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CHAPTER 1 

INTRODUCTION AND STATEMENT OF RESULTS 

Primal-dual interior point methods were developed in the late 1980's following 

a history of work primarily by Soviet authors including Shor [Sh],and Nemirovsky 

and Yudin [NY], leading up to the celebrated paper by Khachian [Kh] in which he 

establishes the polynomial complexity of linear programming. Next was work by 

Karmarkar who for the first time developed a polynomial time algorithm [K] for 

linear programming, the so-called projective scaling algorithm, for which he claimed 

timing results of practical significance. However, given the proprietary nature of his 

work (Bell Labs), its impact remained limited. The claims he made immediately 

stimulated tremendous interest and brought about those methods which are at 

present considered to be the most powerful and efficient procedures for solving 

linear programming problems. These are known as primal-dual log-barrier interior­

point ·methods. These methods are not directly based on Karmarkar's work but 

instead are related to so-called affine scaling methods. The affine scaling algorithm 

was originally proposed by Dikin [D] in 1967 and later updated by Barnes [Ba] and 

Vanderbei, Meketon, and Freedman [VMF]. 
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Given c E Rn, b E Rm, A E Rmxn, the symmetric-dual form of linear 

programming may oe described, conveniently, by 

subject to Ax - s = b 

(LP) 

Associated to (LP) is the dual linear program given by 

subject to Aty + r = c 

(DP) 

Points (s*, x*), (r*, y*) are solutions of (LP) and (DP) if and only if the 

Karush-Kuhn-Tucker (KKT) conditions, 

Ax* - s* = b, 

Aty*+r* _c, 

X*r* = 0, 

Y*s* = 0, 

x*,r* E Rn, x; ~ 0, r; ~ 0, Vi, y*,s* E Rm,yj ~ 0, sj ~ 0 Vj 

are satisfied, where X*, Y* are the diagonal matrices with diagonal entries x;, yJ, 

respectively. 

In 1986, Gill et al. [GMSTW] established a connection between Karmarkar's 

method and the logarithmic barrier method [Fr], [FM]. The logarithmic barrier 

function [Fr2] for (LP) is 

B(x, s, µ) = c'x - µ( t. lnx, + t, Ins;) 
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whereµ> 0. The approach is to minimize B(x, s, µ)fora givenµ, decreaseµ, and 

then minimize the new B(x, s, µ). For (LP), the logarithmic barrier subproblem 

becomes 

minc'x - tt( t, lnx, + t.ln s;) 
(1.1) subject to Ax - s = b, x E Rn, Xi> 0 Vi, s E Rm, Sj > 0 \:/j. 

Suppose that for a given µ > 0, (x*, s*) is a local (hence global) minimum of 

B(x, s, µ) such that Ax* - s* = b, x* E R 0 , xi > 0 Vi, s* E Rm, s; > 0 \:/j. 

Then there exists a KKT vector A E R~0 such that 

Ax* - s* = b, 

S*-1 m , µ e = A, 

where ek denotes the vector (1, ... , 1) E Rk. Meggido [MJ proposed using the log-

arithmic barrier method simultaneously on the primal and dual problems. Algo-

rithms based on this method were quickly developed, [KMYJ and [MAJ. Many others 

joined in and a large body of work appeared in a very short time, [Re),[Me),[LMS), 

[GolJ,[VJ, [MARJ, etc. Given the notation above, the first-order necessary (KKT) 

conditions for (1.1) are 

(1.2) Ax* - s* = b, 

(1.3) Aty* + r* = c, 

(1.4) X*r* =µen, 

(1.5) Y* s* = µem, 

(1 6) * * E Rn * > 0 * > 0 w· * * E Rm * > 0 * > 0 w. . r ,x ,ri ,xi vi, s ,Y ,sj ,Yj vJ. 
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Equations (1.2)-(1.5) are the primal-dual barrier equations. Note, the primal-

dual barrier equations differ from the KKT conditions only by the presence ofµ> 0. 

We adopt the following notation through out this work. 

Definition 1. 7. Denote 

and 

Note that R!n+2 m, R!n+2m are the convex cones which are the positive, non-

negative orthant of Rm E9 Rn E9 Rn E9 Rm, respectively. 

Given the KKT conditions for (LP) and (DP) and the primal-dual barrier 

equations, define the following function. 

Definition 1.8. Given µ 2:: 0, define Fµ : R!n+2m --+ Rm E9 Rn EB Rn E9 Rm by 

(
Ax-s-b) 
Aty + r - c 

Fµ(s,r,x,y) = X n r-µe 
Ys-µem 

where X, Y are diagonal matrices with diagonal entries Xi, Yi, respectively. 

Remark 1.9. Given the (LP) setting, Fµ(s, r, x, y) was denned only on R!n+2m. 

However, we note that Fµ(s, r, x, y) has components that are polynomial in the 

components of (s, r, x, y) and therefore Fµ(s, r, x, y) can, in fact, be defined on all 

ofRm E9 Rn E9 Rn E9 Rm. Given this, we will differentiate Fµ on 8R!n+2m without 

regard to the boundary. 
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Given Definition 1.8, the Jacobian matrix, DFµ(s, r, x, y), of Fµ(s, r, x, y) is 

given by 

(1.10) (

-Imm 

DFµ(s,r,x,y)= ! 
, 

where hk denotes the identity matrix in Rkxk. 

0 
Inn 
X 
0 

Definition 1.11. Given (LP) and (DP), the Central Path for (LP) and (DP) is 

the set of all points (s, r, x, y) E R!n+2m parameterized byµ> 0 and satisfying the 

Central Path equations given by Fµ(s, r, x, y) = 0. 

Note, from above, if a point (s*, r*, x*, y*) E R!n+2m were on the Central Path 

corresponding to µ = 0 then the points (s*, x*), (r*, y*) are solutions for (LP) and 

(DP). Given (LP), (DP), points (x, s) E Rn EB Rm such that Xi 2: 0 Vi, Sj 2: 0 Vj 

and (y, r) E Rm EB Rn such that Yj 2: 0 Vj, ri 2: 0 Vi are called feasible if Ax - s = 

b, Aty + r = c; otherwise they are called infeasible. If feasible points (x, s), (y, r) 

additionally have strictly positive components they are called strictly feasible. 

Primal-dual interior-point methods use a Newton-type approach to generate 

iterates that approach and follow, approximately, the Central Path, by requiring 

iterates to satisfy a suitable neighborhood condition. In particular, at a given iterate 

(sk, rk, xk, yk) and for a prescribed value ofµ, the Newton Vector 

(1.12) <I>N,µ(s, r, x, y) = (-l)DFµ(s, r, x, y)- 1Fµ(s, r, x, y) 

is obtained and then, after a judicious choice of step length (J", the next iterate is 

calculated as 
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Properties of the Central Path were given by Meggido [M], Bayer and Lagarias 

[BLl], [BL2], and Fiacco and McCormick [FM]. 

Primal-dual interior-point numerical methods are based on the following 

algorithmic framework where H(sk, Tk, xk, yk, µ), N are dependent on the specific 

algorithm and (sk, Tk,xk, yk) denotes the kth iterate of the algorithm. 

Given (sk Tk xk yk) E R2n+2m 
' ' ' + ' 

i) (fD = -H(sk,rk,xk,y',µ) 

Set (sk+l Tk+l xk+l yk+l) = (sk Tk xk yk) + a (p p p p ) for some a E , , , , , , k s, r, x, y k 

A typical choice for a feasible interior-point methods, [MTY], is 

"(E (0,1) 

and N = N_ 00 (/3),/3 E (0, 1), where the residual vectors Tb E Rm,Tc E R 0 are given 

by 

Tb= Ax - s - b, Tc= Aty + T - c, 

and 

For the primal linear problem, the relationship between algorithmic methods 

and the continuous trajectories related to the methods has been addressed by Kar-

markar [K] and Bayer and Lagarias [BLl], [BL2], [La]. The work by Meggido [M], 
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and Bayer and Lagarias [BLl], [BL2] involved the continuous Central Path trajec­

tory for the primal-dual problem. 

Prior to 1993, primal-dual interior-point algorithms assumed a starting point 

that was strictly feasible, in a given neighborhood of the Central Path, and produced 

iterates that were strictly feasible. [BLl], [BL2), and [La) studied the geometry of 

trajectories based on a vector field corresponding to Karmarkar's algorithm [K) and 

trajectories based on an affine vector field. 

Work by [BLl), [BL2], and [La) involved trajectories to solutions of (LP), hence 

was based on the primal problem with µ = 0, required an initial point ( s0 , r0 , x 0 , y0 ) 

that was strictly feasible, and required the additional assumption that the feasible 

set be bounded. 

Bayer and Lagarias [BLl ), [BL2], [La) studied the geometry of trajectories that 

are integrals of an affine vector field for the primal LP. Their approach was to use 

a nonlinear change of variables, a Legendre transform, based upon a projection of 

the gradient of a logarithmic barrier function applied to the constraints associated 

to the linear problem. In their work the primal trajectories associated with strictly 

feasible points in R+ were analyzed and it was assumed that the feasible set for the 

problem was bounded. It was shown that the affine scaling vector field could be 

realized as a steepest descent vector field of the associated objective function with 

respect to a certain Riemannian metric defined on the relative interior of the feasible 

set. Given the Legendre transform coordinate mapping, there exists a global metric 

such that every geodesic with respect to the metric is an affine primal trajectory 

associated to a given objective function. Also, it was shown that every affine primal 

trajectory for a non-constant objective on the feasible set is in fact a geodesic of 
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the global metric. Since the metric geometry is isometric to Euclidean geometry 

on Rn, the metric geometry is geodesically complete. In studying the central path 

under the Legendre transform, it was shown that for the primal-dual problem the 

central path projects onto the central path for the primal and dual problems via 

orthogonal projections. 

While the work of Bayer and Lagarias in the Transactions of the AMS [BLl], 

[BL2], [La], provided much insight about primal methods and trajectories through 

strictly feasible points, there are questions remaining for primal-dual methods. 

First, at the time, the state-of-the-art algorithms were primal interior-point methods 

that were greatly influenced by [K]. Given the prominence of interior-point meth­

ods, they restricted their analysis to trajectories through strictly feasible points. 

For primal-dual methods, information is needed regarding trajectories through ar­

bitrary points z E R!n+2m. That is, what is the behavior of infeasible trajectories 

and trajectories through points on the boundary of the feasible set? Also, they 

required that the primal feasible set be bounded, which was motivated by Kar­

markar's algorithm which has the same restriction. If (LP) and (DP) have strictly 

feasible points then at least one of the feasible sets is unbounded. Finally, the use of 

the Legendre transform to obtain results does not provide much information about 

the geometry of the trajectories. Hence, their methods differ from this thesis and 

the exact relationship of our work to theirs must still be clarified. 

In recent years, attention has turned from feasible primal-dual methods for 

linear programming to infeasible primal-dual methods. In particular, it is desirable 

to start from an arbitrary positive point and produce a sequence of iterates that 

converges to the solution of the LP. In this setting the restriction of positive iterates 
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and the use of a prescribed neighborhood condition prevents the use of full New­

ton steps. The first theoretical result on infeasible-type interior-point algorithms 

was by Kojima, Meggido, and Mizuno [KMM]. Today, most primal-dual methods 

are based on Mehrotra's [Me] infeasible predictor-corrector method. Other results 

have come from Zhang [Z], Potra [Pl ],[P2], Billups and Ferris [BF], and Miao [Mi]. 

Convergence results to date deal with the convergence of a sequence of iterates 

{ ( sk, rk, xk, yk)} and are based on starting points ( s0, r0, x0, y0) E R~0 +2 m. Poly­

nomial complexity results to date are based on using the neighborhood condition the 

iterates satisfy in an appropriate way. A recent comprehensive account of infeasible 

methods is in Wright [WS]. 

All primal-dual interior-point methods assume existence of a strictly feasible 

point. A reformulation of the programming problem can "convert" an infeasible 

point for the original problem to a feasible point for the new problem. This ap­

proach however has some undesirable consequences. The reformulation adds rows 

and columns to the constraint matrix A from the addition of new primal and dual 

variables. Therefore the question of the coefficients ("weights") of these new vari­

ables needs to be addressed. In fact, the size of the coefficients is hard to determine 

prior to running the algorithm. Also, the additional columns are typically dense 

(" large" number of nonzero entries). This together with the required size of the 

coefficients causes numerical instability and computational inefficiency. Eventually 

it was shown by Lustig, Marsten, and Shanno [LMS] that as the size of the coeffi­

cients approached infinity, the (limiting) directions of the primal-dual equations for 

the feasible problem coincided with the directions generated by the primal-dual in­

feasible equations. For infeasible methods, a typical choice for H(sk, rk, xk, yk), N 
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are 

( 

Axk - sk - b) 
At k + k k k k k y T -c 

H(s 'T 'X 'y ) = xk k n ' T - aµe 
yk 8 k _ "(µem 

(Tklxk + (sklyk 

µ= n+m ' 

and 

where the residual vectors Tb E Rm, Tc E Rm are given by 

and 

Unlike the Simplex Method, primal-dual numerical methods do not have a 

finite termination property. A stopping criteria is required for these methods. A 

standard criteria for a given tolerance E, is 

It follows that for µ = n~m, if z* E R~0 +2 m is such that Fµ(z*) = 0, then z* 

satisfies the stopping criteria for numerical methods. Therefore, finding the point 

on the Central Path corresponding the µ = n~m provides as good an approximation 

to a solution of (LP) and (DP) as current numerical methods. 

Given the KKT conditions for (LP) and (DP) and the Definition (1.7) of Fµ(z), 

it follows that to find solutions to (LP) and (DP) we wish to solve the system 

F0 (z) = 0. Given the problem of solving a system of nonlinear equations F(v) = 0, 
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Branin [BJ proposed following trajectories v(t) which satisfied a related system of 

differential equations 

dv 
DF(v) dt ± F(v) = 0. 

This work was related to work done earlier by Davidenko [DaJ. The sign of the 

coefficient of F(v) was changed whenever det(DF(v)) changed sign or a solution 

of F( v) = 0 was approached. The goal was to expand the region of convergence 

of other methods and to design an algorithm that could find multiple solutions of 

F(v) = 0. Later Smale [SJ studied the continuous (global) Newton equation 

(1.13) 
dv · 

DF(v) dt = -..\(v)F(v) ..\(v) ER 

for a function F: M-+ RN where MC RN was a compact domain with a smooth 

boundary (that is, 8M was a submanifold of dimension N - 1). 

Definition 1.14. Given F: fl c RM -+MM, where MM is a manifold of dimen-

sion M, denote Ep = F-1 (0). 

Under a somewhat restrictive transversality condition on the boundary, Smale 

proved that the solution, v(t), of the continuous Newton equation had the property 

that v(t) -+East-+ oo. His approach was geometric in nature. 

Definition 1.15. Given F : n c RN -+ MM as above, defi.ne gp : n \ Ep c 

RN -+ 3M-I by gp(z) = ll~~~~II where II · II denotes the usual Euclidean norm. We 

call z E Ep a singular point of gp. 

Given v0 E 8M, Smale obtained the trajectories, v(t), directly as the inverse 

images of gi, 1 (gp(v0 )). That is, given F(v0 ) = w0 =J. 0, consider the ray through 

L+(w0 ) = {aw0 E RN: a> O}. 
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Define 

and let C(v0 ) denote the connected component of v0 in A(v0 ). It follows that F 

maps A(v0 ) into L+(w0 ). Smale established that tangent vectors at v E g1;.1(gp(v0 )) 

to the curve gi, 1(gp(v0 )) satisfy (1.13). Smale considered the initial value problem 

de 
dt = <l>s(e(t)), e(to) = VO, gp(e(t)) = gp(v0 ), 

where v0 E Reg(gp) and <I>s(v) is constructed so that <l>s(v) E ker(Dgp(v)), 

ll<I>s(v)II = 1, and <l>s(v) is tangent to C(v). This is done using the fact that gp(e(t)) 

is constant for all t. Hirsch and Smale [HSm) followed this work by using the same 

approach for the problem of finding solutions for the equation F(v) = 0 for a C 2 

proper function F : RN -t RN. The continuous Newton method approach to 

solving the equation F( v) = 0, is to follow trajectories which are integrals of a 

vector field :~ = <I>(v) such that the (1.13) holds. 

It is possible for points v to exist such that F ( v) =I= 0 and either cl> ( v) ___: 0 or is 

undefined (as in the work of Smale and Hirsch). In the work of [HSm), [Sm) these 

points were excluded by removing a larger related set of points from consideration. 

Note, as mentioned above, [HSm) established results for functions F which were C 2 

and proper. However, in our setting, Fµ.(z) need not be proper. Also, [HSm) had 

no restriction on where solutions to F(z) = 0 were to be found. 

It should be noted that the above continuous Newton method is related to ho-

motopy [OR) methods in the following way. Given a generic local diffeomorphism 

F ( v) on a domain in RN, one approach to solving the equation F ( v) = 0 is to use 
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a homotopy h(t,v). Let v0 E RN, and define h(t,v) as 

h(t,v) = F(v)- e-tF(v0 ). 

Clearly h(O, v0 ) = 0 and h(t, v) ---+ F(v) as t---+ oo. If, in fact, there exists a curve 

v(t) such that 

then 

0 = h ( t, v (t)) = F ( v ( t)) - e -t F ( v O) 

dv - = -DF(v(t))- 1F(v(t)). 
dt 

The preceding equation again defines a vector field !~ = <I>(v) such that (1.13) holds 

for some ,\( v) E R. 

Given that the function of interest is Fµ(z), let Aµ(z) C R!n+2m denote the 

trajectory given by gp:(gFµ (z)) and let Cµ(z) denote the connected component 

of z in Aµ(z). Note, in fact, Cµ(z) C R!n+2m, which is the domain of Fµ(z). 

Given Definition (1.8), a natural choice for <I>(z) would be the Newton Vector Field, 

<l>N,µ(z) given in (1.12). However, given that 

(
-Imm 

DFµ(s,r,x,y)= f 0 
Inn 
X 
0 

A 0) 0 At 
R O ' 
0 S 

it is clear that points z E 0R!n+2m exist for which det(DFµ(z)) = 0 and hence for 

which <I>N,µ(z) is not defined. Another possibility is the unit vector field, denoted 

<I> s,µ, in the direction of 

(1.16) <I> A,µ(s, r, x, y) = (-l)m+ 1adj(DFµ(s, r, x, y))Fµ(s, r, x, y) 

where adj(DFµ(s, r, x, y)) denotes the classical adjoint of DFµ(s, r, x, y) and the 

factor (-l)m+l ensures the correct orientation [See Proposition 2.1.2]. The vector 
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field q>s,µ(z) would be a vector field that is suggested by the work of Smale and 

Hirsch [Sm], [HSm] for the function Fµ(z). Note that q>s,µ(z) is an extension of 

q>N,µ(z). Once again, points exist for which q>s,µ(z) is not defined. 

In this work, the vector field that is of main interest is the Adjoint Vector 

Field given by (1.16) directly. This is the global extension of q>s,µ(z) (and q>N,µ(z) 

with respect to q>s,µ(z)). That is, under the appropriate reparametrization, 

Given q> A,µ(s, r, x, y) and z0 E R!n+2m, the initial value problem associated 

to (1.13) is 

(1.17) 
dz 
dt = q>A,µ(z(t)), z(O) = z0 . 

The vector fields q> A,µ(s, r, x, y), q>s,µ(s, r, x, y) are superior to q>N,µ(s, r, x, y) as it 

will be shown that there exists z0 E 8R!n+2m for which DFµ(z) is rank deficient 

and such that q>A,µ(z), q>s,µ(z) =I- 0 [See Theorem 2.1.1 and Corollary 3.7]. 

Currently, complexity results for infeasible interior-point algorithms -are based 

on algorithms which involve discrete sequences and require a starting point z0 E 

R!n+2m, in order to investigate convergence of approximations limited to a suitable 

neighborhood of the.Central Path. By contrast, the plan of this thesis is to study the 

global structure of all continuous trajectories of (1.17) as well as certain non-smooth 

critical trajectories (see Chapter 7 below). It is hoped that this will ultimately 

clarify the question concerning all starting points z E 8R!n+2m. The results of 

this thesis imply the existence of infeasible interior-point algorithms of polynomial 

complexity through arbitrary points z E R!n+2m \ ~t converging to Ep0 • In fact, 

14 



this work establishes the existence of c0 paths from points z E 8R!0 +2 m \ I:t 

to Ep0 • This conclusion is based on our two main results. First, it is established 

that through arbitrary points z(O) E R!0 +2 m there exists C 1 trajectories, z(t), for 

which z(t) ---* z* as t ---* oo where z* is a solution to the primal-dual linear problem 

(F0 (z*) = 0) This is done under conditions less restrictive than those for primal-dual 

interior- point methods. Given that the trajectories are integrals of the vector field 

cI> A,o(z), it is established that R!0 +2 m is contained in the basin of attraction for Ep0 

with respect to cI> A,o(z). Second, with the exception of certain critical points, we 

establish the existence of C 1 trajectories through points in 8R!0 +2 m \ I:t as well as 

in R!0 +2 m to the Central Path. In particular, forµ> 0, z(O) E R!0 +2 m \ I:t, it is 

shown that the integral trajectories of cI> A,µ ( z) have the property that z( t) ---* z* = 

Ep,.. as t---* oo. Given the results established for arbitrary points z E ii!0 +2m, this 

work establishes the basis for a global convergence theory for linear programming. 

Note, at this time, certain critical trajectories are still under investigation. 

In this work we study the trajectories Fµ(z(t)) = e-t Fµ(z 0 ), which are based 

on integrals of cI>A,µ(z), a vector field related to infeasible primal-dual methods. 

In particular, we apply the continuous Newton method to the primal-dual barrier 

equations. 

There are other questions answered herein that previous work done does not 

address. Under the weakened requirement that initial points lie in ii!0 +2m, it 

is shown that fixed points for ~! = cI> A,µ(z) do exist for which Fµ (z) i=- 0 and 

their structure is identified. In the work of [HSm], these points were excluded by 

removing a related set of points from consideration. It is shown here that there exist 

trajectories through points that [HSm] would exclude which tend to solutions z* of 
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Fµ(z) = 0. This is done by making full use of the geometry of linear programming. 

Given that we seek solutions to F0 (z) = 0 under the added restriction that z E 

J1!n+2m, another concern that must be addressed is that of exit points for the 

trajectory. That is, do points z E 8R!n+2m exist through which a trajectory exits 

the set J1!n+2 m7 It is established that in our setting no exit points exist. 

The approach taken in the following is largely constructive with emphasis on 

understanding the geometry associated with the trajectories. 

Given (LP) and (DP), the following general assumptions are standard for in­

terior point methods. 

(1.18) 

(1.19) 

(1.20) 

{(x, s) : Ax - s = b, x E Rn, Xi> 0 Vi, s E Rm, Sj > 0 Vj} f= 0. 

{(y,r): Aty+r = c,r E Rn,ri > 0 Vi,y E Rm,Yi > 0 Vj} f= 0. 

Rank(A) = min{ m, n }. 

As a practical assumption, the columns of A are nonzero. It is assumed throughout 

this work that there exists a unique solution z* for (LP) and (DP). That is, 

(1.21) Ep0 = {z*}. 

This is typical in linear programming and is normally based on the assumption that 

the primal-dual problem is non-degenerative. 

Remark. References herein to vectors c E Rn, b E Rm, and matrix A E Rmxn 

refer to those given in (LP). Given Appendix B, (WLOG) we shall assume that in 

(LP) m :'.S n. It is also assumed throughout this work that (1.20) holds and hence 

it is assumed that Rank(A) = m. Finally, references to the measure of a set refer 

to Lebesgue measure of dimension appropriate to the setting. 
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In the first convergence theorem, it is shown that under conditions less re-

strictive than conditions typical to primal-dual interior-point methods, the integral 

trajectories of <I> A,o(z) converge to a solution for (LP) and (DP). In this setting, 

the restriction of [BLl], [BL2] on the boundedness of the feasible set is not nee-

essary. In fact, we simply require the minimal condition that points (x, s), (y, r) 

exist which are solutions for (LP) and (DP). From the Duality Theorem for Linear 

Programming this requirement is equivalent to the condition that 

(1.22) {(s, r, x, y) E R!n+2m: Ax - s = b, Aty + r = c} f. 0. 

Our main results follow. 

Theorem 1.23. Suppose that µ = 0, Fµ,(z) = Fµ,(s, r, x, y) is given by (1.8) and 

<I>A,µ,(z) is given by (1.16). Ifz0 = (s0 ,r0 ,x0 ,y0 ) E R!n+2m and (1.20)-(1.22) hold, 

then there exists a unique C1 solution z( t) : [O, oo) --+ R!n+2m of (1.17) with the 

property that z(t) --+ z* E Ep0 as t--+ oo. 

Even without hypothesis (1.21), Proposition 6.2.9 establishes z* E Ep0 , for all 

w-limit points z* of z(t). 

The next theorem pertains to the question of following a trajectory based on 

<I> A,µ, (z) from a given point to the Central Path. In this setting we establish results 

for points z E 8R!n+2m. 

Theorem 1.24. Let µ > 0, Fµ,(z) = Fµ,(s, r, x, y) be given by (1.8) and <I> A,µ,(z) 

be given by (1.16). Given (1.18)-(1.20), there exists a nowhere dense set E~ C 

8R 2n+2m of measure zero such that if z0 = (s0 r0 x 0 y 0 ) E R 2n+2m \ EP then + ' ' ' ' ' + µ, 

there exists a unique C 1 solution z(t) : [O, oo) --+ R!n+2m of (1.17) with the property 

that z(t) --+ z* = EFµ as t--+ oo. 
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Chapter 2 identifies the general properties of the vector field <I? A,µ ( z). It is 

shown that <I? A,µ ( z) is C 1 on R!n+2m and establishes an important relationship 

between points z for which <I? A,µ(z) = 0 and the critical points of the mapping, 

9Fµ : J1!n+2m \ EFµ ---+ s2n+2m- 1 . As per Remark 1.9, we differentiate 9Fµ on 

0R!n+2m without regard to the boundary. An overview of the theorems of Smale 

[SJ is also given. 

Chapter 3 provides analysis of regular points of 9Fµ. It is shown that the set 

of critical points of 9Fµ is of measure zero in 8J1!°+2m. Also, the structure of 

the regular values of 9Fµ is discussed and it is established that the set of points 

z E 0R!n+2m for which 9Fµ (z) is a critical value is of measure zero for µ > 0. 

Chapter 4 establishes whether the solution trajectories of (1.17) are transverse 

to oR!n+~m. In it, the terminology of transversality is defined based on considering 

how vectors are transverse to closed half-spaces. It is shown that forµ 2.: 0, <I? A,µ(z) 

is not outward transversal to aJ1!n+2m at any point Z E 0R!n+2m. The work done 

here is based on various matrix manipulations. The definition of ~~ is given in this 

chapter. 

Chapter 5 provides constructions of other sets, M, for which <I? A,µ(z) is inward 

transversal at z E oM. Some of the sets are "hyperbolic" sets and transversality 

of <I? A,µ(z) to oM at z E oM is verified by showing that <I? A,µ(z) is transversal to 

the supporting closed half-spaces to the M at z E oM. Conditions are established 

for which <I? A,µ (z) is not outward transversal to a collection of the various sets 

and 0R!n+2m. Based on the transversality results in this chapter, an enclosing 

neighborhood can be constructed for the trajectories z(t). The results here are use 

in Chapters 6 and 7 to bound the trajectories away from 0R!n+2m or to bound an 
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individual component of the trajectory z(t). 

Chapter 6 identifies the various properties of the trajectories that are solutions 

to (1.17). The proof of the Theorems 1.23 and 1.24 are done in this chapter and 

are based heavily on the properties identified earlier in Chapter 6. The work done 

in Chapter 6 provides complete proofs for the theorems stated by Smale [Sm]. 

Chapter 7 provides partial results for trajectories corresponding to µ = 0 and 

z0 E 8R!n+2m. While Theorems (1.23),(1.24) established the existence of c0 paths 

from points in aR!n+2m to points z* E R!n+2m for which Fo(z*) = 0, these 

paths, z(t), have the property that {z(t) : t E (0, oo)} C R!n+2m. An unresolved 

question is the existence of c0 paths, z(t), such that {z(t) : t E [O, oo)} c 8R!n+2m 

and for which z(t) ~ z* such that F0 (z*) = 0. Given in this chapter is a general 

formulation of the Jacobian matrix Dq, A,µ ( z). Based on this formulation, a specific 

type of critical point of 9Fµ is considered for which the various eigenvalues and 

eigenvectors of the fixed point are identified completely. The trajectories for µ = 0 

and through points z0 E 8R!n+2m are a special type of trajectories in a larger 

class of trajectories which we call critical trajectories. The definition of a critical 

trajectory is also given in Chapter 7. In the case ofµ= 0, z0 E 8R!n+2m such that 

exactly one component of z0 is equal to 0, it is shown in Chapter 3 that DF0 (z0 ) 

is of full rank. Hence, for every such z0 there exists a C1 trajectory, z(t), in a 

neighborhood of z0 that is a solution to (1.17). A remaining question is whether 

gi,01(gp0 (z0 )) is a 1-dimensional manifold (globally) such the trajectory, under the 

correct orientation and parametrized by z(t), has the property that z(t) ~ z* E Ep0 

as t ~ oo. Future work to address the above question will involve the study of the 

associated stable and unstable manifolds. This chapter provides a basis for this 
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future work. 

Chapter 8 contains the basic results needed to establish analogous theorems 

for the standard form of linear programming. The standard form is given by 

subject to Ax = b 

(1.25) 

The associated dual problem for (1.25) is 

subject to Aty + r = c 

(1.26) 

Points (x*), (y*, r*) are solutions of (1.25) and (1.26) if and only if the KKT condi-

tions 

X*r* = 0, 

Ax*= b, 

x* r* E Rn x'!' > 0 r'!' > 0 Vi y* E Rm 
' ' i - ' i - ' 

are satisfied. The optimality conditions for the logarithmic barrier subproblem 

associated to (1.25) and (1.26) are 

Ax= b, 

Xr = µen, 

We adopt the notation 
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and 

1?,2n+m = {(r X y) E Rn EB Rn EB Rm: r· > 0 X· > 0 Vi} + '' i_ 'i_ 

The function based on the optimality conditions is F; (r, x, y) nin+m ---+ 

Rn EB Rn EB Rm given by 

(1.27) (
Aty + r - c) 

F;(r,x,y)= Xr-µen 
Ax-b 

and the associated adjoint vector field is 

(1.28) <I>A,µ(r, x, y) = (-l)adj(DFµ(r, x, y))Fµ(r, x, y). 

The general assumptions for the standard form, (1.25) and (1.26), are 

(1.29) {x: x E Rn,Xi > 0 Vi,Ax = b}-=/=- 0. 

(1.30) 

(1.31) rank(A) = m. 

Once again, we only require the existence of points ( x), (y, r) that are solutions 

of (1.25) and (1.26). As before this is equivalent to the condition that 

(1.32) {(x,r,y): x,r E Rn,Xi 2:: O,ri 2:: 0 Vi,Ax = b,Aty+r = c} -=/=-0. 

Again we shall assume that 

(1.33) 

that is, that there exists a unique solution to (1.25), (1.26). 
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Theorem 1.34. Suppose thatµ= O,F;(z) = F;(r,x,y) is given by (1.27) and 

<I>A,µ(z) by (1.28). Given (1.31)-(1.33), if z0 = (r 0 ,x0 ,y0 ) E R!n+m then there 

exists a unique C 1 solution z(t) : [O, oo) -+ ntn+m to ~: = cI>A,µ(z(t)), z(O) = z0 

such that z(t) -+ z* E Ep0 as t-+ oo. 

For the case of µ > 0, to obtain results similar to theorem 1.24, additional 

restrictions on A are required. The additional restrictions are due to the presence 

of the non-sign constrained y and the lack of a complementarity condition for y. 

The added assumption is that 

(1.35) m < n, and any set of m columns of A is linearly independent. 

Theorem 1.36. Suppose that µ > 0, F;(z) = F;(r, x, y) is given by (1.27) and 

cl> A,µ(z) is given by (1.28). Given (1.29)-(1.31), (1.35), there exists a nowhere dense 

set ~P C 8ft 2n+m of measure zero such that if zO = (rO XO y 0 ) E 'R, 2n+m \ ~P then 
µ + ' ' + µ 

there exists a unique C1 solution z(t) : [O, oo)-+ ntn+m to~: = <I>A,µ(z(t)), z(O) = 

z0 such that z(t) -+ z* = Eps as t-+ oo. 
µ 

Appendix A contains includes the various terminology and theorems from dif-

ferential equations that are used in this work. Appendix B establishes that all linear 

programming problems in the symmetric-dual form may be given in the form (LP), 

(DP) with the added condition that m::; n in (LP). 
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CHAPTER 2 

CONTINUOUS NEWTON VECTOR FIELDS 

This chapter identifies the general properties of the vector field q> A,µ ( z). It is 

shown that q>A,µ(z) is C 1 on J1!0 +2 m and establishes an important relationship 

between points z for which q>A,µ(z) = 0 and the critical points of the mapping, 

9Fµ : R!0 +2m \ EFµ -+ s2n+2m- 1 . An overview of the theorems of Smale [SJ is also 

given. 

Recall that the initial value problem that is under consideration is 

dz 
dt =q)A,µ(z(t)) z(O) = ZO E R!n+2m 

which is motivated by the trajectories 

Appendix A contains the general terminology and theorems on differential 

equations that will be used in this work. Given F: RM -+ RN such that F(zl = 

DF(z) = ( ~~ (z)) E RMxN 

denotes the Jacobian matrix of F(z) and V Fi(z) E RMxl denotes the gradient 

vector of Fi(z). 

We will need the following lemma in the work that is to follow. 
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Lemma 2.0.1. Let g: RM---* R, F: RM---* RK where F(z)t = [F1 (z), ... , FK(z)] 

and g(z), Fi(z) are e 1 for every i. Then for F(z) = g(z)F(z), DF(z) = F(z)\7g(z)t+ 

g(z)DF(z). 

Proof: Consider F·(z) = g(z)F(z). Then aP;(z) = ag(z) F(z) + g(z) aF;(z). Hence 
i i 8zj 8zj i 8zj ' 

Since we will be using differential equations to solve for the zero of a function, 

it is important that we classify the fixed points of the vector fields involved. In 

particular, we wish to classify the structure of fixed points in the (LP) setting. 

Definition 2.0.2. Let F : n c RN ---* MM be a er map with r ~ 1 where MM 

is a manifold of dimension M. We call z En a regular point of F ifDF(z) is of 

rank min{M, N}. Reg(F) c n denotes the set of all regular points of F. If z En is 

not a regular point then z is a critical point of F. erit(F) C n denotes the set of 

all critical points of F. 

Definition 2.0.3. Let F : n c RN ---* MM be a er map with r ~ 1 where MM is 

a manifold of dimension M. A point c is a regular value of F provided c E MM 

and p-1 (c) c Reg(F); otherwise c is called a critical value of F. 

From Smale [Sm) we have the following proposition for which we will include 

the proof for completeness. 
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Proposition 2.0.4. Let F : 0 c RN -+ RN be C2 and gp be defined as in (1.15). 

Then, v E ker(Dgp(z)) iff DF(z)v = A(z)F(z) for A(z) ER. 

Proof: If z E O such that F(z) -/- 0, IIF(z) llgp(z) = F(z). It follows that 

Dz(IIF(z)ll)gp(z) + IIF(z)IIDgp(z) = DF(z). 

Also, Dz(IIF(z)II) = 1~<tJ)tllDF(z). Therefore, 

F(z)t F(z)F(z)tDF(z) 
IIF(z)IIDgp(z) = DF(z) - gp(z) IIF(z)!I DF(z) = DF(z) - IIF(z)ll2 . 

Hence, 

1 [ . F(z)F(z)tDF(z)] 1 [ F(z)F(z)t] 
Dgp(z) = l!F(z)!I DF(z) - IIF(z)l!2 = IIF(z)I! I - l!F(z)ll 2 DF(z). 

Now 

[ F(z)F(z)ll 
v E ker(Dgp(z)) =} Dgp(z)v = 0 =} I - IIF(z)l!2 DF(z)v = 0. 

It follows that 

DF( ) = F(z)F(z)lDF(z)v 
z v IIF(z)l!2 

and hence, DF(z)v = A(z)F(z) where A(z) = [ F(t~fzfi1~z)v] E R. If DF(z)v = 

A(z)F(z) for some A(z) ER then 

1 [ F(z)F(z)tDF(z)vl 
Dgp(z)v = IIF(z)I! DF(z)v - IIF(z)ll2 

= 1 [A( )F( ) _ F(z)F(z)t A(z)F(z)] 
IIF(z)II z z IIF(z)ll2 

= IIF~z)II [ A(z)F(z) - A(z)F(z)] 

= 0. 

Hence, v E ker(Dgpµ (z)). 
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It should be noted that the above proposition considers gp as a map into 

RN-1 . In fact, gp is a map with range in 3N-1 c RN-1 . Note, from the proof of 

Proposition 2.0.4, 

1 [ F(z)F(z)t] 1 [ t ] 
Dgp(z) = IIF(z)II I - IIF(z)ll2 DF(z) = IIF(z)II I - gp(z)gp(z) DF(z). 

Recall that given a unit vector v E RN-l, (I - vvt) is the orthogonal projection 

that is perpendicular to v. In the current setting, it follows that I - gpg} is the 

orthogonal projection perpendicular to gp. Now, from above, 

v E ker(Dgp(z)) <::} DF(z)v E ker(I - gpg}) = span of gp(z). 

Now, if O =I=- y E RN-l is such that there exists v E RN for which Dgp(z)v = y then 

Y = IIF(z)II (I - gp(z)g}(z))DF(z)v. It follows that range(Dgp(z)) C range(! -

gp(z)g}(z)). Hence, range(Dgp(z)) C span of g"ff(z) where g"ff (z) denotes the or-

thogonal complement of gp(z). 

Suppose that F : n c RN -+ RN is a C 2 map. From Definitions 1.15, 2.0.2, 

z E Reg(gp) if and only if Dgp(z) is of rank N - l. It follows from Proposition 2.0.4 

that we have the following corollary. 

Corollary 2.0.5 [Sm]. Let F : Q C RN -+ RN be C 2 and gp denned as above, 

then z E Reg(gp) if and only if one of the following is true. 

i. Rank(DF(z)) = N. 

ii. Rank(DF(z)) = N - 1 and range(DF(z)) n L = {O} where w = F(z) and 

L = L(w) ={a· w: a ER}. 

Now, given z E n such that O =I=- w = F(z), 

(I - gp(z)g}(z))aF(z) = aF(z) - gp(z)gp(z/aF(z) = aF(z) - aF(z) = 0. 
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Hence, L(w) = ker(I - gp(z)g};,(z)) and therefore L1-(w) = range(] - gp(z)g};,(z)). 

This establishes the relationship between Proposition 2.0.4 with gp viewed as a 

mapping into RN-I and the form of Dgp(z) with gp viewed as a mapping into 

3N-l. 

We will now identify the important characteristics of the vector fields <I> A,µ(z), 

<I>s,µ(z), and, <I> N,µ(z). 

§2.1 Adjoint Vector Field 

Theorem 2.1.1. Givenµ:;:::: 0, a point p E J1!°+2 m is a fixed point of~; = <I> A,µ(z) 

if and only if p E Crit(gFµ) U EFµ· 

Proof: There are 3 cases, based on Rank(DFµ(P)), to consider. If Rank(DFµ(P)) = 

2n + 2m, Rank(adj(DFµ(P)) = 2n + 2m. It follows from (1.16) that <I> A,µ(P) = 0 if 

and only if Fµ(P) = 0, hence <I> A,µ(P) = 0 if and only if p E EFµ. Note, if p E EFµ 

then <I> A,µ(P) = 0 by (1.16), regardless of Rank(DFµ(P)). 

Now suppose that Rank(DFµ(P)) = 2n + 2m - 1. Recall that 

DFµ(p)adj(DFµ(p)) = adj(DFµ(P))DFµ(P) = det(DFµ(p))I. 

It follows that Rank(adj(DFµ(P))) = 1. Since det(DFµ(P)) = 0, range(DFµ(P)) C 

ker(adj(DFµ(P))). Given that Rank(DFµ(P)) = 2n+2m-1, dim(ker(adj(DFµ(P)))) 

= 2n + 2m -1 and therefore range(DFµ(P)) = ker(adj(DFµ(P))). If p E Crit(gFµ), 

from Corollary 2.0.5, Fµ(P) E range(DFµ(P)). It follows that <I> A,µ(p) = 0 as 

ker(adj(DFµ(p))) = range(DFµ(p)). If p is a fixed point of ~; = <I> A,µ(z), from 

(1.16), Fµ(P) E ker(adj(DFµ(p))). If Fµ(P) = 0 then p E EFµ, else, Fµ(P) E 

range(DFµ(P)) and by Corollary 2.0.5, p E Crit(gFµ). 
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Finally, if Rank(DFµ(P)) < 2n + 2m - 1, adj(DFµ(p)) = 0. If Fµ(P) = 0 then 

p E BFµ else it follows from (1.16) that <I> A,µ(P) = 0 and from Corollary 2.0.5 that 

p E Crit(gFµ). 

It will be shown (Chapter 3) that almost all points that we will be con-

sidering are such that DFµ(z) is of full rank. In fact, it is shown that for all 

z E R!n+2 m,DFµ(z) is of full rank. Recall that the Remark following (1.21) holds 

throughout this work. 

Proposition 2.1.2. Suppose that (s,r,x,y) E R!n+2m, then DFµ(s,r,x,y) is 

of full rank. If (s, r, x, y) E J1!n+2 m is such that DFµ(s, r, x, y) is of full rank, 

sgn(det(DFµ(z))) = (-l)m. It follows that for all z E J1!n+2 m such that DFµ(z) is 

of full rank, sgn(det(DFµ(z))) = (-l)m. 

Proof: Let (s,r,x,y) E R!n+2 m. By doing elementary operations DFµ can be 

transformed into 

er 
0 

Inn 
0 
0 

A 
0 
R 

YA 

Hence the sign of the determinant is completely determined by the sign of 

(-l)m R 
YA 

Multiply the first n rows by R- 1 to form the matrix 

By elementary row operations we can form the matrix 
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which leaves the sign of the determinant unchanged. Finally, multiply the last m 

rows by y- 1 to form the matrix 

Now the symmetric matrix sy- 1 + AR-1 X At is positive definite from the Remark 

following (1.21) and hence has a positive determinant. So for (s, r, x, y) E R!n+2 m, 

DFµ(s, r, x, y) is of full rank. Also the sign of the determinant of DFµ(s, r, x, y) is 

given by (-l)m for (s,r,x,y) E R!n+2 m. 

Hence, by the continuity of the determinant, it follows that for any point 

(s, r, x, y) E J1!n+2 m for which DFµ(s, r, x, y) is of full rank, the sign of the de-

terminant is equal to ( -1) m. 

In the case that DFµ(z) is of full rank, we have the following formulation of 

D<I> A,µ (z). 

Theorem 2.1.3. Suppose that DFµ(z) is of full rank in a neighborhood about 

D<I> A,µ(z) =(-l)m+1 (DFµ(z))- 1 Fµ(z)v'det(DFµ(z))t - ldet(DFµ(z))II 

+ (-l)mDFµ(z)- 1Dz(DFµ(z))adj(DFµ(z))Fµ(z). 

Proof: We consider 

Differentiating and applying a Liebniz rule we get 

From Lemma 2.0.1, 

Dz(det(DFµ(z))Fµ(z)) = Fµ(z)v'det(DFµ(z))t + det(DFµ(z))DFµ(z)). 
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Note also, from Proposition 2.1.2, 

It follows that, since DFµ(z) is of full rank, 

D<t> A,µ(z) = (-l)m+1DFµ(z)- 1 [Fµ(z)\?det(DFµ(z)l + det(DFµ(z))DFµ(z) 

- Dz(DFµ(z))<PA,µ(z)] 

= (-l)m+ 1DFµ(z)- 1 Fµ(z)\?det(DFµ(z))t - idet(DFµ(z)) II 

+ (-l)mDFµ(z)- 1 Dz(DFµ(z))adj(DFµ(z))Fµ(z). 

Corollary 2.1.4. If p E J1!0 +2 m is a fi.xed point of:; = <P A,µ(z) and DFµ(z) is 

of full rank in a neighborhood about p, D<t> A,µ(P) = -11 det(DFµ(P)) II and hence p 

is a sink. 

Proof: From Theorem 2.1.1, if DFµ(P) is of full rank, <PA,µ(P) = 0 if and only if 

p E EFµ· Hence, Fµ(P) = 0 and therefore the corollary follows from Theorem 2.1.3. 

Chapter 7 contains a formulation for D<t> A,µ ( z) at an arbitrary point 

z E J1!0 +2 m. Also included is the analysis of the eigenvalues of D<t> A,µ ( z) at a fixed 

point z, corresponding toµ= 0, for which DFµ(z) is rank deficient. 

Theorem A.4 provides a basis for the study of solutions of differential equations. 

We need to verify the existence and uniqueness of solution curves for the above 

trajectories in our particular setting. 

Proposition 2.1.5. <P A,µ(z) is C 1 for all z E J1!0 +2 m. 

Proof: From the definition of Fµ(z), the components of Fµ(z) are polynomials 

in the components of z. Also, the entries of adj(DFµ(z)) are determinants of 
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(2n + 2m - 1) x (2n + 2m - 1) submatrices of DFµ(z). Let Z$ denote the diago-

nal matrix with diagonal entries zp, zp+l, ... Zq. Then 

( 
Imm 0 

0 -Inn 
DFµ(z) = O z2n+m 

n+m+l 
Z2n+2m O 

2n+m+l 

A 
0 

zm+n 
m+l 
0 

It follows that the entries of adj(DFµ(z)) are also polynomials in the components 

of z. Hence <I> A,µ(z)i is a polynomial in z for every i. It follows that <I> A,µ(z) is C 1 

Corollary 2.1.6. At every point z0 E 11!0 +2 m there exists a unique solution to 

(IVP) 
dz 
dt = <l>A,µ(z(t)), z(to) = zo. 

Proof: Proof follows directly from Theorem A.4 and Proposition 2.1.5. 

Note the relationship of the trajectories of the Adjoint, Newton and Smale 

vector fields. Recall <I>s,µ(z) = 11:~::~;~11 · 

Lemma 2.1.7. Given z E J1!0 +2 m such that <I>N,µ(z) or <I>s,µ(z) exists then 

<I>N,µ(z) = A1<l>A,µ(z) or <I>s,µ(z) = A2<l>A,µ(z) for some Ai > 0. Note that if both 

exist then both Ai exist. 

Proof: The case for <I>s,µ(z) is clear. As before, sgn(det(DFµ(z))) = (-l)m. If 

<I>N,µ(z) exists, it follows that DFµ(z)- 1 = det(Dk(z))adj(DFµ(z)). Hence 

<I>N,µ(z) = (-l)DFµ(z)- 1 Fµ(z) = (-1) det(D~µ(z)) adj(DFµ(z))Fµ(z) 

= (-l)m+ll det(D~µ(z)) ladj(DFµ(z))Fµ(z) 

= A1 <I> A,µ(z) 

where A1 = I det(Dk(z)) 1- It follows that the directions of the <I> A,µ(z), <I>N,µ(z), and 

<I> s,µ (z) in this setting are identical. 
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Finally, we note a property that is important for using the continuous Newton 

method. 

Lemma 2.1.8. Givenµ 2:: 0, <PA,µ(z) E ker(Dgpµ(z)). 

Proof: 

DFµ(z)<I>A,µ(z) = DFµ(z)(-l)m+ 1adj(DFµ(z))Fµ(z) = (-l)ldet(DFµ(z))IFµ(z). 

Hence the lemma holds from Proposition 2.0.5 

§2.2 Smale Vector Field 

Next we outline the work of [Sm] and [HSm] involving the construction of 

Smale's vector field. The setting for [Sm] was the following. 

Consider a C 2 function F : M c RN -+ RN where M is a bounded nonempty 

subset such that 8M is smooth (hence 8M is a submanifold of dimension N-1). The 

idea behind the work of Smale was to define an IVP for which the solution curve 

traces a path to a root of F. In particular he considered the IVP 

e(to) = z0 ' gp(e) = gp(z0 ), 

where z0 E Reg(gp) and <I>s(z) is constructed so that <I>s(z) E ker(Dgp(z)), 

ll<I>s(z)II = 1, and <I>s(z) is tangent to the connected component through z in 

A(z) = g1;.1(gp(z)). 

For this vector field Smale [Sm] stated an Existence and Convergence Theorem 

for the following setting. 

Consider the ODE 

dz 
DF(z) dt = ->.F(z) 
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Let M be given as above. Suppose that we have the boundary condition on F given 

by, 

Definition 2.2.1 Boundary Condition {BC). For each z E oM, det(DF(z)) =/-

0, and there exists a choice, (a) sgn(A(z)) = sgn(det(DF(z))), Vz E oM, or (b) 

sgn(A(z)) = -sgn(det(DF(z))), Vz E oM, which makes -A(z)DF(z)- 1 F(z) point 

into M at each z E oM. 

Note, Smale used the fact that F was actually C 2 on some open neighborhood, 

n, of M. In this setting, with det(DF(z)) =I- 0, and given that Fis C2 , it follows that 

sgn(det(DF(z))) is constant on oM. Hence, Smale's boundary condition, in fact, 

implies that either (a) is chosen for all z E oM or (b) is chosen for all z E oM. 

Note, the work done in section 6.2 below provides expanded proofs of the 

following theorems of Smale. 

Theorem 2.2.2. Let F: M -t RN be C2 and satisfy BC. There exists a canoni-

cally defi.ned subset :E of measure O in oM such that if z0 E oM, z0 (/. :E, then there 

exists a unique C1 solution ~ : [to, t 1) -t M of 

d~ 
dt = <I> s ( ~ ( t) ) ' ~(to)= z0 , 

starting at ~o with II i II = 1, and t1 maximal, t 1 ~ oo. This solution converges to 

Ep as t -t ti. 

Some explanation of Smale's use of the term canonically is in order. :Eis defined 

as 

:E = {z E oM: 3z E Crit(gp),gp(z) = gp(z)}. 

It follows that z E :E ¢:? 3z E Crit(gp) such that F(z) = AF(z) for some A > 0. It 

is based on this geometry that Smale uses the term canonically. 
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Definition 2.2.3. A function F : M--+ RN is said to satisfy a Non-Singularity 

(NS) condition if't/z E Ep, Df(z) is non-singular. 

Under the non-singularity condition NS, Smale [Sm] stated the following the-

orem. 

Theorem 2.2.4. Let F: M--+ RN be C 2 and satisfy BC and NS. There exists a 

canonically denned closed subset :E of measure O in 8.M such that if z0 E 8.M, z 0 (/. :E, 

then there exists a unique C 1 solution ~ : [to, t1 ) --+ M of 

d~ 
dt = <I?s(~(t)), ~(to)= z0 , 9F(~) = gp(z0 ), 

starting at fo with 11¥tll = 1, and t 1 maximal, t 1 :S oo. This solution converges to a 

single point C E Ep as t--+ ti. 
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CHAPTER 3 

REGULAR POINTS AND REGULAR VALUES 

OF g ON J120+2m Fµ + 

We have seen in Chapter 2 the important relationship between Crit(gFµ) and 

the fixed points of ~ = q> A,µ(z). Clearly one of the questions that arises is that of 

identifying Reg(gpJ. This chapter provides analysis of the regular points of 9Fµ· 

It is shown that Crit(gFµ) is of measure zero in 8R!0 +2m. Also, the structure of 

the regular values of 9Fµ is discussed and it is established that for µ > 0, the set 

of points z E 8J1!°+2m for which 9Fµ (z) is a critical value is of measure zero in 

8R!n+2m. 

Proposition 3.1. If(s,r,x,y) E R!0 +2m, DFµ(s,r,x,y) is of full rank and there-

fore (s, r, x, y) E Reg(gpJ. 

Proof: The proof follows directly from Corollary 2.0.5 and Proposition 2.1.2. 

We now turn our attention to determining the structure of regular points in 

8R!0 +2m. The orthant J1!0 +2m is formed by intersecting the half-spaces given by 

Zi 2: 0. We will classify a point z E 8R!0 +2m by the number of components Zi for 

which Zi = 0. 
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Definition 3.2. Given I 0 , a nonempty subset of {1, ... , 2n + 2m} and #(Io)= k, 

we say the set 

:F(Io) = {z E J1!n+2m : i E Io=} Zi = O} 

is a face of co dimension k in 8R!n+2 m. 

Definition 3.3. Given Io, a nonempty subset of {1, ... , 2n+2m} such that #(Io) = 

k, a point z = (zi) E J1!n+2m is in therelative interior of :F(Io) if 

Zi = 0 Bi E Io. 

Hence each of the polyhedral boundary faces of 8R!n+2m can be given in the 

form 

{z E J1!n+2m: i E Io=;, Zi = 0} = :F(Io) 

where I 0 is a nonempty subset of {1, ... , 2n + 2m}. 

Again, recall that the Remark following (1.21) holds. 

Proposition 3.4. Given I 0 C {1, ... , 2n + 2m} such that #(Io) = 1, if z = 

(s, r, x, y) is in the relative interior of :F(I0 ), then DFµ(z) is of full rank and hence 

Proof: Since we are in the interior of a face of codimension 1 it follows that 

Zi = 0 for exactly one i. We have seen already that the rank of DFµ is completely 

determined by 

-XAt) s . 

The following can all be formed by elementary matrix operations. 

If r j = 0 for some j then we can form 

( R + XAts- 1Y A O ) 
s- 1YA Imm . 
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If x j = 0 for some j then we can form 

If Yi= 0 for some j then we can form 

( R + XAts- 1Y A O ) 
s- 1YA Imm . 

If s j = 0 for some j then we can form 

All the above matrices are of full rank. Hence, DFµ is of full rank on the interior 

of faces of codimension 1. From Corollary 2.0.5, the proposition holds. 

We now turn our attention to a specific type of face of codimension 2 in 

8R!n+2m. In particular, we consider special_ faces which contain points z0 for which 

x? = T? = 0 or yJ = sJ = 0, that is points where the complementary pairs are equal 

to zero. 

Proposition 3.5. Given I0 C {1, ... , 2n + 2m} such that #(Io) = 2, if z = 

(s, T, x, y) is in the relative interior of F(Io) and there exists an i such that Ti = 

Xi= 0 or Si= Yi= 0, then Tank(DFµ(z)) = 2n + 2m - 1. 

Proof: First,consider the case where Xi = Ti = 0 for some i and all other compo-

nents are positive. Set l = m + n + i. It follows that the lth row of DFµ(z) is a zero 

row. Hence adj(DFµ(z)) is a matrix of all zeros except for the lth column. 

Now consider det(DFµ(lll)(z) where DFµ(ilj)(z) is the submatrix formed by 

removing the ith row and the jth column from DFµ (z). Given a matrix B let B' 
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denote the matrix formed by removing the jth row and column of B for a given j. 

- A 

Let B denote the matrix formed by removing the jth row of B for a given j. Let B 

denote the matrix formed by removing the jth column of B for a given j. It follows 

that 

(
-Imm O A O) 

DFµ(lll)(z) = ~ Ign ~, 1t . 
Y O O S 

By doing elementary row and column operations we form the matrix 

(
-Imm 0 

0 Inn 
0 0 
0 0 

Once again using elementary row and column operations we form that matrix 

(
-Imm O A O ) 

0 Inn O At ~ 
0 0 In-ln-1 -(R')-1 X' At . 
0 0 0 S + YA(R')- 1X'At 

Note that At= (Al. Now S + YA(R')- 1X'At = S + YA(R')- 1X'(A)t. sy-1 + 

A(R')-1 X'(A)tis symmetric positive definite, hence det(S + Y A(R')-1 X' At) > 0. 

Therefore (det(DFµ(lll)(z))) =/- 0 and therefore rank(DFµ(z)) = 2n + 2m - 1. 

Now we consider the case where Yi= Si= 0 for some i and all other components 

are positive. Let l = m + 2n + i. It follows that the lth row of DFµ(z) is a zero 

row. Hence adj(DFµ(z)) is a matrix of all zeros except for the lth column. Using 

notation as above, it follows that 

(
-Imm 

DFµ(lll)(z) = ; 

0 
Inn 
X 
0 

A O) 0 At 
R O . 

0 S' 

By doing elementary row and column operations we form the matrix 

0 

Inn 
0 
0 

A 
0 
R 

YA 
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Notice that YA= Y' A and (.A.)t = At. Now using elementary operations we form 

the matrix 

er 
0 A 

0 ) ---Inn 0 At 
0 Inn -R- 1XAt 
0 0 S' + Y'AR- 1X(Al. 

Since S'(Y')-1 +AR-1 X(A)t is symmetric positive definite, it follows that det(S' + 

Y' AR- 1 X A_t) > 0. Therefore det(DFµ(lll)(z)) f O and hence rank(DFµ(z)) = 

2n + 2m -1. 

Proposition 3.6. IfDFµ(s, r, x, y) has a row of zeros andµ> 0, then 

range(DFµ(z)) n L = {O} 

where L ·{a· Fµ(z): a ER}. 

Proof: From the structure of DFµ(z), we may only have a zero row in the last 

n + m rows. Suppose that we have (WLOG) x 1 = r 1 = 0. Then 

DFµ= 

-Imm 
0 

0 

y 

0 A 0 
Inn O At 

(1) (i) 0 

0 0 S 

Suppose there exists a f O such that DFµ(z)u =a· Fµ(z). That is, 

-Imm 
0 

0 

y 
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Expanding we have, 

Y ( ~l) + S (U2n~m+l) = a(Ys - µem). 

Um U2n+2m 
It follows that we must have µ = 0. This contradicts our assumption on µ and 

therefore range(DFµ(z)) n L = {0}. 

Corollary 3.7. Suppose that I 0 C {1, ... , 2n + 2m}, #(Jo) = 2, and µ > 0. If 

z = (s, r, x, y) is in the relative interior of :F(Io) and ri = Xi = 0 or Si = Yi = 0, 

then z E Reg(gp1,). 

Proof: Follows from Propositions 3.5, 3.6 and Corollary 2.0.5. 

We will now identify one of the effects ofµ on the vector field. 

Proposition 3.8. Suppose that Io C {1, ... , 2n + 2m}, #(Io) = 2, andµ= 0. If 

z = (s, r, x, y) is in the relative interior of :F(Io) and ri = Xi = 0 or Bi = Yi = 0, 

then z E Crit(gFµ). 

Proof: As in the proof of Proposition 3.5, if xi = ri = 0 (sj = Yj = 0) then for 

l = m + n + i (l = m + 2n + j), adj(DFµ(z)) is a matrix of all zeros except for the 

lth column. It follows that 

<I> A,µ(z) = (-l)m+ 1 (Fµ)1(z)(lth col of adj(DFµ(z)). 
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But, (Fµ) 1(z) = 0, and therefore <I>A,µ(z) = 0. Hence, from Theorem 2.1.1 it follows 

that z E Crit(gFµ) UEp0 • Now, if z E Ep0 , XjTj = 0 Vj. It follows that there exists 

some io c {1, ... , 2n + 2m} such that #(io) = n and z E :F(i0 ). Since z is in the 

relative interior of :F(I0 ), no such i 0 exists. Hence z E Crit(gFµ). 

Proposition 3.9. Crit(gFµ) n 8R!n+2mis of measure zero in 8R!n+2m. 

Proof: By Proposition 3.4, points in the relative interior of a face of codimension 

1 are regular points of 9Fµ. It follows that critical points of 9Fµ may only occur in 

faces of codimension 2: 2 in 8R~+2 m. Such faces are of measure zero in 8R!n+2m. 

Proposition 3.10. The set Crit(gFµ) is closed in 8R~+2m \ EFµ· 

Proof: By Proposition 2.1.5, <I> A µlaii2n+2rn\E (s, r, x, y) is continuous. Also, from 
' + Fµ 

Theorem 2.1.1, a point (s, r, x, y) E (8R!n+2 m \ EFµ) n Crit(gFµ) if and only if 

<l>A,µ1aii!n+2rn\EFµ(s,r,x,y) = 0. Therefore Crit(gFµ) = <I>A,µl;~!n+2rn\EFµ(O) is 

closed and the proposition follows .. 

Since Crit(gFµ) is closed, (8R!n+2 m \ Epµ) \ Crit(gFµ) is a 2n + 2m - 1-dim 

manifold. In this setting we have Morse-Sard's Theorem to classify critical values. 

The following version is from [H]. 

Theorem 3.11 (Morse-Sard Theorem). Let M, N be differentiable manifolds 

of dimension m, n respectively and f : M --+ N a er map. If r > max{O, m - n} 

then the set of critical values off is of measure zero in N. 

It follows that for our setting we have the following corollary. 

Corollary 3.12. The set of critical values of 9Fµ is of measure zero in s2n+2m-1 . 
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Definition 3.13. Let µ 2: 0, denote 

Hence, Aµ is the set of measure zero of critical values of gpµ given in Corollary 

3.12 corresponding to µ. 

Definition 3.14. Letµ 2: 0, denote 

0 - 2n+2m . - 0 I;µ= {z ER+ . :3z E Cµ(z ),gFµ(z) EAµ}, 

Denne 

and 

Note, Cµ(z 0 ) denotes the closure of Cµ(z 0 ). For a fixed µ, I;µ is the set of 

all points z 0 E J1!n+2m for which the exists a z in the closure of the connected 

component of Aµ(z0 ) such that gpµ (z) is a critical value of gpµ. It is important 

to have an understanding of the structure of the critical values. In what follows, 

conditions on z E J1!n+2m are given which ensure that gpµ (z) is a regular value of 

gpµ. This will also provide a constructive proof that for µ > 0, I;i is of measure zero 

in aJ1!n+2m. The following proposition is important in the work that is to follow. 

Proposition 3.15. Let z1, z2 E J1!n+2m be such that Fµ(z 1 ) =j:. 0 =j:. Fµ(z 2 ). Then 

Proof: Suppose that Fµ(z 1 ) = kFµ(z 2 ) for some k > 0. It follows that 
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Now suppose that 9Fµ, (z1) = 9Fµ, (z2). Then 

Fµ(z1) _ Fµ(z2) 

IIFµ(z1)II IIFµ(z2)II' 

It follows that 

and the proposition holds. 

Proposition 3.16. Letµ> 0. Suppose that there exist sets 10 C {1, ... , n}, 11 C 

{1, ... , m} for which #(10 U 11 ) > n + m - 2. If (s, r, x, y) is s.uch that 

then (s,r,x,y) E Reg(gFµ,) and 9Fµ,(s,r,x,y) is a regular value of 9Fµ,· 

Proof: Letµ> O,io c {1, ... ,n},11 c {l, ... ,m},#(i0 ul1) > n+m-2, and 

z = (s, r, x, y) be such that 

From Proposition 3.4, for z E Crit(gFµ,), there exists a subset 10 of {1, ... , 2n+ 

2m} with #(10 ) ~ 2 such that Zi = 0 {9- i E 10 . Sinceµ> 0, from Corollary 3.7, if 

z E Crit(gFµ,) and z is in the relative interior of a face of codimension 2 in 8R!n+2m 

then 

It follows that for Z E Crit(gFµ,) n R!n+2m, 
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Since 

j E 11 => YjSj - µ, > 0, 

and #(lo U 11) > n + m - 2, it follows that 

and therefore (s, r, x, y) E Reg(gF ). Now suppose there exists z E Crit(gF ) such 
µ . µ 

that 

From above, 

and 

It follows that there exists (WLOG) some j E {1, ... , m} such that YjSj - µ > 

0, fiisi - µ < 0. It follows from Proposition 3.15 that there exists some k > 0 such 

that 

Fµ(z) = kFµ(z). 

Therefore, 

0 < YjSj - µ = k(SjYj - µ) < 0. 

Hence no such k exists and the proposition holds. 
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Proposition 3.17. Supposeµ= 0, (s0 ,r0 ,x0 ,y0 ) E R!n+2m, and defi.ne w 0 = 

gp (s0 , r 0 , x 0 , y0 ). Then gp- 1 ( w0 ) C R 2+n+2 m and hence w0 is a regular value of gp . 
µ µ µ 

Proof: Let µ = 0. For all z E R!n+2m, by Definition 1.8, 

Aty + r - c ( 
Ax - s - b) 

Fµ(s, r, x, y) = F0 (s, r, x, y) = :: 

Let z 0 = (s 0 r 0 x 0 y0 ) E R 2n+2m and w0 = g (s0 r 0 x 0 y0 ) Suppose there ' ' ' + Fµ ' ' ' . 

exists Z = (s, f, x, y) E 0R!n+2m such that 

( - - - -) ( 0 0 0 0) 9Fµ s,r,x,y =gpl' s ,r ,x ,Y . 

So there exists (WLOG) some i such that Xi= 0. Now since 9Fµ (z0 ) = 9Fµ (z), from 

Proposition 3.15, there exists some k > 0, such that. 

F ( o o o o) kF (- - - -) µ s , r , x , y = µ s, r, x, y . 

That is, 

In particular, 

Hence, no such (s,f,x,y) exists. It follows that 9"i}(w0 ) C R!n+2m. Now, if z E 

Crit(gpJ, it follows from Proposition 3.1, z (J R!n+2m C Reg(gFµ), and hence z E 

0R!n+2m. Therefore, Crit(gFµ) n 9p:(z0 ) = (/J. From Definition 2.0.3, gpµ(s, r, x, y) 

is a regular value of 9Fµ. 
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Proposition 3.18. Suppose I0 C {1, ... , 2n + 2m}, #(Io)= 1, andµ> 0. If z is 

in the relative interior of :F(I0 ), 9Fµ (z) is a regular value of 9Fµ. 

Proof: From Proposition 3.4, there are no critical points in the interior of faces 

of co dimension 1 in 8R!0 +2 m. Also, from Proposition 3. 7, any critical point in the 

interior of faces of codimension 2 in ofi!0 +2 m must have 

Hence, for any z* E Crit(gFµ) n J1!0 +2 m, 

#{ {(x;, r;): x;r; = O} U {(yJ, s;): yJs; = O}} ~ 2. 

Therefore, for any z* E Crit(gFµ) n J1!0 +2 m, 

#{ {(x;,r;): x;r; - µ = -µ} U {(yJ, s;): yJs; - µ = -µ}} ~ 2. 

Now suppose that Io C {1, ... , 2n + 2m}, #(Io) = 1, z0 in the relative interior of 

:F(Io) in 8R!0 +2 m and 9Fµ (z0 ) = 9Fµ (z*) for some z* E Crit(gFµ) nR!0 +2 m. From 

Proposition 3.15, Fµ(z 0 ) = kFµ(z*) for some k > 0. Note, 

#{ {(x?, r?) : x?r? = O} U {(yJ, sJ) : yJsJ = O}} = 1. 

Hence, there exists some (WLOG) i such that 

x?r? - µ = k(x;r; - µ) = k(O - µ) = k(-µ). 

Solving for x?r? we have x?r? = µ(1 - k). Since x?r? > 0, it follows that O < 

k < 1. Now there also exists (WLOG) some j such that xJrJ = 0. If xjrJ = 0, 

then 9Fµ (z0 ) = 9Fµ (z*) * -µ = k(-µ) and therefore k = 1. · If xjrJ > 0, then 

9Fµ (z0 ) = 9Fµ (z*) * -µ = k(xJrJ - µ). Solving for xjrJ we have xJrJ = µ(1 - k) 
and since xjrJ > 0, k > 1. In either case we have a contradiction on the value of k 

and so the proposition holds. 
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Corollary 3.19. Letµ> 0. ~~ is of measure zero in 8R!n+2 m. 

Proof: From Proposition 3.18, points z for which gpµ (z) is a critical value are 

contained in the relative interior of faces of codimension k 2: 2. Hence the corollary 

holds. 

Proposition 3.20. Let z = (s,r,x,y) E R!n+2 m. Then there existsµ> 0 such 

that gpµ (s, r, x, y) is a regular value of gpµ for every O::;: µ < µ. 

Proof: Set 

Then for O ::;: µ < µ, 

Hence, from Proposition 3.16 the proposition holds. 

We can prove the existence of points z E Reg(gFµ) for which gpµ (z) is a critical 

value of gpµ. The following theorem is from Wright [WS]. 

Theorem 3.21. Given (1.18)-(1.20), the Central Path exists and is in fact a C 1 

trajectory. Hence, for everyµ 2: 0, there exists z* E J1!n+2m such that Fµ(z*) = 0. 

For µ > 0, z* is unique. 

Proposition 3.22. Given (1.18)-(1.20), for every µ > 0, there exists some zµ E 

Reg(gFµ) such that gpµ (zµ) is a critical value for gpµ. 

Proof: Let µ > 0. (0, 0, 0, 0) E Crit(gpJ and Fµ(O, 0, 0, 0) = (-b, -c, -µe, -µe). 

Given (1.18)-(1.20), from Theorem 3.21, the Central Path exists and hence there 
' 
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exists some z E R~n+2m such that 

( 
0 ) ( Ax - s - b ) 
0 = F (z) = Aty + r - c . 

µe µ Xr - µe 
µe Ys - µe 

It follows that !z E R~n+2 m C Reg(gpJ. Now, 

( 
l ( Ax - s) - b ) ( lb - b ) ( -b ) 1 f(Aty+r)-c Ic-c 1 -c 1 

F -z = 2 = 2 = - = -F O O O 0 µ(2) \Xr-µe }(2µ)e-µe 2 -µe 2 µ('' '). 

4Ys - µe 4 (2µ)e - µe -µe 

From Definition 2.0.3, gpµ ( !z) is a critical value for gpµ. 

As before, I:! is the set of points in R~n+2 m which have critical values. The 

following proposition shows that I:! is of measure zero for µ > 0. 

Proposition 3.23. Let µ > 0. I:; is of measure zero in R~n+2m. 

Proof:. Suppose that z0 E I:+ is such that 

for z* E Crit(gpJ. From Proposition 3.4 and Corollary 3.7, 

#{{(xI,r;): x;r; - µ = -µ} U {(y;,s;): y;s;- µ = -µ}}?:: 2. 

Then, from Proposition 3.15, there exists some k > 0 such that 

Fµ(z 0 ) = kFµ(z*). 

Hence, (WLOG), there exists some i, j such that 

xfr?- µ = k(-µ) 

yJsJ - µ = k(-µ). 
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It follows that x?r? = yJ sJ for any z0 E R!n+2m for which 9Fµ (z0 ) is a critical 

value. Hence, :Et is a closed set and of measure zero in R!n+2 m. 

Note, :Et is a set that would be excluded by Smale and Hirsch [Sm], [HSm] for 

the function Fµ(z). In Chapter 6 it is established that the trajectories which are 

solutions to (1.17) for which z(O) E :Et need not be excluded from consideration. 
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CHAPTER4 

TRANSVERSALITY OF TRAJECTORIES 

TO 8R2n+2m 
+ 

In the approach that we will be using it is important to determine whether the 

solution curve is transverse to the the boundary of the domain. We are considering 

Fµ ( s, r, x, y) defined on the R!0 +2m. Therefore we are interested in the structure of. 

the trajectories on 8R!0 +2m. This chapter establishes whether the solution trajec­

tories of ( 1.1 7) are transverse to 8R!0 +2m. In it, the terminology of transversality 

is defined based on considering how vectors are transverse to closed half-spaces. It 

is shown that for µ 2: 0, <I> A,µ(z) is not outward transversal to 8R!0 +2 m at any 

point z E 8R!0 +2 m. The work done here is based various matrix manipulations. 

The terminology used is based on the following definitions. 

Definition 4.0.1. Given a nonzero vector d and a constant K, denote by 

the closed half-space bounded by the hyperplane 

H = Hd,K = {z E RN: a!z = K} 

with -d being the inward pointing normal of the half-space. 
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Definition 4.0.2. Given a finite collection of closed half-spaces, {H1t = H;t. K.}, 
J, J 

the set 

is called a polyhedral convex set. 

Definition 4.0.3. Let { Ht = Ht ,K)J';1 be a collection of closed-half spaces 

bounded by {Hj}J';1 c RN respectively. Let II = niHt. Suppose that II has a 

nonempty interior and z0 E arr. A nonzero vector dis inward pointing to arr at z0 

if and only if there exists some n 0 > 0 such that Va E [O, n 0), z = z0 + ad E int(II). 

d is parallel to arr at z0 if and only if there exists some n 0 > 0 such that 

Va E [O, n 0), z = z0 + ad E arr. dis outward pointing to arr at z0 if and only if 

there exists some n 0 > 0 such that Va E [O, n 0), 4 = z0 + ad E RN - II. 

Note that int(II) = niint(Ht). We will use the following theorem as a basis 

to discuss transversality. 

Theorem 4.0.4. Let { Ht = Ht ,Kj }J';1 be a collection of closed-half spaces 

bounded by { Hi }J';1 respectively. Let II = nj Ht. Suppose that II has a nonempty 

interior. Suppose that z0 E arr and is such that there exists a set J c {1, ... , M} 

such that z0 E Hj {:} j E J. Then the following hold. 

1. A nonzero vector dis inward pointing to arr at z0 {:} -d)d > Q Vj E J. 

2. A nonzero vector d is outward pointing to arr at z0 {:} 3j E J such that 

-d)d < 0. 

3. A nonzero vector dis parallel to arr at z0 {:} -d;d 2::: 0 Vj E J and 3j E J such 

that -d~d = 0. 
J 

Proof: Let z0 E arr such that z0 E njEJHj. Let d be a nonzero vector. 
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1. Suppose that -djd > 0 Vj E J. Let a > 0. Given j E J, 

Hence, z0 + ad E int(Hf) for some appropriately small a. Since this is true for all 

j, it follows that there exists some a 0 > 0 such that z0 + ad E int(II) for a E [O, a 0]. 

Now suppose that there exists a 0 > 0 such that for a E [O, a 0], z0 + ad E int(II). 

It follows that z0 + ad E n-J!= 1int(Hf). Therefore dj(z0 + ad) < Kj Vj. Now for 

j E J, djz0 = Kj. Hence, Vj E J, -djd > 0. 

2. Suppose ::lj E J such that -djd < 0. Let a > 0. Then 

It follows that z0 + ad E RN - II. Now suppose that there exists a 0 > 0 such that 

for a E [0, 'a:0], z0 + ad E RN - II. Now RN - II= RN - njHf = Uj(RN - Hf). 

Hence, there exists some j such that z0 + ad E RN - Hf. That is, dj (z0 + ad) > Kj. 

Since d - l z0 = Kj, it follows that djd > 0. 

3. Suppose that -djd ~ 0 Vj E J and ::lj E J such that -djd = 0. Let a > 0. 

It follows that dj(z0 +ad) = djz0 +adjd = djz0 = Kj. So, z0 +ad E Hj, Also, since 

-djd ~ 0 Vj E J, dj(z0 + ad) ::; Kj, Vj E J. It follows that there exists a 0 > 0 such 

that for a E [O, a 0], z0 + ad E arr. Now suppose there exists a 0 > 0 such that for 

a E [O, a 0], z0 +ad E arr. Since II is closed, it follows that dJ(z0 +ad) ::; KjYj. Also, 

since z0 + ad E arr, it follows that there exists some j such that dJ(z0 +ad)= Kj. 

Hence, -djd ~ 0 Vj and ::lj E J such that -djd = 0. 

Given Theorem 4.0.4, we use the following terminology for integral curves of 

vector fields. 
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Definition 4.0.5. Let { Hf = H~ ,Kj }J'!:1 be a collection of closed-half spaces 

bounded by Hi respectively. Let IT= niHf. Suppose that IT has nonempty interior. 

Suppose that z0 E arr and is such that there exists a set Jc {1, ... , M} such that 

z0 E Hi ~ j E J. A solution curve, z(t), of 

(IVP) 
dz 
dt = <I>(z(t)), z(to) = z0 

is transverse to arr at z0 if -d}<I>(z(t0 )) =I= 0 Vj E J. If in fact -d}<I>(z(t0 )) > 

0 V j E J then the trajectory actually enters the interior of the domain and we say 

the solution curve is inward transverse to arr at z0 . A solution curve is outward 

transverse to arr at z0 if there exists some j E J such that -d}<I>(z(t0 )) < 0. A 

solution curve is parallel to arr at z0 if -d}<I>(z(t0 )) 2: 0 Vj E J and :lj E J such 

that -d}<I>(z(to)) = 0. • 

§4.1 Faces of Codimension 1 

We first consider the relative interior of a face of codimension 1 in aJ1!n+2m. 

From Proposition 3.4, DFµ(z) is of full rank. In the full rank setting, from Lemma 

2 .1. 7, <I> A,µ ( z), <I> s,µ ( z) are inward transversal to a given boundary if and only if 

<I> N,µ ( z) is inward transversal to the given boundary. We will use the following 

method. If v is the inward normal to the face then 

vt = wt( I det(i:;-;µ(z))I DFµ(z)). 
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So it becomes a question of showing that for a good choice of w, we get v back (or 

a scaled version of it) and that wtFµ(z) > 0. 

Through out this work, ei denotes the standard position vector of dimension 

appropriate to the given setting. 

Proposition 4.1.1. Let µ = 0, I0 C {1, ... , 2n + 2m }, and #(Io) = 1. If z is in 

the relative interior of F(I0 ), <I>A,µ(z) is nonzero and parallel to F(I0 ). 

Proof: Let z be in the relative interior of a face of codimension 1. Then by 

Proposition 3.4 and Theorem 2.1.1, since Fµ(z) =/- O,<I>A,µ(z) is nonzero. From 

above, if wt Fµ(z) = 0, <I> A,µ(z) is normal to v. Since v is the normal of a face of 

co dimension 1, it follows from above that <I> A,µ ( z) parallel to the face and therefore 

the proposition holds. We have four cases to address. 

For Si = 0 let l = m + 2n + i. The normal vector for this codimension 1 face is 

ei. Now (Fµ)t = 0 where (Fµ)t is the lth component function of Fµ- Set w = -et. 

-1 t 1 t 0 (
-Imm 

I det(DF1,(z)) I w DF,, (z) = I det(DFµ (z)) (' t 
0 

Inn 
X 
0 

1 t t 
I det(DFµ(z))I (yiei + Sie2n+m+i) 

Yi t 

I det(DFµ(z))(i · 

Hence we have that <I>A,µ(z) is parallel to the face determined by Si= 0. 

Similar arguments hold for the other faces of codimension 1 and are given 

below. 

For ri = 0 let l = m + n + i. Then the corresponding normal vector is em+i 
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and (Fµ,) 1 = 0. Set w = -e1• Then wtFµ(z) = 0 and 

t -1 t ( ) Xi t 
v = [det(DFµ,(z))[w DFµ z = [det(DFµ,(z))[em+i · 

Hence, <I> A,µ ( z) is parallel to the face determined by r i = 0. 

For Xi = 0 let l = m + n + i. The corresponding normal vector is e1 and 

(Fµ)l = 0. Set w = -e1• Then wtFµ(z) = 0 and 

t -1 t ( ) Ti t 
v = [det(DFµ(z))[w DFµ z = [det(DFµ(z))[e 1 • 

Hence, <I> A,µ ( z) is parallel to the face determined by Xi = 0. 

For Yi = 0 let l = m + 2n + i. The corresponding normal vector is e1 and 

(Fµ)l = 0. Set w = -e1. Then wt Fµ(z) = 0 and 

t -1 t ( ) Si t 
v = [det(DFµ,(z))[w DFµ z = [det(DFµ(z))( 1 • 

Hence, <I>A,µ(z) is parallel to the face determined by Yi= 0. 

Proposition 4.1.2. Let µ > 0, Io C {1, ... , 2n + 2m }, and #(10 ) = 1. If z is in 

the relative interior of :F(I0 ), <PA,µ(z) is inward transversal to :F(I0 ). 

Proof: As before, we have four cases. 

For Si= 0 let l = m+2n+i. Then (Fµ)l =-µ.Set w = -e1. Then wtFµ(z) = µ 

> 0 and 

t -1 t 1 t 0 (

-Imm 

v = [det(DFµ(z))[w DFµ(z) =[det(DFµ(z))[e1 i 

t 

I det(DFµ(z))I ei · 

55 

0 
Inn 
X 
0 



Hence we have inward transversality for the face determined by Si = 0 whenµ> 0. 

For Ti= 0 let l = m+n+i. Then (Fµ)l =-µ.Set w = -e1. Then wtFµ(z) = µ 

> 0 and 

t -1 t ( ) Xi t 
v = I det(DFµ,(z))I w DFµ z = I det(DFµ,(z))I em+i · 

Hence inward transversality for the face holds when µ > 0. 

For Xi= 0 let l = m+n+i. Then (Fµ)l =-µ.Set w = -e1. Then wtFµ(z) = µ 

> 0 and 

t -1 t ( ) Ti t 
v = I det(DFµ,(z))I w DFµ z = I det(DFµ,(z))I ei · 

Hence inward transversality for the face holds whenµ> 0. 

For Yi= 0 let l = m+2n+i. Then (Fµ)l =-µ.Set w = -e1. Then wtFµ(z) = µ 

> 0 and 

-1 t Si t 

I det(DFµ,(z))I w DFµ(z) = I det(DFµ,(z))( 1 · 

Hence inward transversality for the face holds whenµ> 0. 

We can now prove stronger results about the transversality of the trajectories · 

Proposition 4.1.3. Let µ = 0. There are no points z E 8R!n+2m for which 

<I> A,µ(z) is outward (inward) transversal to 8R!n+2m. 

Proof: Suppose I0 C {1, ... , 2n + 2m }, #(Io) = k, and z in the relative interior of 

:F(Io) C 8R!n+2m is a point for which <I> A,µ(z) is outward transversal to R!n+2m. 

Note, from Proposition 4.1.1, k 2 2. Since <I> A,µ(z) is outward transversal to R!n+2m 

there exists some nonempty set 'T/ C Io such that if i E 'T/ then <l>A,µ(z)i = <l>A,µ(z) · 

ei < 0. Now <I> A,µ(z)j is a polynomial in z for every j. So there exists E > 0 such 
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that if llz - zll < E then <I> A,µ(z)i < 0 for i E ry. Pick some l E 'f/· Define a point z* 

by 

Then 

llz* - zll = 2:)z; - .zi) 2 = 
iE'f/ 

if zi > O; 
if i # l; 
if i = l. 

It follows from continuity (Proposition 2.1.5) that <I> A,µ(z*)i < 0 for i E rJ. In 

particular, <I> A,µ(z*)z < 0. But, z* is in the relative interior of a face of codimension 

1 in 8R!n+2m given by Zz = 0, which has been shown to have <I>A,µ(z) parallel to 

it. That is <I> A,µ(z*)z = <I> A,µ(z*) · ez = 0. Therefore no such z exists. A similar 

argument holds for an inward transversal point. 

Corollary 4.1.4. Letµ= 0. Given z E Reg(gpJ n 8R!n+2m, <I> A,µ(z) is nonzero 

and parallel to 8R!n+2m. 

Proof: Since z E Reg(gpJ n 8R!n+2m, from Theorem 2.1.1, <I>A,µ(z) # 0. Hence, 

from Proposition 4.1.3, the corollary follows. 

Proposition 4.1.5. Let µ > 0. There are no points z E 8R!n+2m for which 

<I> A,µ(z) is outward transversal to 8R!n+2m. 

Proof: Suppose 10 C {1, ... , 2n + 2m }, #(10 ) = k, z in the relative interior of 

:F(Io) c ofi!11+2m is a point for which <I> A,µ(z) is outward transversal to R!n+2m. 

Note, from Proposition 4.1.2, k ~ 2. Since <I> A,µ(z) is outward transversal to R!n+2m 

there exists some nonempty set rJ C Io such that if i E rJ then <I> A,µ (z)i = <I> A,µ (z) · 

ez < 0. Now <I>A,µ(z)j is a polynomial in z for every j. So there exists E > 0 such 
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that if lz - zl < Ethen <P A,µ(z)i < 0 for i E T/· Pick some l E T/· Define a point z* by 

Then 

lz* - zl = L(z; - Zi) 2 = 
iEr, 

if zi > O; 
if i =I=- l; 
if i = l. 

~( ~ )2 = _:_ v'k-=-I !, 
L- 2k 2 k < 2 
i=l 

It follows from continuity (Proposition 2.1.5) that <P A,µ(z*)i < 0 for i E T/· In 

particular, <P A,µ(z*)1 < 0. But, z* is contained in the interior of a face of codimen-

sion 1 given by z1 = 0, which has been shown to be inward transversal. That is 

<P A,µ(z*)z = <P A,µ(z*) · ez > 0. Therefore no such z exists and the proposition holds. 

Corollary 4.1.6. Given µ > 0 and z E Reg(gpJ n 8R~n+2m, <P A,µ(z) is nonzero 

and either paralJel or inward transversal to 8R~n+2m. 

Proof: Since z E Reg(gpJ n 8R~n+2m, from Theorem 2.1.1, <PA,µ(z) =I=- 0. Hence, 

from Proposition 4.1.5, the corollary follows. 

§4.2 Faces of Codimension k 

If DFµ(z) is of full rank at a point which is in the relative interior of a face 

which is the intersection of k (2n + 2m - 1)-dimensional faces, then by showing 

inward transversality to each (2n + 2m - 1)-dimensional face we obtain inward 

transversality for the face of codimension k. The argument is as above and inward 

transversality holds in this setting. IfDFµ(z) is not of full rank then we must switch 

our approach. If z E Crit(gp1J U EFµ, then <P A,µ(z) = 0 and hence <P A,µ(z) is not 

outward transversal to the face. Finally, if z E Reg(gFµ) and DFµ(z) is of rank 

2n + 2m - 1 then Rank(adj(DFµ(z))) = 1. We need only consider µ > 0, as the 

case for µ = 0 is completely determined above. 
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§4.2.1 Codimension 2 

We will consider a point z in the relative interior of a face of codimension 2 in 

8R~n+2 m for which Xi = ri = 0 or Yi = Sj = 0. This is a particularly interesting case 

as, from Proposition 3.5, <I>N,µ(z) is undefined at such a point, yet, from Corollary 

3.7 and Theorem 2.1.1, <I>A,µ(z) -=I=- 0. 

Proposition 4.2.1.1. Let µ > 0, 10 = {j, k} such that (zj, zk) = (ri, xi) or 

(zj,zk) = (si,Yi) for some i. If z is in the relative interior of F(Io), <I>A,µ(z) is 

inward transversal to R~n+2m. 

Proof: First we turn our attention to the case where Xi = ri = 0 for some i and 

all other components are positive. Set l = m + n + i. It follows that the lth row of 

DFµ(z) is.a zero row. Hence adj(DFµ(z)) is a matrtx of all zeros except for the lth 

column. Recall that to show we have transversality at the intersection of faces it is 

enough to show that we in fact have transversality for each face individually. 

First consider the face determined by Xi = 0. In this case the inward normal 

vector is vt = [O, 0, ei, O]. It follows that 

Therefore, 

vt<I> A,µ(z) =[0, 0, ei, O](-l)m+1adj(DFµ(z))Fµ(z) 

(Ax-s-b) 
=(-l)m+1[0, 0, ei, O]adj(DFµ(z)) AXty + r - c 

r-µe 
Ys-µe 

. At + r - c (Ax-s-b) 
vt<I>A,µ(z) = (-l)m+l(lth row of adJ(DFµ(z))) .ir _ µe 

Ys-µe 
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However, adj(DFµ(z)) is a matrix of all zeros except for the lth column. Hence, 

vt<I>A,µ(z) = (-l)m+1adj(DFµ(z))uFµz = (-l)m+1adj(DFµ(z))u(-µ) 

= (-l)m+l(-l)l+l(-µ) det(DFµ(lll)(z)) 

= (-l)mµdet(DFµ(lll)(z)) 

where DFµ(ilj)(z) is the submatrix of DFµ(z) formed by removing the ith row and 

the jth column of DFµ(z). Given a matrix B let B' denote the matrix formed by 

removing the jth row and column of B for a given j. Let B denote the matrix 

formed by removing the jth row of B for a given j. Let B denote the matrix formed 

by removing the jth column of B for a given j. It follows that 

(
-Imm O A O) 

DFµ(lll)(z) = ·~ Ign ~, ~t . 

Y O O S 

By doing elementary row and column operations we form the matrix 

(
-,-Imm 0 

0 Inn 
0 0 
0 0 

0 ) 0 At 
R'~ -X'At . 
YA S 

Note that At = (A)t. Once again using elementary row and column operations we 

form that matrix 

er 
0 

Inn 
0 
0 

A 
0 

In-ln-1 
0 

Note that sy-1 + A(R')-1 X'(A.)tis symmetric positive definite. It follows that 

det(S + Y A(R')-1 X' .Jt) > 0. Therefore det(DFµ(lll)(z)) f= 0 and 

sgn(det(DFµ(lll)(z))) = (-l)m = sgn(det(DFµ(())) 
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where ( is a regular point of DFµ(z). So 

sgn(vt<I>A,µ(z)) = sgn((-l)mµdet(DFµ(lll)(z))) = (-1) 2m = 1. 

Hence inward transversality holds. 

Now we consider the face defined by r i = 0. In this case the inward normal 

vector is vt = [O, ei, 0, OJ. It follows as before that 

Now 

vt<I> A,µ(z) = [O, ei, 0, O](-l)m+1adj(DFµ(z))Fµ(z) 

= (-l)m+ 1 (-l)l+m+i(-µ) det(DFµ(llm + i)(z)) 

= (-l)m+1(-lt(-µ) det(DFµ(llm + i)(z)) 

= (-l)m+nµdet(DFµ(llm + i)(z)). 

(
-Imm O A 0) 

DFµ(llm + i)(z) = ~ 1x~ A ~t . 

Y O O S 

By doing elementary row and column operations we form the following sequence of 

matrices. 

er 
0 A 

D Inn 0 
X' R 
0 0 

er 
0 A 

1') Inn 0 
X' R 
0 YA 

er 
0 A 

0 ) Inn 0 At 
X' R 

I~m 0 s- 1YA 

er 
0 A 

JJ Inn -Ats- 1Y A 
X' R 
0 0 
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It follows that the determinant of the submatrix is completely determined by the 

determinant of 

Using elementary operations we form the matrices 

( inn -Ats-1Y A) 
In-ln-1 (X')-l R 

( 0 -(Ats-1YA+I_;nx- 1R)) 
In-ln-1 (X')- 1 R 

where I~n is Inn with the ith row zeroed out. Now Ats-1y A> 0 and I~nx- 1 R ~ 0. 

Therefore Ats-1YA+I~nx- 1R is positive definite, det(DFµ(llm+i)(z)) =I= 0, and 

sgn(det(DFµ(ljm + i)(z))) = (-l)m+n. Therefore, 

sgn(vt<I>A,µ(z)) = (-l)m+nsgn(µdet(DFµ(llm + i)(z))) = 1. 

Hence inward transversality holds. 

Now we consider the case where Yi = Si = 0 for some i and all other components 

are positive. Let l = m+2n+i. It follows that the lth row ofDFµ(z) is a zero row. 

Hence adj(DFµ(z)) is a matrix of all zeros except for the lth column. 

First consider the face determined by Yi = 0. In this case the inward normal 

vector is vt = [O, 0, 0, ei]. It follows that 

= (-l)m+1 (lth row of adj(DFµ(z))Fµ(z). 

However, the only nonzero entry of the lth row is in the lth column. Hence, 

= (-l)m+ 1(-µ)(-l)l+l det(DFµ(ljl)(z)) 

= (-l)m(µ) det(DFµ(ljl)(z)). 
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Using notation as above, it follows that 

DFµ(lll)(z) - er 0 

Inn 
X 
0 

A O) 0 At 
R O . 

0 S' 

By doing elementary row and column operations we form the matrix 

(
-Imm 0 

0 Inn 
0 0 
0 0 

A 

0 ) 0 .Jt 
_R -XAt . 
YA S' 

Notice that YA= Y' A and (.A)t = At. Now using elementary operations we form 

the matrix 

(
-Imm O A Qt ) 

0 Inn O A 
0 0 Inn -R- 1 XAt · 
6 0 0 S' + Y'AR- 1X(A)t 

Since S'(Y')-1 +AR-1 X(A)t is symmetric positive definite, it follow~ that det(S' + 

Y' AR-1 X .Jt) > 0 and det(DFµ(ljl)(z)) =/:- 0. Therefore, 

sgn(det(DFµ(ljl)(z))) = (-l)m = sgn(det(DFµ(())) 

where ( is a regular point of DFµ(z). It follows that 

sgn(vtq>A,µ(z)) = sgn((-l)m(µ)det(DFµ(ljl)(z))) = (-1) 2m = 1. 

Hence inward transversality holds. 

Now we consider the face determined by Si= 0. In this case the inward normal 

vector is vt = [ei, 0, 0, 0]. Hence, 

vtq>A,µ(z) = [ei, 0, 0, O](-l)m+ladj(DFµ(z))Fµ(z) 

= (-l)m+1 (-l)i+1 (-µ) det(DFµ(lji) (z)) 

= (-l)m+1 (-l)m(-µ) det(DFµ(lji)(z)) 1 

= µ det(DFµ(lji)(z)) 
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Now, 

(
-Imm 

DFµ(lli)(z) = ~ 
Y' 

0 

Inn 
X 
0 

A 0) 0 At 
R O . 

0 S 

By doing elementary row and column operations we form the following sequence of 

matrices. 

(
-Imm 0 

0 Inn 
0 X 

Y' 0 

Cmt-1 

CJm-1 
0 
0 

0 
Inn 

0 

X 
0 

Inn 
X 
0 

A 
0 

x- 1R 
0 

A 
-x- 1R 

Inn x- 1R 
0 0 

0 
0 

Inn 
0 

A 0) 0 At 
R O 
0 S 

CJm-1 

.CJm-1 

CJm-l I~n 

0 
-Inn 
x-1R 

0 

AR-1 X At+ lmm(Y')- 1S 1 Imm) 
R- 1xAt 

0 . 

(Y')- 1S' Imm 

It follows that 

det(DFµ(lli)(z)) = (-l)m(m-l)+n(n-l)+n+n det(AR- 1 X At+ fmm(Y')- 1S' Imm). 
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and AR- 1 X At is symmetric positive definite. Hence, 

and det(DFµ(lli)(z))) > 0. Therefore, sgn(det(DFµ(lli)(z))) = 1, 

sgn(vt<I>A,µ(z)) = sgn((µ)det(DFµ(lli)(z)))) = 1, 

and inward transversality holds. 

§4.2.3 Co dimension k=m + 1 

Forµ> 0, it is possible to have <I>A,µ(z) parallel to &R!n+2 m. In this case we 

may have what is called an r-deficiency. Recall that 

(
-Imm 

DFµ(z) = ! 
Suppose that k = m + 1 and 

0 
Inn 
X 
0 

Ti = 0 {:} i E IC {l, ... n }, #(I) = k. 

Suppose that A is such that any set of m columns of A are linearly independent 

and m < n. Then from the structure of DFµ(z) it follows that DFµ(z) has rank 

2m + 2n - 1. In particular, by using elementary column operations on 

(;) 
it is possible to form a zero column. By the assumption that any set of m columns 

of A are linearly independent, it follows that there is one and only one zero col-

umn possible at any given time. Hence, the rank is 2n + 2m - 1. For <I> A,µ(z) 
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to be transversal on this face we must have positive entries for <I> A,µ ( z) in those 

places that correspond to Ti = 0. The entries of <l>A,µ(z) that correspond to r 

are (<I>A,µ(z))m+l, ... , (<I>A,µ(z))m+n· The rows of adj(DFµ(z)) are formed from the 

corresponding columns of DFµ(z). Consider any column numbered m + 1 tom+ n 

of 

er 
In particular we are looking at 

0 
Inn 
X 
0 

If we consider any maximal submatrix formed from these columns then we see that 

we are simply removing a row from 

(1) 
It follows that by elementary column operations we can still form a zero column in 

(1) 
after a row has been removed. Hence the determinant of the maximal submatrix 

is 0. It follows that adj(DFµ(z)) has all zero entries in the rows numbered m + 1 

to m + n. In fact, this same argument applies to the rows numbered 1 to m and 

m + 2n + 1 to 2m + 2n. Therefore (<I> A,µ(z))i = 0 for i E {1, ... , m + n} or i E 

{m + 2n + 1, ... , 2m + 2n}. Hence <I>A,µ(z) is NOT transversal to the given face. 

Note that DFµ(z) has rank 2n + 2m - 1 and therefore there is at least one nonzero 

row in adj(DFµ(z). It follows that, in general, this is not a fixed point of <I>A,µ(z) 
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and that nonzero rows occur only in rows numbered m + n + 1 to m + 2n which 

correspond to the x' s. Therefore 1> A,µ(z) is parallel to the given face. 

Definition 4.2.3.1. Let µ > 0, I;t denotes the set of all z E ol1!0 +2 m for which 

there exists a set 10 C { 1, ... , 2n + 2m}, such that z is in the relative interior of 

:F(Io) and for which there exists i E Io such that (1>A,µ)i(z) = 0. 

That is, I;t is the set of all points z E 0R!0 +2m for which 1> A,µ(z) is NOT 

inward transversal to 0R!0 +2m. Note, from Theorem 2.1.1, (EFµ UCrit(gFµ)) C I;t. 

Proposition 4.2.3.2. Let µ > 0, I;t is a nowhere dense set of measure zero in 

8R!n+2m_ 

Proof: Suppose z E I;t. From Propositions 4.1.2 and 4.2.1.1, there exists 10 C 

{1, ... , 2n+2m}, #(Io)~ 2 such that z is in the relative interior of :F(I0 ). It follows 

that I;t is contained in the relative interior of a collection of subsets { :F(Ig)} for 

which #(Jg) ~ 2 for every k. Hence the proposition holds. 

§4.2.4 Codimension n+m+l 

In this setting we must have at least one strict complementary failure. Also, 

this highest rank of DFµ(z) possible is 2n + 2m - 1. If rank is 2n + 2m - 2 then 

we have a fixed point for 1> A,µ- Suppose the rank is 2n + 2m - 1. Then since 

we have a complementary pair failure, adj(DFµ(z)) has only one nonzero column. 

Suppose (WLOG) that Xi= ri = 0. Then the nonzero column of adj(DFµ(z)) is the 

n + m + ith column. Also Fµn+m+i(z) =-µ.Therefore, <PA,µ(z) = (-l)mµ(n + 

m+ith column ofadj(DFµ(z)). It follows that this is not a fixed point of the vector 

field as the column is nonzero. 
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CHAPTER 5 

TRANSVERSALITY OF TRAJECTORIES ON 

BOUNDARIES OF OTHER SETS 

We need to describe and detail the behavior of the vector field on the structures 

that will form the boundary of the subset we will be working on. The boundary 

will consist of three different types of surfaces. The first surface is 8R!n+2m and 

has been covered in Chapter 4. The other surfaces will be constructed to bound 

the trajectory in R!n+2m. This chapter provides constructions of other sets, M, for 

which <I>A,µ(z) is inward transversal at z E 8M. Some of the sets are "hyperbolic" 

sets and transversality of <I> A,µ(z) to 8M at z E 8M is verified by showing that 

<I> A,µ(z) is transversal to the supporting closed half-spaces to the M at z E 8M. 

Conditions are established for which <I> A,µ ( z) is not outward transversal to a collec­

tion of the various sets and 8R!n+2m. Note, throughout this section we will only 

consider points z E R!n+2m. The work done here provides a basis for bounding 

the trajectory z(t) away from 8R!n+2m, as needed in Chapter 6, or to bound an 

individual component of z(t), as needed in Chapter 7. 

Definition 5.0.1. Given a matrix B, let Bi denote the ith row of B. 

§5.1 Transverse Trajectories on Closed Half-Spaces 

We will be considering four different types of closed half-spaces. 
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Definition 5.1.1. Given b E Rm in (LP), let i E {1, ... , n} and M > bi. A Type 

1 closed half-space is denned as 

+ A H = {(s,r,x,y): Aix- Si :'.SM}. 

Now we must check the transversality of <I> A,µ(z) on aH+ for a Type 1 closed 

half-space. Given a point z E aH+, the inward normal vector to aH+is Vi = 

-[-ei, 0, Ai, O] where Ai is defined as above. Recall that we are only concerned 

with points ( s, r, x, y) E R!0 +2m. For the moment we will only consider a point 

(s, r, x, y) such that (s, r, x, y) E ii!0 +2 m and DFµ(s, r, x, y) is of full rank. 

Theorem 5.1.2. Let i E {1, ... , n} and H+ be a Type 1 closed half-space. Suppose 

that z = (s, r, x, y) E aH+ n ii!0 +2 m is such that DFµ(z) is of full rank. Then 

<I> A,µ(z) is inward transversal to aH+ at z. 

Proof: Let z E aH+ n ii!0 +2 m and suppose that DFµ(z) is of full rank. Then 

z . (s, r, x, y) is such that Aix - Si= M for M > bi. From section 4.1, we need to 

find wt so that 

0 
Inn 
X 
0 

We see that by choosing the ith row of D F µ (z) we get a scaled version of the desired 

vector v. Hence we set wt= I det(DFµ(z)l[ei, on, on, om] where om is the Om-vector. 

Now we need to check wt Fµ(z). We have 

(
Ax-s-b) 

w' Fµ(z) = I det(DFµ(z))l[e;, O", O", om] A'y ;:- C 
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Therefore, 

It follows that the <I? A,µ(z) is inward transversal to 8H at z. 

Definition 5.1.3. Given c E R 0 in (LP), let j E {1, ... , m} and M >Ci.A Type 

2 closed. half-space is denned as 

+ t A H = { (s, r, x, y) : A YJ + r1 ::; M}. 

If H+ is a Type 2 closed half-space, z E aH+ n 11!0 +2 m, the inward normal 

vector to aH+ at z is v1 = -[O, e1 , 0, A}]. As above, we ":'ill only consider (s, r, x, y) E 

J1!0 +2 m such that DFµ(s, r, x, y) is of full rank. 

Theorem 5.1.4. Let j E {1, ... , m} and H+ be a Type 2 closed half-space. Sup­

pose that z = (s, r, x, y) E aH+ nl1!0 +2 m is such that DFµ(z) is of full rank. Then 

<I? A,µ (z) is inward transversal to aH+ at z. 

Proof: Let z E aH+ n 11!0 +2 m and suppose that DFµ(z) is of full rank. Then 

z = (s, r, x, y) is such that A}y + r1 = M for M > c1. It follows that the inward 

normal vector is vt = -[O, -e1, 0, A}]. Now, 

0 
Inn 
X 
0 

A O) 0 At 
R O . 

0 S 

We see that by choosing them+ jth row of DFµ we get a scaled version of v back. 

So set 
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It follows that 

( 
Ax - s - b) 

w' Fµ(z) = I det(DFµ(z)ll[om, e;, O", om] A'y f :- C 

= I det(DFµ(z))l(A1y + rj - Cj) 

= I det(DFµ(z))l(M - cj) > 0. 

It follows that <I>A,µ(z) is inward transversal to aH+ at z. 

Definition 5.1.5. Given b E Rm in (LP), let i E {1, ... , n} and M < bi. A Type 

3 closed half-space is denned as 

+ A H = {(s, r, x, y): -Aix +Si~ -M}. 

If H+ is a Type 3 closed half-space and z E aH+ n 11!0 +2m, the inward normal 

vector to aH+ at z is Vi= [-ei,O,Ai,O]. 

Theorem 5.1.6. Let i E {1, ... , n} and H+ be a Type 3 closed half-space. Suppose 

that z = (s, r, x, y) E aH+ n J1!0 +2 m is such that DFµ(z) is of full rank. Then 

<l>A,µ(z) is inward transversal to aH+ at z. 

Proof: The proof is identical to the proof of theorem 5.1.2 with 

Definition 5.1.7. Given c ER", let j E {1, ... , m} and M < Cj, A Type 4 closed 

half-space is denned as 

If H+ is a Type 4 closed half-space and z E a H+ n J1!0 +2 m, the inward normal 

vector to aH+ at z is is Vj = [O, ej, 0, A}]. 
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Theorem 5.1.8. Let j E {1, ... , m} and H+ a Type 4 closed half-space. Suppose 

that z = (s, r, x, y) E [)H+ n R~n+2m is such that DFµ(z) is of full rank. Then 

<PA,µ(z) is inward transversal to [)H+ at z. 

Proof: The proof is identical to the proof of theorem 5.1.4 with 

Corollary 5.1.9. Let z E R~n+2m be a feasible point such that DFµ(z) is of full 

rank, then <PA,µ(z) is parallel to Type 1 (Type 3) closed half-spaces with M = bi 

and parallel to Type 2 (Type 4) closed half-spaces with M = Ci. 

Proof: The proof follows from the proofs of theorems 5.1.2, 5.1.4, 5.1.6, 5.1.8 with 

the appropriate value of M. 

§5.2 Transverse Trajectories on Hyperbolic Boundaries 

The next types of surfaces we will consider will be those of a hyperbolic struc­

ture that is formed by the complementary pairs. These sets will be important in 

providing bounds on the trajectories. 

Given M > µ > 0 and i E {1, ... , n }, consider the set 

To this point, the term transverse has been related to polyhedral convex sets. 

Therefore we need to relate the above set in some way to polyhedral sets in order 

to discuss transversality. Convexity will provide the basis to relate the hyperbolic 

structure to closed half-spaces. The set 

}( = {(s, r, x, y): (s, r, x, y) E R~n+2 m, XiTi 2: M} 
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is a convex set. Now, 

_ . - 2n+2m . _ ~ 81( - {(s,r,x,y). (s,r,x,y) ER+ ,xiri - M} 

Suppose that z 0 = ( s0 , r 0 , x 0 , y0 ) E 8K. The supporting closed half-space to K at 

with corresponding supporting hyperplane to K at z 0 given by 

The following definition is a generalization of Definition 5.0.3. 

Definition 5.2.1. Given a convex set K C RN and z0 E 8K. A nonzero vector dis 

outward transversal to Kat z 0 if3 a 0 > 0 such that Va E [O, a 0 ], z 0 +ad E RN\K. 

Given the above definition we now turn to the specific set K as defined above. 

Theorem 5.2.2. Let z0 E 8K. A nonzero vector dis outward transversal to 8K at 

z 0 if and only if d is outward transversal to Ht, at z0 

Proof: Let z 0 E 8K. Suppose that dis a nonzero vector that is outward transversal 

to 8K at z 0 . Then there exists a 0 > 0 such that z 0 + ad E RN\ K for all a E [O, a 0]. 

Let dri, dxi denote the components of d corresponding to ri, Xi respectively. Now 

z 0 + ad E RN \ K <=? ( rf + adro) ( x? + adxo) < M 
' ' 

<=? x? dro + rf dxo + adro dxo < 0 
i i i i 
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Note that x?, rf > 0. Since the above is true for all a E [O, aol, x?dro + rf dxo < 0. 
' ' 

It follows that 

Hence, d is outward transversal to Ht at z 0 . 

Now suppose that a nonzero vector d is outward transversal to Ht at z0 . It 

follows that 

As before xf, rf > 0. If dxo dro > 0 then 
' ' 

Pick a 0 > 0 such that 

Then for all a E [O, a 0], 

and hence 

It follows that d is outward transversal to ()JC, at z0 . If dxo dro < 0 then for any 
' ' 

a> 0, 

and as before the theorem holds. 

Now at z0, <I> A,µ,(z0) is inward transversal to the set 

{(s,r,x,y): (s,r,x,y) E R!n+2 m,xiri :SM}. 
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if and only if <l>A,µ(z 0 ) is outward transversal to 

}( = {(s, r, x, y) : (s, r, x, y) E R!n+2m, Xiri ~ M}. 

It follows that we need only consider the supporting closed half-spaces Hi when 

we are considering inward transversality. 

The inward normal vector to the set 

Theorem 5.2.3. Let M > µ ~ 0 and i E {1, ... , n }. Suppose that z = (s, r, x, y) E 

R!n+2m is such that xiri = M. Then <l>A,µ(z) is inward transversal to the set 

{(s,r,x,y): (s,r,x,y) E R!n+2m,xiri:::; M}. 

Proof: Since z E R!n+2m, DFµ(z) is of full rank. We need to solve 

0 )" At 
0 . 

s 

The m+n+ith row ofDFµ(z) is -vt. Therefore we set wt= I det(DFµ(z))lem+n+i· 

It follows that 

vt Fµ(z) = I det(DFµ(z))le~+n+i (Ji:_~~:) 
Ys-µe 

= I det(DFµ(z))l(xiri - µ) 

= I det(DFµ(z))l(M - µ) > 0. 
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It follows that <I>A,µ(z) is inward transversal to 

{(s,r,x,y): (s,r,x,y) E R!n+2 m,XiTi :SM} 

at z. 

Now, given M > µ > 0 and j E {1, ... , n}, consider the set defined as 

{(s,r,x,y): (s,r,x,y) E R!0 +2m,YjSj :SM}. 

Let z0 E R!0 +2m, YjSj = M. As above, given j E {1, ... , m }, we form the set 

K = { (s, r, x, y) : (s, r, x, y) E J1!0 +2m, YjSj 2:: M}. 

The corresponding closed half-space is 

Theorem 5.2.4 corresponds to Theorem 5.2.2. 

Theorem 5.2.4. Let z0 E 8K. A nonzero vector d is outward transversal to 81(, at 

z0 if and only if d is outward transversal to Ht, at z0 

The inward normal vector for this surface is vt = -[yjej, 0, 0, Sjej]. 

Theorem 5.2.5. Let M > µ 2:: 0 and j E {1, ... , n }. Suppose that z = (s, r, x, y) E 

R!n+2m is such that YjSj = M. Then <I>A,µ(z) is inward transversal to the set 

{(s,r,x,y): (s,r,x,y) E R!0 +2 m,YjSj::; M}. 

Proof: The proof is as in Theorem 5.2.3 using wt= I det(DFµ(z))lem+2n+i· 

There are analogous theorems for when M < µ. These will be of importance 

when analyzing our trajectories for the case ofµ> 0. 
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Theorem 5.2.6. Letµ> M :2". 0 and i E {1, ... , n }. Suppose that z = (s, r, x, y) E 

R!0 +2 m is such that Xi Ti = M. Then <I> A,µ(z) is inward transversal to the set 

{ (s, r, x, y) : (s, r, x, y) E R!0 +2 m, XiTi :2". M}. 

Proof: Since z E R!0 +2 m, DFµ (z) is of full rank. We need to solve 

The m+n+ith row of DFµ(z) is vt. Therefore we set wt= -I det(DFµ(z))lem+n+i· 

It follows that 

( Ax- s -b) 
Vt Fµ(z) = -I det(DFµ(z))Je~+n+i Axty + r - C 

r-µe 
Ys-µe 

= -I det(DFµ(z))J(xiri - µ) 

= -I det(DFµ(z))J(.M - µ) > 0. 

It follows that <I> A,µ ( z) is inward transversal to 

{(s,r,x,y): (s,r,x,y) E R!0 +2m,XiTi ~ .M} 

at z. 

Theorem 5.2. 7. Letµ> M :2". 0 and j E {1, ... , n }. Suppose that z = (s, r, x, y) E 

R!0 +2 m is such that YjSj = M. Then <PA,µ(z) is inward transversal to the set 

{(s,r,x,y): (s,r,x,y) E R!0 +2 m,YjSj :2". .M}. 

Proof: Proof follows method used in Theorem 5.2.6. 
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Definition 5.2.8. Given M > µ and 

0 . - 2n+2m _ A z E {(s,r,x,y). (s,r,x,y) ER+ ,xiri - M}, 

the closed half-space 

is called a type 5 closed half-space. If 

z0 E {(s,r,x,y): (s,r,x,y) E R!0 +2 m,YjSj = M}, 

the closed half-space 

is called a type 6 closed half-space. Similarly, given M < µ and 

0 { ( ) . ( ) R2n+2m _ MA } z E s,r,x,y . s,r,x,y E + ,xiri - , 

the closed half-space 

is called a type 7 closed half-space. If 

0 { ( ) . ( ) R2n+2m _ MA } z E s, r, x, y . s, r, x, y E + , YjSj - , 

the closed half-space 

is called a type 8 closed half-space. 

Suppose that M > ( n + m) µ. Consider the set 
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Let z0 E J1!n+2 m such that L x?r? + L yJ sJ = M. As above, form the set 

JC,= { (s, r, x, y) : (s, r, x, y) E J1!n+2m, L Xi Ti+ LYjSj 2:: M}. 

The corresponding closed half-space is 

Given this closed half-space and the above arguments, we have the following theo-

rem. 

Theorem 5.2.9. Given µ 2:: 0, let M > (n + m)µ. Suppose that z = (s, r, x, y) E 

J1!n+2 m is such that L Xi Ti+ LYjSj =Mand DF,.,,(z) is of full rank. Then <I> A,µ,(z) 

is inward transversal to the set 

n+m 
Proof: The proof is as in theorem 5.2.3 using wt=· I det(DF,.,,(z)))I L en+m+i· 

i=l 

Definition 5.2.10. Given M > (n + m)µ, z0 E J1!n+2m such that L x?r? + 

I: yJ sJ = M, the closed half-space 

is a type 9 closed half-space. 

§5.3 Transversality on Intersections of Boundary Structures 

We have already shown that <I> A,µ, (z) is inward transversal to the individual 

hyperplanes and hyperbolic structures at points z0 E J1!n+2 m for which DF(z0 ) 

is of full rank, in particular for all z0 E R!n+2 m. Also the structure is known 

for aJ1!n+2 m. Therefore, we must turn our attention to those points lying on the 

intersection of these different structures. 
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Proposition 5.3.1. Let { Ht}J!=1 be a collection of type 1-9 closed half-spaces. 

Let IT = njHt. Suppose that z0 E R!n+2 m n IT. Given (1.20), <1? A,µ,(z 0 ) is inward 

transversal to arr at z0 . 

Proof: Since z0 E R!n+2 m, from Proposition 2.1.2, DFµ,(z 0 ) is of full rank. Now 

at z 0 , from Theorems 5.1.2, 5.1.4, 5.1.6, 5.1.8, 5.2.3, 5.2.5, 5.2.6, 5.2.7, and 5.2.9, 

<1? A,µ,(z 0 ) is inward transversal to every individual closed half- space Ht for which· 

z0 E Hj. It follows that <PA,µ,(z 0 ) is inward transversal to arr at z0 . 

Theorem 5.3.2. Let {Ht}J!=1 be a collection of type 1-4,9 closed half-spaces. Let 

IT= njHt. Suppose that z0 E ail!n+2 m n IT. Given (1.18)-(1.20), <1? A,µ,(z 0 ) is not 

outward transversal to arr at z0 . 

Proof: If z0 E Crit(gFµ) then <PA,µ,(z 0 ) = 0 and hence is not outward transversal. 

Suppose z0 E Reg(gFµ). Then if DFµ,(z 0 ) is of full rank it follows from Corollaries 

4.1.4 and 4.1.6 that <PA,µ,(z 0 ) is either parallel or inward transversal to aR!n+2m. 

From Theorems 5.1.2, 5.1.4, 5.1.6, 5.1.8, and 5.2.9, <1? A,µ,(z 0 ) is also inward transver­

sal to each of the closed half-spaces Ht for which z0 E Hj. It follows that <PA,µ,(z 0 ) 

is not outward transversal to arr at z0 . Finally, if DFµ,(z 0 ) is not of full rank and 

<PA,µ,(z0 ) # 0, (that is rank(DFµ,(z)) = 2n + 2m - 1) then from Corollaries 4.1.4 

and 4.1.6, <1? A,µ,(z 0 ) is either parallel or inward·transversal to aR!n+2 m. 

Suppose that <PA,µ,(z 0 ) is outward transversal to arr at z0 . Then it follows that 

there exists some j such that z0 E Hj and <1? A,µ, ( z0 ) is outward transversal to Ht. 

Being outward transversal means that -d}<l? A,µ,(z 0 ) < 0 where -d} is the inward 

normal vector. Now -d}<l? A,µ,(z) is continuous in z. It follows that there exists E > 0 

such that if //z0 - z/1 <Ethen -d}<l?A,µ,(z) < 0. z0 is such that d}z0 = Kj. 
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From (1.18)-(1.20), there exists a z = (s, f, x, y) E R!n+2m such that Ax- s = 

Suppose that Hf is a Type 3 closed half-space with Kj = -M and M < bi 

for some i. It follows that d} = [ei, 0, -Ai, OJ. Set 'Y = bi - M. Then z = z + 

1(ei, 0, 0, 0) E R!n+2 m and is such that d}z = d}z + 'Y = -bi+ bi - M = Kj, Define 

l(t) = (1-t)z0 +tz. It follows that for all t E [O, 1], d}l(t) = Kj. Pick /'i, ~ 3 such that 

11;i1zLzll < 1. Let z = l(11;llzt_211 ). Then, llz-z0 ii < E. Since z E R!n+2m,<I>A,µ(z) is 

inward transversal to Hf at z. That is, -d}<I> A,µ(z) > 0. But iiz0 - zil < E means 

that -d}<I>A,µ(z) < 0. Hence Hf is not a Type 3 closed half-space. 

Suppose that Hf is a Type 2 closed half-space with Kj = M > ci for some i. It 

follows that d} = [O, ei, 0, AfJ. Set"(= M - Ci, Then z = z + 1(0, ei, 0, 0) E R!n+2m 

and is such that d}z = d}z + 'Y = Ci+ M - Ci = Kj. Define l(t) = (1 - t)z0 + tz. 

It follows that for all t E [O, 1], d}l(t) = Kj. Pick K, ~ 3 such that 11;llzt_ 211 < 1. Let 

z = l(11;llzt_ 211 ). Then, llz-z0 11 < E. Since z E R!n+2 m, <I>A,µ(z) is inward transversal 

to Hf at z. That is, -d}<I> A,µ(z) > 0. But iiz0 -zll < E means that -d}<I> A,µ(z) < 0. 

Hence Hf is not a Type 2 closed half-space. 

Suppose that Hf is a Type 1 closed half-space with Kj = M > bi. It follows 

that d} = [-ei, 0, Ai, OJ. Define l(t) = (1 - t)z0 + tz. Then for any Zr= l(T), 

It follows that for any TE (0, 1), Zr E R!n+2m, and djzr = M >bi.Hence, from the 

proof of Theorem 5.1.2, -d}<I> A,µ(zr) > 0. Pick K, ~ 3 such that 11;llz;-zll < 1. Set 

z = l(11; 11 z;-zll ). Then z E R!n+2m and llz0 -zll < E. It follows that -d}<I> A,µ(z) < 0. 

This can't happen from above, hence Hf is not a Type 1 closed half-space. 
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Suppose that Ht is a Type 4 closed half-space with Kj = -M and M < Ci, 

It follows that dj = [O, -ei, 0, -A!]. Define l(t) = (1 - t)z0 + tz. Then for any 

Zr= l(T), TE (0, 1), 

It follows that Mr < Ci. Hence from the proof of Theorem 5.1.8, for T E (0, 1), 

-dj<l>A,µ(zr) > 0. Pick K, 2:: 3 such that is:llzt_ 211 < 1. Set z = l(is:llzt_ 211 ). Then 

z E R!n+2m and llz0 - zll < E. It follows that -dj<I> A,µ(z) < 0. This can't happen 

from above, hence Ht is not a Type 4 closed half-space. 

Finally, suppose that Ht is a Type 9 closed half-space. It follows that 

Now, by continuity, since -dj<I>A,µ(z0 ) < 0, there exists E > 0 such that if llz-z0 11 < 

c then 

Let 'Y = max{ Zi, 1 }, T E [O, c). Define z1 by 

if zf > 0 
else . 

Hence z1 E R 2n+2 m llz1 - z0 11 < .f and K· < 2('°'x~r~ + '°'y~s~) < K· + E It ' + ' - 2' J L.,, i i L.,, i i J • 

follows that for all TE [O, c), 

Let v be the vector having components of O's and 1 's (by construction of z1 ) such 

that -(d} + 4'Y(:+m) vt) is the inward normal vector to the closed half-space given 

by 
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From Theorem 5.2.9, -(d} + 47(:+m) vt)<I> A,µ(z1) > 0 for any T E (0, E). Now, 

-(d} + 47(:+m) vt)<I> A,µ(z1) is continuous with respect to the parameter T. Hence, 

by continuity, for T small enough, 

This can't happen and therefore Hj is not a type 9 closed half-space. It follows 

that the theorem holds. 
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CHAPTER 6 

PROPERTIES OF TRAJECTORIES 

AND CONVERGENCE THEOREMS 

§6.1 Exact Solutions 

There are instances when closed solutions to (1.17) are readily available. Given 

Theorem A.5, these solutions determine the behavior of trajectories containing 

points in a neighborhood of points lying on the trajectory of the closed solution. 

Theorem 6.1.1. Letµ= 0. Suppose that z* E &R!n+2m is such that Fµ(z*) = 0 

and DFµ(z*) is of full rank. For t0 E (0, 1 ],let z0 = t0 z*. Denne z(t) = tz* for 

t E [to, l]. Then z(t) is a solution to (1.17). 

Proof: 

(

-Imm 

DFµ(z(t)) = ~ 
tY* 

0 
Inn 
tX* 

0 

A 
0 

tR* 
0 

0 ) At 
0 . 

tS* 

Since DFµ(z*) is of full rank, it follows that DFµ(z(t)) is of full rank. Hence, we 

need only consider <I>N,µ(z). Now, DFµ(z(t)) :; = 

0 A 
Inn 0 
tX* tR* 

0 0 

84 



Also, 

_ _ · t(Aty* + r*) - c _ (t - l)c ( 
t(Ax* - s*) - b) ( (t - l)b) 

DFµ(z(t))iPN,µ(z(t)) - -Fµ(z(t)) - - t2(X*r*) - - 0 

t 2(Y* s*) 0. 

It follows that fort E (0, 1], that DFµ(z(t)) ~; and DFµ(z(t))iPN,µ(z(t)) differ only 

by a positive multiple and hence the theorem holds. 

§6.2 Properties of Trajectories 

Since we will be using the preimage of a regular value of a given mapping, the 

following theorem from [HJ allows us to classify pull-backs of mappings in general 

Theorem 6.2.1 (Preimage Theorem). Given F: n c RM ---+RM, suppose y is 

aregularvalueoftheC2 mapgp: 0-Ep---+ sM- 1. Theng;1(y) is al-dimensional 

submanifold of M - E f. 

Proposition 6.2.2. Letµ 2: 0, z 0 E il!n+2m and w0 = 9F,,, (z0 ). If z 0 E il!n+2m \ 

(Ei U Et) then g;:(w0 ) is a 1-dimensional submanifold in il!n+2m \ Ep,,,. Ifµ> 

O z 0 E E+ C R 2n+2m then gF-llR2n+2rn(w0) is a 1-dimensional submanifold in 
' µ + µ, + 

R2n+2m \E + F,,,· 

Proof: Suppose that z0 E il!n+2m \ (Ei U Et). Then w0 is a regular value of 

9F,,,. Since EF,,, = F;1 (0), EF,,, is a closed set in il!n+2m. For µ > 0, by Theo-

rem 3.21, EF,,, is of measure zero in il!n+2m. For µ = 0, EFo C ailtn+2m and 

hence is of measure zero in il!n+2m. It follows that il!n+2m \ EF,,, is a 2n + 2m­

dimensional manifold. From Theorem 6.2.1, gi, 1(w0 ) is a I-dimensional submanifold 
µ, 
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Forµ> 0, suppose that z0 E :E! C R!0 +2 m. Since DFµ(z) is of full rank on 

R!0 +2m, w0 is a regular value of 9Fµ IR!n+2m. As above, R!0 +2 m \EFµ is a 2n+2m­

dimensional manifold. Hence, gp1jR2n+2m(w0) is a 1-dimensional submanifold in 
µ + 

(R!0 +2m) \EFµ. Note, forµ = 0, from Proposition 3.17 and Definition 3.14, :Ecj = (/J. 

We will now give an orientation for Cµ(z 0 ). Recall from Lemma 2.1.8 that 

<I>A,µ(z) E ker(Dgpµ(z)). If z0 E Reg(gFµ), from Theorem 2.1.1, <I>A,µ(z 0 ) =I 0. 

Also, for z0 E Reg(gFµ), since Dgpµ (z) is of rank 2n + 2m - 1, it follows that 

dim(ker(Dgpµ (z0 )) = 1. It follows that <I> A,µ(z) spans ker(Dgpµ (z0 )). Let z(t) be a 

parameterization of Cµ(z 0 ) which moves in the direction of <l>A,µ(z) as t increases. 

That is we orientate curve Cµ(z 0 ) so that the angle between ~; lt=O and <I>A,µ(z0 ) is 

0. Note, under this orientation, ~; = <l>A,µ(z) .. We call {z(t) : t 2: O} the forward 

orbit of Cµ(z 0 ). Let C;j:(z0 ) = Cµ(z 0 )1t;~0 . That is,. C;j:(z0 ) is the forward orbit of 

z0 in Cµ(z 0 ). Note also that if Cµ(z 0 ) C Reg(gFµ) then Cµ(z 0 ) is a 1-dimensional 

C 1 manifold. 

Proposition 6.2.3. Forµ 2: 0, if z0 E Reg(Fµ(z)) then IIFµ(z)II is strictly de­

creasing at z0 along the forward orbit of Cµ(z 0 ). For all z E fi!°+2 m, IIFµ(z)II is 

non-increasing along the forward orbit of Cµ(z 0 ). 

Proof: Suppose z(t) this the parameterization of Cµ(z 0 ) as given above with z(O) = 

z0 E Reg(Fµ(z)). Then 9Fµ (z(t)) = 9Fµ (z0 ). Differentiating with respect to t we 

get Dgpµ (z) ~; = 0 where ~; is the tangent vector to Cµ(z 0 ) at z(t). Hence, ~; E 

ker(Dgpµ (z)). From Proposition 2.0.4, DFµ(z) ~; = >.(z)Fµ(z) for some >.(z) E R. 

Now <I> A,µ(z 0 ) =I 0. Also 

sgn(det(DFµ(z(t))) = (-l)m 
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and 

DFµ (z(t) )<P A,µ(z(t)) = (-1) I det(DFµ (z(t))) IFµ(z(t)) 

for all z(t). Now it follows that along the forward orbit of Cµ(z 0 ), 

!}__(IIF ( ())II)= Fµ(z)tDFµ(z) dz= Fµ(z)tDFµ(z) <P ( ) 
dt µ z t IIFµ(z) II dt IIFµ(z) II A,µ z 

_ Fµ(z)t DFµ(z) m+l . ( 
- IIFµ(z)II (-1) adJ(DFµ(z))Fµ z) 

= IIFµ\z)II [Fµ(z)tA(z)Fµ(z)] 

= A(z)IIFµ(z)II < 0 

where A(z) = (-l)ldet(DFµ(z))I. It follows that IIFµ(z)I[ is strictly decreasing 

along Cµ(z 0 ) at z0 for this orientation. From Proposition 2.1.2, det(DFµ(z)) = 

(-l)mldet(DFµ(z))I for all z E R!0 +2m. Hence A(z) :::; 0 for all z E R!0 +2 m and 

so the proposition holds. 

Proposition 6.2.4. ~~ C ~!-

Proof: Forµ= 0, from Proposition 4.1.3, ~! = 8R!0 +2 m. Hence forµ= 0, ~~ C 

~!- Suppose µ > 0, and that there exists z 0 E ~~ such that z 0 (j. ~!- It follows 

from the definition of~~ that z0 E aJ1t0 +2 m. Hence, there exists Io C {1, ... , 2n + 

2m}, #(Io) = k > 0, such that z0 is in the relative interior of F(I0 ). Since z0 (j. 

~!, from Proposition 4.1.5, for every i E I 0 , <P A,µ(z0 ) · ei > 0. It follows that 

-<P A,µ(z0 ) · ei < 0 for all i E I 0 . Note, since <P A,µ(z0 ) # 0, from Theorem 2.1.1, 

z0 E Reg(gp1J. Also, since there exists a natural extension to 9Fµ in a neighborhood 

of z0 , z0 is a boundary point for Cµ(z 0 ). Let z(t) be the parameterization of Ct(z0 ) 

as given above. Since z E ~~ and z0 is a boundary point of Cµ(z 0 ), it follows that 

there exists some z1 E Ct(z0 ) n Crit(gFµ). Since z0 (j. ~!, there exists some f3 > 0, 
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such that z(t) C R!n+2m for all t E (0, ,B]. Hence, z1 ff_ {z(t) : t E [O, ,B]. Therefore, 

z1 E C,t"(z(,B)). Set , = ! min{xj(,B)rj(,8), Yi(,B)sj(,8), µ}. If follows that , > 0. 

Hence, from Theorems 5.2.6, 5.2.7, Xj(t)rj(t) > ,, Sj(t)yj(t) > , for all t 2: ,8. It 

follows that C,t"(z(,8)) C R!n+2m. Hence, z1 E Crit(gp1J n R!n+2 m = 0. So the · 

proposition holds. 

Let z0 E 11!n+2 m \ ~:- Since Cµ(z 0 ) is a connected I-dimensional manifold, 

it follows that Cµ(z 0 ) is diffeomorphic to 8 1 or some interval. First we show that 

Cµ(z 0 ) is not a closed (periodic) orbit. That is, Cµ(z 0 ) is not diffeomorphic to 8 1 . 

Proposition 6.2.5. If z0 E 11!n+2m \ ~: then Cµ(z 0 ) is not diffeomorphic to 8 1 . 

Proof: Suppose Cµ(z 0 ) is diffeomorphic to 8 1 under the diffeomorphism .6. : 

S1 -+ Cµ(z 0 ). Now 'I/; : [O, 27r] -+ (cos(t), sin(t)) is a parameterization of S1 . 

Hence, .6.('1/;(t)), .6.('1/;(-t)) are parameterizations of Cµ(z 0 ) with different orien-

tations. It follows that one of these corresponds to the forward orbit of Cµ(z 0 ). 

Suppose (WLOG) that .6.('1/;(t)) corresponds to the forward orbit. Note, forµ= 0, 

from Proposition 4.1.3, 11!n+2 m \ ~b = R!n+2m. Hence, forµ= 0, z0 E R!n+2 m. 

Since z0 E 112n+2 m \ ~P either z0 E R 2n+2 m or for µ > 0 z0 E 8112n+2msuch + µ, + ' ' . + 

that z0 ff_ ~:. In either case, there exists ,8 > 0 such that .6. ( 'I/; ( t)) E R!n+2 m for all 

t E (0, ,8). It follows from Proposition 3.1, that .6.('1/;(t)) E Reg(Fµ) for all t E (0, ,8). 

Since Cµ(z 0 ) is diffeomorphic to 81, it follows that there exists , E (0, 271"], such 

that .6.('1/;(,)) = .6.('1/;(0)) = z0 . Since IIFµ(z)II is decreasing along the forward orbit 

of Cµ(z 0 ), fort E (0, ,8), it follows that IIFµ(z 0 )11 > IIFµ(z(t))II for all t E (0, 27r]. It 

follows that no such, exists and hence Cµ(z 0 ) is not diffeomorphic to 8 1 . 

As before, suppose z(O) = z0 E 11!n+2m \ ~: where z(t) is a parameterization 
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of Cµ(z 0 ). Therefore z0 must be a boundary point for Ct(z0 ). Hence, Ct(z0 ) is 

diffeomorphic to some closed or half-closed interval. Now we establish that c: (z0 ) 

is not a 1-dimensional manifold with boundary. That is, c: (z0 ) is not diffeomorphic 

to a closed interval. 

Proposition 6.2.6. If z0 E J1!n+2m \ ~!, then Ct(z0 ) is diffeomorphic to [O, oo). 

Proof: Suppose Ct(z0 ) is diffeomorphic to a closed interval and its parametrization 

z(t) is defined for t E [O, t 1) where ti is maximal, that is z(t1 ) is the boundary 

(endpoint) of the 1-dimensional manifold Ct(z0 ). Then z1 = z(t 1 ) is such that 

9Fµ (z1) = 9Fµ (z0 ) = w 0 . Suppose µ > 0. Since z0 (/. ~!, there exists, as before, 

some /3 > 0, such that z(t) E R!n+2m for all t E (0, /3]. Note that /3 :::; t 1 . Define 

'Y = ~ min{xj(/3)rj(/3), Yi(/3)sj(/3), µ}. It follows from Theorems 5.2.6, 5.2.7, that 

Xj(t)rj(t) > 'Y, Yj(t)sj(t) > "( for all t 2:: 'Y· Hence z1 E R!n+2m. It follows that 

<I> A,µ(z 1 ) is C 1 and nonzero. So by Theorem A.4, there exists an a > 0 such that 

a solution z(t) of :; = <I> A,µ(z) is defined for t1 - a < t 1 < t1 + a such that 

z(t1 ) = z1 . Note that z(t) E J1!n+2m \ EFµ from Proposition 4.1.5 and Corollary 

4.1.6. From uniqueness and using the correct orientation, it follows that z(t) may 

be extended to [O, i1) where i1 > t1. Hence z(t1) is not the boundary for Ct(z0 ) 

and therefore c: (z0 ) is not diffeomorphic to a closed interval. It follows that 

Ct(z0 ) is diffeomorphic to [O, oo). Now suppose thatµ= 0. From Proposition 4.1.3, 

z0 E J1!n+2m \ ~! = R!n+2m. Since 9Fµ (z1 ) = 9Fµ (z0 ), it follows from Proposition 

3.15 that Fµ(z 1 ) = kFµ(z 0 ) for some k > 0. In particular, since z0 E R!n+2m, 

y}s} = k(yJsJ) > 0. 
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Hence, z1 E R!n+2m. The above arguments holds and hence Ct(z0 ) is diffeomor­

phic to [O,oo). 

Let z* be an w-limit point of Ct(z0 ), that is suppose that there exists a se­

quence {-rn} of real numbers such that Tn -+ oo and z(-rn) -+ z* where z(-rn) E 

Ct(zo). 

Proposition 6.2. 7. If z0 E R!n+2m \ Et then z* (/_ Crit(gFµ) n (R!n+2m \ EFµ). 

Proof: Suppose z* E Crit(gFµ)n(R!n+ 2 m\EFµ). Then, from Proposition 3.1, z* E 

8R!n+2m. Suppose that z* is an w-limit point of c: (z0 ) for z0 E R!n+2m \Et. Now 

9Fµ (z0 ) = 9Fµ (z(t)) for every t. Since z* E Crit(gFJ, 9Fµ (z*) EAµ- Also, 9Fµ (z*) = 

9Fµ (z(t)) = 9Fµ (z0 ) as 9Fµ (z(t)) is continuous since Fµ(z*) #- 0 on R!n+2m \ EFµ. 

Hence, z0 E Eµ = (Ei U Et). But, z0 was chosen so that z0 (/_ Ei. It follows 

that z0 E Et C R!n+2m. If µ = 0, from Proposition 3.17 and the definition of 

Et, Et = 0. Hence no such z* exists. For µ > 0, we make an argument based on the 

hyperbolic transversality Theorems 5.2.6, 5.2.7. Define 1 = !min{x?rf,yJsJ,µ}. If 

z0 E Et, 1 > 0. From Theorems 5.2.6, 5.2.7, Xi(t)ri(t) > 1 , Yj(t)sj(t) > 'Y for all 

t E [O, oo). It follows that x'lr'l > 0, yJsj > 0. Hence, z* E R!n+2m and therefore, 

from _Proposition 3.1, z* E Reg(gFµ) n Crit(gFµ). Therefore no such z* exists. 

Proposition 6.2.8. If z0 E R!n+2m \ Et then z* (/_ (Reg(gFµ) n R!11+2m). 

Proof: By way of a contradiction, let z* E Reg(gFµ) n R!n+2m. It follows from 

Theorem 2.1.1 that cI> A,µ(z*) #- 0. Note that z0 E Reg(gFµ). Suppose z0 E R!n+2m. 

Forµ= 0, it follows from Theorem 3.17 that ct(z0 ) C g;,01(gFo(z0 )) C R!n+2m. 

Hence IIFo(z(t))II is strictly decreasing along Cii(z0 ). Since z* E Reg(gF0), z* (/_ EFo 

and therefore, by continuity, 9F0(z*) = 9F0(z0 ). Hence, from Proposition 3.15, there 
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exists some k > 0 such that F0 (z*) = kF0 (z0 ). In particular, 

Y*s* = k(yqsq) > 0 
J J J J . 

It follows that z* E R!n+2m. Ifµ > 0, we use the same transversality argument as in 

h f f P · · 6 2 7 D fi 1 · { o o o o } s· o R2n+2m t eproo o ropos1t10n ... e ne"(= 2 mm xiri,Yjsj,µ. mcez E + , 

'Y > 0. From Theorems 5.2.6, 5.2.7, xi(t)ri(t) > 'Y, Yj(t)sj(t) > 'Y for all t E [O, oo). 

It follows that x;:r; > O,yJsJ > 0. Hence, z* E R!n+2m Since cpA,µ(z) is C 1 and 

cp A,µ(z*) f. 0, it follows that there exists a solution z(t) of 

dz .in. ( ~) 
dt ='±'A,µ z z(O) = z* 

which is defined for -& < t < & for some & > 0. Since z* E R!n+2m, ::le > 0 such 

that, from Proposition 6.2.3, 

IIFµ(z(&))II::; IIFµ(z(O))l1- E = IIFµ(z*)II - E. 

Since z(rn)-+ z* (by thew-limit property) and Fµ(z) is continuous at z*, it follows 

that there exists K1 < oo such that V n 2:: K1, IIFµ(z*)II ::; IJFµ(z(rn))II + f. Now, 

Zm(t) = z(rm + t) is a solution of 

dz .in. (-) 
dt = '±'A,µ Z 

Since zm(O) = z(rm)-+ z* = z(O) as m-+ oo, from Theorem A.5, 

as m -+ oo. Hence z(&) is an w-limit point of z(t) with z(rm + &) -+ z(&) as 

Tn + & -+ oo. From the continuity of Fµ(z) at z(&), Proposition 6.2.3, and the 
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w-limit property, that is, z(Tm + &) ---+ z(&), there exists K 2 2 K 1 such that for 

IIFµ(z(Tm +&))II= IIFµ(zm(&))II < IIFµ(z(&))II + ~. 

Hence, for all m, n 2 K2, 

IIFµ(z(Tm +&))II< IIFµ(z(&))II + ~ < IIFµ(z*)II - E + ~ 
E 3E 

< IIFµ(z(Tn)II + 4 - 4 
E 

= IIFµ(z(Tn)II - 2 . 

However, since //Fµ(z(t))// is strictly decreasing along z(t), for any m, n such that 

Tn < Tm+&, I/Fµ(z(Tn))/1 < 1/Fµ(z(Tm + &))// and hence this cannot happen. It 

follows that no such z* exists. 

Now suppose that, for the case µ > 0, z0 E 0R!0 +2 m. Since z 0 r/. I:t, it 

follows, from Definition 4.2.3.1 and Proposition 4.1.5, that there exists (3 > 0 for 

which z(t) E R!0 +2m for all t E (0,(3] and such that {z(t): t E [0,(3]} C Ct(z0 ). 

Since z0 rf_ I:t, it follows that Cµ(z(/3)) = Ct(z0 ). Therefore, we need only consider 

c+(z(/3)). Hence the above argument holds using as a initial point z(/3) E R!"+2 m 

and therefore the proposition holds. 

Corollary 6.2.9. Let µ 2 0. Suppose that z* is an w-limit point of Ct (z0 ) for 

z0 E R!"+2 m \ I:t. Then Fµ(z*) = 0. 

Proof: Let µ 2 0, z0 E R!0 +2 m \ I:t. If z* is an w-limit point of Ct ( z0 ) for 

z0 E R!"+2 m \ I:t, from Propositions 6.2.7, 6.2.8, z* r/. Reg(gFµ) U Crit(gpJ. 

From Definitions 2.0.2 and 1.15, 11!0 +2 m = Reg(gFµ) U Crit(gFµ) U EFµ where, by 

definition, this is a disjoint union. Hence the corollary holds. 
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Proposition 6.2.10. Letµ 2: 0, and suppose that z0 E R!n+2m \ ~!, then 

c:(z0 ) = {z(t) : t 2: O} 

where z(t) is the solution to (1.17). 

Proof: Now Cj"(z0 ) ~ {z(t) : t 2: O}. If Cj"(z0 ) =f. {z(t) : t 2: O} then since 

Cj"(z0 ) is diffeomorphic to [O, oo), it follows that there exists /3 > 0 such that 

Cj"(z0 ) = {z(t) : t E [O, /3)}. Hence, z(/3) is an w-limit point of Cj"(z0 ) under the 

appropriate parameterization. From Corollary 6.2.9, Fµ(z(/3)) = 0. However, 

dz 
DFµ(z(t)) dt = DFµ(z(t))<I>A,µ(z(t)) = -jdet(DFµ(z(t)))jFµ(z(t)). 

From Proposition 2.1.2, jdet(DFµ(z(t)))I = (-l)mdet(DFµ(z(t))). Given the sti:uc­

ture of DFµ(z) from (1.10), det(DFµ(z(t))) is polynomial in the components of z(t) 

and is therefore C1 for all t. It follows that 

Hence, 

0 = Fµ(z(/3)) = e- J: ldet(DFµ(z(r)))ldr Fµ(zo). 

Since z0 ~ ~!, it follows from Definition 4.2.3.1, :3 a> 0 such that z(t) E R!n+2m 

for all t E (0, a). It follows from Proposition 2.1.2 that jdet(DFµ(z(t)))I > 0 for all 

t E (0, a). Therefore, either Fµ(z 0 ) = 0 and z0 is a fixed point of <I> A,µ(z) or no such 

/3 exists. In either case, it follows that Cj" (z0 ) = {z(t) : t 2: O}. 

The following lemma estaplishes the boundedness of the trajectories. A similar 

result for numerical (discrete) methods is found in Mizuno and J arre [MJ]. 
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Lemma 6.2.11. Given (1.18)-(1.20), µ ~ 0 and z(O) (so, ro, xo, yo) = zo E 

Proof: First note that if Fµ,(z 0 ) = 0 then C,1"(z0 ) = {z0 } and clearly the lemma 

holds. Suppose theµ~ 0 and z = (s, r, x, y) E R!n+2m is such that 

Ax- s= b 

Suppose that z0 E R!n+2m \ EFµ· Ifµ = 0, from Proposition 3.17, Cit(z0 ) C 

gp01(gp0 (z0 )) C R!n+2m. If µ > 0, using a transversality argument based on 

Theorems 5.2.6, 5.2.7, as in Propositions 6.2.7, 6.2.8, C,1"(z0 ) c R!n+2m. There­

fore, regardless of µ, DFµ,(z) is of full rank for all z E C,1"(z0 ). Let z(t) be the 

(re)parametrization of c+(z0 ) induced by the solution of 

dz 
dt = <l>N,µ,(z) z(O) = z0 • 

Now, 

It follows that 

Therefore, 

Ax(t) - s(t) = b(t) = e-t(Ax(O) - s(O) - b) + b, 

Aty(t) + r(t) = c(t) = e-t(Aty(O) + r(O) - c) + c, 

x(t)tr(t) + y(tls(t) = e-t(x(Olr(O) + y(Ols(O) - (n + m)µ) + (n + m)µ 

= e-t(x(o)tr(O) + y(O)ts(O)) + (1 - e-t)(n + m)µ. 
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It follows that 

and 

Hence, 

A[(l - e-t)x + e-tx(O) - x(t)] - [(1 - e-t)s + e-t s(O) - s(t)] 

= (1 - e-t)b + e-tb(O) - b(t) = 0 

At[(l - e-t)y + e-ty(O) - y(t)] + [(1 - e-t)r + e-tr(O) - r(t)] 

= (1 -.e-t)c + e-tc(O) - c(t) = 0. 

- ((1 - e-t)x + e-tx(O) - x(t)l((l - e-t)r + e-tr(O) - r(t)) 

- ((1 - e-t)y + e-ty(O) - y(t))\(1 - e-t)s + e-ts(O) - s(t)) 

= ((1 - e-t)x + e-tx(O) - x(t))t At((l - e-t)y + e-ty(O) - y(t)) 

- ((1 - e-t)y + e-ty(O) - y(t))t((l - e-t)s + e-ts(O) - s(t)) 

= ((1 - e-t)y + e-ty(O) - y(t)/(A[(l - e-t)x + e-tx(O) ~ x(t)] 

- [(1 - e-t)s + e-t s(O) - s(t)]) 

= 0. 

Therefore, 

((1 - e-t)x + e-tx(O))tr(t) + ((1 - e-t)r + e-tr(O))tx(t) 

+ ((1 - e-t)y + e-ty(O))ts(t) + ((1- e-t)s + e-ts(O))ty(t) 

= [(1 - e-t)x + e-tx(OW[(l - e-t)r + e-tr(O)] + r(tlx(t) 

+ [(1 - e-t)y + e-ty(O)]t[(l - e-t)s + e-ts(O)] + s(t)ty(t) 

= (1 - e-t) 2 [(x/r + (iJls] 

+ e-t(l - e-t)[x(Olr + r(o)tx + y(O)ts + s(o)ty] 

+ e-t(l + e-t)[x(O)tr(O) + y(O)ts(O)] + (1 - e-t)(n + m)µ 

::S; e-t K1 + (1 - e-t)K2 
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for some Ki > 0. Let ( be such that O < ( < min{i\, i'i, si, yi}. Now, 

n n m m 

~ (1 - e-t)([Lxi(t) + L ri(t) + LYi(t) + L si(t)] ~ 0. 
i=l i=l i=l i=l 

Since z0 E R!n+2 m \ EFµ, z0 E Reg(gFµ). It follows from Proposition 2.1.4 

and Theorem A.4 that there exists 7 > 0 such that z(t) is defined on [O, 7] and 

<I>A,µ(z 0 ) I- 0. Now {z(t) : t E [O, 7]} is compact as the continuous image of a 

compact set. Also, fort ~ r, 

n n m m l -t 

0 ~ [L xi(t) + L ri(t) + LYi(t) + L si(t)] ~ ([ (l ~ e-t) K1 + K2]. 
i=l i=l i=l i=l 

It follows that for t ~ 7, zi(t) is bounded for every i. Hence, c+(z0 ) is bounded. 

Now, for the case µ > 0, if z0 E 8R!n+2 m \ I:~, let z(t) be the parametrization of 

c+(z0 ) given by (1.17). Since z0 i I:~, there exists (3 > 0, such that z(t) is defined 

for all t E [O, (3] and for which z(t) E R!n+2 m for all t E (0, (3]. Now, {z(t) : t E [O, (3]} 

is compact and c+(z(/3)) is bounded as above (since z(/3) E R!n+2 m). Hence the 

proposition holds. 

Lemma 6.2.12. Letµ= 0,z(O) E R!n+2m, and suppose that z* = (s*,r*,x*,y*) 

exists such that F0 (z*) = 0. Then Ct(z0 ) is bounded. 

P:r:t;>0f: Note, from Proposition 3.17, C,j-(z0 ) C R!n+2 m C Reg(F0 ). Hence DFµ(z) 

is of full rank for all z E C,j-(z0 ). Let z(t) be the (re)parametrization of C,j-(z0 ) 

induced by the solution of 

dz . ( ) 
dt = <PN,µ Z z(O) = z0 . 
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Note that z(t) E R!n+2m for all t > 0. Now, 

It follows that 

Therefore, 

Ax(t) - s(t) = b(t) = e-t(Ax(O) - s(O) - b) - b, 

Aty(t) + r(t) = c(t) = e-t(Aty(O) + r(O) - c) + c, 

It follows that 

and 

Hence, 

A[(l - e-t)x* + e-tx(O) - x(t)] - [(1 - e-t)s* + e-t s(O) - s(t)] 

= (1 - e-t)b + e-tb(O) - b(t) = 0 

At[(l - e-t)y* + e-ty(O) - y(t)] + [(1 - e-t)r* + e-tr(O) - r(t)] 

- ((1 - e-t)x* + e-tx(O) - x(t))t((l - e-t)r* + e-tr(O) - r(t)) 

- ((1 - e-t)y* + e-ty(O) - y(t))t((l - e-t)s* + e-ts(O) - s(t)) 

= ((1 - e-t)x* + e-tx(O) - x(t)/ At((l - e-t)y* + e-ty(O) - y(t)) 

- ((1 - e-t)y* + e-ty(O) - y(t))t((l - e-t)s* + e-ts(O) - s(t)) 

= ((1 - e-t)y* + e-ty(O) - y(t)/(A[(l - e-t)x* + e-tx(O) - x(t)] 

- [(1 - e-t)s* + e-t s(O) - s(t)]) 

=0. 
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Therefore, 

for some K > 0. Let ( be such that O < ( < min{xi(O), ri(O), si(O), Yi(O)}. Now, 

n n m m 

::::: e-t([Lxi(t) + Lri(t) + LY;(t) + I:si(t)]::::: 0. 
i=l i=l i=l i=l 

It follows that 

n n m m 

0:::; e-t([L Xi(t) + L ri(t) + LYi(t) + L si(t)] :::; e-t K 
i=l i=l i=l i=l 

and therefore 

n n m m l 
0:::; [I: Xi(t) + L ri(t) + LYi(t) + L Si(t)] :s; zK 

i=l i=l i=l i=l 

It follows that zi(t) is bounded for every i and hence Cc[(z0 ) is bounded. 
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§6.3 Proofs of Convergence Theorems 

Proof of Theorem 1.23: Let z0 = (s 0 ,r0 ,x0 ,y0 ) E R!n+2m andµ= 0. By 

Corollary 2.1.5, there exists a unique solution, z(t),to 

(IVP) 
dz 
dt = cf>A,µ(z(t)), z(O) = z0 . 

From Lemma 6.2.12, {z(t): t E [O, oo)} is bounded. Let M be such that llz(t)II :::; M 

for all t E (0, oo). Let rM = {z: z E R!n+2m, llzll :::; M}. It follows that z(t) must 

have an w-limit point z* in r M. From proposition 3.17, 9Fµ (z0 ) is a regular value 

of 9Fµ. It follows from Corollary 6.2.9 and Proposition 6.2.10 that z* E EFµ. Now, 

if z(t) f+ z*, there exists a sequence of points, zk = z(tk), such that tk -+ oo, and 

zk f+ z*. But, zk E rM which is compact. If follows that {zk} has an w-limit point 

z* E rM. By Corollary 6.2.9 and Proposition 6.2.10, z* E EFo· Now from (1.21), 

EFo = {z*}. Hence z(t) -+ z*. 

Proof of Theorem 1.24: Let µ > 0 and ~! be given as defined. Suppose that 

z0 = ( s0 , r 0 , x 0 , y0 ) E J1!n+2m \ ~!. By Corollary 2.1.5, there exists a unique 

solution, z( t), to 

(IVP) 
dz 
dt = <PA,µ(z(t)), z(O) = z0 . 

From Lemma 6.2.11, there exists M > 0 such that llz(t)II :::; M for all t E (0, oo). 

Let rM = {z: z E J1!n+2m, llzll:::; M}. It follows that z(t) must have a limit point, 

z* ,in r M. It follows from Corollary 6.2.9 and Proposition 6.2.10 that z* E EFµ. 

From Theorem 3.21, rM n EFµ = z*. Since rM is compact and {z(t) : t E (0, oo)} 

is connected, as in the proof of Theorem 1.23, from Corollary 6.2.9 and Proposition 

6.2.10, z(t) -+ z*. Also, from Proposition 4.2.3.3, ~i is as described. 
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CHAPTER 7 

PROPERTIES OF CRITICAL TRAJECTORIES 

Chapter 7 has preliminary results on the properties of trajectories z(t) which 

are solutions of (1.17) for which µ = 0 and for which there exists some f3 > 0 such 

that z(/3) E Crit(gpµ). These trajectories are a special type included in a larger 

class of trajectories known as critical trajectories. 

Definition 7.1. Given µ ~ 0, z0 E J1!n+2m, w 0 = Fµ(z 0 ), a trajectory, z(t), 

through z0 , which parameterizes g·j;.1 ( w 0 ) is called a critical trajectory if there 
µ 

Note, in Definition 7.1 with z0 , z1 as given, it follows that gpµ (z1 ) = 9Fµ (z0 ). 

Points z0 E Reg(gFµ) through which a critical trajectory went were excluded from 

consideration by Smale [Sm], and Hirsch and Smale [HSm]. By Definition 7.1, 

trajectories satisfying (1.17) through points z E ~µ are critical trajectories. It has 

also been shown that forµ> 0, ~i, ~t, ~t are all non-empty while forµ= 0, ~i, 
and ~t are non-empty. Hence, given that in Chapter 6 results for z 0 E ~t were 

established forµ > 0, we have already provided results for some critical trajectories. 

The work done here begins to provide a basis for establishing the existence of c 0 

trajectories z(t) for which z(t) E 8R!n+2m and z(t) -+ z* E F;1 (0). In particular, 

we will analyze trajectories corresponding toµ= 0 and for which z 0 = z(O) is in the 
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relative interior of a face of codimension 1 in 0R!n+2 m. Recall from Proposition 3.4, 

in this setting DFµ (z0 ) is of full rank. Future work will involve the study of stable 

and unstable manifolds at points z E Crit(gFµ) which are limit points of the above 

defined critical trajectories. The goal will be to establish that critical trajectories 

"pass through" points z E Crit(gFµ) \ EFµ and "continue" to points z E EFµ· 

Let µ = 0, Io C {1, ... , 2n + 2m }, #(Io) = 1, z0 = z(O) in the relative interior 

of :F(I0 ), and Cµ(z 0 ) be the connected component of g"i,:(9Fµ (z0 )). 

Proposition 7.2. Ct(z0)n(R!n+2m\(Crit(gFµ))UEpJ is diffeomorphic to [O, oo). 

Proof: Let w0 = 9Fµ (z0 ). Note, since z0 is in the relative interior of :F(Io), z0 </. 

EFµ· Also, q>A,µ(z) is C 1 on R 2 n+2 m and from Theorem 2.1.1, Crit(gFµ) u Epµ = 

q>A~µ(O). Hence, w 0 is a regular value of 9Fµl:ft!n+2=\(crit(gFµ)uEFµ) and therefore 

Theorem 6.2.1 and Propositions 6.2.2-6.2.4 hold. It follows that Ct(z0)n(J1!n+2m\ 

(Crit(gFµ) U EFµ)) is diffeomorphic to [O, oo). 

Proposition 7.3. Given (1.18)-(1.20), Ct(z0 ) n (R!n+2 m \ (Crit(gFµ) UEpµ)) has 

an w-limit point z* for which either Fµ(z*) = 0 or z* E Crit(gFµ) and there exists 

Io C {1, ... , 2n + 2m }, #(Io) = 2 such that z* is in the relative interior of :F(I0 ) 

and there exists i such that x'!' = r'!' = 0 or y'!' = s'!' = 0 i i i i • 

Proof: Now, Ct(z0 ) n (R!n+2m \ (Crit(gFµ) U EFµ)) is in the relative interior of 

:F(I0 ). It follows, from Proposition 3.4 and Lemma 6.2.12, that c+ (z0 ) n (J1!n+2 m \ 

(Crit(gFµ) U Epµ)) is bounded and therefore has a limit point. Suppose that z* E 

Reg(gp1.,). It follows that 9Fµ (z*) = 9Fµ (z0 ). Suppose (WLOG) that x? = 0. If 

follows from Proposition 3.15 that there exists some k > 0, such that k(xtr;) = 

x?r? = 0. It follows that either xt = r; = 0 or exactly one of xt, r; is 0. From 
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Proposition 3.8, if x; = r; = 0 then z* E Crit(gFµ). It follows that exactly one of 

x;, r; is 0. Since 9Fµ (z*) = 9Fµ (z0 ) and z0 is in the relative interior of :F(/0 ), it 

follows that z* is in the relative interior of a face of codimension 1 in 8J1!0 +2m. 

From Proposition 3.4, z* E Reg(Fµ)· It follows from the proof used for Proposition 

6.2.8, either Fµ(z*) = 0 or z* E Crit(gFµ). If Fµ(z*) =J 0, z* E Crit(gFµ) and 

c+(z0 ) c {z(t) : t E [O, oo)}. It follows that c+(z0 ) = {z(t) : t E [O, ,B)} for some 

,B > 0. Since Fµ(z*) =I=- O,gFµ(z*) = 9Fµ(z 0 ). Suppose (WLOG) that there exists i 

for which z0 is such that x? = 0. By construction and continuity, 

Hence, since there exists O <a~ ,B such that ldet(DFµ(z(T))) =I=- 0 for all TE (0, a), 

* * - .f/3 ldet(DFµ(z(r)))ldr O O O d w · ..J.. · xiri=e o xiri= an vJ,i, 

and Vk, 

Since z* E Crit(gFJ, it follows that Proposition 3.4 that x; = r; = 0. 

Given the above proposition, we are interested in the properties of fixed points 

that are in faces of codimension 2 in 8J1!"+2 m for which Xi = ri = 0 or Yi = Si = 0. 

Given that DFµ(z) is rank deficient in this setting, the formulation of D<I> A,µ(z) 

given in Theorem 2.1.2 does not hold. The following theorem provides a general 

formulation of D<I>A,µ(z). 
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Theorem 7.4. D<P A,µ(z) (-l)JdetDFµ(z)II + (-l)m+l~ where~ 

such that 6jk = 

+ 

+ 

where (J'k is the image of k in (J' and 

ai(l) ={ l 
l - 1 

l < i 

l ?. i. 

Proof: Define B(iJj) to the be submatrix of B E RNxN formed by removing the 

ith row and the j column of B. It follows that the jth column of adj(B) is 
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Therefore 

( 
{-l)H1d~t(B(j 11)) ) . 

(-I)1+ndet(B(jlN)) 

<I> A,µ(z) =(-l)m+1adj (DFµ(z) )Fµ(z) 

( 
. (-1)1+1det(DFµ(lll)) ) 

=(-l)m+l Fµ1 (z) : + ... 
(-1)1+2n+2mdet(DFµ(ll2n + 2m)) 

( 
(-l)2n+2m+1det(DFµ(2n + 2mJ1)) ) 

+ (-l)m+lpµ2n+2m(z) : . 

(-1)2(2n+2m)det(DFµ(2n + 2ml2n + 2m)) 

It follows from Lemma 2.0.1 that (-1)m+1D<I>A,µ(z) = 

( 
(-1)1+1det(DFµ(lll)) ) 

: \7 Fµ1 (z)t 

(-1)1+2n+2mdet(DFµ(1J2n + 2m)) 

( 
(-1)1+1det(DFµ(lll)) ) 

+ Fµ 1 (z)Dz( : ) 
(-1)1+2n+2mdet(DFµ(1J2n + 2m)) 

+ ... 

( 
(-1)2n+2m+1det(DFµ(2n + 2mll)) ) 

+ : y' Fµ2n+2m (z)t 
(-1)2(2n+2m)det(DFµ(2n + 2ml2n + 2m)) 

( 
(-1)2n+2m+1det(DFµ(2n + 2mJ1)) ) 

+ Fµ2n+2m(z)Dz( : ). 
(-1)2(2n+2m)det(DFµ(2n + 2ml2n + 2m)) 
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Hence, 

(-l)m+i DIJ> A,µ(z) =adj(DFµ(z))DFµ(z) 

( 
det(DFµ(lll)) ) 

+ Fµ 1 (z)Dz( : ) 

(-l)det(DFµ(ll2n + 2m)) 

+ ... 

( 
(-l)det(DFµ(2n+2mll))) 

+ Fµ2n+2m (z)Dz( : ) 
det(DFµ(2n + 2mj2n + 2m)) 

=det(DFµ(z)I 

( 
det(DFµ(lll)) ) 

+ Fµ 1 (z)Dz( : ) 

.(-l)det(DFµ(ll2n + 2m)) 

+ ... 

( 
(-l)det(DFµ(2n + 2mjl)) ) 

+ Fµ2n+2m(z)Dz( : ). 
det(DFµ(2n + 2ml2n + 2m)) 

For (J' E S2m+2n-1 define (J'i to be the image of i in (J' and define Tj((J'k) as 

Also define ai ( ·) as 

l < i 

Then det(DFµ(ilj)) = 
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a 
It follows that -8 (det(DFµ(ilj))) 

Zv 

L sg(a) ( L ( a2 Fµz 2rr2
n BFµP ) ) . 

Es 1<2-+2n azTi·(uo·(1))8Zv p--1 azTi·(u-,·(p)) 
U 21n+2n-l - ... ' ~ 

le,!i p#i,I 

Therefore 

( 
(-l)i+1det(DFµ(ill)) ) 

Dz( : ) = 3. 
(-l)idet(DFµ(il2n + 2m)) 

where 3. = (8jk) is such that 

Jjk = (-l)i+j L sg(1"j(a)) ( L (azT_a: Fµl azk 2ITn 8Fµp ) ) 
Es 1<2-+2n J(v--(1)) p=l azTJ·(u-,·(p)) . 

U 2,n+2n-l - ... ~, ~ 
l#i p;ifi,l 

Now, ::/;"zk = 0 for 1 ·~ i ~ n + m. Therefore, 

Also, from Proposition 2.1.2, det(DFµ(z) = (-l)ml det(DFµ(z))I. 

It follows that Dq,A,µ(z) = (-l)ldet(DFµ(z))IJ + (-l)m+l6_ where A= (8jk) 
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is such that Ojk = 

+ 

+ 

+ 

In the following proposition we have Xi = Ti = 0 for some i. An analogous 

result holds for Yi = si = 0. 

Proposition 7.5. Suppose thatµ= 0, Io C {1, ... , 2n+2m}, #(Io) ~ 2, z E :F(I0 ), 

and there exists i, j, k such that j, k E Io, (zj, zk) = (Ti, xi)- Then either D<I> A,µ(z) 

has 2n+2m zero eigenvalues and is of rank O or it has exactly 2 nonzero eigenvalues, 

Proof: Suppose that Xi = Ti · 0 for some i. It follows that (Fµ)n+m+i(z) = 0 and 

a~k (Fµ)n+m+i(z) = 0 for all k. Also, 

else. 
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Let~ be as given in Theorem 7.3. It follows that 6jk = 0 fork f m+i, n+m+i. Note 

also that det(DFµ(z)) = 0. Hence, D<PA,µ(z) has at most 2 non-zero columns. Now, 

in the expansion of~' if l f n + m + i, the corresponding term of the summation is 

zero as 8~k Fµn+m+i(z) = 0 for all k and Fµn+m+i(z) = 0. Therefore, ~ simplifies 

so that (r5jk) = 

Note, 

. {m+n+i-1 o:q(m+n+i)= . 
m+n+i 

if q < m + n + i, 
if q > m + n + i. 

We have four cases to consider. Suppose that j = m + i, k = m + n + i. It follows 

that 

However, by the definition of Tj, Tj(P) f j't/p. It follows that 6m+i,m+n+i 0. 

Similarly, if j = m + n + i, k = m + i, then 
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Hence, bm+n+i,m+i = 0. 

Now suppose that j = m + i, k = m + i. As above, 

For q < m + n + i, 

{::} O"m+n+i-1 = m + n + i - 1. 

For q > m + n + i, 

{::} O" m+n+i = m + n + i - 1. 

Recall that Tj(o-2n+2m) was previously undefined. Now, since j = m + i, it follows 

that Tj(o-) is a mapping from {1, ... , 2n + 2m - 1} to the set {1, ... , m + i -

1, m + i + 1, ... 2n + 2m}. Define Tm+i(o-2n+2m) = m + i. It follows that Tm+i(o-) E 

S2m+2n· Now, from the definition of Tj, sg(Tm+i(o-) = (-1)2n+m-isg(o-). It follows 

that bm+i m+i = 

[ 
82 F 2m+2n-1 aF i · 

+Fµ2n+2m(z) L sg(o-)a µ~+an+i . II a µp . 
Zm+n+• Zm+· Zrm+·(-p) es • • p=l .v 

U 2m+2n-l p#m+n+i 
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Now consider the case j = m + n + i, k = m + n + i. 

For q < m + n + i, 

{:} O-m+n+i-1 = m + i. 

For q > m + n + i, 

{:} O-m+n+i = m + i. 

Again, since j = m+n+i, it follows that Tm+nj-i(a-) is a mapping from {1, ... , 2n+ 

2m - 1} to the set { 1, ... , m + n + i - 1, m + n + i + 1, ... 2n + 2m}. As above, define 

( -1 t+m-i sg( a-). Therefore, c5n+m+i n+m+i = 

[ 
a2F 2m+2n 8F l 

F ( )( ) l '""' ( ) µm+n+i II µP 
µ1 z -1 L sg a- a a 

Es Zm+i Zm+n+i azT (u ) 
(J' 2m+2n-l p=2 m+n+i °'l (p) 

p#m+n+i 

F ( ) ( ) 2 [ '""' ( ) a2 Fµm+n+i 2mrr+2n 8FµP l + µ2 z -1 L sg a- a ·8 . 
Es Zm+i Zm+n+i p--1 azTn+m+i(<J' ( )) 

(J' 2m+2n-l p#m+n+i,2 °'2 p 

Now, for any a- E S2n+2m-1, 
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where 

Since this is true for every term it follows that 

If c5m+i m+i -=/= O,c5m+i m+i = (-l)c5m+n+i m+n+i and D<I>A,µ(z) has exactly two 

nonzero eigenvalues c5m+i m+i, c5m+n+i m+n+i corresponding to eigenvectors em+i, 

em+n+i· If, in fact, c5m+i m+i = 0, then c5kk = O'i/k, and rank(D<I> A,µ(z)) = 0 and 

D<I>A,µ(z) has 2n + 2m zero eigenvalues. 

Given the above theorem, it follows that points z such that xi = ri O or 

Yj = Sj = 0 are non-hyperbolic fixed points. 

Suppose that I 0 - {1, ... , 2n+2m}, #(Io)= 1, and z0 is in the relative interior 

of F(J0 ). We will now show that using the results of Chapter 5, we can establish 

the boundedness of c:;(z0 ) n (J1~+2m \ Crit(gFµ)) under conditions less restrictive 

than those in Proposition 7.3. The method used here is important as this type of 

argument will be used in future work regarding the critical trajectories. 

Proposition 7.6. Letµ= 0, I0 = {1, ... , 2n+2m}, #(Jo)= 1, z0 is in the relative 

interior of F(I0 ) and there exists z* E J1!n+2m such that F0 (z*) = 0. Then c:; (z0)n 

(R!n+2m \ Crit(gpJ) is bounded. 

Proof: Suppose that z0 is as given. Suppose (WLOG) that there exists i E 

{l, ... ,n} for which x? = 0. Hence, yJsJ > 0 'i/j,xfr? > 0 'ill# i and clearly 

xfrf = 0. Now from Proposition 3.15, for any z E c:;(z0 ), there exists some k > 0 

such that 
0 0 k-(_ - ) x 1 r1 = x 1r1 

0 0 k-(_ - ) 
YjSj = YjSj 
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for all Z, j. It follows that Yi > 0, Sj > 0 Vj, x1 > 0, r1 > 0 Vl # i and at least one 

of Xi, fiequals 0. Now consider the proof of Lemma 6.2.13. The proof holds, for 

Ct(z0)n(R~0 +2 m\Crit(gFµ)), up to the point where the value of ( is chosen. Now 

choose ( such that O < ( < min{z~: k (j_ 10 }. Now, using the notation of the proof 

of Lemma 6.2.13, 

+ ((1 - e-t)y* + e-ty(O))ts(t) + ((1- e-t)s* + e-ts(O))ty(t) 

2: e-t[x(O)tr(t) + r(O)tx(t) + y(O)ts(t) + s(O/y(t)] 
n n m m 

2: e-t([Lxj(t) + Lrj(t) + LYi(t) + Lsj(t)] 2: 0. 
i=l 

It follows that 

j=l 
j,f,i 

j=l j=l 

n n m m 

0 ~ e-t([Lxj(t) + Lri(t) + LYi(t) + Lsi(t)] ~ e-tK 

and therefore 

j=l j=l 
j,f,i 

j=l j=l 

n n m m l 
0 ~ [Lxj(t) + Lrj(t) + LYj(t) + LSj(t)] ~ zK 

j=l j=l j=l j=l 
j,f,i 

It follows that Zj ( t) is bounded for every j except possibly the component r i ( t). 

Suppose that there exists some sequence {tk} for which tk -+ oo, ri(tk) > 0 and 

ri(tk) -+ oo. Note, by Proposition 3.4, for ri(tk) > 0, DFµ(z(tk)) is of full rank. 

Define b0 = Ax0 - s0 , c0 = Atyo + r0 . Choose M > 0 such that M > {bJ, cg, bj, ck}-

Define a set f M by 

Note that z0 E r µ· Suppose that there exists some t1 for which z(t1) (j_ r w It 

follows that the trajectory z(t) is outward transversal to ar µ at some point z(i). 
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If ri(i) > 0, DFµ(z(t)) is of full rank. It follows from Theorem 5.1.2, 5.1.4, 5.1.6, 

5.1.8, and Corollaries 4.1.4, and 4.1.6 that <I? A,o(z(i)) is inward transversal to ofµ 

at z(i). Hence it must be true that ri(i) = 0. But since r(t1) > 0, there must exist 

some M > M for which z(t) is outward transversal to of M at a point z(t) for which 

ri(t) > 0. Again we would have a contradiction. Hence, no such t1 exists. It follows 

that z(tk) Er M for some M > M. Now since Ajy(t)-ri(t) :SM and for any j, Yj(t) 

is bounded for all t 2: 0, it follows that ri(t) is bounded for all t 2: 0 as well. Hence, 

for all j, zj(t) is bounded for all t 2: 0 and therefore C,"t(z0 ) n (R~n+2m \ Crit(gpJ) 

is bounded. 
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CHAPTER 8 

RESULTS FOR STANDARD FORM 

In this chapter we will show results for the standard form that are analogous 

to results for the symmetric form. Particular attention is paid to the differences 

in the inherent geometry of the different forms. One particular problem is the 

existence of the non-sign constrained variable y. This along with the fact that there 

is no complementarity condition for y will make it necessary to have some added 

conditions if we hope to obtain results similar to those for the symmetric form. 

Recall that the standard form of the linear programming problem is given by 

subject to Ax = b 

(LP) 

The function based on the optimality conditions is 

It follows that 

DFt(r,x,y) = ( f 
First we will address the work done in Chapter 3. Of particular interest is the 

measure of the Crit(gp;(z)) n an,~n+m. 
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Proposition 8.1. If(r,x,y) E n!n+m, then det(DF;(r,x,y)) > 0 and it follows 

that (r,x,y) E Reg(gps). 
µ. 

Proof: Proof is as in proposition 3.1. 

Proposition 8.2. Letµ= 0. If(r,x,y) E n!n+m, 9Fi(r,x,y) is a regular value of 

Proof: Proof is as in proposition 3.17. 

We now turn our attention to the case for which µ > 0. For the symmetric 

form, the properties that were fundamental to the results were that for any point 

z in the relative interior of a face of codimension 1 in afttn+m, z E Reg(gFt) and 

9F• (z) is a regular value of 9F•. Much of the work was based on the fact that for 
µ. µ. 

such faces DF;(s, r, x, y) is of full rank. In fact, given the difficulty of verifying 

the rank-deficient regularity condition, having Rank(DF;(z)) = 2n + m is key to 

having a convergence theorem for boundary points. 

For antn+m, faces of codimension 1 are given by Xi = 0 or Ti = 0. Suppose 

that z is in the relative interior of a face of codimension 1 given by Xi = 0. By doing 

elementary matrix operations on DF;(z), we produce the matrix 

Let v be an m-vector. Then AR-1 XAtv = 0 {=} Atv = aei. Let aj denote the jth 

column of A. It follows that A tv = aei {=} aj ..L vV j f. i. To guarantee the regularity 

of DF;(z), we need to insure that for every i, Atv = aei {=} v = O(a = 0). Note, 

if {bj}J=l is a collection of linearly independent m-vectors and bi ..L v = OVj, then 

v = 0. With this in mind, we gave the assumption (1.35). 
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Proposition 8.3. Suppose that (1.31), (1.35) hold. If z = (r, x, y) is in the relative 

interior of a face of codimension 1 in an~n+m, then DFJ (z) is of full rank and hence 

z E Reg(gps ). 
µ 

Proof: First suppose that the face of codimension one is determined by Xi = 0. As 

above, we need only consider the rank of AR- 1 XAt. Now 

By (1.35), m ~ n-l, and there exists some collection of linear independent columns 

{ aj }jEJ, such that i rf_ J, #(J) = m. It follows that v = 0. Hence AR- 1 X At, DFJ(z) 

are of full rank. 

Now suppose that the face of codimension 1 is determined by ri = 0. By doing 

elementary matrix operations on DFJ(z), we form the matrix 

Suppose that there exists vectors v1 , v2 such that 

It follows that 0 0 and 

Hence v1 = 0. Also, as above, Atv2 = 0 ~ v2 = 0. It follows that DFJ(z) is of full 

rank. 
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Proposition 8.4. Suppose that (1.31); (1.35) hold andµ > 0. If z = (r, x, y) is in 

the relative interior of a face of COdimension 2 in o'R.!n+m SUCh that Xi = Ti = 0, 

then z E Reg(gps ). 
µ 

Proof: The proof uses the framework used in Propositions 3.5, 3.6 and the prop-

erties of AR-1 X At identified in Proposition 8.3. 

We now turn our attention to the transversality of our solutions curves. 

Proposition 8.5. Letµ = 0 and z0 E an!n+m. Then <I>A,µ(z 0 ) is not outward 

(inward) transversal to anin+m. 

Proof: Given Proposition 4.1.3, we need only show that if z is in the relative interior 

of a face of codimension 1, then <I> A,µ(z) is not outward (inward) transversal to the 

face. We have only two types of faces of codimension 1. Those for which some 

Xi= 0 and those for which some ri = 0. 

Suppose that the face of codimension 1 is determined by Xi = 0 for some i. Set 

l = n + i. In this case the inward normal vector is vt = [O, ei, O]. Therefore, 

vt<I>A,µ(z) = [O,ei,O](-l)adj(DF!(z))F!(z) = (-l)(lth row of adj(DF!(z)))F!(z). 

Now, the lth row of adj(DF;(z)) is all zeros except for possibly the lth component. 

It follows that 

vt<I> A,µ(z) = (-l)det(DF!(lll)(z))(F!)z(z)) 

where (F;)z(z) is the lth component of F;(z). But Xi = 0 = µ, and therefore 

(F;)z(:Z) = 0. Hence vt<I>A,µ(z) = 0. It follows that either <I>A,µ(z) = 0 or <I>A,µ(z) is 

parallel to the face of codimension 1 given by Xi = 0. 

A similar argument holds for faces of codimension 1 given by ri = 0. 
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Proposition 8.6. Suppose that (1.31), (1.35) hold andµ> 0. There are no points 

z E 8R!n+m for which <l>A,µ(z) is outward transversal to 8R!n+m. 

Proof: The proof follows that proof of Proposition 4.1.5. 

We now give the construction of the closed half-spaces that are used for bound­

ing the trajectories z(t). 

Definition 8. 7. Let i E {1, ... , n }. A Type 1 closed half-space is defined as 

for some M > bi. A Type 3 closed half-space is defined as 

H+ = {(r, x, y)I - Aix ~ -.M} 

for some M < bi. Let j E { 1, ... , m}. A Type 2 closed half-space is defined as 

for some M > Cj. A Type 4 closed half-space is defined as 

for some M < Cj. Given i E {1, ... , n} and a point 

the closed half-space 

{zl[x?ei, r?ei, of z ~ 2x?r?} 

is called a type 5 closed half-space. Given i E {1, ... , n} and a point 

zo E {(r,x,y)l(r,x,y) E n!n+m,XiTi = M < µ}, 
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the closed half-space 

is called a type 6 closed half-space. 

Based on the above definitions we have the following propositions that are 

crucial to the behavior of the trajectories. 

Proposition 8.8. Let {H!}i1 a collection of type 1-6 closed half-spaces. Let 

II = njHt. Suppose that z0 E n!n+m n arr. Given (1.31), q> A,µ(z0) is inward 

transversal to arr at z0 . 

Proof: The proof follows the framework of the proof for Proposition 5.3.1. 

Proposition 8.9. Let {Ht}i1 be a collection of type 1-5 closed half-spaces. Let 

II= njHt. Suppose z0 .E an!n+mnan, given (1.29)-(1.31), q> A,µ(z0) is not outward 

transversal to aII at zO. 

Proof: The proof follows the framework of the Theorem 5.3.2 proof. 

At this point, we have identified the distinguishing characteristics of the stan­

dard form of (LP) verses the symmetric form. In fact, the results given in Chapter 

6 are not based on the particular form used. Therefore, given the above theorems, 

and the work done in Chapter 6, the proofs of theorems 1.34 and 1.36 follow the 

proofs of theorems 1.23 and 1.24. 
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APPENDIX A 

DIFFERENTIAL EQUATIONS 

Recall the following definitions from differential equations. 

Definition A.1. For the differential equation :; = F(z(t)), a point p is called a 

fixed point if F(p) = 0. 

Definition A.2. A fi.xed point p is called hyperbolic if all the eigenvalues of 

DF(p) have non-zero real parts. 

Definition A.3. Suppose pis a hyperbolic fi.xed point of F(x). We say pis a sink 

if the real parts of all eigenvalues are negative. p is called a source if the real parts 

of all eigenvalues are positive. p is called a saddle if it is neither a sink nor a source. 

The following two known theorems from Differential Equations will be of im­

portance in this work. From Robinson [R] we have, 

Theorem A.4. (Existence and Uniqueness of Differential Equations) Let UC Rn 

be an open set and f : U -t Rn be a Lipschitz or C1 function. Let z0 E U and 

t 0 E R. Then there exists a > 0 and a solution, z(t) of:; = f(z(t)) defi.ned for 

t 0 - a < t < t 0 + a such that z(to) = z0 . Also if y(t) is another solution with 

y(t0 ) = z0 then z(t) = y(t) on a common interval of definition about t 0 . 

From [HSml] we have, 
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Theorem A.5. (Continuity of Solutions with Respect to Initial Conditions) Let 

U C Rn be an open set and f : U -+ Rn be a C 1 function. Let z0 E U and 

t0 ER. Let z(t) be a solution of~; = J(z(t)) denned on the closed interval [to, t1] 

with z(t0 ) = z0 . Then there exists a neighborhood V C U of z0 and a constant K, 

such that if z0 E V, then there is a unique solution z(t) also denned on [to, t1] with 

z(t0 ) = z0 ; and z satisnes 

11.z(t) - z(t)II:::; 11.zo - zolle~(t-to) 

for all t E [to, t1]-

Given that we are going to use an IVP with vector field <I>(z) to find a solution 

to f (z) = 0 for f : Rn -+ Rn, we need to be able to analyze <I> ( z). One important 

question is that of the structure of the Jacobian, D<I>(z), of <I>(z). Since in some cases 

<I>(z) involves D f (z) we must address the issue of finding the second derivative of 

Given f : Rn -+ Rn, Dz(J(z)) = Df(z) E Rnxn where Dz is the differen-

tial operator. Hence D f (z) E L(Rn, Rn). It follows that the second derivative of 

J(z), Dz(Df(z)), is an element of L(Rn,L(Rn,Rn)). Hence, 

So for u E Rn,Dz(DJ(z))u E L(Rn,Rn) = Rnxn. It follows that [Dz(DJ(z))u]v E 

The question that remains is that of the structure of Dz(Df(z)). Suppose that 

-(fi~z)) J- : 
fn(x) 
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where fi(z) E C 2 for every i. Then 

Now consider Ji ( z) : Rn --+ R. Then 

Therefore, 

8fi(z) ) 8zn 

. . 
8/n(z) 
~ 

where Ht;(z) is the Hessian of fi(z). Since Ji was a component off, it follows that 

where Ht;(z) is the Hessian matrix of fi(z). It follows that to understand the struc-

ture of Dz(Df(z)) we need only understand the structure of Ht;(z) for every i. 
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APPENDIX B 

DUAL-SYMMETRIC FORM OF LP 

It is shown here that every linear programming problem given in the symmetric-

dual form (LP), (DP) can be given in the form of (LP) with the added condition 

that m ::; n. This is done by simply multiplying by (-1) the appropriate equations. 

Suppose that we have, 

subject to Ax - s = b 

(LP) A E Rmxn, m > n, XE R+, s E R~1, 

and 

subject to Aty + r = c 

(DP) 

Now Ax - s = b ¢=> (-A)x + s = (-b). Set Et= -A. Also, 

subject to Btx + s = -b, 

is equivalent to 
subject to Btx + s = -b, 

Bt E Rmxn m > n X E Rn S E Rm 
' ' +' +' 

If we consider this the dual format, then the corresponding primal form is 

min (-bt)y subject to By - r = (-c), 

BE Rnxm,n < m, y E R~1,r ER+, 

Hence we need only consider (LP) with the additional condition that m ::; n. 
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