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Abstract
We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties and
study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension
as a measure of singularities, our main result can be interpreted as saying that the singularities of the arc space
are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively
improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg
and Kazhdan on formal neighbourhoods in arc spaces by providing a converse to their theorem, an optimal
bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the
embedding dimension of the model constructed in Drinfeld’s proof and a geometric meaningful way of realising
the decomposition stated in the theorem.
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1. Introduction

In this paper we define the embedding codimension of an arbitrary local ring and use it to quantify
singularities of arc spaces.
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The embedding codimension is a familiar notion in the Noetherian setting, where it is defined,
for local rings, as the difference between the embedding dimension and the Krull dimension. It was
studied, for instance, in [35] under the name of regularity defect. Note, however, that if the ring is not
Noetherian, then both of these quantities can be infinite, and even when they are finite it can happen that
the embedding dimension is smaller than the dimension. Rank 2 valuation rings give simple examples
where this phenomenon occurs.

Arc spaces provide a situation of geometric interest where non-Noetherian rings and rings of infinite
embedding dimension naturally arise. With this in mind, we extend the definition of the embedding
codimension to arbitrary local rings (𝐴,𝔪, 𝑘) by setting

ecodim(𝐴) := ht(ker(𝛾)),

where 𝛾 : Sym𝑘 (𝔪/𝔪
2) → gr(𝐴) is the natural homomorphism. Geometrically, we may think of

ecodim(𝐴) as the codimension of the tangent cone of A inside its tangent space. Note that when A is
Noetherian, this notion agrees with the classical definition of the embedding codimension, as in this case
dim(𝐴) = dim(gr(𝐴)). When A is a k-algebra, we have ecodim(𝐴) = 0 if and only if A is formally smooth
over k, and therefore one can view the embedding codimension as a (rough) measure of singularity.

If (𝐴,𝔪, 𝑘) is equicharacteristic, then an alternative definition can be given by considering the
infimum of ht(ker(𝜏)) for all surjective continuous 𝜏 : 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]] → 𝐴. We call the resulting notion
the formal embedding codimension, and denote it by fcodim(𝐴). In this paper we establish the following
comparison theorem:

Theorem A. For every equicharacteristic local ring (𝐴,𝔪, 𝑘), we have

ecodim(𝐴) ≤ fcodim(𝐴),

and equality holds in the following cases:

1. the ring A has embedding dimension edim(𝐴) < ∞ or
2. there exists a scheme X of finite type over k such that A is isomorphic to the local ring of the arc

space of X at a k-rational point.

In order to prove Theorem A and related results on the formal embedding codimension, we make
use of various results concerning infinite-variate power series rings and their localisations, which are of
independent interest in the study of non-Noetherian rings.

Local rings of arc spaces and their completions were studied in [31, 24, 40, 41, 42, 37, 21]; [21]
looks at the embedding dimension of the local rings to characterise stable points of arc spaces, which
were originally studied in [23, 40]. In this paper, we consider the embedding codimension.

Let X be a scheme of finite type over a field k, and let 𝑋∞ be its arc space. A point 𝛼 ∈ 𝑋∞ corresponds
to a formal arc 𝛼 : Spec𝐾 [[𝑡]] → 𝑋 , where K is the residue field, and defines a valuation ord𝛼 on the
local ring of X at the base point 𝛼(0) of the arc (the image of the closed point of Spec𝐾 [[𝑡]]). It is
convenient to denote by 𝛼(𝜂) the image of the generic point of Spec𝐾 [[𝑡]]. With this notation, we can
state our next theorem.

Theorem B. Let X be a scheme of finite type over a field k, and let 𝛼 ∈ 𝑋∞.

1. Assume that either k has characteristic 0 or 𝛼 ∈ 𝑋∞(𝑘). Then we have that ecodim(O𝑋∞ ,𝛼) < ∞ if
and only if 𝛼(𝜂) ∈ 𝑋sm.

2. Assume that k is perfect and 𝛼(𝜂) ∈ 𝑋sm, and let 𝑋0 ⊂ 𝑋 be the irreducible component containing
𝛼(𝜂). Then

ecodim
(
O𝑋∞ ,𝛼

)
≤ ord𝛼 (Jac𝑋0) ,

where Jac𝑋0 is the Jacobian ideal of 𝑋0.
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One of the motivations behind this result comes from the following theorem, originally conjectured
by Drinfeld and proved by Grinberg and Kazhdan in characteristic 0 and then by Drinfeld in arbitrary
characteristic. Here and in the following, we exclude the trivial case where X is, locally, just a reduced
point.

Theorem 1.1 ([31, 24, 25]). Let X be a scheme of finite type over a field k, and let 𝛼 ∈ 𝑋∞(𝑘) be a
k-rational point. If 𝛼(𝜂) ∈ 𝑋sm, then there exists a decomposition�𝑋∞,𝛼 � �̂�𝑧×̂Δ

N,

where �̂�𝑧 is the formal completion of a scheme Z of finite type over k at a point 𝑧 ∈ 𝑍 (𝑘), ΔN =
Spf (𝑘 [[𝑥𝑖 | 𝑖 ∈ N]]) and ×̂ denotes the product in the category of formal k-schemes.

Given the existence of an isomorphism as in Theorem 1.1, we say that 𝑋∞ admits a DGK decompo-
sition at 𝛼. The germ (𝑍, 𝑧) (given by SpecO𝑍,𝑧) and its completion �̂�𝑧 = Spf (Ô𝑍𝑧 ) are often referred
to as a formal model for 𝛼. Drinfeld’s proof yields an algorithm for computing such a model; we will
refer to it as a Drinfeld model.

Partial converses of Theorem 1.1 were obtained in [9], where an explicit example of a k-valued
constant arc through the singular locus of X is given for which a DGK decomposition does not exist, and
in [19], where it is shown that in characteristic 0, if 𝛼 is any constant arc contained in the singular locus
of X then there are no smooth factors in �𝑋∞,𝛼 at all. Examples of nonconstant arcs that are contained
in the singular locus for which there is no DGK decomposition can easily be constructed from these
results; see also [43, 11] for related results. An extension of the theorem to formal schemes is given in
[10]. Formal models of toric singularities are studied in [13].

As an application of our methods, we give a sharp converse to Theorem 1.1 and provide an optimal
bound to the embedded codimension of the formal model.

Theorem C. Let X be a scheme of finite type over a field k, and let 𝛼 ∈ 𝑋∞(𝑘) be a k-rational point.

1. If 𝑋∞ admits a DGK decomposition at 𝛼, then 𝛼(𝜂) ∈ 𝑋sm.
2. Assume that k is perfect and 𝛼(𝜂) ∈ 𝑋sm, and let 𝑋0 ⊂ 𝑋 be the irreducible component containing

𝛼(𝜂). Then for any formal model (𝑍, 𝑧) for 𝛼, we have

ecodim
(
O𝑍,𝑧

)
≤ ord𝛼 (Jac𝑋0) .

Moreover, for every 𝑒 ∈ N there exist X and 𝛼 such that both sides in this formula are equal to e.

The next result, which combines results of this paper with Theorem 1.1, provides a geometrically
meaningful way of realising a DGK decomposition and gives an explicit formula for the embedding
dimension of a Drinfeld model.

Theorem D. Let X be an affine scheme of finite type over a perfect field k, let 𝛼 ∈ 𝑋∞(𝑘) be a k-rational
point with 𝛼(𝜂) ∈ 𝑋sm and let 𝑑 = dim𝛼(𝜂) (𝑋). Let 𝑓 : 𝑋 → 𝑌 := A𝑑 be a general linear projection.

1. The map 𝑓∞ : 𝑋∞ → 𝑌∞ induces an isomorphism from the Zariski tangent space of 𝑋∞ at 𝛼 to the
Zariski tangent space of 𝑌∞ at 𝛽 := 𝑓∞(𝛼), and hence a closed embedding�𝑓∞,𝛼 : �𝑋∞,𝛼 ↩→ 𝑌∞,𝛽 .

2. For a suitable isomorphism 𝑌∞,𝛽 � Spec 𝑘 [[𝑢𝑖 | 𝑖 ∈ N]], the scheme �𝑋∞,𝛼 is defined in this
embedding by finitely many polynomials in the variables 𝑢 𝑗 , and hence the embedding gives a DGK
decomposition of 𝑋∞ at 𝛼.

3. Let 𝑋0 ⊂X be the irreducible component containing 𝛼(𝜂), and set 𝑒 := ord𝛼 (Jac𝑋0). Denote by�𝑌2𝑒−1,𝛽2𝑒−1 the completion of the (2𝑒− 1)-jet scheme of Y at the truncation of 𝛽. If (𝑍, 𝑧) is a Drinfeld
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model compatible with the projection f, then the composition of maps

�̂�𝑧 ↩→ �𝑋∞,𝛼 ↩→ 𝑌∞,𝛽 � �𝑌2𝑒−1,𝛽2𝑒−1

gives an embedding of �̂�𝑧 into �𝑌2𝑒−1,𝛽2𝑒−1 , and this embedding induces an isomorphism at the level
of continuous tangent spaces. In particular, the local ring O𝑍,𝑧 has embedding dimension

edim
(
O𝑍,𝑧

)
= 2𝑑 ord𝛼 (Jac𝑋0) .

By combining Theorems C and D, one sees that all Drinfeld models (𝑍, 𝑧) have the same dimension,
and this dimension satisfies

(2𝑑 − 1) ord𝛼 (Jac𝑋0) ≤ dim(𝑍) ≤ 2𝑑 ord𝛼 (Jac𝑋0) .

In general, Drinfeld models are different from the minimal formal model. Theorem D implies that
2𝑑 ord𝛼 (Jac𝑋0) is an upper bound on the embedding dimension of the minimal formal model.

The proofs of Theorems B and D rely on a formula on the sheaf of differentials of 𝑋∞ from [21]. A
result related to Theorem D(1), dealing with the case where 𝑓 : 𝑋 → 𝑌 is a generically finite morphism
of equidimensional schemes with X smooth, was obtained in [27] using a more direct computation of
the map induced at the level of Zariski tangent spaces. General projections to A𝑑 are also used in [24]
to set up the proof for the Weierstrass preparation theorem; however, Drinfeld’s proof does not lead to
the same conclusions about �𝑓∞,𝛼 or about the embedding of �̂�𝑧 into �𝑌2𝑒−1,𝛽2𝑒−1 . General projections to
A𝑑 were also used in [42, 37], and in fact our results give a new proof of one of the theorems of [37].

There have been several attempts to extend Theorem 1.1 to a more global statement; see [16, 38, 15, 33]
(see also the more recent [14], which supersedes [15]), which at their core all rely on the Weierstrass
preparation theorem. The question stems from the expectation that there should exist a well-behaved
theory of perverse sheaves on arc spaces (as well as on other closely related infinite dimensional spaces).
Theorem 1.1 suggests that one could try to define such perverse sheaves in terms of the intersection
complexes of the formal models, but one needs a more global version of the DGK decomposition to
make sense out of this. We refer to the citations already given for the motivations behind these questions.

Our interest in Theorem D comes from the observation that the same projection 𝑓 : 𝑋 → A𝑑 works
for all arcs 𝛼′ ∈ 𝑋∞(𝑘) in a neighbourhood of 𝛼 and having the same order of contact with Jac𝑋0 . The
order of contact with the Jacobian ideals of the irreducible components of X gives a stratification of 𝑋∞,
and the hope is that the theorem may turn out to be useful in understanding how the DGK decomposition
varies along strata.

This paper is organised as follows. In the first few sections we review some basic properties of power
series rings in an arbitrary number of indeterminates and establish various properties that we have been
unable to locate in the literature. Ideals of finite definition, which provide the algebraic interpretation
of a DGK decomposition, are discussed in Section 5. These sections provide some general results on
non-Noetherian rings and are independent of our applications to the study of singularities of arc spaces.
In the next two sections the embedding codimension and its formal counterpart are defined and general
properties of these notions are studied. Starting from Section 8, we focus on the case of arc spaces,
proving some technical theorems in Section 8 and then addressing the theorem of Drinfeld, Grinberg
and Kazhdan in Sections 9 and 10. The last section is devoted to some applications related to Mather–
Jacobian discrepancies, among others to the case of toric singularities using results of [13].

Theorem A follows from Theorem 7.8 and Corollaries 7.5 and 9.7. Theorem B follows from Corollary
8.8 and Theorem 8.5. Theorem C follows from Theorem 9.4 and Example 9.6. Theorem D follows from
Theorems 9.8 and 10.2.
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2. Rings of formal power series

In this paper we will work with rings of power series in an arbitrary number of indeterminates. For our
purposes, we adopt the definition of these rings as completions of polynomial rings, a definition that
differs from other standard approaches to the theory. In this section, we briefly review the notions of
completions, graded rings, and rings of power series. All of the material here is standard, but we want to
fix notation and bring attention to some of the subtleties that appear in the infinite-dimensional setting.

Let A be a ring and 𝔪 ⊂ 𝐴 an ideal. We do not assume that 𝔪 is a maximal ideal. We denote by
𝐴 := lim

←−−𝑛
𝐴/𝔪𝑛 the 𝔪-adic completion of A and regard it as a topological ring with respect to its limit

topology. Given an ideal 𝔞 ⊂ 𝐴, we denote by �̂� ⊂ 𝐴 the completion of 𝔞 as a topological A-submodule.
A basis for all neighbourhoods 𝑈 ⊂ 𝐴 of 0 is given by the descending chain of ideals

𝔪𝑛 = ker
(
𝐴→ 𝐴/𝔪𝑛

)
.

The ideal �̂� then coincides with the topological closure of 𝔞 inside 𝐴 – that is,

�̂� =
⋂
𝑛

(
𝔞 +𝔪𝑛

)
.

Note that if 𝔪 is not finitely generated, then the natural topology on 𝐴 may differ from the �̂�-adic
topology of 𝐴 (see Remark 2.3).

We will denote by gr𝔪 (𝐴) :=
⊕

𝑛≥0 𝔪
𝑛/𝔪𝑛+1 the graded algebra of A with respect to the 𝔪-

adic filtration. If 𝔪 is understood from context, we simply write gr(𝐴) for gr𝔪 (𝐴). We will regard
𝐴 as endowed with the filtration {𝔪𝑛} induced by the completion, and therefore its graded algebra
is given by gr(𝐴) :=

⊕
𝑛≥0 𝔪

𝑛/�𝔪𝑛+1. There are natural isomorphisms 𝔪𝑝/𝔪𝑞 � 𝔪𝑝/𝔪𝑞 for all
𝑝 < 𝑞. This gives a natural identification between gr(𝐴) and gr(𝐴). If 𝔞 ⊂ 𝐴 is an ideal of A, then
we write in(𝔞) :=

⊕
𝑛≥0 (𝔞 ∩ 𝔪𝑛)/𝔪𝑛+1 for the corresponding initial ideal. Similarly, for 𝔞 ⊂ 𝐴, we

set in(𝔞) :=
⊕

𝑛≥0(𝔞 ∩𝔪𝑛)/�𝔪𝑛+1. For an element 𝑓 ∈ 𝐴 (or 𝑓 ∈ 𝐴), we write in( 𝑓 ) ∈ gr(𝐴) for the
corresponding initial form.

Let S be a ring, and let {𝑥𝑖 | 𝑖 ∈ 𝐼} be a collection of indeterminates indexed by an arbitrary set I.
We consider the polynomial ring 𝑃 = 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] and denote by 𝑃 = 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] the completion of
P with respect to the ideal (𝑥𝑖 | 𝑖 ∈ 𝐼) – that is,

𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] := lim
←−−𝑛

𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼]/(𝑥𝑖 | 𝑖 ∈ 𝐼)
𝑛.

Definition 2.1. We call 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] the power series ring in the indeterminates 𝑥𝑖 , with 𝑖 ∈ 𝐼, and
with coefficients in S.

Remark 2.2. The polynomial ring 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] is always the colimit (that is, the union) of all
𝑆[𝑥 𝑗 | 𝑗 ∈ 𝐽] with 𝐽 ⊂ 𝐼 finite. On the other hand, if I infinite, then 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] is not the colimit
of all 𝑆[[𝑥 𝑗 | 𝑗 ∈ 𝐽]] with 𝐽 ⊂ 𝐼 finite; it is, however, the colimit of all 𝑆[[𝑥 𝑗 | 𝑗 ∈ 𝐽]] with 𝐽 ⊂ 𝐼
countable.

Remark 2.3. Denoting 𝔪 = (𝑥𝑖 | 𝑖 ∈ 𝐼), we have the exact sequence

0→ 𝔪𝑛 → 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] → 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼]/𝔪
𝑛 → 0.

If I is infinite then 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] is not �̂�-adically complete – that is, the natural topology on
𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] coming from the completion does not coincide with the �̂�-adic one, as for instance the
inclusion �̂�2 ⊂ 𝔪2 is strict in this case [44, Tag 05JA].
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Remark 2.4. Let us contrast the foregoing definition of 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] with the ring of formal power
series defined in [8, Chapter III, Section 2.11], which we want to briefly recall. For any set I we
denote by N(𝐼 ) the set of functions 𝐼 → N that take only finitely many nonzero values. Then N(𝐼 ) is
a monoid, which we identify with the collection of monomials in the variables {𝑥𝑖 | 𝑖 ∈ 𝐼} by writing
𝑥𝛼 =

∏
𝑖∈𝐼 , 𝛼(𝑖)≠0 𝑥

𝛼(𝑖)
𝑖 for every 𝛼 ∈ N(𝐼 ) . The S-module 𝑆N

(𝐼 ) can be made into an S-algebra as
follows: writing an element 𝑎 = (𝑎𝛼)𝛼∈N(𝐼 ) as 𝑎 =

∑
𝛼∈N(𝐼 ) 𝑎𝛼𝑥

𝛼, multiplication is defined via formal
extension of 𝑥𝛼 · 𝑥𝛽 := 𝑥𝛼+𝛽 . We call 𝑆N(𝐼 ) the ring of Bourbaki power series.

Notice that there is a natural inclusion of rings 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] ⊂ 𝑆N
(𝐼 ) . This inclusion is an equality

if |𝐼 | < ∞, and is a strict inclusion if |𝐼 | = ∞, as in this case
∑
𝑖∈𝐼 𝑥𝑖 is in 𝑆N

(𝐼 ) but not in 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]].

Remark 2.5. It is often convenient to expand a formal power series in a subset of the indeterminates,
but this becomes delicate in the infinite-dimensional case. Let I and J be arbitrary sets, and let 𝑥𝑖 and
𝑦 𝑗 be indeterminates indexed by 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽, respectively. Dropping for short the index sets from
the notation, we have the following natural injections:

𝑆[[𝑥𝑖]] ⊗𝑆 𝑆
[ [
𝑦 𝑗

] ]
↩→ 𝑆[[𝑥𝑖]]

[ [
𝑦 𝑗

] ]
↩→ 𝑆

[ [
𝑥𝑖 , 𝑦 𝑗

] ]
↩→ (𝑆[[𝑥𝑖]])

N(𝐽 ) .

The first inclusion is always strict, and the other two are equalities if and only if J is finite. For
example, if 𝑥 = 𝑥𝑖0 and 𝑦 = 𝑦𝑖0 are two respective indeterminates, then the series

∑
𝑛≥0 𝑥

𝑛𝑦𝑛 belongs
to 𝑆[[𝑥𝑖]] [[𝑦 𝑗 ]] but is not in the image of 𝑆[[𝑥𝑖]] ⊗𝑆 𝑆[[𝑦 𝑗 ]], and if N ⊂ 𝐽 and 𝑥 = 𝑥𝑖0 is one of the
indeterminates, then the series

∑
𝑛≥1 𝑦𝑛𝑥

𝑛 belongs to 𝑆[[𝑥𝑖 , 𝑦 𝑗 ]] but not to 𝑆[[𝑥𝑖]] [[𝑦 𝑗 ]]. Notice that
Bourbaki power series are better behaved in this respect, as 𝑆N(𝐼𝐽 ) = (𝑆N(𝐼 ) )N(𝐽 ) = (𝑆N(𝐽 ) )N(𝐼 ) .

Remark 2.6. Let I be an arbitrary set, possibly infinite. We have natural identifications

gr(𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]]) � gr(𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼]) � 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] .

Any nonzero power series 𝑓 ∈ 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] can be written as 𝑓 =
∑∞
𝑛=𝑛0 𝑓𝑛, where 𝑓𝑛 ∈ 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼]

is homogeneous of degree n and 𝑓𝑛0 ≠ 0. Under the given identification, the initial form of f is given by
in( 𝑓 ) = 𝑓𝑛0 . If 𝔞 ⊂ 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] is an ideal, then in(𝔞) gets identified with the ideal of 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼]
generated by the initial forms of elements of 𝔞.

Proposition 2.7. Let 𝑃 = 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] and 𝑃 = 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]], where S is a ring and I a set. Let 𝔞 ⊂ 𝑃
be an ideal such that in(𝔞) ⊂ 𝑃 is finitely generated. Then 𝔞 is finitely generated and is closed in 𝑃.

Proof. This is proven in [28, Proposition 7.12] for any ring R which is complete with respect to some
filtration 𝔪𝑖 . �

Question 2.8. Does the converse of Proposition 2.7 hold? That is, is the initial ideal in(𝔞) finitely
generated for any finitely generated ideal 𝔞 of 𝑃? Alternatively, is any finitely generated 𝔞 already closed
inside 𝑃?

3. Embedding dimension

In this section we briefly recall the notion of embedding dimension and review some basic properties.

Definition 3.1. The embedding dimension of a local ring (𝐴,𝔪, 𝑘) is defined to be

edim(𝐴) := dim𝑘

(
𝔪/𝔪2

)
.

The k-vector space 𝔪/𝔪2 is called the Zariski cotangent space of A.
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When the local ring is equicharacteristic, the embedding dimension can equivalently be computed
as the dimension of an embedding of the completion in a formal power series ring. Even more, if A is
essentially of finite type over an infinite field k, then this embedding exists already at a Zariski-local
level (see Theorem 3.15). Before we review these facts, it is convenient to introduce some terminology
and discuss some general properties.

Definition 3.2. Let (𝐴,𝔪, 𝑘) be an equicharacteristic local ring. A formal coefficient field of A is a
subfield 𝐾 ⊂ 𝐴 that maps isomorphically to 𝐴/�̂� via the residue map.

As it is well known, every equicharacteristic local ring (𝐴,𝔪, 𝑘) admits a formal coefficient field
𝐾 ⊂ 𝐴 (see Remark 3.11).

In order to talk about a well-behaved notion of cotangent map between completions of non-Noetherian
rings, we make the following definition:

Definition 3.3. Let (𝐴,𝔪, 𝑘) be a local ring. The k-vector space �̂�/𝔪2 is called the continuous Zariski
cotangent space of 𝐴. A collection of elements 𝑎𝑖 ∈ 𝐴, 𝑖 ∈ 𝐼, are called formal coordinates if their
images 𝑎𝑖 in �̂�/𝔪2 form a basis.

Remark 3.4. The continuous Zariski cotangent space �̂�/𝔪2 of 𝐴 is naturally isomorphic to the Zariski
cotangent space 𝔪/𝔪2 of A, but in general it is not the same as the Zariski cotangent space �̂�/�̂�2 of 𝐴,
as seen in Remark 2.3.

Remark 3.5. If (𝐴,𝔪, 𝑘) is a local ring admitting a coefficient field, then the continuous cotangent
space of 𝐴 is isomorphic to Ω̂𝐴/𝑘 ⊗𝐴 𝑘 , where

Ω̂𝐴/𝑘 := lim
←−−
𝑛

Ω(𝐴/𝔪𝑛)/𝑘

is defined as in [32, Chapter 0IV, Section 20.7].

Definition 3.6. Let (𝐴,𝔪, 𝑘) be an equicharacteristic local ring. A formal embedding of A is a surjective
continuous homomorphism 𝜏 : 𝑃 → 𝐴, where 𝑃 = 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]] is a power series ring. A formal
embedding 𝜏 is called efficient if the induced map at the level of continuous Zariski cotangent spaces
�̂�/𝔫2 → �̂�/𝔪2 is an isomorphism.

Proposition 3.7. Let (𝐴,𝔪, 𝑘) be an equicharacteristic local ring. Let 𝐾 ⊂ 𝐴 be a formal coefficient
field, and let 𝑎𝑖 ∈ 𝐴, 𝑖 ∈ 𝐼, be formal coordinates. Then there exists a unique efficient formal embedding
𝜏 : 𝑃 = 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]] → 𝐴 such that 𝜏(𝑘) = 𝐾 and 𝜏(𝑥𝑖) = 𝑎𝑖 . Every efficient formal embedding of A
is of this form.

Proof. First, note that for every 𝑛 ≥ 1 the composition 𝐾 → 𝐴 → 𝐴/𝔪𝑛 is injective (since K maps
isomorphically to the residue field 𝑘 = 𝐴/�̂�) and hence gives an embedding 𝐾 ⊂ 𝐴/𝔪𝑛 via the natural
isomorphism 𝐴/𝔪𝑛 � 𝐴/𝔪𝑛. Letting 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] and 𝔫 = (𝑥𝑖 | 𝑖 ∈ 𝐼) ⊂ 𝑃, we have compatible
homomorphisms 𝜏𝑛 : 𝑃/𝔫𝑛 → 𝐴/𝔪𝑛 such that 𝜏𝑛 (𝑘) = 𝐾 and 𝜏𝑛 (𝑥𝑖) = 𝑎𝑖 +𝔪𝑛. Taking limits, these
maps define 𝜏 and determine it uniquely. By construction, gr(𝜏) is surjective, and hence 𝜏 is surjective
by [7, Chapter III, Section 2.8, Corollary 2]. Since 𝜏 induces an isomorphism at the level of continuous
Zariski cotangent spaces, we see that it is an efficient formal embedding. For the last statement, notice
that if 𝜏 is an efficient formal embedding, then clearly 𝐾 = 𝜏(𝑘) is a formal coefficient field and 𝜏(𝑥𝑖),
𝑖 ∈ 𝐼, are formal coordinates. �

The map 𝜏 in Proposition 3.7 can be interpreted as follows. For short, let 𝑃 := Sym𝑘 (𝔪/𝔪
2). Every

choice of formal coefficient field 𝐾 ⊂ 𝐴 and formal coordinates 𝑎𝑖 ∈ 𝐴, 𝑖 ∈ 𝐼, determines an embedding
𝔪/𝔪2 ↩→ 𝐴 as a K-vector space, and hence a map 𝜏0 : 𝑃 → 𝐴. Letting 𝑥𝑖 = 𝑎𝑖 + 𝔪2 ∈ 𝑃, we get a
natural identification 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼]. Then the map 𝜏 is obtained from 𝜏0 by completing the domain P.
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Remark 3.8. There is also a natural embedding 𝔪/𝔪2 ↩→ gr(𝐴) as a k-vector space, which induces
a map 𝛾 : 𝑃 → gr(𝐴). It is immediate from the construction that gr(𝜏) = 𝛾. In particular we see that
gr(𝜏) is independent of any choices. On the other hand, 𝜏 itself certainly depends on the choices of the
formal coefficient field K and formal coordinates 𝑎𝑖 ∈ 𝐴, 𝑖 ∈ 𝐼.

The following result addresses the dependence of 𝜏 on K and {𝑎𝑖 | 𝑖 ∈ 𝐼}:

Proposition 3.9. Let (𝐴,𝔪, 𝑘) be an equicharacteristic local ring, let 𝐾, 𝐾 ′ ⊂ 𝐴 be two formal
coefficient fields and let {𝑎𝑖 | 𝑖 ∈ 𝐼} ⊂ 𝐴 and {𝑎′𝑖 | 𝑖 ∈ 𝐼} ⊂ 𝐴 be two sets of formal coordinates.
Consider the two maps 𝜏 : 𝑃 := 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]] → 𝐴 and 𝜏′ : 𝑃′ := 𝑘 [[𝑥 ′𝑖 | 𝑖 ∈ 𝐼]] → 𝐴 given by
Proposition 3.7. Then there exists an isomorphism 𝜑 : 𝑃′ → 𝑃 such that 𝜏′ = 𝜏 ◦ 𝜑.

The proof of this proposition relies on the following basic property of formally smooth algebras. The
statement is a natural generalisation of the definition of formal smoothness, which guarantees lifting not
only via extensions with nilpotent kernel but also via extensions with topologically nilpotent kernel.

Proposition 3.10. Let 𝑘0 be a topological ring and k a formally smooth 𝑘0-algebra. Let C be a complete
metrisable topological 𝑘0-algebra and I ⊂ 𝐶 a closed ideal such that {I𝑛} tends to zero. Then every
continuous 𝑘0-algebra homomorphism 𝑢 : 𝑘 → 𝐶/I factors as 𝑘 𝑣

−→ 𝐶 → 𝐶/I, where v is a continuous
𝑘0-algebra homomorphism:

𝑘0 ��

��

𝐶

��

𝑘
𝑢 ��

𝑣

���
�

�
�

�
𝐶/I.

Proof. See [32, Chapter 0IV, Proposition 19.3.10]. �

Remark 3.11. Proposition 3.10 implies the existence of formal coefficient fields for any equicharac-
teristic local ring (𝐴,𝔪, 𝑘). In this case, 𝐶 = 𝐴, I = �̂�, 𝑘0 is the prime field contained in 𝐴, k is the
residue field and u is the identity. Notice that 𝑘0 is perfect, and therefore k is separable over 𝑘0 (hence
formally smooth). Then 𝐾 = 𝑣(𝑘) is a formal coefficient field.

Let S be any discrete topological ring. For any two topological S-algebras T and 𝑇 ′, the tensor
product 𝑇 ⊗𝑆 𝑇 ′ is endowed with the final topology with respect to its natural maps. The completed
tensor product 𝑇 ⊗̂𝑆𝑇 ′ is defined to be the completion of 𝑇 ⊗𝑆 𝑇 ′. Note that the operation ⊗̂𝑆 is the
coproduct in the category of complete topological S-algebras.

Lemma 3.12. Let (𝑆, 𝔫, 𝑘) be a local k-algebra. Any continuous S-algebra map

𝜑 : 𝑆⊗̂𝑘 𝑘 [[𝑡𝑖 | 𝑖 ∈ 𝐼]] → 𝑆⊗̂𝑘 𝑘 [[𝑧𝑖 | 𝑖 ∈ 𝐼]]

which induces an isomorphism of continuous cotangent spaces is an isomorphism.

Proof. Note that a basis for the topology on 𝑆 ⊗𝑘 𝑘 [[𝑡𝑖 | 𝑖 ∈ 𝐼]] is given by the filtration

𝔪𝑛 :=
∑
𝑑+𝑒=𝑛

𝔫𝑑 +
(
(𝑡𝑖 | 𝑖 ∈ 𝐼)

𝑒 )̂ .
Thus it follows that for the associated graded rings we have

gr
(
𝑆⊗̂𝑘 𝑘 [[𝑡𝑖 | 𝑖 ∈ 𝐼]]

)
� gr(𝑆 ⊗𝑘 𝑘 [𝑡𝑖 | 𝑖 ∈ 𝐼]) � gr(𝑆) ⊗𝑘 𝑘 [𝑡𝑖 | 𝑖 ∈ 𝐼] .

The map 𝜑 induces a gr(𝑆)-algebra map

gr(𝑆) [𝑡𝑖 | 𝑖 ∈ 𝐼] → gr(𝑆) [𝑧𝑖 | 𝑖 ∈ 𝐼],
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which by assumption is an isomorphism. Thus we can use [3, Lemma 10.23] to see that 𝜑 is bijective.
It is easy to check that 𝜑−1 is continuous, and we are done. �

Proof of Proposition 3.9. Let 𝑘0 be the prime field contained in 𝐴. Notice that k is formally smooth
over 𝑘0. We apply Proposition 3.10 in the situation in which 𝐶 = 𝑃, I = ker(𝜏) and 𝑢 : 𝑘 → 𝐴 = 𝐶/I
is the map such that 𝑢(𝑘) = 𝐾 ′. Notice that I = 𝜏−1 (0) is closed because 𝐴 is separated, and that {I𝑛}
tends to zero because I𝑛 ⊂ 𝔫𝑛. We get a map 𝑣 : 𝑘 → 𝑃 verifying 𝜏(𝑣(𝑘)) = 𝐾 ′.

Since 𝜏 is surjective, there exist power series 𝑓𝑖 ∈ 𝑃 such that 𝜏( 𝑓𝑖) = 𝑎′𝑖 . The map 𝜑 is given by
𝜑(𝑥 ′𝑖) = 𝑓𝑖 and 𝜑|𝑘 = 𝑣. Lemma 3.12 shows that 𝜑 is an isomorphism. �

Remark 3.13. By the same argument as in the proof of Proposition 3.9, one can see that given any
two formal embeddings 𝜏 : 𝑃 → 𝐴 and 𝜏′ : 𝑃′ → 𝐴 (not necessarily efficient), there is always a map
𝜑 : 𝑃′ → 𝑃 such that 𝜏′ = 𝜏 ◦ 𝜑, and if 𝜏 is efficient then 𝜑 is surjective.

Proposition 3.14. For every equicharacteristic local ring (𝐴,𝔪, 𝑘) we have

edim(𝐴) = min
𝜏

dim 𝑃,

where the minimum is taken over all choices of formal embeddings 𝜏 : 𝑃→ 𝐴 and is achieved whenever
𝜏 is an efficient formal embedding.

Proof. Let 𝜏 : 𝑃 → 𝐴 be a formal embedding, and write 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] and 𝔫 = (𝑥𝑖 | 𝑖 ∈ 𝐼) ⊂ 𝑃.
Since 𝜏 is continuous, we have that 𝜏(�̂�𝑐) ⊂ �̂� for some c. As �̂� is maximal, this forces 𝜏(�̂�) ⊂ �̂�,
and continuity gives 𝜏(𝔫𝑛) ⊂ 𝔪𝑛 for all n. Hence we get an induced map at the level of graded rings
gr(𝜏) : 𝑃 → gr(𝐴). Since 𝜏 is surjective, gr(𝜏) is also surjective and 𝜏(𝔫𝑛) = 𝔪𝑛 for every n. In
particular, 𝜏 induces a surjection at the level of Zariski cotangent spaces 𝔫/𝔫2 → 𝔪/𝔪2, and we see
that edim(𝐴) ≤ dim 𝑃. If 𝜏 is an efficient formal embedding, then the map 𝔫/𝔫2 → 𝔪/𝔪2 is an
isomorphism and we have edim(𝐴) = dim 𝑃. �

We finish this section by recalling the following result, which guarantees the existence of a Zariski-
local minimal embedding for singular points of a scheme of finite type over an infinite field. This is well
known in the case of complex varieties (see, for example, [6, Theorem 3]) and we provide an extension
of the proof to the more general case considered here.

Theorem 3.15. Let X be a scheme of finite type over an infinite field k and let 𝑥 ∈ 𝑋 (𝑘). If edim(𝑋, 𝑥) = 𝑑
and X is not smooth at x, then there exist a closed subscheme 𝑌 ⊂ A𝑑𝑘 , a point 𝑦 ∈ 𝑌 (𝑘) and an
isomorphism

O𝑌 ,𝑦 � O𝑋,𝑥 .

Proof. We may assume that X is projective and embedded in P𝑛 for some 𝑛 > 𝑑. Denote by �̄� the
algebraic closure of k and write �̄� := 𝑋 ×𝑘 Spec( �̄�) and 𝑥 for the �̄�-point on �̄� corresponding to x. As
O�̄� , �̄� is not a regular ring, we have

dim�̄�
(
�̄�
)
< edim

(
�̄�, 𝑥

)
= edim(𝑋, 𝑥) = 𝑑.

Suppose we can find a linear projection 𝜋 : P𝑛 → P𝑑 defined over k such that if𝑌 denotes the scheme-
theoretic image of �̄� under 𝜋 and �̄� = 𝜋(𝑥), then the induced map O�̄� , �̄� → O�̄� , �̄� is an isomorphism.
Since𝑌 = 𝑌 ×𝑘 Spec( �̄�), where Y is the scheme-theoretic image of X under the linear projection centred
at x, we obtain a map O𝑌 ,𝑦 → O𝑋,𝑥 whose base change to �̄� gives the foregoing map. Thus, by faithfully
flat descent, we get that O𝑌 ,𝑦 � O𝑋,𝑥 .

Now, in order to prove the claim, let 𝑇 ⊂ P𝑛
�̄�

be the unique linear space passing through 𝑥 whose
tangent space at 𝑥 agrees with that of �̄� . Furthermore, let 𝑆 be the closure of the set of all lines connecting
𝑧 with 𝑥, where 𝑧 ∈ �̄� , 𝑧 ≠ 𝑥. Note that dim(𝑆) = dim( �̄�) +1 ≤ 𝑑. Consider now the closure �̄� of the set
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�̄� ∪ 𝑇 ∪ 𝑆, equipped with its reduced scheme structure. Since dim(𝑆) ≤ 𝑑 the set of all linear spaces �̄�
with �̄� ∩ �̄� = ∅ is open inside Gr(𝑛 − 𝑑 − 1, 𝑛) ×𝑘 Spec( �̄�). The preimage of this set in Gr(𝑛 − 𝑑 − 1, 𝑛)
is a nonempty open set, and since k is infinite, it has a k-rational point, which we denote by L. Hence
we have that the corresponding projection 𝜋𝐿 : P𝑛 → P𝑑 , defined over k, satisfies 𝜋−1

�̄�
( �̄�) ∩ �̄� = {𝑥}

set-theoretically, where �̄� corresponds to the k-point 𝑦 := 𝜋𝐿 (𝑥). Writing 𝑌 := 𝜋�̄� ( �̄�), we get that the
map of local rings O�̄� , �̄� → O�̄� , �̄� is injective and finite. Since �̄� ∩ 𝑇 = ∅, the tangent spaces of 𝑥 and �̄�
are isomorphic and thus 𝔪�̄�O�̄� , �̄� = 𝔪�̄� . The claim now follows from the Nakayama lemma. �

4. Flatness of completion

Let A be a ring and 𝔪 an ideal in A. Given an A-module E, we will consider the 𝔪-adic topology on E
and we will denote by 𝐸 its 𝔪-adic completion. We are interested in conditions guaranteeing that the
natural map 𝐴→ 𝐴 is flat.

Definition 4.1. Let E be an A-module and F a submodule of E. We say that 𝐹 ⊆ 𝐸 has the Artin–Rees
property with respect to 𝔪 if there exists a 𝑐 ∈ N such that for all 𝑛 > 𝑐, we have

𝔪𝑛𝐸 ∩ 𝐹 = 𝔪𝑛−𝑐 (𝔪𝑐𝐸 ∩ 𝐹).

The smallest such c is called the Artin–Rees index of 𝐹 ⊆ 𝐸 with respect to 𝔪. We say that A has
the Artin–Rees property with respect to 𝔪 if so does every finitely generated submodule of a finitely
generated free A-module.

The Artin–Rees property for 𝐹 ⊆ 𝐸 guarantees that the 𝔪-adic topology of F coincides with the
topology induced by the 𝔪-adic topology of E. In this context it is natural to consider the Rees algebra
𝐴∗ =

⊕
𝑛≥0 𝔪

𝑛 and the graded 𝐴∗-modules

𝐸∗ =
⊕
𝑛≥0

𝔪𝑛𝐸 and 𝐹∗ =
⊕
𝑛≥0

𝔪𝑛𝐸 ∩ 𝐹.

Lemma 4.2. 𝐹 ⊆ 𝐸 has the Artin–Rees property if and only if there exists a 𝑐 ∈ N such that 𝐹∗ is
generated as a graded 𝐴∗-module by elements of degree ≤ 𝑐. Moreover, the Artin–Rees index of 𝐹 ⊆ 𝐸
is the smallest such c.

Proof. This is immediate from the definitions. Compare with [7, Chapter III, Section 3.1, Theorem 1]
or [36, Theorem 8.5] or [3, Lemma 10.8], but notice that no finite generation hypotheses are needed for
the statement of the lemma. �

Remark 4.3. By the classical Artin–Rees lemma [36, Theorem 8.5], any Noetherian ring A has the
Artin–Rees property with respect to any ideal 𝔪 ⊂ 𝐴. By contrast, there exist non-Noetherian rings,
even finite dimensional, which do not have the Artin–Rees property. A zero-dimensional example is
given by

𝐴 = 𝑘 [𝑥𝑖 | 𝑖 ∈ N]/
(
𝑥1 − 𝑥

𝑚
𝑚 | 𝑚 ≥ 2

)
+
(
𝑥𝑛+1𝑛 | 𝑛 ≥ 1

)
,

with 𝔪 = (𝑥𝑖 | 𝑖 ∈ N) and 𝐹 = (𝑥1) ⊂ 𝐸 = 𝐴. Clearly 𝑥1 ∈ 𝔪𝑛 for all n, but there is no 𝑓 ∈ 𝔪 such that
𝑥1 = 𝑥1 𝑓 .

In complete analogy with the Noetherian case, we prove that the Artin–Rees property implies flatness
of the completion. We recall that a ring is coherent if every finitely generated ideal is finitely presented.

Proposition 4.4. Let A be a coherent ring with the Artin–Rees property with respect to 𝔪 ⊂ 𝐴, and let
𝐴 be its 𝔪-adic completion. Then 𝐴 → 𝐴 is flat. Moreover, if 𝔞 ⊂ 𝐴 is a finitely generated ideal, then
𝔞𝐴 is closed in 𝐴 (that is, 𝔞𝐴 = �̂�).
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Proof. Let 𝔞 be a finitely generated ideal of A. Since A is coherent, there exists an exact sequence

𝐴𝑝 �� 𝐴𝑞
𝜑

�� 𝔞 �� 0.

Moreover, since the Artin–Rees property holds for ker 𝜑 ⊂ 𝐴𝑞 , the 𝔪-adic topology on ker 𝜑 agrees
with the one induced by the inclusion ker 𝜑 ⊂ 𝐴𝑞 . From [7, Chapter III, Section 2.12, Lemma 2] or [3,
Lemma 10.3], the sequence remains exact after taking 𝔪-adic completions, and we have a commutative
diagram

𝐴𝑝 ⊗𝐴 𝐴 ��

��

𝐴𝑞 ⊗𝐴 𝐴 ��

��

𝔞 ⊗𝐴 𝐴 ��

��

0

𝐴𝑝 �� 𝐴𝑞
𝜑

�� �̂� �� 0

with exact rows. Since taking completion commutes with finite direct sums, the map 𝔞 ⊗𝐴 𝐴 → �̂� is
an isomorphism. As the natural map �̂� → 𝐴 is an injection, the flatness of 𝐴 → 𝐴 follows from [36,
Theorem 7.7]. The fact that 𝔞 ⊗𝐴 𝐴→ �̂� is an isomorphism also shows that 𝔞𝐴 = �̂�. �

The following theorem gives a first example of a non-Noetherian ring with the Artin–Rees property.
We were not able to find a reference for this statement in the literature.

Theorem 4.5. Let S be a Noetherian ring and 𝔫 any ideal of S. For any set I, consider 𝑃 = 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼]
and 𝔪 = (𝑥𝑖 | 𝑖 ∈ 𝐼) + 𝔫. Then P has the Artin–Rees property with respect to 𝔪.

Proof. Let E be a finitely generated free P-module and 𝐹 ⊆ 𝐸 a finitely generated submodule. Assume
that E is freely generated by 𝑒1, . . . , 𝑒𝑠 .

Given any subset 𝐽 ⊆ 𝐼, we write 𝑃𝐽 := 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐽], and for any ideal 𝔞 ⊆ 𝑃 we denote 𝔞𝐽 := 𝔞∩𝑃𝐽 .
We define 𝐸𝐽 := 𝑃𝐽 · 𝑒1 ⊕ · · · ⊕ 𝑃𝐽 · 𝑒𝑠, and for any P-submodule 𝐺 ⊆ 𝐸 we write 𝐺𝐽 := 𝐸𝐽 ∩𝐺. Note
that 𝑃,𝔪, 𝔞, 𝐸, 𝐺 are the colimits of 𝑃𝐽 ,𝔪𝐽 , 𝔞𝐽 , 𝐸𝐽 , 𝐺𝐽 for 𝐽 ⊆ 𝐼 finite. We have

𝐺𝐽 ∩ 𝐺
′
𝐽 = (𝐺 ∩ 𝐺 ′)𝐽 , 𝔞𝐽𝐺𝐽 ⊆ (𝔞𝐺)𝐽 , 𝔞𝐽𝐸𝐽 = (𝔞𝐸)𝐽 , (𝔪𝐽 )

𝑛 = (𝔪𝑛)𝐽 .

In particular, for all 𝑛, 𝑑 ∈ N with 𝑛 > 𝑑, we have

𝔪𝑛
𝐽𝐸𝐽 ∩ 𝐹𝐽 = (𝔪𝑛𝐸 ∩ 𝐹)𝐽 and 𝔪𝑛−𝑑

𝐽

(
𝔪𝑑

𝐽𝐸𝐽 ∩ 𝐹𝐽

)
⊆

(
𝔪𝑛−𝑑

(
𝔪𝑑𝐸 ∩ 𝐹

))
𝐽
.

Assume that F is generated by 𝑓1, . . . , 𝑓𝑟 . Then there exists a finite set 𝐿 ⊂ 𝐼 such that 𝑓1, . . . , 𝑓𝑟 ∈ 𝐹𝐿 ,
and for any J with 𝐿 ⊆ 𝐽 ⊆ 𝐼 we have 𝐹𝐽 = 𝑃𝐽 · 𝑓1 + · · · + 𝑃𝐽 · 𝑓𝑟 = 𝑃𝐽 · 𝐹𝐿 .

Since 𝑃𝐿 is Noetherian, it has the Artin–Rees property with respect to 𝔪𝐿 , and hence there exists a
𝑐 ∈ N such that

𝔪𝑛
𝐿𝐸𝐿 ∩ 𝐹𝐿 = 𝔪𝑛−𝑐

𝐿

(
𝔪𝑐

𝐿𝐸𝐿 ∩ 𝐹𝐿
)

for all 𝑛 > 𝑐. The smallest such c is the Artin–Rees index of 𝐹𝐿 ⊆ 𝐸𝐿 . Since for any finite set J with
𝐿 ⊆ 𝐽 ⊂ 𝐼 we have 𝐹𝐽 = 𝑃𝐽 · 𝐹𝐿 , we can apply Lemma 4.6, and we see that the Artin–Rees index of
𝐹𝐽 ⊆ 𝐸𝐽 is again c. This implies that

(𝔪𝑛𝐸 ∩ 𝐹)𝐽 ⊆ (𝔪
𝑛−𝑐 (𝔪𝑐𝐸 ∩ 𝐹))𝐽 .

Taking the colimit for all finite 𝐽 ⊂ 𝐼, we get

𝔪𝑛𝐸 ∩ 𝐹 ⊆ 𝔪𝑛−𝑐 (𝔪𝑐𝐸 ∩ 𝐹).

The reversed inclusion is immediate, and the theorem follows. �
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Lemma 4.6. Let 𝐴0 be a Noetherian ring, 𝔪0 ⊂ 𝐴0 an ideal, 𝐸0 a finitely generated 𝐴0-module and
𝐹0 ⊆ 𝐸0 a submodule. Let z be a new variable and consider the ring 𝐴 = 𝐴0 [𝑧], the ideal𝔪 = 𝔪0𝐴+(𝑧),
the extension 𝐸 = 𝐴 ⊗𝐴0 𝐸0 = 𝐸0 [𝑧] and 𝐹 = 𝐴 ⊗𝐴0 𝐹0 = 𝐹0 [𝑧]. Then the Artin–Rees index of 𝐹 ⊆ 𝐸
with respect to 𝔪 equals the Artin–Rees index of 𝐹0 ⊆ 𝐸0 with respect to 𝔪0.

Proof. Let 𝑐0 and c be the Artin–Rees indexes of 𝐹0 ⊆ 𝐸0 and 𝐹 ⊆ 𝐸 . As in Lemma 4.2, consider the
Rees algebras

𝐴∗0 =
⊕
𝑛≥0

𝔪𝑛
0 and 𝐴∗ =

⊕
𝑛≥0

𝔪𝑛

and the graded modules

𝐹∗0 =
⊕
𝑛≥0

𝔪𝑛
0 𝐸0 ∩ 𝐹0 and 𝐹∗ =

⊕
𝑛≥0

𝔪𝑛𝐸 ∩ 𝐹.

Then 𝐹0 is generated in degree ≤ 𝑐0 as a graded 𝐴0-algebra (and not in any lower degree), and similarly
for F.

Any element 𝑓 ∈ 𝔪𝑛𝐸 ∩ 𝐹 can be written as 𝑓 =
∑𝑛
𝑖=0 𝑓𝑖𝑧

𝑛−𝑖 , where 𝑓𝑖 ∈ 𝔪𝑖
0𝐸0 ∩ 𝐹0. In particular,

𝐹∗ is generated by 𝐹∗0 as an 𝐴∗-algebra, and therefore 𝑐 ≤ 𝑐0. Conversely, if 𝐹∗ is generated by
homogeneous elements 𝑓 (1) , . . . , 𝑓 (𝑟 ) with 𝑓 ( 𝑗) =

∑
𝑖 𝑓
( 𝑗)
𝑖 𝑧𝑛 𝑗−𝑖 , then 𝐹∗0 is generated by 𝑓 (1)𝑛1 , . . . , 𝑓 (𝑟 )𝑛𝑟 .

We see that 𝑐0 ≤ 𝑐, and the result follows. �

Remark 4.7. If A and 𝔪 are as in Remark 4.3, then we have 𝐴 = lim
−−→𝑚

𝐴𝑚, where

𝐴𝑚 = 𝑘 [𝑥1, . . . , 𝑥𝑚]/
(
𝑥1 − 𝑥

𝑖
𝑖 , 𝑥

𝑖+1
𝑖

)
, 1 < 𝑖 ≤ 𝑚.

It is easy to check that the Artin–Rees index of (𝑥1) ⊂ 𝐴𝑚 is m and A does not have the Artin–Rees
property.

Recall that for any discrete topological ring S and any two topological S-algebras T and 𝑇 ′, the
completed tensor product 𝑇 ⊗̂𝑆𝑇 ′ is defined to be the completion of 𝑇 ⊗𝑆 𝑇 ′ with respect to its natural
topology.

Corollary 4.8. Let 𝑆 → 𝑇 be a map of Noetherian rings. As before, suppose that S has the discrete
topology, and let T be equipped with the 𝔫-adic topology where 𝔫 ⊂ 𝑇 is an ideal. Then the natural map

𝑇 [𝑥𝑖 | 𝑖 ∈ 𝐼] = 𝑇 ⊗𝑆 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] → 𝑇 ⊗̂𝑆𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼]

is flat. In particular:

1. for any index set I, the completion map 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] → 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] is flat and
2. for every finite subset 𝐽 ⊂ 𝐼, the inclusion 𝑆[[𝑥 𝑗 | 𝑗 ∈ 𝐽]] → 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]] is flat.

Proof. Observe that a basis for the topology on 𝑇 [𝑥𝑖 | 𝑖 ∈ 𝐼] is given by

𝔫𝑚 [𝑥𝑖 | 𝑖 ∈ 𝐼] + (𝑥𝑖 | 𝑖 ∈ 𝐼)
𝑛, 𝑚, 𝑛 ∈ N,

which is easily seen to be equivalent to the 𝔪-adic one, where 𝔪 := (𝑥𝑖 | 𝑖 ∈ 𝐼) + 𝔫. As 𝑇 [𝑥𝑖 | 𝑖 ∈ 𝐼]
is coherent (see, for example, [30, Theorem 6.2.2]), the first assertion follows from Theorem 4.5 and
Proposition 4.4. Regarding the last two assertions, (1) follows by observing that 𝑆⊗̂𝑆𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] =
𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]], and (2) by taking 𝑇 = 𝑆[[𝑥 𝑗 | 𝑗 ∈ 𝐽]] with the (𝑥 𝑗 | 𝑗 ∈ 𝐽)-adic topology and observing
that the given inclusion factors as

𝑆
[ [
𝑥 𝑗 | 𝑗 ∈ 𝐽

] ]
→ 𝑆

[ [
𝑥 𝑗 | 𝑗 ∈ 𝐽

] ]
[𝑥𝑖 | 𝑖 ∈ 𝐼 \ 𝐽] → 𝑆[[𝑥𝑖 | 𝑖 ∈ 𝐼]],

and so is flat. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.19
Downloaded from https://www.cambridge.org/core. IP address: 108.235.92.26, on 11 Mar 2022 at 20:59:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.19
https://www.cambridge.org/core


Forum of Mathematics, Pi 13

Remark 4.9. For quotients A of 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼], the completion map 𝐴 → 𝐴 need not be flat, even if the
topology of A is separated. Consider the ideal

𝔞 =
(
𝑦𝑥1, 𝑦𝑥

𝑛
𝑛 − 𝑧𝑥𝑛−1

𝑛−1 | 𝑛 > 1
)

in 𝑃 = 𝑘 [𝑥𝑛, 𝑦, 𝑧 | 𝑛 ∈ N>0] and the quotient 𝐴 = 𝑃/𝔞. Let 𝔪 = (𝑥𝑛, 𝑦, 𝑧 | 𝑛 ∈ N>0) ⊂ 𝐴. As 𝔪 is
weighted homogeneous with respect to the positive weights 𝑤(𝑥𝑛) = 𝑤(𝑦) = 1, 𝑤(𝑧) = 2, it follows that
the 𝔪-adic topology on A is separated. Consider the element 𝑦 − 𝑧, which is annihilated by the series
𝑓 =

∑
𝑛≥1 𝑥

𝑛
𝑛 . If 𝐴 were flat over A, there would exist polynomials 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴 annihilating 𝑦 − 𝑧

such that f could be written as 𝑓 =
∑𝑟

𝑗=1 𝑎 𝑗𝑏 𝑗 , where 𝑏 𝑗 ∈ 𝐴.
Considering this equation modulo (𝑦, 𝑧), we have written f as a linear combination of polynomials

in 𝑘 [𝑥𝑛 | 𝑛 ∈ N>0], which is clearly impossible.

We close this section with the following analogue to Proposition 2.7 for polynomial rings:

Proposition 4.10. Let 𝑃 = 𝑆[𝑥𝑖 | 𝑖 ∈ 𝐼] and 𝔪 = (𝑥𝑖 | 𝑖 ∈ 𝐼), where S is a ring and I a set. Let 𝔞 ⊂ 𝑃𝔪

be an ideal such that in(𝔞) ⊂ 𝑃 is finitely generated. Then 𝔞 is finitely generated.

Proof. Let 𝑓1, . . . , 𝑓𝑟 ∈ 𝔞 be such that in( 𝑓1), . . . , in( 𝑓𝑟 ) generate in(𝔞). Since in(𝔞) = in(�̂�), we can
apply Proposition 2.7 to see that �̂� = ( 𝑓1, . . . , 𝑓𝑟 )𝑃. By Corollary 4.8, the map 𝑃𝔪 → 𝑃 is faithfully flat
and thus 𝔞 ⊂ �̂� ∩ 𝑃𝔪 = ( 𝑓1, . . . , 𝑓𝑟 )𝑃𝔪. The other inclusion is trivial, so 𝔞 = ( 𝑓1, . . . , 𝑓𝑟 ). �

5. Ideals of finite definition

In this section, we fix a field k and a set I and consider the polynomial ring 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] and the
power series ring 𝑃 = 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]]. An important class of ideals in 𝑃 are those generated by finitely
many power series involving only finitely many variables. We study their properties in this section.

For any subset 𝐽 ⊂ 𝐼, we write 𝑃𝐽 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐽] and 𝑃𝐽 = 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐽]], and for any ideal 𝔞 ⊂ 𝑃
we denote 𝔞𝐽 := 𝔞 ∩ 𝑃𝐽 .

Definition 5.1. Let 𝔞 ⊂ 𝑃 be an ideal.

1. We say that 𝔞 is of finite definition with respect to the indeterminates 𝑥𝑖 if there exists a finite subset
𝐽 ⊂ 𝐼 such that 𝔞 = 𝔞𝐽𝑃.

2. Similarly, 𝔞 is of finite polynomial definition with respect to the indeterminates 𝑥𝑖 if it is generated
by finitely many polynomials – that is, elements in P.

3. We say that 𝔞 is of finite (polynomial) definition if there exists a k-isomorphism 𝑃 � 𝑘 [[𝑥 ′𝑖 | 𝑖 ∈ 𝐼]]
such that 𝔞 is of finite (polynomial) definition with respect to the formal coordinates 𝑥′𝑖 .

Definition 5.2. Let (𝐴,𝔪, 𝑘) be an equicharacteristic local ring.

1. A weak DGK decomposition for A is an isomorphism 𝐴 � 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]]/𝔞, where 𝔞 is an ideal of
finite definition.

2. A DGK decomposition for A is an isomorphism 𝐴 � 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]]/𝔞 with 𝔞 of finite polynomial
definition.

3. We say that a (weak) DGK decomposition 𝐴 � 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]]/𝔞 is efficient if the quotient map
𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]] → 𝐴 is an efficient formal embedding.

Remark 5.3. If A has a DGK decomposition, then we have an isomorphism 𝐴 � 𝐵⊗̂𝑘𝑃, where 𝑃 is
a power series ring and (𝐵, 𝔫, 𝑘) is a local k-algebra which is essentially of finite type. Geometrically,
this means that Spf(𝐴) � 𝑍𝑧×̂Δ 𝐼 , where Δ 𝐼 = Spf(𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]]) and 𝑍𝑧 is the formal neighbourhood
of a scheme Z of finite type over k at a point 𝑧 ∈ 𝑍 (𝑘). If A has a weak DGK decomposition, then
𝐴 � B⊗̂𝑘𝑃, where B is a Noetherian complete local ring with residue field k.
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Example 5.4. The existence of a weak DGK decomposition for a ring A does not imply the existence of
a DGK decomposition for A. This can be seen by considering the following example given by Whitney.
Let 𝑓 (𝑡) be a transcendental power series with complex coefficients and with 𝑓 (0) = 0, and consider
the equation

𝑔 = 𝑥𝑦(𝑦 − 𝑥) (𝑦 − (3 + 𝑡)𝑥) (𝑦 − (4 + 𝑓 (𝑡))𝑥).

It is proven in [46, Example 14.1] that B = C[[𝑥, 𝑦, 𝑡]]/(𝑔) is not isomorphic to the completion of a
local ring of a C-scheme of finite type. In particular, any local ring A for which 𝐴 � B (for example, B
itself) admits a weak DGK decomposition but not a DGK decomposition.

We now give another example of a local ring A such that 𝐴 � B. This example has the advantage
of being explicitly presented as the localisation of a quotient of a polynomial ring in countably many
variables. Write 𝑓 (𝑡) =

∑
𝑖≥1 𝑎𝑖𝑡

𝑖 ∈ C[[𝑡]]. Consider the polynomial ring 𝑃 = C[𝑥, 𝑦, 𝑡, 𝑧𝑛 | 𝑛 ≥ 0] and
the ideal

𝔞 = (ℎ, 𝑧𝑛−1 − 𝑧𝑛𝑡 − 𝑎𝑛𝑡 | 𝑛 ≥ 1),

where

ℎ = 𝑥𝑦(𝑦 − 𝑥) (𝑦 − (3 + 𝑡)𝑥) (𝑦 − (4 + 𝑧0)𝑥).

Let A be the localisation of 𝑃/𝔞 at the ideal (𝑥, 𝑦, 𝑡, 𝑧𝑛 | 𝑛 ≥ 0). Then in 𝐴 we have, for each 𝑚 ≥ 1,

𝑧0 − 𝑓 (𝑡) = 𝑧𝑚𝑡
𝑚 −

∑
𝑖≥𝑚+1

𝑎𝑖𝑡
𝑖 ∈ �̂�𝑚,

and for each 𝑚 ≥ 𝑛 + 1,

𝑧𝑛 −
∑
𝑖≥𝑛+1

𝑎𝑖𝑡
𝑖−𝑛 = 𝑧𝑚𝑡

𝑚−𝑛 −
∑

𝑖≥𝑚+1
𝑎𝑖𝑡

𝑖−𝑛 ∈ �̂�𝑚−𝑛.

Thus it follows that 𝐴 � C[[𝑥, 𝑦, 𝑡, 𝑧0]]/(ℎ, 𝑧0 − 𝑓 (𝑡)) � C[[𝑥, 𝑦, 𝑡]]/(𝑔) = B.

Remark 5.5. An analogous definition of finite definition can be given for ideals in a polynomial ring
𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼]. It is easy to see that the definition does not depend on the choice of indeterminates, and
that an ideal of P is of finite definition if and only if it is finitely generated. By contrast, in a power series
ring not every ideal of finite definition is so with respect to the given indeterminates 𝑥𝑖 , and not every
finitely generated ideal is of finite definition. For instance, consider 𝑃 = 𝑘 [[𝑥𝑛 | 𝑛 ∈ N]]. The principal
ideal generated by 𝑓 =

∑
𝑛≥1 𝑥

𝑛
𝑛 is of finite definition by Lemma 3.12 but not in the indeterminates

𝑥𝑖 . As for the second claim, an example is given by the principal ideal generated by 𝑔 =
∑
𝑛≥1 𝑥

𝑛+1
𝑛 ,

which, as we shall discuss next, is not of finite definition if k is of characteristic 0. Indeed, assume by
contradiction that there exists an isomorphism 𝑃 � 𝑘 [[𝑦𝑛 | 𝑛 ∈ N]] such that 𝑔𝑃 is of finite definition
with respect to the indeterminates 𝑦𝑛. Pick a variable 𝑦𝑟 not appearing in the generators for 𝑔𝑃, and
consider the regular continuous derivation 𝑑 = 𝜕/𝜕𝑦𝑟 on 𝑃. Notice that 𝑑 (𝑔) = 0. By regularity, we
have 𝑑 (𝑥𝑚) ∈ 𝑃

× for some 𝑚 ≥ 1. Writing 𝑑 (𝑔) =
∑
𝑛≥1(𝑛 + 1)𝑥𝑛𝑛𝑑 (𝑥𝑛), we see that ord𝑥𝑚 (𝑑 (𝑔)) < ∞,

contradicting 𝑑 (𝑔) = 0.

Ideals of finite definition form a class of ideals of 𝑃 for which Question 2.8 has a positive answer. We
give only a sketch of the proof of the next lemma here, and refer the reader to [18, Section 1.5] for details.

Lemma 5.6. Let𝔞 ⊂ 𝑃 be an ideal such that there exists 𝐽 ⊂ 𝐼 finite with𝔞 = 𝔞𝐽𝑃. Then in(𝔞) = in(𝔞𝐽 )𝑃.

Proof. Choose a local monomial order ≺ compatible with the standard filtration on 𝑃; for example,
take the order defined by 𝑥𝑎 ≺ 𝑥𝑏 if 𝑥𝑏 <grlex 𝑥𝑎, where <grlex denotes the usual graded lexicographic
order. Then ≺ restricts to a local monomial order ≺𝐽 on 𝑃𝐽 . Choose a standard basis 𝑆 = { 𝑓1, . . . , 𝑓𝑟 }
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of 𝔞𝐽 with respect to ≺𝐽 . By [4, Theorem 4.1], this is equivalent to S being closed under s-series. Note
that [4, Theorem 4.1] extends directly to the case of infinitely many indeterminates, and thus it follows
immediately that S is a standard basis of𝔞 with respect to≺. Clearly we have in(𝔞) = (in( 𝑓1), . . . , in( 𝑓𝑟 )),
which proves the claim. �

We are interested now in understanding heights of ideals of finite definition. Let us start by looking
at their minimal primes.

Proposition 5.7. If 𝔞 ⊂ 𝑃 is an ideal of finite definition, then it has a finite number of minimal primes,
and each of them is of finite definition. More precisely, let 𝐽 ⊂ 𝐼 be a finite subset and assume that
𝔞 = 𝔞𝐽𝑃. If 𝔭 ⊂ 𝑃 is a minimal prime of 𝔞, then 𝔭 = 𝔭𝐽𝑃. Moreover, the assignment 𝔭 ↦→ 𝔭𝐽 gives a
bijection between the minimal primes of 𝔞 and the minimal primes of 𝔞𝐽 .

Proof. Notice that if 𝔭 ⊂ 𝑃 is a prime ideal, then 𝔭𝐽 ⊂ 𝑃𝐽 remains prime. Moreover, by Corollary 4.8
we have that 𝑃𝐽 → 𝑃 is faithfully flat and thus 𝔮 = (𝔮𝑃) ∩ 𝑃𝐽 for any ideal 𝔮 ⊂ 𝑃𝐽 . It is therefore
sufficient to show that for every prime ideal 𝔮 ⊂ 𝑃𝐽 , the extension 𝔮𝑃 is prime. By Remark 2.4 we have
an injection 𝑃→ (𝑃𝐽 )

N(𝐼\𝐽 ) . Since J is finite, 𝑃𝐽 is Noetherian and 𝔮 is finitely generated. This implies
that 𝔮(𝑃𝐽 )

N(𝐼\𝐽 ) = 𝔮N
(𝐼\𝐽 ) – that is, the elements of the extension 𝔮(𝑃𝐽 )

N(𝐼\𝐽 ) are precisely the Bourbaki
power series that, when expanded in the variables indexed by 𝐼 \ 𝐽, have coefficients in 𝔮. Therefore we
have an injection

𝑃/𝔮𝑃 ↩→
(
𝑃𝐽/𝔮

)N(𝐼\𝐽 )
,

and the ring in the right-hand side is clearly a domain. Thus 𝔮𝑃 is prime. �

Remark 5.8. In the setup of the proof of Proposition 5.7, if J is infinite then it is no longer true that
𝔮(𝑃𝐽 )

N(𝐼\𝐽 ) = 𝔮N
(𝐼\𝐽 ) for an arbitrary prime 𝔮 ⊂ 𝑃𝐽 . For example, let 𝐽 = N, pick 𝑖0 ∈ 𝐼 \ 𝐽, let 𝔮 = �̂�𝐽

be the maximal ideal in 𝑃𝐽 and consider the series 𝑓 =
∑
𝑛∈N 𝑥𝑛𝑥

𝑛
𝑖0

. Then f belongs to 𝔮N
(𝐼\𝐽 ) but not to

𝔮(𝑃𝐽 )
N(𝐼\𝐽 ) . We do not know if the extension 𝔮𝑃 remains prime when J is infinite.

Remark 5.9. Proposition 5.7 shows that the ideal (𝑥𝑖 | 𝑖 ∈ 𝐽)𝑃 is prime whenever J is finite. Since
colimits of prime ideals remain prime, one sees that (𝑥𝑖 | 𝑖 ∈ 𝐽)𝑃 is prime for an arbitrary subset J. In
particular, 𝔪0 = (𝑥𝑖 | 𝑖 ∈ 𝐼)𝑃 is prime. Notice that 𝑃/𝔪0 has infinite dimension when I is infinite.

The proof of the following theorem uses the results of the previous section and Proposition 5.13:

Theorem 5.10. If 𝐽 ⊂ 𝐼 is a finite subset and 𝔞 = 𝔞𝐽𝑃, then ht(𝔞) = ht(𝔞𝐽 ).

Proof. From Proposition 5.7 we can assume that 𝔞 = 𝔭 = 𝔭𝐽𝑃 is a prime ideal. Notice that𝔭 ⊂ 𝔟 := (𝑥 𝑗 |
𝑗 ∈ 𝐽). From Proposition 5.13, the localisation 𝑃𝔟 is Noetherian, and therefore 𝑃𝔭, which is a further
localisation of 𝑃𝔟, is also Noetherian. By Corollary 4.8, the extension 𝑃𝐽 ⊂ 𝑃 is flat, and therefore
the extension (𝑃𝐽 )𝔭𝐽 ⊂ 𝑃𝔭 is also flat. Since 𝑃𝔭 is Noetherian, it follows from [36, Theorem 15.1] that
ht(𝔭) = ht(𝔭𝐽 ). �

Corollary 5.11. Let 𝔞 ⊂ 𝑃 be any ideal of finite definition. For every minimal prime 𝔭 of 𝔞, we have
ht(𝔭) < ∞.

Remark 5.12. In the case of polynomial rings, the analogues of Theorem 5.10 and Corollary 5.11 are
well known and easy to prove, and in fact there is a strong converse to the analogue of Corollary 5.11,
since every prime ideal of finite height in a polynomial ring 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] is finitely generated. To
see this, suppose 𝔭 ⊂ 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] is a prime ideal that is not finitely generated. Recall that 𝔭 is the
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colimit of the ideals 𝔭 ∩ 𝑃𝐽 as J ranges among the finite subsets of I. This implies that we can fix an
embedding N ⊂ 𝐼 and find an increasing sequence {𝑟𝑛 | 𝑛 ∈ N} ⊂ N such that if 𝔭𝑛 ⊂ 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼]
is the ideal generated by 𝔭 ∩ 𝑘 [𝑥1, . . . , 𝑥𝑟𝑛 ], then 𝔭𝑛 � 𝔭𝑛+1 for all n. Since 𝔭𝑛 are all prime and are
contained in 𝔭, it follows that ht(𝔭) = ∞.

Moreover, for arbitrary ideals 𝔞 of P it is proven in [29, Theorem 3.3] that 𝔞 is finitely generated if
and only if it has finitely many associated primes, each of which is of finite height.

Proposition 5.13. For every finite 𝐽 ⊂ 𝐼, the localisation 𝑃(𝑥 𝑗 | 𝑗∈𝐽 ) is Noetherian.

Proof. As discussed in Remark 2.5, since J is finite we have an isomorphism

𝑃 � 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼 \ 𝐽]]
[ [
𝑥 𝑗 | 𝑗 ∈ 𝐽

] ]
.

The proposition now follows from the next lemma: �

Lemma 5.14. For any 𝑛 ∈ N, let 𝑃𝑛 := 𝑃[[𝑦1, . . . , 𝑦𝑛]] and consider the ideal 𝔟𝑛 := (𝑦1, . . . , 𝑦𝑛) in
𝑃𝑛. Then the localisation (𝑃𝑛)𝔟𝑛 is a Noetherian ring.

The proof of this lemma uses the following straightforward generalisation of the Weierstrass division
theorem, whose proof is a simple adaptation of the proof of [7, VII, Section 3.8] where the adic topology
on 𝑃𝑛 is replaced with the inverse limit topology. We say that 𝑓 ∈ 𝑃𝑛 is 𝑦𝑛-regular of order d if its
image under the canonical map 𝑃𝑛 → 𝑘 [[𝑦𝑛]] is nonzero of order d.

Theorem 5.15. Let 𝑓 ∈ 𝑃𝑛+1 be 𝑦𝑛+1-regular of order d. For every 𝑔 ∈ 𝑃𝑛+1 there exist unique 𝑞 ∈ 𝑃𝑛+1
and 𝑟 ∈ 𝑃𝑛 [𝑦𝑛+1] such that 𝑔 = 𝑞 𝑓 + 𝑟 and r has degree < 𝑟 as a polynomial in 𝑦𝑛+1.

The next lemma ensures that we can apply Theorem 5.15 to prove Lemma 5.14.

Lemma 5.16. Let 𝑓 ∈ 𝑃𝑛+1 = 𝑃[[𝑦1, . . . , 𝑦𝑛+1]] be a nonzero element. Then there exists a continuous
k-automorphism 𝜑 : 𝑃𝑛+1 → 𝑃𝑛+1 such that 𝜑(𝔟𝑛+1) = 𝔟𝑛+1 and 𝜑( 𝑓 ) is 𝑦𝑛+1-regular.

Proof. If f is already 𝑦𝑛+1-regular, then we are done. If not, then pick any monomial of the form
𝑥𝑑1
𝑖1
· · · 𝑥𝑑𝑟𝑖𝑟 𝑦𝑒1

1 · · · 𝑦
𝑒𝑛+1
𝑛+1 appearing in the expansion of f. Then decompose f as

𝑓 = 𝑓 ′ + 𝑓 ′′, 𝑓 ′ ∈ 𝑘 [[𝑥𝑖1 , . . . , 𝑥𝑖𝑟 , 𝑦1, . . . , 𝑦𝑛+1]],

such that 𝑓 ′ cannot be decomposed further. By [1, Lemma 6.11] there exist new coordinates 𝑥 ′𝑖 𝑗 =

𝑥𝑖 𝑗 + 𝑦
𝑎 𝑗

𝑛+1, 𝑦′𝑙 = 𝑦𝑙 + 𝑦
𝑏𝑙
𝑛+1 and 𝑦′𝑛+1 := 𝑦𝑛+1 such that 𝑓 ′(𝑥 ′𝑖 𝑗 , 𝑦

′
𝑙) is 𝑦′𝑛+1-regular. We may extend this

change of coordinates trivially to a continuous automorphism 𝜑 : 𝑃𝑛+1 → 𝑃𝑛+1 by setting 𝑥 ′𝑖 = 𝑥𝑖
for all indices i that are different from 𝑖 𝑗 for all j. Then clearly 𝜑( 𝑓 ) is 𝑦𝑛+1-regular and 𝜑 fixes
𝔟𝑛+1 = (𝑦1, . . . , 𝑦𝑛+1). �

Proof of Lemma 5.14. We prove the lemma by induction on n. Let𝑄𝑛 := (𝑃𝑛)𝔟𝑛 . Clearly𝑄0 � Quot(𝑃),
so let us assume that 𝑄𝑛 is Noetherian. We have injections 𝑄𝑛 → 𝑄𝑛+1. Let 𝔞 be an ideal of 𝑄𝑛+1 and
let 𝑓 ∈ 𝔞, 𝑓 ≠ 0. After multiplication by a unit, we may assume 𝑓 ∈ 𝑃𝑛+1; by Lemma 5.16 we may also
assume f is y-regular. Consider the ideal 𝔞′ := 𝔞 ∩ 𝑄𝑛 [𝑦𝑛+1]. Since 𝑄𝑛 is Noetherian, so is 𝑄𝑛 [𝑦𝑛+1],
and thus there exist 𝑓1, . . . , 𝑓𝑟 ∈ 𝑄𝑛 [𝑦𝑛+1] that generate 𝔞′. We claim that 𝔞 = ( 𝑓 , 𝑓1, . . . , 𝑓𝑟 )𝑄𝑛+1.

Let 𝑔 ∈ 𝔞. By Theorem 5.15, there exist a unit 𝑢 ∈ 𝑄𝑛+1, 𝑞 ∈ 𝑃𝑛+1 and 𝑟 ∈ 𝑃𝑛 [𝑦𝑛+1] such that
𝑢𝑔 = 𝑞 𝑓 + 𝑟 . Since 𝑟 ∈ 𝔞′, we can find 𝑣1, . . . , 𝑣𝑟 ∈ 𝑄𝑛 such that 𝑟 =

∑𝑟
𝑗=1 𝑣 𝑗 𝑓 𝑗 . Hence we have

𝑔 = 𝑢−1𝑞 𝑓 +
∑𝑟

𝑗=1 𝑢
−1𝑣 𝑗 𝑓 𝑗 , which proves our claim. �
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6. Embedding codimension

Let (𝐴,𝔪, 𝑘) be a local ring. The inclusion of𝔪/𝔪2 in the graded ring gr(𝐴) induces a natural surjective
homomorphism of k-algebras

𝛾 : Sym𝑘

(
𝔪/𝔪2

)
→ gr(𝐴).

Definition 6.1. The embedding codimension of (𝐴,𝔪, 𝑘) is defined to be

ecodim(𝐴) := ht(ker(𝛾)).

Proposition 6.2. For any local ring (𝐴,𝔪, 𝑘), we have

edim(𝐴) = dim(gr(𝐴)) + ecodim(𝐴).

In particular, if A is Noetherian then edim(𝐴) = dim(𝐴) + ecodim(𝐴).

Proof. This follows from the fact that for every polynomial ring 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] and every ideal
𝔞 ⊂ 𝑃, we have dim(𝑃) = dim(𝑃/𝔞) + ht(𝔞) (compare Remark 5.12). For the last assertion we use the
fact that dim(gr(𝐴)) = dim(𝐴) if A is Noetherian. �

Remark 6.3. The formula in Proposition 6.2 is still valid, and informative, when some of the quantities
involved are infinite.

Remark 6.4. Higher-rank valuation rings provide examples of finite-dimensional non-Noetherian
rings whose embedding dimension is smaller than their dimension. For example, let 𝐴 ⊂

𝑘 (𝑥, 𝑦) be the valuation ring associated to the valuation 𝑣 : 𝑘 (𝑥, 𝑦)∗ → Z2
lex given by 𝑣( 𝑓 ) =

(ord𝑥 ( 𝑓 ), ord𝑦 ( 𝑓 𝑥− ord𝑥 ( 𝑓 ) |𝑥=0)). This is a 2-dimensional ring whose maximal ideal is principal, which
implies that the embedding dimension is 1. In particular, the second equation in Proposition 6.2 does
not hold for such rings.

Remark 6.5. The embedding codimension of a local ring was studied in the Noetherian setting in [35]
under the name regularity defect. One of the main results proved there is that if 𝔭 is a prime ideal of a
Noetherian local ring (𝐴,𝔪) such that dim(𝐴) = dim(𝐴/𝔭) +dim(𝐴𝔭), then ecodim(𝐴𝔭) ≤ ecodim(𝐴)
[35, Theorem 3]. It would be interesting to find suitable conditions for the same property to hold in the
non-Noetherian setting.

We now come to the main result of this section, which gives bounds for the embedding codimension
of A from maps into A.

Proposition 6.6. Let 𝜑 : (𝐵, 𝔫, 𝑘0) → (𝐴,𝔪, 𝑘) be a homomorphism of local rings, and assume that
(𝐵, 𝔫) has finite embedding dimension. Let 𝜑∗ : 𝔫/𝔫2 ⊗𝑘0 𝑘 → 𝔪/𝔪2 be the induced k-linear map on
the Zariski cotangent spaces. Then

ecodim(𝐴) ≥ rank(𝜑∗) − dim(gr(𝐵)).

In particular, if B is Noetherian then ecodim(𝐴) ≥ rank(𝜑∗) − dim(𝐵).

Remark 6.7. A stronger form of Proposition 6.6 is obtained by replacing dim(gr(𝐵)) with
dim(gr(𝐵/ker(gr(𝜑)))) in the displayed formula. Note, in fact, that this sharper form of the proposition
follows from the special case of the proposition where 𝜑 is assumed to be injective.

Remark 6.8. Consider the special case where 𝜑 is a homomorphism of local k-algebras with residue
fields k (that is, such that the natural maps 𝑘 → 𝐵/𝔫 and 𝑘 → 𝐴/𝔪 are isomorphisms) and with B
essentially of finite type. The geometric interpretation is the following. Let 𝑓 : 𝑋 → 𝑌 be a morphism
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of schemes over k, with Y of finite type over k, and let 𝑝 ∈ 𝑋 (𝑘) and 𝑞 = 𝑓 (𝑝) ∈ 𝑌 (𝑘). Denote by
𝑇𝑝 𝑓 : 𝑇𝑝𝑋 → 𝑇𝑞𝑌 the map induced on Zariski tangent spaces. Then the proposition gives

ecodim
(
O𝑋,𝑝

)
≥ dim

(
Im

(
𝑇𝑝 𝑓

) )
− dim𝑞 (Im( 𝑓 )),

where Im( 𝑓 ) ⊂ 𝑌 is the scheme-theoretic image of f. Note in particular that if X is Noetherian, then this
formula reduces to the intuitive statement that

dim
(
𝑇𝑝𝑋

)
− dim𝑝 (𝑋) ≥ dim

(
Im

(
𝑇𝑝 𝑓

) )
− dim𝑞 (Im( 𝑓 )).

Another special case is when f is a submersion onto Y, in which case the formula reduces to the inequality
ecodim(O𝑋,𝑝) ≥ ecodim(O𝑌 ,𝑞).

Proof of Proposition 6.6. We have the commutative diagram

Sym𝑘0

(
𝔫/𝔫2) 𝜋 ��

����

Sym𝑘 (Im(𝜑∗))

𝜎

��

� � 𝜄 �� Sym𝑘

(
𝔪/𝔪2)

𝛾

����

gr(𝐵) ��

gr(𝜑)

��Im(gr(𝜑)) ⊗𝑘0 𝑘
� � 𝜓

�� gr(𝐴).

The existence of 𝜎 follows from the fact that Im(𝜋) ⊗𝑘0 𝑘 = Sym𝑘 (Im(𝜑∗)). The map 𝜄 is a linear
extension of polynomial rings, and hence is faithfully flat. Since 𝜄−1(ker(𝛾)) = ker(𝜎), we see that

ht(ker(𝛾)) ≥ ht(ker(𝜎))

by the going-down theorem. On the other hand,

ht(ker(𝜎)) = rank(𝜑∗) − dim(Im(𝜎)).

Since the inclusion Im(𝜎) ⊂ Im(gr(𝜑)) ⊗𝑘0 𝑘 is an inclusion of Noetherian local rings with the same
residue field, and Im(gr(𝜑)) is a quotient of gr(𝐵), we have

dim(Im(𝜎)) ≤ dim(gr(𝐵)).

Combining these formulas, we get

ht(ker(𝛾)) ≥ rank(𝜑∗) − dim(gr(𝐵)).

To conclude, notice that dim(gr(𝐵)) = dim(𝐵) if B is Noetherian. �

The following result shows that the embedding codimension of A is invariant under change of the
base field, provided the residue field is already contained in A:

Proposition 6.9. Let (𝐴,𝔪, 𝑘) be a local k-algebra such that the natural map 𝑘 → 𝐴/𝔪 is an isomor-
phism, and let 𝑘 ⊂ 𝑘 ′ be a field extension. Denoting 𝐴′ := 𝐴 ⊗𝑘 𝑘

′, we have

ecodim(𝐴′) = ecodim(𝐴).

Proof. First, observe that 𝐴′ is a local 𝑘 ′-algebra with maximal ideal 𝔪′ = 𝔪 ⊗𝑘 𝑘 ′. We have
ecodim(𝐴) = ht(ker(𝛾)), where

𝛾 : Sym𝑘

(
𝔪/𝔪2

)
→ gr(𝐴)
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is defined, as at the beginning. Since for every n we have (𝔪′)𝑛/(𝔪′)𝑛+1 = 𝔪𝑛/𝔫𝑛+1 ⊗𝑘 𝑘 ′, we see that
𝛾 induces, by base change, the analogous map

𝛾′ : Sym𝑘

(
𝔪′/(𝔪′)2

)
→ gr(𝐴′).

The next lemma gives ht(ker(𝛾′)) = ht(ker(𝛾)), and the assertion follows. �

Lemma 6.10. Let 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] and 𝑃′ = 𝑃 ⊗𝑘 𝑘
′ = 𝑘 ′ [𝑥𝑖 | 𝑖 ∈ 𝐼], where 𝑘 ⊂ 𝑘 ′ is a field extension.

Then for every ideal 𝔞 ⊂ 𝑃 we have ht(𝔞) = ht(𝔞𝑃′).

Proof. For short, let 𝔞′ = 𝔞𝑃′. If I is finite, then the lemma follows from dimension theory. In general,
suppose by contradiction that ht(𝔞) ≠ ht(𝔞′). Then we can find a finite subset 𝐽 ⊂ 𝐼 such that
ht(𝔞𝐽 ) ≠ ht(𝔞′𝐽 ) (compare Remark 5.12). Since 𝔞′𝐽 = 𝔞𝐽𝑃′𝐽 , this contradicts the finite-dimensional
case. �

7. Formal embedding codimension

In the case of equicharacteristic local rings, looking at the completion instead of the associated graded
provides a different way of defining the embedding codimension. To distinguish the two, we introduce
the following terminology:

Definition 7.1. The formal embedding codimension of an equicharacteristic local ring (𝐴,𝔪, 𝑘) is
defined to be

fcodim(𝐴) := inf
𝜏

ht(ker(𝜏)),

where the infimum is taken over all choices of formal embeddings 𝜏 : 𝑃→ 𝐴 (see Definition 3.6).

Proposition 7.2. In this definition, we have fcodim(𝐴) = ht(ker(𝜏)) for every efficient formal embedding
𝜏 : 𝑃→ 𝐴.

Proof. Given two formal embeddings 𝜏 : 𝑃 → 𝐴 and 𝜏′ : 𝑃′ → 𝐴 with 𝜏 efficient, by Remark 3.13
there is a surjection 𝜑 : 𝑃′ → 𝑃 such that 𝜏′ = 𝜏 ◦ 𝜑, and hence ht(ker(𝜏′)) ≥ ht(ker(𝜏)). �

Remark 7.3. If A is a local k-algebra such that the residue field 𝐴/𝔪 is separable over k, then it follows
by [32, Chapter 0IV, Corollary 19.5.4] that the following are equivalent:

1. A is formally smooth over k.
2. ecodim(𝐴) = 0.
3. fcodim(𝐴) = 0.

Proposition 7.4. For every equicharacteristic local ring (𝐴,𝔪, 𝑘), we have

edim(𝐴) ≥ dim
(
𝐴
)
+ fcodim(𝐴),

and equality holds if A has finite embedding dimension. In particular, if A is Noetherian then edim(𝐴) =
dim(𝐴) + fcodim(𝐴).

Proof. Consider an efficient formal embedding 𝜏 : 𝑃 = 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]] → 𝐴. Note that dim(𝑃) =
edim(𝐴) by Proposition 3.14. The first formula follows from the simple fact that dim(𝑃) ≥ ht(ker(𝜏)) +
dim(𝑃/ker(𝜏)). If A has finite embedding dimension, then the set I is finite, and equality holds in the
formula because a power series ring in finitely many variables is catenary of dimension equal to the
number of variables. The second formula follows from the first and the fact that dim(𝐴) = dim(𝐴) if A
is Noetherian. �
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Corollary 7.5. If (𝐴,𝔪, 𝑘) is an equicharacteristic local ring of finite embedding dimension, then

ecodim(𝐴) = fcodim(𝐴).

Proof. By Propositions 7.4 and 6.2, it suffices to show that dim(gr(𝐴)) = dim(𝐴). By Proposition
3.7, the completion 𝐴 is the quotient of a power series ring in finitely many variables, and therefore is
Noetherian and carries the �̂�-adic topology. The result now follows from [36, Theorem 15.7] and the
identification gr(𝐴) � gr(𝐴). �

Proposition 7.6. Let (𝐴,𝔪, 𝑘) be an equicharacteristic local ring. If A admits a DGK decomposition
𝐴 � 𝐵⊗̂𝑘𝑃, then

ecodim(𝐴) = fcodim(𝐴) = ecodim(𝐵) < ∞.

Proof. Since B is Noetherian, we have edim(𝐵) < ∞. By Corollary 7.5, we have that ecodim(𝐵) =
fcodim(𝐵). Now we make use of the fact that 𝐴 � 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]]/𝔞 with 𝔞 of finite definition.
Note that there exists 𝐽 ⊂ 𝐼 finite such that 𝔞 is the extension of 𝔞𝐽 := 𝔞 ∩ 𝑘 [[𝑥 𝑗 | 𝑗 ∈ 𝐽]] and
𝐵 � 𝑘 [[𝑥 𝑗 | 𝑗 ∈ 𝐽]]/𝔞𝐽 . We may assume that the surjection 𝜏𝐵 : 𝑘 [[𝑥 𝑗 | 𝑗 ∈ 𝐽]] → 𝐵 is an efficient
formal embedding; then so is 𝜏𝐴 : 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]] → 𝐴. By Remark 5.3 and Theorem 5.10, it follows
that fcodim(𝐵) = fcodim(𝐴). It remains to show that ecodim(𝐵) = ecodim(𝐴).

To that end, note that gr(𝜏𝐴) factors through the natural surjection Sym𝑘 (𝔪/𝔪
2) → gr(𝐴), and

similarly for gr(𝜏𝐵). We have the commutative diagram

𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼]
� �� Sym𝑘

(
𝔪/𝔪2) �� gr(𝐴)

𝑘
[
𝑥 𝑗 | 𝑗 ∈ 𝐽

] � ��

��

Sym𝑘

(
𝔫/𝔫2) ��

��

gr(𝐵),

��

and thus the claim follows by Lemma 5.6. �

Remark 7.7. The analogous statement of Proposition 7.6 holds for equicharacteristic local rings
(𝐴,𝔪, 𝑘) admitting a weak DGK decomposition.

The proof of Corollary 7.5 does not extend beyond the case of finite embedding dimension. Nonethe-
less, the following general comparison theorem holds:

Theorem 7.8. For every equicharacteristic local ring (𝐴,𝔪, 𝑘), we have

ecodim(𝐴) ≤ fcodim(𝐴).

Proof. Fix an efficient formal embedding 𝜏 : 𝑃→ 𝐴, and let gr(𝜏) : 𝑃→ gr(𝐴) be the induced map on
associated graded rings (as in Remark 2.6, we identify gr(𝑃) = gr(𝑃) = 𝑃). As explained in Remark
3.8, 𝑃 � Sym𝑘 (𝔪/𝔪

2) and gr(𝜏) gets identified with the canonical surjection 𝛾. In particular, it is
enough to show that

ht(ker(𝜏)) ≥ ht(ker(gr(𝜏))).

Write 𝔞 = ker(𝜏). By [7, Chapter III, Section 2.4, Proposition 2], we have ker(gr(𝜏)) = in(𝔞). To
conclude, it is therefore enough to prove that

ht(𝔞) ≥ ht(in(𝔞)).

This follows from the next proposition. �
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Proposition 7.9. Let 𝑃 = 𝑘 [𝑥𝑖 | 𝑖 ∈ 𝐼] and 𝑃 = 𝑘 [[𝑥𝑖 | 𝑖 ∈ 𝐼]], where k is a field. Let 𝔞 ⊂ 𝑃 be an ideal
and in(𝔞) ⊂ 𝑃 the corresponding initial ideal. Then ht(𝔞) ≥ ht(in(𝔞)).

Proof. If ht(in(𝔞)) < ∞, then in(𝔞) is finitely generated and there exists a finite subset 𝐽 ⊂ 𝐼 such that
in(𝔞)𝐽 has the same height as in(𝔞) (see Remark 5.12). Otherwise, if ht(in(𝔞)) = ∞, then we can pick
a finite 𝐽 ⊂ 𝐼 such that the height of in(𝔞)𝐽 is arbitrary large. Define 𝑐 := ht(in(𝔞)𝐽 ).

By [17, Proposition 1.5.11], we can fix homogeneous elements 𝑔1, . . . , 𝑔𝑐 ∈ in(𝔞)𝐽 forming a regular
sequence in 𝑃𝐽 . By the definition of initial ideal, there are elements 𝑓1, . . . , 𝑓𝑐 ∈ 𝔞 such that in( 𝑓𝑖) = 𝑔𝑖
for all i. Let 𝑅 = 𝑅(𝑃) :=

⊕
𝑛∈Z𝔪

𝑛𝑢−𝑛 be the extended Rees algebra of 𝑃, where we set 𝔪𝑛 = 𝑃

whenever 𝑛 < 0. For every i, let �̃�𝑖 := 𝑢− ord( 𝑓𝑖) 𝑓𝑖 ∈ 𝑅. Note that �̃�𝑖 |𝑢=0 = in( 𝑓𝑖) = 𝑔𝑖 via the identification
𝑅/𝑢𝑅 � 𝑃.

We claim that for every 1 ≤ 𝑟 ≤ 𝑐, the elements �̃�1, . . . , �̃�𝑟 form a regular sequence in R and
𝑅/( �̃�1, . . . , �̃�𝑟 ) is flat over 𝑘 [𝑢]. We argue by induction on r, the assertion being clear if 𝑟 = 0. Setting
for short 𝐵 := 𝑅/( �̃�1, . . . , �̃�𝑟−1), we know by induction that B is flat over 𝑘 [𝑢]. Assume that there exists
ℎ ∈ 𝑃 with ℎ =

∑𝑟−1
𝑖=1 𝑎𝑖 𝑓𝑖 and in(ℎ) not divisible by 𝑔1, . . . , 𝑔𝑟−1. Writing

𝑟−1∑
𝑖=1

𝑢ord( 𝑓𝑖 )𝑎𝑖 �̃�𝑖 = 𝑢ord(ℎ) ℎ̃,

Lemma 7.10 yields that B has torsion over 𝑘 [𝑢], which gives a contradiction. Thus in( 𝑓1, . . . , 𝑓𝑟−1) =
(𝑔1, . . . , 𝑔𝑟−1) and B is isomorphic to the algebra

⊕
𝑛∈Z 𝔟𝑛𝑢

−𝑛, where 𝔟𝑛 := (𝔪𝑛 +

( 𝑓1, . . . , 𝑓𝑟−1))/( 𝑓1, . . . , 𝑓𝑟−1) for 𝑛 ≥ 0 and 𝔟𝑛 = 𝐵 for 𝑛 < 0. It follows by Proposition 2.7 that⋂
𝑛≥1 𝔟𝑛 = {0}. Then Lemma 7.11 implies that B is (𝑢)-adically separated, and Lemma 7.12 (with

𝑡 = 𝑢) implies that the class b of �̃�𝑟 in B is a regular element and 𝐵/𝑏𝐵 is flat over 𝑘 [𝑢].
The natural isomorphism 𝑅/(𝑢 − 1)𝑅 � 𝑃 sends �̃�𝑖 to 𝑓𝑖 , and hence we see by Lemma 7.12 (with

𝑡 = 𝑢 − 1) that 𝑓1, . . . , 𝑓𝑐 form a regular sequence in 𝑃. This implies that depth(𝔞, 𝑃) ≥ 𝑐. We conclude
using the fact that ht(𝔞) ≥ depth(𝔞, 𝑃) (see, for example, [2, Proposition 2.3 and Lemma 3.2]). �

Lemma 7.10. Set 𝑓1, . . . , 𝑓𝑟 ∈ 𝑃. If ℎ ∈ 𝑃, then in(ℎ) ∈ (in( 𝑓1), . . . , in( 𝑓𝑟 )) if and only if there exist
elements 𝑏1, . . . , 𝑏𝑟 in the Rees algebra 𝑅 = 𝑅(𝑃) such that

ℎ̃ =
𝑟∑
𝑖

𝑏𝑖 �̃�𝑖 .

Proof. Given ℎ̃ =
∑
𝑏𝑖 �̃�𝑖 , we may assume that 𝑏𝑖 is homogeneous in R – that is, of the form 𝑏𝑖 =

𝑢− ord(ℎ)+ord( 𝑓𝑖)𝑎𝑖 , with 𝑎𝑖 ∈ 𝑃. But then ord(𝑎𝑖) ≥ ord(ℎ) − ord( 𝑓𝑖) and the claim follows. �

Lemma 7.11. Let A be a ring and (𝔞𝑛)𝑛≥0 a graded sequence of ideals of A, and let 𝑅(𝐴) :=⊕
𝑛∈Z 𝔞𝑛𝑢

−𝑛, where we set 𝔞𝑛 = 𝐴 for 𝑛 < 0. Assume that
⋂

𝑛≥1 𝔞𝑛 = {0}. Then 𝑅(𝐴) is (𝑢)-adically
separated.

Proof. Let 𝑎 ∈ 𝑅(𝐴) be any element. Write 𝑎 =
∑𝑞
𝑖=𝑝 𝑎𝑖𝑢

−𝑖 for some 𝑎𝑖 ∈ 𝑃 and 𝑝, 𝑞 ∈ Z. By the
definition of Rees algebra, we have 𝑎𝑖 ∈ 𝔞𝑖 for all i. The condition that 𝑎 ∈ 𝑢𝑛𝑅(𝐴) is equivalent to
having 𝑎𝑖 ∈ 𝔞𝑛+𝑖 for all i. If 𝑎 ∈

⋂
𝑛≥1 𝑢

𝑛𝑅(𝐴), then we have 𝑎𝑖 ∈
⋂

𝑛≥1 𝔞𝑛 = {0} for all i, and hence
𝑎 = 0. �

Lemma 7.12. Let B be a flat and 𝑘 [𝑡]-algebra. For any given 𝑏 ∈ 𝐵, consider the following
properties:
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1. b is a regular element of B and 𝐵/𝑏𝐵 is flat over 𝑘 [𝑡].
2. The image �̄� of b in 𝐵/𝑡𝐵 is regular.

Then (1)⇒ (2), and the converse holds if B is (𝑡)-adically separated.

Proof. The proof is an adaptation of the proof of [36, Theorem 22.5]. The implication (1)⇒ (2) follows
by the snake lemma applied to the commutative diagram

𝐵
𝑏 ��

𝑡

��

𝐵

𝑡

��

�� 𝐵/𝑏𝐵

𝑡

��

𝐵
𝑏 ��

��

𝐵 ��

��

𝐵/𝑏𝐵

𝐵/𝑡𝐵
�̄� �� 𝐵/𝑡𝐵

after observing that the map 𝐵 → 𝐵 given by multiplication by b is injective, since b is regular, and so
is the map 𝐵/𝑏𝐵→ 𝐵/𝑏𝐵 given by multiplication by t, since 𝐵/𝑏𝐵 is flat over 𝑘 [𝑡].

In order to prove the implication (2) ⇒ (1) when B is (𝑡)-adically separated, suppose 𝑥 ∈ 𝐵 is an
element such that 𝑏𝑥 = 0. Then �̄�𝑥 = 0 in 𝐵/𝑡𝐵, and hence 𝑥 = 0. This means that 𝑥 ∈ 𝑡𝐵. Suppose
𝑥 ∈ 𝑡𝑛𝐵 for some positive integer n, and write 𝑥 = 𝑡𝑛𝑦 in B. Then 𝑡𝑛 (𝑏𝑦) = 𝑏𝑥 = 0 and hence 𝑏𝑦 = 0,
since B is flat over 𝑘 [𝑡]. This implies that 𝑦 ∈ 𝑡𝐵, and hence 𝑥 ∈ 𝑡𝑛+1𝐵. Therefore 𝑥 ∈

⋂
𝑛≥1 𝑡

𝑛𝐵, and
since B is (𝑡)-adically separated, this means that 𝑥 = 0. This proves that b is a regular element. To
conclude that 𝐵/𝑏𝐵 is flat over 𝑘 [𝑡], we just compute Tor𝑘 [𝑡 ]1 (𝑘, 𝐵/𝑏𝐵) = 0 from the exact sequence
0→ 𝐵→ 𝐵→ 𝐵/𝑏𝐵→ 0 and apply [36, Theorem 22.3]. �

Question 7.13. We do not know of any example where the inequality in Theorem 7.8 is strict. The
question whether ecodim(𝐴) = fcodim(𝐴) holds for all equicharacteristic local rings (𝐴,𝔪, 𝑘) is, to
our knowledge, still open.

8. Embedding codimension of arc spaces

Let X be a scheme of finite type over a field k. The arc space 𝑋∞ of X is the scheme over k rep-
resenting the functor of points given, for any k-algebra R, by 𝑅 ↦→ lim

←−−𝑚
𝑋𝑚 (𝑅), where 𝑋𝑚 (𝑅) =

Hom𝑘 (Spec(𝑅[𝑡]/(𝑡𝑚+1)), 𝑋) is the functor of points of the mth jet scheme of X. By [5, Remark 4.6],
the functor 𝑋∞(𝑅) is naturally isomorphic to Hom𝑘 (Spec(𝑅[[𝑡]]), 𝑋). A point 𝛼 ∈ 𝑋∞ is called an arc
on X and corresponds to a morphism Spec(𝐿 [[𝑡]]) → 𝑋 , where L is the residue field of 𝛼. A point
𝛼 ∈ 𝑋∞ is said to be constructible if it is the generic point of an irreducible constructible subset of 𝑋∞
(compare [21, Section 10]).

Given an arc 𝛼 : Spec(𝑘 [[𝑡]]) → 𝑋 , we will denote by 𝛼(0) and 𝛼(𝜂) the images in X of the closed
point and the generic point of Spec(𝑘 [[𝑡]]); we call 𝛼(0) the special point of 𝛼 and 𝛼(𝜂) the the generic
point of 𝛼.

Given an open set𝑈 ⊂ 𝑋 , we have 𝛼(𝜂) ∈ 𝑈 if and only if the morphism 𝛼 : Spec(𝑘 [[𝑡]]) → 𝑋 does
not factor through the complement 𝑋 \𝑈. We will be interested in the case where 𝑈 = 𝑋sm, the smooth
locus of X. Note that if k is perfect, then the complement 𝑋 \ 𝑋sm is the singular locus Sing(𝑋) of X.

We following result is a variant of [21, Theorems 9.2 and 9.3]:

Theorem 8.1. Suppose that X is an affine scheme over a perfect field k. Let 𝛼 ∈ 𝑋∞ be an arc and let
𝑑 := dim𝑘 (𝛼(𝜂)) (Ω𝑋/𝑘 ⊗𝑘 𝑘 (𝛼(𝜂))), where 𝑘 (𝛼(𝜂)) is the residue field of 𝛼(𝜂) ∈ 𝑋 . Assume that one
of the following occurs:

1. k is a field of characteristic 0 or
2. 𝛼 ∈ 𝑋∞(𝑘).
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Fix a closed embedding 𝑋 ⊂ A𝑁 , let 𝑓 : 𝑋 → 𝑌 := A𝑑 be the morphism induced by a general linear
projection A𝑁 → A𝑑 and let 𝛽 := 𝑓∞(𝛼) ∈ 𝑌∞. Let 𝔪 ⊂ O𝑋∞ ,𝛼 and 𝔫 ⊂ O𝑌∞ ,𝛽 be the respective
maximal ideals and L and 𝐿 ′ the residue fields. Then the induced L-linear map

(𝑇𝛼 𝑓∞)
∗ : 𝔫/𝔫2 ⊗𝐿′ 𝐿 → 𝔪/𝔪2

is an isomorphism.

Proof. By assumption, we have that ord𝛼 (Fitt𝑑 (Ω𝑋/𝑘 )) < ∞, and by taking a general linear projection
we can ensure that ord𝛼 (Fitt𝑑 (Ω𝑋/𝑘 )) = ord𝛼 (Fitt0(Ω𝑋/𝑌 )).

Since k is perfect, we have a commutative diagram with exact rows

0 �� 𝔫/𝔫2 ⊗𝐿′ 𝐿 ��

(𝑇𝛼 𝑓∞)
∗

��

Ω𝑌∞/𝑘 ⊗O𝑌∞
𝐿 ��

𝜑

��

Ω𝐿′/𝑘 ⊗𝐿′ 𝐿 ��

𝛿

��

0

0 �� 𝔪/𝔪2 �� Ω𝑋∞/𝑘 ⊗O𝑋∞
𝐿 �� Ω𝐿/𝑘

�� 0.

The main step is to understand the map 𝜑. As in the proof of [21, Theorem 9.2], denote for short
𝐵𝐿 := 𝐿 [[𝑡]] and 𝑃𝐿 := 𝐿((𝑡))/𝑡𝐿 [[𝑡]].

Note that, by [21, Theorem 5.3], there are natural isomorphisms

Ω𝑋∞/𝑘 ⊗O𝑋∞
𝐿 � Ω𝑋/𝑘 ⊗O𝑋 𝑃𝐿

and

Ω𝑌∞/𝑘 ⊗O𝑌∞
𝐿 � Ω𝑌 /𝑘 ⊗O𝑌 𝑃𝐿 .

We will use these isomorphisms to study 𝜑.
By pulling back the terms of the exact sequence

Ω𝑌 /𝑘 ⊗𝑂𝑌 O𝑋 → Ω𝑋/𝑘 → Ω𝑋/𝑌 → 0

along 𝛼, we obtain the exact sequence

Ω𝑌 /𝑘 ⊗O𝑌 𝐵𝐿 → Ω𝑋/𝑘 ⊗O𝑋 𝐵𝐿 → Ω𝑋/𝑌 ⊗O𝑋 𝐵𝐿 → 0.

Since Y is smooth, we see that the term 𝐹𝑌 := Ω𝑌 /𝑘 ⊗O𝑌 𝐵𝐿 is a free 𝐵𝐿-module. Write Ω𝑋/𝑘 ⊗O𝑋 𝐵𝐿 =
𝐹𝑋 ⊕ 𝑇𝑋 , where 𝐹𝑋 is free and 𝑇𝑋 is torsion. Since ord𝛼 (Fitt0(Ω𝑋/𝑌 )) < ∞, the term 𝑇𝑋/𝑌 :=
Ω𝑋/𝑌 ⊗O𝑋 𝐵𝐿 is a torsion 𝐵𝐿-module, and we get an exact sequence

0→ 𝐹𝑌 → 𝐹𝑋 ⊕ 𝑇𝑋 → 𝑇𝑋/𝑌 → 0.

Since 𝑃𝐿 is a divisible 𝐵𝐿-module, tensoring with 𝑃𝐿 kills torsion, and hence this sequence gives the
exact sequence

0→ Tor𝐵𝐿

1 (𝑇𝑋 , 𝑃𝐿) → Tor𝐵𝐿

1
(
𝑇𝑋/𝑌 , 𝑃𝐿

)
→ 𝐹𝑌 ⊗𝐵𝐿 𝑃𝐿

𝜑′

−−→ 𝐹𝑋 ⊗𝐵𝐿 𝑃𝐿 → 0.

Note that 𝜑′ = 𝜑 under the aforementioned isomorphisms. We have Tor𝐵𝐿

1 (𝑇𝑋 , 𝑃𝐿) � 𝑇𝑋 , and
this has dimension ord𝛼 (Fitt𝑑 (Ω𝑋/𝑘 )) over L. Similarly, Tor𝐵𝐿

1 (𝑇𝑋/𝑌 , 𝑃𝐿) � 𝑇𝑋/𝑌 has dimension
ord𝛼 (Fitt0(Ω𝑋/𝑌 )) over L. Since these two dimensions are equal, the map 𝜑′ in the sequence is an
isomorphism. We conclude that 𝜑 is an isomorphism.

The surjectivity of 𝜑 implies that 𝛿 is surjective, and the injectivity of 𝛿 follows from our assumption
that either (1) or (2) holds. We conclude that (𝑇𝛼 𝑓∞)∗ is an isomorphism. �
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Corollary 8.2. Keeping the assumptions and notation from Theorem 8.1, let 𝛼𝑛, 𝛽𝑛 denote the images
of 𝛼, 𝛽 under the projections 𝑋∞ → 𝑋𝑛 and 𝑌∞ → 𝑌𝑛, and 𝔪𝑛 ⊂ O𝑋𝑛 ,𝛼𝑛 , 𝔫𝑛 ⊂ O𝑌𝑛 ,𝛽𝑛 denote the
corresponding ideals with residue fields 𝐿𝑛, 𝐿 ′𝑛. Then the induced L-linear map(

𝑇𝛼𝑛 𝑓𝑛
)∗ : 𝔫𝑛/𝔫2

𝑛 ⊗𝐿′𝑛 𝐿 → 𝔪𝑛/𝔪
2
𝑛 ⊗𝐿𝑛 𝐿

is injective for all 𝑛 ∈ N.

Proof. This follows from the diagram

𝔫/𝔫2 ⊗𝐿′ 𝐿 �� 𝔪/𝔪2

𝔫𝑛/𝔫2
𝑛 ⊗𝐿′𝑛 𝐿 ��

��

𝔪𝑛/𝔪2
𝑛 ⊗𝐿𝑛 𝐿

��

and the fact that the top horizontal and left vertical arrows are injections. �

Theorem 8.3. Let X be a scheme of finite type over a perfect field k and let 𝛼 ∈ 𝑋∞. Assume that one of
the following occurs:

1. k is a field of characteristic 0 or
2. 𝛼 ∈ 𝑋∞(𝑘).

Then we have

ecodim
(
O𝑋∞ ,𝛼

)
≤ lim sup

𝑛→∞
ecodim

(
O𝑋𝑛 ,𝛼𝑛

)
,

where 𝛼𝑛 is the image of 𝛼 under the truncation map 𝜋𝑛 : 𝑋∞ → 𝑋𝑛.

Proof. We can assume without loss of generality that X is affine. Given a map

𝑓 : 𝑋 → 𝑌 := A𝑑 ,

we let 𝛽 := 𝑓∞(𝛼) ∈ 𝑌∞. For every n, we denote by 𝛼𝑛 ∈ 𝑋𝑛 and 𝛽𝑛 ∈ 𝑌𝑛 the images of 𝛼 and 𝛽
at the respective n-jet schemes. It is convenient, within this proof, to change notation from before to
let 𝐴∞ := O𝑋∞ ,𝛼 and 𝐵∞ := O𝑌∞ ,𝛽 , and denote by 𝔪∞ ⊂ 𝐴∞ and 𝔫∞ ⊂ 𝐵∞ the respective maximal
ideals and by 𝐿∞ := 𝐴∞/𝔪∞ and 𝐿 ′∞ := 𝐵∞/𝔫∞ the residue fields. Similarly, for every 𝑛 ∈ N, we let
𝐴𝑛 := O𝑋𝑛 ,𝛼𝑛 and 𝐵𝑛 := O𝑌𝑛 ,𝛽𝑛 , and denote by 𝔪𝑛 ⊂ 𝐴𝑛 and 𝔫𝑛 ⊂ 𝐵𝑛 the respective maximal ideals
and by 𝐿𝑛 := 𝐴𝑛/𝔪𝑛 and 𝐿 ′𝑛 := 𝐵𝑛/𝔫𝑛 the residue fields.

Note that we have direct systems {𝐴𝑛 → 𝐴𝑛+1 | 𝑛 ∈ N} and {𝐵𝑛 ⊂ 𝐵𝑛+1 | 𝑛 ∈ N}, and 𝐴∞ = lim
−−→𝑛

𝐴𝑛
and 𝐵∞ = lim

−−→𝑛
𝐵𝑛. Moreover, we have commutative diagrams

𝐵∞
𝜑∞

�� 𝐴∞

𝐵𝑛
𝜑𝑛

��
��

��

𝐴𝑛,

��

where 𝔫𝑛 = 𝜑−1
𝑛 (𝔪𝑛), 𝔫𝑛 = 𝔫∞ ∩ 𝐵𝑛 and 𝔪𝑛 = 𝔪∞ ∩ 𝐴𝑛.

For every 𝑛 ∈ N ∪ {∞}, let

𝑑𝜑𝑛 : 𝔫𝑛/𝔫2
𝑛 ⊗𝐿′𝑛 𝐿𝑛 → 𝔪𝑛/𝔪

2
𝑛

be the induced 𝐿𝑛-linear map.
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We pick f as in Theorem 8.1. For every 𝑛 ∈ N ∪ {∞}, there is an associated map of graded rings
gr(𝜑𝑛) : gr(𝐵𝑛) → gr(𝐴𝑛). We denote by

𝜓𝑛 : gr(𝐵𝑛) ⊗𝐿′𝑛 𝐿∞ → gr(𝐴𝑛) ⊗𝐿𝑛 𝐿∞

the map induced by gr(𝜑𝑛) by the indicated base changes.
Note that 𝔪∞ = lim

−−→𝑛
𝔪𝑛 and hence 𝔪𝑟

∞ = lim
−−→𝑛

𝔪𝑟
𝑛 for all r. Indeed, if 𝑎 ∈ 𝔪𝑟

∞ for some 𝑟 ≥ 2, then
we can write 𝑎 = 𝑎1 · · · 𝑎𝑟 with 𝑎𝑖 ∈ 𝔪∞; then we can pick n such that 𝑎𝑖 ∈ 𝔪𝑛 for all i, and hence
𝑎 ∈ 𝔪𝑟

𝑛. It follows that

gr(𝐴∞) = lim
−−→𝑛

gr(𝐴𝑛) ⊗𝐿𝑛 𝐿∞,

and similarly we have

gr(𝐵∞) = lim
−−→𝑛

gr(𝐵𝑛) ⊗𝐿′𝑛 𝐿 ′∞.

Since 𝔫𝑟𝑛 = 𝜑−1
𝑛 (𝔪

𝑟
𝑛) for all r, for every n we have a commutative diagram

gr(𝐵∞) ⊗𝐿′∞ 𝐿∞
𝜓∞

�� gr(𝐴∞)

gr(𝐵𝑛) ⊗𝐿′𝑛 𝐿∞
𝜓𝑛

��
��

��

gr(𝐴𝑛) ⊗𝐿𝑛 𝐿∞.

��

For short, let 𝑅𝑛 := gr(𝐴𝑛) ⊗𝐿𝑛 𝐿∞, 𝑆𝑛 := gr(𝐵𝑛) ⊗𝐿′𝑛 𝐿∞ and 𝐾𝑛 := ker(𝜓𝑛).

Lemma 8.4. ht(𝐾∞) = lim sup𝑛 ht(𝐾𝑛).

Proof. First, note that 𝐾∞ = lim
−−→𝑛

𝐾𝑛. Indeed, the inclusion 𝐾∞ ⊃ lim
−−→𝑛

𝐾𝑛 is clear, and conversely, if
𝑏 ∈ 𝐾∞ and we fix 𝑛 ∈ N such that 𝑏 ∈ 𝑆𝑛, then 𝜓𝑚 (𝑏) is in the kernel of 𝑅𝑚 → 𝑅∞ for all 𝑚 ≥ 𝑛 and
hence, since each 𝜓𝑚 (𝑏) maps to 𝜓𝑚+1(𝑏) via 𝑅𝑚 → 𝑅𝑚+1, it follows that 𝜓𝑚(𝑏) is zero for 𝑚 � 𝑛,
which means that 𝑏 ∈ 𝐾𝑚 for 𝑚 � 𝑛.

We are now ready to prove that

ht(𝐾∞) = lim sup
𝑛

ht(𝐾𝑛).

Note that the maps 𝑆𝑛 → 𝑆∞ are extensions of polynomial rings over the same field 𝐿∞. Thus they are
faithfully flat, and hence for every prime 𝔭𝑛 ⊂ 𝑆𝑛 its extension 𝔭𝑛𝑆∞ is prime.

Consider first the case where ht(𝐾∞) < ∞ and let 𝔭 ⊂ 𝑆∞ be a minimal prime over 𝐾∞ with
ht(𝔭) = ht(𝐾∞). By Remark 5.12 we have that 𝔭 is finitely generated by elements 𝑓1, . . . , 𝑓𝑟 ∈ 𝑆∞. For
each 𝑛 > 0, let 𝔭𝑛 be any minimal prime over 𝐾𝑛 contained in 𝔭 ∩ 𝑆𝑛. Then 𝔭′ := lim

−−→𝑛
𝔭𝑛 is a prime of

𝑆∞ with 𝐾∞ ⊂ 𝔭′ ⊂ 𝔭, so 𝔭′ = 𝔭. Let 𝑛1 > 0 be such that 𝑓1, . . . , 𝑓𝑟 ∈ 𝔭𝑛1 ; then 𝔭𝑛 = 𝔭 ∩ 𝑆𝑛 for 𝑛 ≥ 𝑛1.
Given any chain of primes

(0) = 𝔮0 � 𝔮1 � · · · � 𝔮𝑡 = 𝔭 ⊂ 𝑆∞,

pick 𝑠𝑖 ∈ 𝔮𝑖 \ 𝔮𝑖−1 and fix 𝑛2 such that 𝑠1, . . . , 𝑠𝑡 ∈ 𝑆𝑛2 . Then for every 𝑛 ≥ max{𝑛1, 𝑛2} we get a chain
of primes

(0) = 𝔮0 ∩ 𝑆𝑛 � 𝔮1 ∩ 𝑆𝑛 � · · · � 𝔮𝑡 ∩ 𝑆𝑛 = 𝔭𝑛.

Thus ht(𝐾∞) ≤ lim sup𝑛 ht(𝐾𝑛). The other inequality follows by the going-down theorem applied to
𝑆𝑛 → 𝑆∞.
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If ht(𝐾∞) = ∞, then, since ht(𝐾∞) ≥ ht(𝐾𝑛𝑆∞), a similar argument shows that the sequence
{ht(𝐾𝑛)}𝑛 is unbounded. �

We can now finish the proof of the theorem. Since 𝐵𝑛 is formally smooth, for every 𝑛 ∈ N∪ {∞} the
natural map

Sym𝐿′𝑛

(
𝔫𝑛/𝔫

2
𝑛

)
→ gr(𝐵𝑛)

is an isomorphism (see Remark 7.3 for the case 𝑛 = ∞). Furthermore, the diagram

𝑆𝑛
𝜓𝑛

�� 𝑅𝑛

Sym𝐿′𝑛

(
𝔫𝑛/𝔫2

𝑛

)
⊗𝐿′𝑛 𝐿∞

𝜎𝑛 ��

�

��

Sym𝐿𝑛

(
𝔪𝑛/𝔪2

𝑛

)
⊗𝐿𝑛 𝐿∞

𝛾𝑛

��

is commutative.
By Theorem 8.1, the map 𝜎∞ is an isomorphism, and hence

ht(𝐾∞) = ht(ker(𝛾∞)) = ecodim(𝐴∞).

Similarly, by Corollary 8.2, 𝜎𝑛 is an injective 𝐿∞-linear map of polynomial rings, and we have

ht(𝐾𝑛) ≤ ht(ker(𝛾𝑛)) = ecodim(𝐴𝑛).

Then we conclude by Lemma 8.4. �

Theorem 8.5. Let X be a scheme of finite type over a perfect field k and let 𝛼 ∈ 𝑋∞. Assume that either
k is a field of characteristic 0 or 𝛼 is a k-rational point. Then we have

ecodim
(
O𝑋∞ ,𝛼

)
≤ ord𝛼

(
Fitt𝑑

(
Ω𝑋/𝑘

) )
,

where 𝑑 = dim𝛼(𝜂) (𝑋). In particular:

1. If X is a variety, then ecodim(O𝑋∞ ,𝛼) ≤ ord𝛼 (Jac𝑋 ).
2. If 𝛼(𝜂) ∈ 𝑋sm and 𝑋0 ⊂ 𝑋 is the irreducible component containing 𝛼(𝜂), then ecodim(O𝑋∞ ,𝛼) ≤

ord𝛼 (Jac𝑋0) < ∞.

Proof. First note that it suffices to prove the theorem when 𝛼(𝜂) ∈ 𝑋sm, as otherwise the right-hand side
of the stated inequality is infinite and the statement is trivial. Let us therefore assume that 𝛼(𝜂) ∈ 𝑋sm.

For every r, let 𝐽𝑟 := Fitt𝑟 (Ω𝑋/𝑘 ) ⊂ O𝑋 . On the one hand, for every finite n we have by [21,
Lemma 8.1]

edim
(
O𝑋𝑛 ,𝛼𝑛

)
= (𝑛 + 1)𝑑𝑛 − dim

(
{𝛼𝑛}

)
+ ord𝛼

(
𝐽𝑑𝑛

)
,

where 𝑑𝑛 = 𝑑 (𝛼𝑛,Ω𝑋/𝑘 ) is the Betti number of Ω𝑋/𝑘 with respect to 𝛼𝑛 [21, Definition 6.1] and {𝛼𝑛}
the closure of 𝛼𝑛 in 𝑋𝑛. On the other hand, since 𝛼 is not in an irreducible component of 𝑋∞ that is
fully contained in (Sing(𝑋))∞, we have

dim
(
O𝑋𝑛 ,𝛼𝑛

)
≥ (𝑛 + 1)𝑑 − dim

(
{𝛼𝑛}

)
for all finite n. Since for all n large enough we have 𝑑𝑛 = 𝑑, we deduce by Proposition 6.2 that
ecodim(O𝑋𝑛 ,𝛼𝑛 ) ≤ ord𝛼 (𝐽𝑑) for all 𝑛 � 1. We conclude by Theorem 8.3 that ecodim(O𝑋∞ ,𝛼) ≤

ord𝛼 (𝐽𝑑), as stated.
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Regarding the last two assertions of the theorem, (1) follows by the fact that if X is a variety,
then by definition, Jac𝑋 = Fitt𝑑 (Ω𝑋/𝑘 ). As for (2), if 𝛼(𝜂) ∈ 𝑋sm, then by Lemma 8.6 we have�O𝑋∞ ,𝛼 �

�O𝑋0
∞ ,𝛼

, and hence we can apply (1) to 𝑋0; note also that in this case we have 𝛼 ∈ 𝑋0
sm and

hence ord𝛼 (Jac𝑋0) < ∞. �

We include a proof of the following property, which is well known to experts and is remarked in [24]:
Lemma 8.6. Let X be a scheme of finite type over a field k and 𝛼 ∈ 𝑋∞ an arc with 𝛼(𝜂) ∈ 𝑋sm. Let
𝑋0 ⊂ 𝑋 be the irreducible component containing 𝛼(𝜂). Then �O𝑋∞ ,𝛼 �

�O𝑋0
∞ ,𝛼

.
Proof. We may assume that 𝑋 = Spec(𝑅) is affine. By abuse of notation, we write 𝛼 for the map
𝑅 → 𝐴[[𝑡]]. Let 𝔞 := ker(𝛼). If (0) =

∏
𝑖 𝔮𝑖 ⊂ 𝑅 is a primary decomposition with 𝔮0 the minimal

prime defining 𝑋0, then the condition 𝛼(𝜂) ∈ 𝑋0 translates to 𝔮0 ⊂ 𝔞 and 𝔮𝑖 ⊄ 𝔞 for 𝑖 ≠ 0. Let A be a
test-ring – that is, it is local with maximal ideal 𝔪, residue field K equal to the residue field of 𝛼 ∈ 𝑋∞
and 𝔪𝑛 = 0 for some 𝑛 ∈ N. Let 𝛼′ be any A-deformation of 𝛼 – that is, given by a map 𝑅 → 𝐴[[𝑡]].
To prove the lemma, it suffices to show that 𝔞′ := ker(𝛼′) ⊃ 𝔮0. We have the commutative diagram

𝑅
𝛼′ ��

𝛾′
���

��
��

��
��

𝐴[[𝑡]] ��

��

𝐿 [[𝑡]]

��

𝐴((𝑡)) �� 𝐿((𝑡)),

where 𝐴((𝑡)) denotes the localisation of 𝐴[[𝑡]] at the ideal 𝔪. Since 𝐴[[𝑡]] → 𝐴((𝑡)) is injective, we
have 𝔞′ = ker(𝛾′). Let 𝑓 ∈ 𝔮0. Take any 𝑓𝑖 ∈ 𝔮𝑖 \ 𝔞 for 𝑖 ≠ 0. Then 𝑔 := 𝑓

∏
𝑖 𝑓𝑖 ∈ 𝔞

′. Since 𝛾′( 𝑓𝑖) ≠ 0
modulo 𝔪, we have that 𝛾′( 𝑓𝑖) is a unit. Thus 0 = 𝛾′(𝑔) = 𝛾′( 𝑓 )𝑢, where u is a unit, and in particular
𝑓 ∈ 𝔞′. �

Theorem 8.7. Let X be a scheme of finite type over a perfect field k. For 𝛼 ∈ 𝑋∞ such that 𝛼(𝜂) ∈ 𝑋\𝑋sm,
we have ecodim(O𝑋∞ ,𝛼) = ∞.
Proof. Note that since k is perfect, we have 𝑋 \ 𝑋sm = Sing(𝑋), and in particular the condition that
𝛼(𝜂) ∈ 𝑋 \ 𝑋sm is equivalent to having 𝛼 ∈ (Sing(𝑋))∞.

For every 𝑛 ∈ N, let 𝜋𝑛 : 𝑋∞ → 𝑋𝑛 be the truncation morphism, and let 𝛼𝑛 := 𝜋𝑛 (𝛼) ∈ 𝑋𝑛. Note
that for 𝑛 = 0 we have 𝛼0 = 𝛼(0). Let L and 𝐿𝑛 denote the residue fields of 𝑋∞ at 𝛼 and of 𝑋𝑛 at 𝛼𝑛. By
[21, Lemma 8.3] (see also [21, Remark 7.4]), for all n sufficiently large the differential map

(𝑇𝛼𝜋𝑛)
∗ : 𝔪𝛼𝑛/𝔪

2
𝛼𝑛
⊗𝐿𝑛 𝐿 → 𝔪𝛼/𝔪

2
𝛼

has rank at least (𝑛 + 1)𝑑 (𝛼) − dim({𝛼𝑛}), where

𝑑 (𝛼) := dim𝑘 (𝛼(𝜂))

(
Ω𝑋/𝑘 ⊗ 𝑘 (𝛼(𝜂))

)
.

Then by Proposition 6.6 we have

ecodim
(
O𝑋∞ ,𝛼

)
≥ (𝑛 + 1)𝑑 (𝛼) − trdeg𝑘 (𝐿𝑛) − dim

(
O

𝜋𝑛 (𝑋∞) ,𝛼𝑛

)
= (𝑛 + 1)𝑑 (𝛼) − dim𝛼𝑛

(
𝜋𝑛 (𝑋∞)

)
,

where 𝜋𝑛 (𝑋∞) denotes the Zariski closure of 𝜋𝑛 (𝑋∞) in 𝑋𝑛.
Since X is of finite type, 𝑋∞ has finitely many irreducible components (see [41, Theorem 2.9] and

[39, Corollary 3.16]). This implies that for n sufficiently large, we have

dim𝛼𝑛

(
𝜋𝑛 (𝑋∞)

)
= max

𝐶�𝛼
dim

(
𝜋𝑛 (𝐶)

)
,

where the maximum is taken over the irreducible components C of 𝑋∞ that contain 𝛼.
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Let C be one of the irreducible components of 𝑋∞ containing 𝛼, let 𝛽 ∈ 𝐶 be its generic point and
let 𝑍 ⊂ 𝑋 be the closure of 𝛽(𝜂) in X. From [21, Lemma 8.6], we have

dim
(
𝜋𝑛 (𝐶)

)
≤ (𝑛 + 1) dim(𝑍) ≤ (𝑛 + 1) dim𝛼(0) (𝑋).

Since 𝛼(𝜂) ∈ Sing(𝑋), we see by the definition of 𝑑 (𝛼) that 𝑑 (𝛼) > dim𝛼(0) (𝑋), and therefore

lim
𝑛→∞

(
(𝑛 + 1)𝑑 (𝛼) − dim

(
𝜋𝑛 (𝐶)

))
≥ lim

𝑛→∞
(𝑛 + 1)

(
𝑑 (𝛼) − dim𝛼(0) (𝑋)

)
= ∞.

We conclude that ecodim(O𝑋∞ ,𝛼) = ∞, as claimed. �

Corollary 8.8. Let X be a scheme of finite type over a field k and let 𝛼 ∈ 𝑋∞. Assume that either k has
characteristic 0 or 𝛼 ∈ 𝑋∞(𝑘). Then we have 𝛼(𝜂) ∈ 𝑋sm if and only if ecodim(O𝑋∞ ,𝛼) < ∞.

Proof. If k has characteristic 0, then the corollary follows by Theorems 8.5 and 8.7.
Let then k be any field, and assume that 𝛼 ∈ 𝑋∞(𝑘). For a field extension 𝑘 ⊂ 𝑘 ′, we denote

𝑋 ′ := 𝑋 ×Spec(𝑘) Spec(𝑘 ′) and let 𝛼′ : Spec(𝑘 ′ [[𝑡]]) → 𝑋 ′ be the arc obtained by base change from 𝛼.
Since a point of X is in the smooth locus if and only if it is geometrically regular, we can find a field
extension 𝑘 ⊂ 𝑘 ′ such that 𝛼′ is not a regular point of 𝑋 ′. By faithfully flat descent of regularity, we can
replace 𝑘 ′ with a larger field extension and assume without loss of generality that 𝑘 ′ is perfect. Note
that 𝑋 ′∞ � 𝑋∞ ×Spec(𝑘) Spec(𝑘 ′), and hence O𝑋 ′∞ ,𝛼

′ � O𝑋∞ ,𝛼 ⊗𝑘 𝑘
′. Then by Proposition 6.9 we have

ecodim
(
O𝑋 ′∞ ,𝛼

′

)
= ecodim

(
O𝑋∞ ,𝛼

)
.

This reduces to the case of perfect fields, where the result follows again by Theorems 8.5 and 8.7. �

9. On Drinfeld, Grinberg and Kazhdan’s theorem

Theorem 8.5 can be seen as a finiteness statement for singularities of the arc space at arcs that are not
fully contained in the singular locus. One of the first major results in this direction is the theorem of
Drinfeld, Grinberg and Kazhdan, which we will state here in its version from [24]. Recall that for any
equicharacteristic local ring (𝐴,𝔪, 𝑘), a DGK decomposition is an isomorphism 𝐴 � 𝑘 [[𝑡𝑖 | 𝑖 ∈ 𝐼]]/𝔞,
where 𝔞 is an ideal of finite polynomial definition.

Theorem 9.1 ([31, Theorem 2.1], [24, Theorem 0.1]). Let X be a scheme of finite type over a field k,
and let 𝛼 ∈ 𝑋∞(𝑘). If 𝛼(𝜂) ∈ 𝑋sm, then the local ring O𝑋∞ ,𝛼 admits a DGK decomposition.

As mentioned in Remark 5.3, any DGK decomposition of O𝑋∞ ,𝛼 induces an isomorphism of formal
schemes �𝑋∞,𝛼 � �̂�𝑧×̂Δ

N,

with Z a scheme of finite type over k, 𝑧 ∈ 𝑍 (𝑘) and Δ = Spf (𝑘 [[𝑡]]). The formal scheme �̂�𝑧 is often
referred to as a formal model for 𝛼. While �̂�𝑧 is not unique, there exists a unique minimal one in the
following sense:

Theorem 9.2 ([10, Theorem 7.1], [12, Theorem 1.2]). Let �̂�𝑧 and𝑊𝑤 be two formal models for 𝛼 which
are indecomposable – that is, they are not of the form Y×̂Δ , with Y a formal scheme. Then �̂�𝑧 � 𝑊𝑤 .

Definition 9.3. The indecomposable formal model of 𝛼 is called the minimal formal model and denoted
by Zmin

𝛼 .

Note that the formal model provided by Theorem 9.1 is not minimal in general, which we will see in
Section 10.
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Combining Theorem 9.1 with the results of this paper, we obtain the next result, which provides a
characterisation of k-rational arcs admitting a DGK decomposition. The result also gives an explicit
bound for the embedding codimension; we should stress that such a bound does not follow from the
proofs in [31, 24, 25].

Theorem 9.4. Let X be a scheme of finite type over a field k. For any 𝛼 ∈ 𝑋∞(𝑘), the following are
equivalent:

1. 𝛼(𝜂) ∈ 𝑋sm.
2. O𝑋∞ ,𝛼 admits a DGK decomposition.
3. O𝑋∞ ,𝛼 admits a weak DGK decomposition.
4. ecodim(O𝑋∞ ,𝛼) < ∞.

Moreover, if k is perfect and 𝛼(𝜂) ∈ 𝑋sm, then

ecodim
(
O𝑋∞ ,𝛼

)
≤ ord𝛼 (Jac𝑋0) ,

where 𝑋0 ⊂ 𝑋 is the irreducible component containing 𝛼(𝜂).

Proof. The implication (1)⇒ (2) is Theorem 9.1, the implication (2)⇒ (3) is obvious, the implication
(3)⇒ (4) follows from Corollary 5.11 and finally Corollary 8.8 gives the implication (4)⇒ (1). The
last statement follows from Theorem 8.5. �

Example 9.5. Let X be the hypersurface defined by 𝑥0𝑥𝑛+1 + 𝑓 (𝑥1, . . . , 𝑥𝑛) = 0 and 𝛼 ∈ 𝑋 (𝑘) the
arc given by (𝑡, 0, . . . , 0) ∈ 𝑘 [[𝑡]]𝑛+2. Assume further that the hypersurface 𝐻 ⊂ A𝑛 given by
𝑓 (𝑥1, . . . , 𝑥𝑛) = 0 has a singularity at 0. Then, as shown in [24], a DGK decomposition for O𝑋∞ ,𝛼

is given by �O𝑋∞ ,𝛼 � 𝑘 [[𝑥1, . . . , 𝑥𝑛]]/ 𝑓 (𝑥1, . . . , 𝑥𝑛) ⊗̂𝑘 𝑘 [[𝑡𝑖 | 𝑖 ∈ N]] .

The singularity of 𝛼 is thus again given by H and ecodim(O𝑋∞ ,𝛼) = 1. On the other hand, the order of
𝛼 with respect to the Jacobian ideal Jac𝑋 is 1, and hence the bound in Theorem 9.4 is sharp in this case.

Example 9.6. Similar to the previous example, let X be the hypersurface defined by 𝑥0𝑥𝑛+1 +
𝑓 (𝑥1, . . . , 𝑥𝑛) = 0, where f is a polynomial of multiplicity 2, and take this time 𝛼 ∈ 𝑋∞(𝑘) to be
the arc given by (𝑡𝑚, 0, . . . , 0) ∈ 𝑘 [[𝑡]]𝑛+2. Denoting by 𝑔 ( 𝑗) the jth Hasse–Schmidt derivative of an
element 𝑔 ∈ 𝑘 [𝑥0, . . . , 𝑥𝑛+1] and setting for short 𝐼 = {0, 1, . . . , 𝑛 + 1} and 𝐽 = Z≥0, 𝑋∞ is defined
by the ideal 𝔞 = ((𝑥0𝑥𝑛+1 + 𝑓 ) ( 𝑗) | 𝑗 ∈ 𝐽) of 𝑃 := 𝑘 [𝑥

( 𝑗)
𝑖 | (𝑖, 𝑗) ∈ 𝐼 × 𝐽] [45]. Let 𝔪 ⊂ 𝑃 be the

maximal ideal at 𝛼. Since 𝑥 (𝑚)0 is a unit in the local ring 𝑃𝔪, we see that the ideal in(𝔞𝑃𝔪) is generated
by the elements 𝑥 ( 𝑗)𝑛+1 for 𝑗 ∈ 𝐽 and in( 𝑓 (𝑙) ) for 0 ≤ 𝑙 ≤ 𝑚 − 1. As long as f is chosen so that in( 𝑓 (𝑙) ),
0 ≤ 𝑙 ≤ 𝑚 − 1, form a regular sequence (for example, 𝑓 = 𝑥1𝑥2 would work), we get that O𝑋∞ ,𝛼 has
embedding codimension m. Since clearly the order of 𝛼 with respect to Jac𝑋 is also m, this shows that
the bound in Theorem 9.4 is sharp for all possible orders of the arc with the Jacobian ideal of X.

Let us mention here the following consequence of Theorem 9.4, which implies that the local rings
of closed arcs in the arc space provide plenty of examples of non-Noetherian rings whose embedding
codimension agrees with their formal embedding codimension.

Corollary 9.7. If X is a scheme of finite type over a field k, then

ecodim
(
O𝑋∞ ,𝛼

)
= fcodim

(
O𝑋∞ ,𝛼

)
for every 𝛼 ∈ 𝑋∞(𝑘). If k is perfect, then the same holds for all constructible points 𝛼 ∈ 𝑋∞ with
𝛼(𝜂) ∈ 𝑋sm.
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Proof. Assume first that 𝛼 ∈ 𝑋∞(𝑘). If 𝛼(𝜂) ∈ 𝑋sm, then the equality follows by Theorem 9.1 and
Proposition 7.6. If 𝛼(𝜂) ∈ 𝑋 \ 𝑋sm, then we have ecodim(O𝑋∞ ,𝛼) = ∞ by Corollary 8.8, and we
conclude by Theorem 7.8. Suppose now that 𝛼 ∈ 𝑋∞ is a constructible point with 𝛼(𝜂) ∈ 𝑋sm.
By [21, Theorem 10.8], O𝑋∞ ,𝛼 has finite embedding dimension, and hence the assertion follows by
Corollary 7.5. �

We now state the following application of Theorems 8.1 and 9.1, which says that a generic projection
of the base scheme induces an efficient DGK decomposition at an arc that is not contained in the singular
locus:

Theorem 9.8. Let 𝑋 ⊂ A𝑁 be an affine scheme of finite type over a perfect field k, let 𝛼 ∈ 𝑋∞(𝑘) with
𝛼(𝜂) ∈ 𝑋sm and let 𝑑 = dim𝛼(𝜂) (𝑋). Let 𝑓 : 𝑋 → 𝑌 := A𝑑 be the map induced by a general linear
projection A𝑁 → A𝑑 , and let 𝛽 := 𝑓∞(𝛼). Then the associated map

𝜑 : O𝑌∞ ,𝛽 → O𝑋∞ ,𝛼

gives an efficient formal embedding ofO𝑋∞ ,𝛼. Moreover, if k is infinite, then there exist formal coordinates
𝑢𝑖 ∈�O𝑌∞ ,𝛽 , 𝑖 ∈ N, such that ker(𝜑) is generated by finitely many polynomials in 𝑢𝑖 , and hence 𝜑 induces
an efficient DGK decomposition.

Proof. The first part follows from Theorem 8.1, together with the fact that O𝑌∞ ,𝛽 is formally smooth
over k. Regarding the second assertion, we know by Theorem 9.1 that the map 𝜑 induces a surjection

𝜓 : �O𝑌∞ ,𝛽 →
�O𝑍,𝑧 ⊗̂𝑘 𝑘 [[𝑡𝑖 | 𝑖 ∈ N]],

with Z a scheme of finite type over k and 𝑧 ∈ 𝑍 (𝑘). If Z is smooth at z, then there is nothing to show.
Otherwise, by Theorem 3.15 we may assume that 𝑍 ⊂ A𝑛, where 𝑛 = edim(O𝑍,𝑧). Since 𝜓 induces an
isomorphism of continuous cotangent spaces, the statement follows from Proposition 3.9. �

The next example illustrates in concrete terms the content of Theorem 9.8 when X is a hypersurface
in an affine space, where the existence of the efficient formal embedding as in the theorem can be verified
directly from the equations.

Example 9.9. Let 𝑓 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛, 𝑦] and let X be the hypersurface defined by f. For the sake of
convenience, we will write 𝑥 = (𝑥1, . . . , 𝑥𝑛). Let 𝛼 = (𝑥(𝑡), 𝑦(𝑡)) be an arc on X such that ord𝛼 (Jac𝑋 ) =
ord𝑡 ( 𝜕 𝑓𝜕𝑦 (𝑥(𝑡), 𝑦(𝑡))) = 𝑑 > 0. We write 𝑥(𝑡) =

∑
𝑗 𝑎
( 𝑗) 𝑡 𝑗 and 𝑦(𝑡) =

∑
𝑗 𝑏
( 𝑗) 𝑡 𝑗 ; note that 𝑎 ( 𝑗) =

(𝑎
( 𝑗)
1 , . . . , 𝑎

( 𝑗)
𝑛 ). Let 𝐷 = (𝐷 𝑝)𝑝≥0 be the universal Hasse–Schmidt derivation on 𝑘 [𝑥 ( 𝑗) , 𝑦 ( 𝑗) | 𝑗 ≥ 0],

where 𝑥 ( 𝑗) = (𝑥 ( 𝑗)1 , . . . , 𝑥
( 𝑗)
𝑛 ). Then 𝑋∞ = Spec(𝑅∞), where

𝑅∞ = 𝑘
[
𝑥 ( 𝑗) , 𝑦 ( 𝑗) | 𝑗 ≥ 0

]
/
(
𝑓 (𝑝) | 𝑝 ≥ 0

)
,

with 𝑓 (𝑝) := 𝐷 𝑝 ( 𝑓 ). Note that 𝑓 (𝑝) depends only on 𝑥 ( 𝑗) , 𝑦 ( 𝑗) for 𝑗 ≤ 𝑝. The arc 𝛼 then corresponds
to the ideal 𝔪𝛼 of 𝑅∞ given by

𝔪𝛼 =
(
𝑥 ( 𝑗) − 𝑎 ( 𝑗) , 𝑦 ( 𝑗) − 𝑏 ( 𝑗) | 𝑗 ≥ 0

)
.

Setting 𝑓 (𝑝) (𝑥 ( 𝑗) , 𝑦 ( 𝑗) ) := 𝑓 (𝑝) (𝑥 ( 𝑗) + 𝑎 ( 𝑗) , 𝑦 ( 𝑗) + 𝑏 ( 𝑗) ), we get

O𝑋∞ ,𝛼 � 𝑘
[
𝑥 ( 𝑗) , 𝑦 ( 𝑗)

]
(𝑥 ( 𝑗) ,𝑦 ( 𝑗) )

/
(
𝑓 (𝑝)

)
.
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We are going to make use of the following explicit formula from [21, Section 5]:

𝜕 𝑓 (𝑝)

𝜕𝑦 (𝑞)
= 𝐷 𝑝−𝑞

(
𝜕 𝑓

𝜕𝑦

)
, 𝑞 ≤ 𝑝.

The condition ord𝑡 ( 𝜕 𝑓𝜕𝑦 (𝑥(𝑡), 𝑦(𝑡))) = 𝑑 implies that, for 𝑝 ≥ 𝑑,

𝜕 𝑓 (𝑝)

𝜕𝑦 (𝑞)
(0, 0) =

𝜕 𝑓 (𝑝)

𝜕𝑦 (𝑞)
(𝑎, 𝑏) = 𝐷 𝑝−𝑞

(
𝜕 𝑓

𝜕𝑦

)
(𝑎, 𝑏)

{
= 0, 𝑝 − 𝑑 < 𝑞 ≤ 𝑝,

≠ 0, 𝑞 = 𝑝 − 𝑑.

This implies that the initial forms of 𝑓 (𝑝) , for 𝑝 ≥ 𝑑, can be written as

in
(�𝑓 (𝑑+𝑖) ) = 𝑦 (𝑖) + 𝑔 (𝑑+𝑖) ,

where 𝑔 (𝑑) ∈ 𝑘 [𝑥 ( 𝑗) | 𝑗 ≤ 𝑑] and, for 𝑖 > 0, 𝑔 (𝑑+𝑖) ∈ 𝑘 [𝑥 ( 𝑗) , 𝑦 (𝑙) | 𝑗 ≤ 𝑑 + 𝑖, 𝑙 < 𝑖]. In particular, the
elements 𝑥 ( 𝑗) and �𝑓 (𝑑+ 𝑗) , for 𝑗 ≥ 0, give formal coordinates in 𝑘 [[𝑥 ( 𝑗) , 𝑧 ( 𝑗) | 𝑗 ≥ 0]], and hence the
map

𝜑 : 𝑘
[ [
𝑥 ( 𝑗) , 𝑧 ( 𝑗) | 𝑗 ≥ 0

] ]
→ 𝑘

[ [
𝑥 ( 𝑗) , 𝑦 ( 𝑗) | 𝑗 ≥ 0

] ]
, 𝑥 ( 𝑗) ↦→ 𝑥 ( 𝑗) , 𝑧 ( 𝑗) ↦→ �𝑓 ( 𝑗+𝑑) ,

is an isomorphism. Write ℎ𝑖 := 𝜑−1 ( 𝑓 (𝑖) ) and 𝔞 := ( ℎ̄0, . . . , ℎ̄𝑑−1), where ℎ̄𝑖 is obtained from ℎ𝑖 by
setting 𝑧 ( 𝑗) = 0 for all 𝑗 ≥ 0. Then we get

�O𝑋∞ ,𝛼 � 𝑘
[ [
𝑥 ( 𝑗) | 𝑗 ≥ 0

] ]
/̂𝔞.

Observe that the map 𝑘 [[𝑥 ( 𝑗) | 𝑗 ≥ 0]] → �O𝑋∞ ,𝛼 is the efficient formal embedding from Theorem
9.8 with respect to the projection (𝑥, 𝑦) ↦→ 𝑥. However, this isomorphism does not induce a DGK
decomposition a priori, since the ideal �̂� is not necessarily of finite polynomial definition with respect
to the variables 𝑥 ( 𝑗) .

10. Efficient embedding of the Drinfeld model

It is useful to compare the formal embedding given by Theorem 9.8 to the one provided by the Drinfeld–
Grinberg–Kazhdan theorem. This comparison is done in Theorem 10.2. We first need to recall the
construction of the Drinfeld models.

Let 𝑋 ⊂ A𝑁 be an affine scheme of finite type over a field k, consider a k-rational arc 𝛼 ∈ 𝑋∞(𝑘)
such that 𝛼(𝜂) ∈ 𝑋sm and let 𝑑 := dim𝛼(𝜂) (𝑋) and 𝑐 := 𝑁 − 𝑑. Let 𝑋0 be the irreducible component of
X containing 𝛼(𝜂) (note that 𝑑 = dim 𝑋0), and let 𝑋 ′ ⊃ 𝑋0 be the complete intersection scheme defined
by the vanishing of c general linear combinations 𝑝1, . . . , 𝑝𝑐 of a set of generators of the ideal of 𝑋0

in A𝑁 . As explained in [24], the respective inclusions induce isomorphisms �O𝑋∞ ,𝛼 �
�O𝑋0

∞ ,𝛼
� �O𝑋 ′∞ ,𝛼

(detailed proofs are given in Lemma 8.6 and [10, Section 4.2]). Pick coordinates 𝑥1, . . . , 𝑥𝑑 , 𝑦1, . . . , 𝑦𝑐
in the ambient affine space A𝑁 . For a general choice of such coordinates, we can assume that

ord𝛼
(
det

(
𝜕 (𝑝1, . . . , 𝑝𝑐)

𝜕 (𝑦1, . . . , 𝑦𝑐)

))
= ord𝛼 (Jac𝑋 ′ ) = ord𝛼 (Jac𝑋0) =: 𝑒 < ∞.

Drinfeld defines a specific formal model for �O𝑋∞ ,𝛼 depending only on the choices of the coordinates
𝑥𝑖 , 𝑦 𝑗 , the equations 𝑝𝑙 and the order of contact e. Concretely, consider the affine space A𝑚, where
𝑚 = 𝑒(1 + 2𝑑 + 𝑐). We denote by 𝑅[𝑡]<𝑛 the space of polynomials of degree < 𝑛 with coefficients in R.
Denoting by 𝑄𝑛 the scheme representing the functor 𝑅 ↦→ 𝑡𝑛 + 𝑅[𝑡]<𝑛, the space of monic polynomials
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of degree n with coefficients in R, we identify A𝑚 with the product 𝑄𝑒 × A
𝑑
2𝑒−1 × A

𝑐
𝑒−1. Under this

identification, a k-rational point of A𝑚 corresponds to a triple

(𝑞(𝑡), 𝑥(𝑡), �̄�(𝑡)) ∈ (𝑡𝑒 + 𝑘 [𝑡]<𝑒) × (𝑘 [𝑡]<2𝑒)
𝑑 × (𝑘 [𝑡]<𝑒)

𝑐 .

In particular, coordinates in A𝑚 take the form 𝑞 (𝑛) , 𝑥 (𝑛)𝑖 , �̄� (𝑛)𝑗 . Consider the conditions

𝑝1 (𝑥(𝑡), �̄�(𝑡)) ≡ · · · ≡ 𝑝𝑐 (𝑥(𝑡), �̄�(𝑡)) ≡ 0 mod 𝑞(𝑡),

det
(
𝜕 (𝑝1, . . . , 𝑝𝑐)

𝜕 (𝑦1, . . . , 𝑦𝑐)
(𝑥(𝑡), �̄�(𝑡))

)
≡ 0 mod 𝑞(𝑡),

adj
(
𝜕 (𝑝1, . . . , 𝑝𝑐)

𝜕 (𝑦1, . . . , 𝑦𝑐)
(𝑥(𝑡), �̄�(𝑡))

) ����
𝑝1 (𝑥(𝑡), �̄�(𝑡))

...
𝑝𝑐 (𝑥(𝑡), �̄�(𝑡))

 !!" ≡
����
0
...
0

 !!" mod 𝑞(𝑡)2.

(10a)

Here adj(𝐵) denotes the classical adjoint of a matrix B. As explained in [24] and [10, Sec-
tions 3.3 and 3.4], the conditions in formula (10a) are polynomial in the coefficients of 𝑞(𝑡), 𝑥(𝑡), �̄�(𝑡),
and therefore they define a finite-type subscheme 𝑍 ⊂ A𝑚.

Write the arc 𝛼 in the coordinates (𝑥, 𝑦) of A𝑁 as 𝛼 = (𝑎(𝑡), 𝑏(𝑡)), where 𝑎(𝑡) ∈ 𝑘 [[𝑡]]𝑑 and
𝑏(𝑡) ∈ 𝑘 [[𝑡]]𝑐 . To 𝛼 we associate the point 𝑧 = (𝑡𝑒, �̄�(𝑡), �̄�(𝑡)) ∈ 𝑍 given by

�̄�(𝑡) ≡ 𝑎(𝑡) mod 𝑡2𝑒, �̄�(𝑡) ≡ 𝑏(𝑡) mod 𝑡𝑒 . (10b)

It is shown in [24] that �̂�𝑧 gives a (finite-dimensional) formal model for 𝛼 – that is,�𝑋∞,𝛼 � �̂�𝑧×̂Δ
N. (10c)

The isomorphism in formula (10c) can be expressed somewhat explicitly in coordinates. We identify
A𝑑∞ with an infinite-dimensional affine space AN, and we use the notation 𝜉 (𝑡) for points in AN. Hence
coordinates in AN take the form 𝜉 (𝑛)𝑖 , with 1 ≤ 𝑖 ≤ 𝑑 and 𝑛 ≥ 0. The disk ΔN appearing in formula
(10c) is the formal neighbourhood of 𝑐(𝑡) in AN, where 𝑐(𝑡) := 𝑡−2𝑒 (𝑎(𝑡))≥2𝑒 is the truncation of 𝑎(𝑡)
to degrees ≥ 2𝑒 divided by 𝑡2𝑒. Summarising, we have described coordinates (𝑥(𝑡), 𝑦(𝑡)) in �𝑋∞,𝛼 and
coordinates (𝑞(𝑡), 𝑥(𝑡), �̄�(𝑡), 𝜉 (𝑡)) in �̂�𝑧×̂ΔN. As explained in [24], the isomorphism in formula (10c)
gives the relation

𝑥(𝑡) = 𝑞(𝑡)2𝜉 (𝑡) + 𝑥(𝑡),

and we have

𝑥(𝑡) ≡ 𝑥(𝑡) mod 𝑞(𝑡)2, �̄�(𝑡) ≡ 𝑦(𝑡) mod 𝑞(𝑡). (10d)

We emphasise that these relations hold only at the level of formal neighbourhoods.
Notice that the point 𝑧 ∈ 𝑍 depends on the arc 𝛼, but the scheme Z depends only on the choices

of the coordinates 𝑥𝑖 , 𝑦 𝑗 , the equations 𝑝𝑙 and the order of contact e. The choice of coordinates 𝑥𝑖 , 𝑦 𝑗
also determines the linear projection A𝑁 → A𝑑 given by (𝑥, 𝑦) ↦→ 𝑥, and hence the induced map
𝑓 : 𝑋 → A𝑑 .

Definition 10.1. With the foregoing notation, we say that (𝑍, 𝑧) is a Drinfeld model of 𝑋∞ at 𝛼, and that
it is compatible with f.

We are now ready to state and prove our comparison theorem.
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Theorem 10.2. Let 𝑋 ⊂ A𝑁 be an affine scheme of finite type over a perfect field k, let 𝛼 ∈ 𝑋∞(𝑘) with
𝛼(𝜂) ∈ 𝑋sm and let 𝑑 := dim𝛼(𝜂) (𝑋). Let 𝑓 : 𝑋 → 𝑌 := A𝑑 be induced by a general linear projection
A𝑁 → A𝑑 and let 𝛽 := 𝑓∞(𝛼). Let (𝑍, 𝑧) be a Drinfeld model compatible with f, and let �𝑋∞,𝛼 � �̂�𝑧×̂ΔN

be the corresponding DGK decomposition.

1. The composition map

�̂�𝑧×̂Δ
N ∼−→ �𝑋∞,𝛼 ↩→ 𝑌∞,𝛽

is the completion of a morphism 𝑔 : 𝑍 × AN → 𝑌∞.
2. If 𝑋0 ⊂ 𝑋 is the irreducible component of containing 𝛼(𝜂) and 𝑒 := ord𝛼 (Jac𝑋0), then the compo-

sition map

�̂�𝑧 ↩→ �̂�𝑧×̂Δ
N ∼−→ �𝑋∞,𝛼 ↩→ 𝑌∞,𝛽 � �𝑌2𝑒−1,𝛽2𝑒−1

is an efficient formal embedding. Moreover, at the level of associated graded rings, we have that

gr
(
O𝑍,𝑧

)
= Im

(
gr

(
O𝑌2𝑒−1 ,𝛽2𝑒−1

)
→ gr

(
O𝑋∞ ,𝛼

) )
.

Proof. We use the notation introduced at the beginning of the section. In particular: we have coordinates
(𝑥, 𝑦) in A𝑁 such that the projection A𝑁 → 𝑌 is given by (𝑥, 𝑦) ↦→ 𝑥; we write 𝛼 = (𝑎(𝑡), 𝑏(𝑡)), so
𝛽 = 𝑓∞(𝛼) = 𝑎(𝑡); we have a space A𝑚 with coordinates (𝑞(𝑡), 𝑥(𝑡), �̄�(𝑡)), and 𝑍 ⊂ A𝑚 is defined by
the conditions in formula (10a); the point 𝑧 ∈ 𝑍 is given by 𝑧 = (𝑡𝑒, �̄�(𝑥), �̄�(𝑥)) as in formula (10b); the
formal scheme �̂�𝑧×̂ΔN is contained in the completion ofA𝑚×AN at (𝑧, 𝑐(𝑡)), where 𝑐(𝑡) = 𝑡−2𝑒 (𝑎(𝑡))≥2𝑒;
and the coordinates in this affine space have the form (𝑞(𝑡), 𝑥(𝑡), �̄�(𝑡), 𝜉 (𝑡)).

We define a map A𝑚 × AN → 𝑌∞ via

(𝑞(𝑡), 𝑥(𝑡), �̄�(𝑡), 𝜉 (𝑡)) ↦→ 𝑞(𝑡)2𝜉 (𝑡) + 𝑥(𝑡),

and we let 𝑔 : 𝑍 ×AN → 𝑌∞ be the restriction. It is clear from the discussion surrounding formula (10d)
that the completion of g gives the composition of �̂�𝑧×̂ΔN

∼
−→ �𝑋∞,𝛼 ↩→ 𝑌∞,𝛽 , and the first statement of

the theorem follows.
We compute the tangent map of g explicitly. With a small abuse of notation where coordinates of

elements and coordinate functions are written in the same way, we denote a tangent vector on 𝑍 × AN

based at a point (𝑧, 𝑐(𝑡)) = (𝑡𝑒, �̄�(𝑡), �̄�(𝑡), 𝑐(𝑡)) by

(𝑡𝑒 + 𝑑𝑞(𝑡)𝜖, 𝑥(𝑡) + 𝑑𝑥(𝑡)𝜖, �̄�(𝑡) + 𝑑�̄�(𝑡)𝜖, 𝑐(𝑡) + 𝑑𝜉 (𝑡)𝜖) ,

where 𝑑𝑞(𝑡) ∈ 𝑘 [𝑡]<𝑒, 𝑑𝑥(𝑡) ∈ (𝑘 [𝑡]<2𝑒)
𝑑 , 𝑑�̄�(𝑡) ∈ (𝑘 [𝑡]<𝑒)𝑐 , 𝑑𝜉 (𝑡) ∈ 𝑘 [𝑡]𝑑 and 𝜖2 = 0. The image of

such a tangent vector under g is given by

(𝑡𝑒 + 𝑑𝑞(𝑡)𝜖)2
(
𝑐(𝑡) + 𝑑𝜉 (𝑡)𝜖

)
+
(
𝑥(𝑡) + 𝑑𝑥(𝑡)𝜖

)
=

(
𝑡2𝑒𝑐(𝑡) + 𝑥(𝑡)

)
+
(
𝑑𝑥(𝑡) + 𝑑𝜉 (𝑡)𝑡2𝑒 + 2𝑐(𝑡)𝑑𝑞(𝑡)𝑡𝑒

)
𝜖

= 𝑎(𝑡) +
(
𝑑𝑥(𝑡) + 𝑑𝜉 (𝑡)𝑡2𝑒 + 2𝑐(𝑡)𝑑𝑞(𝑡)𝑡𝑒

)
𝜖 .

In other words, the tangent map of g at (𝑧, 𝑐(𝑡)) is given by

𝑑𝑥(𝑡) = 𝑑𝑥(𝑡) + 𝑑𝜉 (𝑡)𝑡2𝑒 + 2𝑐(𝑡)𝑑𝑞(𝑡)𝑡𝑒,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.19
Downloaded from https://www.cambridge.org/core. IP address: 108.235.92.26, on 11 Mar 2022 at 20:59:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.19
https://www.cambridge.org/core


34 C. Chiu, T. de Fernex and R. Docampo

or, in coordinates – recall that 𝑐(𝑡) = 𝑡−2𝑒 (𝑎(𝑡))≥2𝑒 – by

𝑑𝑥 (𝑛)𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝑥 (𝑛)𝑖 if 𝑛 < 𝑒,

𝑑𝑥 (𝑛)𝑖 + 2
∑

𝑘+𝑙=𝑛−𝑒 𝑎
(𝑘+2𝑒)
𝑖 𝑑𝑞 (𝑙) if 𝑒 ≤ 𝑛 < 2𝑒,

𝑑𝜉 (𝑛−2𝑒)
𝑖 + 2

∑
𝑘+𝑙=𝑛−𝑒 𝑎

(𝑘+2𝑒)
𝑖 𝑑𝑞 (𝑙) if 𝑛 ≥ 2𝑒.

From this we see that g induces a surjective map between associated graded rings

𝜑 : 𝑘
[
𝑑𝑥 (𝑛)𝑖

''' 𝑛∈N
1≤𝑖≤𝑑

]
� gr

(
O𝑌∞ ,𝛽

)
−→ gr

(
O𝑍,𝑧

)
⊗𝑘 𝑘

[
𝑑𝜉 (𝑚)𝑖

''' 𝑚∈N
1≤𝑖≤𝑑

]
.

We have a commutative diagram

𝑘
[
𝑑𝑥 (𝑛)𝑖

''' 𝑛∈N1≤𝑖≤𝑑

]
𝜑

�� gr
(
O𝑍,𝑧

)
⊗𝑘 𝑘

[
𝑑𝜉 (𝑚)𝑖

''' 𝑚∈N1≤𝑖≤𝑑

]
𝜆

��

𝑘
[
𝑑𝑥 (𝑛)𝑖

''' 𝑛<2𝑒
1≤𝑖≤𝑑

]
⊗𝑘 𝑘

[
𝑑𝑥 (𝑛)𝑖

''' 𝑛≥2𝑒
1≤𝑖≤𝑑

]
𝜓⊗𝑘𝜇 �� gr

(
O𝑍,𝑧

)
⊗𝑘 𝑘

[
𝑑𝜉 (𝑚)𝑖

''' 𝑚∈N1≤𝑖≤𝑑

]
,

where 𝜆 is the gr(O𝑍,𝑧)-linear map given by

𝑑𝜉 (𝑚)𝑖 ↦→ 𝑑𝜉 (𝑚)𝑖 − 2
∑

𝑘+𝑙=𝑚−𝑒

𝑎 (𝑘+2𝑒)𝑖 𝑑𝑞 (𝑙) ,

𝜇 is given by 𝑑𝑥 (𝑛)𝑖 ↦→ 𝑑𝜉 (𝑛−2𝑒)
𝑖 for 𝑛 ≥ 2𝑒 and 𝜓 agrees with the map gr(O𝑌2𝑒−1 ,𝛽2𝑒−1) → gr(O𝑍,𝑧)

induced by the composition

𝑍 → 𝑍 × {𝑐(𝑡)} ↩→ 𝑍 × AN → 𝑌∞ → 𝑌2𝑒−1,

which is given by

(𝑥(𝑡), �̄�(𝑡), 𝑞(𝑡)) ↦→ 𝑥(𝑡) + 𝑡−2𝑒 (𝑎(𝑡))≥2𝑒𝑞(𝑡)
2 mod 𝑡2𝑒 .

The map 𝜆 is invertible, and by Theorem 8.1, the map 𝜑 is surjective, and thus 𝜓 is surjective as well.
This implies that

gr
(
O𝑍,𝑧

)
= Im

(
gr

(
O𝑌2𝑒−1 ,𝛽2𝑒−1

)
→ gr

(
O𝑋∞ ,𝛼

) )
,

and hence the last assertion follows. For the first part of (2), the fact that 𝜓 is surjective implies that the
map induced on completions �𝑂𝑌2𝑒−1 ,𝛽2𝑒−1 →

�O𝑍,𝑧 is surjective as well. The fact that this is an efficient
embedding follows from the injectivity of the corresponding tangent map. �

11. Applications to Mather–Jacobian discrepancies

Throughout this section, let X be a variety over a field k of characteristic 0.
Given a prime divisor E on a normal birational model 𝑓 : 𝑌 → 𝑋 , we define the Mather discrepancy

�̂�𝐸 := ord𝐸 (Jac 𝑓 ) and the Mather–Jacobian discrepancy (or simply Jacobian discrepancy) 𝑘MJ
𝐸 :=

�̂�𝐸 − ord𝐸 (Jac𝑋 ) of E over X. Note that these definitions depend only on the valuation ord𝐸 defined by
E and not by the particular model chosen. The definition extends to any divisorial valuation 𝑣 = 𝑞 ord𝐸 ,
where q is a positive integer, by setting �̂�𝑣 := 𝑞�̂�𝐸 and 𝑘MJ

𝑣 := 𝑞𝑘MJ
𝐸 . When X is smooth, both

discrepancies agree with the usual discrepancy of E over X. We say that X is MJ-terminal if 𝑘MJ
𝐸 > 0

whenever E is exceptional over X. As proved in [34, 20], this condition is equivalent to the condition
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that if 𝑋 ⊂ 𝑌 is a closed embedding with Y smooth and 𝑐 = codim(𝑋,𝑌 ), then for any closed subset
𝑇 � 𝑋 the pair (𝑌, 𝑐𝑋) has minimal log discrepancy mld𝑇 (𝑌, 𝑐𝑋) > 1. We refer to [22, 34, 20, 26] for
general studies related to these invariants.

The results of this article, together with a theorem from [21], yield a new proof of the following
theorem of Mourtada and Reguera:

Theorem 11.1 ([37, Theorem 4.1]). With the foregoing notation, let 𝛼 ∈ 𝑋∞ be the maximal arc defining
a given divisorial valuation 𝑞 ord𝐸 (that is, such that ord𝛼 = 𝑞 ord𝐸 ). Then dim(�O𝑋∞ ,𝛼) ≥ 𝑞(𝑘MJ

𝐸 + 1).

Proof. We have edim(O𝑋∞ ,𝛼) = 𝑞( �̂�𝐸 + 1) by [21, Theorem 11.4], and Theorem 8.5 gives us
ecodim(O𝑋∞ ,𝛼) ≤ ord𝛼 (Jac𝑋 ). It follows then by Proposition 7.4 and Corollary 7.5 that

dim
(�O𝑋∞ ,𝛼

)
= edim

(
O𝑋∞ ,𝛼

)
− ecodim

(
O𝑋∞ ,𝛼

)
≥ 𝑞

(
𝑘MJ
𝐸 + 1

)
. �

Assume now that X is an affine toric variety. To fix notation, let T be an algebraic k-torus, 𝑁 :=
Hom𝑘 (G𝑚, 𝑇), 𝑀 := HomZ(𝑀,Z), 𝜎 ⊂ 𝑁R a rational convex cone and 𝑋 := Spec 𝑘 [𝜎∨ ∩ 𝑀]. Note
that every 𝑣 ∈ 𝜎 ∩ 𝑁 defines a T-invariant divisorial valuation on X.

In their recent article [13], Bourqui and Sebag study DGK decompositions of 𝑋∞ at arcs that are not
fully contained in the T-invariant divisor of X. The focus is on the open set 𝑋◦∞ ⊂ 𝑋∞ consisting of those
arcs whose generic point is in T. They prove that for any 𝛼 ∈ 𝑋◦∞, the local ring O𝑋∞ ,𝛼 depends only on
the associated valuation ord𝛼, and in particular so does the minimal formal model [13, Corollary 3.3].
In particular, if we set

𝑋◦∞,𝑣 :=
{
𝛼 ∈ 𝑋◦∞ | ord𝛼 = 𝑣

}
,

then we can denote by Zmin
𝑣 the minimal formal model of 𝑋∞ at any arc 𝛼 ∈ 𝑋◦∞,𝑣 .

The next theorem is one of the main results of [13]. A similar, more general property is proved
for elements v satisfying a certain property called P𝑣 ; we refer to the original source for the precise
statement.

Theorem 11.2 ([13, Corollary 6.4]). With the foregoing notation, if v is indecomposable in 𝜎 ∩ 𝑁 , then
the associated minimal formal model Zmin

𝑣 has dim(Zmin
𝑣 ) = 0 and edim(Zmin

𝑣 ) = �̂�𝑣 .

Indecomposable elements 𝑣 ∈ 𝜎 ∩ 𝑁 are characterised by the property that their centres on any
resolution of singularity of X are irreducible components of codimension 1 of the exceptional locus
[13, Theorem 2.7]. In the terminology of the Nash problem, these form a particular class of essential
valuations. By combining Theorem 11.2 with our results, we obtain the following corollary:

Corollary 11.3. Let 𝑋 = Spec 𝑘 [𝜎∨ ∩ 𝑀] be an affine toric variety.

1. For any indecomposable element 𝑣 ∈ 𝜎 ∩ 𝑁 , we have 𝑘MJ
𝑣 ≤ 0.

2. If X is singular and Q-factorial, then X is not MJ-terminal.

Proof. Part (1) follows immediately from Theorems 11.2 and 9.4, and (2) follows from (1) and the
observation that if X is singular and Q-factorial, then 𝜎 ∩ 𝑁 necessarily contains an exceptional
indecomposable element. This is just because the exceptional locus of any resolution of singularity of a
Q-factorial variety always has pure codimension 1, and the set of essential (toric) valuations is nonempty
if X is singular. �

Acknowledgments. We wish to thank Herwig Hauser, Mel Hochster, Hiraku Kawanoue, François Loeser, Mircea Mustaţă and
Karl Schwede for useful comments and discussions. We are also very grateful to the referee for their careful reading of the paper
and their valuable comments and remarks.

The research of the first author was partially supported by the Austrian Science Fund project P31338 and by NWO Vici grant
639.033.514. The research of the second author was partially supported by NSF grants DMS-1700769 and DMS-2001254, and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.19
Downloaded from https://www.cambridge.org/core. IP address: 108.235.92.26, on 11 Mar 2022 at 20:59:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.19
https://www.cambridge.org/core


36 C. Chiu, T. de Fernex and R. Docampo

by NSF grant DMS-1440140 while in residence at MSRI in Berkeley during the spring 2019 semester. The research of the third
author was partially supported by a grant from the Simons Foundation (638459, RD).

Conflicts of interest. None.

References

[1] M. Artin, ‘Algebraic approximation of structures over complete local rings’, Publ. Math. Inst. Hautes Études Sci. 36 (1969),
23–58.

[2] M. Asgharzadeh and M. Tousi, ‘On the notion of Cohen-Macaulayness for non-Noetherian rings’, J. Algebra 322(7) (2009),
2297–2320. doi:10.1016/j.jalgebra.2009.06.017.

[3] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969).
[4] T. Becker, ‘Stability and Buchberger criterion for standard bases in power series rings’, J. Pure Appl. Algebra 66(3) (1990),

219–227. doi:10.1016/0022-4049(90)90028-G.
[5] B. Bhatt, ‘Algebraization and Tannaka duality’, Camb. J. Math. 4(4) (2016), 403–461. doi:10.4310/CJM.2016.v4.n4.a1.
[6] J. Bochnak and W. Kucharz, ‘Local algebraicity of analytic sets’, J. Reine Angew. Math. 352 (1984), 1–14.

doi:10.1515/crll.1984.352.1.
[7] N. Bourbaki, Elements of Mathematics: Commutative Algebra (Hermann, Paris, 1972). Translated from the French.
[8] N. Bourbaki, Elements of Mathematics. Algebra, Part I: Chapters 1-3 (Hermann, Paris, 1974). Translated from the French.
[9] D. Bourqui and J. Sebag, ‘The Drinfeld-Grinberg-Kazhdan theorem is false for singular arcs’, J. Inst. Math. Jussieu 16(4)

(2017), 879–885. doi:10.1017/S1474748015000341.
[10] D. Bourqui and J. Sebag, ‘The Drinfeld-Grinberg-Kazhdan theorem for formal schemes and singularity theory’, Confluentes

Math. 9(1) (2017), 29–64. doi:10.5802/cml.35.
[11] D. Bourqui and J. Sebag, ‘Smooth arcs on algebraic varieties’, J. Singul. 16 (2017), 130–140.
[12] D. Bourqui and J. Sebag, ‘Cancellation and regular derivations’, J. Algebra Appl. 18(09) (2019), 1–9.
[13] D. Bourqui and J. Sebag, ‘Finite formal model of toric singularities’, J. Math. Soc. Japan 71(3) (2019), 805–829.
[14] A. Bouthier, ‘Cohomologie étale des espaces d’arcs’, Preprint, 2020, arXiv:1509.02203v6.
[15] A. Bouthier and D. Kazhdan, ‘Faisceaux pervers sur les espaces d’arcs’, Preprint, 2017, arXiv:1509.02203v5.
[16] A. Bouthier, B. C. Ngô and Y. Sakellaridis, ‘On the formal arc space of a reductive monoid’, Amer. J. Math. 138(1) (2016),

81–108. doi:10.1353/ajm.2016.0004.
[17] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics vol. 39 (Cambridge

University Press, Cambridge, 1993).
[18] C. Chiu, Local Geometry of the Space of Arcs, PhD dissertation, University of Vienna, 2020.
[19] C. Chiu and H. Hauser, ‘On the formal neighborhood of degenerate arcs’, Preprint, 2016, URL:

https://homepage.univie.ac.at/herwig.hauser.
[20] T. de Fernex and R. Docampo, ‘Jacobian discrepancies and rational singularities’, J. Eur. Math. Soc. (JEMS) 16(1) (2014),

165–199. doi:10.4171/JEMS/430.
[21] T. de Fernex and R. Docampo, ‘Differentials on the arc space’, Duke Math. J. 169(2) (2020), 353–396.

doi:10.1215/00127094-2019-0043.
[22] T. de Fernex, L. Ein and S. Ishii, ‘Divisorial valuations via arcs’, ‘Publ. Res. Inst. Math. Sci. 44(2) (2008), 425–448.

doi:10.2977/prims/1210167333.
[23] J. Denef and F. Loeser, ‘Germs of arcs on singular algebraic varieties and motivic integration’, Invent. Math. 135(1) (1999),

201–232. doi:10.1007/s002220050284.
[24] V. Drinfeld, ‘On the Grinberg–Kazhdan formal arc theorem’, Preprint, 2002, arXiv:math/0203263.
[25] V. Drinfeld, ‘Grinberg–Kazhdan theorem and Newton groupoids’, Preprint, 2018, arXiv:1801.01046.
[26] L. Ein and S. Ishii, ‘Singularities with respect to Mather-Jacobian discrepancies’, in Commutative Algebra and Noncom-

mutative Algebraic Geometry, Vol. II, Mathematical Science Research Institute Publications vol. 68 (Cambridge University
Press, New York, 2015), 125–168.

[27] L. Ein and M. Mustaţă, ‘Generically finite morphisms and formal neighborhoods of arcs’, Geom. Dedicata 139 (2009),
331–335. doi:10.1007/s10711-008-9320-7.

[28] D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics vol. 150 (Springer-Verlag, New York, 1995).
[29] R. Gilmer and W. Heinzer, ‘Primary ideals with finitely generated radical in a commutative ring’, Manuscripta Math. 78(2)

(1993), 201–221. doi:10.1007/BF02599309.
[30] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics vol. 1371 (Springer-Verlag, Berlin, 1989).
[31] M. Grinberg and D. Kazhdan, ‘Versal deformations of formal arcs’, Geom. Funct. Anal. 10(3) (2000), 543–555.

doi:10.1007/PL00001628.
[32] A. Grothendieck, ‘Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas. I’, Publ.

Math. Inst. Hautes Études Sci. 20 (1964), 101–355.
[33] H. Hauser and S. Woblistin, ‘Arquile varieties – Varieties consisting of power series in a single variable’, Forum Math.

Sigma 9 (2021), e78. doi:10.1017/fms.2021.73.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.19
Downloaded from https://www.cambridge.org/core. IP address: 108.235.92.26, on 11 Mar 2022 at 20:59:41, subject to the Cambridge Core terms of use, available at

http://dx.doi.org/10.1016/j.jalgebra.2009.06.017
http://dx.doi.org/10.1016/0022-4049(90)90028-G
http://dx.doi.org/10.4310/CJM.2016.v4.n4.a1
http://dx.doi.org/10.1515/crll.1984.352.1
http://dx.doi.org/10.1017/S1474748015000341
http://dx.doi.org/10.5802/cml.35
https://arxiv.org/abs/1509.02203v6
https://arxiv.org/abs/1509.02203v5
http://dx.doi.org/10.1353/ajm.2016.0004
https://homepage.univie.ac.at/herwig.hauser
http://dx.doi.org/10.4171/JEMS/430
http://dx.doi.org/10.1215/00127094-2019-0043
http://dx.doi.org/10.2977/prims/1210167333
http://dx.doi.org/10.1007/s002220050284
https://arxiv.org/abs/0203263
https://arxiv.org/abs/1801.01046
http://dx.doi.org/10.1007/s10711-008-9320-7
http://dx.doi.org/10.1007/BF02599309
http://dx.doi.org/10.1007/PL00001628
http://dx.doi.org/10.1017/fms.2021.73
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.19
https://www.cambridge.org/core


Forum of Mathematics, Pi 37

[34] S. Ishii, ‘Mather discrepancy and the arc spaces’, Ann. Inst. Fourier (Grenoble) 63(1) (2013), 89–111. doi:10.5802/aif.2756.
[35] C. Lech, ‘Inequalities related to certain couples of local rings’, Acta Math. 112 (1964), 69–89. doi:10.1007/BF02391765.
[36] H. Matsumura, Commutative Ring Theory, second edn, Cambridge Studies in Advanced Mathematics vol. 8 (Cambridge

University Press, Cambridge, 1989).
[37] H. Mourtada and A. J. Reguera, ‘Mather discrepancy as an embedding dimension in the space of arcs’, Publ. Res. Inst. Math.

Sci. 54(1) (2018), 105–139. doi:10.4171/PRIMS/54-1-4.
[38] B. C. Ngô, ‘Weierstrass preparation theorem and singularities in the space of non-degenerate arcs’, Preprint, 2017,

arXiv:1706.05926.
[39] J. Nicaise and J. Sebag, ‘Greenberg approximation and the geometry of arc spaces’, Comm. Algebra 38(11) (2010), 4077–

4096. doi:10.1080/00927870903295398.
[40] A. J. Reguera, ‘A curve selection lemma in spaces of arcs and the image of the Nash map’, Compos. Math. 142(1) (2006),

119–130. doi:10.1112/S0010437X05001582.
[41] A. J. Reguera, ‘Towards the singular locus of the space of arcs’, Amer. J. Math. 131(2) (2009), 313–350.

doi:10.1353/ajm.0.0046.
[42] A. J. Reguera, ‘Coordinates at stable points of the space of arcs’, J. Algebra 494 (2018), 40–76.

doi:10.1016/j.jalgebra.2017.09.031.
[43] J. Sebag, ‘Primitive arcs on curves’, Bull. Belg. Math. Soc. Simon Stevin 23(4) (2016), 481–486.
[44] The Stacks project authors , The Stacks Project (2022). URL: http://stacks.math.columbia.edu.
[45] P. Vojta , ‘ Jets via Hasse-Schmidt derivations’, in Diophantine Geometry, CRM Series vol. 4 (Edizioni della Normale, Pisa,

Italy, 2007), 335–361.
[46] H. Whitney, ‘Local properties of analytic varieties’, in Differential and Combinatorial Topology (A Symposium in Honor of

Marston Morse) (Princeton University Press, Princeton, NJ, 1965), 205–244.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.19
Downloaded from https://www.cambridge.org/core. IP address: 108.235.92.26, on 11 Mar 2022 at 20:59:41, subject to the Cambridge Core terms of use, available at

http://dx.doi.org/10.5802/aif.2756
http://dx.doi.org/10.1007/BF02391765
http://dx.doi.org/10.4171/PRIMS/54-1-4
https://arxiv.org/abs/1706.05926
http://dx.doi.org/10.1080/00927870903295398
http://dx.doi.org/10.1112/S0010437X05001582
http://dx.doi.org/10.1353/ajm.0.0046
http://dx.doi.org/10.1016/j.jalgebra.2017.09.031
http://stacks.math.columbia.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.19
https://www.cambridge.org/core

	1 Introduction
	2 Rings of formal power series
	3 Embedding dimension
	4 Flatness of completion
	5 Ideals of finite definition
	6 Embedding codimension
	7 Formal embedding codimension
	8 Embedding codimension of arc spaces
	9 On Drinfeld, Grinberg and Kazhdan's theorem
	10 Efficient embedding of the Drinfeld model
	11 Applications to Mather–Jacobian discrepancies

