
UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

A DATA-DRIVEN APPROACH FOR MONITORING AND PREDICTIVE 

DIAGNOSIS OF SUCKER ROD PUMP SYSTEM 

 

 

 

 

 

 

A THESIS 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

MASTER OF SCIENCE 

 

 

 

 

 

 

 

 

 

By 

 

NGOC LAM TRAN 

 Norman, Oklahoma 

2022 

  



 

 

 

 

 

A DATA-DRIVEN APPROACH FOR MONITORING AND PREDICTIVE 

DIAGNOSIS OF SUCKER-ROD PUMP SYSTEM 

 

 

A THESIS APPROVED FOR THE 

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING 

 

 

 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

 

 

Dr. Hamidreza Karami, Chair 

 

 

Dr. Catalin Teodoriu, Co-Chair 

 

 

Dr. Xingru Wu 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by NGOC LAM TRAN 2022 

All Rights Reserved. 

  



iv 

Acknowledgments 

I would like to thank Dr. Karami and Dr. Teodoriu for their continuous support and 

mentorship. Both professors have been teaching me since my undergraduate years. The knowledge 

and insights that they have taught motivate me to become a better engineer. I am grateful for the 

research opportunities provided by Dr. Karami and Dr. Teodoriu, especially in production and 

drilling areas that are very challenging for women engineers back in my home country. Dr. Karami 

has encouraged me to pursue and explore data science prowess, which has been instrumental to 

my thesis completion. I am honored to be among the first students to work under Dr. Karami’s 

research group. The safety lesson from Dr. Teodoriu is something that I will never forget. I also 

would like to thank Dr. Wu for his feedback and guidance to better this work. 

I very much appreciate Dr. Bello and Aditya for taking the time to assist me in running the 

experimental work and troubleshooting at the facility. 

I would like to thank my family for being with me throughout this journey. I wouldn’t 

become myself today without the countless sacrifices that my parents made to give their children 

a better future. 

Finally, I also have a few words for my husband Ishank. He has stood beside me through 

many challenges. He also introduced me to machine learning research in the oil and gas industry. 

It would not be possible for me to achieve this far without his constant support. 



v 

Table of Contents 

Acknowledgments.......................................................................................................................... iv 

List of Tables ................................................................................................................................ vii 

List of Figures .............................................................................................................................. viii 

Abstract ......................................................................................................................................... xii 

Chapter 1: Introduction ....................................................................................................................1 

1.1 Objectives ......................................................................................................................3 

1.2 Methodology ..................................................................................................................4 

1.3 Outline............................................................................................................................5 

Chapter 2: Literature Review ...........................................................................................................7 

2.1 Sucker Rod Pump Limitations .......................................................................................7 

2.2 Understanding Pumping Units .....................................................................................10 

2.3 Data-Driven Models.....................................................................................................13 

Chapter 3: Experimental Design ....................................................................................................19 

3.1 Facility Setup ...............................................................................................................19 

3.2 Facility Design Discussion ..........................................................................................26 

3.2.1 Data Acquisition ....................................................................................................26 

3.2.2 Testing Procedure ..................................................................................................29 

3.2.3 Actuator Baseline Model Calibration ....................................................................33 

3.3 Test Matrix ...................................................................................................................35 

Chapter 4: Experimental Results ...................................................................................................37 

4.1 Results Overview .........................................................................................................37 

4.2 Statistical Analysis For Parameters .............................................................................38 



vi 

4.3 Downhole Dynocard Transformation ..........................................................................41 

4.3.1 Modified Everitt-Jennings Algorithm ....................................................................43 

4.3.2 Algorithm Validation .............................................................................................46 

4.4 Results ..........................................................................................................................47 

Chapter 5: Data Analytics ..............................................................................................................51 

5.1 Preliminary Analysis: Feature Generation ...................................................................51 

5.2 Data Preprocessing: Feature Selection and Pump Card Categorization ......................55 

5.3 Multiple Input Multiple Output Model Discussion .....................................................63 

5.3.1 Multiple Output Linear Regression (LR) ...............................................................64 

5.3.2 k-Nearest Neighbor (KNN)....................................................................................66 

5.3.3 Decision Tree (DT) Regression .............................................................................66 

5.4 A Discussion on Classification Models .......................................................................68 

5.5 Results and Discussion ................................................................................................70 

5.5.1 Multiple Input Multiple Output (MIMO) Regression Evaluation .........................70 

5.5.2 Model Deployment ................................................................................................71 

5.5.3 Supervised Learning Classification .......................................................................73 

Chapter 6: Discussions and Conclusions .......................................................................................79 

6.1 Challenges ....................................................................................................................79 

6.2 Discussions ..................................................................................................................80 

6.3 Conclusions ..................................................................................................................82 

Nomenclature .................................................................................................................................84 

References ......................................................................................................................................86 

Appendix ........................................................................................................................................92 



vii 

List of Tables 

Table 2.1. Summary of literature employing mathematical functions to categorize the 

similarity in rod pumps ................................................................................................................ 16 

Table 2.2. Previous studies applying machine learning algorithms............................................. 18 

Table 3.1 Sensors specifications utilized in the IDSRP Facility (Sharma et al. 2021) ................ 27 

Table 3.2. Current study’s experimental test matrix. ................................................................... 36 

Table 4.1: Resulting SPM based on rod displacement data collected for trapezoidal geometry

...................................................................................................................................................... 38 

Table 4.2: Resulting SPM based on rod displacement data collected for sinusoidal geometry

...................................................................................................................................................... 38 

Table 4.3: p-values from t-tests among pressure records at the first bottom gauge with 

varying equivalent SPMs ............................................................................................................. 41 

Table 4.4 Percentage errors between actual and calculated downhole cards .............................. 47 

Table 5.1 Groups of stroke per minute test levels ....................................................................... 58 

Table 5.2 Slope results obtained from linear regression fit for group 3 middle SPM tests ......... 60 

Table 5.3 Mean Absolute Error (MAE) and Mean Squared Error (MSE) metrics of validation 

data of multiple outputs for 3 MIMO regression techniques ....................................................... 70 

Table 5.4 R-2 evaluation score and explained variance of validation data for 3 MIMO 

regression techniques ................................................................................................................... 70 

Table 5.5 Mean Absolute Error (MAE) and Mean Square Error (MSE) metrics on testing 

data of multiple outputs for 2 MIMO regression techniques ....................................................... 72 

Table 5.6 Different evaluation metrics on test dataset for supervised classification methods .... 74 

Table A.1 Slope values of Δ𝑃𝐵1 and Δ𝐹 over time for 20-minute testing ................................. 92 



viii 

List of Figures 

Figure 1.1 Artificial lift shares based on numbers of operating wells and their shares from 

overall oil production (Takacs 2015) ............................................................................................. 1 

Figure 1.2. System efficiency ranges for various artificial lift methods (Takacs 2015) ................ 2 

Figure 1.3 Workflow schematic combining experimental and data analytics approaches ............ 5 

Figure 2.1 Dynamometer Cards from Pump experiencing Fluid Pound (1) and Gas 

Interference (2) (Rowland and McCoy 2015) ................................................................................ 9 

Figure 2.2 Convention, Lufkin Mark II and Air-balanced Pumping Units (Takacs 2015) ......... 11 

Figure 2.3 Long Stroke Pumping Units at Well Head: Mechanical and Hydraulic Pumping 

Types (Weatherford 2007, Kennedy and Ghareeb 2017, Ghareeb et al 2017) ............................ 12 

Figure 2.4 Example of dynamometer card obtained from long stroke SRP unit (Hollenbeck 

1980) ............................................................................................................................................ 13 

Figure 2.5 Downhole card shapes for different pump conditions: (A) unanchored tubing 

(above) comparing to regular pump  of anchored tubing (below), (B) Gas interference 

(below) comparing to negligible gas condition (above) (C) Leaking pump in plunder or 

traveling valve, unanchored tubing and leaking traveling valve condition, leaking standing 

valve  (Gibbs and Neely 1966) .................................................................................................... 15 

Figure 3.1 Upper Frame Facility of SRP facility setup ............................................................... 20 

Figure 3.2 Linear Actuator Motions with Different Speed and Acceleration (Pienknagura 

Dolberg 2019) .............................................................................................................................. 22 

Figure 3.3 Middle Section of SRP facility setup ......................................................................... 23 

Figure 3.4 Bottom section of the SRP facility setup .................................................................... 24 



ix 

Figure 3.5 SRP testing setup’s user interface for personalized dynocard (Teodoriu et al. 2020)

...................................................................................................................................................... 25 

Figure 3.6. The visualization of SRP unit in LabVIEW during the operation............................. 28 

Figure 3.7. Algorithmic flow of the experimental work .............................................................. 30 

Figure 3.8 Kollmorgen interface for displacement, speed, and acceleration Inputs .................... 32 

Figure 3.9 A sample of trapezoid-shape displacement plot against the running time of 5 

minutes at stroke length of 250 mm, actuator RPM of 500 and SPM of 4 .................................. 34 

Figure 3.10 A sample of trapezoid-shape displacement plot against the running time of 5 

minutes at stroke length of 250 mm, actuator RPM of 500 and SPM of 4 .................................. 34 

Figure 3.11. Linear correlation between the pump SPM and actuator RPM for varying stroke 

lengths and trapezoidal shape ...................................................................................................... 35 

Figure 3.12. Linear correlation between the pump SPM and actuator RPM for varying stroke 

lengths and sinusoidal shape ........................................................................................................ 35 

Figure 4.1 Pressure recorded at the top gauge with time and the histogram of its distribution, 

obtained at stroke length of 250 mm, trapezoidal shape .............................................................. 39 

Figure 4.2. Pressure recorded at the first bottom gauge with time and the histogram of its 

distribution, obtained at stroke length of 250 mm, trapezoidal shape ......................................... 39 

Figure 4.3. Pressure recorded at the second bottom gauge with time and the histogram of its 

distribution, obtained at stroke length of 250 mm, trapezoidal shape ......................................... 40 

Figure 4.4. Predictive analysis using data-driven approaches for online IDSRP solution .......... 42 

Figure 4.5 (A) Extracted surface and downhole cards, sample 1 (Everitt, Jennings 1992, 

Ercolino 2011) (B) Actual (digitized) and calculated downhole cards comparison .................... 46 



x 

Figure 4.6 (A) Extracted surface and downhole cards, sample 2 (Downhole Diagnostic 2020) 

(B) Actual (digitized) and calculated downhole cards comparison ............................................. 47 

Figure 4.7. Conversion of surface to downhole dynamometer cards with input stroke length 

of 250 mm, machine SPM of 4 .................................................................................................... 48 

Figure 4.8. Conversion of surface to downhole dynamometer cards with input stroke length 

of 250 mm, machine SPM of 8 .................................................................................................... 49 

Figure 4.9. Conversion of surface to downhole dynamometer cards with input stroke length 

of 200 mm, machine SPM of 4 .................................................................................................... 49 

Figure 4.10. Conversion of surface to downhole dynamometer cards with input stroke length 

of 200 mm, machine SPM of 5 .................................................................................................... 50 

Figure 5.1 Liquid flow rates with varying inputs of RPM, stroke length and card shapes.......... 52 

Figure 5.2 Frictional pressure results with liquid flow rate delivered by plunger ....................... 53 

Figure 5.3 Pressure B1 range and resulting water column pumped per cycle at the intake with 

liquid flow rate ............................................................................................................................. 54 

Figure 5.4 Rod load raw data with time, with 200 mm stroke length and 2.5 SPM .................... 55 

Figure 5.5 Differential Pressures obtained from tests with (A) 250 mm stroke length with 9.6 

SPM, and (B) 200 mm stroke length and 7.8 SPM with time ..................................................... 56 

Figure 5.6 The difference of maximum and minimum intake pressure (B1) and resulting 

water column at pump intake per cycle, with 250 mm stroke length in trapezoidal shape ......... 57 

Figure 5.7 5 levels of SPM values based on SPM vs. RPM plot ................................................. 58 

Figure 5.8 B1 pressure trends per cycle with time for tests in group 3 middle SPM values ....... 59 

Figure 5.9 Water column at pump intake per cycle with time for group 3 middle SPM tests ..... 59 



xi 

Figure 5.10 Water column at pump intake per cycle with time for the highest, upper high, 

lower and lowest SPM groups ..................................................................................................... 61 

Figure 5.11 Slopes of pressure B1 range (Δ𝑃𝐵1) and water column at the pump intake in 

response to total flow rate (mm/min) ........................................................................................... 62 

Figure 5.12 Data preparation for modeling.................................................................................. 63 

Figure 5.13 A sample of decision tree regression ........................................................................ 68 

Figure 5.14 A sample of decision tree classification ................................................................... 69 

Figure 5.15 Visual comparison between the true (actual) normal operation data, predicted 

multiple outputs in test data ......................................................................................................... 71 

Figure 5.16 Visual comparison between the slightly pump-off case and the normal operation 

predicted from KNN and Decision Tree ...................................................................................... 72 

Figure 5.17 Resulting labels for 52 pump cards obtained from IDSRP testing based on the 

slope of intake pressure with time ............................................................................................... 74 

Figure 5.18  ROC curve analysis and Precision-Recall curve document AUC and AP values 

for the four classification techniques ........................................................................................... 75 

Figure 5.19 Confusion Matrix showing True and Predicted Labels of Random Forest .............. 76 

Figure 5.20 Variable importance plot based on Shapley values for normal operation (Class 

0) and slightly pumped-off anomaly (Class 1) ............................................................................ 77 

Figure 5.21 Shapley values for label 1 or slightly pumped-off data, varying with different 

predictors...................................................................................................................................... 78 

 

  



xii 

 

Abstract 

Given its long operational history, a sucker-rod pump (SRP) has been widely utilized as a 

lifting solution to bring reservoir fluids to the surface with low cost and high efficiency. However, 

debugging the rod pump issues requires on-site activities that could cost time and money for 

operators. With the vast dataset collected from years of operation, numerous companies are 

looking to turn these engineering processes into automated systems in the oilfield network, despite 

the complexity of data and lack of knowledge. The integral approach is to develop real-time 

diagnostics for downhole conditions. The emerging artificial intelligence and big-data analytics 

have provided relatively precise downhole condition forecasting based on available data, enabling 

better decision-making. This thesis focuses on collecting representative data and utilizing machine 

learning techniques to predict operational anomalies of sucker-rod pumps. 

An experimental design at the University of Oklahoma, referred to as Interactive Digital 

Sucker Rod Pumping Unit (IDSRP), was used to facilitate a data-driven solution and monitor SRP 

performance and diagnostics. The physical framework includes a 50-ft transparent casing and 

tubing with a downhole rod pump at the bottom. A linear actuator provides the rod string’s 

reciprocal movement and simulates different surface units and operating scenarios. This facility 

uses proper instrumentation and a data acquisition system for signal sensor readings. A workflow 

is developed to translate surface dynamometer cards to downhole ones and train predictive models 

in time-driven pressure and rate data. Though primarily focusing on the normal pump operation, 

the test matrix varies in stroke length, pump speed, and rod movement shape. 

The tests validate the model to classify and detect various operational conditions in sucker-

rod pumps. The model dynamically categorizes the pumps into key states of ideal condition and 
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over-pumping with a regression fit of accuracy higher than 0.7 and overall classification accuracy 

of 92%. Moreover, the real-time model anticipates an event in which the pump experiences a slight 

pumping-off that could potentially deteriorate the rod. The results also help understand key 

features that drive sucker rod pump performance prediction and help detect anomalous pump 

behavior. The machine learning algorithms, developed by the physics-based inputs, generate 

predictive models, thus classifying operational conditions or failures of the pump. The diagnosis 

for the pump’s anomalies is also predicted by a real time analysis. The visualization enables to 

recognize the patterns and abnormal phases early. The explainable machine learning (i.e. Shapley 

additive explanation) helps decoding the predictive models with feature importance, local and 

global sensitivities in categorizing SRP conditions. 

The developed unit has the capability of working with different well conditions, combining 

with real-time training and applying models, to initiate early warnings. The developed processes 

and workflows have the potential of becoming a generic optimizing and monitoring model for rod 

pumps. The novelty of this setup consists not only in its mechatronic design but also in through 

monitoring of the pump operations. 
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Chapter 1: Introduction 

Artificial Lift includes various categories of production enhancement techniques applied 

to adjust the well bottom-hole pressure and increase the production of reservoir fluids. Sucker rod 

pumps (SRP) or beam pumps are widely considered the most applicable lifting method in the 

industry. With the ever-increasing number of declined wells, the popularity of rod pumps is 

making them even more popular. Figure 1.1 shows the data of SRP usage considering the number 

of wells and production in comparison with other lift methods and natural flow. SRP accounts for 

the highest numbers of wells with 21%, after naturally flowing wells and plunger-lifted gas wells. 

The typical well candidates for SRP have low to medium producing capacity, resulting in a smaller 

production share of only 7%. However, SRP can produce as high as 8000 barrels of fluid per day 

(Takacs 2015).  

 

Figure 1.1 Artificial lift shares based on numbers of operating wells and their shares from 

overall oil production (Takacs 2015) 

A crucial reason for most operators to select SRP lies in system efficiency, defined as the 

ratio of total input energy used to lift reservoir fluids to the surface. The efficiency may vary over 

a wide range of values because of several factors in the pumping unit, the energy consumed by the 

pumping activity, or power losses in the well and surface. Figure 1.2 shows the efficiency ranges 
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for various artificial lift techniques. SRP is considered to be a relatively more effective artificial 

lift method than the others, with the exception of PCP. However, the maintenance issues with the 

PCP make it a more limited choice, leaving SRP as the most commonly used pumping technique.  

 

Figure 1.2. System efficiency ranges for various artificial lift methods (Takacs 2015) 

 

With the long history of operation and dynamic growth of technology, various solutions 

have been developed for longer production and reliability. However, their online monitoring and 

optimization come with many challenges. One of the main drawbacks of SRP is the industry’s 

tendency to move towards increased well depths with exponential production decline. The 

limitation of material properties and increasing well complexity hinder robust solutions suitable 

for various well candidates. Therefore, individually engineered artificial methods are imminent to 

provide the solutions for maintaining long-term production.  

A large dataset is crucial for making the systems more automated and optimized, especially 

failure detection and performance monitoring. Given vast datasets collected from years of 

operation, many operators enact digital technology to generate automated artificial lift systems in 

the oilfield networks. The key to make sucker-rod pumps operate effectively lies in the downhole 
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condition diagnostics. The emerging artificial intelligence and big-data analytics aim to provide 

relatively precise downhole condition forecasting based on the available data, enabling better 

decision-making.  

This study presents an experimental and analytical workflow for monitoring a sucker-rod 

pump and performing diagnostics. A lab-designed Interactive Digital Sucker-Rod Pumping Unit 

(IDSRP) is used to replicate field operations and associated data analysis. This unit consists of a 

vertical 50-ft long facility with a rod pump at the bottom and proper instrumentation, capable of 

simulating a rod-pumped wellbore. The surface dynamometer cards, and time-driven pressure and 

rate data are collected to process and train a cloud-based analytics software platform. Some of the 

tested scenarios are normal pump operations with varying rates. The applied online prototype is 

designed to provide a step towards digitized automation systems.  

 

1.1 Objectives 

The earlier work done by Pienknagura Dolberg (2019), and Bello et al. (2020) laid out the 

conceptual foundation of SRP facility design and device assembly. However, various objectives 

were not addressed thoroughly, especially the experimental development of an autonomous SRP 

simulation through an associated software environment. Therefore, these primary objectives 

continue in this study. The main objectives of this work are: 

• Operate and further the implementation of digital sucker-rod pumping unit 

developed at University of Oklahoma. This includes developing a manual control 

testing matrix and validating the baseline model of operation. From there, datasets 

are generated for big data analytics training and testing. 
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• Model the elastic behavior of the rod string, digitize the dynocards collected for 

diagnostic mode through implementing signal processing algorithm, and 

transforming surface to downhole cards by solving Gibbs equation. The algorithm 

is validated based on the facility condition to ensure the reliability of the operation. 

• Develop an analytical model with training and testing datasets obtained from the 

experiments. The predictive model is trained and validated to diagnose the pump 

condition, used for SRP health and performance monitoring.  

 

1.2 Methodology 

This study is an attempt to integrate an experimental Interactive Digital Sucker-rod Pump 

(IDSRP) facility with an analytical workflow to build the automated diagnostic systems for its 

operational framework. The workflow and processes developed in this study will serve as a 

prototype for artificial lift automation in the industry.  

Figure 1.3 highlights the experimental and analytical approaches implemented. The 

experimental setup is completed to mimic the operation of a sucker-rod pump in the field scale. A 

physical baseline model is implemented to correlate the actuator’s speed with the linear 

reciprocating movement of the rod string.  

The data obtained from the experiments are treated for feature selection in the diagnostic 

model. The treatment stage includes resolving missingness and handling outliers in the raw dataset. 

The dataset is split in training set for model validation and test set for model evaluation. The model 

is retrained, if the resulting evaluation parameters (i.e., accuracy, percentage errors, etc.) are lower 

than the common goals. The end stage involves deployment of the workflow to detect the imminent 

performance of the rod unit. 
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Figure 1.3 Workflow schematic combining experimental and data analytics approaches 

 

1.3 Outline 

This thesis is structured to present the objectives and outcomes of the study clearly and 

thoroughly. First, in Chapter 2, the fundamental concepts of sucker-rod pump units are addressed, 

and some previous work that deploy data-driven methods to diagnose and monitor SRP operations 

are reviewed. The IDSRP facility setup and experimental design are discussed in Chapter 3. A 

description of the three modes in a full-scale facility, data acquisition method and physical baseline 

calibration are explained in this chapter. An overview of experimental results and digitization of 

dyno card transformations utilizing Modified Everitt-Jennings are shown in Chapter 4. Chapter 

5 provides further analysis of parametric properties towards classifying pump operation motion 

and attempts to deploy predictive model to cluster pump operation condition based on regression 
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and classification methods. Finally, Chapter 6 highlights the important outcomes of this study and 

notable additional work that could possibly advance the study and address its inherent challenges.  
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Chapter 2: Literature Review 

 

This chapter provides a summary of the literature survey status with regards to the main 

topic of this study. First, a general review is conducted on sucker-rod pumps as the most common 

artificial lift technique in the industry. The advantages, limitations, and malfunction detection 

techniques of rod pumps are discussed. Then, the recent advances in data-driven models applied 

to rod pumps and current gaps in the literature are summarized. 

 

2.1 Sucker Rod Pump Limitations  

Artificial lift’s main objective is to recover more reservoir fluids to surface. It serves the 

purpose of providing sufficient pressure to the fluids to push them up the wellhead. Sucker-rod 

pump or beam pump is one of the most generic artificial lift methods for delivering oil production 

practically and affordably. It is considered effective and simple in onshore fields with the ability 

to operate with very low reservoir pressures. This mechanical lifting method also suits varying 

fluid properties, even with high reservoir temperatures and viscosities. Moreover, the setup 

requires minimal cost when changing to other wells. However, the mechanical setup has some 

limitations, such as excessive friction in deviated wellbores, solids handling, gas interference, and 

over rod capacity.  

One of the common problems when adding SRP in deviated borehole lies in the 

preventative measure to avoid severe dog legs (Ryan 1988, Gibbs 1991). If the rod fails to pass 

the build section in tubing, the tolerance capacity between barrel and plunger elements 

significantly decreases, leading to imminent damage. The continuous pumping at high speed also 
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intensifies the negative impact of wear action or corrosion in deviated well or doglegs (Ryan 1988), 

not to mention the presence of frictional loss when the rod is located at the horizontal section of 

the well. Several practices in the field suggest utilizing different coatings, spray materials in 

couplings to remediate the frictional wear (Caslin 1987 and Jackson et al. 2018).   

The issue of solids handling in SRP occurs in sandy well operation when the pump suffers 

from sand abrasion that leads to plunger sticking in barrel, pump sticking in tubing, the damages 

of barrels, plunger, and valves due to sand corrosion, sand packing off, and sticking valves 

(Ghareeb and Beck 2012).  The case study from water polymer flooding well also found that the 

presence of solids/sands is the leading case for plunger/barrel failure and causes a significant 

increase in corrosion rate (Al-Sidairi et al. 2018). The preventative field measures for solids 

handling include maintaining long stroke, using continuous and uniform rod diameter, and 

combining different materials and filtration/screening systems.  

As for the gas issue in rod pump, the gas breakout in the pump prevents the movement of 

plunger into the barrel, leading to wear in rod guide and rod. The resulting compression also affects 

the well and causes rod buckling (Dove and Smith 2016). Based on the second plot from Figure 

2.1, the sharp decrease in load as the plunger begins to move downward during the downstroke 

shows up as hyperbolic shape due to gas compression. During the upstroke, the gas presence at 

pump intake fills in the pump barrel, and the pump load is less than the max fluid load in the 

plunger as gas slowly carries out the load. The repeated pattern will occur as the rate of pressure 

build is directly proportional to the gas rate (Rowland and McCoy 2015). 

When the pump runs at a very high rate or experiences low downhole pressure, the large 

differential pressures between the pump and the barrel during upstroke also trigger the gas 

dissolution in the rod pump and, as a result, not enough liquid to fill the barrel. Also, the exceeding 
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production threshold in reservoir from displacement also generate the incomplete pump fillage that 

can cause well being pump-off (Rowland and McCoy 2015). Continuing the first plot in Figure 

2.1 for fluid pound issue, the compressed force is introduced all the load due to insufficient liquid 

level in the annulus, leading to the sharp reduction in load during the closing of standing valve and 

the opening of traveling vale. This generates the sudden agitation, which could snap the rod and 

damage the pump.  

 

Figure 2.1 Dynamometer Cards from Pump experiencing Fluid Pound (1) and Gas 

Interference (2) (Rowland and McCoy 2015) 

The recent more data-driven work by Zhao et al. (2019) studies the load data and 

incorporates the operational database by looking into the effects of stroke length, stroke frequency, 

diameter, or pump depth, to build sensitivity analysis for the eccentric wear prevention program. 

Note that the data from this approach only obtained from a particular oilfield operation, and the 

limitation of this approach also lies in the proprietary software used in the analysis, which is not 

generally available in the public domain. Therefore, the digital solutions, through data obtained 

from sensors and pattern visualization in software interface at IDSRP, allow to generalize the 

database and develop the predictive model to recognize pumping problems. 
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2.2 Understanding Pumping Units  

The basic understanding of different pumping unit types is imperative to help understand 

the physical setup at IDSRP facility. The pumping unit geometries include conventional (type C), 

air-balanced unit (type A), Lufkin Mark II (type M) (Figure 2.2) and long stroke motion (Figure 

2.3). The primary difference lies in the counterbalance setup. The counterbalance in Type-C unit 

is located on the crank arm or rear end of the beam, making it possible to run in both clockwise 

and counter clockwise directions. The counterbalance in Type-M unit is located on the opposite 

side of the crank at a specific angle. It also has an additional rotary counterweight, creating a more 

uniform net torque variation during the upstroke and downstroke cycles (Takacs 2015). Type-A 

unit utilizes the air-balanced mechanism of an air-compressed unit. The air pressure of the cylinder 

can be adjusted to maintain the balance. These differences lead to changes in mechanical 

characteristics, the crank angle at top and bottom of the polished rod, and walking beam length for 

example. This results in distinctive kinematics discussed in both Gray (1963) and Takacs (2015) 

books. Note that the selection of a specific pump geometry provides further mechanical and 

physical insight regarding the rod displacement behavior, which is discussed in the subsequent 

chapters. 
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Figure 2.2 Convention, Lufkin Mark II and Air-balanced Pumping Units (Takacs 2015) 

Long stroke units are developed to combine the advantages of the three pump units above. 

These units offer long-stroke capacity, constant rod string velocity, and fewer strokes per barrel, 

making them suitable candidates for high-volume, high-load, deviated, and unconventional 

horizontal wells. These characteristics increase the life span of pumping and allow more complete 

pump fillage and lower loading. They hence avoid common issues of gas interference and 

exceeding stress and strain thresholds from high peak rod load (Kennedy and Ghareeb 2017). Two 

principal types for the long stroke unit include mechanical and hydraulic pumping units (Figure 

2.3). The mechanical long stroke unit converts the rotation in prime mover into the reciprocating 

movement that lifts formation fluids. The hydraulic long stroke units have a power unit that 

provides the hydraulic power to the piston. This power lifts the peak load during the upstroke and 

helps release hydraulic pressure in the downstroke with a controlled rate and extended cylinder 

(Ghareeb et al. 2017).  
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Figure 2.3 Long Stroke Pumping Units at Well Head: Mechanical and Hydraulic Pumping 

Types (Weatherford 2007, Kennedy and Ghareeb 2017, Ghareeb et al 2017) 

 

An example of a dynamometer card for long stroke pumping units reveals the sloped lines 

due to the changes of acceleration and direction (Figure 2.4). The automatic control of strokes per 

minute and acceleration during the upstroke and downstroke transition and the linear movement 

simplifies the predictive diagnosis of the card (Hollenbeck 1980). With a smaller facility footprint, 

the IDSRP could follow the rotation-to-linear mechanism in both conventional and long stroke 

units and capture field-scale acceleration, speed, and displacement properties into the simulated 

environment. The automatic control mechanism from the long-stroke unit maps out the idea of 

creating a platform that tracks the operational input to maintain the longevity of the pumping life 

span.  
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Figure 2.4 Example of dynamometer card obtained from a long stroke SRP unit 

(Hollenbeck 1980) 

 

2.3 Data-Driven Models  

Given its operational advantages and disadvantages, it is essential to monitor the conditions 

of sucker-rod pumps for sustaining operations. One of the common methods is to extract the 

surface dynamometer card, which records rod displacement and load or axial force in a full cycle. 

By looking at the dynocard, operators can monitor the performance and identify sucker-rod pump’s 

possible faults (Tripp 1989).  

To make an accurate identification of a rod pump’s condition, Gibbs and Neely (1966) 

developed an algorithm to back-calculate the surface card to a downhole one by utilizing the 

damped-wave equation. The axial force on the rod string represents a stress wave, and thus, the 

rod string’s movement physically resembles a 1-D wave propagation. The Gibbs wave equation 

for downhole card calculation was later improved by utilizing a finite-difference model. The 

modified Everitt-Jennings model allows the calculation of space and time discretization. Hence, 

stress can be computed at any finite difference node (Everitt and Jennings 1992). The modified 

algorithm also considers the iterations of damping, fluid load line and pump fillage calculations, 
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resulting in more accurate downhole data (Pons 2014). The pump card is used to predict the pump 

behavior, including the fluid dynamics and kinematics of the pumping unit.  

The Gibbs method enables detection of various pump conditions through the downhole 

dynocard analysis (Gibbs and Neely 1966), such as normal condition, unanchored tubing detection, 

fluid pound (Figure 2.1), leaks in the pump and production string, and gas interference (Figure 

2.5). The normal condition, i.e., full pump, indicates a rectangular shape, while the abnormal 

conditions display different forms of deformed shapes from the regular one. In the case of 

unanchored tubing, the movement causes the changes in displacement during the upstroke and 

downstroke transitions along the vertical line (Figure 2.5 (A)). The leaky pump takes longer to 

pick up the fluid at the upstroke and releases the load before the downstroke starts, showing an 

arch shape on top or bottom of stroke (Figure 2.5 (C)). Operators can detect the leak in tubing by 

observing the drop in production rate from the calculated fluid rate based on the downhole pump 

card conversion (Gibbs and Neely 1966). The gas compression effect also leads to a shape decrease 

in fluid load when the pump transitions from upstroke to downstroke, as mentioned in 2.1 and 

Figure 2.5 (B).   
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Figure 2.5 Downhole card shapes for pump conditions: (A) unanchored tubing (above) 

compared to regular pump of anchored tubing (below), (B) Gas interference (below) 

compared to negligible gas (above) (C) Leak in plunger or traveling valve, unanchored 

tubing and leaking traveling valve, leaking standing valve (Gibbs and Neely 1966) 

The detection, diagnosis, and prediction of events leading to system downtime and sub-

optimal performance are leveraged by the analysis of subject matter experts (Pennel, Hsiung and 

Putcha 2018). However, this manual process becomes outdated due to high-level expertise 

requirements and time limitations. Given a long-term usage resulting in large data collection, the 

process of acquisition and transmission of surface and downhole dynocards has transformed from 

a manual to an automated process. The pattern recognition method was developed by computer-

based systems, enabling the surveillance for hundreds or thousands of wells (Abdalla 2020 et al). 

This method includes 2 processes of feature extraction and classification. The Fourier-series 

method is developed for feature extraction, filtering noise in the pump displacement to recover the 

sinusoidal behavior in rod displacement. It also adds noise harmonic in pump load to recover rod 

load in the downhole (Chen et al. 2018).  
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Numerous pattern-recognitions workflows involve classification techniques, supporting 

more proactive decision-making. The common classification approach is to implement 

mathematical tools for similarity observation. These tools are supported by the descriptor 

calculation, summarized in Table 2.1.  

Table 2.1. Summary of literature employing mathematical functions to categorize the 

similarity in rod pumps 

Authors (year) Methodology Classifier 
No. of faults 

detected 
Samples 

Dickinson & 

Jennings 

(1990) 

Grid method 

Position-based, 

Curvature-based 

Fourier descriptors, 

String matching 

Cost function 7 

Dynamometer 

card limited in 

7 wells 

Lima et al. 

(2012) 

Centroid 

Curvature descriptor 

K-curvature 

Euclidean distance 

Pearson correlation 
5 1500 cards 

Yu et al. (2013) 

& Chen et al. 

(2018) 

Fourier descriptors 

Geometric vector 

Level matrix 

N/A N/A N/A 

 

The machine learning and artificial intelligence algorithms are employed to train computer-

based models. The objective of these algorithms is to partition feature space into class labeling. 

Two approaches for solving classification problems include supervised learning and unsupervised 

learning. The first rule-based expert system to diagnose rod pump unit operation was developed 

by Derek et al. (1998). Afterward, various classifier techniques were explored, including artificial 

neural network (ANN), support vector machine (SVM), AdaBoost, and Bayesian network.  

As a few examples, a self-organizing map network proposed by Xu et al. (2007), a 

technique to classify labels based on multi-dimensional components, classifies five pumping 

operational categories with the load values as the features. A semi-supervised model, combining 

Decision Trees, Bayesian Network, and SVM, was trained to predict rod pump tubing failures (Liu 
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et al. 2010). A Bayesian Network model, coupled with AdaBNet boosting algorithm, is trained 

with different weights to define the stronger boosted ensemble model to predict rod pump failures 

(Liu et al. 2011). The sparse multi-graph regularized extreme learning machine (SMELM), which 

contains intra-class and inter-class graphs to train the data, enforcing different outputs associated 

with various faults (Gao et al. 2015). This method improves other classification methods by 90-

95% accuracy in fault diagnosis.  

The prowess of artificial neural network (ANN) was furthered in subsequent works from 

Martinez et al. (1999), Osman et al. (2005), and Mohammadpoor et al. (2010) to predict the 

bottom-hole pressure in oil wells or to analyze downhole dynamometer cards. Backpropagation 

neural network (BPNN) and SVM approaches were trained in 300 samples to diagnose nine pump 

operating conditions (Rogers et al. 1990, Nazi et al. 1994). The advantage of the ANN method lies 

in its backpropagation calculation capability that can handle the noise issues in data. The input 

produces an associated output, which can identify the pump faults. A variety of ANN algorithms 

is described in the work of Boguslawski et al. (2018), providing the automated pattern recognition 

for rod pump abnormal state recognition. Improved ANN models, which are determined by genetic 

algorithms, are furthered by the works from Abdalla et al. (2020) and Rashidi et al. (2010). The 

genetic algorithm is a search heuristic method that also optimizes other features, including optimal 

tubing size, injection rate, and artificial lift installation depth. Another heuristic search approach 

for pattern recognition and classification is implemented in Liu and Patel (2013), using the 

maximum load during upstroke as a feature to differentiate the failures. The study identifies the 

well failure with 82-86% of positive prediction and only 11-15% of false alarm. Table 2.2 

highlights the additional previous works discussed in this section.  
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Table 2.2. Previous studies applying machine learning algorithms 

Authors 

(year) 
Features 

Classification 

Algorithm 

No. of 

faults 

detected 

Samples Results 

Liu et al. 

(2011) 

Card area production, 

daily run time, stroke 

per minutes, etc 

Semi-supervised 

learning with 

AdaBNet 

4 100 cards 
Accuracy 90 

% 

Xu et al. 

(2007) 
Space feature points 

Unsupervised 

learning, self-

organizing map 

5 6377 cards 
Accuracy 

93.4% 

Liu et al. 

(2010) 

Multivariate 

timeseries 

Card area, daily tun 

time, cycle, approved 

oil production rate 

Decision Tree 

SVM 

Bayesian Network 

6 

42 train 

wells 

32 test wells 

Error rates 

0.008 to 

0.029  

Bezerra et 

al. (2009) 
Space features 

Supervised learning 

BPNN 
8 300 

Classification 

error=1.31% 

Abdalla et 

al. (2020) 
Dynamometer cards 

ANN with genetic 

algorithm 
4 4467 

Precision and 

recall values 

over all pump 

faults 93.2%  

 

Apart from Liu et al (2010), these mentioned works would cause concerns in time, memory 

space, and cost due to utilizing super-computing power to train the deeper network model for 

pattern recognition. The huge drawback of deploying deep learning network lies in the requirement 

of complex data engineering program for image processing, giving those different operators utilize 

different proprietary software which could not be adapted in public or classroom settings. No 

existing literature in artificial lift mentions the possibility of generating models that learn from 

multiple operational parameters to predict the performance of pump. Therefore, the discussion of 

data-driven model prompts this study to explore less complex and more real-time machine learning 

model that could learn from the multivariate operational inputs to establish the predictive mode of 

generic and normal operation, which later is helpful for anomalies detection when the test 

datapoints fallout from the established trend.  
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Chapter 3: Experimental Design 

 

This chapter discusses the experimental design for the Interactive Digital Sucker-rod Pump 

(IDSRP) facility, located at the University of Oklahoma, and used for the experiments of this study. 

The facility setup is completed with an objective to mimic the operation of a sucker-rod pump in 

the field scale. This chapter describes the design in more depth with the data acquisition method, 

testing procedure, and calibration for the actuator physical baseline model. This baseline model is 

implemented to correlate the actuator’s speed to the pump’s reciprocal movement. The test matrix 

is developed based on the calibration result. 

 

3.1 Facility Setup 

The rising application of the Internet of Things (IoT) in the upstream sector prompts the 

idea of integrating the physical setup and cloud-based architecture, providing the motivation for 

the IDSRP facility. The setup follows industrial standards from various wellsite instrumentation, 

including force and stroke transducers, electric motor controller, sensors, and their output 

parameters (Bello et al. 2020). 

The setup mimics the common field operation of a sucker-rod pump in an existing 

laboratory structure at the University of Oklahoma. The IDSRP is a vertical 50-ft tall facility that 

houses a linear actuator, load cell and polished rod in the upper frame, transparent casing, tubing, 

return line and rod string in the middle section, and downhole rod pump and liquid tank in the 

bottom section (Teodoriu et al. 2020, Sharma et al. 2021). 
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Three modes are involved in the IDSRP experimental setup, including physical SRP mode, 

offline mode, and online mode. Together, these modes enable the implementation of the IoT 

principle in resembling field-scale operations and generating the AI model (Teodoriu et al. 2020). 

Overall, the IDSRP facility is designed to investigate the common field application using a variety 

of wellsite instrumentation such as force and stroke transducers, electric motor controller, etc.  

The physical SRP mode focuses on the design and construction of the unique experimental 

SRP setup in the laboratory. The setup is designed to mimic and simulate a real wellbore’s 

operation. It includes three components for an autonomous SRP system: Upper Frame, Middle 

Section, and Bottom Section. Each one of these sections occupies a level inside the lab.  

Upper Frame section includes the linear actuator, load cell, the return line, polished rod, 

and the wellhead (Figure 3.1). The linear actuator provides the reciprocal movement of the 

polished rod. Digital pressure gauge 1 is used to record the pressure at the top gauge (Pressure T). 

Pressure at the top gauge represents the wellhead pressure. After the wellhead, the liquid is 

recirculated to a liquid tank, passing a valve for flow control.  

 

Figure 3.1 Upper Frame Facility of SRP facility setup  
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The linear actuator is mounted with a Pulse with Modulation (PWM) motor, monitored to 

allocate a particular point with the required angle and velocity. It can send the position and speed 

signal to the control driver for rotation and displacement. PWM is a technique to obtain the analog 

results with digital means based on modulating “on time” duration, or called pulse width, within 

signal spend-ons and signal spend-offs. According to Hirzel (2018), the process occurs in a very 

fast manner, making it difficult to notice the difference between on and off signals, thus no torque 

is lost virtually and more power efficiency as power source doesn’t need to accommodate for 

changing voltage (Pienknagura Dolberg 2019). Giving the constant voltages, meaning constant 

velocity in the machine, the changes of various speed, acceleration, and load intensities enable a 

clearer picture of the linear actuator motion. 

Figure 3.2 illustrates the process of linear actuator motions during the accelerating and 

decelerating. The motion begins with accelerating downward motion, then accelerating upward 

motion, until both accelerating upward and downward motions become equal in the middle, and 

then decelerate before reaching the end of the stroke. With the movement of rod string following 

a Type C SRP model, the linear movement through beam with variable speed, and acceleration 

transforms into a circular motion. Therefore, velocities, acceleration and displacement follow a 

sine or cosine wave function (Pienknagura Dolberg 2019).  

Changing the loads also impacts the upstroke and downstroke movements. During the 

upstroke movement, the opposing forces by the fluid weight in the rod string may cause a slower 

motion in the machine. On the other hand, as the traveling valve opens and the standing valve 

closes in the downstroke movement, the fluid load is transferred to the tubing, leaving only rod 

weight as the remaining downward force. Considering these force components in upstroke and 
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downstroke, we assume that no serious mechanical concern could prevent the rod from moving 

fast, which could negatively impact the integrity of obtaining analog results for PWM.   

 

Figure 3.2 Linear Actuator Motions with Different Speeds and Accelerations (Pienknagura 

Dolberg 2019) 

The Middle Section of the facility houses the continuation of rod string inside the tubing 

and return line. This section provides access to other areas of the facility through a ladder. The 

return line sends the liquid from the wellhead back into the tank to ensure a closed-loop system. 

The water level in the return line can provide hydrostatic pressure by adjusting a manual valve at 

the bottom of the line (Bello et al. 2020). Additional valves are installed in the return line to 

monitor and control the fluid flow and enable the facility operator to bypass the tank and send the 

liquid directly to the pump. During the operation, the valves are opened to maintain a closed flow 

loop within the pump and bottom tank through the return line. The bottom tank provides the static 

fluid column feeding the simulated wellbore. Figure 3.3 displays the schematic for the Middle 

Section of the setup  
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Figure 3.3 Middle Section of SRP facility setup 

Two pressure gauges are installed in the Bottom Section of the facility to record the suction 

and discharge pressures, namely Pressure B1 and Pressure B2. In terms of these gauges’ 

locations, the pressure gauge B1 is installed right at the intake of the pump, while the pressure 

gauge B2 is set at the outlet of the pump, approximately 3.5 ft from the pump outlet. The suction 

pressure (B1) reveals the impact of changing the liquid level in the tubing inlet resulting in pressure 

buildup during the pump’s movement cycle. The pressure B2 shows the discharge pressure of the 

pump. The difference between top gauge pressure (T) and the 2nd bottom gauge pressure (B2) 

reflects the pressure drop across the facility’s test section. As for the 3.4-ft long and 80 gallons 

liquid tank in the setup, it supplies the liquid to the test section. The tank in the bottom section 

serves as an active water source for the system under normal operation. A tube or line is added 

with bottom tank to connect the intake of the pump to the tank, combined with a filter pad to 

prevent solids from entering the pump. The initial purpose of the upper tank is to serve as a 

separator in case of simultaneous gas and water production (Pienknagura Dolberg 2019). However, 
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the operation discussed in this study only includes single-phase liquid flow. Hence, a static fluid 

column is maintained in the bottom tank, and closed loop within the bottom tank and the pump is 

ensured. The upper tank is kept empty. The schematic of the bottom section is illustrated in Figure 

3.4. 

  

Figure 3.4 Bottom section of the SRP facility setup 

Overall, the physical mode enables a state-of-the-art sensor system through gauges, control 

system via monitoring valves and data acquisition hardware connected between the physical mode 

and offline mode. Two of the principal elements in this setup include the linear actuator and motor. 

Transmitting linear forces like acceleration affects the dynamometer cards. Modeling the linear 

movement of the rod string can help simulate different pumping units. The setup has an SRP 

Simulator interface designed in the LabVIEW environment and connected to the physical SRP 

model. The facility uses water as the principal fluid, which helps achieve steady-state operation in 

a timely manner.  
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The offline mode carries out experimental verification and performance testing (Figure 

3.5). This unit’s operation is completed by integration of physical SRP setup and digital SRP 

simulator in LabVIEW environment, enabling data transmission and acquisition from sensors. The 

records from this setup are aggregated into a designed interactive digital solution, using the 

LabView environment. This interface records all the sensors’ readings and visualizes the pressure 

variations and dynocards in real time. The integral components of the mode include the linear 

actuator and fluid tank. The sensor selection and installation procedures are described in 

Pienknagura Dolberg (2019) and Bello et al. (2020). The three representative groups of sensors 

installed in the setup include sensors for subsurface and surface criteria, representing reservoir 

properties, sensors attached to the electric prime drive, representing power supply, and sensors 

attached to the polished rod, wellhead parameters, and downhole pump, representing SRP primary 

operational body. The sensors measure vibrations, acoustics, pressure, stress and strain on the rod, 

flow rates, and loads. The load measurement builds up the surface dynamometer cards.  

 

Figure 3.5 SRP setup’s user interface for personalized dynocard (Teodoriu et al. 2020) 
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A real-time monitoring and diagnosis system is built in the online mode. The graphical 

interface provides early warning and simultaneous monitoring for multiple wells. This mode 

enables data preprocessing and manipulation through programmable units. The recorded surface 

dynamometer cards and time-driven data are processed and trained in a cloud-based analytics 

platform. The algorithm plays a role as a diagnostic model to determine the operating condition of 

the rod unit. The cloud-based analytical solution allows production optimization and improves the 

decision-making process for abnormality detection and immediate maintenance activities. This 

mode contributes as a continuation and upgrades work from the proposed Model Predictive 

Controller (MPC) discussed in Bello et al. (2020). The predictive analysis using a machine learning 

algorithm is described in the next section.  

 

3.2 Facility Design Discussion 

The design for data collection and facility testing involves the development of a data 

acquisition (DAQ) system to obtain measurements and dynamometer card, a testing procedure to 

operate the facility, and a calibration baseline model to validate the measurements. The sensors 

and the interfaced SRP simulator designed in LabVIEW software help collect the pressure 

readings, load force, displacement, and liquid level. 

3.2.1 Data Acquisition 

The DAQ system is a continuation of offline mode to collect data through operating the 

facility and recording measurements from sensors. The specifications for sensor devices applied 

in the IDSRP are described in detail by Sharma et al. (2021) and in Table 3.1 . The accuracy of 

these sensors ranges from 0.25 to 0.5%, which impacts the potential errors for theoretical 

calculation in later chapters. The noise reduction is considered through adding the low-pass, high-
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pass, or bandpass filters in the input line and testing these filters for inference, acquisition 

frequency, and sampling rate. This process maintains the clear signal input lines. Each location in 

which a sensor is installed plays a role in acquiring principal measurements needed for the analysis. 

The load cell sensor receives a live signal through a digital output to turn on or off. The 

measurement of this sensor is decoded using the analog input port. Combining with motor sensor, 

these sensors form the load force and displacement components for a dynamometer card on the 

surface. The liquid level sensors detect the changes of liquid level in the top and bottom tanks in 

response to the loads of pump and rod string. The encoder of the sensor also measures the rotation 

of the shaft inside the linear actuator. Once the motor is operated, the associated drive will calculate 

the speed, acceleration, and position. The signal data recorded by these sensors are accessed and 

measured through the LabVIEW software. 

Table 3.1 Sensors specifications utilized in the IDSRP Facility (Sharma et al. 2021) 

Sensor name WIKA C-10 PSD S1 TE Connectivity SP2-25 

Range 0-100 psi 0-220 lbs. 0-25 inches 

Excitation 12 Vdc 10-15 Vdc 30 Vdc 

Output range 0-5 V 2 mV 
94% ±4% of input 

voltage 

Placement 

Pressure Transducer, 

at Upper Frame and 

Bottom Sections 

Load cell, at top of 

rod string 

Displacement sensor, at 

rod string 

Accuracy 
% of span ≤ 1.0 (limit 

point calibration) 
± 0.5% ±0.25% FS 

 

LabVIEW is a system engineering application software for testing, measuring, and 

monitoring data. Given the flow of data fed into the system, this software utilizes a graphical 

programming approach to visualize all application features. The graphical block diagram 

visualizes the feedback of the systems. According to the facility schematic discussed in 

Pienknagura Dolberg (2019), the LabVIEW installation helps to control the motor and linear 
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actuator movements and supports the DAQ device in sensor data gathering. The setups for output 

voltage in the DAQ system and analog motor for linear actuator are also mentioned in the 

discussion. LabVIEW provides an interface for data gathering with the constant analog signal.  

The Case Structure for data storage generates a 1-D array of data grouped by a 

displacement value and captures all data points in every iteration as fast as possible. The output 

file for LabVIEW is under a coma separated-value structure, which can be parsed and programed 

under the set of cloud software programming used in the study, including MATLAB, Excel, R, 

and Python. Continuing the proposed sensor data installation in the previous work of Pienknagura 

Dolberg (2019), the resulting visualization of force load and displacement data points in each 

iteration is displayed in Figure 3.6. In this view from Figure 3.6, we can observe and monitor the 

positions, velocity, and changes of force and displacement with respect to upstroke and downstroke 

movement in the physical unit of SRP. The top and bottom tank levels are also shown in the 

interface to monitor the fluid flow in the closed-loop and allow immediate action in case of leaks.  

 

Figure 3.6. The visualization of SRP unit in LabVIEW during the operation 
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Following the conclusion and recommendation from Pienknagura Dolberg (2019), the 

testing procedure in the pumping unit follows by data input in the LabVIEW interface. The cyclic 

stack of load and displacement curves shown during the procedure resembles the field SRP cards, 

which is helpful for the analytical solution in online mode.  

3.2.2 Testing Procedure 

In the testing procedure, the applicable ranges of data input are addressed. The threshold 

of the existing material’s mechanical properties may not be exceeded to avoid snapping the rod 

string movement. A model Kollmorgen enables the linear actuator to withstand a load capacity of 

810 lb. The initial result from the Early Model on SRP of API RP11L (Takacs 2015) shows a peak 

polished load of 113 lbs., a minimum polished rod load of 45 lbs., and a peak net torque of 206 

in.lbf. While the stroke length can reach a maximum of 24 in (609 mm), the material of rod string 

and the structural laboratory setup allows 17 in (450 mm) to 2 in (50 mm) as the limits of top and 

bottom positions for the rod string displacement. This means that the rod displacement ranges up 

to 15 in (400 mm) for stroke length. Apart from the generic stroke per minute (SPM) ranging from 

3 to 8 SPM, SPM numbers in the facility operation can go up to more than 10 SPM due to the 

sudden change of rod upward and downward movements and minimal frictional factor loss due to 

homogenous fluid inside the flow loop.  

Figure 3.7 provides the algorithmic flow of the experimental work design from 

Pienknagura Dolberg (2019). LabVIEW provides the interface for parameter inputs to perform the 

operation at IDSRP. The inputs include top and bottom positions of the linear actuator during the 

upstroke and downstroke movements, constant acceleration of 167 RPM/sec, and the actuator 

speed (RPM). The Data Collection is carried out when the IDSRP operates for a certain duration. 

The physical baseline model continues the progress of the calibration, suggested by Teodoriu and 
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Erik Pienknagura (2018), Pienknagura Dolberg (2019), Bello et al. (2020), and Sharma et al. 

(2021). The machine considers the limitations in system parameters for a reliable and safe 

operation, similar to what is applied in the oilfield. The calibration provides a linear correlation of 

the pump’s strokes per minute and the actuator’s RPM. The linear model is considered in 

calibration mode because the movement of the SRP follows a Type-C (Conventional) motion. 

Type-C pump is the most common SRP type applied in the oilfield. The calibration mode provides 

the standard values for operating parameters used to develop the test matrix for the experimental 

work.  

 

Figure 3.7. Algorithmic flow of the experimental work 

A testing procedure fully details a step-by-step process based on Figure 3.7, from starting 

the software to shutting down the operation: The procedure follows the 3 of 4 IDSPR operation 
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modes, discussed in Bello et al. (2020) and Pienknagura Dolberg (2019): 1. Calibration, 2. Manual 

and 3. Graph Builder.  

1. The first step is to start the machine and the associated network that enables the SRP 

operation, including LabVIEW and Kollgormen Workbench. The experimental check 

is also conducted to ensure a full and static fluid level in the bottom tank and ensure no 

leakage in the tubing and flowline. 

2. The second stage is to adjust the inputs in Motion Tasks on Kollgormen Workbench so 

that the linear actuator moves within the range of top and bottom positions and the 

given RPM (Figure 3.8). The array of inputs includes a range of speed from 500 to 

2000 RPM and the rod displacement of 150, 200 or 250 mm. The acceleration and 

deceleration remain at a constant value of 166.67 RPS/S.  Depending on the harmonic 

or sharp changing displacement type of the rod string, the profile column is set as “One-

to-one” (sinusoidal) or “Trapezoidal” to initiate the pattern in Graph Builder mode. The 

“Next Task” column ensures the cyclic motion of the linear actuator and gears the 

operation towards the first 2 rows with values of 0 and 1 in each row of position, 

respectively. The program initiates the tests by transmitting the inputs to the facility by 

enabling “Update Motion Task” underneath the input table.  

3. The third step is to conduct the IDSRP operation by entering position and speed inputs 

for file name storage and entering the “RUN” tab on the LabVIEW interface (Figure 

3.6). The limit conditions of these inputs are addressed after the Calibration mode. This 

stage follows the “Manual” mode discussed earlier by Bello et al. (2020) and 

Pienknagura Dolberg (2019) to manually control machine and pre-program with 

defined motion and balanced geometry based on Step 2.  
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4. The fourth step is to operate the operation with different time constraints, which can be 

observed in “Run Time” in LabVIEW (Figure 3.6). This step enables enough amount 

of data collection for training and testing predictive modeling. The Graph Builder mode 

is also conducted in this stage to visual reference for a drawn dynamometer card.  

5. After a defined duration, the operation is completed by clicking the STOP button at the 

right corner in LabVIEW and also the STOP in the upper left of the input table in 

Kollgormen Workbench (Figure 3.6 and Figure 3.8). The establish the physical 

baseline model is also developed from this stage and established based on the relation 

between SPM and displacement. A test metrics, specified in Table 3.2, is also 

developed to gather more data points for further predictive analysis.  

 

 

Figure 3.8 Kollmorgen interface for displacement, speed, and acceleration Inputs 
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3.2.3 Actuator Baseline Model Calibration 

The experiments are carried out based on the relation between the number of pump strokes 

in a minute and the linear actuator’s RPM. The movement of the actuator is simulated with 

trapezoidal and sinusoidal designs. The trapezoidal shape reflects the ideal experimental condition 

with the rapid change of rod displacement in upward and downward motions, resulting in larger 

SPM numbers (Figure 3.9), while the sinusoidal shape mimics the actual operational scenario with 

more harmonic displacement in each cycle, following polished rod position type curve for the 

Class I geometry unit shown in Gray (1963) (Figure 3.10). Figure 3.11 and Figure 3.12 illustrate 

the linear correlation between the number of strokes per minute and the actuator’s RPM for 

different stroke lengths. The difference between the figures lies in the input movement shape. The 

testing for Figure 3.11 is carried out with the trapezoidal shape, while the tests for Figure 3.12 

are operated under the sinusoidal shape. Due to the movement shape and lower peak accelerations, 

the sinusoidal design results in lower SPM values compared to the trapezoidal shape. Also, a higher 

stroke length generates a lower number of strokes or cycles over time for a fixed actuator RPM. 

The linear trends show a simplified correlation between these two factors that can be used to 

estimate the pump’s speed.  
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Figure 3.9 A sample of trapezoid-shape displacement plot against the running time of 5 

minutes at stroke length of 250 mm, actuator RPM of 500 and SPM of 4    

 

Figure 3.10 A sample of trapezoid-shape displacement plot against the running time of 5 

minutes at stroke length of 250 mm, actuator RPM of 500 and SPM of 4 
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Figure 3.11. Linear correlation between the pump SPM and actuator RPM for varying 

stroke lengths and trapezoidal shape  

 

Figure 3.12. Linear correlation between the pump SPM and actuator RPM for varying 

stroke lengths and sinusoidal shape 

 

3.3 Test Matrix 

Based on the result of physical baseline model calibration, the designed test matrix is 
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movement (stroke length). The short-term 5 minutes is carried out to calibrate the machine, 

following the plots in 3.2.3. Long term 20-min duration tests help generate more data points for 

testing and validation of the analytical model in online mode. The linear baseline model is used to 

correlate the actuator’s RPM and the rod pump’s number of strokes per minute. The acceleration 

of the actuator is maintained at 167 rpm/sec. The tests generate the surface dynamometer cards of 

load force vs. displacement and pressure readings in the top and bottom of the rod-pump unit.  

Table 3.2. Current study’s experimental test matrix. 

Stoke Length 

(mm) 
Duration (min) Actuator RPM Shape 

Acceleration 

(rpm/sec) 

150, 200, 250 5 to 20 
500, 1000, 1500, 

2000 

Trapezoidal and 

Sinusoidal 
167 

  



37 

 

Chapter 4: Experimental Results 

 

Following the experimental design and operational test matrix,  Chapter 4 will dive deeper 

into the data obtained from the experimental work. This includes an exploratory overview, and 

more importantly, transformation calculations from surface cards to the downhole ones. The 

visualization from the statistical analysis provides underlying physical feedback from the system 

operations. As the measurements for rod displacement and load force are in surface conditions due 

to the sensor installation, a downhole dynocard transformation algorithm is introduced and carried 

out. The applied algorithm follows the modified Everitt-Jennings procedure from literature to solve 

the Gibbs wave equation. The resulting visualization is helpful for pattern recognition of the SRP 

performance in a given system.  

 

4.1 Results Overview 

The stroke per minute (SPM) parameter is an important metric to determine the speed of 

the sucker-rod pump’s movement. This is a result of the actuator’s speed input into the system, in 

RPM, and therefore proportional to it. It can be visually determined by counting the number of 

displacement peaks over a period of time (𝑛), or as the reciprocal of the average time difference 

between two peaks. The calculation of SPM is based on Equation 4.1. 

 
𝑆𝑃𝑀 =

1

∑
𝑡𝑖+1 − 𝑡𝑖

𝑛
𝑖=0
𝑛

 
4.1 

where 𝑡𝑖 is a time at the displacement peak reaches, 𝑡𝑖+1 is time at the next displacement 

peak reaches,  𝑛 is numbers of peak observed/ selected. 
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The resulting SPM for both shapes are presented in Table 4.1, Table 4.2, and also 

summarized in Figure 3.11 and Figure 3.12. SPM metric contributes as the driven vector for 

exploratory analysis for other parameters of force load or pressure. The SPM values are consistent 

in any duration of the testing. The impact of SPM on the rod operation, as well as operation 

classification, is furthered in subsequent sections.  

Table 4.1: Resulting SPM based on rod displacement data collected for trapezoidal geometry 

Stroke Length (mm) SPM for trapezoidal geometry (SPM) 

250 4 8 11 14 

200 5 10 14 18 

150 7 13 18 23 

Table 4.2: Resulting SPM based on rod displacement data collected for sinusoidal geometry 

Stroke Length (mm) Equivalent SPM for sinusoidal geometry (SPM) 

250 2 4 6 8 

200 2 5 7 10 

150 3 7 10 13 

 

4.2 Statistical Analysis For Parameters 

The experimental pressure measurements recorded from three digital gauges placed at the 

top and bottom of the test section are shown in Figure 4.1, Figure 4.2, and Figure 4.3. The top 

pressure gauge is placed at the upper frame section (Figure 4.1), while the two bottom pressure 

gauges are placed at the suction (Figure 4.2) and discharge (Figure 4.3) of the pump. The 

recordings capture the changes of suction and discharge pressures during the SRP movement 

between the upstroke and downstroke. Based on these plots, different RPM tests generate distinct 

pressure measurements. The distributions of these pressure measurements are relatively normal. 

The B1 (Pump suction) pressure indicates the cyclic nature of the movement, with higher pump 

speeds generating lower absolute values of pressure during the upstroke. Negative pressure values 

are observed in pump suction for these cases, implying that the casing is empty of liquid. When 
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the surplus fluid is removed from the casing annulus, the fluid column level becomes very low. 

Therefore, the possibility of a pump-off situation is imminent. On the other hand, the tests with 

lower pump speeds illustrate larger fluctuations in top gauge pressure measurements due to longer 

time durations taken for each cycle.  

 

Figure 4.1 Pressure recorded at the top gauge with time and the histogram of its 

distribution, obtained at stroke length of 250 mm, trapezoidal shape 

 

Figure 4.2. Pressure recorded at the first bottom gauge with time and the histogram of its 

distribution, obtained at stroke length of 250 mm, trapezoidal shape 
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Figure 4.3. Pressure recorded at the second bottom gauge with time and the histogram of 

its distribution, obtained at stroke length of 250 mm, trapezoidal shape 

The analysis for whether the mean differences between various tests are significant is 

carried out through a statistical test called a t-test. Given the null hypothesis that the two 

populations’ means are equal, if the resulting p-value (the probability of observing as or more 

extreme values assuming the null hypothesis) returns smaller than a threshold of 5%, this null 

hypothesis of equal population means can be rejected. The descriptive analysis of pressure records 

at the first bottom gauge pressure, i.e., p values for the t-test, are summarized in Table 4.3. The 

resulting table quantifies the distinctive differences in the distributions of pressure records at the 

pump’s suction pressure for tests with varying speeds. Therefore, the speed (SPM) could be the 

driven parameter for modeling input to predict the pump performance because it also impacts in 

the level of water feed into the pump per cycle. The incomplete pump fillage due to the rod moving 

too fast causes the pump-off issue that would deteriorate the rod.  
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Table 4.3: p-values from t-tests among pressure records at the first bottom gauge with 

varying equivalent SPMs 

Pressure Records at Top Gauges at  p-value Reject Null Hypothesis 

4 SPM vs 8 SPM 0.0 Reject 

4 SPM vs 11 SPM 0.0 Reject 

4 SPM vs 14 SPM 0.016 Reject 

8 SPM vs 11 SPM 
0.0 

Reject 

8 SPM vs 14 SPM 0.0 Reject 

11 SPM vs 14 SPM 8.746 E-310 Reject 

 

4.3 Downhole Dynocard Transformation 

Figure 4.4 illustrates the analytical approach applied to build a real-time monitoring and 

diagnostic solution in the online module. The objective of this project is to employ data-driven 

techniques for pattern recognition and classification of a SRP’s performance. The surface 

dynamometer card and time-driven pressure and force load data are processed and trained in a 

cloud-based analytics software system. They are then used for pattern recognition purposes. 
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Figure 4.4. Predictive analysis using data-driven approaches for online IDSRP solution 

The initial step is to resolve the outliers observed in the raw dynamometer card by using a 

z-score that indicates the vicinity of the data to the mean. The feature extraction and normalization 

are implemented as the data processing steps. The Gibbs wave equation is deployed to transform 

the surface card to a downhole one. The result is used for pattern recognition of the dynocard and 

determining the operational condition of the SRP. The implementation of the Gibbs wave equation 

in the downhole calculation is discussed in Everitt-Jennings (1992). It is important to adjust the 

inputs for the wave equation, such as the number of nodes, material properties (Young Modulus, 

density, length of rod string), etc., based on the laboratory conditions.  
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4.3.1 Modified Everitt-Jennings Algorithm 

The principal method to diagnose the operating condition of pumping systems is to 

simulate the rod string’s behavior and convert the surface dynocard to a downhole one. The 

transformation approach considers the rod string’s elasticity, which dampens the load and is 

impacted by surface and pump intakes. The wave equation is modeled based on the change of 

tension force with depth along the rod string, enabling transmission of the impulses from the 

surface. The breakdown of forces includes damping force (𝐹𝑑), the buoyant weight of rod (𝑊), 

tension/ pulling from above the rod element (𝐹𝑥), and tension from below the rod element (𝐹𝑥+Δ𝑥) 

(Equation 4.2). By substituting the rod load and stresses in sections 𝑥 and 𝑥 + Δ𝑥, determining 

damping force, and incorporating all elements, Gibbs reached the one-dimensional damped wave 

equation (Equation 4.3). The equation must be solved to convert the surface card to a downhole 

one. 

 
𝑚

𝛿2𝑢

𝛿𝑡2
= 𝐹𝑥 − 𝐹𝑥+𝛥𝑥 + 𝑊 − 𝐹𝑑 4.2 

 
𝑣2

𝛿2𝑢

𝛿𝑥2
=

𝛿2𝑢

𝛿𝑡2
+ 𝑐

𝛿𝑢

𝛿𝑡
 4.3 

where 𝑢 = 𝑢(𝑥, 𝑡) is the displacement of the rod string as a function of position (x) and 

time (t). Acoustic velocity of rod material is calculated by 𝑣 = √
144𝐸𝑔

𝜌
 , g is the gravitational 

acceleration, c is a constant damping factor, and ∂u/∂x is the rod strain or the change of rod 

displacement over its length. 

Gibbs’s method focuses on solving the damping force, which is a complex sum of forces 

opposed to the movement of rod string. The 1-D equation, shown in Equation 4.4, is extended to 

a linear hyperbolic differential equation by considering rod string material properties: cross section 

area (A), density (𝜌), friction coefficient (k), and elasticity modulus (E). 
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𝐸𝐴
𝛿2𝑢

𝛿𝑥2
(𝑥, 𝑡) =

𝜌𝐴

144𝑔

𝛿2𝑢

𝛿𝑡2
(𝑥, 𝑡) + 𝑐

𝜌𝐴

144𝑔

𝛿𝑢

𝛿𝑡
(𝑥, 𝑡) 

4.4 

Using a finite-difference model, the modified Everett-Jennings method defines the solving 

approach for Equation 4.4 (Everitt & Jennings 1992). The boundary conditions for solving this 

equation are obtained from the relations between surface position and load with time. Some factors 

needed for this finite-difference model are the number of recorded surface data points (N), total 

number of finite-difference nodes along the rod string (M), vector of finite-difference nodes along 

the rod string {𝑖}1
𝑀, vector of sample points obtained at the surface {𝑗}1

𝑁, discrete functions of rod 

position vs. time {𝑔𝑃𝑅}1
𝑁 and rod load versus time {𝑓𝑃𝑅}1

𝑁. 

The finite difference approach for wave equation involves space and time discretion, i.e. 

mesh formation. Since the mesh progresses down the rod string, the direction is positive 

downward. The time increments between the surface data readings follows 𝑢1,𝑗 =
𝑓𝑃𝑅,𝑗.Δ𝑥

𝐸𝐴
+ 𝑢0,𝑗 

direction, which splits into smaller sections. Therefore, the following algorithm is developed based 

on Equation 4.5 and the finite difference approach (Everitt & Jennings 1992). The algorithm 

involves the steps of initiation and back-calculation. Following this algorithm, the load and stress 

can be computed at any finite difference node by utilizing space and time discretization. The 

initialization equation for j values of 1-N is:  

𝑢0,𝑗 = 𝑔𝑃𝑅,𝑗 4.5 

The Hooke’s law gives for 𝑗 = 1,… ,𝑁: 

𝑢1,𝑗 =
𝑓𝑃𝑅,𝑗. Δ𝑥

𝐸𝐴
+ 𝑢0,𝑗 4.6 
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Applying the finite difference approach on Equation 4.4 for 𝑖 = 2, … ,𝑀 results in 

Equation 4.7. 

𝑢𝑖+1,𝑗 =
1

(
𝐸𝐴
Δ𝑥)

+ {[𝛼(1 + 𝑐Δ𝑥)]. 𝑢𝑖,𝑗+1 − [𝛼(2 + 𝑐Δ𝑡) − (
𝐸𝐴

Δ𝑥
)
+

− (
𝐸𝐴

Δ𝑥
)
−

] . 𝑢𝑖,𝑗

+ 𝛼. 𝑢𝑖,𝑗−1 − (
𝐸𝐴

Δ𝑥
)
−

. 𝑢𝑖−1,𝑗} 

4.7 

where: 

𝛼 =
Δ𝑥̅̅̅̅

Δ𝑡2
[
(

𝜌𝐴
144𝑔)

+

+ (
𝜌𝐴

144𝑔)
−

2
] 

4.8 

Δ𝑥 =
1

2
(Δ𝑥+ + Δ𝑥−) 4.9 

 

The resulting force (𝐹𝑝𝑢𝑚𝑝,𝑗) and displacement (𝑢𝑝𝑢𝑚𝑝,𝑗) at the pump, or at node 𝑀, are 

displayed on Equations 4.10 and 4.11. The arrays of force and displacement form the resulting 

downhole dynocard. 

Displacement:  

𝑢𝑝𝑢𝑚𝑝,𝑗 = (1 + 𝑐Δ𝑡). 𝑢𝑀−1,𝑗+1 − 𝑐Δ𝑡. 𝑢𝑀−1,𝑗 + 𝑢𝑀−1,𝑗−1 − 𝑢𝑀−1,𝑗 4.10 

Force:  

𝐹𝑝𝑢𝑚𝑝,𝑗 =
𝐸𝐴

2Δ𝑥
(3𝑢𝑀,𝑗 − 4𝑢𝑀−1,𝑗 + 𝑢𝑀−2,𝑗) 4.11 

The stability condition associated with the finite difference diagnostic model is 
Δ𝑥

𝑣Δ𝑡
≤ 1. In 

this equation, Δ𝑥 (ft) is the space between two finite-difference nodes of a particular taper, Δ𝑡 (s) 

is the time spacing between consecutive surface sampling points, and v (ft/s) is the velocity of 

sound in the rod string. 
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4.3.2 Algorithm Validation 

The dynocard conversion algorithm is applied for a few sample cards extracted from the 

literature. The purpose of this comparison is to verify the conducted calculations and the developed 

algorithm. The sample cards are recorded in real field scales, as shown in Figure 4.5 and Figure 

4.6. For both cases, the left plots show the surface and downhole cards picked up from the 

literature. The right plots show the comparison of the published digitized downhole card and the 

calculated one using this study’s program. The percentage errors in the area under the curve 

between the real downhole cards and the calculated ones are analyzed to validate the model (Table 

4.4).   

 

Figure 4.5 (A) Extracted surface and downhole cards, sample 1 (Everitt, Jennings 1992, 

Ercolino 2011) (B) Actual (digitized) and calculated downhole cards comparison 
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Figure 4.6 (A) Extracted surface and downhole cards, sample 2 (Dawsey 2020) (B) Actual 

(digitized) and calculated downhole cards comparison 

Table 4.4 reveals the percentages errors between actual and calculated downhole cards. 

The error is calculated by looking at the discrepancy of the area under these cards. The errors are 

small and less than 1.5%, which justifies the confidence in the data and conversion algorithm.  

Table 4.4 Percentage errors between actual and calculated downhole cards 

Sample Error (%) 

1 0.74 % 

2 1.34 % 

 

4.4 Results 

The surface to downhole dynocard conversion algorithm was applied to some sample cards 

obtained from the experiments in normal operating conditions. The results of the surface and 

downhole dynamometer cards are shown in Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10. 

These figures are obtained from tests with varying stroke lengths and SPM values. The surface 

dynocards from Figure 4.7 and Figure 4.8 are obtained with 250 mm stroke length and with 2 

SPM and 4 SPM, respectively. Meanwhile, the surface dynocards from Figure 4.9 and Figure 

4.10 are recorded from tests with 200 mm stroke length and 2 SPM and 5 SPM, respectively.  

The surface cards are selected from one cycle of the pump’s operation. The converted 

downhole cards from these figures are shown in red. The noise and discrepancy during the 
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transition from upstroke to downstroke is not commonly observed in a field-scale operation. This 

phenomenon can be due to the lower modulus of elasticity and buckling in the rod string of the 

experimental setup. The low modulus of elasticity affects the static elongation, where the natural 

vibration opposes the motion of the polished rod at the peak of dynamometer card. Kendrick and 

Corneluis (1937) also described this phenomenon by observing the polished rod returning to the 

top of the stroke before completing the downstroke. The fluid pressure surrounding the rod string 

increases the magnitude of the compressive force that the rod string must support. A slim rod string 

can withstand a certain amount of compressive load before the buckling threshold, which results 

in contact between rod string and tubing (Lukasiewicz and Knight 2006).  

Overall, the transformation algorithm is supposed to help convert the surface cards into the 

downhole ones. The resulting downhole pattern enables operational malfunction recognition for 

each test. However, the abnormal rod string stretching or buckling may alter the shape of the 

dynocard compared to the field scale cases. As a result, the transformation may not be readily 

translated from the lab to field conditions. 

 

Figure 4.7. Conversion of surface to downhole dynamometer cards with input stroke length 

of 250 mm, machine SPM of 4 



49 

 

Figure 4.8. Conversion of surface to downhole dynamometer cards with input stroke length 

of 250 mm, machine SPM of 8 

 

Figure 4.9. Conversion of surface to downhole dynamometer cards with input stroke length 

of 200 mm, machine SPM of 4 
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Figure 4.10. Conversion of surface to downhole dynamometer cards with input stroke 

length of 200 mm, machine SPM of 5 
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Chapter 5: Data Analytics 

 

Chapter 5 discusses implementing analytical approaches to diagnose the operational 

conditions through developing predictive multiple input and multiple output regression models. 

This chapter furthers feature calculations based on the results obtained in the experimental design. 

The physics-based analysis helps understand the impacts of experimental inputs on the operation 

of SRP, categorizes the performance, and helps select important features for models. The results 

and model evaluation are presented in the chapter. 

 

5.1 Preliminary Analysis: Feature Generation  

The conclusion from Chapter 4 suggests a more time-driven analysis based on the 

parametric signal data processing. The pressure and movement data over time provide further 

insights about the pump performance, including force range, liquid flow rate delivered by the pump 

plunger per cycle, differential and frictional pressure losses. These calculations help generate 

additional features for the model input. When putting any of these features in the time dimension, 

the changes of the feature can be used to evaluate the SRP performance.  

This section focuses on the calculation of additional feature generation. Each resulting data 

point represents a pump card operation. The pump delivery, or the liquid flow rate provided by the 

plunger, is primarily driven by the upward and downward motions of the rod pump with time (i.e., 

number of strokes per minute) and the effective plunger stroke length, as shown in Equation 5.1 

. The plunger’s mechanical properties and fluid properties are taken from the early model 

developed by Pienknagura Dolberg 2019 (Equation 5.1 and 5.2). The formation fluid factor value 
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is 1, and the volumetric efficiency of the plunger is 80% because the system utilizes water as the 

testing fluid and slippage factor.  

𝑞 = 0.1484
𝐴𝑝𝑁𝑆𝑝𝐸𝑣

𝐵𝑜
 (𝑆𝑇𝐵/𝐷) 5.1 

Where 𝐴𝑝 is 3.167 in2, N is the number of strokes per minute (SPM), 𝐵0is equal to 1 with 

water utilized as the testing fluid in the facility. 

𝑆𝑝 = 𝑆 − (𝑒𝑟 + 𝑒𝑡) + 𝑒𝑜 5.2 

Where 𝑒𝑟 = 0.0035, 𝑒𝑡 = 1 × 10−6, 𝑒𝑜=0.000015. (Pienknagura Dolberg 2019) 

The resulting liquid flow rates for varying inputs of linear actuator’s RPM, stroke length 

and shapes are displayed in Figure 5.1. The facility can achieve flow rates of 6 to 54.1 STB/D. 

The increasing trends of flow rate are observed with the increase in input RPM and stroke length. 

As the rod accelerates more rapidly with trapezoidal shape, a higher amount of fluid is delivered 

by plunger over time than the sinusoidal shape. The impacts of flow rate on pressure parameters 

are also considered in the following discussion.  

 

Figure 5.1 Liquid flow rates with varying inputs of RPM, stroke length and card shapes 

 

The pressure difference between the top and pump discharge sensors shows the flow’s 

pressure gradient, implying the frictional pressure loss after subtracting the hydrostatic column 
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(Equations 5.3 and 5.4). The resulting frictional losses are shown in Figure 5.2 with respect to 

flow rate, combining with systematic and random uncertainties. The lower flow rates lead to lower 

values of frictional losses, which are no more than 2 psi. As the flow rate is too low with the shorter 

displacement range (Figure 5.1), a possibility of flow back could not occur due to minimal or too 

low frictional factor.  

Δ𝑃 = 𝑃𝑇 − 𝑃𝐵2
(𝑝𝑠𝑖) 5.3 

Where 𝑃𝑇 is the pressure record at the top sensor (psi) and 𝑃𝐵2
 is the pressure recorded at 

second bottom or pump’s discharge sensor (psi). 

ΔPfriction = Δ𝑃 − 𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐(𝑝𝑠𝑖) 5.4 

 

 

Figure 5.2 Frictional pressure results with liquid flow rate delivered by plunger  

 

The cyclic trend in the suction pressure recorded at the first bottom sensor (Figure 4.2) 

provides the information about the amount of water column pumped at the intake. The changes in 
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the hydrostatic column of water can be inferred from the difference between maximum and 

minimum pressure values recorded at upstroke and downstroke (Equations 5.5 and 5.6). The 

frictional pressure results are significantly smaller than the hydrostatic pressure column, as seen 

in Figure 5.2, and can be neglected for this estimation. Figure 5.3 reveals the values of B1 pressure 

range or intake pressure (Δ𝑃𝐵1) and resulting water column per cycle at the pump intake with 

respect to liquid flow rate. The datapoint are scattered in the plot because flow rate is a function 

of both stroke length and SPM, while water column primarily depends on stroke length and 

pressure B1. The generalized linear regression (GLM) is added to improve the fitting. The larger 

range of pressure B1 means a higher column of water fed into the system during the upstroke, thus 

a higher flow rate.  

Δ𝑃𝐵1 = 𝑃𝐵1𝑚𝑎𝑥 − 𝑃𝐵1𝑚𝑖𝑛(𝑝𝑠𝑖) 5.5 

 

𝑊𝑎𝑡𝑒𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑎𝑡 𝑃𝑢𝑚𝑝 𝐼𝑛𝑡𝑎𝑘𝑒 𝑝𝑒𝑟 𝐶𝑦𝑐𝑙𝑒 =
ΔPB1

0.433
 (𝑓𝑡) 5.6 

 

 

Figure 5.3 Pressure B1 range and resulting water column pumped per cycle at the intake 

with liquid flow rate  

As the rod load indicates a recurring pattern with time (Figure 5.4), the range of rod load 

is calculated as the difference between the peak load achieved on the upstroke and the minimum 

load recorded on the downstroke (Equation 5.7). This feature is an important parameter for the 
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predictive modeling, because the load range should be consistent with time when the pump 

operation reaches the steady state under ideal conditions.  

 

Figure 5.4 Rod load raw data with time, with 200 mm stroke length and 2.5 SPM 

Δ𝐹 = 𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛(𝑁) 5.7 

 

5.2 Data Preprocessing: Feature Selection and Pump Card Categorization  

This section focuses on preparing the data and selecting target features for the predictive 

modeling by analyzing the changes in parameters with time. As for data cleaning, the data points 

from the first-time cycle are omitted because the operation has not reached the steady state. The 

analysis in this section is carried out by selecting pivotal data points based on each time cycle. 

When the SRP operates in a continuous normal mode, it maintains steady-state conditions with 

constant pressure, continuous inflow into wellbore and fluid lifted to the surface (Rowlan and 

McCoy 2018). Due to the instability of SRP operation, the negative outcome alters the consistent 

trend of parametric features with time. Following the statistical analysis concluded that the rod 

speed (SPM) could be the driving factor to determine pump operations, impacts of fast or slow rod 

motion are analyzed to categorize normal operations and check the possibility of pumping off.  
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The plots of differential pressures and resulting water column filled at the pump intake 

with respect to time are shown in Figure 5.5 and Figure 5.6. With the combined changes of stroke 

length and SRP speed, the pressure difference between wellhead and bottom is maintained 

consistent with slight fluctuations of less than 1 psi. The trends in differential pressure are not 

significant. On the other hand, the increase in rod speed (SPM) alters the suction pressure trends 

and the resulting water column filled at the pump intake. As time goes by, the continuing high rod 

speed removes an excessive amount of liquid in the casing annulus, delaying the liquid fallback to 

get into the suction point, thus reducing the B1 (suction) pressure ranges and the liquid column. 

As a result, the suction pressure and liquid column fall off from the constant trend with time. As 

suction pressure range and resulting liquid column at pump intake strongly correlate with time, 

these features are selected for output candidates when the predictor variables are the experimental 

inputs. Figure 5.6 prompts a potential real-time predictive mode for the expected SRP 

performance. When the actual data behaves differently from the predicted model, anomaly 

occurrence is detected.  

 

Figure 5.5 Differential Pressures obtained from tests with (A) 250 mm stroke length with 

9.6 SPM, and (B) 200 mm stroke length and 7.8 SPM with time 
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Figure 5.6 The difference of maximum and minimum intake pressure (B1) and resulting 

water column at pump intake per cycle, with 250 mm stroke length in trapezoidal shape 

 

The tests with IDSRP were planned for normal operation with continuous fluid input to the 

pump. However, for the tests with high SPM values with different displacement shapes, fluid 

recirculation back to the pump could not always keep up. As a result, the potential for incomplete 

pump fluid fillage was raised. Before training the predictive mode, the pump cards for various tests 

were categorized by looking at the intake pressure trends with time throughout the test.  

If pump fillage reduces with time, the intake pressure gradually reduces, and the pumping-

off issue occurs. It means that the slope of intake pressure with time becomes more negative than 

the tests with steady-state normal conditions. It is initially assumed that the rod SPM is the primary 

driving factor for this condition. The plot of Figure 5.7 provides the SPM values corresponding to 

the linear actuator’s RPM and stroke length, from which 5 levels of SPM values are established. 

The details of the 5 groups are summarized in Table 5.1, including highest, upper high, middle, 

lower, and lowest SPMs. The groups of upper high SPMs are primarily results of abrupt trapezoidal 

changes in rod displacement and faster linear actuator’s RPM. The largest SPM value that 

sinusoidal shape with 250 mm stroke length can achieve is 8 SPM.  
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Figure 5.7 Five levels of SPM values based on SPM vs. RPM plot 

Table 5.1 Groups of stroke per minute test levels 

Group Type SPM values 

Group 1: Highest SPM 17.5, 18.2, 22.7 

Group 2: Upper High SPM 12.7, 13.3, 13,9, 14.3 

Group 3: Middle SPM 9.6, 9.9, 10, 11.5 

Group 4: Lower SPM 6.0, 6.6, 7.6, 7.8, 8.0 

Group 5: Lowest SPM  2.0, 3.0, 3.0, 5.0 

 

In order to analyze the intake pressure trends with time, a linear regression line is fitted 

into the B1 pressure range (intake pressure) and the resulting water column filled per cycle at pump 

intake. These regression lines are shown in Figure 5.8 and Figure 5.9 for the tests in group 3 of 

SPM values as an example. The resulting slope is obtained and shown in Table 5.2. Although 

these pump cards have relatively close SPM values, the pump data with 250 mm stroke length 

indicate a more negative slope, meaning that the filled liquid column and intake pressure decline 

faster. Suppose this test is conducted for a longer time. In that case, the pump fillage could reduce 

even more, amplifying the severity of pumping-off and the possibility of the deteriorated pump 

with excessive rod displacement and speed. Therefore, within the tests in this group, the test with 
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250 mm stroke length, 1500 RPM, and trapezoidal shape is considered to indicate the early signs 

of pumping-off.  

 

Figure 5.8 B1 pressure trends per cycle with time for tests in group 3 middle SPM values 

 

Figure 5.9 Water column at pump intake per cycle with time for group 3 middle SPM tests 
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Table 5.2 Slope results obtained from linear regression fit for group 3 middle SPM tests 

SPM 
Stroke 

Length 
RPM Shape Slope 𝚫𝐏𝐁𝟏 

Slope of water 

filled at pump 

intake 

9.6 200 1000 TPZ -0.00317 -0.00732 

9.9 200 2000 SIN -0.00115 -0.00265 

10.0 150 1500 SIN -0.00405 -0.00936 

11.5 250 1500 TPZ -0.0289 -0.0667 

 

A similar process was carried out to find slopes through linear regression fitting in the 

remaining SPM groups. A more negative slope is observed if the pump card indicates early 

pumping-off signs. As the water column depends on the intake pressure through Equation 5.6, 

only the representative regression fit results of the water column filled at the pump intake are 

shown for the remaining groups in Figure 5.10. There are slight instabilities observed in a few 

pump cards at upper high and lower SPM groups. Even though the production slightly declines 

with time, the amount of water filled at pump intake is maintained relatively constant for SRP 

systems operating at lower speed groups.  
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Figure 5.10 Water column at pump intake per cycle with time for the highest, upper high, 

lower and lowest SPM groups 

 

The specific input that determines the SRP cards of normal and pump-off operations 

remains inconclusive. Grouping the tests based on only SPM values does not fully encompass 

other factors, such as displacement shape, stroke length, or linear actuator’s RPM. Therefore, the 

product of speed (SPM) and the stroke length is used as the proportional length of the liquid 

column filled per minute. Using this parameter establishes a threshold to determine the possibility 

of pumping off. If the total length of the water column getting pumped at a given time (mm/min) 

exceeds the feed water amount, the water level at the pump intake decreases. This occurrence 

reduces the suction pressure over time, and pumping-off may occur. Therefore, a negative slope 

for the intake water column plot with time can be interpreted as pumping off.  
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Figure 5.11 demonstrates the changes in the length of water column pumped (mm/min) 

with respect to the slopes of intake pressure and resulting water column with time. When the water 

column length being pumped exceeds 2000 mm/min, more anomalous cases are observed with 

more negative slopes. Thresholds of -0.0104 for the slope of the intake pressure range and -0.024 

for the slope of the water column at pump intake are defined as the onsets of pumping off. With 

this observation, four of the experiments result in slightly pump-off cases.  

 

Figure 5.11 Slopes of pressure B1 range (𝚫𝑷𝑩𝟏) and water column at the pump intake in 

response to total flow rate (mm/min) 

Even though the physical threshold is established, we would like to validate input 

combinations that categorize normal operation or slightly pump-off by the data analytics approach. 

The objective for building a machine learning model is to create the predictive regression-based 

and classification models to predict normal operation performance and detect the abnormal case if 

there is any deviation, based on multiple experimental inputs. For validating the pump 

classification from Figure 5.11, the model is trained to fit the operation performance while 

detecting abnormality by deploying in slightly pump-off cases. As shown in Figure 5.12, all the 

pump cards are split with 70% used for model training and 30% for model testing. As the 

regression model will differentiate between normal and anomalous cases, the sets of input from 
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slightly pumped-off cases will predict the trained model to determine whether the actual issue is 

deviated from the expected normal operation. The data from slightly pumped off cases will be 

utilized as diagnosis cases to detect the abnormality.  

 

Figure 5.12 Data preparation for modeling 

 

5.3 Multiple Input Multiple Output Model Discussion 

Multiple-output regression is a method to predict two or more numerical values with 

multiple input examples. This technique has been widely implemented in the industry for 

production forecasting, drilling optimization, and formation evaluation. The studies from Guo et 

al. (2009) and Razali and Izni Mustafar (2011) provide the implications of utilizing multiple linear 

regression to predict oil production volume. The multiple output linear regression approach was 

also extended by Torlov et al. (2020), incorporating downhole ultrasonic formation tester data to 

determine the in-situ gas-oil ratio. The applications of multiple linear and non-linear regression 

models are also discussed in Yazitova and Yagis (2020) when the models are trained and evaluated 

in Measure While Drilling (MWD) log and rock properties data to estimate the drilling rate. With 

arrays of experimental test matrix and output collection, this study is an attempt to build a multiple 

input multiple output regression model towards real-time prediction of expected SRP performance 

and potential abnormal occurrences. 
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5.3.1 Multiple Output Linear Regression (LR) 

According to Watt et al. (2020), the basic elements of multiple-output regression model 

include vector-valued input and output. At pth point (𝑥𝑃, 𝑦𝑃), the input 𝑥𝑃 has N dimensional 

inputs, i.e. 𝑁 × 1 columns, and the output 𝑦𝑝 has associated 𝐶 dimensions, i.e. 1 × 𝐶 row vectors 

(Equation 5.8).  

(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑃, 𝑦𝑃) 5.8 

The dimensionality of (𝑥𝑃, 𝑦𝑃) is elaborated in Equation 5.9. The index of 𝑦𝑝 starts from 

0 instead of 1 in this case, because each input point 𝑥𝑝 has a 1 stacked on top. The newly adjusted 

form of each point 𝑥𝑃 is denoted as 𝑥�̇�. 

𝑥𝑃 = [

𝑥1, 𝑃
𝑥2, 𝑃

⋮
𝑥𝑁 , 𝑃

]  𝑦𝑝 = [𝑦0,𝑝 𝑦1,𝑃 …𝑦𝐶−1,𝑃]  𝑥�̇� =

[
 
 
 
 
1
𝑥1

, 𝑝

𝑥2, 𝑝
⋮

𝑥𝑁 , 𝑝]
 
 
 
 

   where 𝑝 = 1,… , 𝑃 5.9 

With weight matrix 𝑊 containing compressed weight vector of [𝑤0 𝑤1  ⋯𝑤𝐶−1], the linear 

relationship between 𝑥�̇� and the entire set of C elements of 𝑦𝑝 can be written as: 

𝑥�̇�
𝑇𝑊 = [ 𝑥�̇�

𝑇𝑤0 𝑥�̇�
𝑇𝑤1  …  𝑥�̇�

𝑇𝑤𝐶−1 ]   or 𝑥�̇�
𝑇𝑊 ≈ 𝑦𝑝 

where 𝑝 = 1,… , 𝑃 
5.10 

The goal of multi-output regression is to achieve the optimal likelihood of approximation 

in Equation 5.10. Therefore, the objective is to minimize the regression cost function, calculated 

by Least Squares or Absolute Deviations, displayed in Equations 5.11 and 5.12, respectively. The 

results of these cost functions are considered as the evaluation metrics to validate the models. 

Assuming that 𝑦�̂� is a predicted value of ith samples and 𝑦𝑖 is corresponding true value within 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, the Absolute Deviations use the mean absolute error (MAE) as the regression metric in 
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this study (Equation 5.13). Least Squares are also inferred to as Mean Square Error (MSE), 

corresponding to the square error of loss (Equation 5.14). 

𝑔(𝑊) =
1

𝑃
∑‖𝑥�̇�

𝑇𝑊 − 𝑦𝑝‖
2

=
1

𝑃
∑ ∑(�̇�𝑝

𝑇𝑤𝑐 − 𝑦𝑐, 𝑝)
2

𝐶−1

𝑐=0

𝑃

𝑝=1 _

𝑃

𝑝=1

 

where 𝑝 = 1,… , 𝑃 

5.11 

𝑔(𝑊) =
1

𝑃
∑‖𝑥�̇�

𝑇𝑊 − 𝑦𝑝‖ =
1

𝑃
∑ ∑|𝑥�̇�

𝑇𝑤𝑐 − 𝑦𝑐,𝑝|

𝐶−1

𝑐=0

𝑃

𝑝=1 _

𝑃

𝑝=1

 

where 𝑝 = 1,… , 𝑃 

5.12 

𝑀𝐴𝐸(𝑦, �̂�) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ |𝑦𝑖 − �̂�|

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 5.13 

𝑀𝑆𝐸(𝑦, �̂�) = 1 −
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑦𝑖 − �̂�)2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
  5.14 

Other important metrics to evaluate the multi-input multi-output regression models include 

R-squared (R-2 or R2) and explained variance score (Pedregosa et al. 2011). R-2 or R2, also called 

the coefficient of determination, is a statistical measure for how close the data are to the regression 

model, i.e., goodness of fit. The metric is calculated by the proportion of explained variance as 

shown in Equation 5.15. The best possible score is 1.0. A score of 0 indicates a constant model, 

while negative values indicate arbitrary worse model performance. The explained variance score 

suggests the dispersion of errors or the proportion of model that accounts for the variation of the 

dataset (Equation 5.16). 

𝑅2(𝑦, �̂�) = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 5.15 

where �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  

explained variance (𝑦,  �̂�) = 1 −
𝑉𝑎𝑟 { 𝑦 − �̂�}

𝑉𝑎𝑟 {𝑦}
 5.16 

where Var is the square of standard deviation. 
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Besides Linear Regression (LR), which is commonly deployed for multiple input multiple 

output models, this study also explores the possibility of utilizing k-Nearest Neighbor (KNN) and 

Decision Tree (DT) to optimize the predictive models. The reason is that the input parameters 

include multiple categorical variables, such as stroke length, shape, SPM, which can generate 

either set of neighbors based on the shortest distance or the set of decision rules to split these input 

nodes to predict the target leaf. 

5.3.2 k-Nearest Neighbor (KNN) 

KNN is a distance-based machine learning method. In this method, each training data point 

is mapped to a multidimensional space, where each axis corresponds to a distinctive variable. In a 

regression context, the predicted value �̂� can be mean or weighted mean of y values for the 

neighbors. These values are represented as distance 𝑑(𝑞, 𝑥𝑐) and k neighbors (Equation 5.17) 

(Naomi et al. 1992, Cunningham et al. 2020). The mechanism of this technique is to predefine the 

number of nearest neighbors to determine the  �̂� value of new observation. The validation of the 

model is performed using the test data. 

 �̂� =
1

𝑘
∑

1

𝑑(𝑞, 𝑥𝑐)𝑃
𝑦𝑐

𝑘

𝑐=1

 
5.17 

where 𝑑(𝑞, 𝑥𝑐) is a distance between unknown example 𝑞 and training sample 𝑥𝑐. 

5.3.3 Decision Tree (DT) Regression 

Decision Tree (DT) is a data mining technique that establishes different decision rules to 

classify a particular target (Morgan and Sonquist 1963). The instance for DT regression is to split 

two or more groups by internal node and a set of decision rules. It follows the divide and conquer 

greedy algorithm that splits data into smaller parts in a recursive manner (Pekel 2020). Apart from 

the classification tree, the regression tree takes ordered values at each split point and establishes 
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the regression model that fits each node to generate a predicted output y (Loh 2011). The DT 

regression model deployed in this study follows Classification And Regression Trees (CART) 

algorithm that involves greedy splitting and pruning as the stopping criterion (Breiman et al. 2017). 

The pseudocode is established as below: 

1. Start at root node. 

2. Find each feature’s best plot and node’s best split. For each X, find the set S that minimizes 

the sum of node impurities in the 2 child nodes and chooses to split {𝑋∗ ∈ 𝑆∗} that gives 

the minimum overall X and S. In CART algorithm, the impurity function uses the 

generalization of binomial variance, i.e., Gini index (Equation 5.18). As for regression 

purpose, the stopping criterion is the mean squared error (MSE) (Equation 5.14). 

𝑖(𝑡) =  ∑𝐶(𝑖|𝑗)𝑝(𝑖|𝑡)𝑝(𝑗|𝑡)

𝑖,𝑗 

 5.18 

where 𝐶(𝑖|𝑗) is a cost of misclassification of a class j case as a class i, and 𝑝(𝑖|𝑡) and 

𝑝(𝑗|𝑡) are probabilities of cases in class 𝑖 (or 𝑗) falling into node t. 

3. If stopping criterion, or pruning, is reached, exit. Otherwise, step 2 is applied recursively 

to each child node in turn.  

 

Figure 5.13 provides a sample of how Decision Tree Regressor generates a set of rules in 

this dataset. In each node, variable features try all possibilities within the value range and keep 

splitting in different subsets in which the MSE is as small as possible. The tree continues splitting 

into many child nodes until reaching the leaf node. The stopping criterion is the mean squared 

error (MSE) (Equation 5.14).  
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Figure 5.13 A sample of decision tree regression  

 

5.4 A Discussion on Classification Models 

Classification is a machine learning technique to identify the different label outputs from 

predictor features. The two classification types include supervised and unsupervised learnings. 

Supervised learning establishes the relationship between the known label and the entities, while 

unsupervised learning builds a clustering based on the input variables. The targets of the 

classification problems could be binary or multiple classes. The evaluation primarily focuses on 

the metrics derived from the confusion matrix, including the actual and predicted values in 

response to each label. Some performance metrics include accuracy, precision, the areas under the 

curves of true and false positive rates, and the trade-off between precision and recall.  

The common approaches to solve classification problems include logistic regression, 

decision tree and its ensembles. Apart from linear regression, logistic regression utilizes the 
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logistic function to determine the probability or predict the binary outcome (Wright 1995, Edgar 

et al. 2017). In the classification problem, the decision tree technique predicts the target variable 

by learning the decision rule. The pseudocode for classification follows 5.3.3 discussion, except 

using the Gini index as a stopping criterion (Equation 5.18). Figure 5.14 provides an example of 

decision tree classification applied on this dataset.  Each parametric feature keeps splitting in each 

node until the stopping criterion is reached. Random forest and gradient boosting are the improved 

forms of the decision tree due to multiple decision trees ensemble. Random forest randomly selects 

subsets of input attributes (experimental parameters) for splitting the tree at any node, creating 

multiple trees (Breiman 2001). The trees giving minimal errors are aggregated, or bagged, to 

provide the final model. The random nature of the model improves its robustness and reduces 

variance. Gradient boosting generates the succession of trees that learn from the mistakes of 

previous trees by minimizing the residual error (Breiman 1997). This boosted decision tree reduces 

both variance and bias of the model due to subsequent learning. In this thesis, the classification is 

conducted with comprehensive datasets from both 5 and 20-minute tests. It serves as a mean to 

justify the pump condition categorization based on the threshold criteria described in 5.2.  

 

Figure 5.14 A sample of decision tree classification  
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5.5 Results and Discussion 

5.5.1 Multiple Input Multiple Output (MIMO) Regression Evaluation 

Following the algorithm discussion, the models are trained with the experimental inputs, 

including shape, RPM, SPM, stroke length, and test duration. Table 5.3 and Table 5.4 summarize 

the evaluation metrics on validation data for the three MIMO regression techniques. These metrics 

denote the capability of the models to fit and predict accurately. Due to the ability to utilize 

distance-based calculation to navigate the neighborhood, KNN performs the best. It shows a better 

evaluation score in predicting output values compared to the other two techniques, with the 0.87 

goodness of fit and relatively low errors.  

Table 5.3 Mean Absolute Error (MAE) and Mean Squared Error (MSE) metrics of 

validation data of multiple outputs for 3 MIMO regression techniques  

Output 
Water column filled at 

pump intake per cycle 
Intake pressure (𝚫𝑷𝑩𝟏) Rod load range (𝚫𝑭) 

MAE LR 

MSE LR 

RMSE LR 

0.27 

0.12 

0.35 

0.116 

0.021 

0.14 

37.77 

2483.6 

49.84 

MAE KNN 

MSE KNN 

RMSE KNN 

0.10 

0.032 

0.179 

0.044 

0.006 

0.077 

14.12 

86.92 

9.32 

MAE DT 

MSE DT 

RMSE DT 

0.13 

0.059 

0.24 

0.06 

0.01 

0.1 

18.17 

1464.3 

38.27 

 

Table 5.4 R-2 evaluation score and explained variance of validation data for 3 MIMO 

regression techniques  

Technique R-2 Evaluation Score Explained Variance 

Linear Regression 0.5441 0.54445 

K-nearest Neighbor 0.87439 0.87454 

Decision Tree 0.78152 0.78164 

 

The predictions of the three models are compared to the SRP features over time for a test 

with normal conditions, as shown in Figure 5.15. The predicted results from KNN and DT are 
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relatively close to the actual normal operation data. The visual observations imply that Linear 

Regression does not perform well due to the linear relationship assumption, which fails to adopt 

the cyclic nature of raw data.  

 

Figure 5.15 Visual comparison between the true (actual) normal operation data, predicted 

multiple outputs in test data 

5.5.2 Model Deployment 

The trained model is deployed in the slightly pump-off data. In this case, the prediction 

differentiates actual normal and slightly pump-off operations based on the same sets of 

experimental inputs. In the testing stage, KNN and DT models are selected based on the evaluation 

results from 5.5.1. Figure 5.16 exhibits the distinctive trend between normal and abnormal 

operations. The evaluation metrics include the negative R-squared (R-2/ R2) of -3.56 for KNN and 

-4.78 for Decision Tree, and significant errors shown in Table 5.5. The quantitative measurement 

implies that the pump-off cases do not follow the predicted trend of normal operation in the steady 

condition. The predicted constant suction/ intake pressure and constant water level at pump intake 
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confirm the underlying physical basis in these MIMO regression models. In this case, the abnormal 

operation is detected when parametric performances of slightly pump-off cards deviate from the 

diagnostic plots of forecasted models. Overall, these predictive models can be applied to any 

experimental input set to diagnose the pump operation and monitor the early signs of abnormal 

occurrences (i.e., pumping-off issues) in IDSRP.  

 

Figure 5.16 Visual comparison between the slightly pump-off case and the normal 

operation predicted from KNN and Decision Tree 

Table 5.5 Mean Absolute Error (MAE) and Mean Square Error (MSE) metrics on testing 

data of multiple outputs for 2 MIMO regression techniques  

Output Water column filled 

at pump intake per 

cycle 

Intake pressure 

(𝚫𝑷𝑩𝟏) 

Rod load range (𝚫𝑭) 

MAE KNN 

MSE KNN 

RMSE KNN 

0.892 

1.094 

1.046 

0.386 

0.205 

0.453 

53.894 

4000.48 

63.249 

MAE DT 

MSE DT 

RMSE KNN 

1.093 

1.805 

1.344 

0.473 

0.338 

0.581 

53.089 

4512.31 

67.17 
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5.5.3 Supervised Learning Classification  

MIMO regression approaches generate models to predict the normal performance of a SRP 

and detect anomalies. There is more confidence in quantifying the threshold parameters to identify 

the operational type of a pump card. The threshold parameters may be the stroke length and number 

of strokes per minute or the minimum slope of the intake pressure and the resulting water column 

at pump intake over time. The last step is to carry out a comprehensive supervised learning model 

to classify the SRP’s operation based on the experimental parameters. Apart from the given test 

matrix, four additional tests with random inputs are included in the dataset to ensure the volume 

and variety qualities for big-data applications. Therefore, the supervised classification approach 

incorporates data from 52 pump cards with 5- and 20-minutes testing durations. 

The labels used for the analysis are shown in Figure 5.17 with 12 anomalous cards or 1741 

associated data points in Label 1, and 40 normal cards or 4568 associated data points in Label 0. 

The crucial assumption for the classifier is that there are no intercorrelations (i.e., 

multicollinearity) among predictors. Instead of selecting both intake pressure (Δ𝑃𝐵1) and resulting 

water column filled at the pump intake, only the intake pressure is considered as an element of 

predictor sets. Because the product of stroke length and numbers of stroke per minute (i.e., 

expected total water being pumped per minute) affects the operational outcome, the predictor set 

extends to this feature. Other parametric attributes include rod displacement, rod load range, time, 

and the pressure difference between the top and pump discharge sensors. The dataset is split into 

training and testing groups with a ratio of 60-40. The imbalanced data concern due to uneven 

distribution is addressed by up-sampling the minority class (i.e., Label 1) in the training set. The 

up-sampling technique prevents the model from bias prediction inclining towards the majority 

class (i.e., Label 0).  
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Figure 5.17 Resulting labels for 52 pump cards obtained from IDSRP testing based on the 

slope of intake pressure with time 

As the output is binary, the four machine learning models include Logistic Regression, 

Decision Tree, Random Forest, and Gradient Boosting. Once these models are trained, the 

prediction is evaluated using the test data. Table 5.6 summarizes the evaluation for the four 

classification techniques. The accuracy metric represents the fraction of test data predicted 

correctly. Precision indicates the confidence level of predicting Label 1 (i.e., abnormal case) 

correctly. F-1 score is a harmonic mean of precision and recall (the proportion of all Label 1’s or 

all Label 0’s predicted correctly). The marginal overall accuracy metric implies the robustness of 

these classification techniques in determining normal and slightly pump-off cards.  

Table 5.6 Different evaluation metrics on test dataset for supervised classification methods 

Methods 
Overall 

Accuracy 

Precision 

(confidence 

predicting Label 

1) 

F-1 

score 

Label 1 

F-1 score 

Label 0 
AUC 

Logistic 

Regression 
0.86 0.69 0.78 0.89 0.94 

Decision Tree 0.83 0.63 0.77 0.86 0.94 

Gradient Boosting 0.91 0.79 0.86 0.94 0.97 

Random Forest 0.92 0.79 0.87 0.94 0.98 

 

The Receiver Operating Characteristic (ROC) curve analysis provides further insight into 

the performance of binary classification at various discrimination thresholds (Gupta et al. 2020). 
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The ROC curve in Figure 5.18 shows the relation between true positive rate (probability of 

correctly predicting that SRP indicates issues) and false positive rate (probability of falsely 

predicting issues while the SRP operates normally) cases. The resulting area under the curve 

(AUC) demonstrates the degree of the predictive model separating or classifying the two labels. 

In this case, the ROC curve could be smoother if more testing or more pump cards are generated 

for the training set. Considering that the data is imbalanced by nature, precision-recall is another 

helpful metric to determine the success of prediction. The higher area under the precision-recall 

curve (AP) indicates both high recall and high precision (Pedregosa 2011).  

The AUC and AP results prove Random Forest to be the best classifier among the four 

techniques. Following this best predictive model, the resulting confusion matrix displays the 

numerical values of actual, predicted, and misclassified labels in the testing data (Figure 5.19). 

206 data points are misclassified in this case, while 1606 data points for normal cards and 712 data 

points for slightly pump-off cards are accurately predicted. It is worth noting that the data are 

primarily collected from the laboratory design described in 3.3. The classification models serve as 

a prototype predictive mode and could be improved by simulating more cases in the facility, and 

especially by using the other lab or field-scale data.  

 

Figure 5.18  ROC curve analysis and Precision-Recall curve document AUC and AP values 

for the four classification techniques  
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Figure 5.19 Confusion Matrix showing True and Predicted Labels of Random Forest 

The final stage of supervised learning is to analyze and quantify the importance of 

experimental parameters. The feature importance decodes the ‘black-box machine learning’ and 

explains how these features generate confidence in the model. The Shapley values, calculated by 

using Shapley Additive Explanation, indicate the importance of each predictor in predicting class/ 

label of 0 or 1. In the statistical context, the Shapley values represent the average of marginal 

contribution across all combinations of features (Lundberg and Lee 2016, Tran et al. 2020, Lam 

Tran et al. 2020). This method helps operators to determine key physical parameters for predictive 

modes in production systems.  

Figure 5.20 reveals that the total water column being pumped per minute, intake pressure, 

and pressure difference between the top and discharge sensors are the top three predictors in 

determining labels 0 and 1. This verifies the selection of both multiplication of SPM and Stroke 

Length and the changing rate of intake pressure with time as determining factors in labeling SRP 

condition. As the pump operates under the stabilized conditions, the performance is independent 

of time, making the time feature not as important as the other entities. The rod load (Δ𝐹) indicator 

is anticipated to be the primary factor in an actual field scenario. However, the dynocard 
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transformation results from 4.4 imply the presence of buckling in the rod string and possibly 

significant uncertainties in the pump card data. Hence, for the case of this study, the rod load factor 

is not a significant contributor to classify normal and slightly pumped-off classes.  

  

Figure 5.20 Variable importance plot based on Shapley values for normal operation (Class 

0) and slightly pumped-off anomaly (Class 1) 

Analyzing Shapley values for each label helps in understanding the impacts of operational 

parameters on SRP conditions. The tornado chart in Figure 5.21 displays the Shapley values or 

the significance of all predictors and abnormal card labels in descending order. The colors also 

represent the intensity of the parametric features. In the x-axis for each predictor, the higher 

Shapley value means a higher tendency for a pumping-off situation. Therefore, the cases with a 

higher pumping-off possibility mostly include higher total water column being pumped per minute 

(𝑆𝑃𝑀 × 𝑆𝑡𝑟𝑜𝑘𝑒 𝐿𝑒𝑛𝑔𝑡ℎ), higher intake pressure changing slope, and higher differential pressure 

cases. A high total water column being pumped per minute is a key attribute for abnormal cards. 

The observation from Figure 5.11 also confirms more pump-off cards for the tests with total water 

columns higher than 2000 mm/min. The results confirm the underlying physical basis of predictive 

models in categorizing operational type for IDSRP. 
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Figure 5.21 Shapley values for label 1 or slightly pumped-off data, varying with different 

predictors 
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Chapter 6: Discussions and Conclusions 

 

This chapter provides a brief overview of the main takeaways from this study. First, the 

challenges of the study are listed and described. Then, after a short discussion on the work’s 

methodology, the main conclusions of the work are listed. 

 

6.1 Challenges 

The applicability of any data analytics study depends on whether or not the dataset and model 

would meet the 4V’s of the Big Data, namely volume, variety, velocity, and veracity. Some 

challenges, primarily related to data uncertainty and the data range limitations, could hinder the 

proposed data-driven models from being applied to the field operations right away: 

• The limited lab scale raises the concern over data quality since some physical factors (e.g. 

frictional pressure loss, the presence of bubbles) are omitted. Though noise reduction 

actions are taken care of, the signal processing still requires further data refinement for 

noise handling.  

• The limitation of lab scale extends to the rod buckling during the testing, which increases 

the uncertainty in load measurement data, and the transformation of the surface to the 

downhole card. Changing the rod string’s material to steel can potentially resolve this issue. 

Since steel has a much lower elasticity, the errors in downhole conversion will be 

significantly reduced. With the improvement in translation to downhole cards in the 

experiments, the possibility of further pattern recognition works could be extended. 
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• The test duration is not long enough to entirely reflect the severity of the pumping-off issue. 

Changes in the intake pressure with time are used in this study as an indicator for pumping-

off. However, longer-duration tests can help us better understand the trends.  

• With the proposed test matrix and limited lab-scale environment, arbitrary threshold values 

have been used to separate normal and pump-off cases. These values need to be validated 

by added datasets and data analytics applications. It is anticipated that the assumption to 

use the slope of the intake pressure remains valid for longer tests. However, the thresholds 

may need to be adjusted. 

• As the load and displacement sensors are linked to the surface actuator, the limitation of 

surface dynocard transformation can be improved by vibration monitoring. This can avoid 

rod string’s abnormal stretch and buckling. Also, implementing downhole sensors enables 

applying the subsurface parameters in a real-time manner while conducting the tests. 

• A major challenge of this study is the unavailability of field data to compare with the data 

collected from IDSRP. The comparison of field and lab data validates the labeling of SRP 

conditions in the facility. Several regression models were carried out to confirm the normal 

operational trends and detect anomalies. The additional field data help shorten and validate 

the labeling process and the supervised classification. If the field data are added to the 

experimental data, the ‘variety’ quality of this study would be improved.  

 

6.2 Discussions  

The data-driven approaches implemented in this study demonstrate the real-time capability 

of IDSRP facility in mimicking field-scale operations to develop big data applications. The 

observations from pump categorization in Chapter 5 confirm the pumping-off occurrence, also 
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described in Chapter 4. This is because the rate of the water column being pumped is too high to 

maintain the complete pump fillage, resulting in negative intake pressures due to the low liquid 

level in the casing. The concern of negative suction pressure values could be addressed by lowering 

the linear actuator’s RPM and slower rod displacement. The test matrix from Chapter 3 could be 

extended by reducing the linear actuator’s speed to less than 500 RPM.  

The model developed in Chapter 5 provides a good prototype for anomaly detection. The 

linear regression and supervised classification learning tools recognize the slightly pumped-off 

cases before being validated by a machine learning model. However, only the cases with the 

normal condition and slightly pumped-off issue were observed in this study. The testing for the 

severity of pumped-off cases could be further analyzed if the running time is extended to more 

than 20 minutes. For this experimental design, the recommended maximum threshold of water rate 

being pumped is 2000 mm/min. After analyzing the trends, minimum rates of change in intake 

pressure and water column filled at pump intake with time are -0.0104 and -0.024, respectively, 

before we start facing pumping off issues in the tests. These threshold criteria are still arbitrary. 

With longer test running, we anticipate more robust indications of severe pump-off. This will 

increase the confidence of labeling the pump condition based on the rate of change in suction 

pressure range over time.  

Besides the pumped-off case, more anomalies in rod pumping operations can be studied, 

including traveling/ stand valve leakage, gas influence, solids handling, and excessive friction. In 

this study, large amounts of data were generated for the normal condition as the base case before 

making any altercation. As the liquid utilized in the facility is primarily water, the possibility of 

introducing a gas line is recommended as an extension for analyzing the impacts of gas-liquid ratio 

on pump performance. 



82 

 

6.3 Conclusions 

This study is an attempt to implement a generic digital design to monitor and diagnose SRP 

operations. A prototype is trained on the data collected from the experimental design, opening a 

new window towards remote control and smart automation. The base inputs (SPM, stroke length, 

displacement shape) could be altered to avoid the imminent failure instead of on-site reactive 

measures. Some of the keynotes for this study include:  

• By validating a physical baseline model, the digital laboratory setup has achieved a 

practical goal to record large datasets of surface dynocards, recording more than 

400000 data points out of 52 experiments. The applied algorithm to transform from 

surface to downhole dynamometer cards is replicated using the Gibbs equation and 

verified with errors ranging within 0.7%-1.34%.  

• The study underlines the discrepancy in the experimental material and buckling during 

the rod movement, resulting in card noises during the transition from upstroke to the 

downstroke. Based on the calculated downhole cards, the digital sucker-rod pump unit 

simulates a realistic field operation of a rod pump with carrying levels of pump fillage.  

• With the utilization of the Internet of Things (IoT) in the mechanical rod pump setup, 

real-time data are collected through sensors for data analytics solutions. Given the time-

driven nature of the pump suction pressure profile and its changes with pump speed, 

the machine learning algorithm is trained based on multiple experimental inputs. The 

model predicts pressure, load, and associated features in SRP, monitoring the stabilized 

operation and detecting anomalies. These models achieve evaluation scores from 0.54 

to 0.87, with KNN being the best model. The low error between predicted and true 
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outputs demonstrates the strong correlation between the machine learning model and 

actual operation. The testing proves the ability of analytical solutions to detect the 

slightly pumped-off cards. The comprehensive supervised learning from 4 

classification models shows that the overall accuracy achieves up to 92% for the 

complete dataset of 5-minute and 20-minute testing, with random forest being the 

optimal classifier. The results from classification approaches improve more confidence 

in quantifying experimental parameters which determine operational performance in 

IDSRP. The key findings are that experimental inputs can be used as predictors to 

monitor the SRP performance and detect anomalies by forecasting pressure and load 

trends with time.  

• The data sets generated by the setup and the analytical solutions developed in this study 

show the benefits of utilizing the physical SRP operation and IoT, cloud data storage, 

and processing. In this case, this will reduce the complexity of machine learning 

algorithms that could be impacted by field data noise. This study mimics the field 

operations and produces digital solutions that could be broadly applied without costly 

software processors. 
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Nomenclature 

IDSRP Interactive digital sucker-rod pump 

SRP Sucker-rod pump 

𝑢  Displacement of rod string as a function of position and time 

𝛿𝑢

𝛿𝑥
  Rod strain, change of rod displacement over its length 

𝑐  Damping factor, s-1 

𝑔  Gravitational acceleration, ft/s2 

𝐴  Rod string cross section area, in2 

𝐸  Elastic modulus 

𝜌  Rod density, lbm/ft3 

𝑘  Rod frictional coefficient 

𝑀  Number of recorded surface data points 

𝑁  Number of finite difference nodes along the rod string 

{𝑖}1
𝑀  Vector of finite difference nodes along the rod string 

{𝑗}1
𝑁  Vector of sample points obtained at the surface 

{𝑔𝑃𝑅}1
𝑁  Discrete function of rod position vs. time 

{𝑓𝑃𝑅}1
𝑁  Discrete function of rod load vs. time 

Δ𝑥  Space between 2 finite difference nodes, ft 

Δ𝑡  Time spacing between consecutive surface sampling points, s 

𝑣  Velocity of sound in rod string, ft/s 

𝑞  Liquid flow rate delivered by plunger pump. STB/D 

𝐵𝑜  Formation volume factor, rb/STB 

𝐸𝑣  Volumetric efficiency of the plunger 

𝑆𝑝  Effective plunger stroke length, in 

𝐴𝑝  Gross plunder cross-sectional area, in2 

𝑒𝑟  Rod stretch, in 

𝑒𝑡  Tubing stretch, in 

𝑒𝑜  Plunger over-travel, in 

𝑆  Stroke length, in  
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𝑃𝐵1
  First bottom gauge (B1) pressure, psi 

𝑃𝐵2
  Second bottom gauge (B1) pressure, psi 

𝑃𝑇  Top gauge (T) pressure, psi 

Δ𝑃𝐵1  Difference between maximum and minimum pressure B1 in each cycle, psi 

Δ𝐹  Difference between maximum and minimum rod load in each cycle, N 

ΔP  Differential pressure between bottom and top gauge, psi 

ΔPfriction  Frictional pressure, psi 

(𝑥𝑝, 𝑦𝑝)  Vector-valued input and output at pth point 

𝑊  Weight matrix for multiple-input multiple-output linear regression 

𝑔(𝑊)  Least Squares or Absolute Deviation 

�̂�  Predicted value of output 𝑦 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠  Numbers of sample (𝑥, 𝑦) 

𝑉𝑎𝑟  Variance, square of standard deviation 

𝑑(𝑞, 𝑥𝑐)  Distance between unknown example 𝑞 and training sample 𝑥𝑐 

𝑘  Numbers of nearest neighborhoods 

𝑖(𝑡)  Gini index 

𝐶(𝑖|𝑗)  Cost of misclassification of a class 𝑗 case as a class 𝑖 

𝑝(𝑖|𝑡)  Probability of cases in class 𝑖 failing into nodes 

𝑝(𝑗|𝑡)  Probability of cases in class 𝑗 failing into nodes 

R2 / R-2 Coefficient of determination 

LR Linear Regression 

KNN K-nearest neighbor 

DT Decision Tree 

RMSE Root mean-square error 

MSE Mean-square error 

MAE Mean absolute error 

AUC Area under Receiver Operating Characteristic curve 

AP Area under precision-recall curve 
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Appendix 

Table A.1 Slope values of 𝚫𝑷𝑩𝟏 and 𝚫𝑭 over time for 20-minute testing 

 

SPM RPM shape total amount 

of water 

pumped per 

min (mm/min)  

Slope 

𝚫𝑷𝑩𝟏over 

time 

Slope 𝚫𝑭 

over time 

250 TPZ 4.0 500 trapezoid 988 0.001701 0.003928 

7.8 1000 trapezoid 1938 -0.01294 -0.0299 

11.5 1500 trapezoid 2874 -0.0289 -0.06673 

14.3 2000 trapezoid 3571 -0.0203 -0.04689 

150 TPZ 6.6 500 trapezoid 993 -0.00156 -0.0036 

12.7 1000 trapezoid 1899 -0.00317 -0.00732 

18.2 1500 trapezoid 2727 -0.00712 -0.01644 

22.7 2000 trapezoid 3409 -0.01042 -0.02407 

200 TPZ 5.0 500 trapezoid 995 -0.00917 -0.02118 

9.6 1000 trapezoid 1918 -0.00317 -0.00732 

13.9 1500 trapezoid 2778 -0.00601 -0.01387 

17.5 2000 trapezoid 3509 -0.00183 -0.00421 

250 SIN 2.0 500 sinusoidal 499 -0.01007 -0.02326 

4.0 1000 sinusoidal 1003 -0.00174 -0.00403 

6.0 1500 sinusoidal 1497 -0.00109 -0.00252 

8.0 2000 sinusoidal 2000 -0.00212 -0.0049 

150 SIN 3.0 500 sinusoidal 453 -0.00281 -0.01837 

6.6 1000 sinusoidal 997 -0.0017 -0.00392 

10.0 1500 sinusoidal 1500 -0.00405 -0.00936 

13.3 2000 sinusoidal 2000 -0.0037 -0.00854 

200 SIN 2.5 500 sinusoidal 501 -0.00796 -0.00649 

5.0 1000 sinusoidal 1000 -0.00636 -0.0147 

7.6 1500 sinusoidal 1527 -0.00328 -0.00758 

9.9 2000 sinusoidal 1980 -0.00115 -0.00265 

 


