in two known PRR infested producercooperator fields. Locations included a Tillman County no-till dryland site, and a Kiowa County furrow irrigated conventional tillage site. No substantial stand reduction issues arising from flutriafol treatments were noted at the Tillman County dryland site, but T-band treatment resulted in slightly higher stand counts at 14 and 28 days after planting (DAP) when compared to the modified in-furrow method. The dryland site expressed minimal disease incidence and later failed due to drought. The modified in-furrow application method reduced stand establishment at the Kiowa County site at 14 and 28 DAP, and resulted in a small but significant reduction in plants/row-ft when compared to the T-band. Although spatially variable, PRR infection at the Kiowa County site was very pronounced by Sep 26. By that date, about 66% of the plants in the untreated control were diseased. The 0.13 and 0.26 lb/acre flutriafol rates exhibited about 36% and 19% diseased plants, respectively. No differences were noted with respect to product or application method for diseased plants. Lint yield was significantly improved by flutriafol application. The 0.26 lb/acre rate resulted in significantly higher yield than the 0.13 lb/acre rate and the Topguard product resulted in greater yield than CHA-1328. Application method had no effect on lint yield. These data indicate that flutriafol is an effective product to reduce PRR induced stand and yield losses in Oklahoma.

Introduction

Phymatotrichopsis or cotton root rot (PRR) is caused by the fungus *Phymatotrichopsis omnivora*. Once infected, cotton is rapidly killed by this disease. As a result, yield is severely reduced, and harvesting efficiency declines due to dead stalks becoming entangled in harvester row units, particularly with stripper-type machines. Flutriafol (brand name Topguard) fungicide has been recently evaluated in Texas as a chemical control option. Isakeit et al. 2011, 2012 and 2013) show the progression from identification of flutriafol as a means of control through refinement of application techniques and rates. This work culminated in the 2012 and 2013 Texas Section 18 approvals by EPA (Drake et al., 2013). Oklahoma has several counties which border the Red River where many fields with the disease can be found (Damicone, 2010). Once recognized, growers generally choose to continuously plant infested fields to other unaffected monocot crops. Unfortunately there are very few economically viable rotational options. Planting cotton is an effective crop rotation, particularly for wheat, as it breaks weed and disease cycles that can be problematic for the grain crop. The availability of flutriafol as an efficacious PRR control product would enable Oklahoma producers to diversify crop rotations and allow cotton planting in PRR infested fields. The objectives of this project were to evaluate the effects of two flutriafol rates and product formulations, and two application methods for PRR control in Oklahoma cotton.

Materials and Methods

In 2013, two trials were established in known PRR infested producer-cooperator fields in southwestern Oklahoma to investigate the use of flutriafol for PRR control. Treatments included an untreated control, two flutriafol product formulations with different active ingredient (a.i.) formulations (Topguard with 1.04 lb a.i./gallon and CHA-1328 with 4.17 lb a.i./gallon), two rates - 0.13 and 0.26 lb a.i./acre, and two methods of application (T-band and modified in-furrow). These methods have been previously described in detail by Isakeit et al. (2013). A Schaffert rebounder was used with the modified in-furrow placement, and pressure was 17 psi. T-Band placement was accomplished using a Teejet 8002 flat fan even flow nozzle set to 24 psi. Total volume was 4 gallons/acre using a CO₂ system.

Four replicates of the 9 treatments were included at the Tillman County no-till dryland site, while the Kiowa County furrow irrigated conventional tillage site had 3 replicates. Plot size was four 40-inch rows by 50 ft long. A John Deere MaxEmerge XP vacuum planter was used. The Kiowa County site was planted with 4 seed/row-ft on May 24. Extreme environmental conditions resulted in difficult stand establishment. The Tillman County site was planted on June 13 at a higher than normal 5 seed/row-ft due to extreme environmental conditions. PhytoGen 499WRF cultivar was planted at both sites. Observations were made on the center two rows by the length of each plot, including lint yield. Plot harvest was accomplished using a modified John Deere 482 plot stripper. Analysis of variance was performed on the data using SAS Ver. 9.3 for Windows.

Results and Discussion

Results are presented in Table 1. Rainfall events of 0.4 and 0.8 inches were encountered 5 and 4 days after planting (DAP) at the Kiowa and Tillman County sites, respectively. No serious stand reduction issues arising from flutriafol treatments were noted at the Tillman County dryland site, but the T-band treatment resulted in slightly higher stand counts at 14 and 28 DAP when compared to the modified in-furrow method. The dryland site uniformly emerged and expressed minimal disease incidence and later failed due to exceptional drought.

Application method reduced stand establishment at the Kiowa County site at both 14 and 28 DAP. Modified infurrow treatment resulted in a small but significant reduction in plants/row-ft. Although somewhat spatially variable, PRR infection at the Kiowa County furrow irrigated site was very pronounced by Sep 26 (Figure 1).

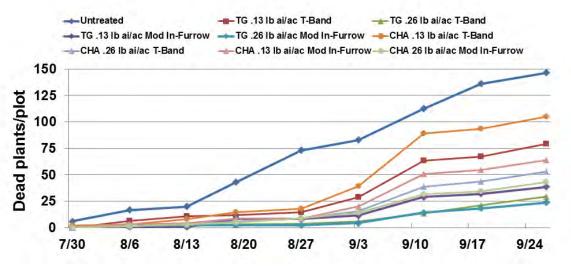


Figure 1. Disease progression at the Kiowa County irrigated site.

By that date, about 66% of the plants in the untreated control were diseased. The 0.13 and 0.26 lb/acre flutriafol rates exhibited about 36% and 19% diseased plants, respectively, with 0.26 lb rate having a lower percentage. No differences were noted with respect to product or application method for diseased plants.

		Tillman Cou	unty Dryland		Kiowa County Irrigated				
Trt No.	Description	plants/row-ft	plants/row-ft	plants/row-ft	plants/row-ft	% PRR diseased plants	Lint yield		
		14 DAP	28 DAP	14 DAP	28 DAP	26-Sep	lb/acre		
1	Untreated check	4.7	4.7	2.3	2.3	65.7	1226		
2	Topguard 0.13 lb ai/ac T-Band	4.7	4.8	2.2	2.3	41.4	1662		
3	Topguard 0.26 lb ai/ac T-Band	4.9	4.9	2.2	2.3	13.7	1794		
4	Topguard 0.13 lb ai/ac Modified In-Furrow	4.4	4.4	1.7	1.7	22.6	1646		
5	Topguard 0.26 lb ai/ac Modified In-Furrow	4.5	4.5	1.8	1.8	14.0	1787		
6	CHA-1328 0.13 lb ai/ac T-Band	4.5	4.5	2.1	2.2	48.5	1261		
7	CHA-1328 0.26 lb ai/ac T-Band	4.6	4.5	2.3	2.3	24.4	1688		
8	CHA-1328 0.13 lb ai/ac Modified In-Furrow	4.5	4.5	2.0	2.1	31.2	1694		
9	CHA-1328 0.26 lb ai/ac Modified In-Furrow	4.1	4.1	1.8	1.9	24.6	1592		
	Pr > F	0.4786	0.3394	0.0001	0.0269	0.0613	0.0674		
	LSD 0.10	NS	NS	0.3	0.3	27.1	335		
	CV, %	9.8	8.9	11.5	10.8	59.9	14.7		
3-Factor F	factorial Analysis								
Rate	0.13 lb ai/ac	4.5	4.6	2.0	2.1	35.9	1566		
	0.26 lb ai/ac	4.5	4.5	2.0	2.1	19.2	1715		
Product	СНА-1328	4.4	4.4	2.1	2.1	32.2	1559		
	Topguard	4.6	4.6	2.0	2.0	22.9	1722		
Method	Modified In-Furrow	4.4	4.4	1.8	1.9	23.1	1680		
	T-Band	4.7	4.7	2.2	2.3	32.0	1601		
Source of	variation			Pr	: > F				
	Rate	0.9406	0.5682	0.8120	0.8688	0.0249	0.0964		
	Product	0.2709	0.1304	0.4790	0.5119	0.1875	0.0718		
	Method	0.0734	0.0966	0.0027	0.0017	0.2029	0.3647		
	Rate*Product	0.4163	0.3315	0.8120	0.7415	0.8369	0.8805		
	Rate*Method	0.5049	0.6243	0.4790	0.6216	0.1943	0.1436		
	Product*Method	0.6032	0.5147	0.3113	0.1997	0.9589	0.3010		
	Rate*Product*Method	0.6032	0.5682	0.2455	0.3298	0.9531	0.1312		
	LSD 0.10	0.3	0.3	0.2	0.2	11.8	148		
	CV, %	10.4	9.4	12.4	11.7	59.3	12.5		

Figure 2. Kiowa County irrigated trial on Oct 1.

Figure 3. Kiowa County irrigated trial at harvest, Nov 1.

Ultimately, lint yield was significantly improved by flutriafol application. The 0.26 lb/acre rate resulted in significantly higher yield than the 0.13 lb/acre rate and the Topguard product resulted in greater yield than CHA-1328. Application method had no effect on lint yield.

Summary and Conclusions

Substantial but spatially variable PRR pressure was encountered at the Kiowa County site. Results indicate that 0.13 and 0.26 lb/acre flutriafol rates had lower percentage diseased plants than the untreated. The 0.26 lb/acre rate resulted in a lower percentage of diseased plants than the 0.13 lb rate. Although no differences were noted with respect to percentage of diseased plants, the Topguard formulation provided greater lint yield than the CHA-1328 product, the reasons for which are unclear. When compared to the modified in-furrow treatment, T-band application method resulted in a higher number of healthy plants at both 14 and 28 DAP, but this did not result in higher yield at harvest. Lint yields were 1226, 1566, and 1715 lb/acre for the untreated check, and flutriafol rate main effect means of 0.13 and 0.26 lb a.i./acre, respectively. When compared to the untreated check, yields were increased by 340 and 489 lb/acre for the 0.13 and the 0.26 lb a.i./acre rates, respectively. This represents 28 and 40 percent yield increases for flutriafol rates of 0.13 and 0.26 lb a.i./acre that flutriafol was effective at reducing the negative impact of PRR at this site.

Acknowledgements

This project was supported by the Oklahoma State Support Committee – Cotton Incorporated, OSU Integrated Pest Management Program, and Cheminova. The authors also thank the producer-cooperators: Mark Anderson (Kiowa County) and Roger Fischer (Tillman County) for their excellent assistance.

References

Damicone, J.P. 2010. Phymatotrichum root rot. Okla. Coop. Ext. Serv. Ext. Factsheet EPP-7621.

Drake, D.R., R.R. Minzenmayer, W.L. Multer, T. Isakeit, and G.D. Morgan. 2013. Evaluation of farmer applications of Topguard® (flutriafol) for cotton root rot control in the first Section 18 exemption year. Proc. Beltwide Cotton Conf., San Antonio, TX. 7-10 Jan. Natl. Cotton Council, Memphis, TN (CD-ROM).

Isakeit, T., R.R. Minzenmayer, D.R. Drake, W. Multer, A. Abrameit, M. Jungman, C. Crossland, D.T. Campion, N. Fryar, G. Morgan and D. Mott. 2011. Flutriafol for control of Phymatotrichopsis root rot of cotton. Proc. Beltwide Cotton Conf., Atlanta, GA. 4-7 Jan. Natl. Cotton Council, Memphis, TN (CD-ROM).

Isakeit, T., R.R. Minzenmayer, D.R. Drake, G.D. Morgan, D.A. Mott, D.D. Fromme, W.L. Multer, M. Jungman, and A. Abrameit. 2012. Fungicide management of cotton root rot (Phymatotrichopsis omnivora). Proc. Beltwide Cotton Conf., Orlando, FL. 3-6 Jan. Natl. Cotton Council, Memphis, TN (CD-ROM).

Isakeit, T., R.R. Minzenmayer, G.D. Morgan, D.A. Mott, D.R. Drake, D.D. Fromme, W.L. Multer, M. Jungman, R.M. Collett, A. Abrameit, and J. Stapper. 2013. Cotton root rot control with Topguard in Texas: 2012 research. Proc. Beltwide Cotton Conf., San Antonio, TX. 7-10 Jan. Natl. Cotton Council, Memphis, TN (CD-ROM).

USING YIELD MONITORS TO EVALUATE COTTON VARIETY TESTS

Randy Taylor Wesley Porter Oklahoma State University, Stillwater, OK **Randy Boman** Shane Osborne Oklahoma State University, Altus, OK Will Henderson Clemson University, Blackville, SC Mike Buschermohle John Wilkerson Lori Gibson The University of Tennessee, Knoxville, TN Chris Main The University of Tennessee, Jackson, TN John Fulton **Dale Monks** Auburn University, Auburn, AL **Greg Pate** Auburn University, Shorter, AL John Wanjura USDA-ARS, Lubbock, TX Mark Kelley **Chris Ashbrook** Texas AgriLife Extension Service, Lubbock, TX Alex Thomasson Yufeng Ge Texas A&M University, College Station, TX **Gaylon Morgan** Texas AgriLife Extension, College Station, TX **Guy Collins George Vellidis Philip Edwards** University of Georgia, Tifton, GA **Ed Barnes** Cotton Incorporated, Cary, NC

<u>Abstract</u>

Grain yield monitors have successfully been used to harvest variety and hybrid trials when certain guidelines were followed. However, there has been concern regarding cotton yield monitors and the way that they measure flow rate. A Beltwide effort was initiated to assess yield monitor performance in replicated variety trials with the objective of determining the source of yield monitor errors and developing protocols for using yield monitors to accurately harvest cotton variety trials. Data were collected from at least seven trials across six states. The trials were conducted with field scale plots containing at least six varieties. Yield was measured with the yield monitor and a reference scale. The reference scale varied among locations, but was an accepted device to measure variety yield. Correlation between yield monitor and reference yields for cotton variety tests were generally high for four of six site years. However, the high correlation did not allow yield monitors to effectively group varieties the same as the reference scale. Errors were significant by variety for five of six site-years. No clear methods to adjust for error have been discovered.

Introduction

Robertson et al. (2006) evaluated the potential to use cotton yields monitors for on-farm testing. They considered the correlation between yield monitor and weigh wagon measured yields to determine if varieties were suitable to use in

on-farm research plots. A high correlation indicated that the yield monitor reliably measured yield for that variety. They deemed that some varieties were more suited for on-farm research trials than others when a yield monitor would be used to measure yield. Rains et al. (2002) ranked cotton varieties using weigh wagon and yield monitor yields. The mean absolute difference between the two rankings was about 3 with the maximum/minimum difference was +/-9. While they recognized some challenges with the weigh wagons that they used, they believed that variety changes influenced yield monitor accuracy. They speculated that different seed mass among varieties could affect yield monitor weights. Stewart et al. (2008) harvested cotton variety trials to determine the suitability of yield monitors for harvesting on-farm variety trials. They concluded that although yield monitor and weigh wagon data were correlated, the correlation was variety dependent. Thus, yield monitors were not recommended for harvesting on-farm variety trials. The objectives of this research were to determine errors associated with using yield monitors to evaluate cotton variety tests and evaluate pertinent information regarding varieties and harvest conditions that could cause the errors.

Methods

Cotton variety trials were harvested over a two year period (2012 and 2013) in six states. Each trial contained at least six varieties which were replicated three times. The yield monitor manufacturer, mean plot length and mean plot mass as measured by the reference scale are shown in table 1. Yield monitor mass was recorded from the yield monitor display in the cab. It was also checked against the data from the yield monitor file, but the value from the display was used as the yield monitor's measured mass. After the plot was harvested and the value recorded, the seed cotton was unloaded into a boll buggy to measure the actual mass. This is the reference mass that was used to determine error. While the reference scale was different at each location, it was something that would typically be used to measure mass for on-farm research trials. The length and width of all plots were measured. Plots at some locations were uniform in length, however some varied. A sample from each plot was ginned to determine lint turnout. Again, while the ginning procedures, sample size and gin may have varied across locations, the individual procedures were typical for the researchers at each location.

	Table 1. Summary data for each site year.									
Year	Site	Number of	Mean Plot	Mean	Yield Monitor					
		Varieties	length, ft	Mass, lbs						
2012	Georgia	11	712	570	AgLeader					
2012	South Carolina	6	500	1188	AgLeader					
2012	Texas	8	536	321	John Deere					
2013	Georgia	12	1442	986	AgLeader					
2013	Oklahoma	10	590	2069	Trimble					
2013	Texas	8	1427	1598	John Deere					

Error was calculated for each plot on a mass basis. However, all variety comparisons were made based on seed cotton yield. Comparing varieties based on yield accounts for the non-uniform plot length at some locations.

Results

Mean seed cotton yield as determined by the reference scale and yield monitor are shown in table 2 by site-year. Mean yields ranged from 1977 to over 6000 lbs/ac. It should be noted that the 2013 Oklahoma site was stripper harvested, thus it had a greater seed cotton yield (in a very good crop year) and lower lint turnout. Correlation between yield measure by the two methods (reference and yield monitor) exceeded 0.90 for four of the six site-years. There was no correlation for the Oklahoma site in 2013 and a negative correlation for Texas in 2013 (figure 1). The high correlations were in line with those reported by Robertson et al (2006) and Stewart et al. (2008).

Analysis of variance was used to determine varietal yield differences each site. This was done with yield calculated from both the reference scale and yield monitor. Significant yield differences among varieties were detected for all site-years. Yield monitors tended to group the varieties similar to the reference scale for the site years with the highest correlation coefficients. However there were differences that could potentially affect variety decisions. In general, the highest and lowest yielding varieties were placed in the same statistical groups by the yield monitor and reference scale. Varieties that yielded near the mean for a location were typically not grouped similarly by the two

means for measuring yield. As expected the statistical groupings of varieties for the two site-years with low correlation coefficients were not similar using the two methods to determine yield.

Errors were significantly different by variety for five of the six site-years. This demonstrates that certain varieties are responding similarly when measured by the yield monitor. However, no clear methods to adjust for error have been discovered at this time. Yield monitor error for some site-years was related to lint turnout data, but this relationship was inconsistent across site-years (figure 2). While other data (boll mass, seed mass, etc.) were collected as part of this research that data has not been fully analyzed.

Year	Site	Mean Reference Seed Cotton Yield, lbs/ac	Mean YM Seed Cotton Yield, lbs/ac	Mean Error, %	Mean Lint Turnout, %	Correlation Coefficient
2012	Georgia	2909	2741	-5.5	41.8	0.91
2012	South Carolina	4085	3967	-2.6	42.2	0.92
2012	Texas	1977	1208	-40.8	36.7	0.91
2013	Georgia	2637	2725	3.4	39.4	0.90
2013	Oklahoma	6364	6583	4.7	26.8	0.04
2013	Texas	3668	2758	-24.5	37.5	-0.20

Table 2. Mean yields, errors and correlation between reference and yield monitor yields.

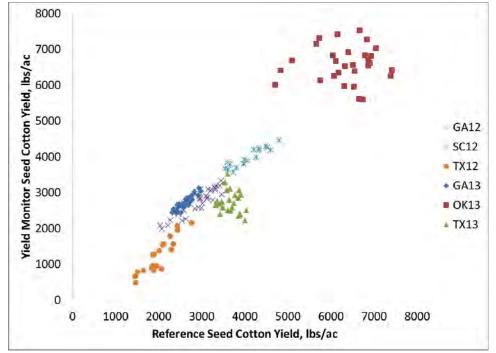


Figure 1. Relationship of seed cotton yield using two measurement methods for six site-years.

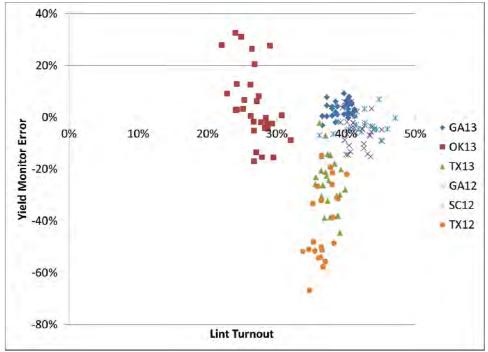


Figure 2. Relationship yield monitor error to lint turnout.

Summary

Correlation between yield monitor and reference yields for cotton variety tests were generally high for four of six site years. However, the high correlation did not allow yield monitors to effectively group varieties the same as the reference scale. Errors were significant by variety for five of six site-years. No clear methods to adjust for error have been discovered.

References

Rains, G.C., C.D. Perry, G. Vellidis, D.L. Thomas, N. Wells, C.K. Kvien, and H.D. Dales. 2002. Cotton yield monitor performance in changing varieties. ASAE Paper No. 021160, ASAE, St. Joseph, MI.

Robertson, B., M. Cordell, S. Matthews, and F. Groves. 2006. Utility of Yield Monitors for On-farm Research. Proceedings of the Beltwide Conferences, pp 1756-1758.

Stewart, A.M., I.R. Wright, S.F. Deville, and B.W. Woolam. 2008. Comparison of On-Farm Cotton Variety Trial Results when Using Yield Monitors vs. Weigh Wagons. Proceedings of the Beltwide Conferences, pp 69-71.

SPATIAL TURNOUT ON STRIPPER HARVESTED COTTON

Wesley M. Porter¹

(1) Crop and Soil Sciences Department University of Georgia Tifton, GA

Randal K. Taylor²

(2) Biosystems and Agricultural Engineering Department Oklahoma State University Stillwater, OK

John D. Wanjura³

(3) USDA-ARS Cotton Production and Processing Research Unit Lubbock, TX

Randal K. Boman⁴

(4) Oklahoma State University Southwest REC Altus, OK

Shane Osborne⁴

(4) Oklahoma State University Southwest REC Altus, OK

Hossain Navid-Visiting Scholar

(5) Biosystems and Agricultural Engineering Department Oklahoma State University Stillwater, OK

<u>Abstract</u>

The main goal of this study was to document the spatial turnout of stripper harvested cotton across a production cotton field. The data provided an insight to aid in the determination of the variability of lint turnout from stripper harvested cotton and its potential effects on predicting yield. A production field near Canute, OK was selected and cotton was harvested from this field using a 6-row cotton stripper. Three 1100 ft long transects were harvested from the production field. Weight samples for yield determination were collected every 100 ft. An approximate 25-lb sub-sample was collected from each of the yield samples. Lint turnout was not variable and ranged from 30% in lower yielding cotton to 37% in higher yielding cotton. A correlation was found between lint turnout and both lint yield and seed cotton yield for the lower yield transect. In higher yielding cotton it does not appear that lint turnout is correlated to either seed cotton or lint yield. However, since there is a correlation present between seed cotton yield, lint yield, and lint turnout in lower yielding cotton then more spatial turnout work should be performed on lower yielding cotton stands to determine the sources of the correlation.

Introduction

Unlike picker harvesters, which use spindles to remove seed cotton from open bolls, stripper harvesters use brushes and bats to indiscriminately remove seed cotton, bolls, leaves, and other plant parts from the stem of the plant (Porter 2013). Stripper harvested bur cotton contained 27.8% total trash compared to 4.6% for spindle picked seed cotton (Kerby et al., 1986; Baker et al., 1994; Faulkner et al. 2011a). Garner et al. (1970) reported that spindle picked cotton ginned an average of 24% faster than stripped cotton due to much lower content of foreign matter. The harvesting efficiency or the amount of crop material removed during harvest with a picker is lower than that with a stripper harvester. Field losses are lower than those from pickers and under ideal harvesting conditions; a stripper can harvest 99% of the cotton on the plant compared to 95-98% with a picker and in some instances the picker will have harvest losses approaching 20% (Hughs et al. 2008).

Stripper harvesting is predominately confined to the Southern Plains of the US due to several factors including: low humidity levels during daily harvest intervals, tight boll conformations and compact plant structures adapted to withstand harsh weather during the harvest season, and reduced yield potential due to limited rainfall and irrigation capacity. Cotton strippers typically cost about one-third the price of cotton pickers and have harvesting efficiencies in the range of 95 – 99% making them ideal for lower yielding cotton conditions (Faulkner et al. 20011b and Williford et al. 1994). In 2010, approximately 50% of the total number of cotton bales produced in the U.S. came from Texas and Oklahoma (USDA, 2011). Approximately 70-75% of the cotton harvested in these two states was

harvested with stripper harvesters. Over one quarter of the cotton harvested in the U.S. in 2010 was harvested with cotton strippers (USDA, 2011).

Thus, stripper harvesting is not going to disappear from the Southern High Plains and is a viable and cheaper alternative option to picker harvesters. However, the higher trash levels can present specific challenges during both harvest, transport, and ginning. The foreign matter levels can be variable and can lead producers to getting variable lint turnout numbers from the gin from the modules that they deliver. The variability in lint turnout at the gin can make it very difficult to accurately estimate lint yield. If the variability truly exists, as producers believe it does then this study can aid in determining correlations to the variability.

The main objective of this study was to document the spatial turnout of stripper harvested cotton across a production cotton field. The secondary objective was to determine the variability of lint turnout of the harvested cotton and its potential effects on predicting yield.

Materials and Methods

Cotton was harvested on December 3, 2013 near Canute, OK to determine spatial yield and turnout variability. The cotton variety, Delta Pine 0935, was grown in a dryland environment on 40 inch wide rows. Three transects, approximately 1100 feet in length, were segmented into 100 feet increments except the last segment where the length final length was slightly shorter due to field shape. The harvested transects were parallel and approximately 200 feet apart (Figure 1). A 6-row John Deere 7460 cotton stripper was used to harvest the crop.

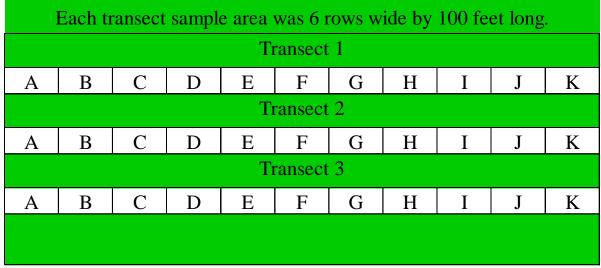


Figure 1. Field map of transects and sampling areas, not to scale.

The stripper harvested each segment and unloaded into a boll buggy where the bur cotton was caught in a 10 by 12 plastic tarp. The tarp containing the cotton was weighed by suspending it from four 50 lb load cells (Interface ...) (Figure 2). The load cells weigh connected to a summing junction (Interface Advanced Force Measurement Model # JB104SS Scottsdale, AZ) and the resulting value was displayed on a digital readout (Interface Display and Signal Conditioner Model #: 9820-000-1 Serial #: M3511). The display also supplied power to the load cells. After a weight was recorded, approximately 25 lbs was bagged for ginning.

Figure 2. The sample collection system, located inside of the boll buggy.

Each of the harvesting samples was processed through an extractor-feeder (Continental Gin Company-Moss Gordin, Birmingham, AL, Type C-95, Serial No.: 8866 (BM: 948428), top saw 0.36 m diameter @ 374 rpm, middle saw 0.36 m diameter @ 374 rpm, bottom saw 0.36 m diameter @ 77 rpm), 16-saw gin stand (Continental Gin Company, Birmingham, AL, Model: 610, Type: 16B79, Saw Cylinder 0.41 m diameter @ 720 rpm originally 21 saw original width reduced to 16 saws, and doffer brush speed 1830 rpm), and one stage of saw-type lint cleaning (Continental Gin Company Birmingham, AL, Model: 620, Type: G120B, upper roller speed 86 rpm, feed roller speed 91.5 rpm, main saw 0.41 m diameter @ 882 rpm, doffer brush speed 1472 rpm). After ginning all the cleaned lint from a harvesting sample was weighed on an Electroscale (Model LC2424, capacity: 99.8 kg, Display: Electroscale Weigh Master 551, capacity: 90.7 kg, resolution 0.005 kg) to obtain lint turnout. Lint turnout was calculated by dividing the clean lint weight by the total sample weight and multiplying by 100. The trash collected from the extractorfeeder and seeds from the gin stand were collected and weighed on the same Electroscale. The seed and trash weights were used to aid in ensuring that the total sample weight was accounted for in the final lint turnout analysis. Percent trash was calculated by dividing the trash weight collected from the extractor feeder by the total sample weight. One sample of cotton lint after the lint cleaner, from each harvesting sample were collected and sent to the Texas Tech University, Fiber and Biopolymer Research Institute in Lubbock, TX for the HVI Breeder's Test (Uster Technologies HVI 1000).

Bur cotton yield was determined by dividing the mass harvested in the 2000 ft^2 area (20 ft x 100 ft). The lint turnout for that sample was used to calculate a lint yield. Simple summary statistics were used to determine variation in yield and lint turnout. Correlation analysis was also conducted between yield and lint turnout.

Results and Discussion

Overall seed cotton yield was variable throughout each of the harvest transects. Average yield was 1890 lbs/ac, 1960 lbs/ac, and 1500 lbs/ac for transects one, two and three respectively. Transect three also had more spatial variability than the other two transects.

Figure 3 represents the seed cotton yield and lint turnout from transect one. Except for the first sample ginned the lint turnout was very consistent. There was a problem with the first gin lot that caused an exaggerated high lint turnout.

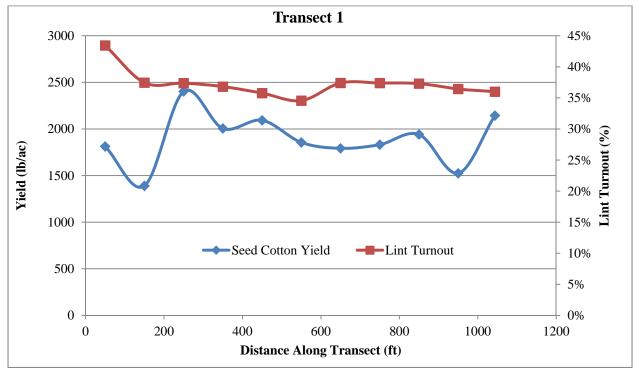


Figure 3. Seed cotton yield and lint turnout as a function of distance along transect 1.

As can be viewed in figure three the variability observed in seed cotton yield was not present in lint turnout. There was a -0.130 correlation between seed cotton yield and lint turnout. The correlation between lint yield and lint turnout was slightly higher at 0.259, however, since lint turnout was used to calculate lint yield there should be a higher correlation.

Similar results can be observed in Figure 4. Again lint turnout had very little spatial variability across transect two. Seed cotton yield in transcript two had a negative relationship with lint turnout, but still not a strong correlation. In this case seed cotton yield has a -0.298 correlation with lint turnout while lint yield only has a -0.135 with lint turnout.

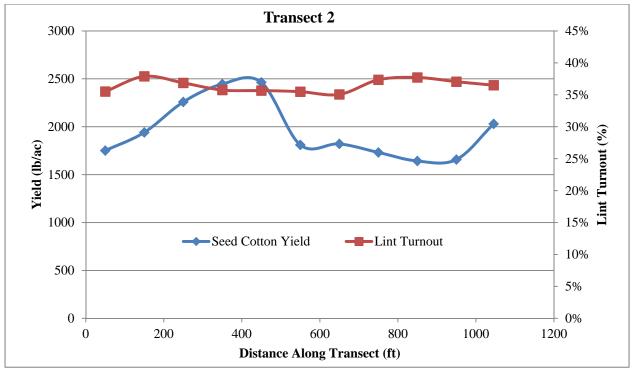


Figure 4. Seed cotton yield and lint turnout as a function of distance along transect 2.

Compared to transects one and two, transect three has a much lower average yield. However, the first two transects do not have strong correlations with lint turnout. Transect three had the highest correlations with seed cotton yield having a 0.50 correlation with lint turnout and lint yield having a 0.70 correlation with lint turnout (Figure 5). There is not enough data to fully verify but it seems that lower yielding cotton could potentially produce higher correlations between lint turnout and yield.

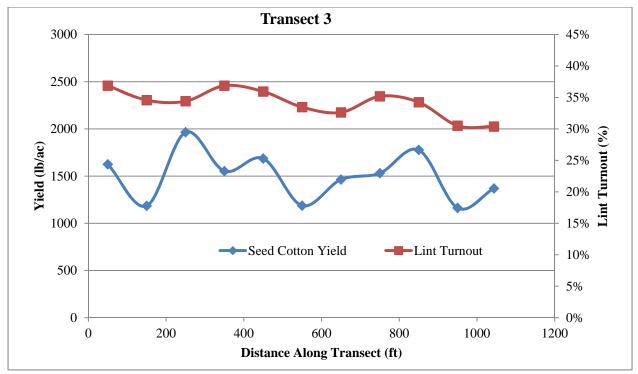


Figure 4. Seed cotton yield and lint turnout as a function of distance along transect 2.

Based on the data from this study a further study performed in very low yielding cotton could determine if the data collected from transect three is valid and representative of all lower yielding cotton or just a situation unique to this particular situation. There is not enough low yielding data in this study to draw firm conclusions about the relationship between low yielding stripper harvested cotton and variability in lint turnout.

Summary and Conclusions

It was found that lint turnout does not have a high correlation with either seed cotton or lint yield. Thus, it can be stated that higher yielding seed cotton yield does not affect lint turnout at the gin level. Thus, the variability discovered in this study is not enough to prevent accurate yield prediction. Based on the weak correlations between the higher yielding transects and both seed cotton and lint yield there is no justification to trying to determine variable lint turnout as the cotton is harvested. This study aided in putting hard numbers and correlations to seed cotton and lint yields and their correlations with lint turnout. Since the lower yielding transect had stronger correlations with lint turnout more work should be performed on very low yielding cotton to determine if spatial turnout variability increases with decreasing yield. A future study should also investigate the types of foreign matter that are causing the increasing levels of spatial turnout as the yield does decrease.

References

- Baker, R. V., W. S. Anthony, and R. M. Sutton. 1994. Seed cotton cleaning and extracting. Cotton Ginners Handbook, 69-90. Handbook Number 503.Washington, D.C.: USDA Agricultural Research Service.
- Faulkner, W.B., J.D. Wanjura, R.K. Boman, B.W. Shaw, C.B. Parnell, Jr. 2011a. Evaluation of modern cotton harvest systems on irrigated cotton: harvester performance. Appl. Eng. in Agric. 27(4): 497 506.
- Faulkner, W.B., J.D. Wanjura, E.F. Hequet, B.W. Shaw, C.B. Parnell, Jr. 2011b. Evaluation of modern cotton harvest systems on irrigated cotton: fiber quality. Appl. Eng. in Agric. 27(4): 507-513.

- Garner, W.E., E.H. Shanklin, and P.E. LaFerney. 1970. Fiber quality and ginning performance of machine picked and stripped cotton, southeastern area, 1964-66. USDA-ARS and ERS Marketing Research Report No. 852.
- Hughs, S.E., T.D. Valco, J.R. Williford. 2008. 100 years of cotton production, harvesting, and ginning systems engineering: 1907-2007. Trans. of the ASABE. 51(4): 1187-1198.
- Kerby, T.A., L.M. Carter, S.E. Hughs, C.K. Bragg. 1986. Alternate harvesting systems and cotton quality. Trans. of the ASAE. 29(2):407-412.
- USDA. 2011. National Statistics for Cotton. National Agricultural Statistics Database. Washington, D.C.: USDA National Agricultural Statistics Service. Available at: www.nass.usda.gov. Accessed 6 November 2011.
- Williford, J. R., A. D. Brashears, and G. L. Barker. 1994. Harvesting. Cotton Ginners Handbook, 11-16. Washington, D.C.: USDA Agric. Res. Service.

BUR COTTON MATERIAL FLOW CHARACTERIZATION AND PARAMETERIZATION ON A BELT CONVEYOR

Wesley M. Porter¹ (1) Crop and Soil Sciences Department University of Georgia Tifton, GA John D. Wanjura² (2) USDA-ARS Cotton Production and Processing Research Unit Lubbock, TX Randal K. Taylor³ (3) Biosystems and Agricultural Engineering Department Oklahoma State University Stillwater, OK Randal K. Boman⁴ (4) Oklahoma State University Southwest REC Altus, OK

<u>Abstract</u>

The main goal of this study was to characterize and parameterize bur cotton flow on a wire belt conveyor. This was accomplished using fiber quality and foreign matter data collected from previously determined belt configurations. Three typical yields common to the Southern High Plains (428.6, 642.9, and 857.1 kg ha⁻¹ which are equivalent to1, 1.5 and 2 bale per acre yields), a one meter row width, and 5.6 km h⁻¹ ground speed were used to determine three material follow rates. Four wire belt conveyor widths (0.18, 0.36, 0.53, and 0.69 m), and four material depths (0.025, 0.05, 0.10, 0.18 m), were chosen. Belt speed was determined for each of the16 width/depth combinations to achieve the three material flow rates. Fiber quality, percent foreign matter removal, and foreign matter data were collected from the extreme high and low velocities as determined by each belt width and greatest and least material flow rates and shallowest and deepest material depths (0.025 and 0.18 m) within each of the wire belt widths to determine the wire belt configuration effects on fiber quality and foreign matter content.

Introduction

Material conveyance can produce many unique challenges especially when it comes to agricultural products. Harvesters are expected to perform at an utmost level of harvesting and field efficiency during the harvest season. Baumgarten et al. (2009) investigated an assistance system for optimization of the grain combine harvest process and many of the principles can be transferred to cotton harvesters. Proper parameterization and characterization of harvesting equipment should start with individual component investigation. Studies by Porter et al. (2012 and 2013) investigated consecutive conveying/cleaning components on a cotton stripper harvester and identified and tested a redesign of the cross auger for bur cotton conveyance. Rademacher (2009) explored the harvesting and processing efficiency of a combine as related to the optimization of the machine settings. Benefits such as an increased quality of canola and wheat were observed during harvest by Rademacher (2009) from using the Claas electronic machine optimization service (CEMOS), the same system used by the Baumgarten et al. (2009) study. There are two other main parameters, independent of conveyance ability, that are the central focus for stripper harvested cotton, foreign matter content and fiber quality. Brashears and Ulich (1986) investigated pneumatic removal of fine material from bur cotton. Exhaust hoods were mounted over the stripper rolls and succeeded in removing up to 70 kg ha⁻¹ but the fine material was not significantly reduced over a standard stripper harvester. Laird and Baker (1985) investigated conveying cotton on an inclined wire belt. They reported that the physical forces that control conveying of a material such as cotton on an inclined belt are frictional forces between the material and the conveying surface, flow characteristics of the conveyed material, and inertial and other forces resulting from the non-uniform flow situation. Laird and Baker (1985) reported that the rigorous mathematical theory describing the interactions of all these forces in a belt conveyor has not been developed and was beyond the scope of their study. They reported that the angle of slide, or the angle at which the cotton began to slide back down the surface was 60° , however with a compressible material such as cotton, the angle of slide may vary considerably with depth, density, trash, and moisture content,

and other properties of the cotton. Also the angle of slide under non-uniform flow conditions may be less than the angle determined under static conditions (Laird and Baker 1985). The angle of slide is directly related to static and dynamic friction. Similar to the Laird and Baker (1985) the bur cotton in this study has non-uniform material composition structure and the flow characteristics can change based on material properties. The non-uniform characteristics of the bur cotton composition make it hard to predict the actual velocity and flow characteristics since the frictional forces are so variable. The principles investigated during the Brashears and Ulich (1986) study could be applied to a wire belt conveyor to employ an aided method of cleaning. Thus, this portion of the study not only investigates bur cotton conveyance on a wire belt but works towards characterizing foreign matter content and fiber quality associated with various belt widths, speeds and depths.

Materials and Methods

This section expands on Porter et al. (2013) and explores various speeds, depths, and widths on a wire belt conveyor. Data from Porter et al. (2013) supported the idea that a wire belt conveyor can be used as a viable replacement for a cross auger on a cotton stripper. A FiberMax 9170 B2F cultivar was used for this study.

To properly design and optimize a wire belt for conveying bur cotton, multiple material conveyance parameters needed to be tested and quantified. A standard field harvest speed of 5.6 km h⁻¹ (3.5 m h^{-1}) was used in combination with three estimated common bur cotton yields observed in the Southern High Plains: 429, 643, and 857 kg lint ha⁻¹ (1, 1.5 and 2 bale ac⁻¹ yields). The speed and yields in combination with a one row (1 m) harvest width equate to 0.30, 0.45, and 0.60 kg s⁻¹ of material flow respectively. A wire belt conveyor was built with 0.69 m in width. The wire belt had rectangular slots that were 1.27 cm by 2.54 cm (Figure 1). The belt conveyor was driven by a single v-belt using a 110 volt electric motor with a variable frequency drive (Figure 2).

Figure 1. The dimensions of the wire belt that was used for the wire belt conveyance of bur cotton.

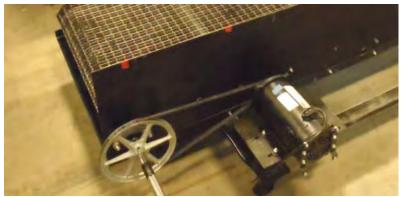


Figure 2. The motor and drive belt that operated the wire belt conveyor.

Four belt widths were tested: 0.18 m, 0.36 m, 0.53 m and 0.69 m. The minimum and maximum widths were determined based on the width of the current auger trough on a cotton stripper. The minimum width was half and the maximum width was double that of the current width of the auger trough on a John Deere 7460 cotton stripper. The width of the belt conveyor was made adjustable by a divider (Figure 3) that was designed to fit over the top of the wire belt conveyor. The divider had slotted rails so it could be set to any width. Four depths were chosen, 0.03 m, 0.05 m, 0.10 m, and 0.18 m. Belt speeds were calculated based on these depths. As with any material conveyance there is a minimum and maximum speed that would be feasible for field operation. Thus the calculated belt speed was set throughout the tests based on the width and depth settings. Belt speed was controlled by a variable frequency drive on the drive motor and an optical tachometer was used to measure the speed of the belt head-shaft. The test matrix represents the test combinations that were used for the fiber quality data collection (Table 1). The red highlighted fields represent velocities deemed non practical because they were either too slow or too fast for the electrical motor. The eliminated speeds are not practical from a field harvesting standpoint as these extreme velocities would be either much slower or faster than bur cotton would be introduced into the machine. Slower velocities could lead to greater material depths and potential clogging within the wire belt conveyance trough slowing and even disrupting harvest in certain cases. Extremely fast velocities would never allow the wire belt to be fully loaded and perform under full load. The fast velocities could also introduce other issues such as high power requirements and potential for increased wear to moving parts on the wire belt conveyor.

	performed due to being non practical.								
Width	0.03 m	0.05 m	0.10 m	0.18 m					
(Meters)	Material	Material	Material	Material					
	Depth	Depth	Depth	Depth					
	Velocities (m/s) for 0.30 kg s ⁻¹ of 1	Material Flow						
0.18	2.05	1.03	0.51	0.29					
0.36	1.03	0.51	0.26	0.15					
0.53	0.68	0.34	0.17	0.10					
0.69	0.53	0.27	0.13	0.08					
	Velocities (m/s	s) for 0.45 kg s ⁻¹ of 1	Material Flow						
0.18	3.08	1.54	0.77	0.44					
0.36	1.54	0.77	0.38	0.22					
0.53	1.03	0.51	0.26	0.15					
0.69	0.80	0.40	0.20	0.11					
	Velocities (m/s) for 0.60 kg s ⁻¹ of 1	Material Flow						
0.18	4.11	2.05	1.03	0.59					
0.36	2.05	1.03	0.51	0.29					
0.53	1.37	0.68	0.34	0.20					
0.69	1.06	0.53	0.27	0.15					

Table 1. Test matrix that was used for testing the wire belt conveyor for high speed camera and fiber quality work (velocities highlighted in red were not

The wire belt speeds were calculated and followed the material flow rates as they relate to the estimated common selected yields. Table 1 contains 48 tests, but due to the impractical speeds, only 43 tests were actually completed. The wire belt velocities ranged from 0.08 m s^{-1} to 4.10 m s^{-1} or 14 rpm to 770 rpm on the shaft attached to the drive pulleys on the wire belt conveyor. The current auger design on the cotton stripper moves material laterally at approximately 2.0 m s⁻¹. The current auger design is rated much faster than required for the material flow rates selected for this test. Thus the velocity ranges selected for this test covered a full range of speeds to adequately evaluate a wire belt conveyor.

A bur cotton bat (Figure 3) was placed on the wire belt conveyor equivalent to one row in width or 1.0 m. The bur cotton bat was placed at the appropriate depth on the wire belt conveyor. Guide marks (Figure 3) were placed on the divider to ensure the appropriate depth was matched.

Figure 3. The guide marks on the divider were used to ensure the bur cotton bat was placed at the appropriate depth and can be seen on the right to the far end of the wire belt conveyor.

Figure 4. The high speed camera and the belt conveyor with the plexi-glass side installed.

To aid with the characterization and parameterization process, fiber quality samples were collected from the lowest and highest material flow rate and minimum and maximum depths of the belt conveyance tests for all four belt widths for a total of four replications. The data from Porter et al. (2013) has shown that a belt conveyor does not have a significant impact on foreign matter content or fiber quality when compared to the standard auger conveyance method. Due the low impact on evaluated fiber quality parameters from Porter et al. (2013), only select tests were used to collect foreign matter content and fiber quality samples. It was decided to select extreme testing parameters to aid in discovering differences between wire belt configurations. Thus the 0.45 kg s⁻¹ material flow rate was eliminated from this test, leaving only the remaining 0.30 and 0.60 kg s⁻¹ material flow rates. Thus not collecting all of the wire belt conveyor configurations was justified. Potential optimization work could be performed on a belt conveyance system to aid in foreign matter removal and further preservation of fiber quality. Table 16 represents the test matrix that was used to determine the testing parameters for this study. The use of the extreme wire belt parameters should show relationships, if they exist, without the testing of every belt configuration necessary.

	work.	
Width	0.03 m	0.18 m
(Meters)	Material	Material
	Depth	Depth
Velocities (m/s)) for 0.30 kg s ⁻¹ of	Material Flow
0.18	2.5	0.29
0.36	1.03	0.15
0.53	0.68	0.10
0.69	0.53	0.08
Velocities (m/s)) for 0.60 kg s ⁻¹ of	Material Flow
0.18	4.11	0.59
0.36	2.05	0.29
0.53	1.37	0.20
0.69	1.06	0.15

Table 2. Test matrix that was used for testing the wire belt conveyor for fiber quality

work.

A total of four replications were collected for each belt configuration from Table 2. Separated foreign matter was collected and weighed after each run from the bottom of the conveyance trough for all samples including those performed during the high speed camera analysis. The bur cotton samples were collected at the end of the conveyor belt into a container, weighed on an Electroscale (Model LC2424, capacity: 99.8 kg, Display: Electroscale Weigh Master 551, capacity: 90.7 kg, resolution 0.005 kg), and then transferred to be prepared for ginning. Since this was bur cotton, all samples were processed through an extractor feeder prior to ginning to ensure the ginning process was consistent. A fractionation sample was collected from each bur cotton sample prior to passing through the extractor feeder and was processed as outlined by USDA (Shepherd 1972). An A&D Company Ltd. (Model: HP 20K, Serial No.: 13013097, Capacity: 21 kg, resolution 0.1 g) scale was used for weight collection of the fractionation data. Due to the small sample size (usually <4.5 kg), the samples were ginned on a 10 saw gin. Due to the differences in sample sizes and potential time requirements for ginning large samples on a small gin, sub-sample sizes were limited to 1.5 kg. If the sample was smaller than 1.5 kg then the entire sample was ginned, if larger than 1.5 kg then only 1.5 kg was ginned. The clean lint was collected and weighed along with the trash and seeds to obtain lint turnout and a lint sample was taken and sent to the Texas Tech University, Fiber and Biopolymer Research Institute in Lubbock, TX for HVI (Uster Technologies HVI 1000) and AFIS (Uster Technologies AFIS Pro 2) fiber analysis. Analysis of Variance (ANOVA) was performed using the Minitab Statistical Software version 16 (Minitab Inc. State College, PA). Tukey's Studentized Range test was used to declare differences among treatment means ($\alpha = 0.10$). An alpha level of 0.10 was used since this was preliminary and exploratory work.

Results and Discussion

Results from the foreign matter content and cotton fiber quality analysis provided insight into speed, width, depth, and material flow rate effects on foreign matter content and fiber quality. Figure 5 shows the amount of foreign matter removed from each sample as it passed across the wire belt conveyor. As the material depths increased in Figure 5 the velocities were reduced. A lower material depth required a higher velocity to transport the same amount of material than a greater depth. The data show that a lower material depth promotes an increase in foreign matter removal. There is not a statistical relationship but there appears to be an optimal speed in each of the material depths that also promotes an increase in foreign matter removal (Figure 5). The highest levels of foreign matter removal occurred at the 0.03 and 0.05 m material depths. It appears that an optimal velocity for the 0.03 m depth ranges from approximately 0.5 to 1.5 m s⁻¹ and an optimal velocity for the 0.05 m depth ranges from approximately 0.35 to 1.00 m s⁻¹. There do appear to be a few points that had much higher than average foreign matter removal percentages, but since this particular test was not replicated because the data were collected from all runs and not the reduced replicated tests, firm conclusions cannot be drawn. On a percent removal basis greater material depths remove less material than the lower material depths.

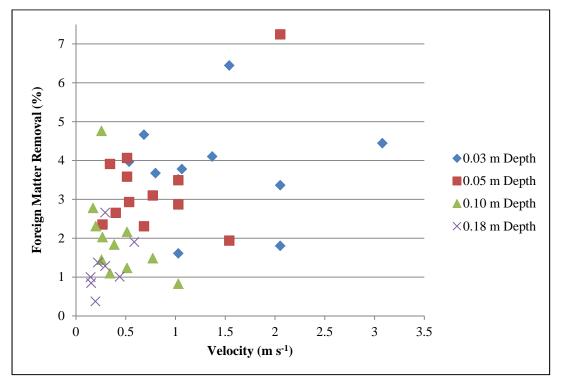


Figure 1. Percentage of foreign matter removed from the bur cotton by the wire belt conveyor based on bur cotton material depth.

The data represented in Figure 5 was collected from material pneumatically removed from the bottom of the wire belt conveyor and collected from the floor. The faster velocity could introduce a higher rate of vibration that accounts for a higher amount of material removal. As would be expected, a deeper depth did not incur a higher amount of foreign material removal. The same surface area of material was allowed to touch the wire belt independent of the material depth, verifying that foreign matter is only being removed from the portion of the bur cotton that is allowed to touch the belt. Approximately the same amount of foreign matter was collected from each sample, thus the data is presented as percent removal of foreign matter from each sample to aid normalizing this data collection. The sample size varied with each wire belt conveyor configuration such that smaller samples had the same amount of foreign matter collected as did the larger samples; however, in terms of percent removal the smaller

samples had higher values since the weight of the foreign matter comprised a higher amount of the total sample weight. Thus, typically a shallower depth had a higher percent removal per sample size than did the deeper material depths. The mixing action of a cross auger aids in inverting and mixing the bur cotton allowing for foreign material to not only be removed from the bottom of the material flow, but from the entire material flow stream. However, the mixing action of a cross auger could also intermix foreign material making it more difficult to remove during later processes. The non-mixing flow action of a wire belt conveyor should make it easier to remove foreign material within the field cleaner and perhaps at the gin level because it prevents foreign matter from being further incorporated into the bur cotton.

Figure 2. Percentage of foreign matter removed from the bur cotton by the wire belt conveyor based on wire belt width.

Figure 6 shows the percent removal of foreign matter based on the width of the wire belt conveyor. According to this data the 0.36 m wide belt performed best at removing foreign matter, with the 0.69 m wide belt removing approximately 0.1% less. However, it is important to note that there is only about a 0.3% difference between the highest and lowest foreign matter removals. After pairing this data with the depth and speed data, optimal ranges and widths can be determined and appear to range from 0.36 to 0.69 m in width, 0.5 to 1.5 m s⁻¹ in velocities and the material depth should stay at or below 0.05 m.

There were no statistical differences among the widths for lint turnout. Table 3 represents the mean groupings of the lint turnout data grouped by width.

Table 3.	Lint turnout	grouped by	width of the	wire belt convey	or.

Width	Lint turnout
(m)	% Lint
Untreated	37
0.18	38
0.36	38
0.53	36
0.69	36
P-Value	0.066

Greater belt widths had slightly lower lint turnouts than did the narrower belt widths. This could potentially be attributed to sample size, because typically the narrower widths were comprised of smaller samples, or it could just be because of natural variations in the cotton samples. All of the lint turnout numbers are high based on typical turnouts from stripper harvested bur cotton. However, the use of a small scale gin can sometimes increase the lint turnout and have other adverse effects on fiber quality parameters due to a few reasons such as differences in gin stand design and environmental conditions during ginning (Boykin et. al 2008). Since less sample flow is travelling through the gin, it may perform better at retaining more lint, or the smaller gin does not perform well at removing foreign material thus increasing the lint weight and consequently lint turnout.

Slight variations were observed in lint turnout when velocity was used as a factor. Table 4 presents the lint turnout divided by both width and material conveyance. Turnout tended to be slightly higher at low flow rates and minimum material depths. This could be attributed to more removal of foreign material occurring during the conveyance process of the bur cotton. However, the differences are slight and may not mean there is much difference between the material conveyance rates and depths.

	material flow rate	•			
Width	Lint to	Lint turnout			
(m)	%				
	0.30 kg s ⁻¹ of	0.60 kg s ⁻¹ of			
	Material Flow	Material Flow			
P-Value	<0.0	0001			
Untreated	37.	1 ^{BC}			
0.18	41.0^{A}	36.2 ^C			
0.36	38.5 ^B	36.2 ^C			
0.53	36.2 ^C	36.5 [°] 35.6 [°]			
0.69	36.6 ^C	35.6 ^C			

Table 4. Percentage of foreign material removed from the bur cotton ginning based on

To determine if the different combinations of speed, depth, and material flow rate had any effects on the type of foreign material being removed, the fractionation samples were collected and analyzed by all of the wire belt configurations. Differences were only significant for a few of the wire belt configurations tested. Leaf trash did have a significant relationship with width (Table 5).

Table 52.	Leaf trash	grouped	by	width	for	the	wire	belt	conveyor	reported from	n
				0							

fraction	ation results.
Width	Leaf Trash
(m)	% of Sample
Untreated	3.0 ^A
0.18	2.9^{AB}
0.36	2.5^{AB}
0.53	2.7^{AB}
0.69	2.4^{B}
P-Value	0.042

An increase in belt width seemed to reduce the total amount of leaf trash present in the samples. However there was not a statistical difference between the samples. This is potentially due to more surface area of the bur cotton being allowed to touch the wire belt conveyor. The area touching the belt allowed more of the leaf trash to be removed from the sample as it passed along the conveyor than did the reduced areas of the narrower widths. The only other significant interaction occurred between leaf trash as analyzed by depth and material flow rate (Table 6).

Width	0.03 m Depth	0.18 m Depth
(m)	% Leaf Trash	% Leaf Trash
P-Value	0.0)12
Untreated	3.0)2 ^A
0.	30 kg/s Material Fl	ow
0.18	2.6 ^{AB}	3.2 ^A
0.36	2.2^{AB}	2.8^{AB}
0.53	2.7^{AB}	Not Collected
0.69	2.3^{AB}	Not Collected
0.6	0 kg/s of Material F	low
0.18	Not Collected	2.8^{AB}
0.36	2.3^{AB}	3.0 ^{AB}
0.53	2.8^{AB}	2.6^{AB}
0.69	2.1 ^B	2.9^{AB}

Table 6. Percentage of leaf trash present measured by fractionation procedures.

Again, the differences are minor, but the lower percentages of leaf trash tend to occur at the lowest depths and the greatest widths. This again supports that a faster velocity could introduce higher vibration levels that could aid in shaking out more foreign material, especially in these cases the leaf trash. The greater widths are allowing for more surface area of the conveyed bur cotton to be exposed to the open wire belt. The increase in exposure to the belt provides both an open area for the leaf trash to fall out and introduces more vibration to the material touching the wire belt. The increases in vibration at this point aid in removing foreign material from the bur cotton.

Larger trash such as burs, sticks, and stems may not be able to fall through the belt since typically they are larger than the openings of the belt. More research into belt design could aid in increasing the amount of larger sized trash that is removed from the bur cotton. However, this process must be taken with care to ensure that the burr cotton is not allowed to fall out of the material stream, effectively reducing yield and decreasing harvest efficiency.

Both HVI and AFIS results, similar to the turnout and fractionation results did not have significant differences in the treatments for many of the HVI parameters including micronaire, strength, reflectiveness, and yellowness. Minor significant differences were present for HVI length, uniformity, elongation, and leaf. The HVI parameters with differences are presented in Table 7 below. The letters only correspond to the statistical differences located within each column data and do not correspond to any other HVI parameter in the table.

		treatme	ent.	
Treatment: Material flow rate, width, depth	Length (cm)	Uniformity %	Elongation	Trash (%)
Untreated	3.0 ^{AB}	81.9 ^{AB}	7.6 ^A	67.0 ^{AB}
0.30, 0.18, 0.03	3.0 ^{AB}	82.0^{AB}	7.2 ^B	34.5 ^B
0.30, 0.18, 0.18	3.0 ^B	81.0^{B}	7.6 ^A	57.0^{AB}
0.60, 0.18, 0.03	Not Collected	Not Collected	Not Collected	Not Collected
0.60, 0.18, 0.18	3.0 ^{AB}	82.4^{AB}	7.6 ^A	61.8^{AB}
0.30, 0.36, 0.03	3.1 ^{AB}	82.5^{AB}	7.7 ^A	50.5^{AB}
0.30, 0.36, 0.18	3.1 ^{AB}	83.3 ^A	7.6 ^A	84.3 ^A
0.60, 0.36, 0.03	3.0 ^B	81.8 ^{AB}	7.9 ^A	53.5 ^{AB}
0.60, 0.36, 0.18	3.0 ^{AB}	82.3 ^{AB}	7.6 ^A	72.3 ^{AB}
0.30, 0.53, 0.03	3.1 ^A	83.2 ^A	7.6 ^A	64.0^{AB}
0.30, 0.53, 0.18	Not Collected	Not Collected	Not Collected	Not Collected
0.60, 0.53, 0.03	3.0 ^{AB}	82.8^{AB}	7.6 ^A	75.5 ^A
0.60, 0.53, 0.18	3.1 ^{AB}	82.5^{AB}	7.6 ^A	67.8^{AB}
0.30, 0.69, 0.03	3.1 ^{AB}	83.1 ^A	7.7 ^A	56.3 ^{AB}
0.30, 0.69, 0.18	Not Collected	Not Collected	Not Collected	Not Collected
0.60, 0.69, 0.03	3.1 ^{AB}	82.4^{AB}	7.7 ^A	53.3 ^{AB}
0.60, 0.69, 0.18	3.1 ^A	83.0 ^A	7.6 ^A	83.8 ^A
P-Values	0.008	0.009	< 0.0001	0.012

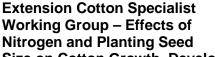
Table7. HVI parameters containing statistically significant differences based on treatment.

As presented in Table 7, most of the differences present are slight and even though they are statistically different at α =0.10 levels, the difference in actual fiber quality is not necessarily practical. There do not appear to be any trends present that correlate the fiber quality variation to the depth, width, and speed of material conveyance on the wire belt. AFIS results presented no statistical differences in fiber quality parameters tested, and variability was noted just as in the HVI data. The slight variations observed in the fiber quality data can be attributed to natural field variation on sampling and ginning methods. The set-up and evaluation of machinery projects often leave no feasible opportunities for treatment randomization. Even when considering the nature of this particular project, the foreign matter and fiber quality data do not seem to follow a trend that would suggest the issues could have been resolved by adjusting the testing procedures. As is often the case when working with natural environments, the variation present shows up in the data as slight differences with little to no pattern. Thus, it appears that various configurations of a wire belt conveyor do not seem to have a significant effect on cotton fiber quality parameters.

Summary and Conclusions

Cotton fiber quality and foreign matter content samples were processed across four widths combined with two depths on a wire belt conveyor to produce two material conveyance rates. The combination of width, depth, and material conveyance rate was used to determine the speed at which the wire belt conveyor should be operated at. The minimum and maximum conditions were tested for this part of the study. It was decided to use two material flow rates that would be considered high and low in the Southern High Plains. The fastest and slowest possible velocities were selected. Fractionation, ginning, HVI, and AFIS data were collected from these testing parameters. There were slight differences present from these processes and fiber quality tests. The various wire belt conveyor configurations did not have significant impacts on lint turnout, HVI and AFIS results. However, percent removal data collected from the wire belt conveyor suggest an optimal belt configuration to ensure higher levels of foreign matter removal. The optimal belt configurations based on the percent foreign matter removal data are velocities ranging from 0.5 to 1.5 m s⁻¹, widths ranging from 0.36 to 0.69 m and material flow depths less than 0.10 m. Since the percent removal data was the only data that show significant differences between wire belt conveyor configurations it was used to determine optimum settings. Designing a belt conveyor to meet these specifications

would optimally increase the amount of foreign matter removed from bur cotton as it passes along a wire belt to higher levels than other belt configurations. Most of the differences present in the foreign matter and fiber quality parameters that were statistically different were not of practical significance. The results of these tests have aided in developing a foundation for wire belt conveyance and fiber quality parameters and foreign matter removal. This foundation can be used to further optimize a wire belt conveyor for conveying bur cotton.


References

- Baumgarten, J., S. Neu, B. Kettelhoit. 2009. An assistance system for the optimization of the harvesting process in combine harvesters. Proc. of the Land-Technik Ag Eng. Conference Hanover, Germany. pp. 363-368.
- Boykin, J.C., D.P. Whitelock, M.D. Buser, C.B. Armijo, G.A. Holt, T.D. Valco, D.S. Findley, E.M. Barnes, M.D. Watson. 2008. Comparison of five small-scale laboratory gins to seven commercial gins sampled across the cotton belt. Proc. of the Beltwide Cotton Conf. Natl. Cotton Council of America. Memphis, TN.
- Brashears, A.D., W. L. Ulich. 1986. Pneumatic removal of fine material from bur cotton. Transactions of the ASAE 29 (1): 51-55.
- GIMP Development Team. 2013. GIMP GNU Image Manipulation Program, Release 2.8. Available at: <u>http://www.gimp.org/</u>. Accessed April 20, 2013.
- Laird, W., R.V. Baker. 1985. Conveying machine-stripped cotton with an inclined wire belt. *Trans. of ASAE.* 28 (6): 2066-2070.
- Minitab Statistical Software. 2013. Ver. 16. Minitab Inc. State College, PA.
- Porter, W.M., J.D. Wanjura, R.K. Taylor, R.K. Boman, M.D. Buser, E.M. Barnes. 2012. Tracking cotton fiber quality throughout a stripper harvester. Proc. of the Beltwide Cotton Conf. Natl. Cotton Council of America. Memphis, TN.
- Porter, W.M., J.D. Wanjura, R.K. Taylor, R.K. Boman, M.D. Buser. 2013. Tracking cotton fiber quality throughout a stripper harvester: part II. Proc. of the Beltwide Cotton Conf. Natl. Cotton Council of America. Memphis, TN.
- Porter, W.M., J.D. Wanjura, R.K. Taylor, M.D. Buser, E.M. Barnes. 2013. Comparison of a belt and auger conveyance system for a cotton stripper header. ASAE Paper No. 1562451. St. Joseph, Mich: ASAE
- Rademacher, T. 2009. The increase of efficiency of combines through optimisation of the machines settings. Proc. of the Land-Technik Ag Eng. Conf. Hanover, Germany. pp. 369-374.
- Risius, H., J. Hahn, H. Korte. 2009. Implementation of process analytical Technology (PAT) for the determination of product quality on a combine harvester. Proc. of the Land-Technik Ag Eng. Conf. Hanover, Germany. pp.375-381.
- Shepherd, J.V. 1972. Standard procedures for foreign matter and moisture analytical tests used in cotton ginning research. *Agric. Handbook No. 422.* Washington, DC: USDA.

Peer Reviewed Journal Article

Size on Cotton Growth, Development and Yield

Nitrogen is frequently the plant nutrient provided to cotton in the greatest quantity. But occasionally N is not used efficiently by the crop. Applied N may not be available because of runoff, leaching, and/or volatilization. Such losses represent unrecovered input costs for growers and potentially detrimental effects to the environment. In recent years, prices of N fertilizers have increased and been more volatile. Thus, there are both economic and environmental motives for improving the efficiency of N fertilization practices. Cotton will take up ammonium (NH_4) and nitrate (NO_3) nitrogen from all sources, including fertilizer, atmospheric deposition in rain water, irrigation water, soil water, and soil mineralization N release. While soil NO₃ testing is not extensively used in some states in cotton production, pre-plant soil NO₃ testing could prove to be economically beneficial, especially where large quantities of residual NO₃ are present. A common experiment funded by the Cotton Incorporated Core Program was performed by state cooperative extension cotton specialists at ten locations each in **2009 and 2010.** At each location, the experiment was a factorial arrangement of three cultivars and four N rates (0, 40, 80, and 120 lb N/acre). Locally adapted cultivars were chosen that had seed counts per lb in the following three classes, large (< 4400), medium (4401-5000) and small seeds (> 5000 seed/lb). A Cotton Incorporated sponsored producer publication is being generated at this time and should be available soon. The general conclusions from this work are as follows:

- Base N application rates on anticipated yields of the field or site-specific zone. Field production records and performance of cultivars in replicated field tests on similar soils in your region provide good references for estimation.
- For the yield levels encountered in these trials (no sites produced over 4 bales/acre), these results indicate that cotton needed approximately 50-55 lbs N/bale from all sources (including soil and water inputs). Pre-plant soil nitrate –N can be deducted from the application rate for applied N without sacrificing yield.
- Over fertilization with N will delay maturity, make defoliation more difficult, and if excessive can reduce lint yields.
- To potentially improve N use efficiency, apply N as close to the time the crop will use it as possible. To avoid losses to denitrification and leaching apply split applications by using starter fertilizer and applying the remainder 30-40 days post plant or applying one third of the total at pre-plant and the remainder as if following a starter application.

Effects of Nitrogen and Planting Seed Size on Cotton Growth, Development, and Yield

Christopher L. Main,* L. Tomas Barber, Randall K. Boman, Kent Chapman, Darrin M. Dodds, Stu Duncan, Keith L. Edmisten, Patrick Horn, Michael A. Jones, Gaylon D. Morgan, E. Randall Norton, Shane Osborne, Jared R.Whitaker, Robert L. Nichols, and Kevin F. Bronson

ABSTRACT

A standardized experiment was conducted during 2009 and 2010 at 20 location-years across U.S. cotton (*Gossypium hirsutum* L.)producing states to compare the N use requirement of contemporary cotton cultivars based on their planting seed size. Treatments consisted of three cotton varieties with planting seed of different numbers of seed per kg and N rates of 0, 45, 90, and 134 kg ha⁻¹. Soil at each trial location was sampled and tested for nitrate presence. High levels of soil nitrate (>91 N-NO₃⁻ kg ha⁻¹) were found in Arizona and western Texas, and soil nitrate in the range of 45 to 73 kg N-NO₃⁻ ha⁻¹ was found at locations in the central United States. Cotton lint yield responded to applied N at 11 of 20 locations. Considering only sites that responded to applied N, highest lint yields were achieved with 112 to 224 kg ha⁻¹ of applied plus pre-plant residual soil NO₃—translating to an optimal N requirement of 23 kg ha⁻¹ per 218 kg bale of lint produced. Among the varieties tested those with medium-sized seed produced higher yields in response to N than did larger and smaller seeded varieties. Varieties with larger seed had longer and stronger fibers, higher fiber length uniformity than small seeded varieties and decreased micronaire. Seed protein and oil increased and decreased slightly in response to increasing amounts of soil nitrate plus applied N, respectively.

N ITROGEN IS FREQUENTLY the plant nutrient provided to cotton in the greatest quantity, but often N is not used efficiently by the crop (Hunt et al., 1998; Hutmacher et al., 2004). Applied N may not be available to the crop because of runoff, leaching, and volatilization. Such losses represent unrecovered input costs for the grower and potentially detrimental effects to the environment (Galloway et al., 2008). Moreover, in recent years prices of N fertilizers have increased and have been increasingly volatile (USDA-ERS, 2012). Thus, there are both economic and environmental motives for improving the efficiency of N fertilization practices.

A compounding problem with selecting a single optimum N rate for cotton compared to grain crops is in part due to cotton's physiology. In contrast to grain crops that were selected from wild annual plants, cotton varieties are derived from arborescent perennials that can be highly indeterminate in growth and reproduction patterns (Donald and Hamblin, 1976; Bednarz and Nichols, 2005). Partitioning of N in cotton is affected by genetics, environment, and the availability of N (Mullins and Burmeister, 1990; Boquet et al., 1993; Boquet and Breitenbeck, 2000; Fritschi et al., 2003). Cotton varieties that receive supraoptimal N may produce excessive vegetative growth and fewer reproductive structures than cotton receiving less N (Boquet et al., 1994; Boquet and Breitenbeck, 2000). Increasing N fertilization may increase cottonseed yield more than lint yields (Egelkraut et al., 2004; Fritschi et al., 2003).

Pre-sidedress soil nitrate tests (PSNT) have shown promise in predicting N fertilizer needs for other crops. Spellman et al. (1996) reported that critical levels for PSNT NO_3^- for corn production were lower in semiarid areas of the western United States than in more humid environments. Similar results were reported in Australia where soil NO_3^- levels sampled to a depth of 30 cm before planting were closely correlated to cotton N uptake in plots that received no applied N fertilizer (Constable and Rochester, 1988). While soil NO_3^- testing is not currently used to a great extent for cotton production, this type of testing could prove to be economically beneficial in areas where residual NO_3^- is present.

Cotton lint is comprised of fibers growing from the cotton seed surface. Because a large number of small seed can have more surface area than do a few large seed, greater lint yields might be achieved by selecting for reduced seed size and increasing seed numbers (Harrell and Culp, 1976). Such a result could accrue from simple selection for high gin turnout, the fraction of lint obtained from harvested seed cotton. In fact the mean seed size of cotton varieties has been decreasing for the last 30 yr (Bednarz et al., 2007).

Abbreviations: PSNT, pre-sidedress soil nitrate tests.

C.L. Main, formerly Univ. of Tennessee, currently Dow AgroSciences 120 Hidden Creek Cv., Medina, TN 38355; L.T. Barber, Univ. of Arkansas, 2301 South University Ave., Little Rock, AR 72203; R.K. Boman and S. Osborne, Oklahoma State Univ., 16721 U.S. Hwy 283, Altus, OK 73521; K. Chapman and P. Horn, North Texas State Univ., 1155 Union Circle, Denton, TX 76203; D.M. Dodds, Mississippi State Univ., Box 955 Mississippi State, MS 39762; S. Duncan, Kansas State Univ., 1007 Throckmorton Hall, Manhattan, KS 66506; K.L. Edmisten, North Carolina State Univ., 4208 Williams Hall, Raleigh, NC 27695; M.A. Jones, Clemson Univ., 2200 Pocket Rd., Florence, SC 29506; G.D. Morgan, Texas A&M Univ., 2474 TAMUS, College Station, TX 77843; E.R. Norton, Univ. of Arizona, 2134 S. Montierth Lane, Safford, AZ 85548; J.R. Whitaker, Univ. of Georgia, P.O. Box 8112, Statesboro, GA 30460; R.L. Nichols, Cotton Incorporated, 6399 Weston Parkway, Cary, NC 27513; K.F. Bronson, U.S. Arid Land Agric. Res. Center, USDA-ARS, 21881 N. Cardon Lane, Maricopa, AZ 85138. Received 25 Mar. 2013. *Corresponding author (clmain@dow.com).

Published in Agron. J. 105:1853–1859 (2013) doi:10.2134/agronj2013.0154

Copyright © 2013 by the American Society of Agronomy, 5585 Guilford Road, Madison, WI 53711. All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Table I. Summary of trial locations,	soil types, and cottor	varieties† planted at each	location representing each seed size class.

			9	Seed sizes, no. seed kg ⁻	I
Location	Years	Soil type	<9700	9701-11,000	>11,001
Arkansas	2009–2010	silt loam	ST 5288B2F	DP 0924 B2RF	FM 1740B2RF
Arizona	2009	clay loam	DP 164 B2RF	ST 4498B2RF	PHY 745 WRF
	2010	clay loam	ST 5288B2F	DP 0924 B2RF	FM 1740B2RF
Georgia	2009	sandy loam	DP 555 BG/RR	PHY 485 WRF	FM 1740B2RF
Kansas	2010	sandy loam	ST 5288B2F	DP 0924 B2RF	FM 9180B2F
Mississippi	2009-2010	loam	ST 5288B2F	DP 0924 B2RF	FM 1740B2RF
North Carolina	2009-2010	sandy loam	ST 5288B2F	DP 0912 B2RF	FM 1740B2RF
Oklahoma	2009	clay loam	DP 164 B2RF	ST 4554B2RF	FM 9180B2F
	2010	clay loam	ST 5288B2F	DP 0924 B2RF	FM 9180B2F
South Carolina	2009-2010	sandy loam	DP 555 BG/RR	DP 0935 B2RF	PHY 745 WRF
Tennessee	2009-2010	silt loam	ST 5288B2F	DP 0920 B2RF	FM 1740B2RF
South Texas	2009-2010	silty clay loam	DP 0949 B2RF	DP 0935 B2RF	FM 840B2F
West Texas	2009	clay loam	DP 161 B2RF	FM 9058F	FM 9180B2F
	2010	clay loam	ST 5288B2F	DP 0924 B2RF	FM 9180B2F

[†] DP = Deltapine, Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167; FM = FiberMax, Bayer CropScience, 2 TW Alexander Drive, Research Triangle Park, NC 27709; PHY = PhytoGen Cotton Seed, Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268; ST = Stoneville, Bayer CropScience, 2 TW Alexander Drive, Research Triangle Park, NC 27709.

The cotton crop produces lint, whole seed for ruminant feed, cottonseed meal, a source of protein, and cottonseed oil, as well as hulls, a source of roughage, and linters, a source of cellulose. Since cotton seeds are a N sink (Egelkraut et al., 2004), maximum lint yields might be achieved with lower rates of N than previously were recommended for cotton production. Use of relatively low N rates for the fertilization of small-seeded cotton varieties may change the distribution of products produced by cotton and the distribution of N among cotton products from that expected with larger seeded varieties. The objective of this research is to compare the N use requirement of contemporary cotton cultivars based on their planting seed size.

MATERIALS AND METHODS

A standardized experiment was conducted by state cooperative extension cotton specialists at 20 locations during 2009 and 2010 (Table 1). At each location, the experiment was implemented as a factorial arrangement of three varieties and four N rates within a randomized complete block design with four replications of treatments. The three cotton seed size classes were selected with seed counts kg⁻¹ in the following ranges, <9700 (large), between 9701–11,000 (medium), and >11,001 (small). A locally-adapted variety from each seed-size class was selected at each location. Nitrogen rates were 0, 45, 90, and 134 kg N ha⁻¹ applied as a side-dress treatment between planting and the pinhead square stage of cotton development. Nitrogen fertilizer source was selected at each trial location according to locally available sources and practices.

The cations, Ca, Mg, and K; and extractable P were determined according to state soil laboratory procedures in the respective states. Except as noted in the experimental design, the crops were managed for high yields according to each respective states' University Extension recommendations. Soil samples were extracted from each plot at the 0- to 15- and 15- to 60-cm depth before planting and N application. Soil nitrate was determined in all samples (Bremner, 1965). Stand counts were recorded 10 to 14 d after planting (DAP) to ensure a uniform crop was established for each trial. Cotton vigor was monitored by recording the number of nodes above the highest first position white flower (NAWF) weekly from first bloom through defoliation (Bourland et al., 2001). At 120 DAP, plant height, number of plant nodes, number of bolls, and nodes above the highest first position cracked boll (NACB) to the highest harvestable boll were recorded (Bourland et al., 1992). The date when each treatment reached 60% open boll was recorded, and the cotton defoliated as soon thereafter as possible. The two center rows of each four to eight row plot were harvested using spindle pickers modified for small-plot harvesting at all locations except in Altus, OK, and Lubbock, TX, where a cotton stripper harvester was used. A sample of mechanically harvested seedcotton was collected from each plot and used to determine lint percentage and fiber quality. Gin turnout and lint yields were recorded, and ginned 50 g lint samples were sent to Cotton Incorporated where fiber properties were measured using a Model 1000 Uster High Volume Instrument (Sasser, 1981). Fuzzy cotton seed index was determined by counting the number of ginned seed in three 100-g samples.

Oil and protein content of the seed were quantified in samples of fuzzy seed by chemometric analysis using pulsedfield, time-domain ¹H nuclear magnetic resonance (TD-NMR) as previously developed (Horn et al., 2011) with a few modifications. The NMR signals were recorded on a modified Bruker minispec mq20 NMR analyzer (Bruker Optics, Inc, The Woodlands, TX). A newly-designed probe (PA247) with shorter dead time $(29 \,\mu s)$ was installed in the mq20 spectrometer to acquire additional solid-echo signal and enhanced overall signal quality that improved the prediction of protein values from cottonseed. Algorithms for the calculation of oil and protein values were developed by generating a standard curve and by multivariate analysis, respectively, with a diverse reference seed set (Horn et al., 2011). Values for each sample were reported as mean weight percent from three independent samples of approximately 3 g of seed.

Data were subjected to statistical analysis using the PROC MIXED procedure of the Statistical Analysis System (SAS version 9.2; SAS Institute, Cary, NC). A preliminary analysis reviled no interaction of the main effects, seed-size classes and N rates with locations and years. Each year–location

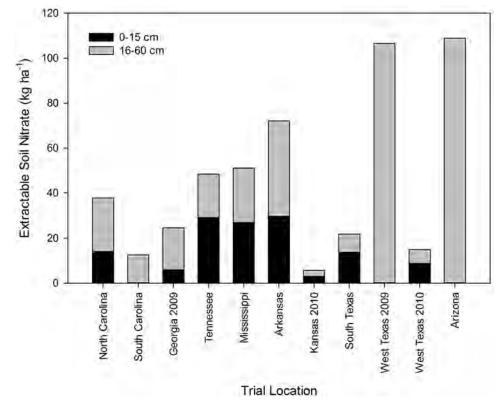


Fig. 1. Pre-plant residual soil NO₃⁻ by location as measured by pre-sidedress nitrate testing.

combination was considered an environment. Environments, replications nested within environment, and all interactions of these effects were considered random effects; whereas N and variety treatments were considered fixed effects. Considering environments as a random effect permits inferences about the treatments to be made over a range of environments (Blouin et al., 2011; Carmer et al., 1989). A similar statistical approach has been used by several researchers using a randomized complete block design (Bond et al., 2005; Hager et al., 2003; Jenkins et al., 1990) as well as those using a factorial arrangement of treatments in a randomized complete block design (Bond et al., 2008; Ottis et al., 2004; Walker et al., 2008). Means were separated using Fishers Protected LSD test at the 0.05 significance level.

RESULTS

Soil Nitrate Measurements

Results from analysis of soil nitrate varied based on soil type and N use history (Fig. 1). Sandy loam soils in Georgia, North Carolina, and South Carolina with previous N use contained from 17 to 22 kg NO_3^{-} ha⁻¹ in the upper 15 cm of the soil profile with an additional 7 to 12 kg NO_3^- ha⁻¹ from 16- to 60-cm depth in the soil profile. In Arkansas, Mississippi, and Tennessee there was 30 to 35 and 30 to 48 kg NO_3^- ha⁻¹ in the top 15-cm and 16- to 60-cm soil depths, respectively. In areas with little to no N use history (Kansas 2010, south Texas, and west Texas 2010) total nitrate found in a 60-cm profile was $<20 \text{ kg NO}_3^-$ ha⁻¹. More arid environments with N use history (Arizona and west Texas 2009) had >130 kg NO_3^- ha⁻¹ in the 60-cm profile. Pre-sidedress soil nitrate tests have shown promise in predicting N fertilizer needs for other crops. Spellman et al. (1996) reported that critical levels for PSNT NO_3^{-} in corn production were lower in semiarid areas of the western United

States than in more humid environments and the same may be true for cotton production. Similar results were reported in Australia where soil NO_3^- levels sampled to a depth of 30 cm before planting were closely correlated to cotton N uptake in plots that received no applied N fertilizer (Constable and Rochester, 1988). While soil NO_3^- testing is not currently used to a great extent for cotton production, this type of testing could prove to be economically beneficial in areas where residual $NO_3^$ is present.

Effects of Seed Size × Nitrogen Rates

Contrary to the hypothesis of this research, no interaction of seed size and N rate was found (data not shown). The 60 site-year × variety means generated by this research represented a total of 18 varieties. All varieties were locally adapted and many were in the top 10 most commonly-planted varieties for the years when the experiments were conducted. Since no interactions of N rate and varieties was found, the data are presented as the main effects of seed size and N rate.

Effects of Seed Sizes

When grown in these environments with four N application levels the varieties of the respective seed-size classes produced fuzzy seed that differed in mean weight (Table 2). Lint yields and mean seed size of commercial cotton varieties have varied inversely for the past 60 yr (Culp and Harrell, 1975; Harrell and Culp, 1976; Bednarz et al., 2007), apparently in response to selection for high lint percentage and lint yield. Highest lint yields were observed in these experiments when varieties were of a medium seed size. (Table 2).

Table 2. Response of cotton lint yield, fuzzy seed size, and fiber quality parameters based on applied N rate and planting seed size.

Nitrogen	Seed size	Lint	Seed wt.	GTO†	Mic	Length	Strength	uni
kg ha ⁻¹		kg ha ⁻¹	g 100 seed ⁻¹	%		cm	g tex ⁻¹	%
0		1208	9.08	38.6	4.7	2.84	28.8	81.8
45		1368	9.27	38.3	4.6	2.82	29.0	81.9
90		1435	9.30	38.1	4.6	2.84	29.2	82.0
134		1447	9.37	37.6	4.5	2.84	29.3	82.2
LSD (0.05)		64	0.19	0.4	0.1	0.03	0.3	ns
	<9700	1327	9.65	37.9	4.5	2.87	29.4	82.3
	9701-11,000	1410	9.33	38.7	4.7	2.82	28.5	82.3
	>11,001	1357	8.80	38.5	4.6	2.84	28.9	81.8
	LSD (0.05)	55	0.16	0.3	0.1	0.03	0.3	0.2

+ GTO = gin turnout; Mic = measure of fiber fineness, uni = fiber length uniformity index; tex = linear mass density of fibers, grams per 1000 meters.

Effects of Nitrogen Rates

In 11 of 20 environments there was a lint yield response to applied N. When 45 kg N ha⁻¹ was applied yields were greater than when no N was applied, but were less than yields where 90 to 134 kg N ha⁻¹ was applied (Fig. 2a). When all trial sites, both N responsive and non-responsive, are considered 45 kg N ha⁻¹ increased yields above no applied N, but additional N above 45 kg N ha⁻¹ did not improve lint yield.

Effects of Applied Nitrogen Rate Plus Soil Residual Nitrate

Cotton responds to ammonium and NO_3^--N from all sources, soil, water, and atmospheric deposition. While any measurement of soil NO_3^- is transient, measurement of pre-plant soil NO_3^- is a relatively simple and inexpensive way for a grower to estimate readily available soil N at planting (Hons et al., 2004). Accordingly, soil NO_3^- was measured at all sites. When applied N plus measured soil NO_3^- is considered with cotton lint response a more accurate relationship may be established. To make this comparison soil NO_3^- in the upper 60 cm of the soil profile plus

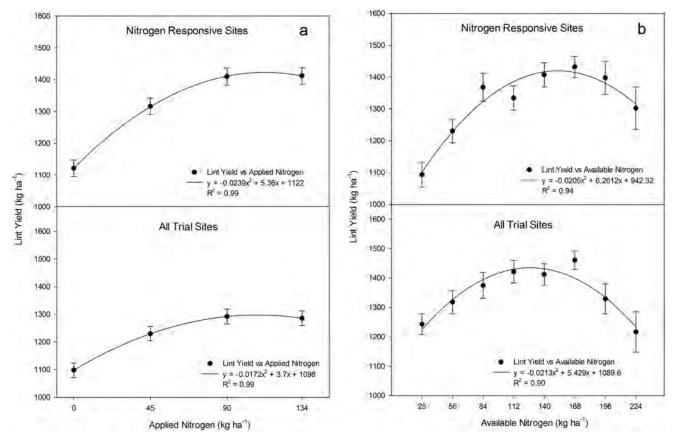


Fig. 2. (a) Response of cotton lint yield averaged over all test environments and only those environments that responded to applied N. (b) Response of cotton lint yield averaged over all test environments and only those environments that responded to applied N and applied N plus measured pre-plant soil NO₃⁻.

Table 3. Cotton plant height, number of plant nodes, and rele-
tative maturity response to applied N.

Nitrogen	Plant height	Plant nodes	NACB†
kg ha ⁻¹	cm	no	
0	74.2	16.6	4.3
45	79.8	17.1	4.9
90	84.1	18.0	5.3
134	88.2	18.5	5.9
LSD (0.05)	2.3	1.0	0.5

 \dagger Node number above highest first position cracked boll to highest harvestable first position boll.

applied N was categorized into $28 \text{ kg NO}_3^- \text{ha}^{-1}$ groups and analyzed for yield response (Fig. 2b).

Cotton Growth

Measurements of cotton plant growth and development indicate that N application rate effected plant height, total number of nodes, and delayed crop maturity. Plant height ranges from 74.2 to 88.2 cm from 0 to $134 \text{ kg ha}^{-1} \text{ N}$ application, respectively (Table 3). Similarly, the number of nodes increased with increasing N application growing an additional 1.9 nodes when comparing $134 \text{ kg ha}^{-1} \text{ N}$ application to 0 kg ha^{-1} . The consequence of growing a taller plant with more nodes is extending the length of growing season needed to mature developing bolls. The addition of N delayed cotton maturity when NAWF was measured during the second week of bloom in these trials (data not shown). Additionally, higher levels of N fertilization delayed maturity at the end of the growing season (Table 2). There was a 1.6 NACB difference which would require 88 additional heat units, or approximately 5 d based on reports of Brecke et al. (2001).

Lint Yields

Lint yields are presented as functions of applied N (Fig. 2a) and as applied N plus measured soil NO_3^- (Fig. 2b). Lint yields are shown separately for all test sites and for only those sites that had a significant response to applied N. Only 11 of the 20 environments responded to applied N. For all four cases, second degree polynomial regression was highly significant (P < 0.01). For both applied N and applied plus measured soil NO₃⁻, the coefficient of determination was increased when only N responding sites were considered for both applied N plus measured soil NO₃⁻. For N responding sites and all trial sites, a declining trend in lint yields was found when applied N plus soil NO_3^{-} was >152 and 125 kg N ha⁻¹, respectively. Interestingly, when 0 kg N ha⁻¹ was applied in these trials the average lint yield was 1208 kg ha⁻¹ indicating that residual soil NO_3^- and other forms of soil N provide nutrition to the cotton crop. However, cotton producers would be surprised to produce >1000 kg ha⁻¹ cotton lint without applying supplemental N.

For N responsive sites, optimum lint yield response occurred between 112 and 196 kg of applied N plus soil NO_3^- with negative yield trend above 196 kg N ha⁻¹. This represents 19 to 36 kg ha⁻¹ use per 218 kg bale of cotton lint with a maximum regression near 23 kg applied N plus soil NO_3^- ha⁻¹. When all trial sites are considered, optimum lint yield response to applied N plus soil NO_3^- shifts lower in a range from 70 to 180 kg N ha⁻¹. This represents 12 to 28 kg ha⁻¹ N use per 218 kg bale of cotton lint with a regression maximum near 19 kg applied N ha⁻¹. The difference in N utilization between responsive and non-responsive locations as well as the different conclusion for optimal N rate between applied N and applied N plus soil NO_3^- illustrates just a portion of the complexity in prescribing N rates. These data suggest that soil NO_3^- testing immediately before cotton planting can serve as a guide to help prevent overfertilization and yield loss, as well as protect water resources from N loading with excessive N applications.

In Fig. 3 yield data is presented by soil type for N responsive locations and similar second degree polynomial regression indicted good to excellent response to applied N plus soil NO_3^- based on coefficients of determination. Lint yield values were normalized to percentage of the highest yielding applied N plus soil NO_3^- category. Lint yield at locations with clay loam (36% increase) and loam (75% increase) soil types responded more to applied N. Lint yield from sites with sandy loam, silt loam, and silty clay loam soil responded to applied N plus soil NO_3^- levels however, the response ranged from a16 to 22% increase.

Seed and Fiber Properties

Significant effects of N application rate on mean fuzzy seed weights, gin turnout, fiber strength, fiber length uniformity, and micronaire were found (Table 2). Increasing N rates increased mean fuzzy seed weight compared to the 0 kg N ha⁻¹ rate. Although such an effect is familiar to many cotton researchers, these are the first data of which we are aware that definitely establish this relationship over multiple environments. Algebraically, an increase in mean seed weight would be expected to decrease lint percentage, and such a result was confirmed when applying 90 or 134 kg ha⁻¹ N decreased gin turnout. Plant vigor associated with good N management may be expected to positively influence fiber strength and an increase in strength was found when N was applied. Similarly fiber length uniformity also increased with increasing N rate. However, fiber micronaire decreased. Micronaire is an indirect measure influenced both by fiber fineness and fiber maturity, the latter being the degree of deposition of cellulose in the secondary cell wall inside the microfibril encasing the fiber lumen (DeLanghe, 1986). In this instance, we propose that the decrease is primarily due to the decrease in fiber maturity associated with the increase in late-season growth caused by abundant N nutrition (Boman and Westerman, 1994). Small differences in fiber properties were detected for the differing planting seed sizes. However, these differences are likely due to genetic differences among varieties rather than seed size.

As anticipated, higher applied N rates increased seed protein, but the effect was small. Conversely as seed protein increased, seed oil content decreased (Fig. 4). Similar effects were observed when data was analyzed for applied N plus soil NO_3^- (data not shown). No differences were noted for seed protein or seed oil content for varieties of different seed sizes. This indicates that while seed protein and seed oil content can be affected by N application, the concentrations remain relative to seed mass.

DISCUSSION

Residual soil NO_3^{-} is present in Cotton Belt soils. When N is applied cotton plants grow taller, develop more nodes, and the time to crop maturity was increased in these trials. Cotton planting seed size did not interact with applied N rates.

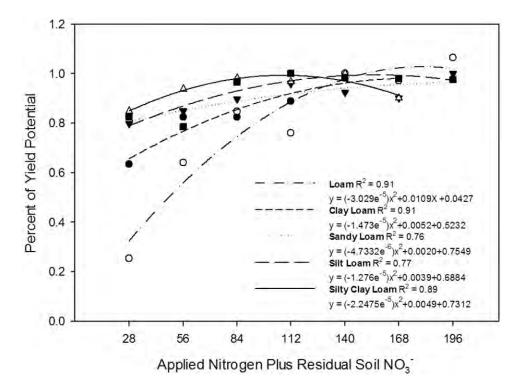


Fig. 3. Cotton lint yield response to applied N plus residual soil NO3⁻ by soil type normalized to highest yielding treatment.

Increasing applied N rate increased seed index, fiber length, fiber length uniformity, fiber strength while lint percentage and fiber micronaire decreased.

Cotton lint yield responded to applied N in 11 of 20 environments included in this data set. Lint yield was increased at responsive locations by 45 kg N ha⁻¹ compared to plots receiving 0 kg N ha^{-1} . Similarly applications of 90 and 134 kg N ha⁻¹ increased lint yield compared to the response with 45 kg N ha⁻¹. When applied N plus residual soil NO₃⁻ are considered, locations that had a response to applied N maximized lint production near 150 kg applied N plus soil NO_3^- ha⁻¹. This response translates to an N requirement of 23 kg ha⁻¹ for each 218 kg bale of lint produced. This research indicates that measuring soil residual NO_3^- could help reduce N input costs and reduce N loading in the environment while maintaining high levels of productivity.

While the data cannot be extrapolated to every cotton variety, we conclude that these data are sufficient to make an N recommendation of 23 kg N ha⁻¹ per bale of expected yield

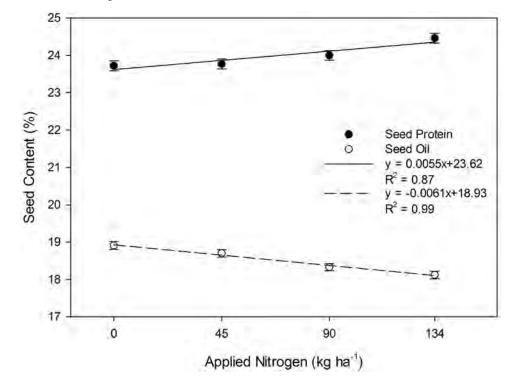
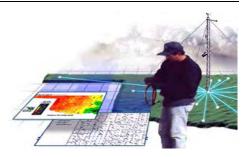


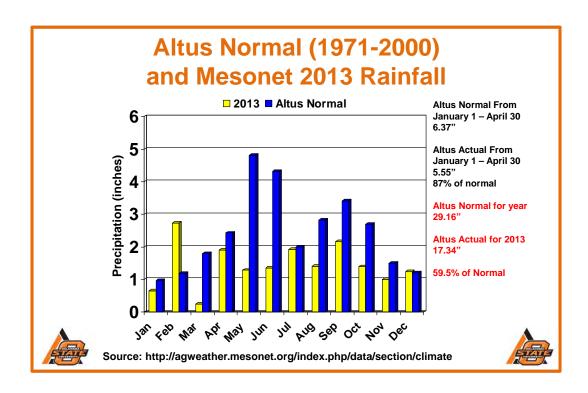
Fig. 4. Response of cottonseed protein and oil concentration to applied N.

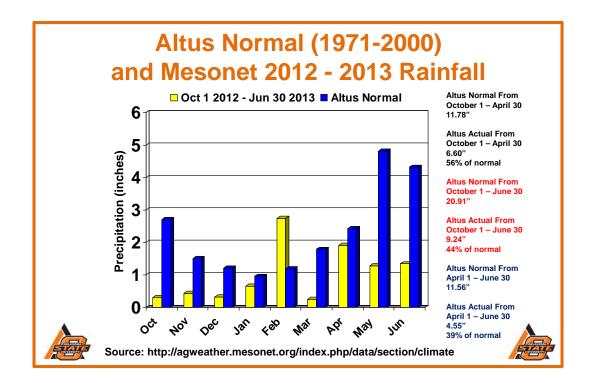
including applied N plus residual soil NO₃⁻ measurements immediately before planting. This recommendation should be sufficient for contemporary cotton varieties in the absence of other data to the contrary for an individual variety. Future research should focus on N utilization efficiency of varying *Gossypium* genetics to identify germplasm that may lead to reduced N application and maintain lint yield potential.

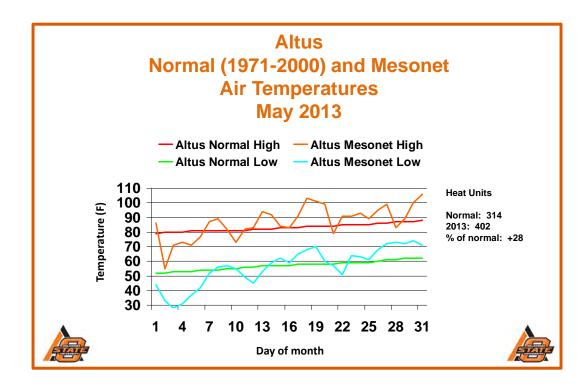

REFERENCES

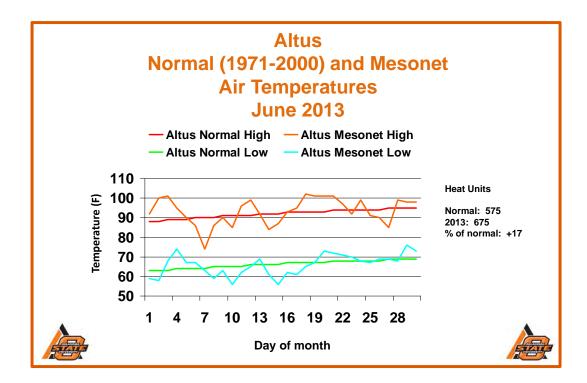
- Bednarz, C.W., and R.L. Nichols. 2005. Phenological and morphological components of cotton crop maturity. Crop Sci. 45:1497–1503. doi:10.2135/ cropsci2004.0321
- Bednarz, C.W., R.L. Nichols, and S.M. Brown. 2007. Within-boll yield components of high yielding cotton cultivars. Crop Sci. 47:2108–2112. doi:10.2135/cropsci2006.12.0827
- Blouin, D.C., E.P. Webster, and J.A. Bond. 2011. On the analysis of combined experiments. Weed Technol. 25:165–169. doi:10.1614/WT-D-10-00047.1
- Boman, R.K., and R.L. Westerman. 1994. Nitrogen and mepiquat chloride effects on the production of nonrank, irrigated, short-season cotton. J. Prod. Agric. 7:70–75. doi:10.2134/jpa1994.0070
- Bond, J.A., T.W. Walker, P.K. Bollich, C.H. Koger, and P.D. Gerard. 2005. Seeding rates for stale seedbed rice production in the midsouthern United States. Agron. J. 97:1560–1563. doi:10.2134/agronj2005.0068
- Bond, J.A., T.W. Walker, B.V. Ottis, and D.L. Harrell. 2008. Rice seeding and nitrogen rate effects on yield and yield components of two rice cultivars. Agron. J. 100:393–397. doi:10.2134/agrojnl2007.0107
- Boquet, D.J., and G.A. Breitenbeck. 2000. Nitrogen rate effect on nitrogen and dry matter by cotton. Crop Sci. 40:1685–1693. doi:10.2135/ cropsci2000.4061685x
- Boquet, D.J., E.B. Moser, and G.A. Breitenbeck. 1993. Nitrogen effects on boll production of field-grown cotton. Agron. J. 85:34–39. doi:10.2134/agronj 1993.00021962008500010007x
- Boquet, D.J., E.B. Moser, and G.A. Breitenbeck. 1994. Boll weight and withinplant yield distribution in field-grown cotton given different levels of nitrogen. Agron. J. 86:20–26. doi:10.2134/agronj1994.000219620086000100 05x
- Bourland, F.M., N.R. Benson, E.D. Vories, N.P. Tugwell, and D.M. Danforth. 2001. Measuring maturity of cotton using nodes above white flower. J. Cotton Sci. 5:1–8.
- Bourland, F.M., D.M. Oosterhuis, and N.P. Tugwell. 1992. Concept for monitoring the growth and development of cotton plants using main-stem node counts. J. Prod. Agric. 5:532–538. doi:10.2134/jpa1992.0532
- Brecke, B.J., J.C. Banks, and J.T. Cothren. 2001. Harvest–aid treatments; products and application timing. In: J.R. Mauney and J.M. Stewart, editors, Cotton physiology. The Cotton Foundation Reference Book Ser. no. 1. Cotton Foundation, Memphis, TN.
- Bremner, J.M. 1965. Inorganic forms of nitrogen. In: C.A. Black et al., editors, Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA, Madison, WI. p. 1179–1255.
- Carmer, S.G., W.E. Nyquist, and W.M. Walker. 1989. Least significant differences for combined analysis of experiments with two- or three-factor designs. Agron. J. 81:665–672. doi:10.2134/agronj1989.000219620081 00040021x
- Constable, G.A., and I.J. Rochester. 1988. Nitrogen application to cotton on clay soil: Timing and soil testing. Agron. J. 80:498–502. doi:10.2134/agronj19 88.00021962008000030021x
- Culp, T. W., and D. C. Harrell. 1975. Influence of lint percentage, boll size, and seed size on lint yield of upland cotton with high fiber strength. Crop Sci. 15:741–746.

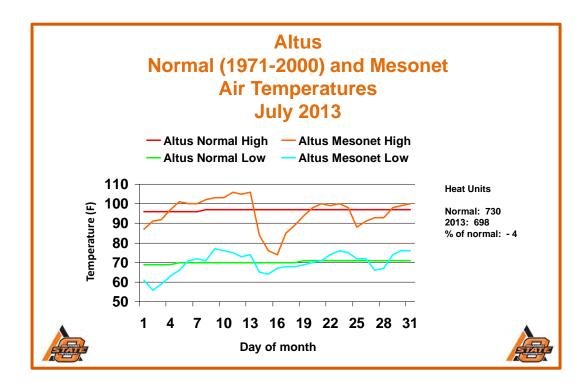
- DeLanghe, E.A.L. 1986. Lint development. In: J.R. Supak and C.E. Snipes, editors, Cotton physiology. The Cotton Foundation Reference Book Ser. no. 5. Cotton Foundation, Memphis, TN.
- Donald, C.M., and J. Hamblin. 1976. The biological yield and harvest index of cereals as agronomic and plant breeding material criteria. Adv. Agron. 28:361–405. doi:10.1016/S0065-2113(08)60559-3
- Egelkraut, T.M., D.E. Kissel, M.L. Cabrera, G.J. Gascho, and W. Adkins. 2004. Nitrogen concentration in cottonseed as an indicator of N availability. Nutr. Cycling Agroecosyst. 68:235–242. doi:10.1023/B:FRES.0000019461.39144.29
- Fritschi, F.B., B.A. Roberts, R.L. Travis, D.W. Rains, and R.B. Hutmacher. 2003. Response of irrigated Acala and Pima cotton to nitrogen fertilization: Growth, dry matter partitioning, and yield. Agron. J. 95:133–146. doi:10.2134/agronj2003.0133
- Galloway, J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney et al. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science (Washington, DC) 320:889–892. doi:10.1126/science.1136674
- Hager, A.G., L.M. Wax, G.A. Bollero, and E.W. Stoller. 2003. Influence of diphenylether herbicide application rate and timing on common waterhemp (*Amaranthus rudis*) control in soybean (*Glycine max*). Weed Technol. 17:14–20. doi:10.1614/0890-037X(2003)017[0014:IODHAR]2.0 .CO;2
- Harrell, D.C., and T.W. Culp. 1976. Effects of yield components on lint yield of upland cotton with high fiber strength. Crop Sci. 16:205–208. doi:10.2135/cropsci1976.0011183X001600020010x
- Hons, F.M., M.L. McFarland, R.G. Lemon, R.L. Nichols, R.K. Boman, V.A. Saladino et al. 2004. Managing nitrogen fertilization in cotton. Bull. L-5458. Texas Coop. Ext., Texas A&M Univ., College Station.
- Horn, P.J., P. Neogi, X. Tombokan, S. Ghosh, B.T. Campbell, and K.D. Chapman. 2011. Simultaneous quantification of oil and protein in cottonseed by low-field time-domain nuclear magnetic resonance. J. Am. Oil Chem. Soc. 88:1521–1529. doi:10.1007/s11746-011-1829-5
- Hunt, P.G., P.J. Bauer, C.R. Camp, and T.A. Matheny. 1998. Nitrogen accumulation in cotton grown continuously or in rotation with peanut using subsurface microirrigation and GOSSYM/COMAX Management. Crop Sci. 38:410–415. doi:10.2135/cropsci1998.0011183X003800020023x
- Hutmacher, R.B., R.L. Travis, D.W. Rains, R.N. Vargas, B.A. Roberts, B.L. Weir et al. 2004. Response of recent Acala cotton varieties to variable nitrogen rates in the San Joaquin Valley of California. Agron. J. 96:48–62. doi:10.2134/agronj2004.0048
- Jenkins, J.N., J.C. McCarty, and W.L. Parrot. 1990. Effectiveness of fruiting sites in cotton yield. Crop Sci. 30:365–369. doi:10.2135/cropsci1990.0011183 X003000020024x
- Mullins, G.L., and C.H. Burmeister. 1990. Dry matter, nitrogen, phosphorus, and potassium accumulation by four cotton varieties. Agron. J. 82:729– 736. doi:10.2134/agronj1990.00021962008200040017x
- Ottis, B.V., J.H. O'Barr, G.N. McCauley, and J.M. Chandler. 2004. Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on coursetextured soils. Weed Technol. 18:1096–1100. doi:10.1614/WT-03-257R1
- Sasser, P.E. 1981. The basics of high volume instruments for fiber testing. 1981. In: Proceedings Beltwide Cotton Conf. Natl. Cotton Counc. Am., Memphis, TN. p. 191–193.
- Spellman, D.E., A. Rongni, D. G. Westfall, R. M. Waskom, and P. N. Soltanpour. 1996. Pre-sidedress nitrate soil testing to manage nitrogen fertility in irrigated corn in a semi-arid environment. Commun. Soil Sci. Plant. 27:3–4, 561–574.
- USDA-Economic Research Service. 2012. Fertilizer use and price. USDA-ERS. http://www.ers.usda.gov/Data/FertilizerUse/ (accessed 18 Jan. 2013).
- Walker, T.W., J.A. Bond, B.V. Ottis, P.D. Gerard, and D.L. Harrell. 2008. Hybrid rice response to nitrogen fertilization for midsouthern United States rice production. Agron. J. 100:381–386. doi:10.2134/agrojnl2007.0047

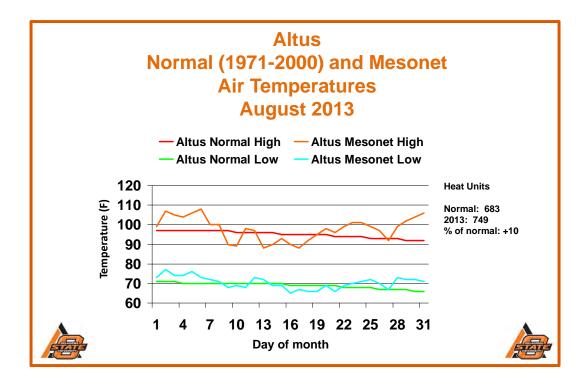

About the Mesonet The Oklahoma Mesonet is a worldclass network of environmental monitoring stations. The network was designed and implemented by scientists at the University of Oklahoma (OU) and at Oklahoma State University (OSU). The Oklahoma Mesonet consists of 120 automated stations covering

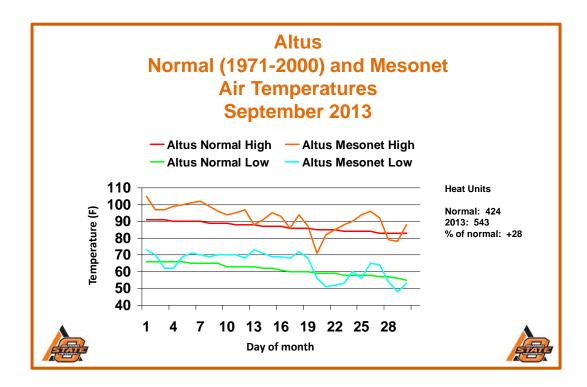


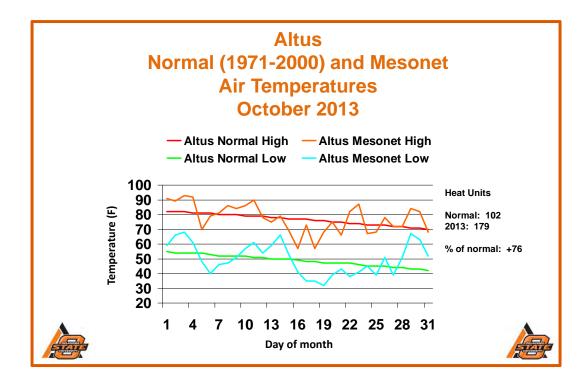

Oklahoma. There is at least one Mesonet station in each of Oklahoma's 77 counties. At each site, the environment is measured by a set of instruments located on or near a 10-meter-tall tower. The measurements are packaged into "observations" every 5 minutes, then the observations are transmitted to a central facility every 5 minutes, 24 hours per day year-round. The Oklahoma Climatological Survey (OCS) at OU receives the observations, verifies the quality of the data and provides the data to Mesonet customers. It only takes 5 to 10 minutes from the time the measurements are acquired until they become available to the public.

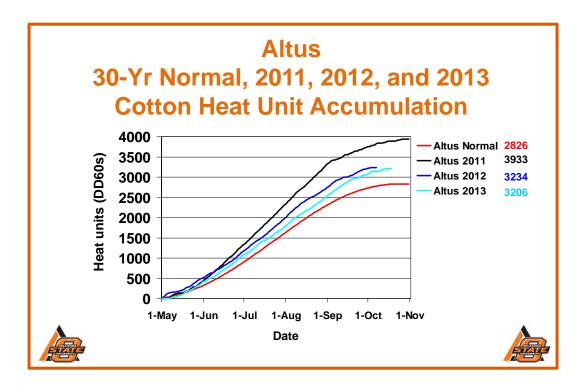

History of the Mesonet In 1982, Oklahoma scientists recognized the need for a statewide monitoring network. At OSU, agricultural scientists wanted to upgrade weather instruments at their research sites. Their primary goal was to expand the use of weather data in agricultural applications.Meanwhile, scientists from the OU meteorological community were helping to plan and implement a flood-warning system for Tulsa. The success of Tulsa's rain gauge network pointed to the potential for a more extensive, statewide network. OSU and OU joined forces in 1987 when they realized that one system would help both universities achieve their respective missions. The two universities approached the Governor's Office and, in December of 1990, the Oklahoma Mesonet Project was funded with \$2.0 million of oil-overcharge funds available from a court settlement. Both universities contributed almost \$350,000 each to bring the grand total to \$2.7 million. In addition, the Oklahoma Law Enforcement Telecommunications System (OLETS) donated the use of their communications infrastructure to help move the data from the remote sites to OU. Once funding was available, the Mesonet Project progressed quickly. Committees were formed, potential station sites were located and surveyed and instruments were chosen. In late 1991, the first Mesonet towers were installed and, by the end of 1993, 108 sites were completely operational. Three more sites were added soon thereafter to supplement a U.S. Department of Agriculture network in the Little Washita River Basin. In 1996, three sites were added near Tulsa for an Oklahoma Department of Environmental Quality study of air pollution. Thus, by the fall of 1996, the total number of Oklahoma Mesonet sites was 114. Since 1996, 8 sites have relocated to other areas in the same town, 4 sites have been retired, and 10 sites have been added resulting in our current 120 station network. A 2009 National Research Council report named the Oklahoma Mesonet as the "gold standard" for statewide weather and climate networks. The Mesonet is unique in its capability to measure a large variety of environmental conditions at so many sites across an area as large as Oklahoma. In addition, these conditions are relayed to a wide variety of customers very quickly after the observations are taken.


Agriculture Agricultural applications of the Mesonet include improved insect and disease advisories, spraying recommendations, irrigation scheduling, frost protection, planting and harvesting recommendations and prescribed burn advisories. Agriculture is such a large Oklahoma industry that any increase in efficiency from more accurate environmental information can translate into several million dollars in statewide savings each year. Visit our Agweather site at: <u>agweather.mesonet.org</u>.









(FTCB	IET CL 3) For ude:	t Col	b	'AL DAT?	A SUMMA	ARY	I					Fort Cob	b		Count	Zone: Mic ty: Caddo ation: 1			t CST	
DAY	1		ATURE AVG	. ,	DEG DA HDD (HUMID: MAX I		. ,	RAIN (in)	PRESSU STN	RE (in) MSL	WIND DIR	SPEED AVG	(mph) MAX	SOLAR (MJ/m2)	4" SC SOD)IL TEM BARE	PERATU MAX	URES MIN
1	81	43	64.3	55.9	3	0	93	52	75	0.00	28.44	29.91	SSE	16.7	39.8	17.65	NA	71.0	79	64
2	52	35	43.6	33.7	21	0	92	38	71	0.06	28.89	30.38	Ν	20.1	48.1	11.55	NA	56.9	64	52
3	64	31	48.4	29.9	17	0	92	22	56	0.00	28.72	30.20	NW	7.4	28.6	27.46	NA	57.7	69	47
4	66	35	51.3	30.5	14	0	89	17	53	0.00	28.54	30.01	NNW	12.2	33.2	30.00	NA	60.4	70	51
5	66	46	54.2	43.6	9	0	91	49	69	0.00	28.65	30.13	N	7.7	21.9	21.46	NA	63.4	73	56
6 7	74	42	59.4 67.6	47.1	7	0 2	97	36	68	0.00	28.61	30.08	NW	4.1	12.4	25.70	NA	66.9	77	57 62
8	82 87	51 60	71.8	49.4	0	∠ 9	93 90	29 38	57 60	0.00	28.52 28.40	29.99	SE SSE	10.2 15.2	26.5	27.28 22.20	NA	71.3	81 81	62 65
9	74	61	66.1	55.9 60.9	0	2	90	50 69	84	0.00 0.35	28.40	29.86 29.91	E	7.1	51.7 18.0	11.41	NA NA	72.9	76	67
10	74	54	62.7	55.2	3	2 0	97	52	04 78	0.35	28.58	30.06	E N	8.4	23.7	20.85	NA	67.3	78	63
11	80	49	63.9	48.5	1	0	94	27	62	0.00	28.71	30.19	NNE	8.8	26.3	28.22	NA	68.6	79	59
12	78	45	63.0	40.6	3	0	92	21	50	0.00	28.72	30.20	S	8.7	24.6	27.30	NA	69.7	79	61
13				45.0*	0*	6*	81*	18*		0.00*		30.08*		11.8*		NA	NA	73.4*	84*	63*
14	89	65	77.9	48.1	0	12	55	21	36	0.00	28.53	30.00	SW	14.5	30.7	29.56	NA	76.5	86	68
15	79	60	67.8	59.5	0	5	96	46	76	0.00	28.40	29.87	S	9.8	24.0	12.22	NA	74.2	80	71
16	74	59	65.6	60.5	0	2	97	65	84	0.00	28.36	29.82	ESE	6.7	18.9	15.26	NA	72.6	78	68
17	80	61	69.9	67.3	0	5	98	73	92	0.01	28.37	29.84	ESE	9.2	19.9	10.41	NA	72.5	77	69
18	95	62	76.0	67.1	0	14	97	17	77	0.77	28.31	29.77	SSE	14.9	38.4	20.73	NA	76.3	87	71
19	94	64	78.3	59.6	0	14	91	15	60	0.00	28.17	29.63	WSW	13.4	32.7	28.42	NA	73.3	79	69
20	89	67	76.9	63.7	0	13	91	26	68	0.00	28.24	29.70	S	9.2	25.3	28.96	NA	76.5	87	69
21	73	55	63.7	53.6	1	0	91	44	71	0.40	28.38	29.84	N	8.5	31.1	16.86	NA	70.4	76	66
22	83	52	67.5	54.9	0	2	96	35	68	0.00	28.42	29.89	SE	5.5	19.2	28.31	NA	70.2	78	62
23	82	62	70.1	60.4	0	7	89	47	73	0.00	28.53	30.01	E	12.1	27.7	18.42	NA	71.2	79	66
24	85	61	72.1	64.9	0	8	94	58	79	0.00	28.63	30.10	SE	12.9	28.3	17.39	NA	72.8*	80*	66*
25	81	60	70.9	63.8	0	6	94	60	79 76	0.00	28.61	30.08	SSE	13.1	34.9	21.58	NA	74.7	82	68
26 27	87 88	68 71	76.3 78.3	67.5 67.6	0	12 14	92 88	53 53	76	0.00	28.48 28.33	29.95 29.79	SSE	17.6 20.6	32.6 39.2	21.26 26.30	NA NA	77.3	85 88	72 74
28	79	74	76.0	66.9	0	$14 \\ 12$	86	53 63	74	0.00	28.28	29.79	S S	17.4	39.⊿ 35.0	13.30	NA	78.3	81	74
29	81	62	72.3	65.7	0	6	98	63	80	1.59	28.22	29.68	SSE	19.2	55.0	13.42	NA	75.5	82	70
30	92	71	77.0	67.8	0	16	90	25	75	0.00	28.19	29.64	S	18.0	36.3	25.46	NA	75.1	82	71
31	95	68	80.3	68.6	-	16	87	41	69	0.00	28.20		S	16.4		26.30	NA	76.4	82	71
	80*	56*	67.9*	55.6*	<-	- Mor	nthly A	Aver	ages	->	28.47*	29.94*	S *	12.2*	55.0*	21.51*	NA	71.4*	79*	65*
	all: 1	Montl	Highes Lowest	: 31, tal:	* 3.18*				- Hi	Total Total ghest:	CDD: 1 98*	79* 84*	Tmaz Tmaz Tmin	ber of $x \ge 90$ $x \le 32$ $n \le 32$ $n \le 0$	5* 0* 1*	Rainfa Rainfa Avg Wind		10 inc. 10 mp	h: 4 h: 18	б* 4* 8*
				4 Hr:					Lc	west:	15*		Tmi	n <u><</u> 0:	0*	Max Wind	Speed ≥	<u>30 mp</u>	h: 1!	5*

Monthly data generated on Wednesday, July 31, 2013 at 13:04 UTC

) For	t Co	bb	CAL DATA	A SUMM	ARY			est (Fort Cob	b		Coun	Zone: Mic ty: Caddo ation: 13	5	5	t CST	
DAY	TE MAX		ATURE AVG	(F) DEWPT	DEG D HDD		HUMID MAX			RAIN (in)	PRESSU STN	RE (in) MSL	WIND DIR	SPEED AVG	(mph) MAX	SOLAR (MJ/m2)	4" SOD	DIL TEM BARE	PERAT MAX	URES MIN
1 2	83 77	61 57	72.6 66.5	54.2 50.8	0 0	7 2	92 86	27 33	57 60	0.02	28.45 28.60	29.92 30.08	N NNE	9.7 7.7	32.8 21.9	30.08 30.34	NA NA	74.8 75.2	81 86	70 66
3 4	86 88	57 62	71.0 75.8	56.6 65.9	0	6 10	92 97	38 51	64 73	0.00	28.44 28.38	29.91 29.84	SE ESE	12.2 14.7	28.2 45.9	25.04 26.84	NA NA	76.1 76.3	85 82	68 70
5 6	83 78	64 60	73.3 68.9	64.6 57.8	0	9 4	95 87	53 41	76 70	0.45	28.45 28.51	29.92 29.98	NE NNE	11.7 10.7	46.5 21.6	20.33 20.98	NA NA	75.2 72.0	80 77	71 69
7 8	81 86	55 62	69.4 73.1	54.9 57.1	0	3 9	94 94	35 33	64 60	0.00	28.52 28.40	29.99 29.86	SSE SSE	5.2 14.3	18.3 45.9	26.22 21.45	NA NA	72.1 NA	80 NA	65 NA
9 10	88 98	59 68	74.1	59.3 60.9	0	9 18	96 87	26 20	65 53	0.04	28.45	29.92	S S	6.4 12.5	37.6	30.41 30.43	NA NA	NA NA	NA NA	NA NA
11 12	95 98	66 75	83.1 85.4	60.8 64.1	0	15 22	75 75	25 28	50 52	0.00	28.46 28.47	29.93 29.94	S SSW	13.2 14.1	29.6	29.07 29.39	NA NA	NA NA	NA NA	NA NA
13 14	98 96	69 70	84.5 83.6	65.4 64.0	0	19 18	88 90	29 26	57 56	0.00	28.51 28.49	29.99 29.96	S S	7.7 9.2	24.6 24.8	29.72 25.85	NA NA	NA NA	NA NA	NA NA
15 16	88 95	71 70	79.1 78.9	65.1 68.8	0	14 17	92 97	47 36	64 75	0.00 0.21	28.50 28.48	29.97 29.95	SE S	8.8 9.0	28.0 32.9	21.30 24.06	NA NA	NA NA	NA NA	NA NA
17 18	84 86	65 66	74.9 75.5	66.0 64.1	0	10 11	98 96	51 44	76 70	2.28	28.50 28.54	29.97 30.01	ENE ESE	8.8 5.2	38.8 18.4	28.35 27.28	NA NA	NA NA	NA NA	NA NA
19 20	84 93	66 71	74.5 82.0	68.2 68.2	0	10 17	97 88	58 39	82 65	0.00	28.49 28.47	29.96 29.94	SE SSE	9.9 16.1	27.8 35.3	13.23 24.52	NA NA	NA NA	NA NA	NA NA
21 22	94 94	74 73	83.9 83.8	66.5 62.0	0	19 19	72 75	39 26	57 50	0.00	28.49 28.45	29.96 29.92	SSE SSE	15.1 16.5	30.2 36.8	26.58 28.30	NA NA	NA NA	NA NA	NA NA
23 24	96 94	74 75	84.4 83.0	62.1 63.9	0	20 19	75 70	25 32	50 55	0.00	28.40 28.44	29.87 29.91	SSE S	18.1 16.6	37.5 32.1	25.22 25.58	NA NA	NA NA	NA NA	NA NA
25 26	95 97	75 73	84.6 85.6	67.1 67.4	0	20 20	73 81	42 37	57 56	0.00	28.37 28.39	29.84 29.86	S SSE	17.3 12.2	32.7 30.7	26.21 28.23	NA NA	NA NA	NA NA	NA NA
27 28	103 96	73 73	88.1 84.6	65.7 62.0	0	23 20	89 77	25 25	53 50	0.00	28.48 28.50	29.95 29.97	S NE	9.5 8.5	44.1 26.2	28.74 29.39	NA NA	NA NA	NA NA	NA NA
29 30	93 87	71 65	81.0 77.0	59.9 54.8	0	17 11	74 79	28 30	51 48	0.00	28.48 28.53	29.95 30.00	NE NE	5.7 9.2	18.1 24.3	23.55 29.56	NA NA	NA NA	NA NA	NA NA
	91	67	78.8	62.3	<	- Moi	hthly	Aver	ages	->	28.47	29.94	S	11.2	46.5	26.21	NA	74.5*	82*	68*
Tempe	ratur		Highes Lowest	st: 103 :: 55			Degr	ee D	ays ·	- Total Total		0 17	Tma	ber of x <u>></u> 90 x < 32	: 16	Rainfa	all ≥ 0 all > 0	.01 inc	h: h:	7 5
Rainf			hly To test 2		4.69 2.28	in. in.	Humi	dity		ighest: owest:	98 20		Tmi	$n \leq 32$ $n \leq 32$ $n \leq 0$		Avg Wind Max Wind	Speed 2	≥ 10 mp	h: 1	5

Monthly data generated on Friday, August 30, 2013 at 13:09 UTC

(FTCB	MESONET CLIMATOLOGICAL DATA SUMMA (FTCB) Fort Cobb Latitude: 35-08-55 TEMPERATURE (F) DEG DA								est (Fort Cob	Elevation: 1385 feet							
DAY				(F) DEWPT	DEG DA HDD (HUMID MAX			RAIN (in)	PRESSU STN	RE (in) MSL	WIND DIR	SPEED AVG	(mph) MAX	SOLAR (MJ/m2)	4" SC SOD)IL TEM BARE	PERATI MAX	URES MIN
1	84	60	72.1	NA	0	7	NA	NA	NA	0.00	28.62	30.10	NE	8.3	28.8	27.56	NA	NA	NA	NA
2	85	56	72.3	NA	0	б	NA	NA	NA	0.00	28.64	30.12	NW	5.2	19.0	28.98	NA	NA	NA	NA
3	88	58	74.3	50.8	0	8	87	23	49	0.00	28.57	30.04	SE	5.6	19.3	27.23	NA	NA	NA	NA
4	92	63	76.3	53.4	0	12	74	21	48	0.00	28.50	29.97	SE	8.0	21.9	20.40	NA	NA	NA	NA
5	93	66	79.1	NA	0	14	NA	NA	NA	0.00	28.46	29.93	SE	12.4	30.1	21.84	NA	NA	NA	NA
6	96	70	82.2	NA	0	18	NA	NA	NA	0.00	28.44	29.91	SSE	12.5	26.6	22.80	NA	NA	NA	NA
7	96	69	82.7	NA	0	18	NA	NA	NA	0.00	28.51	29.98	SE	10.7	24.3	25.90	NA	NA	NA	NA
8	97 100	69 73	84.2 87.5	64.6	0	18 22	85	30	55	0.00	28.55 28.54	30.03	SE S	9.7 10.3	24.2	26.79 27.89	NA	NA	NA	NA
10	99*		87.0*	NA * NA	0*	22 21*	NA NA	NA NA	NA NA	0.00		30.02 29.99*	S S *		24.7 29.6*	27.89 NA	NA NA	NA NA	NA NA	NA NA
11	98	74	85.5	NA	0	21	NA	NA	NA	0.00	28.49	29.99	E	8.1	29.0	25.45	90.5	91.2	99	85
12	97	71	84.5	NA	0	19	NA	NA	NA	0.00	28.48	29.95	SE	9.4	27.7	27.19	90.6	91.6	99	85
13	99	73	86.0	NA	0	21	NA	NA	NA	0.00	28.49	29.96	SE	9.7	23.8	26.96	91.4	92.5	101	86
14	82	65	69.8	63.6	0	8	97	51	83	1.11	28.54	30.01	SE	9.3	31.8	1.88	81.5	82.4	92	75
15	75	63	67.3	64.2	0	4	97	70	90	0.42	28.61	30.09	ESE	8.8	23.7	11.48	74.7	74.3	78	72
16	82	68	72.7	68.3	0	10	97	62	87	0.13	28.71	30.19	ESE	8.9	21.9	11.01	75.4	75.1	79	72
17	85	69	75.2	69.8	0	12	96	58	84	0.19	28.77	30.26	E	5.9	34.6	17.65	77.9	77.5	84	73
18	89	68	78.0	67.9	0	13	98	41	74	0.00	28.68	30.16	S	6.8	26.0	26.31	79.4	79.2	84	74
19	93	69	81.1	66.1	0	16	93	35	64	0.00	28.54	30.01	S	7.9	21.1	25.04	79.6	79.3	84	74
20	94	70	82.7	66.9	0	17	94	33	63	0.00	28.45	29.92	SSE	9.0	20.2	25.17	80.9	82.0	91	75
21	97	70	84.9	65.1	0	19	92	27	56	0.00	28.40	29.87	S	9.9	25.5	27.83	83.4	86.0	95	78
22	97	72	85.7	67.7	0	19	85	35	58	0.00	28.42	29.89	S	11.2	27.2	27.83	85.6	88.3	97	80
23	98	74	86.9	68.6	0	21	84	35	58	0.00	28.41	29.88	S	9.6	26.1	27.88	87.7	90.4	99	83
24 25	93 82	68 71	80.6	67.8 70.6	0	16 12	89 95	39 66	67 82	0.00	28.51 28.58	29.98 30.05	E	9.3	39.1 24.1	26.43 9.09	88.8 84.4	90.6 86.0	99 90	83 82
25	85	70	75.8	69.3	0	$12 \\ 12$	95	54	o∠ 82	3.25	28.53	30.05	SSE NNE	7.1 12.0	34.6	9.09	77.9	79.2	83	o∠ 77
27	85	66	75.9	66.7	0	11	98	49	75	0.00	28.55	30.00	SE	6.0	16.7	26.31	79.6*	79.8*	87*	73*
28	86	67	76.4	65.6	0	11	96	41	72	0.00	28.50	29.97	SSE	10.7	23.5	27.39	78.2	78.4	83	74
29	89	71	80.0	71.0	0	15	92	50	75	NA NA	28.46	29.93	SSE	14.1	33.0	19.82	78.2	78.1	83	74
30	91	73	81.7	69.5	0	17	90	51	68	NA	28.55	30.02	NNE	7.4	21.9	26.47	82.5	81.9	90	75
31	90	75	80.6	71.4	0	17	93	50	75	NA	28.60	30.08	NE		17.2	24.06	84.9	84.9	94	78
	91*	69*	79.5*	* 66.1*	<-	– Mor	nthly	Aver	ages	->	28.54*	30.01*	SE *	9.0*	39.1*	23.00*	82.5*	83.3*	90*	77*
Tempe	ratur		lighes Lowest	st: 100 ³ : 56 ³			Degree Days - Total HDD: 0* Total CDD: 455*						Tma	ber of x <u>></u> 90 x <u><</u> 32	: 18*	Rainf	all <u>></u> 0. all > 0.			б* б*
Rainfall: Monthly Total: 5.93* ir Greatest 24 Hr: 3.25* ir							Humi	dity		ighest: owest:	98* 21*		Tmi	$n \leq 32$ $n \leq 0$		Avg Wind Max Wind	Speed ≥	10 mp	h:	в* б*

Monthly data generated on Monday, September 30, 2013 at 12:04 UTC

(FTCB	IET CL 8) For .ude:	t Col	bb	AL DATA	A SUMM	ARY	I		est (Fort Cob	b		Coun	Zone: Mi ty: Caddo ation: 1			t CST	
DAY	1		ATURE AVG	(F) DEWPT	DEG D HDD		HUMID: MAX I		· /	RAIN (in)	PRESSU STN	RE (in) MSL	WIND DIR	SPEED AVG	(mph) MAX	SOLAR (MJ/m2)	4" SC SOD)IL TEM BARE	PERATI MAX	JRES MIN
1	91	72	80.8	69.9	0	17	90	41	71	NA	28.57	30.05	SE	6.8	19.4	26.09	86.4	87.3	97	79
2	101	74	87.5	67.1	0	23	91	27	56	NA	28.41	29.88	SSE	11.1	24.6	26.67	87.9	89.3	98	82
3	98	73	86.3	65.4	0	21	76	32	52	NA	28.48	29.95	S	10.8	24.1	26.37	88.7	90.5	99	83
4	97	73	83.7	67.3	0	20	83	31	60	NA	28.52	29.99	SSE	10.1	23.7	24.43	88.5	90.2	98	83
5	99	75	86.8	65.9	0	22	79	29	53	NA	28.44	29.91	S	10.0	24.4	27.00	89.6	91.4	100	84
6	99	73	87.1	63.0	0	21	72	27	47	NA	28.36	29.83	SSE	11.6	25.5	27.58	89.9	91.7	99	85
7	90	71	82.0	NA	0	16	NA	NA	NA	NA	28.39	29.85	ENE	6.6	20.6	14.47	87.6	89.0	94	85
8 9	89	69	76.9	69.4	0	14	93	52 59	79	NA	28.42	29.89	ESE	8.0	29.8	19.18	82.9	83.5	89	79 77
9 10	85 84	68 67	76.0 74.1	69.0 66.0	0	12 10	95 92	59 53	80 77	NA NA	28.53 28.66	30.00 30.13	NNE NNE	6.6 7.1	20.4 19.1	20.83 23.39	81.9 80.6	81.3 80.3	87 88	74
11	91	66	78.4	68.7	0	13	92	46	75	NA	28.61	30.13	ESE	4.1	16.1	25.39	83.2	84.4	95	74
12	93	70	79.0	70.0	0	16	93	47	75	NA	28.54	30.02	SW	6.5	34.6	18.28	82.9	83.1	89	79
13	83	71	75.7	70.4	0	12	97	61	84	NA	28.56	30.04	N	6.7	21.0	15.70	80.2	80.1	85	76
14	83	68	74.5	66.3	0	10	95	53	77	NA	28.61	30.08	NE	7.2	16.8	23.29	80.2	79.5	85	74
15	84	66	72.4	66.4	0	10	95	60	82	NA	28.57	30.05	SSE	6.9	19.5	20.44	78.4	78.0	84	74
16	83	63	72.1	64.6	0	8	95	59	79	NA	28.60	30.07	E	5.8	31.8	25.56	78.7	78.1	85	72
17	81	63	72.0	63.7	0	7	96	54	77	NA	28.63	30.10	ESE	5.9	15.7	21.64	78.0	77.7	85	72
18	85	65	73.8	NA	0	10	NA	NA	NA	NA	28.61	30.09	ESE	7.6	19.3	22.79	78.5	79.4	88	73
19	88	64	75.7	64.0*	0	11	93*	42*	68*	NA	28.57	30.04	SSE	8.7	24.1	24.23	79.4	81.3	90	74
20	91	65	77.3	63.5	0	13	90	37	66	NA	28.55	30.02	ESE	8.1	19.7	24.79	80.6	83.1	92	75
21	89*	63*	76.6*	62.7*	0*	11*	89*	38*	65*	NA	28.58*	30.05*	ESE*	6.4*	21.3*	NA	81.4*	84.1*	92*	76,
22	92	66	79.1	66.8	0	14	90	41	68	0.00	28.57	30.04	ESE	6.7	22.0	23.28	82.5	85.4	94	78
23	94	69	80.9	68.1	0	16	94	34	68	0.00	28.54	30.02	SE	7.8	21.6	24.96	84.1	87.4	96	80
24	93	69	80.7	68.2	0	16	93	39	69	0.00	28.59	30.07	ESE	6.7	18.3	23.80	84.8	88.3	97	81
25	92	70	80.7	68.2	0	16	95	43	69	0.00	28.67	30.14	ESE	7.5	19.2	22.99	85.0	88.5	96	82
26	91	68	79.1	NA	0	14	NA 0.0*	NA	NA	0.00	28.67	30.15	SE	7.2	20.5	24.52	84.7	88.2	96	82
27	87 93	64	75.8 79.6	67.2*	0	10 16	92* 95	54* 39	75* 69	0.00	28.61	30.08	SSE	7.5	20.5	20.81	83.5	86.6	93	81
28 29	93	69 67	81.4	67.3 63.7	0	16	88	39	58	0.00	28.57	30.04	S S	8.3 6.4	24.9 24.9	21.72 22.66	85.1 86.2	86.3 87.3	93 94	81 82
30	95	68	83.2	63.1	0	19	89	28	50 55	0.00	28.49	29.96	SSE	6.5	24.9	23.68	87.1	88.1	94	o∠ 82
31	101	69	84.8	61.3	0	20	78	20		0.00	28.49	29.90	SSE		17.3	23.73	88.1	88.9	96	83
71	101	0,5	01.0	01.5	U	20	70		17	0.00	20.10	27.01	DDE	0.0	T1.2	23.75	00.1	00.7	20	05
	91*	68*	79.2*	66.3*	<	- Moi	nthly 2	Avera	ages	->	28.54*	30.02*	ESE*	7.5*	34.6*	23.01*	83.8*	85.1*	92*	79,
Tempe	ratur		Highes Lowest	t: 101 ³ : 63 ³			Degree Days - Total HDD: 0* Total CDD: 455*						Tma	ber of x <u>></u> 90 x <u><</u> 32	: 19*	Rainf	all \geq 0. all \geq 0.)*)*
Rainf			hly To		0.00*		Humio	lity		ghest:	97*		Tmi	n <u><</u> 32	: 0*	Avg Wind	Speed ≥	<u>10 mp</u>	h: !	5*
Greatest 24 Hr: 0.00* in									Lo	west:	21*		Tmi	n <u><</u> 0:	0 *	Max Wind	Speed ≥	<u>30 mp</u>	h: :	2*

Monthly data generated on Thursday, October 31, 2013 at 12:19 UTC

(FTCE	IET CL 3) For ude:	t Col	bb	CAL DATA	A SUMM	ARY	1	Near				Fort Cob	b		Coun	Zone: Mic ty: Caddo ation: 1	5	0	t CST	
DAY	TE MAX		ATURE AVG	(F) DEWPT	DEG D. HDD		HUMID MAX I			RAIN (in)	PRESSU STN	RE (in) MSL	WIND DIR	SPEED AVG	(mph) MAX	SOLAR (MJ/m2)	4" SC SOD)IL TEM BARE		JRES MIN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	95 90 90 92 94* 97 99 96 93 91 92 94 84 85 94 85 94 85 92 85 70 82 85 70 82 84 85 92 95	$\begin{array}{c} 69\\ 66\\ 59\\ 58\\ 67\\ 68\\ 67\\ 67\\ 67\\ 66\\ 66\\ 70\\ 64\\ 68\\ 69\\ 70\\ 68\\ 69\\ 70\\ 68\\ 69\\ 53\\ 51\\ 50\\ 55\\ 49\\ 63\\ \end{array}$	80.5 77.9 74.6 76.4 79.5^{*} 81.3 82.4 81.5 80.5 79.3 79.3 79.2 76.4 73.8 80.5 75.6 75.5 65.9 65.2 67.1 68.7 70.4 71.4 79.7	NA 62.1 57.8 NA 62.7 62.2 NA 59.4 62.3 61.1 62.9 66.3 61.0 61.4 67.2 68.8 64.2 65.6 59.3 49.4* NA 49.6 NA NA 53.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 13 10 15 17 18 15 14 15 12 10 16 14 13 15 12 0 16 14 13 15 12 0 16 14 13 15 12 0 16 14 13 15 12 0 16 14 13 15 12 0 16 14 13 15 12 0 16 14 13 15 12 0 16 14 13 15 12 0 14 13 15 12 0 14 13 15 12 0 14 13 15 12 0 14 13 15 12 0 14 13 15 12 0 14 13 15 12 0 14 13 15 12 0 1 2 3 6 6 14	NA 94 94 NA NA 86 85 NA 84 88 81 87 82 96 99 93 93 93 97 97 82 96 99 93 93 97 87 82 96 99 93 97 82 96 97 82 96 97 83 97 83 97 83 97 83 97 83 97 83 97 83 97 83 83 83 83 83 83 83 83 83 83 83 83 83	NA 29 27 NA 26 25 NA 25 32 30 53 48 31 44 49 31 53 58 27* NA 25 NA NA 23	NA 63 60 NA 57 56 NA 53 58 57 61 72 65 55 77 84 63 72 80 62* NA 56 NA NA 43	0.00 0.00 0.00 0.00* 0.000 0.00	28.43 28.54 28.58 28.61 28.63* 28.58 28.52 28.49 28.49 28.58 28.60 28.55 28.51 28.53 28.63 28.57 28.47 28.47 28.47 28.47 28.47 28.53 28.42 28.35 28.48 28.38 28.34	29.90 30.01 30.05 30.08 30.11* 30.06 29.99 29.96 29.96 30.05 30.10 30.07 30.07 30.03 29.98 30.00 30.11 30.05 29.94 29.94 30.01 30.01 29.89 29.81 29.95 29.81	NNE NE ESE SE SE SSE SSE SSE E E E SSE SS	$\begin{array}{c} 6.8\\ 6.6\\ 4.3\\ 5.0\\ 5.8*\\ 5.8\\ 5.7\\ 7.5\\ 10.0\\ 9.8\\ 6.5\\ 5.1\\ 8.9\\ 7.0\\ 8.0\\ 7.0\\ 8.0\\ 7.0\\ 8.0\\ 7.6\\ 6.7\\ 10.9\\ 8.7\\ 10.9\\ 8.7\\ 10.8\\ 5.1\\ 7.1\\ 10.7\\ 6.5\\ 7.7\\ 15.6\end{array}$	24.9 18.1 14.4 17.9 15.1* 20.0 22.9 23.4 28.3 27.9 22.7 20.8 25.4 15.8 25.4 15.8 25.2 27.5 29.9 32.0 22.8 25.1 15.6 20.1 31.1 23.1 22.4 36.8	$\begin{array}{c} 14.68\\ 24.46\\ 25.04\\ 24.60\\ 21.85*\\ 21.24\\ 22.45\\ 23.22\\ 23.56\\ 20.58\\ 21.83\\ 20.91\\ 18.43\\ 13.73\\ 17.47\\ 16.47\\ 11.33\\ 20.45\\ 10.09\\ 6.81\\ 22.78\\ 22.87\\ 22.05\\ 22.35\\ 21.95\\ 21.08\\ \end{array}$	86.3 86.5 85.5 85.3 86.5* 87.0 87.6 87.3 86.3 85.6 85.7 86.4 85.4 82.6 83.3 83.7 79.7 79.7 78.0 74.0 74.0 74.2 75.0 74.7 75.8 76.2 78.6	87.2 86.9 85.9 85.6 86.5* 87.3 88.5 88.2 87.1 86.3 86.4 87.0 85.9 83.1 83.7 84.2 80.0 80.6 79.1 75.0 74.5 75.5 75.2 76.2 76.5 78.7	90 93 93 93 95 95 95 93 92 93 92 93 95 91 87 90 90 84 87 82 78 84 82 78 84 82 83 85	84 82 80 79 81* 82 82 81 81 82 80 81 82 80 78 80 77 75 76 71 67 68 69 70 69 73
27 28	89 78	62 53	77.1 66.3	62.1 56.4	0	11 0	83 97	42 41	61 72	0.00 1.59	28.39 28.53	29.85 30.00	SSE N	15.8 12.2	34.6 30.2	15.48 14.75	78.2 72.3	78.4 72.8	83 79	73 66
29 30	76 84	48 49	61.4 66.2	47.7 51.4	3	0 1	95 95	27 32	66 63	0.00 0.00	28.57 28.39	30.05 29.86	NW SSE	3.9 9.6	11.4 24.9	21.86 21.35	68.5 67.4	67.5 66.5	75 73	60 61
	89*	62*	74.9*	* 59.8*	<	- Moi	nthly i	Aver	ages	->	28.51*	29.98*	SSE*	8.0*	36.8*	19.52*	80.8*	81.2*	87*	76*
	all: 1	Montl	Lowest	48			Degree Days - Total HDD: 6* Total CDD: 311* Humidity - Highest: 99* Lowest: 23*						Tma: Tma: Tmi:	ber of x ≥ 90 x ≤ 32 n ≤ 32 n ≤ 0:	16* 0*	Rainfa		10 incl 10 mp	h: 2 h: 7	1* 2* 7* 5*

Monthly data generated on Tuesday, December 10, 2013 at 19:29 UTC

(FTCB	IET CL 3) For ude:	t Co	bb	CAL DATA	A SUMM	ARY			est (Fort Cob	b		Coun	Zone: Mi ty: Caddo ation: 1			t CST	1
DAY			ATURE AVG	(F) DEWPT	DEG D HDD		HUMIC MAX			RAIN (in)	PRESSU STN	JRE (in) MSL	WIND DIR	SPEED AVG	(mph) MAX	SOLAR (MJ/m2)	4" SOD	DIL TEM BARE	IPERAT MAX	URES MIN
1	89	58	72.1	58.3	0	9	89	33	65	0.00	28.41	29.88	SSE	12.9	28.5	20.48	68.7	67.9	74	62
2	87	63	73.5	65.8	0	10	99	52	79	0.00	28.43	29.90	SSE	12.8	28.0	12.83	70.7	70.0	75	66
3	90	71	79.2	66.7	0	16	92	38	68	0.00	28.34	29.80	SSE	19.6	34.6	18.79	73.9	73.7	80	70
4	88	58	76.8	65.4	0	8	97	43	70	0.88	28.35	29.82	S	18.1	45.0	18.22	75.4	75.7	82	71
5 6	66 73	47 44	56.5 57.2	39.4 35.2	8	0	86	29 20	55 49	0.06	28.61 28.63	30.09 30.11	N NNW	10.2 9.8	32.4 32.7	18.40 20.96	65.1 60.1	64.6 58.9	71 64	60 54
7	76	44	60.0	41.3	4	0	90	20	49 56	0.00	28.66	30.11	ESE	9.8 4.6	11.5	20.96	62.6	61.2	70	54
8	81	45	62.7	41.3	4	0	81	23	53	0.00	28.56	30.13	SE	10.5	22.8	19.82	62.5	61.0	67	54
9	82	53	65.9	49.1		3	89	27	59	0.00	28.50	29.99	SE	13.2	28.3	19.82	64.0	62.7	70	55
10	83	59	69.8	56.2	0	6	81	41	64	0.00	28.45	29.92	SSE	15.6	33.5	18.78	66.9	66.2	74	60
11	86	58	71.8	50.3	0	7	88	15	54	0.00	28.35	29.82	S	12.8	28.3	19.08	69.7	69.6	77	64
12	75	56	64.1	47.3	0	0	79	37	56	0.00	28.57	30.05	NE	11.3	26.5	18.86	67.7	67.6	75	62
13	73	59	65.9	58.5	0	1	92	65	77	0.00	28.71	30.19	ESE	7.5	18.1	6.58	68.0	67.5	71	65
14	72	62	68.3	66.3	0	2	99	76	94	0.35	28.51	29.98	SSE	10.9	26.2	3.66	68.8	68.4	70	67
15	67	51	56.4	46.1	6	0	97	50	69	0.00	28.59	30.07	N	12.1	32.4	7.24	62.2	61.7	68	57
16	52	40	47.4	39.6	19	0	97	59	75	0.01	28.66	30.14	NNE	7.5	19.2	6.73	56.2	55.4	58	52
17	69	37	53.0	40.8	12	0	98	30	68	0.00	28.56	30.04	WSW	4.5	14.7	18.54	57.1	56.2	65	49
18	56	34	46.7	42.9	20	0	98	68	87	0.18	28.59	30.06	N	10.6	33.8	2.81	55.1	54.6	58	49
19	65	32	47.2	36.6	16	0	100	31	72	0.01	28.64	30.12	W	8.0	19.8	18.46	52.2	51.3	60	44
20	71	39	55.5	43.9	10	0	91	43	68	0.00	28.43	29.90	S	10.0	30.2	17.81	54.7	54.0	62	47
21	63	41	54.1	41.3	13	0	87	36	64	0.00	28.59	30.06	NNE	11.4	33.4	16.05	57.1	56.7	63	53
22	78	40	56.6	39.9	6	0	90	23	60	0.00	28.62	30.09	WSW	6.9	21.3	17.43	57.1	56.7	66	49
23	82 61	42 43	60.2	42.9	3	0	97	19 41	60 66	0.00	28.59	30.07	SW	7.7	21.5	17.25	59.3	59.2	68	52
24 25	64	43 39	51.8 51.1	40.1 39.3	13	0	82	41	65	0.00	28.78 28.84	30.27 30.32	NE SSE	10.6 9.3	27.2 25.7	16.36 15.52	58.5 57.2	58.4 57.0	65 65	54 51
26	71	51	57.5	52.7	4	0	95	65	84	0.39	28.66	30.32	SSE	8.4	24.3	7.52	59.0	58.7	64	55
27	69	38	57.5	41.6	12	0	98	30	64	0.00	28.59	30.14	SSE	6.7	17.6	17.17	58.2	57.6	64	55
28	68	54	60.8	59.4	4	0	100	86	95	0.00	28.53	30.00	SSE	12.5	36.2	3.19	59.2	58.7	62	56
29	76	67	70.6	66.2	0	7	93	75	86	0.00	28.49	29.96	SSE	16.4	31.1	7.03	65.1	64.9	68	62
30	77	62	70.9	67.1	0	5	96	72	88	0.20	28.37	29.83	S	16.9	39.6	6.52	67.2	67.1	69	66
31	68	46	58.6	46.0	8	0	96	30	66	0.06	28.29	29.75	WNW	11.6	33.9	15.00	62.0	61.7	67	56
	74	50	61.2	49.3	<	- Moi	nthly	Aver	ages	->	28.55	30.02	SSE	11.0	45.0	14.41	62.6	62.1	68	57
			Highes Lowest	32	0 14	4.				- Total Total	CDD:	.79 73	Tma Tma	ber of x <u>></u> 90 x <u><</u> 32	: 1 : 0	Rainf. Rainf.	all ≥ 0 all ≥ 0	.10 inc	h:	9
Raint			hly To test 2		2.14 0.88	in. in.	Humi	.dity		lghest: owest:	100 15			$\begin{array}{rrr}n \leq 32\\n \leq 0\end{array}$: 1 0	Avg Wind Max Wind				:0 .3

Monthly data generated on Tuesday, December 31, 2013 at 11:39 UTC

Evaluating Field Trial Data

This article has been reprinted from Southwest Farm Press Vol 25, Number 11, April 9, 1998.

Field Trials can provide helpful information to producers as they compare products and practices for their operations. But field trials must be evaluated carefully to make sure results are scientifically sound, not misleading and indicate realistic expectations for on-farm performance.

This fact sheet is designed to give you the tools to help you determine whether data from a field trial is science fact or science fiction.

What are the best sources of field trial data?

Field trials are conducted by a broad range of individuals and institutions, including universities, ag input suppliers, chemical and seed companies and growers themselves. All are potentially good sources of information.

What are the common types of field trials?

Most field trials fall into one of two categories: side-by-side trials (often referred to as strip trials) or small-plot replicated trials. Side-by-side trials are the most common form of on-farm tests. As the name suggests, these trials involve testing practices or products against one another in plots arrayed across a field, often in strips the width of the harvesting equipment.

These strips should be replicated across the field or repeated at several locations to increase reliability. Small-plot replicated trials often are conducted by universities and companies at central locations because of the complexity of managing them and the special planting and harvesting equipment often required. Replicated treatments increase the reliability of an experiment. They compare practices or products against one another multiple times under uniform growing conditions in several randomized small plots in the same field or location.

Small-plot replicated trials also may be conducted on farmers' fields where special conditions exist, for example, a weed infestation that does not occur on an experiment station.

Are side-by-side plots more valuable than small-plot replicated trials, or vice versa?

Both types of plots can provide good information. The key is to evaluate the reliability of the data. It is also important to consider the applicability of the trial to your farming operation.

When is plot data valid, and when isn't it?

There isn't a black-and-white answer to that questions. But there are good rules of thumb that can help guide you. Consider these three field trial scenarios:

Scenario 1:

A single on-farm side-by-side trial comparing 10 varieties. Each variety is planted in one strip the width of the harvesting equipment and is 250 to 300 feet long.

What you can learn:

This trial will allow you to get a general feel for each variety or hybrid in the test, including how it grows and develops during the season.

However, this trial, by itself, probably won't be able to reliably measure differences in yield. This is because variability within the field, even if it appears to be relatively uniform, may be large enough to cause yield variations that mask genetic difference among the varieties. Other varietal characteristics, such as maturity or micronaire in cotton, can also be masked by soil variation.

Scenario 2:

Yield data from side-by-side variety trials conducted on the same varieties on multiple farms in your region.

What you can learn:

When data from multiple side-by-side trials are considered together, reliability increases. In this case, the more trials comparing the same varieties, the better. As you go from three to five to 10 or more locations, the certainty goes up that yield differences represent genetic differences and not field variability. Be aware, however, that small differences between treatments (in this case varieties) may still be within the margin of random variability of the combined trial and may not indicate actual genetic differences. One treatment will almost always be numerically higher. Statistical analysis helps determine if differences are significant (consistent).

Scenario 3:

A university-style small-block replicated trial comparing the same 10 varieties.

What can you learn:

Data from such trials, if they are designed well and carried out precisely, generally are reliable. This is, the results generally determine the yield potential of crop varieties. However, it is still important to consider whether results are applicable to your farming operation and are consistent with other research.

How do I know whether differences in yield, for example, are real and not caused by field variability or sloppy research?

Scientists use statistical analysis to help determine whether differences are real or are the result of experimental error, such as field variation. The two most commonly used statistics are **Least Significant Difference (LSD)** and the **Coefficient of Variation (CV)**, both of which can provide insight on the validity of trial data. If these values aren't provided with trial results, ask for them.

Least Significant Difference (LSD) is the minimum amount that two varieties must differ to be considered significantly different. Consider a trial where the LSD for yield is four bushels per acre. If one variety yields 45 bushels per acre and another yields 43 bushels per acre, the two are not statistically different in yield. The difference in their yields is due to normal field variation, not to their genetics. In this example, a variety that yields 45 bushels per acre is significantly better than those yielding less than 41 bushels per acre. In many research trials, LSDs are calculated at confidence level of 75 to 95 percent. For example, a confidence level of 95 percent means you can be 95 percent certain that yield differences greater than the LSD amount are due to genetics and not to plot variability.

Coefficient of Variation (CV) measures the relative amount of random experimental variability not accounted for in the design of a test. It is expressed as a percent of the overall average of the test. For measuring yield differences, CV's of up to five percent are considered excellent; 5.1 to 10 percent are considered good; and 10.1 to 15 percent are fair.

A high CV means there must be larger differences among treatments to conclude that significant differences exist. The bottom line: <u>When considering yield test data</u>, be skeptical when the CV exceeds <u>15 percent</u>.

Is a one-year test valid, or are several years of results necessary to know whether one product or practice is superior to another?

In an ideal world, having several years of tests to verify use of a practice or product is best. But where changes are rapid, such as with crop varieties, having university data from multiple years isn't always possible.

When multi-year university data aren't available, pay more careful attention to statistical measures like CV and LSD, and the number of locations and testing environments.

Multi-year data on yield and performance can also be requested from the developers of new products prior to university testing. In either case, be cautious about making major production changes and trying large acreages of a given variety based on one year's data.

How should I evaluate trial results that are markedly different from other research in my area?

When research results are at odds with the preponderance of scientific evidence, examine the new research with extra care.

Pay special attention to factors that might have influenced the outcome, such as soil type, planting date, soil moisture and other environmental conditions, and disease, insect and weed pressures. For example, was the growing season unusually wet or unusually dry? When was it dry or wet? What was the crop growth stage when it was wet or dry?

Was there a disease that affected one variety or hybrid more than another one? Were there insect problems? Could this have influenced the trial's outcome and its applicability to your operation? If you determine that unusual circumstances affected the outcome, be cautious about how you use the results.

Some applied research trial reports may involve treatments not consistent with current labeling for some specific products. The user is responsible for determining that the intended use is consistent with the label of the product being used. Use pesticides safely. Read and follow label directions. The information given herein is for educational purposes only. Reference of commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

Oklahoma State University in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations does not discriminate on the basis of race, color, national origin, sex, age, religion, disability, or status as a veteran in any of its policies, practices, or procedures. This includes but is not limited to admissions, employment, financial aid, and educational services.