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1 INTRODUCTION 

1.0 Introduction 

The current interest in speech coding is attributed to the demand for voice 

communication, the new generation of technology for cost-effective implementation of 

digital signal processing algorithms, the need to conserve bandwidth, and the need to 

conserve disk space in speech storage [1], [2]. Although not a new topic, low bit rate 

speech coding has become an important area for research in recent years. There are 

several reasons for this occurrence. These include advances in microprocessor 

technology, the sharp decrease in cost of computation and memory, the increased 

emphasis on providing high-quality communication services, and the improvement in 

speech models [1 ], [2]. The result of the recent surge in research has been the 

development of a number of good speech coding systems at bit rates of 4,800 bits per 

second (bps) and below. Many of these voice coders (vocoders) are sinusoidal based 

systems known as harmonic vocoders, such as, Sinusoidal Transform Coding (STC) [3], 

Improved MultiBand Excitation (IMBE) [4], [5], and Enhanced MultiBand Excitation 

(EMBE) [6], [7]. While these vocoders produce high quality and intelligible speech at 

low bit rates, they are highly dependent on accurate parameter estimation. 
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1.1 Sinusoidal Model Analysis-By-Synthesis 

This dissertation examines the problem of coding narrowband speech with an 

emphasis on using analysis-by-synthesis in combination with a sinusoidal speech model. 

Currently, there are no harmonic vocoders employing the use of analysis-by-synthesis for 

complete parameter estimation and synthesis. Although analysis-by-synthesis is not a new 

approach to speech coding it has not been coupled with the sinusoidal model. The 

inclusion of the sinusoidal synthesis model into the analyzer assures that the model 

parameters being estimated are optimal in some sense. This new approach to parameter 

estimation for_ sinusoidal based vocoders is referred to as Sinusoidal Model Analysis-By­

Synthesis (SMABS). 

1.2 Overview of Dissertation 

The motivation for the work presented in this dissertation stems from the fact that 

low bit rate harmonic vocoders are in general highly dependent on the estimation of the 

pitch (fundamental frequency). Generally, pitch estimation is performed in an open-loop 

fashion, a number of heuristic tests are needed to maintain a smooth transition from 

frame-to-frame. For these reasons, a new approach for estimating the pitch and other 

necessary parameters is desired. The approach to parameter estimation investigated in this 

dissertation is that of analysis-by-synthesis coupled with the sinusoidal synthesis model. 

A number of linear prediction analysis-by-synthesis systems that minimize a 

perceptually weighted residual signal (error signal) are discussed in [1], [2], and [9]. In 

the process of minimizing the error signal a pitch estimate, commonly known as the pitch 
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delay, is required. The pitch is found using either an open-loop or closed-loop approach. 

The pitch estimate determined does not necessarily correspond to the exact pitch of the 

speaker, since the residual is minimized using a perceptual criterion. As a result, the pitch 

estimate found in this manner is not accurate for sinusoidal based vocoders. But the 

techniques of the linear prediction analysis-by-synthesis system prove to be useful in 

developing sinusoidal model analysis-by-synthesis techniques for obtaining parameter 

estimates for sinusoidal based vocoders as is presented in Chapter 5. 

Both MBE and STC are presented as analysis-by-synthesis vocoders. The 

difference between these vocoders and the work presented in this dissertation is in the 

model assumptions. MBE uses analysis-by-synthesis to perform pitch refinement by 

synthesizing an all voiced magnitude spectrum. STC uses analysis-by-synthesis to 

develop an alternate approach to pitch estimation without actually performing the 

synthesis in the analyzer. Another difference between MBE, STC, and the work 

developed in this dissertation is that neither MBE nor STC actually include the synthesis 

technique in the analyzer. The work in this dissertation takes another approach in using 

analysis-by-synthesis. The sinusoidal model for reconstruction is included directly in the 

analyzer forming a more complete approach to analysis-by-synthesis. 

Two novel approaches of incorporating analysis-by-synthesis m a sinusoidal 

speech model are described. The first development is a frequency domain approach that 

uses a no phase information assumption. The second development is a time-domain 

approach that assumes phase information is available. For both methods developed, the 

computational complexity is considered to be of secondary importance. 



4 

A more practical sinusoidal vocoder is developed that exploits the advantages of 

each method developed. This new SMABS vocoder targets a bit rate of approximately 

8,000 bps. In order to determine the level of performance achieved by the proposed 

methods, the objective performance measures Diagnostic Acceptability Measure (DAM) 

and Diagnostic Rhyme Test (DRT) are considered. 

1.3 Previous Work 

The work in this dissertation is the extension of work performed by the author in 

collaboration with others [6], [7]. A 2,400 bit per second vocoder based on the MBE 

speech model was developed as part of the Department of Defense Digital Voice 

Processing Consortium (DDVPC). This work was funded by the Department of Defense 

as part of the development of a new Federal Standard at 2,400 bit per second to replace 

Federal Standard 1015 LPClOe. This work and the work by [3], [4], [5], and [8] are 

combined to form a new analysis.:.by-synthesis vocoder based on the sinusoidal model. 

1.4 Organization of Dissertation 

The thesis starts with a general introduction into the areas of speech coding, 

speech production, speech properties, and hearing. This is followed by a brief discussion 

of waveform coding and voice coding. Chapter 3 describes the development and 

implementation of the Enhanced MultiBand Excitation 2,400 bps vocoder (EMBE). 

EMBE is the vocoder developed for the DDVPC and constitutes much of the work, which 

leads to the developments in this dissertation. Chapter 4 is a mathematical development 

of the application of the sinusoidal speech model to speech signals. This provides the 
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supporting material for the new methods developed in this dissertation. Chapter 5 

introduces the concept of using analysis-by-synthesis with a sinusoidal speech model. A 

discussion of the analysis and synthesis methods precedes the development of the 

frequency-domain and time-domain analysis-by-synthesis techniques, which form the 

main body of this work. Chapter 6 uses the knowledge of the analysis-by-synthesis 

techniques of Chapter 5 to develop a more realizable analysis-by-synthesis sinusoidal 

vocoder targeted towards 8,000 bps. Chapter 7 summarizes the results of the frequency­

domain and time-domain analysis-by-synthesis techniques along with the 8,000 bps 

analysis-by-synthesis sinusoidal vocoder. 
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2 OVERVIEW OF SPEECH CODING 

2.0 Introduction 

In order to completely understand the speech models described and used 

throughout this dissertation it is essential to understand at least the basics of the speech 

production process, speech properties, and the auditory system. By understanding these 

components of the human communication system, it should be possible to exploit the 

system properties in order to improve the performance of the analysis and synthesis stages 

of a speech coding system. 

The digital processing of speech requires a transformation from the continuous 

domain to the discrete domain. This is accomplished by sampling at the appropriate 

sampling :frequency Fs and quantizing the amplitudes of the samples to a finite range of 

values. The speech signals used in this dissertation are assumed to be narrowband, 0 - 4 

KHz (Nyquist frequency), with a sampling :frequency Fs set to be twice the Nyquist 

frequency, Fs = 8 KHz. A. speech coder is then used to process the speech signal in 

preparation for transmission; storage, or encryption. 

Generally, speech coders are separated into two categories: waveform and voice 

coders [1], [2], [9]. Waveform coders are used to represent and reconstruct accurately a 

digital speech signal on a sample-by-sample basis. In this approach the shape of the 
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waveform is preserved. Efficient waveform coding is accomplished by two methods. The 

first method exploits the redundant properties of the speech signal and is known as time­

domain waveform coding [10], [11], [12]. The second method, frequency-domain 

waveform coding, exploits the non-uniform distribution of speech information in the 

frequency spectrum [10], [11], [12]. The most limiting factor when using waveform 

coders is that the coded speech seriously degrades as bit rates drop below about 16 kbps 

[5]. 

In practical signal processing applications, analysis and synthesis is performed by 

splitting the signal into short time segments unless the signal of interest is of short 

duration. The short time segment is often referred to as a.frame. Signals are divided into 

frames so that conventional analysis techniques can be applied to signals that exhibit 

nonstationary characteristics, such as speech [10]. It is well known that speech signals are 

considered stationary over the range of 1 Oms to 30ms. 

The application of this dissertation is in the area of low bit rate coding, so a 

stronger emphasis is placed on voice coders. A voice coder is also often referred to as 

either a vocoder or a parametric coder. In contrast to waveform coding, vocoders do not 

attempt to preserve the shape of the waveform, rather the goal is simply to preserve the 

perceptual qualities of the speech signal such as naturalness and intelligibility. The most 

common parameters used to accomplish this are pitch, voicing, and vocal tract response. 

These parameters are quantized and transmitted to the receiver for processing. The 

motivation for vocoders is that they have shown to be more successful than waveform 

coding at producing high quality speech at bit rates below about 16 kbps [l], [2]. 
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This chapter provides a brief discussion on the areas of speech production, speech 

properties, and hearing. The following section provides a discussion of the common 

techniques used in waveform coding. This chapter concludes with a discussion of the 

techniques used in voice coding with special emphasis on mixed excitation harmonic 

based models. 

2.1 Speech Production 

The human communication system consists of a transmitter and a receiver, where 

the transmitter is represented by speech production and the receiver is represented by 

hearing. In this section and sections folJowing the components of the speech production, 

speech properties and hearing systems are presented. 

The transmitter portion of the human communication system is speech production. 

The vocal organs that make-up the speech production system are the lungs, the windpipe, 

the larynx, the pharynx, the nose, and the mouth. These vocal organs form a tube that 

extends from the lungs to the lips. The lungs represent the energy source, the larynx 

represents the excitation source, and the other organs represent a resonating system of air 

filled cavities. All of these components are required to produce speech in the human 

communication system [13]. 

One component of this tube, which extends from the lungs to the lips, is known as 

the vocal tract. The vocal tract consists of the pharynx, mouth, and nose. The vocal tract 

is shown in Figure 2-1. The vocal tract starts at the vocal cords and ends at the mouth 

with a typical length, for an adult male, of 17 cm. The cross sectional area of the vocal 
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tract varies in size from O to 20 cm2 and is determined by the positioning of the speech 

articulators, composed of the tongue,jaw, lips, and velum [12], [14]. 

The lungs produce a steady stream of air, which forms the energy source. This air 

stream is made audible using a number of methods but the most frequent method used is 

vocal cord action [ 41]. The vocal cords make-up an adjustable barrier across the air 

passage as pictured in Figure 2-1 [ 41]. When the vocal cords are open, air is passed into 

the vocal tract; when the vocal tract is closed, air is blocked from entering the vocal tract. 

During speech, the vocal cords open and close in a periodic fashion generating a series of 

puffs. This series of puffs generates a buzz whose frequency increases as the rate of 

vibration of the vocal cords is increased. The characteristics of speech are determined by 

the shape of the vocal tract, which is continually altered by movements of the tongue and 

lips. Speech generated using this method is classified as voiced sound. 

Vocal 
Cords 

Figure 2-1. Vocal Tract [13] 

Pharynx 
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There are two other methods that are used to produce speech waves. In the first, a 

constriction occurs at some point along the vocal tract causing the airflow from the lungs 

to become turbulent. This turbulent airflow produces a hiss sound, referred to as fricative 

noise. Speech generated in this manner is classified as unvoiced sound. The second 

method creates a momentary constriction blocking the airflow completely using the 

tongue or lips. The air pressure generated from this blockage is released suddenly 

resulting in sounds known as plosives. In both methods the vocal cords could vibrate 

simultaneously with the occurrence of the constriction [14], [41]. Fricatives and plosives 

can be classified as either voiced or unvoiced or mixed sound. 

Another alternate path for sound occurs when the velum is lowered, acoustically 

coupling the nasal cavity with the vocal tract. When this occurs, the nasal sounds of 

speech are produced. The nasal tract is a non-uniform tube of fixed area and length with a 

typical length, for an adult male, of 12 cm [14]. 

2.2 Speech Properties 

The vocal tract is an air-filled chamber that acts like a resonator. This means that 

the vocal tract responds more naturally to sound waves which are at the same frequency 

as the resonant frequencies of the vocal tract. If the vocal cords produce a series of puffs 

as stated in the previous section then the spectrum will contain a number of frequencies 

that occur at integer multiples of the fundamental frequency [ 41]. The fundamental 

frequency is the same as the vocal cords' frequency of vibration and corresponds to the 
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spectrum's lowest frequency component. As a sound wave such as this propagates along 

the vocal tract, the components corresponding to the resonant frequency are emphasized. 

The vocal resonator has a number of resonant frequencies and will emphasize the 

harmonics of the vocal cord wave at a number of different frequencies [41]. These 

frequencies are determined by the shape of the vocal tract and change as the vocal tract 

shape is altered. These resonant frequencies are known as the formant frequencies. Each 

configuration of the vocal tract contains its own characteristic formant frequencies. 

The formant frequency positions depend on the shape of the vocal tract, as noted 

above. If the soft palate is raised shutting off the nasal cavity the vocal tract is a tube 

approximately seven inches long [ 41]. Assuming that the vocal tract has uniform cross­

section then the resonant frequencies occur at 500 Hz and its odd harmonics (1,500, 

2,500, 3,500, etc.) [41]. In reality the cross-section of the vocal tract varies along its 

length, which results in a shifting of the frequency either higher or lower. The lowest 

formant frequency is known as the first formant, the next highest is the second formant, 

and so forth. 

When the soft palate is lowered which results in a coupling of the nasal cavity and 

the mouth a different vocal tract shape is obtained [ 41]. This coupling provides two 

directions for air to be passed through the vocal tract. The addition of the nasal cavity 

introduces anti-resonances that suppress parts of the speech spectrum [ 41]. 

A voiced speech signal is shown in Figure 2-2 with its corresponding magnitude 

spectrum provided in Figure 2-3. This signal is a 240 point (30 ms) segment taken from 

the word "Figure" spoken by a male with a pitch of approximately 130 Hz. The 
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magnitude response is found by computing an 8,192 length DFT of the Hamming 

windowed speech segment. 

The formant structure is clearly visible in Figure 2-3. The first formant occurs 

around 400 Hz, the second formant occurs around 1,800 Hz, the third formant occurs 

around 3,300 Hz and the fourth occurs around 3,700 Hz. A fact worth noting is that the 

voiced speech tends to be of high energy compared to unvoiced sounds, which is useful in 

determining whether the speech is either voiced or unvoiced. 
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Figure 2-2. Voiced Speech Signal 
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Unvoiced sounds exhibit no harmonic structure since the vocal cords do not 

vibrate. This results in an aperiodic time-domain signal as shown in Figure 2-4. This 

aperiodic structure is clearly obvious in the corresponding magnitude spectrum provided 

in Figure 2-5. This speech segment is also a 240 point (30 ms) segment taken from the 

word "Figure" and spoken by a male. Again the magnitude response is found by 

computing an 8,192 length DFT of the Hamming windowed speech segment. 

The formant structure that is so obvious for voiced speech is gone along with the 

harmonic structure. In contrast to voiced speech, unvoiced speech also tends to have 

lower energy. The unvoiced spectrum also appears to be a high pass signal in contrast to 

the low pass shape of the voiced spectrum. 
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2.3 Hearing 

The speech production represents the transmitter portion of the human 

communication system. Hearing and perception represent the receiver portion. Of the two 

components the perceptual portion is the least understood in terms of how the brain 

decodes the acoustic information received. However, the detection of acoustic signals is 

fairly well understood [15]. A simple diagram illustrating the auditory system is shown in 

Figure 2-6. The function of the ear of the human communication system is to receive 

acoustic vibrations and convert them into signals suitable for transmission along the 

auditory nerve toward the brain [ 41]. 

Auricle or 
pinria · 

Figure 2-6. Peripheral Auditory System [14] 

The makeup of the ear is generally divided into three main sections, outer ear, 

middle ear, and inner ear. The outer ear, which plays a minor role in the hearing process, 
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consists of the pinna, the auditory canal, and the eardrum [14], [15]. The auditory canal is 

closed at one end by the eardrum and open on the other end to the outside. As acoustic 

waves travel into the external ear, they are channeled down the auditory canal and 

subsequently set the eardrum into vibration. The auditory canal is an acoustic resonator so 

sound waves near the resonant frequency are amplified. The resonant frequency falls in 

the range of 3,000 Hz to 4,00~ Hz [41]. 

The middle ear contains the auditory ossicles, three small bones that form a 

linkage between the eardrum and the inner ear [14], [15]. The three small bones are 

referred to as the malleus, the incus, and the stapes. The handle of the malleus (hammer) 

is connected to the eardrum [ 41]. As sound waves propagate down the auditory channel 

and strike the eardrum, the motions are transmitted to the stapes via the malleus and 

incus. The footplate of the stapes covers the oval window, which is the entrance to the 

inner ear [ 41]. The middle ear performs two functions. First it increases the amount of 

acoustic energy entering the fluid filled inner ear by increasing the amplitude of the 

pressure variations at the oval window. Without this function much of the incident energy 

would be reflected [ 41]. The second function is to protect the inner ear by suppressing 

violent vibrations. This is accomplished by opening the eustachian tube when a pressure 

difference is detected between the middle ear and the outer ear [14], [15]. 

The inner ear converts the vibrational energy into hydraulic energy and is 

subsequently converted to neurological signals for processing by the central auditory 

nervous system. This conversion of sound pressure waves occurs in the cochlea. The 

cochlea is a liquid filled tube with a helical (spiral) shape. Attached to the cochlea is a 
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frequency dependent membrane known as the basilar membrane. As pressure waves 

propagate through the cochlea, the basilar membrane is deflected at points corresponding 

to the frequency of the pressure waves. After the basilar membrane is deflected, a set of 

tiny hairs located at the organ of corti become bent creating a potential. The hairs are 

connected to the auditory nerve system and any potential causes a neural firing. These 

neural firings (series of electrical impulses) are transmitted to the brain for processing. 

Based on the discussion above, one could think of the basilar membrane ( or the 

ear in general) as a spectrum analyzer because of the frequency dependence. The ear is 

also known to act in a logarithmic manner with greater resolution at the lower frequencies 

[14], [15]. 

2.4 Waveform Coding 

2.4.0 Introduction 

Waveform coders are used to represent and reconstruct accurately a digital speech 

signal on a sample-by-sample basis, thus the shape of the waveform is preserved. 

Waveform coders are generally designed to be signal independent [15]. For this reason, 

waveform coders are considered to be extremely robust. This robustness comes at the 

expense of operating at a relatively high bit rate, such as 64 kbps. 

The efficiency of the waveform coder is improved by exploiting the characteristics 

of the speech signal. In the time-domain the redundant property of the speech signal is 

exploited and is known as time-domain waveform coding [10], [11], [12]. In the 

frequency-domain the non-uniform distribution of speech information in the frequency 
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spectrum is exploited and is known as frequency-domain waveform coding [10], [11], 

[12]. The major problem with waveform coders is that the output speech seriously 

degrades as bit rates drop below about 16 kbps [5]. All the methods discussed in this 

section involve scalar quantization, except for the section on vector quantization. 

2.4.1 Time-Domain Waveform Coding 

2.4.1.1 Pulse Code Modulation 

Pulse Code Modulation (PCM) is the most common method of time-domain 

waveform coding [10], [11], [12]. This method quantizes each sample of a speech signal 

to a specific discrete amplitude determined by the number of bits, B, used to represent the 

sample. The number of quantization levels is computed from B, as 2B. The bit rate of a 

PCM coder is found by multiplying the number of bits, B, used to represent a given 

sample by the sampling frequency, F8 • Clearly, the more bits used for quantization the 

better the representation and the higher the bit rate. 

Two types of scalar quantization are used with PCM, uniform and non-uniform. 

Uniform PCM has constant step size between quantization levels and non-uniform PCM 

has a step size that varies from quantization level to quantization level. The most 

common non-uniform PCM is the logarithmic quantizer. Two standard methods of 

logarithmic quantization are 8 bit A-law and µ-law PCM which are quite common in 

speech applications [9]. An optimum method for non-uniform PCM is to construct a 

quantization table based on the shape of the probability density function (pdf) for the 

typical speech data to be quantized. 
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A third approach is to make the quantization step size adaptive. This is 

accomplished using either a feedforward or feedback quantizer. A feedforward quantizer 

adapts the quantization step size based on the variance of a frame of speech. The step size 

must be transmitted as side information to the receiver in order to reconstruct the speech 

signal. The feedback quantizer adapts the quantization step size as a function of the 

previously quantized output. If the previously quantized output is small then a small step 

size is used. If the previously quantized output is large then the step size is increased 

accordingly. No side information needs to be transmitted to the receiver. Feedback 

adaptation produces lower bit rates but is more sensitive to transmission errors. 

2.4.1.2 Differential Pulse Code Modulation 

A variation on PCM is differential PCM (DPCM) [10], [11], [12]. The method of 

differential PCM takes advantage of the fact that samples close in time tend to be highly 

correlated. By exploiting this correlation the resulting bit rate is reduced. This is 

commonly accomplished by computing the difference between the current predicted 

sample and the adjacent sample. The difference between two adjacent samples has a 

lower dynamic range as compared to the original speech signal. Since the difference 

between two amplitudes is smaller on average than a particular amplitude, fewer bits are 

needed resulting in a lower overall bit rate. A common approach to DPCM is to use a 

linear predictor in the transmitter to estimate the current input sample from previous 

output samples. The difference between the original input and the estimate is quantized 

and transmitted along with the predictor coefficients. This method of waveform coding 

produces the same quality as PCM, but operating at a lower bit rate. 
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One possible method for improving the performance of DPCM is to allow the 

quantizer to adapt as is discussed in the section on PCM. This is known as Adaptive 

Differential Pulse Code Modulation (ADPCM). The quantizer is adapted to the prediction 

residual as are the prediction coefficients. Again, these terms are adapted using either a 

feedforward or feedback adaptation. 

2.4.1.3 Delta Modulation 

A simplified version of DPCM is known as delta modulation (DM) [10], [11], 

[12]. This system uses a sampling rate that is much higher than the Nyquist rate for the 

input signal. The result of the higher sampling rate is that adjacent samples become 

highly correlated. 

The simplest DM coder uses a two-level quantizer (a' 1' or 'O') and a fixed first­

order predictor to determine the quantized output signal with an associated quantization 

error [10], [11]. An equivalent realization for the fixed predictor is an accumulator with 

the input equal to the quantized error signal. The efficiency of the DM coder is 

constrained by two types of distortion, known as slope-overload and granular noise [10], 

[11]. Slope-overload distortion occurs when the quantization step size, the difference 

between two quantization levels, is too small to follow the steep slopes in the input 

waveform. Granular noise distortion occurs when the step size is too large to follow the 

small slopes in the input waveform. 

For the reasons above a number of alternate approaches have been developed that 

use an adaptive step size to combat the distortion problem. One popular technique is 

known as continuously variable slope delta modulation (CVSDM) [10], [11]. This 
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approach uses a set of rules to adapt the step size. First a minimum and maximum step 

size are defined. If a run of three 1 's or three O's occurs then the step size is increased, if 

neither occurs the step decays un~il it reaches the minimum step size. This coder has been 

used mostly in areas where the speech quality does not have to meet commercial 

communications standards [10], [11]. 

2.4.2 Frequency-Domain Waveform Coding 

2.4.2.1 Filter Bank Coding 

The filter bank analyzer/synthesizer, which is usually considered a research coder, 

is representative of frequency-domain waveform coding [ 1 O], [ 11]. This waveform coder 

consists of a bank of bandpass filters that 9over the entire frequency spectrum of interest. 

The speech signal is applied to the bandpass filters and the outputs are decimated for 

coding efficiency. The decimated outputs are quanti~ed for transmission. In the 

synthesizer, the transmitted signal is interpolated and input to the same bank of bandpass 

filters. The outputs are then summed producing synthesized speech. This coder does not 

provide better coding efficiency, compared to the time-domain methods [10]. 

2.4.2.2 Subband Coding 

An improvement on the filter bank analyzer/synthesizer is referred to as subband 

coding (SBC) [10], [11]. This method uses a bank of filters as in the previous method, but 

not as many. The frequency spectrum is divided non-uniformly into four to eight 

subbands, and each of these bands is encoded using either APCM or another waveform 

coding technique. This non-uniform frequency division is done because the low end of 
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the spectrum is considered perceptually more important than the high frequency end of 

the spectrum. More bits are assigned for coding the low frequency end of the spectrum. 

The high frequency end of the spectrum does not contain as much information so fewer 

bits are needed for coding. However, for this coder to achieve toll quality speech, four to 

five subbands and 24,000 bps is needed to code the entire spectrum. 

2.4.2.3 Adaptive Transform Coding 

Adaptive Transform Coding (ATC) segments the speech signal into frames of 

data, instead of filtering as in SBC [10], [11]. These frames are pushed into a buffer and 

then transformed into another form of representation, usually spectral. The transformed 

coefficients of the representation are quantized and transmitted to the synthesizer. At the 

synthesizer, the coefficients are inverse transformed back to the time domain. The bit rate 

is dependent on the number of bits used to code the coefficients. This type of coder has 

produced toll and communication quality speech at bit rates of 16 kbps and 9.6 kbps, 

respectively. 

2.4.3 Vector Quantization 

Vector quantization (VQ) is a generalization of scalar quantization techniques 

[16], [17], [18]. The main difference between scalar quantization and VQ is that scalar 

quantization operates on single samples while VQ performs operations on a set of ordered 

real numbers. A second difference is that scalar quantization is used primarily for analog 

to digital conversion and VQ is used in more sophisticated digital signal processing 
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applications where the signal has already been digitized [17]. VQ also exploits the linear 

and nonlinear dependence among signal vectors. 

The method of VQ is the ultimate solution to the quantization of a signal vector 

[17]. The signal vector is compared to a set of similar but quantized signal vectors using a 

number of different error metrics, such as squared error, average squared error, or 

weighted squared error. The quantized signal vectors are stored into a table making the 

decoding process a simple task. 

VQ is used primarily in the area of data compression, although it is not 

constrained to this application [16], [18]. In the area of speech coding, VQ has become 

quite popular as a method for quantizing the spectral envelope. The spectrum is first 

modeled using linear prediction (LP). The linear prediction coefficients are then 

converted to line spectral pairs, which are then coded using VQ. By using VQ, the line 

spectral pair coefficients are coded using two to three bits per coefficient [39]. This is 

compared to the INMARSAT standard, which uses 72 to 96 bits for coding the spectral 

envelope using scalar quantization [19]. Assuming a 14th order LP and 3 bits per 

coefficient then only 42 bits are needed to code the spectral envelope. This capability is 

exploited in Chapter 6 of this dissertation. The following section describes some of the 

common voice coders with a special emphasis on harmonic based coders. 
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2. 5 Voice Coding 

2.5.0 Introduction 

The application of this dissertation is in the area of low bit rate coding, so a 

stronger emphasis is placed on voice coders. A voice coder is also known as either a 

vocoder or a parametric coder. In contrast to waveform coding, vocoders do not try to 

preserve the shape of the waveform but instead attempt to determine a set of time varying 

parameters that best describe the signal in terms of a speech production model. The set of 

parameters that is generally used to describe the speech production model are pitch, 

voicing, and vocal tract response. Vocoders have been shown to be more successful than 

waveform coding at producing high quality speech at bit rates of 16 kbps and below [l], 

[2]. 

2.5.1 Vocoder Overview 

Vocoders differ from waveform coders because a mathematical model is used to 

represent the speech signal. This model estimates on a short time basis a set of parameters 

that is used to describe a frame of speech. The speech waveform is not necessarily 

preserved as in waveform coding, only the basic qualities are preserved. The model 

estimates are the inputs of a time varying linear system, as shown in Figure 2-7. The 

synthetic speech samples are represented by the output of the time varying linear system. 

The block diagram shown in Figure 2-7 is also a representation of what is referred to here 

as the traditional speech production model. The inputs: pitch, voiced/unvoiced decision, 
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gain, and vocal tract response represent the excitation parameters for each frame of output 

speech. A single voicing decision, modeled as a simple switch, determines whether the 

excitation is either periodic or aperiodic (voiced or unvoiced). 

Pitch Period 

Impulse 
Generator 

White Noise 
Generator 

V/UV 
Switch 

Gain 

Vocal Tract Parameters 

Time Varying 
Discrete-Time 

System 

Output 
Speech 

Figure 2-7 Block Diagram of the Traditional Speech Production Model 

If the frame of speech is declared voiced, the excitation is modeled as a periodic 

impulse train with' period equal to the pitch ( commonly known as fundamental 

frequency). For a frame of speech declared unvoiced, the excitation is modeled as a 

pseudo-random white noise sequence. The vocal tract parameters are used to determine 

the spectral properties of the waveform for a frame of speech. 

In all vocoders, a set of parameters must be estimated and updated periodically by 

the transmitter (analyzer). These parameters are usually the pitch, voiced/unvoiced 

decision(s), vocal tract response, and possibly an associated gain value. The parameters 

are encoded and transmitted to the receiver. In the synthesizer, the parameters are 

decoded once for every analysis frame and the speech signal is reconstructed on a frame-

by-frame basis using the underlying speech production model. 
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The traditional speech production model described above and shown in Figure 2-

7 has a major disadvantage. During analysis, a complete frame of speech is declared 

either periodic (voiced) or aperiodic (unvoiced). The approach of the simple voicing 

decision has been shown to be limiting because the resulting synthetic speech has an 

annoying "buzzy" quality. In modem speech coders, speech models have been based on 

the assumption that a given frame of speech is made up of both periodic and aperiodic 

excitation. Consider for example, voiced fricatives such as /v/ ("vice"), ID/ (''then"), /z/ 

("zephyr"), and /Z/ ("measure"), which clearly contain mixed excitation [10]. This 

innovation has lead to the development of a number of vocoders capable of producing 

high quality speech at low bit rates. The following paragraphs discuss in more detail a 

specific set of these vocoders. 

2.5.2 Code Excited Linear Prediction 

Code Excited Linear Prediction (CELP) was first introduced by Schroeder and 

Atal and is an analysis-by-synthesis method based on selecting the appropriate excitation 

sequence(s) as input to the synthesis filt~r [8]. The coefficients of the synthesis filter are 

found using linear prediction. A selected excitation sequence is input to the synthesis 

filter, which produces an estimate for the corresponding input speech signal. This 

estimate is subtracted from the original speech signal and the error is minimized using a 

weighted least square error approach. A simplified block diagram for the CELP analyzer 

is shown in Figure 2-8. 
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There are two types of excitation sequences which are found by searching two 

codebooks. One codebook is used to model the periodicity in the error signal and is 

known as the Adaptive Codebook (ACB). The second codebook is used to model the 

randomness of the error signal, and is known as the Stochastic Codebook (SCB). These 

sequences are determined in a sequential manner [20], [21]. The ACB sequence which 

produces the minimal weighted least square error is chosen to represent the periodicity 

(voiced portion) for the corresponding input speech. The SCB sequence is added to the 

ACB sequence and the combination that produces the minimum weighted least square 

error is chosen to represent the unvoiced portion of the input signal. The minimum error 

is found by minimizing the following 

(2-1) 

The parameter W is a matrix that represents the perceptual weighting shown in 

Figure 2-8. The perceptual weighting is used to flatten the spectrum of the error signal 

(residual). This is equivalent to weighting more equally the error over the entire 

frequency spectrum. An error value for each codebook index is computed and represented 

by the error vector e(i). The reconstructed speech signal corresponding to each codebook 
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index is represented by the excitation vector s(i) and is determined by equation 2-2. The 

matrix H represents the truncated impulse response of the synthesis filter, the vector u is 

the contribution from the previous search stage, the vector v(i) is the excitation sequence 

for the current search stage, and the vector s(o) is the zero input response of the synthesis 

filter ( contribution from the previous frame). 

s(i) = H ( u + v(i) )+s(o) (2-2) 

CELP is one of the better-known high quality low bit rate vocoders. The CELP 

vocoder was adopted as .Federal Standard 1016 at 4,800 bps in 1991 and is now widely 

used in a number of applications [21], [22], [23]. This vocoder is considered to be of 

good quality and intelligibility. CELP is often used as a reference when comparing the 

quality and intelligibility of other vocoders. For example, the goal of the new Federal 

Standard at 2,400 bps is to produce speech quality and intelligibility either equal to or 

better than that of the Federal Standard 1016 CELP 4,800 bps vocoder [21]. 

The strength of CELP. lies in the analysis-by-synthesis method used to construct 

the excitation for the current frame. By feeding back the synthesized output that is 

produced by each possible excitation sequence. chosen from· the ACB and SCB, a feat 

made possible by including the synthesizer in the analyzer, an excitation sequence which 

is optimum in some sense is chosen. This provides for a degree of flexibility and a level 

of robustness that is not present in all vocoders. The concept of analysis-by-synthesis is 

explored later in this dissertation. The next section describes the Sinusoidal Transform 

Coder. 
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2.5.3 Sinusoidal Transform Coder 

Sinusoidal Transform Coding (STC) is a speech analysis/synthesis system based 

on a sinusoidal model which was introduced by Robert J. McAulay and Thomas F. 

Quatieri in [3], [24]. This vocoder models the speech signal on a short time basis in terms 

of sums of sinusoids, where the sinusoids correspond in amplitude, frequency, and phase 

to the relative peaks in the spectrum of the current analysis frame. In practice, these peaks 

are estimated form the short-time Fourier transform (STFT). STC differs from the 

traditional speech production model because in the most general case there is neither a 

pitch estimate nor any voicing decisions. The receiver reconstructs the output speech by 

computing a sum of weighted sinusoids of corresponding frequencies and phases as 

determined in the analyzer. The frequencies are not in general related harmonically. 

The analyzer uses a pitch adaptive Hamming window to segment the original 

speech, referred to as framing. The magnitude of the STFT is computed once for every 

frame. For each frame, the peaks (amplitudes) in the magnitude of the STFT are found by 

determining the frequencies where the amplitude slope changes from positive to negative. 

The peaks for a voiced and an unvoiced frame of speech are shown in Figures 2-9 and 2-

10, respectively. The corresponding estimates for the frequencies a\ and phases 01 are 

then determined based on the location of the estimated peak A, . The variable l ranges 

from 1 to L, where L represents the number of peaks in the spectrum. These parameters 

are coded and transmitted to the receiver. 
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Figure 2-9. Frame of Voiced Speech with Amplitude and Frequency Estimates 
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Figure 2-10. Frame of Unvoiced Speech with Amplitude and Frequency Estimates 

The receiver decodes the transmitted parameters: amplitudes, frequencies, and 

phases. An amplitude modulated sinewave generator is used to generate a sinusoid for 
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each frequency that corresponds to the amplitude estimate and rotated by the 

corresponding phase estimate. These sinewaves are then summed to produce a frame of 

synthetic speech using 

s[ n] = ±11 cos (nm/+ oz). (2-3) 
1=1 

One major problem with this method is how to connect the sinewaves from frame 

to frame yet maintain smoothness across the frame boundaries. STC uses a cubic 

interpolation function to connect frequencies and phases smoothly from frame to frame as 

shown in equation 2-4 [3]. The parameters a and p are the unknown coefficients in the 

cubic polynomial and are found from equation 2-5. 

e(t)=8+&t+at2 +f3t3 (2-4) 

(2-5) 

The parameters in equations 2-4 and 2-5 are defined as follows: 8 is the phase estimate 

for the current frame, 8 +l is the phase estimate for the future frame, & is the pitch 

estimate for the current frame, &+1 is the pitch estimate for the future frame, Tis the size 

of the frame, and M determines the minimum number of cycles to track from the current 

frame to the next frame. 

This sinusoidal model as presented would require a relatively high bit rate (10 

Kbps or higher) because each peak in the spectrum must be transmitted along with its 

corresponding location (frequency) and phase. Since the direction of this dissertation is 
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towards the low bit rate vocoder, this model has to be slightly modified if it is be 

especially useful for low bit rate coding. 

For voiced frames, the ·assumption is made that the sinusoids are harmonically 

related. With this assumption, only the pitch needs to be transmitted, as 'compared to 

sending every frequency location if the frequencies of the spectral peaks are not 

constrained. The location of the first sinusoid would represent the pitch, and subsequent 

sinusoids are located at harmonics of the pitch. It has been determined that an unvoiced 

spectrum sampled at approximately 100 Hz spacing (in frequency) is capable of 

reproducing noiselike signals using the sinusoidal model, thus the same sinusoidal model 

is used to represent speech which has voiced, unvoiced, or mixed-excitation [3]. The 

amplitudes are coded either directly, or using Linear Prediction (LP) or another alternate 

parametric model. 

A parametric representation of the spectral amplitudes would result in a 

significant reduction in the number of bits necessary to code the amplitude information. 

The spectrum, if modeled using linear prediction, is encoded using vector quantization. 

The pitch is quantized using either 8 or 9 bits once per frame compared to the 8 or 9 bits 

per frame needed to encode the frequency location of each peak in the spectrum 

otherwise. 

STC is claimed to produce high quality speech for various types of signals such as 

quiet speech, multispeaker waveforms, music, speech with background noise, and marine 

biological signals [3], [24]. A major advantage of STC is its ability to represent arbitrary 
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waveforms when sinusoids are unconstrained. Unfortunately this advantage vanishes if 

the sinusoids are constrained to have frequency related to a pitch and its harmonics. 

The STC vocoder was a candidate for the Federal Standard at 4,800 bps, but 

finished well behind the other candidates in all tests [23]. STC was also a candidate for 

the new 2,400 bps Federal Standard developed by the Department of Defense Digital 

Voice Processing Consortium (DDVPC). While the STC type vocoder was not selected 

for standardization, it finished near the top. 

The next vocoder described is MultiBand Excitation. MBE might be considered a 

special case of STC. The MBE model assumes that voiced frames have peaks in the 

spectrum that occur at the pitch and integer multiples. MBE is discussed in more detail in 

the following section. 

2.5.4 MultiBand Excitation 

MultiBand Excitation (MBE) is the speech model of most interest in this 

dissertation. This speech model was introduced in 1988 by D.W. Griffin and J.S. Lim [4], 

[5], [25, [26]. The traditional speech production model, presented earlier in this section, 

estimates three parameters to represent a frame of speech: pitch, a single voiced/unvoiced 

decision, and vocal tract response. The MBE speech model estimates the same three 

parameters but differs by assuming that both voiced and unvoiced excitation exist in the 

same frame (i.e., mixed excitation). Mixed excitation in a frame of speech is represented 

by splitting the spectrum into a set of predefined bands. Then each frequency band is 

declared either voiced or unvoiced. Splitting the spectrum into bands leads to multiple 
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voiced/unvoiced (V /UV) decisions per frame; as opposed to the traditional method of 

specifying only one voicing decision per frame. Of the various models for speech 

production which are under study, MBE is believed by many to hold the greatest promise 

for producing toll quality speech at low bit rates [l]. 

Since speech signals s[n] are in general non-stationary, the speech data must be 

framed with a low pass analysis window w [n] to focus the analysis on. a short time 

interval. The time domain windowed speech segment is defined below as 

sw[n] = s[n]w[n]. (2-6) 

For MBE, mixed excitation is modeled in the frequency domain rather than the 

time domain as in CELP. The spectrum of the original windowed speech signal js w (co) I 

is split into non-overlapping bands, and each band is modeled as being either voiced or 

unvoiced. Shown in Figure 2-11 is the original magnitude spectrum for a frame of speech. 

As is seen, the spectrum is voiced at the low end, then becomes unvoiced and then voiced 

again clearly displaying the existence of mixed excitation. The magnitude spectrum of the 

original speech signal I Sw(co)I is modeled in the frequency domain as the product of a 

spectral envelope magnitude I H w (co) I and a mixed excitation magnitude spectrum 

I Ew(co)j as shown in equation 2-7. This produces the synthetic magnitude spectrum 

I sJco)J. The vocal tract response is estimated by sampling the magnitude of the DFT 

spectrum at integer multiples of the estimated pitch. The spectral envelope magnitude 
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I Hw(ro)j for this frame of speech is provided in Figure 2-12. The vocal tract response is 

equivalent to the smooth spectral envelope of the original frame of speech. 
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Figure 2-11. Original Spectrum for a Frame of Speech, I Sw(ro)j 

(2-7) 
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Figure 2-12. Spectral Envelope for Original Spectrum, I Hw{m)I 
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An all voiced (harmonic) magnitude spectrum I Pw { ro) I , assumed to be flat, 

generated using a sinusoidal oscillator tuned to the pitch estimate and its harmonics is 

shown in 2-13. An unvoiced magnitude spectrum I Uw{m)I generated using a pseudo-

random white noise sequence is shown in Figure 2-14. The voiced and unvoiced 

decisions for the original frame of speech are provided in Figure 2-15. A value of 1 

indicates that the frequency range(s) of interest is declared voiced, and a value of 0 

indicates that the frequency range( s) of interest is declared unvoiced. 

The mixed excitation magnitude spectrum I Ew{m)I shown in Figure 2-16 is 

generated by applying the all voiced magnitude spectrum I Pw{m)I over the ranges where 

the magnitude spectrum is declared voiced and by applying the unvoiced magnitude 

spectrum I Uw(m)I over the range where the magnitude spectrum is declared unvoiced. 
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The voiced and unvoiced magnitude spectra are summed to produce the mixed excitation 

magnitude spectrum, I Ew(ro)I- To generate the synthetic magnitude spectrum I sw(ro)I 

shown in Figure 2-17, the mixed excitation magnitude spectrum I Ew(ro)I is multiplied by 

the spectral envelope magnitude spectrum I Hw(ro)I as shown in equation 2-7. This is an 

estimate for the reconstructed magnitude spectrum of the current frame, where the inverse 

Fourier transform of this spectrum is an estimate for the original input speech signal. The 

synthetic magnitude spectrum I sw(ro)I matches the original magnitude spectrum I sw(ro)I 

well in a band-based sense. This is a significant improvement on the traditional speech 

production model, which makes only a single voiced/unvoiced decision [ 5]. 
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Figure 2-13. All Voiced Synthetic Spectrum, I Pw(ro)I 
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Figure 2-15. Estimated Voicing Decisions 
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The practical implementation of MBE known as Improved MultiBand Excitation 

(IMBE) is slightly different than the concept presented. The IMBE analyzer provides a 

pitch estimate, multiple voiced/unvoiced decisions, and an estimate of the vocal tract 

response. The vocal tract response is determined by estimating the amplitudes of the pitch 

harmonics from the DFT magnitude spectrum for each frame of speech. Parameter 

estimates are made approximately every 20 ms in the analyzer. This produces a frame rate 

of 50 frames per second, with 96 bits per frame and a bit rate of 4,800 bps [ 4 ], [25]. 

The IMBE analyzer generates a parameter vector containing quantized versions of 

the pitch estimate, voiced/unvoiced decisions, and amplitudes of the pitch harmonics. 

The pitch estimate is quantized with 8 bits per frame. There are a maximum of 12 bands 

(actually varies with the pitch) used for the voiced/unvoiced decisions, so 12 bits are 

allocated for each frame. The amplitudes of the pitch harmonics are coded using the 

Discrete Cosine Transform (DCT) with 76 (increases as the number of bands decreases) 

bits being allocated for each frame [19]. 

In the IMBE synthesizer, combining either the appropriate voiced or unvoiced 

synthetic speech over each frequency band, such that the entire magnitude spectrum is 

covered, forms the reconstructed frame. The aggregate synthetic signal magnitude 

spectrum exhibits the property of mixed excitation. With MBE, the voiced bands are 

synthesized using sinusoidal oscillators tuned to harmonics of the estimated pitch. Each 

harmonic, which is declared voiced by the analyzer, is reconstructed this way. The 

harmonics are connected smoothly from frame to frame using equations 2-8, 2-9, and 2-

10. MBE uses a linear frequency track, compared to the cubic phase interpolation of STC, 
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to smooth the /th harmonic from the current frame to the next frame [4], [5], [26]. The 

current pitch m) 0) and the next pitch m)S) are associated with t = 0 and t = S, where 

S represents the window shift. The initial phase </J0 and frequency deviation b.m are 

chosen so that they are equal · to the measured harmonic phases of the current and next 

frame, respectively. 

sv(t)= IA1cos(e,(t)) (2-8) 
l=l 

t 

e,(t)= Jro,(s)ds+cl>o (2-9) 
0 

(2-10) 

Each unvoiced band is reconstructed using bandpass filtered white noise. The 

results of the voiced synthesis and the unvoiced synthesis are then summed producing an 

estimate for the current frame. 

The MBE speech model has demonstrated that high quality speech is achieved at 

low bit rates. In fact IMBE was adopted by INMARSAT for satellite voice 

communications and by APCO [19], [27]. Other advantages of using MBE are 

robustness to additive noise and ability to be implemented in a real time system. One 

disadvantage to MBE is the inability to properly represent non-speech like sounds due to 

the assumed harmonic structure, unlike STC, which has been shown to be capable of 

reproducing non-speech like sounds. 
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The MBE speech analysis model has been shown to be capable of producing high 

quality speech. For this reason and others stated above, an enhanced version of MBE 

directed towards lower bit rates (2,400) was developed at Oklahoma State University. 

The enhanced version ofMBE, known as EMBE, is described in the following chapter. 

2.6Summary 

This chapter introduced two types of speech coders: waveform coders and voice 

coders. Two approaches to waveform coding; time-domain waveform coding and 

frequency-domain waveform coding, were discussed briefly and a number of examples 

were provided. The voice coder (vocoder) was discussed in more detail. The traditional 

speech production model was introduced and contrasted to several modem vocoders. 

These vocoders were CELP, STC, and MBE (IMBE). The CELP vocoder falls in the 

category of analysis-by-synthesis vocoders, and STC and MBE are often referred to as 

harmonic vocoders. All of the harmonic vocoders use a sinusoidal reconstruction 

technique for speech synthesis. 
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3 ENHANCED MBE 

3. 0 Introduction 

This chapter describes the development of an Enhanced MultiBand Excitation 

(EMBE) speech coder at 2,400 bps. EMBE was developed at Oklahoma State University 

for the Department of Defense Digital Voice Processing Consortium (DDVPC) as a 

candidate for a new Federal Standard at 2,400 bps [6], [7]. This is the work completed 

over the last 4 years that led up to the developments in this dissertation. 

This vocoder uses MultiBand Excitation as the speech analysis model and uses a 

sinusoidal model for the synthesis [4], [5], [6]. The speech is analyzed sequentially every 

15 ms on 30 ms overlapping analysis frames, producing a frame rate of approximately 67 

frames/second. An alternating superframe/subframe analysis strategy is applied so as to 

· reduce the total number of parameters being produced each second, thus reducing the 

required bit rate. Each 30 ms superframe consists of a full update of all coder parameters, 

while each 15 ms subframe represents only a partial update. A full analysis and update 

occurs once every 30 ms. This framing approach is found to be sufficient for good 

temporal resolution. 

Analysis consists of prefiltering, parameter estimation, quantization, and coding. 

Parameter decoding and frame-by-frame reconstruction of the coded speech form the 

synthesis stage. The relevant parameters that are used to represent the input speech 
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waveform, are fundamental frequency (pitch), vocal tract spectrum, voicing decisions, 

and gain. A basic block diagram of the analyzer is shown in Figure 3-1, and the 

synthesizer is shown in Figure 3-2. 
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Figure 3-1. Block Diagram of EMBE Analyzer 
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Figure 3-2. Block Diagram of EMBE Synthesizer 

The following sections describe the procedures used to estimate, quantize, and 

code the relevant parameters into a 2,400 bps bit stream, decode the coded parameters 

from the bit stream, and reconstruct high quality speech from the decoded parameters. It 
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is assumed that the reader is familiar with short-time analysis, so the details of the 

implementation are not presented. 

3.1 Analyzer 

3.1.0 Introduction 

The EMBE analyzer estimates the following parameters: pitch, voicing, spectrum, 

and gain. These parameters are quantized and coded for either transmission or storage. A 

basic block diagram of the EMBE analyzer is given in Figure 3-1. The input speech is 

framed, filtered and windowed into two separate data paths. The pitch estimate and the 

voicing decisions are computed in one path while the spectrum and gain are computed in 

the other path. The following sections describe the implementation used in the 

development of a 2,400 bps Enhanced MultiBand Excitation Vocoder. 

3.1.1 Pre-filtering and Windowing 

The input speech, s [ n], is filtered with a high pass filter with a cutoff frequency 

of approximately 70 Hz. The frequency response for this filter is provided in Figure 3-3. 

This filter is used mainly for removing the low frequency components that may 

inhibit the parameter estimation. For example, the pitch is only estimated over the range 

70 Hz to 400 Hz, so frequencies below 70 Hz are not needed for analysis. 
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The high pass filter is a 5th order elliptic filter with 0.25 dB of ripple in the 

passband and more than 20 dB of attenuation at 60 Hz. The filter transfer function, with 

quantized coefficients, is shown below in equations 3-1 and 3-2. 

(3-1) 

bu = b21 = b23 = b31 = b33 = 0.9712596 

b22 = -1.941714 

b32 = -1.940796 

(3-2) 

a12 = -0.8971591 

a22 = -1.987283 

a23 = 0.9905484 

a32 = -1.938817 
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a33 = 0.9437869 

The high pass filtered signal, s HP [ n], is computed using 

N-1 

sHP[n] = Is[r ]hHP[n-r] (3-3) 
r=O 

where N is the amount of data to be filtered, s [ n] is the input speech signal, hHP [ n] is 

the impulse response for the transfer function H HP (z), and n ranges from O to N-I. 

After high pass filtering the input speech, it is windowed producing the input 

frames. A rectangular window is used for determining a coarse pitch estimate, a square-

root of Hamming window is used for pitch refinement, and a Hamming window is used to 

perform spectral analysis. The windowing operations are computed from 

(3-4) 

(3-5) 

(3-6) 

where s Pc [ n] represents the data used to estimate the coarse pitch estimate, s Pi [ n] 

represents the data used in refining the coarse pitch estimate, and sJ n] represents the data 

used for computing the spectrum. The three windows w R [ n], w SQRTH [ n], and w H [ n] are 

defined below in equations 3-7, 3-8, and 3-9. 

(3-7) 

{ 

I 

2nn 2 

w [n] = (o.54-0.46cos[ 1J SQRTH N -I 
a 

0 

(3-8) 

otw 
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{ 
2nn 

[ ] 0.54-0.46cos[ ] 0 ~ n ~ Na -l 
WH n = Na -l 

0 otw 

(3-9) 

where the variable Na defines the length of the analysis windows. 

For convenience, the magnitude spectra, Ss(k) and S(k), of ss[n] and Sp [n] are 
f 

computed using a M length DFT as defined in equations 3-10 and 3-11. These definitions 

are used throughout this chapter. 

M-1 .21tnk 

S.(k) = IsJn]e-1A1 (3-10) 
n=O 

(3-11) 

3.1.2 Pitch Estimate 

The analyzer forms a refined pitch estimate twice for each analysis frame ( one for 

each subframe). MBE-based vocoders require a high degree of pitch accuracy for 

analysis, so a two-stage estimation procedure is used. In· the first stage, a coarse pitch 

estimate Pc is computed using a procedure based on the simple inverse filter tracking 

(SIFT) pitch detector [30]. The block diagram for the coarse pitch estimate is shown in 

Figure 3-4. The pitch is assumed to lie in the range from 20 samples (400 Hz) to 114 

samples (70 Hz). A pitch falling outside this interval is considered to be incorrect and no 

pitch is computed, thus indicating an unvoiced frame. 
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Figure 3-4. Block Diagram for Initial Pitch Estimate 

The residual r [ m] of an all-pole model is computed from 

p 

r[m] = sp)m]- LansP)m-n], (3-12) 
n=I 

where p = 8 is the order of the linear predictor. The linear predictor coefficients, an' s, 

are solved using the standard Levinson-Durbin Recursion algorithm with a pre-whitening 

factor of 1 applied to the zeroth autocorrelation coefficient. The pre-whitening 
24576 

factor ensures that the autocorrelation matrix does not become ill conditioned. The 

residual is then bandlimited to approximately 900 Hz using a 6th order elliptic low pass 

filter with 0.25 dB of ripple in the passband and more than 40 dB of attenuation at 1,000 

Hz. The frequency response for the low pass filter is shown below in Figure 3-5 and 

described in equations 3-13 and 3-14. 
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(3-13) 

b12 = -0.3355389 

b22 = -0.2791540 

b32 = -0.1008389 

all = a21 = a31 = 1.0 (3-14) 

a12 = -1.419309 

a13 = 0.5453778 

a22 = -1.464743 

a23 = 0.7784000 

a32 = -1.512890 

a33 = 0.9443823 

The low pass filtered signal, rLP [n ], is computed from 
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Na-1 

rLP [n] = Ir [i]hLP [n -i], (3-15) 
i=O 

where r [ n] is the residual signal and hLP [n] is the impulse response of the transfer 

function H LP (z). 

After the residual is bandlimited, the normalized autocorrelation function, R( j), 

is computed using equation 3-16. The coarse pitch estimate Pc is then chosen as the index 

corresponding to the maximum value in R( j) based on a set of heuristic criteria as 

described in the following paragraphs. 

N-1 

IrLP[k]rLP[j + k] 
R(j)=-k=_l~N--1~~~ 

IrLP[k] 
k=O 

(3-16) 

A correlation threshold i- P is developed to determine if a peak exists in R( j) that 

is assumed to correspond to the pitch for a given frame. This threshold is developed based 

on the energy in the current frame EI and energy threshold Euv (referred to as unvoiced 

energy threshold), which are computed as shown 

N-1 

Ef = Is:c [n] (3-17) 
n=O 

{
0.995Euv + 0.005E f 

Euv = 104 

0.75 

4 , 
0.75Euv < 10 

(3-18) 

where 104 represents a lower bound on the frame energy. A second criterion used for 

developing the correlation threshold is based on the first order normalized autocorrelation 
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coefficient. The amplitude of this coefficient assists in determining frames that are clearly 

unvoiced. This coefficient is computed using the following method. 

First, the input data spc [n] is center-clipped as shown in equations 3-19 through 3-

22. 

CL = 0.60min{a,b} 

spJn] > CL 

sP)n] < -CL 

otw 

( N - Na J < n < N -I a 3 a 

(3-19) 

(3-20) 

(3-21) 

(3-22) 

The first order normalized autocorrelation R '(1) is then determined using the 

center-clipped data sJn] as given by 

N-1 

IsJk]sJl + k] 
R'(l) = _k=_1 ---

N-1 
(3-23) 

IsJkl 
k=O 

Now based on the first order normalized autocorrelation R'(l) and the frame 

energy E 1 the correlation threshold -c P is defined by 

r = {0.55 R'(l) < 0.25 
p J otw 

A = {0.325 E 1 ~ 0.75Euv 
0.65 £ 1 < 0.75Euv 

(3-24) 

(3-25) 
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The coarse pitch estimate Pc is then determined based on the correlation threshold 

-c P as given by 

{
j max( R(j)) 

p = 
C 

0 

J max(R(j)) > 'C p 

(3-26) 

otw 

The coarse pitch estimate Pc is then tested to determine if it is actually a 

subharmonic, multiple, or the real pitch. This in essence is a check for either doubling or 

halving of the current frame's pitch estimate. This is accomplished by searching the 

autocorrelation R( j) for other peaks, Pc, , that meet the amplitude requirement as given 

in equation 3-27 and are determined to be a submultiple. The coarse pitch estimate Pc for 

the current analysis frame is chosen as the minimum of all the possible candidates as 

shown in equation 3-28. This coarse pitch estimate Pc is only accurate to within one 

sample. MBE based speech coders require pitch estimates with fractional sample 

accuracy. This accuracy is achieved by adding a pitch refinement stage. The refinement 

stage is discussed in the following paragraphs. 

~ = ~ R(~) ~ 0.55R(~) i = 2,3,4 
' l l 

(3-27) 

(3-28) 

3.1.3 Pitch Refinement 

Since MBE-based vocoders are dependent on accurate pitches, a second stage is 

added to refine the coarse estimate to sub-sample accuracy. A block diagram of the pitch 
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refinement is shown in Figure 3-6 below. This stage uses a frequency domain 

interpolation and error minimization to perform the refinement, based on analysis-by-

synthesis. An all voiced synthetic spectrum is built based on the pitch estimate from the 

first stage. This synthetic spectrum is then matched to the original spectrum. 

Determination of the final pitch estimate Pf is performed in two steps. The first step uses 

look ahead and look back to determine a coarse pitch estimate to refine. A check for 

doubling and halving is performed, and a smoothness constraint is imposed. The second 

step is the actual refinement of the coarse pitch estimate. 

DFT16K of 
~ 

(Hamming) 112 

Sp [n] ~ 
f 

Pitch 
Candidates 

l 
Synthetic 
Spectrum 

DFTs12 

f--?, MSE 
Minimum 

~ 

r-?l Pitch 
Smoothing 

Figure 3-6. Block Diagram for Pitch Refinement 

~ p 
f 

In the first step four candidate pitch estimates are input to the analysis-by-

synthesis routine. These candidate pitches are determined as shown below in equations 3-

29 through 3-31. Pf_, represents the refined pitch estimate in the previous frame, Pc
0 

represents the coarse pitch estimate for the current frame, Pc corresponds to the coarse 
-I 

pitch estimate in the previous frame, and Pc corresponds to the coarse pitch estimate in 
+I 

the future frame. 

(3-29) 
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P., = pf P2 =P 
-] Co (3-30) 

-r R(Pco) ~ 0.625 -r R(Pco) ~ 0.625 

P3 = 0.5.Pco otw 
P4 = 2~+1 

otw CO 
(3-31) 

Next, an all voiced synthetic magnitude spectrum, Sm; (k), is generated for each 

candidate pitch listed above in equation 3-29. The four pitch candidates are determined 

from equations 3-30 and 3-31. The all voiced magnitude spectrum is computed using 

equation 3-32, where A1 is the amplitude of the harmonic being generated and H 

represents the magnitude spectrum for a square-root of Hamming window. Equations 3-

33 and 3-34 are used to determine A1 and H, respectively. The upper and lower limits 

for a particular harmonic are found using equation 3-35. The candidate pitches ro;, in 

radians, are computed using equation 3-36 and the number of harmonics L; 

corresponding to each pitch candidate are found using equation 3-37. 

upf-isp(k)H(l16384k _ 16384ro;l +o.5JJ 
k=lower M 21t 

A, = -up-'Per--l [-(-ll---'-63-84-k -1-63-84_ro_/ __ J J-]2--'-
I H - ' +0.5 

k=lower M 21t 

(3-33) 

16383 _ /1tnk 

H(k) = IwH[n]e 16384 (3-34) 
n=O 

upper= I~(!+ 0.5)ro; l lower= I~(! -0.5)ro; l (3-35) 
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ID=~ i=l,2,3,4 

l p 
I 
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(3-36) 

(3-37) 

After the all voiced synthetic magnitude spectrum is generated, an error value E; 

is computed over the first 40% of the frequency spectrum as given by 

1 0.4L; ( )2 
&; =-L Sp(k)-S0/k) 

K k=I 

i=l,2,3,4. (3-38) 

The error E; varies in a non-linear fashion with frequency, so a bias term K is 

needed to normalize the effect. The bias is computed as a function of the ending 

frequency value, 0.4L; in this case, and a polynomial that approximates the non-linearly 

varying error curve [4], [6]. The computation of the bias coefficient K is computed using 

equations 3-39 and 3-40. 

(3-39) 

ao = -7.40897(10-1) 

a1 = 1.88602(10-2) 

(3-40) 

<4 = -2.07128(10-10) 

x= P; 

The coarse pitch estimate, P sent to the pitch refinement stage, is determined by 

the criteria of 
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j, = {p min(E;) min{E;) ~ 0.825. 
0 otw 

(3-41) 

In the second step, given a valid pitch, the pitch estimate P is varied plus and 

minus in quarter-sample intervals resulting in a new set of pitch candidates P1 shown 

below in equations 3-42 and 3-43. 

(3-42) 

A 

Pi= P-0.15 
A 

P2 = P-0.50 
A 

P3 = P-0.25 
A 

P4 = p (3-43) 
A 

Ps = P+0.25 

p6 = fa+o.5o 
,'.., A 

P1 = P+0.15 

Again, an all voiced synthetic magnitude spectrum is generated per equations 3-32 

through 3-37 for, each ~. The spectral error E; is now computed over 80% of the 

frequency spectrum, instead of the 40% in the first stage, as given by 

1 O.SL;( )2 
&; =-L Sp(k)-S;(k) 

K k=I 

i = 1, 2, 3, 4, 5, 6, 7. (3-44) 

The subsample pitch estimate corresponding to the synthetic spectrum producing 

the lowest spectral error E; is chosen as the refined pitch, P1 , for the current frame as 

shown in equation 3-45. This pitch is used for estimating the remaining parameters, such 

as voicing decisions, spectral envelope, and gain. 

(3-45) 
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3.1.4 Voicing 

The voiced and unvoiced decisions are the heart of the MBE analysis model. It is 

assumed that the speech spectrum is composed of both voiced and unvoiced bands. This 

is equivalent to considering the excitation to contain both periodic and aperiodic 

components simultaneously. A block diagram for estimating the voicing decisions 1s 

provided in Figure 3-7. 

A voicing decision is formed for each harmonic of the fundamental using a 

frequency domain procedure similar to the pitch refinement stage. The synthetic spectrum 

corresponding to the refined pitch estimate is matched to the original spectrum. An error 

term is computed for each harmonic of the synthetic spectrum. This error term determines 

whether the match for a given harmonic is 'good' (low error) or not. This error value is 

compared to an adaptive threshold function that is determined by the pitch, the voicing 

decision, and the harmonic. The voicing decisions are then grouped into four non-linear 

bands covering the entire speech spectrum. A single voicing decision is made for each 

band based on the individual harmonic-based voicing decisions. The band structure is 

variable based on pitch and human perception - the most resolution and accuracy are 

maintained in the lower frequency bands. 
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Figure 3-7. Block Diagram for Estimating Voicing Decisions 

The voicing decisions are estimated by computing a spectral harmonic error, E1, 

for each harmonic corresponding to the all voiced synthetic magnitude spectrum 

generated using the final pitch estimate Pf for the current frame. The error term is 

calculated via 

I upper-I (ss(k)-Sp/k)r 
E,=- L 

1( k=lower Ss ( k) 2 
I,s,/,s,L, (3-46) 

where K is defined in equation 3-39, except x = Pf, and L is defined by equation 3-37. 

The average error over the lower half of the frequency spectrum is computed 

using equation 3-47 below. The voicing threshold function I; is computed using 

equations 3-48 and 3-49. This threshold function 1s computed for every potential 

harmonic in the frequency spectrum. 

L 

2 2 

EL =-Is, 
2 L 1=1 

(3-47) 
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0.8 
l < T/ 

I; = 2 

0.8 . (l 0.9( 7/- l) + O.ll - LJ 
mm , ( l'?:.T/ 

l+0.36L 7/-l-L) 

(3-48) 

-
2 

T/ = min(9,/) 6 1 > 6 L (3-49) 
2 

The harmonic spectral error EI is compared to the voicing threshold and each 

harmonic is declared either voiced or unvoiced based on the criteria given by 

{
1 61 < J; 

V, -
I - 0 Otw ' 

(3-50) 

where a '1' corresponds to a voiced harmonic and 'O' corresponds to an unvoiced 

harmonic. After the individual harmonic voicing decisions Vi are made, the frequency 

spectrum is split into subbands. A non-linear band structure BL, using 4 bands, is defmed 

by 

5 11 15 16-25 L'?:.42 

5 9 13 5-14 32:::;; L<42 

BL= 5 7 7 6-12 25:::;; L < 32, (3-51) 

3 5 5 2-11 15:::;; L <25 

3 3 3 0-6 L< 15 

where L represents the number of harmonics in the current frame. 

The voicing decisions for each band are determined using a majority function. If a 

majority of the harmonics in a given band has been declared voiced then the band is 

declared voiced, otherwise the band is declared unvoiced. The first three bands are 

determined using the majority rule. The last band requires a slightly different approach, 
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since the number of harmonic varies from frame to frame. Again, if a majority of the 

harmonics has been declared voiced the last band is declared voiced, otherwise the last 

band is declared unvoiced. The special case occurs when only one harmonic exists in the 

last band. In this case, the voicing decision for the last band is determined by band three. 

When band three is declared voiced, the harmonic in the last band is declared voiced. If 

band three is declared unvoiced, the last band is declared unvoiced. · 

As with pitch, some heuristic criteria have been applied to the voicing decisions 

for smoothing the decisions. If neither one of the first two bands have been declared 

voiced then the entire frame is declared unvoiced. The refined pitch estimate, P1 , and the 

voicing decisions v; are used in estimating the two remaining parameters spectrum and 

gam. 

3.1.5 Spectrum 

The goal of a spectral model for a harmonic coder, such as EMBE, is to represent 

accurately the harmonic amplitudes for voiced speech, and to fit the spectrum in an 

average sense for unvoiced speech. Harmonic coders usually employ some direct form of 

quantization of the harmonic amplitudes to achieve this. While this results in a highly 

accurate representation of the spectrum, the number of bits required precludes its use for 

low bit rate coding. This is overcome with the use of a parametric model for the 

spectrum. The EMBE speech coder represents the spectrum using a spline enhanced, 

linear predictive (LP) model for voiced speech, and a traditional LP model for unvoiced 

speech. Both methods use a spectral warping function prior to the actual LP model 

computation. 
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Figure 3-8 below illustrates the entire spectral modeling procedure. The LP model 

coefficients are computed using a frequency domain approach, rather than the traditional 

time domain approach. This allows the manipulation of the spectrum prior to model 

computation to enhance perceptually important areas. 

s. (k) Purely Unvoiced w { ") LPC 
arp S s \k a.n's LSP 1--------..,.. Spectrum Order 14 

Voiced 

Sampled A(l) ..-----. 
DFT --

In 
A(Z) .------, S•Pc (k) 

Spline exp 

Figure 3-8. Block Diagram of Spectral Modeling 

LPC 
Order 14 

Warp 
Spectrum 

For the case of modeling unvoiced speech, the DFT of the frame, s. (k ), is 

warped to the Mel scale to enhance the perceptually more important, lower frequency 

regions. This warping is given by equations 3-52 through 3-55. 

l M 
k O~k<-

,.. 8 
k= 8k M M M 

1000 log (1 + -)- - + 1 ~ k < - -1 
2 M F; 8 2 
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M F8 

AM 
O~k<--l 

2 

(3-52) 

(3-53) 

(3-54) 
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(3-55) 

The Mel warped DFT index is represented by k, M' is the length of the warped DFT, 

and Fs refers to the sampling frequency. 

For unvoiced speech, the spectrum is frequency warped to the Mel scale and then 

a linear predictive model is fitted to the warped data. The general LP model is given in 

equation 3-56 where, ak represents the ~ predictor coefficient, p is the model order, and 

G corresponds to the model gain. A 14th order model, p = 14, is used to represent the 

spectrum. The solution for the a k 's is computed in the frequency domain, based upon 

the Mel warped spectrum given in equations 3-54 and 3-55. The solution of the predictor 

coefficients is given by equations 3-57 through 3-59. The calculation of the LP model in 

the frequency domain assumes that the power spectrum is an even function of frequency 

and correctly sampled around the unit circle. This assumption is verified by equation 3-

55. The solution to equation 3-59 is obtained using the Levinson-Durbin recursion 

algorithm [31 ], [32]. Prior to this solution, a small pre-whitening factor, mentioned 

earlier, is added to the zeroth correlation coefficient to ensure that the LP model solution 

does not become ill conditioned, as shown in equation 3-58. 

S (f)-__ G_ 
Ip - p _ 21tkn 

1+ Lane M' 

" O~k<M' (3-56) 

n=l 

M' 

R. = _1 ~1S2 (f)cos(2;r k iJ 
' M' L.J s M' k=O 

O~i~p (3-57) 
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(3-58) 

(3-59) 

Referring again to Figure 3-8 for the case of voiced speech, the DFT for the frame 

is sampled at the harmonics to obtain a spectrum composed of harmonic amplitudes only. 

This sampling is shown in equation 3-60. A compression function is then applied to the 

harmonic amplitudes to reduce their dynamic range. It has been reported in [26] that the 

use of a compression function prior to spectral interpolation, in this case by the cubic 

spline, improves the spectral fit obtained through linear prediction. The form of this 

compression function is given in equation 3-61 below. 

A( l) = S s (k )lk=l ~ +o.s J (3-60) 

Ac ( l) = ln[A( l) + 1] (3-61) 

Once the harmonic amplitudes have been compressed, a cubic spline envelope is 

fitted to the harmonic amplitudes. The cubic spline function serves to smoothly 

interpolate between the harmonic amplitudes to produce a slower varying curve that 

linear prediction is able to more accurately model. The spline equations are given in 

equations 3-63 through 3-66 below. These equations represent the constraints on the 

general cubic polynomial given in equation 3-62. These constraints are chosen to enforce 

continuity and smoothness at the polynomial boundaries. Equation 3-67 results from 

expressing the general spline equation in 3-62 in an alternate form and enforcing 

smoothness in its first derivative [33]. The unknowns in the equations include the spline 

coefficients a;, b;, c;, and d;, as well as the second derivatives of the each spline segment, 
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Xi. Two more conditions are needed to solve this system of equations, namely the 

conditions on the 1st and Lth spline segments. These are shown below in equations 3-68 

and 3-69. The actual solution to this system of equations is given in [33]. 

l~i~L (3-62) 

(3-63) 

(3-64) 

(3-65) 

(3-66) 

(3-67) 

(3-68) 

(3-69) 

Following the computation of the spline envelope, Sspc(k), the envelope is 

expanded using the inverse of the compression function given in equation 3-61. This 

operation is shown below in equation 3-70. Once the envelope has been expanded to 

cover the original range of the harmonic amplitudes, the spectral warping function is 

applied to transform the envelope from the linear frequency scale to the Mel scale. The 

warping functions are given in equations 3-52, 3-53, 3-71, and 3-72. 

O~k<M (3-70) 
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(3-71) 

(3-72) 

After the warping function has been applied, the linear predictive model is 

computed for the resulting Mel warped cubic spline envelope. The techniques for 

computing the model are identical to those presented earlier and are repeated here for 

clarity of notation only. The computation of the model coefficients is shown below in 

equations 3-73 through 3-75. Once again, the Levinson-Durbin recursion is used to solve 

equation 3-75 for the model coefficients, ak [31], [32]. The solution for the model gain, 

G , is presented in a later section for both the voiced and unvoiced cases. 

M' 

R = _1 t,1S2 /k)cos(21tkiJ 
I M' L.J sp~ M' 

k=O 

Ro= Ro(l+ 1 ) 
24576 

p 

IakRln-kl = -Rn 
· k=I 

O~i~p (3-73) 

(3-74) 

(3-75) 

Once the LP model coefficients have been calculated, they are converted to an 

alternate representation, known as line spectral pairs (LSP's) [10], [34]. Line spectral 

pairs are known to exhibit superior quantization properties when compared to predictor 

coefficients. The LSP's are obtained by decomposing the impulse response of the LP 

analysis filter into a difference and sum filters. These operations are shown below in 

equations 3-76 through 3-78. 



67 

B ( ) 1 -1 -2 · -p P z = +a.1 z +a. 2 z + ... +aP z (3-76) 

(3-77) 

(3-78) 

A 

The LSP's, Pn, are the roots of the difference and sum filters shown in equations 

3-77 and 3-78. These coefficients can be obtained using traditional root finding 

techniques as well as other more efficient methods [26], [34]. 

3.1.6 Gain 

The gain for the LP model is determined by calculating the ratio of the energy of 

the original and model spectra. For voiced speech, these energies are obtained by 

sampling the spectrum at the harmonics. For unvoiced speech, the energies are computed 

over the entire spectrum. Traditionally, the gain term for the LP model is obtained by 

matching the energy in the signal spectrum to the energy in the LP spectrum. This 

represents an average energy for the spectrum. We have found that for harmonic type 

coders, this type of gain calculation is inappropriate. The entire process is illustrated 

below in Figure 3-9. 
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Figure 3--9. Block Diagram for Gain Calculation 
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G 

G 

The process of computing the gain begins with the conversion of the quantized 

line spectral pairs back to linear prediction coefficients. The gain must be calculated after 

the quantization of the model so that it accurately reflects the model spectrum that is 

being transmitted. Also, the interpolation of the LSP's across subframes must be 

accounted for in the gain calculation. Equation 3--79 shows the interpolation relationship 

for the LSP's for both superframes and subframes. The pi' {-1), /Ji'(O), and /Ji.(1) terms 

represent the LSP's for the previous frame, current frame, and future frame, and Y1 and Y2 

correspond to the interpolation weights determined in the quantization stage. 
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Superframe 

05:.i<p (3-79) 

Subframe 

Once the interpolation is completed, the LSP's are then converted back to 

prediction coefficients. Since the LSP's represent roots of the difference and sum filters 

given in equations 3-77 and 3-78, the LPC's are obtained by expanding these roots back 

out and substituting back into equation 3-76. 

Following the conversion of the LSP's to LPC's, the frequency response of the LP 

model is obtained by computing the DFT of the model coefficients. This is shown below 

in equation 3-80, where M' is obtained from equation 3-53. Since the LP model is 

computed based on a Mel warped scale, the model spectrum must be unwarped back to 

the normal frequency axis. This operation is illustrated in equations 3-81 through 3-83. 
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(3-80) 

(3-81) 

(3-82) 

(3-83) 

After the LP model spectrum has been converted back to the frequency scale, the 

gain may be computed. For both voiced and unvoiced speech, the gain is computed as the 
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ratio of the energy of the spectrum of the frame, S s ( k), and the energy of the LP spectrum, 

S1P ( k) . For voiced speech these spectra are sampled at the location of the harmonics of 

the pitch for the frame. The gain computation for voiced speech is shown below in 

equations 3-84 through 3-86 

Es'= f s;( llM + o.sJ) 
/=1 pf 

(3-84) 

, ~ "2 (l/M J) E1P = L..iS 1p -+0.5 
1=1 pf 

(3-85) 

(3-86) 

where L and Pf are defined by equations 3-37 and 3-45,repsectively. 

For unvoiced speech, the energy is computed over the entire spectrum. The gain 

computation for unvoiced speech is shown below in equations 3-87 through 3-89. 

~-1 
2 

Es= Is;(k) 
k=l 

~-1 
2 

"""'"2 E1P == L..iS tp(k) 
k=l 

(3-87) 

(3-88) 

(3-89) 
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3.2 Quantizer 

Once the model parameters are calculated they, are quantized to 2,400 bps for 

transmission. At this bit rate, only 72 bits are available to represent all the parameters in 

each 30 ms interval. The gain, pitch, and voicing decisions are coded using simple scalar 

quantization, while the spectral model is coded using vector quantization [34], [35]. 

Figure 3-10 summarizes the bit allocation and sub/superframe update scheme for each 

parameter. 

Encode Decode 
bits 

In 
super/sub 

Gain 5-5 
exp Gain 

Pitch Table 
8-7 

Table Pitch 

Voicing 
4-4 

Voicing 

LSP Interpolation 
1 - 0 

LSP Interpolation 

Spectrum VQ 
37 - 0 

VQ-1 Spectrum 

Sync 
1-0 

Sync 

Figure 3-10. Block Diagram of Quantization and Coding 

The voicing decisions are quantized as 4 bits with each bit corresponding to the 

voicing decision for the respective frequency band. The pitch is quantized linearly in 

samples from the range of 20 samples to 114 samples. For superframes, the pitch is sent 

as a full 8-bit value, with the subframes sending a 7-bit pitch update. 
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The gain, G, is logarithmically scalar quantized using equation 3-90. Equation 3-

91 constrains the gain to a 5-bit range. 

g = l9.2 log10 (1 + G)j 

{
g-14 

g'= 0 

46 

14<g~46 

g<l4 

g>46 

(3-90) 

(3-91) 

Prior to quantization, the LP coefficients are converted to an alternate spectral 

representation, known as line spectral pairs (LSP's). As mentioned previously LSP's have 

superior transmission and quantization properties over traditional LP coefficients. 

A vector quantization (VQ) approach is used for coding the 14th order LSP model. 

A 37-bit, 4 way split VQ codebook is used in our current coder [35]. The 4 way split is 

broken down to 10, 9, 9, and 9 bits respectively. TheVQ codebooks are searched for each 

target LSP by minimizing the squared distance between the original LSP's and the target 

codebook vector. The split codebooks reduce the computational complexity by allowing 

each codebook to represent only a small segment of the LSP spectrum and at the same 

time reduces the memory requirements substantially. 

Once the VQ codebook entries are obtained they are transmitted on superframes 

only to reduce the overall bit rate. The LSP's are interpolated across subframes using a 

weighted linear interpolation procedure. Two candidate LSP's are computed for the 

subframe using the weighting shown below in equations 3-92 and 3-93, where P;(-1), 

p;(l)represent the quantized LSP's for the past and future superframes, andfi;(O) 
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corresponds the unquantized LSP's for the current subframe. Again,p refers to the model 

order. 

O~i<p (3-92) 

O~i<p (3-93) 

Once the interpolation candidates have been computed, an error measure 1s 

calculated between the candidates and the original unquantized LSP's. The error measure 

used is the weighted Euclidean distance measure shown below in equation 3-94. The 

weights are obtained by evaluating the spectral envelope at each LSP frequency and 

raising these values to a fractional power. This de-emphasizes lower energy regions, such 

as the formant valleys, providing a better perceptual match [35]. The weighting function 

is shown in equation 3-95. 

(3-94) 

1 

() "("()M'-1)2 
E i = ssp Bi O 21t (3-95) 

In equation 3-95, it is assumed that the LSP's lie in the range (O,n]. Once the 

error measures · have been calculated the interpolation decision is chosen to be the 

candidate with the minimum error. This is shown below in equation 3-96. This 

interpolation decision is coded using a single bit. 

O~k~l (3-96) 



74 

3.3 Synthesizer 

3.3.0 Introduction 

In the synthesizer, each parameter vector is recovered by reversing the encoding 

procedure applied in the analyzer. The vocal tract spectrum, represented as LSPs, is 

converted back to the coefficients of a LP model. Portions of the spectrum, which were 

declared unvoiced are re-synthesized by generating bandlimited noise weighted by the 

corresponding portion of the vocal tract spectrum. Voiced harmonics are generated as a 

weighted sum of harmonically related sinusoids. Between synthesis frames, the phases of 

corresponding harmonics must remain continuous. This is ensured by a new voiced 

reconstruction procedure referred to as Linear Frequency Variation (LFV) [6]. 

Reconstructed speech is synthesized by summing the unvoiced and voiced components. A 

block diagram is provided in Figure 3-11. 

Parameter Decoding 

Voiced 
Synthesis 

Unvoiced 
Synthesis 

Reconstructed 
Speech 

Figure 3-11. Block Diagram for Reconstructed Speech 
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If a band is declared unvoiced, a uniform random noise source is used to drive a 

bandpass filter whose passband is equal to the corresponding band. This is accomplished 

in the frequency domain by multiplying the voiced harmonics by zero and the unvoiced 

harmonics by a unity magnitude and uniform random phase. The resulting noise spectrum 

is then weighted by the appropriate gain. The inverse Fourier transform is computed, 

which results in a time domain representation for the unvoiced portion of the 

reconstructed speech. This is performed for each unvoiced band. The results from each 

band are summed producing the output reconstructed unvoiced speech for the frame. 

If the current band is declared voiced, a bank of sinusoidal oscillators is used to 

generate a periodic signal corresponding to each harmonic in the band. These harmonics 

are then scaled by the appropriate harmonic amplitudes and summed. Since the pitch 

usually varies from frame-to-frame, voiced synthesis for this type of system becomes a 

problem of how to smoothly connect adjacent frames composed of sinusoids of slightly 

different frequencies. If the sinusoids in adjacent frames are simply "added" together, 

discontinuities in both frequency and phase are introduced. To overcome this problem, 

corresponding sinusoids in adjacent frames must be smoothed in some way so as to make 

the transitions smooth between frames. 

This frequency smoothing must be accomplished for all corresponding harmonics 

between adjacent frames. The frequencies are varied linearly across the frame using LFV, 

and then the phase is computed at the end of the frame [6]. The frequency in the next 

frame is started at the ending phase of the previous frame, resulting in a frequency track 

with no discontinuities. This results in a smooth time domain representation for the 
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voiced portion. The voiced and unvoiced portions are then summed producing a frame of 

reconstructed speech. 

It is also possible that the gain varies substantially from one frame to the next, so 

some amplitude smoothing is needed. This is accomplished by overlapping the 

reconstructed speech frames using a trapezoidal reconstruction window. The window is 

designed so that the sum of the overlapped windows is unity. 

The following sections, Spectral Filtering, Voiced Synthesis, and Unvoiced 

Synthesis describe in greater detail the method used to generate synthetic speech using the 

sinusoidal model. 

3.3.1 Spectral Filtering 

This stage of the synthesizer refers to the processing of the spectral model 

transmitted by the analyzer. This processing includes the interpolation of the LSP's on the 

subframes, the computation of the gain scaled LP model, and an initial prefiltering stage 

to improve the perceptual quality of the spectrum. The entire spectral filtering stage is 

summarized in Figure 3-12. 
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Figure 3-12. Block Diagram for Spectral Filtering 

Since the LSP's are only transmitted on the superframes, an interpolation function 

is used to obtain spectral parameters for the subframes. The interpolation stage is 

identical to that observed in the gain calculation block in the analyzer. The formula is 

repeated below in equation 3-97 for convenience. Again, the ,B;-{-1), ,B;-(0), and ,8)1) 

terms represent the LSP's for the previous, current, and future frames. 

Super.frame 

05:i<p (3-97) 

Subframe 

Once the LSP's are obtained for the current frame they must be converted back to 

predictor coefficients. This is accomplished by noting that the LSP's are roots of the sum 

and difference filters, given in equations 3-77 and 3-78. The LP coefficients are obtained 

by expanding these roots and substituting into equation 3-76. Again this operation is 

identical to that used in the gain computation block in the analyzer. 
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After the predictor coefficients for the current frame have been obtained, the gain 

scaled spectral model for the frame is calculated. This is shown below in equation 3-98. 

Note that G represents the uncoded gain value obtained by applying the inverse of 

equations 3-90 and 3-91 on the transmitted gain, g'. Since the predictor coefficients are 

initially calculated based upon the Mel scale, the spectral model must be converted back 

to the frequency scale. Equations 3-99- 3-101 perform this function. 
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(3-98) 

(3-99) 

(3-100) 

(3-101) 

The EMBE speech coder incorporates a prefiltering stage to enhance the quality of 

the synthetic speech signal. This prefiltering stage in the synthesizer is often referred to as 

postfiltering. It is known that while a speech waveform may be close to the original 

speech in a signal-to-noise ratio sense, it may not be close in a perceptual sense. The 

postfiltering stage attempts to shape the spectrum in such a way that the noise level 

between the formant peaks is reduced [3]. 

The basic operation of the postfilter is to compress the spectrum nonlinearly so 

that larger amplitude areas, such as formants, are relatively unaffected, while lower 
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amplitude regions, such as formant nulls, are significantly attenuated. Initially, a tilt 

corrected spectrum, F( k) , is computed using equation 3-102. The spectrum is flattened 

adaptively, based loosely on the first autocorrelation coefficient of S1P(k). The parameter 

that controls the level of spectral tilt compensation is shown in equation 3-104. Note that 

the autocorrelations are computed based upon a sampled version of S1P(k), with the 

samples taken at the locations of the harmonics. This is shown below in equation 3-103. 

F(k)= 21tk 

1-pe M 

M 
O~k<--1 

2 

1~/~L 

(3-102) 

(3-103) 

(3-104) 

Once the tilt-corrected spectrum is calculated, it is normalized so that it has 

maximum amplitude of 1.0. This is shown in equation 3-105. Following this operation 

the spectrum is raised to a fractional power, y = 0.3, as shown in equation 3-106. The 

effect of this is to keep the formant peaks near unity amplitude, while the valleys between 

formants are less than unity. Raising the spectrum to a fractional power attenuates the 

valleys between the formants, reducing the overall noise level. 

F(k) 
F'.i(k) = max[F(k)] 

M 
O~k<--1 

2 
(3-105) 



M 
O::;;k<--1 

2 

80 

(3-106) 

Following the calculation of the weighted normalized spectrum, Haw(k), the 

postfiltered LP model spectrum is given by equation 3-107 below. 

Saw(k) = Haw(k )s1P(k) 
M 

O::;;k<--1 
2 

(3-107) 

An adaptive highpass filter is used to provide a slight high frequency boost and 

slight attenuation of lower frequencies. The adaptation of the filter is accomplished using· 

the first normalized autocorrelation coefficient, µ, which is scaled by a constant, K = 0.2 . 

The adaptive highpass filter is given in equations 3-108 and 3-109. The final LP model 

spectrum is denoted by S 1 (k) . 

~
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3.3.2 Unvoiced Synthesis 

M 
O::;;k<--1 

2 
(3-108) 

(3-109) 

The unvoiced synthesis algorithm generates an unvoiced frequency spectrum 

U(k) and then computes the inverse Fourier transform, producing a time domain 

sequence u0 [n] that contains the unvoiced component for a given frame of reconstructed 

speech. A block diagram of the unvoiced synthesis is provided in Figure 3-13. 



Spectral 
Filtering ~ 

Bandlimited 
Noise 

Generator 

i 
Random Phase 

Generator 

-- Unvoiced 
Component 

Figure 3-13. Block Diagram of Unvoiced Synthesis 
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Before the unvoiced frequency spectrum is generated, an initial noise spectrum 

N 0 (k) is computed by assigning a random phase component 0 r (k) to the spectrally 

filtered LP spectrum S1 (k). The random phase component has a uniform distribution on 

the interval [0,21t). N0 (k) is given by 

(3-110) 

Equation 3-110 shows the computation of the noise spectrum in terms of the 

magnitude and phase. Equations 3-111 and 3-112 show the noise spectrum N)k) in 

terms of the real parts and imaginary parts. This noise spectrum must exhibit even 

symmetry for the real part and odd symmetry for the imaginary part to ensure a real time 

domain signal uo[n]. 

Re[N/k)] = S/k)cos(Br(k)) (3-111) 

(3-112) 

After the initial noise spectrum N0 (k) is generated, an unvoiced spectrum U(k) is 

generated based on the voicing decisions for each harmonic as given in equation 3-50. 
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For harmonics declared voiced, U{k) is zeroed and the harmonics declared unvoiced are 

assigned as shown 

v; = 0 

v; = 0, 

v; = 1 

where a harmonic l is defined on the interval described by equation 3-35. 

(3-113) 

The low and high frequency terms in the unvoiced spectrum, U{k) are zeroed 

because the spectrum is not modeled below half of the fundamental frequency or above 

the last harmonic plus half of the fundamental frequency. This is described in equations 

3-114 and 3-115. Again symmetry in the spectrum must be maintained. 

U(k)= 

Re[U(k)]=O 0-5.k-5.left right-5.k-5.M 
2 

Im[U(k)] = 0 0 -5. k -5. left right -5. k -5. M 
2 

left= l(~t) 1 right = I(~}( L + 05)<,, 1 

(3-114) 

(3-115) 

The corresponding time domain signal u[n] is computed using the inverse DFT as 

given in equation 3-116. The unvoiced synthetic speech corresponding to the current 

frame is overlapped with the previous frame u_1 [n] to obtain the current reconstructed 

output as shown in equation 3-117 and 3-118. 

1 M-1 .21tkn 

u[n] =-IU(k)e-1A1 
M k=O 

u0 [n] = u_1 [n ]wd [n ]+ u[n ]wu [n] 

(3-116) 

(3-117) 
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(3-118) 

The reconstruction windows, w a [n] and wu [n ], correspond to an overlapped 

linear taper window that is discussed in more detail in section 3.3.4. 

3.3.3 Voiced Synthesis 

The voiced synthesis algorithm is used to generate a time domain sequence, v O [n], 

that contains the current frame of reconstructed voiced speech data. A block diagram for 

the voiced reconstruction is given in Figure 3-14 below. A bank of sinusoidal oscillators 

tuned to the appropriate harmonic frequencies is used to generate the sinusoids for the 

voiced harmonics in a given frame. These harmonics are scaled by the corresponding 

harmonic amplitudes and then summed. The result is a time domain signal corresponding 

to the voiced components in the current frame. 
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Figure 3-14. Block Diagram for Voiced Synthesis 

The all voiced synthetic time domain signal is computed using equation 3-119. 

The sequence v1 [n] is the flt sinusoid with harmonic frequency lro 0 , where ro 0 

corresponds to the fundamental frequency P1 . The upper limit on the summation is the 



84 

maximum of the number of harmonics in the previous frame, L_1 , and the number of 

harmonics in the current frame L0 • 

max { L1,L0 } 

vJn] = ~:::V,[n] O~n~N-l (3-119) 
l=I 

When reconstructing voiced speech using a sinusoidal model, the amplitudes must 

be smoothly varying from frame to frame and the frequencies and phases must be 

continuous at the frame boundaries. This is accomplished using the method referred to 

earlier as Linear Frequency Variation (LFV) [6]. 

There are three cases of sinusoidal reconstruction to consider. These are listed 

below and a development of each instance follows. 

I. A harmonic in the current frame does not have a match in the previous frame. 

II. A harmonic in the previous frame d.oes not have a match to the current frame. 

III. A harmonic has a match from the previous frame to the current frame. 

Case I occurs in two instances. One instance is that there are more harmonics in 

the current frame than in the previous frame, L0 > L_1 • Since the number of harmonics in 

each frame is not the same, the harmonics l greater than L_1 must be 'born' into the 

current frame. The other instance occurs when the current frame has a voiced band that is 

being matched to an unvoiced band in the previous frame. This means that the previous 

frame does not contain a matching harmonic for the current frame, and the corresponding 

harmonics must be 'born' into the current frame. Case I is generated using 

(3-120) 
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where 8(1) is a uniformly distributed random phase generated between [0,2n). The 

harmonics are all born by using a linear taper window that is described by w" [n]. 

After each v1 [n] has been computed, a new phase 8(1) is computed as shown in 

equation 3-121 in order to track the phase of the zth harmonic across the frame boundary. 

(}(l) = Im 0 N + B _1 (l) (3-121) 

Case II also occurs in two instances. One instance is that there are more harmonics 

in the previous frame than in the current frame, L0 < L_1 • Since the number of harmonics 

in each frame is not the same, the harm,onics l greater than L0 must 'die' into the current 

frame. The other instance occurs when the current frame has an unvoiced band that is 

being matched to a voiced band in the previous frame. This means that the current frame 

does not contain a matching harmonic for the previous frame and the corresponding 

harmonics must 'die' into the current frame. Case II is generated using 

v, [n] = 2w An]A_1 (l)cos[lm _1n + (}(l)]. 0 :Sn :SN -1 (3-122) 

Since the harmonics are being 'killed' there is no reason to compute a new phase 

value. The harmonics are 'killed' by using a linear taper window that is described by 

wAn]. 

Again, Case III occurs in two instances. If the number of harmonics in the 

previous frame equals the number of harmonics in the current· frame, L0 = L_1 then there 

is a match for every harmonic from the previous frame to the current frame. The other 

instance is when L0 :S L_1 for Case I and when L_1 :S L0 for Case II. If either of these are 
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true then there is a match for every harmonic from the previous frame to the current 

frame. Equation 3-123 is used to compute v1[n] for Case III 

V1 [n] = 2(A_1 Wa[n] + A0 (l)wu[n])cos[lro_1n + 9(/) + cj>[n]] 0 :'.5: n :'.5: N - l (3-123) 

where cj>[n] is found using equation 3-124, and a new phase value is found for e(z) via 

equation 3-125. 

~[n] = l(w0 -m-l)n(n + 1) 
2(N -1) 

3.3.4 Reconstructed Output 

0:'.5:n:'.5:N-l (3-124) 

(3-125) 

As mentioned in the previous section, reconstructed speech must be continuous in 

phase and frequency and have smooth amplitude variations. This section discusses the 

amplitude smoothing. The block diagram in Figure 3-15 shows the application of the 

reconstruction window to the voiced and unvoiced components followed by summation 

to produce the reconstructed speech. 

Voiced Reconstruction 
Component ~ Window 

Unvoiced Reconstruction 
Component ~ Window 

\II 

Sum Voiced 
and Unvoiced 

/1\ 

~ 
Reconstructed 

Speech 

Figure 3-15. Block Diagram for Reconstructed Speech 

The window used in the reconstruction process is an overlapping tapered window 

with the current frame centered on the overlap. This is shown in Figure 3-16. The current 

frame is N points in length, which corresponds to the subframe update in the analyzer. 



Previous 
Frame 

Npoints 

Current 
Frame 

Npoints 

Figure 3-16. Overlapping Tapered Window 
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This window is described in terms of an up window wJn] and a down window 

w d [n] as shown in the previous section. The equations for these two windows are given 

by 

w,[n]=!l- n}K1 -I 
0 5. n 5. K1 

K1 +15.n5.K2 (3-126) 
K2 -K1 -1 

. 0 K2 +15.n5.N-l 

and 

0 05.n5.K1 

wJn]= 
n-K1 -1 

K1 +15.n5.K2 (3-127) 
K2 -K1 -1 

1 K2 +15.n5.N-1 

3.4 Results and Conclusion 

As stated earlier, EMBE was developed as a candidate for the new Federal 

Standard at 2,400 bps. While EMBE did not win, it was competitive. Most of the 

problems with EMBE are related to the perceived quality, especially in the quiet and 

office noise environments, although EMBE has been shown to be quite robust in the 

harsher noise environments, such as tanks, planes, etc. 
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Listed below are the DAM (Diagnostic Acceptability Measure) and DRT 

(Dynamic Rhyme Test) scores from the May 1996 and September 1996 testing. The 

EMBE coder was tested in the quiet and office noise environments. The May 1996 test 

included improvements in the voiced reconstruction and changes,in the voicing decisions 

(filtering). The September 1996 test included extensive work in the area of spectral 

modeling and perceptual filtering. Both sets of scores and the corresponding standard 

deviations are provided in Table 1. 

The DAM is a subjective test used to determine the quality and naturalness of 

synthesized speech [39]. This is a comparison test so more than one vocoder is tested, 

where the more vocoders the more reliable the test scores. The test uses trained listeners 

to perform a head-to-head comparison between different vocoders. 

The DRT test on the other hand is an intelligibility measure [39]. This test 

determines how well the synthetic speech models the initial consonant. The test is 

performed by generating a word list that contains word pairs according to a specified 

speech feature. These features are voicing, nasality, sustention, sibilation, graveness, and 

compactness. For example, a voicing feature contains two words where one has a voiced 

consonant and the other has an unvoiced consonant, such as veal and/eel. 
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Table 1. DRT and DAM Evaluation for EMBE 

May 1996 

DRT DAM 

Score Standard Error Score Standard Error 

Quiet 91.1 0.86 60.3 1.2 

Office 89.0 0.56 50.9 1.3 

September 1996 

DRT DAM 

Score Standard Error Score Standard Error 

Quiet 91.5 0.70 55.5 0.8 

Office 87.7 0.66 50.7 0.9 

The DRT scores from both tests appear to fall within the standard error. This 

suggests that no significant improvement was obtained from May 1996 to September 

1996. The DAM scores in the office environment follow the same pattern as above. In the 

quiet environment there appears to be significant decrease in the DAM scores. This 

currently cannot be explained, since the September 1996 version of EMBE does sound 

'better' to us (at Oklahoma State University) than the May version of EMBE. The rest of 

. this dissertation is dedicated to improving the EMBE vocoder. 
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4 SINUSOIDAL MODEL 

4. 0 Introduction 

The goal of this chapter is to provide a mathematical development that provides a 

basis for using a sinusoidal model in speech coding. The fundamental assumption of this 

dissertation is that analysis and synthesis of speech signals is performed using a 

sinusoidal model. 

The sinusoidal model assumes that a frame of speech is represented by a set of 

frequencies, amplitudes, and phases. As noted in Chapter 2, a speech signal is in general 

separated into two main components: voiced and unvoiced excitation. As noted in 

Chapter 2, a frame of speech contains some combination of voiced and unvoiced 

excitation resulting in a mixed excitation frame. For voiced speech the sinusoidal model 

assumes that the excitation contains a harmonic structure that, when perfectly periodic, is 

represented by a Fourier series [3], [24]. This is the same assumption used in the 

traditional speech production model shown in Figure 2-7. The traditional speech 

production model assumed that the voiced excitation is represented by a periodic impulse 

train. The sinusoidal model assumes that the excitation for unvoiced speech contains an 

aperiodic structure that is similar to the white noise assumption of the traditional speech 

production model. By exploiting these basic properties of the speech signal a heuristic 



91 

approach is used to show that the sinusoidal model is valid for analyzing and synthesizing 

speech on frame-by-frame basis. This is discussed in the following sections. 

4.1 Sinusoidal Model 

By exploiting the properties of the Fourier transform, the validity of the sinusoidal 

model for analysis and synthesis is shown. Let us start by defining the Fourier transform 

and the properties necessary for existence. The Fourier transform of an infinite sequence 

s [n] is a continuous set of frequencies on the range [0,21t), i.e., composed of all the 

frequencies defined on the unit circle. The forward Fourier transform of s [n] is written as 

s(e 1(J) )= f s[n]e-jron' (4-1) 
n=-cO 

where s[n] is the infinite length input sequence and s(e1ro) is the corresponding Fourier 

transform [37]. The corresponding inverse Fourier transform of s(e1ro) is given by 

(4-2) 

Since some signals, such as speech, in general are power signals care must be 

taken to ensure the existence of the Fourier transform. The existence or convergence of 

the Fourier transform is defined by the property that 

(4-3) 

M 

where s(e1(J)) is the limit as M ~ 00 of the finite sum SM (e 1(J) )= Is[n]e-Jron. 
n;-M 

A sufficient condition for the convergence of a sequence is that it be absolutely summable 

[10], [37]. This condition is written as 
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(4-4) 
n=-oo 

A sequence is made absolutely summable for analysis by splitting the infinite 

input sequence s[n] into a set of finite length sequences (known as frames). This framing 

operation results in a set of concatenated finite length subsequences of s[n ], which are 

absolutely summable. 

The infinite length input sequence s[n] is divided into frames (finite sequences) 

by multiplying by a finite length, lowpass window function w[n]. This multiplication 

results in the new sequence s [n] given by 

s[n]= s[n]w[n]. (4-5) 

The sequence s [n] is an absolutely summable sequence, and the Fourier transform 

converges (exists) and thus is used for analysis. 

The multiplication of the input sequence s[n] and window function w[n] in the 

time-domain results in periodic convolution in the frequency domain [37]. This is defined 

by 

(4-6) 

where W (e 100 ) is the Fourier transform of the window function w[n] and is given by 

(4-7) 
n=-oo 

and convergence holds since the window function w[n] is finite in length. 
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Given the above definitions and other properties of the Fourier transform, let us 

consider what happens if the input sequence s [n] is assumed to be a constant amplitude 

single frequency cosine of infinite duration and written as 

s[n]= Acos(ro0 n), (4-8) 

where A represents a constant amplitude, ro O is a constant frequency, and - oo ~ n ~ oo . 

Using the property that the Fourier transform of a single frequency cosine signal is 

an impulse located at the frequency of interest. The transform of s [n] is written as 

s(e1ro )=n A 8(ro-roJ, 
2 

(4-9) 

where O ~ ro, ro O < 7t , and only the non-negative frequencies are considered. The result of 

the convolution shown in equation 4-6 is a scaling and shifting of the window spectrum 

W (e 1ro) to the corresponding positive and negative frequencies m0 , shown in equation 4-

10, where O ~ ro, ro O < 1t , considering once more only the non-negative frequencies. 

( 4-10) 

If S (e 1ro) is now sampled in the frequency domain, producing only those 

frequencies of interest, is the input sequence s [n] recoverable? The answer is yes, if the 

proper sampling points are known. This sampling process is the selection of a finite set of 

frequencies from the Fourier transform (a sub-sampling of the Fourier transform). 

Assume the frequency m O of the input sinusoid is known, then the spectrum is 

sampled at the frequency m0 thus producing estimates of the amplitude and phase 

corresponding to m0 • The sampling is equivalent to multiplying the Fourier transform 
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S ( e1m ) by an impulse located at m O • The sampled Fourier transform Ss ( e Jm ) of the 

Fourier transform s( e1m), shown in equation 4-11, is now a weighted impulse located at 

(4-11) 

As an aside, it is worth noting that the sampling did not produce the exact 

amplitude of the cosine defined in equation 4-8. The result is a constant A weighted by 

the center of the window spectrum. The center of the window spectrum is normalized by 

applying the constraint that the window function sum to equal 1 as given by 

N 

2 

Iw[n]= 1. 
N 

n:::--
2 

(4-12) 

Alternate methods to account for the weighting of the window spectrum are discussed in 

a later paragraph. 

Given the estimate for the frequency, amplitude, and phase of the input signal 

s [ n] provided by the sampling process of equation 4-11, an estimate s [ n] for s [ n] is 

computed. This is accomplished by using the inverse Fourier transform. The inverse 

Fourier transform of Ss ( e Jm) is found by applying the sifting property and realizing that 

the cosine is a real and even function. The resulting ss [ n] , shown in equation 4-13, is a 

weighted cosine, of finite length, with frequency equal to m0 • 

(4-13) 
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Equation 4-13 is re-written to show that by sampling the Fourier transform at the 

appropriate frequencies, the original signal is recovered within a scaling factor given by 

s,[n]= Gs[n]= Gs[n]w[n], (4-14) 

where G= AW(e10
), s[n]=cos(ro 0 n), and w[n] is the finite length lowpass window 

21t 

function. 

Using the results from above, the same approach is applied to a speech sequence. 

First, assume that the input speech sequence is purely voiced and is represented by the 

sum of weighted and harmonically related cosines. The traditional speech production 

model of Figure 2-7 is used to verify this assumption [10], [12]. 

According to the traditional speech production model, either convolution in the 

time-domain or multiplication in the frequency-domain is used to represent continuant 

speech. In the time-domain an excitation sequence e (t) is convolved with the impulse 

response h (t) of the vocal tract response as shown in equation 4-15. In the frequency-

domain the frequency response E (e 1ro) of the excitation sequence e (t) is multiplied by 

the frequency response H (e1ro) of the vocal tract response h (t) as given in equation 4-16. 

s(t)= e(t)* h(t) (4-15) 

(4-16) 

Now, consider the case of voiced speech. The excitation of the traditional speech 

production model is assumed to consist of an infinite duration impulse train having period 

Tp, where Tp corresponds to the pitch period (often referred to as the fundamental 

frequency). Also, assume for the time being that the vocal tract frequency response 
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H(e 1m) is a constant independent of frequency. In this case the voiced speech produced 

by the model of Figure 2-7 is represented by 

00 

sv(t)= e(t)= Io(t-nTp), (4-17) 
n=-oo 

The signal sv (t) in equation 4-17 is now written in terms of a Fourier series, [38], 

given as 

00 

sv(t)= Isv[n]e 1mpnt, ( 4-18) 
n=-oo 

where 

(4-19) 

Assuming the excitation is represented by the constant amplitude impulse train sv (t) as 

defined in equation 4-17, then by substituting into equation 4-19 and integrating over one 

period the result is given by 

(4-20) 

Now, the signal s)t) is written in a simpler form by substituting equation 4-20 into 

equation 4-18. The result is now written as a sum of complex exponentials given as 

(4-21) 

and then using Euler's identity is written as the sum of weighted and harmonically related 

cosines given by 
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(4-22) 

Equations 4-21 and 4-22 provide the justification for assuming that voiced speech is 

represented by the sum of weighted and harmonically related cosines assuming that 

H(e 1m) is a constant vocal tract frequency response independent of frequency. 

Given the justification of equations 4-21 and 4-22, let the input sequence s [n] be 

a periodic pulse train, which is represented by the sum of weighted and harmonically 

related cosines given as 

L 

s[n]= IAcos(lro0 n), (4-23) 
l=l 

where A represents the constant vocal tract response, ro O is a constant, L is the number of 

sinusoids needed to represent s [ n], and - oo ~ n ~ oo . 

The Fourier transform is a sum of harmonically related unit samples written as 

L A 
S (e 1ro )= 1t I-8(ro -lroo}, 

l=l 2 
(4-24) 

where OJ O represents the pitch, L is the number of sinusoids, and as before only the non-

negative frequencies are considered, and O ~ ro, ro O < 1t . 

Substituting S (e 1ro) into equation 4-6 and performing the frequency convolution 

produces a sum of images of W (e 1ro) with each image scaled and shifted in frequency by 

an integer multiple of the pitch OJ O and written as 

(4-25) 
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Now, if S (e 1ro) is sampled at the appropriate frequencies then the input sequence 

1s recovered within a scaling factor as shown previously. For voiced speech, the 

appropriate frequency sampling points occur at the pitch and integer multiples of the pitch 

(these are the harmonics). This process is given by 

(4-26) 

As before, the inverse Fourier Transform of Ss(e1m) is found by applying the 

sifting property and realizing that the cosine is a real and even function. The resulting 

S:.[n], shown in equation 4-27, is a weighted sum of harmonically related cosines, of 

finite length with frequencies equal to /010 , where 1::;; I::;; L. 

(4-27) 

Assuming the traditional speech production model is valid, than a voiced speech 

sequence is recovered within a scaling factor from a sampled version of the Fourier 

transform using a sinusoidal model. 

If we return to our original assumptions of the traditional speech production 

model, voiced speech is synthesized from an excitation signal which is an infinite impulse 

train with period Tp convolved with the vocal tract response. If the vocal tract response is 

no longer considered to be a constant independent of frequency, the vocal tract response 

becomes a frequency domain weighting function A(!) such that we are able to write 

(4-28) 
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For generality, equation 4-28 is extended to include a phase term, which implies 

that the input signal s [n] is any arbitrary sinusoid defined by 

(4-29) 

where e1.i,(i) is a constant phase term. Performing the frequency convolution of equation 

4-6 and applying the sampling function results in 

L . 

s)e11l) )= Ie}!il(I) A(l)w(e10 ) o(m-lmJ. (4-30) 
l=l . 

Once again, the inverse Fourier Transform of Ss(e1w) is found by applying the 

sifting property and realizing that the cosine is a real and even function. The resulting 

S:,[n], shown in equation 4-31, is a weighted sum of harmonically related finite length 

cosines with frequencies equal to lm0 , where 1 ~I~ L, rotated by a constant phase term 

~(!), and scaled by a frequency dependent weighting function. 

sJn] = 

(4-31) 
L A(l)wle10) 

= L ~cos(lm0 n + f.S(l)) 
l=l 2,r 

The sampling process presented above, in equation 4-30, is contrasted to the 

Discrete Fourier Transform (DFT). The DFT also performs a sampling of the Fourier 

transform. This sampling occurs at N evenly spaced frequencies on the unit circle, where 

N is the length of the DFT. The DFT returns exactly N frequencies with a spacing of 2n/N 

as shown by 
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(4-32) 

where O 5, k 5, N - 1. 

The sampling method presented in this section takes on a form similar to equation 

4-32. This sampling method samples the unit circle at L evenly spaced frequencies on the 

unit circle, where Lis the number ofhamionics (sinusoids) and is determined by the pitch 

ro O • The frequency spacing is given by 21t/ L and is defined as 

(4-33) 

where l 5, l 5, L and L is the number of harmonics. This is a more general form than 

equation 4-27. If the input sequence is assumed to be a sum of harmonically related 

sinusoids then the sampled spectrum S (J) is in general complex and is computed from 

N-1 

S(l)=S(e 11% )= Is[n]w[n]e-J1m0 n (4-34) 
n~o 

The inverse transform is computed by representing the complex spectrum S (1) in 

terms of its magnitude and phase, shown in equation 4-35, and writing the complex 

exponential in terms of cosines and sines. Realizing the inverse transform must be real, 

the sine terms cancel leaving only cosines weighted by the magnitude of the sampled 

spectrum and scaled by the number of harmonics L resulting in an equation that is of the 

same form as equation 4-3L 
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s[n] = 

(4-35) 

= 

The frequency sampling process described above is actually an undersampling of 

the DFT. Using this, we know that the energy in ·the original sequence and the estimated 

sequence is not equal. This is accounted for by multiplying by a gain function G. Thus, 

voiced speech is synthesized using a sinusoidal model and a scaling function G under the 

assumptions shown implicitly in Figure 2-7. This is written as 

(4-34) 

The same arguments are developed for input speech that is considered to be 

unvoiced. This development is not necessary however, since unvoiced signals are 

generated using the sinusoidal model if we assume that the spectrum is sampled densely 

enough. Literature has shown that sampling with 100 Hz spacing in the frequency domain 

is acceptable for reconstructing noise like signals using the sinusoidal model [3]. This is 

equivalent to setting the pitch ro 0 in equation 4-35 to 100 Hz or less. 

Equation 4-36 is developed under the assumption that the excitation signal is an 

infinite impulse train with period Tp. Contrary to the original assumption, speech in 

general is a non-stationary signal. Therefore, analysis and synthesis is performed over a 

small time period (10 - 30 ms) where speech is considered stationary over that time 

period. This is a widely used assumption and leads to short time analysis and synthesis. 
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The two speech models discussed in Chapter 2, STC and MBE, are contrasted to 

equation 4-36. In the case of STC, equation 4-36 is equivalent to sampling at L unequally 

spaced points on the unit circle without regard to whether the frame is either voiced or 

unvoiced. For MBE, equation 4-36 represents how a frame (band) of voiced speech is 

modeled. The sampling would occur at L equally spaced points on the unit circle, 

equivalent to equation 4-36. If the frame (band) of speech is unvoiced then MBE uses 

band limited white noise in the synthesis. 

4.2 Conclusion 

The goal of this section was to describe the application of the sinusoidal model to 

a speech sequence. In the following chapter, the results of this chapter are used for 

developing two analysis-by-synthesis techniques based on the sinusoidal model. The first 

approach is in the frequency domain using only the magnitude spectrum, and the second 

approach is in the time domain using the magnitude spectrum and phase response. 
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5 SINUSOIDAL MODEL ANALYSIS-BY-

SYNTHESIS 

5. 0 Introduction 

The sinusoidal model is chosen as the topic of this dissertation because sinusoidal 

based vocoders have been shown to be able to produce high quality speech at low bit 

rates. The main disadvantage of using the sinusoidal model in developing low bit rate 

vocoders is the high dependence on the parameter estimation, especially the pitch. The 

goal of this chapter is to apply the technique of analysis-by-synthesis to the problem of 

parameter estimation for sinusoidal based vocoders. 

In this chapter a mathematical development for two novel analysis-by-synthesis 

methods of parameter estimation for a vocoder, using sinusoidal excitation to synthesize 

high quality speech, is presented. The development is similar to methods used in Linear 

Prediction Analysis-By-Synthesis (LPABS) systems, such as Multi-Pulse Linear 

Prediction and CELP [22], [26]. The main difference between LPABS systems and the 

development presented in this chapter is in the method used for synthesizing speech. The 

synthesis technique, as previously stated, is based on the sinusoidal model. 

In this dissertation a sinusoidal synthesis procedure is included in the analysis 

loop to determine the appropriate model parameters for the sinusoidal model. The main 

advantage, and the main goal of this dissertation, for including the synthesis method in 
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the analysis is to aid in determining the appropriate model parameters. This leads to a 

closed-loop analysis-by-synthesis procedure for determining the sinusoidal model 

parameters. By using a closed-loop approach, the parameters of the model are varied in a 

systematic way to produce a set of parameters that produce a synthetic signal, which 

matches the original signal with minimum error. This is true assuming that the model, in 

this case the sinusoidal model, is valid to begin with. 

Assuming a frame of speech is modeledaccurately using the sinusoidal model, as 

presented in Chapter 4, then a technique is needed to determine the appropriate set of 

amplitudes, frequencies, and phases (the model parameters) used to represent a frame of 

speech. In a manner similar to STC and MBE, the DFT is utilized in the analyzer for 

extracting the amplitudes, frequencies, and phases for the sinusoidal synthesis procedure. 

Determining these parameters is the goal of this chapter and is accomplished by 

developing an analysis-by-synthesis technique to improve the parameter estimation for 

sinusoidal based vocoders. Two novel analysis-by-synthesis methods are presented in this 

chapter. The first approach is developed in the frequency-domain and the second is 

developed in the time-domain. 

The following sections provide a general overview of the current analysis and 

synthesis techniques being used in sinusoidal vocoders and a discussion of analysis-by­

synthesis techniques. This is followed by a more specific discussion of the techniques 

used for the analysis and synthesis. Then a mathematical development of the two novel 

analysis-by-synthesis methods, frequency-domain and time-domain, is provided. 
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5.1 Overview 

The analysis portion of the methods developed in this chapter is based on the 

sinusoidal model as described in Chapter 4. The sinusoidal model assumes that the input 

speech is represented accurately by a "set of sinusoids" having specified amplitudes, 

frequencies, and phases, estimated from the DFT on a frame-by-frame basis. The 

magnitude and phase response of the DFT are linearly sub-sampled at a specified sub­

sampling period, in each frame, producing an estimate for the amplitudes, frequencies, 

and phases. The frequencies are computed as integer multiples of the candidate sub­

sampling period, which is in contrast to STC but similar to MBE. The STC approach 

requires an independent frequency estimate for each of the peak amplitudes found in the 

DFT magnitude. By linearly sub-sampling the magnitude and phase response of the DFT, 

the number of parameters needed to represent a frame of speech is reduced when 

compared to STC. The MBE approach assumes that the peaks in the magnitude spectrum 

are related harmonically for voiced speech and are represented by the pitch. 

The first assumption made in this development is that the amplitudes and phases 

for a frame of speech are known values that are determined by sub-sampling the 

magnitude and phase responses of the DFT at a specified sub-sampling period. The 

second assumption is that a set of candidate sub-sampling periods is known apriori. This 

assumption is valid for speech signals because the candidate sub-sampling periods 

correspond to the pitch. It is commonly known that the pitch range has a lower bound and 

an upper bound [10], [12]. Following these assumptions, the problem is to determine the 

sub-sampling period that selects the appropriate set of amplitudes and phases that 

produce the best match to the original input speech in a mean-squared error (MSE) sense. 
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In order to determine the "best" sub-sampling period, an appropriate set of 

candidate sub-sampling periods must be chosen. The most common sub-sampling (pitch) 

range for speech analysis is 70 Hz to 400 Hz (114 samples to 20 samples). Each sub­

sampling candidate is used to sub-sample the DFT to obtain the corresponding 

amplitudes and phases. A frame of synthetic speech is generated from each set of model 

parameters using a sinusoidal synthesis technique. The synthesized speech, generated 

from each candidate sub-sampling period, is compared to the original input speech in a 

mean-squared error sense. The candidate sub-sampling period and the corresponding 

amplitudes and phases that produce the minimum mean-squared error are chosen to 

represent the current frame of speech. 

The model parameters determined from each of the candidate sub-sampling 

periods are applied to the sinusoidal synthesis procedure. The result of this synthesis is 

compared, on a frame-by-frame basis, to the original input speech in a mean-squared 

error sense. This process is repeated for each candidate sub-sampling period until the 

model parameters producing the minimum mean-squared error have been determined. 

Since the approach in this dissertation is to develop an analysis-by-synthesis 

routine for reconstructing high quality speech, the synthesis method· plays a critical role 

in the design of the analysis-by-synthesis procedure. The synthesis section of this chapter 

discusses the common methods of reconstruction used in STC, MBE, and EMBE and 

details the method chosen for this dissertation. 

Once the analysis and synthesis techniques are determined the analysis-by­

synthesis loop is defined. Since the goal of this chapter is to develop two novel solutions 

to the analysis-by-synthesis problem it seems appropriate to discuss the approach used in 
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LP ABS systems and the approach used by other sinusoidal based vocoders such as STC 

andMBE. 

A LPABS system consists of a time varymg filter, excitation signal, and 

perceptually based minimization and is in general closed-loop. The excitation is used to 

generate an estimate for the synthetic signal. This estimate is subtracted from the original 

signal producing an error (residual) signal. The error signal is now minimized by some 

method. The general approach is to use the mean-squared error criterion. While the 

mean-squared error criterion produces adequate performance, it is shown that a 

perceptual criterion works "better". So the residual is then filtered with a perceptual 

weighting filter (broadening of the formant bandwidths). Now the residual is used to 

select another excitation sequence and a new synthetic signal is generated. The closed­

loop minimization is continued until a set of parameters that produce the minimum error 

has been determined. This technique is discussed further in Chapter 2 regarding the 

CELP implementation, and more interested readers are referred to [26]. 

The above analysis-by-synthesis approach is a closed-loop system as most 

analysis-by-synthesis techniques are by nature, but STC and MBE use analysis-by­

synthesis for initial mathematical development (model development) but generally 

estimate the parameter set in an open-loop fashion. The time-domain analysis-by­

synthesis approach in STC is used to show that by selecting the peaks in the magnitude 

spectrum along with the corresponding frequencies and phase estimates the error between 

the original signal and the synthetic signal is minimized using the sinusoidal model for 

synthesis. 
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MBE uses a slightly different development than the previous LP ABS and STC 

approaches. The first step is to estimate an initial pitch. The initial pitch is varied over 

small increments producing a set of pitch candidates. A set of harmonic spectral 

amplitudes is generated for each of the pitch candidates by sampling the magnitude 

spectrum. These two parameters, a refined pitch and the corresponding harmonic spectral 

amplitudes, are used to generate an all-voiced synthetic magnitude spectrum. The original 

magnitude spectrum is then compared to the synthetic magnitude spectrum in a mean­

squared error sense. The pitch and the corresponding harmonic amplitudes that produce 

the minimum error are selected to represent the current frame of speech. Neither STC nor 

MBE uses the synthesis model in the analysis to aid in estimating the parameter set. This 

result leads to the novel developments presented in this chapter. 

The two analysis-by-synthesis methods described in the following sections 

demonstrate that an analysis-by-synthesis approach can be used to determine a sub­

sampling period that provides the appropriate amplitudes and phases to produce speech 

that is indistinguishable from the original when using a sinusoidal model for 

reconstruction. The frequency-domain analysis-by-synthesis method is developed using 

only the magnitude spectrum; the assumption is that no phase information is available. 

With this assumption, the frequency-domain analysis-by-synthesis approach is a natural 

application for low bit rate vocoders, at approximately 4,800 bps and lower. In contrast to 

the frequency-domain method, the time-domain analysis-by-synthesis method assumes 

that phase information is available. Since the phase information is available, the time­

domain approach targets the higher bit rate sinusoidal based vocoders, approximately 

12,000 bps and up. 
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A complete description of the analysis procedure is described in section 5.2. In 

section 5.3, the common reconstruction techniques are described. Section 5.4 is the 

development of the frequency-domain analysis-by-synthesis method of parameter 

estimation. In section 5.5, the time-domain analysis-by-synthesis approach is presented 

for parameter estimation. 

5.2 Analysis 

In this section, the analysis approach used for both analysis-by-synthesis 

developments is presented in greater detail. The analysis is conceptually a straightforward 

process. The frequency-domain analysis-by-synthesis approach uses the magnitude 

spectrum and voicing decisions to determine the appropriate amplitudes, for a given 

candidate sub-sampling period, to apply to the sinusoidal model. The time-domain 

analysis-by-synthesis approach uses the magnitude spectrum and the phase response to 

determine the appropriate amplitudes and phases, for a given candidate sub-sampling 

period, to apply to the sinusoidal model. A block diagram of only the analysis portion of 

the analysis-by-synthesis process is shown in Figure 5-1. 

w[n] DFT 

'-s~~zed J---- ....................... . 
Amplitudes 

Phases 

Voicing 

Sub-Sampling 
Period 

Figure 5-1. Block Diagram of Analysis Procedure 
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The analysis begins by separating the input speech into frames, referred to as 

vectors, for processing. This is accomplished by using a finite length lowpas~ window 

function w [ n]. The new windowed speech vector is represented as 

sJn]=s[n]w[n], (5-1) 

where O ~ n ~ N -1, and N represents the length of the data segment (frame). 

The spectrum Sw[k] of the windowed signal sw[n] is then computed via the 

Discrete Fourier Transform (DFT) from 

N-1 j21ckn 

sw[k]= ~::Sw[n]e Al' (5-2) 
n=O 

where O ~ k ~ M -1, and M represents the length of the DFT. The length M of the DFT 

is chosen to provide sufficient resolution in selecting the appropriate amplitudes and 

phases for a given set of candidate sub-sampling periods. 

The magnitude spectrum Sm[k] and phase response S0 [k] (if necessary) are 

computed from the DFT using 

(5-3) 

and 

(5-4) 

The magnitude spectrum Sm[k] is then sub-sampled at a rate specified by the 

candidate sub-sampling period Ps . If phase information is available, then. the phase 

response S0 [k] is also sub.,.sampled at the specified candidate sub-sampling period Ps. If 
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the phase information is not available, then it must be synthesized in the analyzer and 

synthesizer. 

A typical range for the candidate sub-sampling periods is 20 ::;; Ps ::;; 114 samples 

(approximately 70 Hz to 400 Hz) at an assumed input signal sampling rate of 8,000 

samples per second. The discrete sub-sampling points are determined by 

. m, = l: I+ 0.5 J (5-5) 

where O::;; m1 < M, m1 represents the sub-sampling .points in the DFT, and 1::;; I::;; L 
2 

with L representing the maximum number of sampling points. For example, if M= 1024 

and Ps = 100 samples (80 Hz if the sampling frequency is 8,000 samples per second) 

then the vector m1 would equal the following 

m1 = [10, 20, 31, ... ,501] (5-6) 

The maximum number of amplitudes and phases being estimated for each 

candidate sub-sampling period is L. This number varies from one candidate sub-sampling 

period to another and is determined using 

p 
L=a-s 

2 ' 
(5-7) 

where a is chosen to span the frequency range of interest and is generally selected to fall 

in the range 0.925 ::;; a < 1.0 . 

The sub-sampled amplitudes and phases are represented by A, and 8 1 while the 

voicing decisions are represented by v1 • The parameters A1 and 81 are estimated by sub-
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sampling Sm [k] and S0 [k] at the points defined by equation 5-5 for a particular candidate 

sub-sampling period as given by 

(5-8) 

(5-9) 

If the phase information is not available, as is the case for the frequency-domain 

analysis-by-synthesis approach, it must be synthesized. This is accomplished by fitting a 

cubic spline curve to the logarithm of the spectral amplitudes that correspond to the 

candidate sub-sampling period. If a linear phase model is assumed, then it is necessary to 

compute the system phase [24]. This system phase is found using the cepstrum. As 

published, 44 cepstral coefficients Q are sufficient for modeling the cubic spline 

envelope [24]. The cepstral coefficients are.computed from 

1 tr 

cm = - Jlog!H(m} I cos{mm )dm 
1[ 0 

m = 0,1,2, ..... Q (5-10) 

and the system phase is found from 

Q 

<l>{ro} = -2 ~:Cm sin{mro}. (5-11) 
m=I 

This leads to an alternate phase representation, which is a linear phase term plus 

the system phase as given by 

(5-12) 

( 1 1 J 21t -+- T p p . 
~o = ~~1 + -i O and 1 ~ l ~ L. The -1 implies that the parameter is 

2 
where 

associated with the previous frame and o implies that parameter(s) are associated with the 
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current frame. A more detailed discussion of the synthetic phase model is provided in 

Appendix Al. 

The voicing decisions are made in the frequency domain using the method 

detailed in Chapter 3. The sub-sampling period Ps and the corresponding amplitudes A1 

and phases 81 are applied to the synthesis model to reconstruct a frame (vector) of 

synthetic speech. 

Two methods presented in Chapter 2 for determining the model parameters of a 

sinusoidal model are MBE and STC. The model parameters for MBE are determined by 

sampling the magnitude spectrum of a frame of speech at a specified pitch to determine 

the appropriate spectral amplitudes. The MBE model assumes that the amplitudes are 

related harmonically to the pitch, while the phase information is generated artificially in 

the synthesis routine. The lack of phase information for sinusoidal vocoders requires the 

use of a voicing decision. These voicing decisions are the heart of the MBE speech 

model. The magnitude spectrum for a frame of speech is divided up into a number of 

predefined frequency bands and each band is assigned a single voicing decision, hence 

the name MultiBand Excitation (MBE). The pitch parameter is determined in an open­

loop fashion and is the key to the success of the MBE based vocoders. These model 

parameters are then applied to a sinusoidal reconstruction procedure. This approach has 

been shown to be capable of producing high quality speech at bit rates of 4,800 bps and 

up [19], [27]. One major disadvantage with the MBE implementations is the high 

dependence on the pitch parameter. 

The model parameters for S TC are determined by searching for all the peak 

amplitudes contained in the magnitude spectrum for a frame of speech. After the peak 
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amplitudes have been located, the corresponding frequencies and phases are estimated 

from the magnitude spectrum and the phase response. The amplitudes are not assumed to 

have any harmonic relationship to the pitch, although they often do for voiced speech. 

Since no harmonic relationship is assumed, there is no pitch estimate. The lack of a pitch 

estimate requires that a frequency estimate for each of the peak amplitudes be transmitted 

to the receiver. No voicing decisions are needed because the phase information is 

transmitted to the receiver. These model parameters are applied to a sinusoidal 

reconstruction procedure similar to that of MBE, but using a slightly different approach. 

The STC approach has also been shown to be capable of producing high quality speech 

[3]. One major disadvantage is the amount of information needed to represent a frame of 

speech if the standard STC model as defined above is used. 

For the analysis developed in this dissertation, each input vector is analyzed for 

the appropriate set of amplitudes, phases, and corresponding frequencies for the 

sinusoidal model. These parameter estimates are then used in the sinusoidal synthesis 

model to generate a vector of synthetic speech. This synthetic speech vector is then 

passed on to the analysis-by-synthesis loop. The following section discusses the 

technique chosen for reconstructing synthetic speech using the sinusoidal model. 

5.3 Synthesis 

In this section, the synthesis approach that is used for both analysis-by-synthesis 

methods is presented in greater detail. The synthesis is a straightforward process but has 

two possible options: 1) the phase information is either generated artificially or from an 

assumed phase model in the synthesizer routine as in the frequency-domain analysis-by-



115 

synthesis approach, or 2) the phase information is transmitted as in the time-domain 

analysis-by-synthesis approach. A general block diagram of only the synthesis portion of 

the analysis-by-synthesis process is shown in Figure 5-2. 

Amplitudes 

Phases 

,·-·-·-·- -·-·-·-·-·. 
I Synthesized ; 
I . 

I Phase 
I - . - . - . - . - . - . - . - • - ' -· 

Sinusoidal 
Generator 

! Voicing j .......................................... , ...... ; 

' · ................................................. · 

+ 

Error 
Minimization 

Figure 5-2. Block Diagram of Synthesis Procedure 

The synthesis begins by generating a set of sinusoids that correspond to the 

candidate sub-sampling period Ps and its harmonics. Each of the sinusoids is weighted 

by the appropriate spectral amplitude A1 and rotated by the appropriate phase 81 • These 

sinusoids are summed and windowed by w r [ n]. The window w r [ n] is known as a 

reconstruction window and is used to smoothly connect the spectral amplitudes across 

frame boundaries. 

The sinusoidal model used to generate the synthetic speech vector s [ n] is defined 

as 

-r ] ~ (21tm n ) s n = L..i A, cos I + e I 
1=1 M 

(5-13) 
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where O::;; n::;; N -l, Mis the length of the DFT, m1 is defined by equation 5-5, and N is 

the length of the reconstructed speech segment. 

Equation 5-10 provides the general form for the sinusoidal synthesis model but 

does not provide any information about the structure of the output speech. There are a 

number of reconstruction methods available: cubic interpolation model, quadratic 

interpolation model, Linear Frequency Variation (LFV), and Overlap Addition [3], [4], 

[6], [24], [37]. The cubic interpolation method for the STC vocoder is discussed in 

Chapter 2. The cubic interpolation equations are shown in equations 2-4 and 2-5. This 

method of reconstruction requires a complex algorithm for matching frequencies in one 

frame to the frequencies in another frame. The complex frequency matching is needed to 

smoothly connect the sinusoids in one frame to the sinusoids of another frame to avoid 

frame boundary discontinuities. The complex frequency matching is performed 

independent of whether phase information is transmitted or generated artificially in the 

synthesis routine. One advantage of the STC model is that only one method of 

reconstruction is needed for voiced, unvoiced, or mixed speech because the phase carries 

voicing information. However, the synthesis frequencies . must be spaced sufficiently 

close if the quality of the synthesized mixed or unvoiced frames is to be adequate. The 

disadvantage of this approach for reconstruction is the incompatibility with the concept of 

analysis-by-synthesis. 

MBE uses a quadratic interpolation method of reconstruction. This is also 

presented in Chapter 2 of this dissertation. The equations for the quadratic interpolation 

method are shown in equations 2-8, 2-9, and 2-10. This method of reconstruction also 

requires a complex algorithm for matching frequencies, in order to smoothly connect, the 
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sinusoids in one frame to the sinusoids of another frame. The MBE model requires 

voicing decisions, which complicate the synthesis routine even more. The complex 

frequency matching is needed independent of whether the phase information is 

transmitted or generated artificially in the synthesis routine. The disadvantage with this 

model is that the quadratic model is used only for the frequencies that have been declared 

voiced. A separate reconstruction method is necessary for the frequencies that have been 

declared unvoiced. In frames that have voiced frequencies and unvoiced frequencies, the 

two methods of reconstruction are directly summed to produce the output speech for the 

frame. The unvoiced reconstruction routine uses weighted overlap addition (OLA) as 

discussed in chapter 2. This method of reconstruction is also incompatible with the 

concept of analysis-by-synthesis. 

LFV is also a quadratic method of reconstruction but is only used when no phase 

information is transmitted [6], [7]. The phase information is not generated artificially in 

the synthesizer but rather it is tracked continuously across the frame boundaries forcing 

continuity at the pitch and the pitch harmonics. The equations used to smoothly connect 

the sinusoids from one frame to another are defined in section 3 .2.3. The LFV method 

also requires voicing decisions. The frequencies declared voiced are reconstructed using 

LFV and the unvoiced frequencies are generated using bandpass filtered white noise. 

This algorithm, just like the previous two, requires a complex algorithm to match 

frequencies from one frame to the next. The disadvantage with this approach is the 

incompatibility with the proposed analysis-by-synthesis approach to parameter 

estimation. The LFV method requires knowledge about the pitch estimate in the future 
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frame in order to generate synthetic speech for the current frame, which is not feasible in 

the proposed analysis-by-synthesis coder. 

The fourth method of reconstruction is overlap addition (OLA). The previous 

three methods are considered rather elegant methods for performing sinusoidal 

reconstruction but all three are susceptible to pitch errors. Pitch errors result in very 

annoying frequency chirps in the synthesized speech. The major advantage with OLA is 

that no complex frequency matching routine is needed to connect sinusoids across frame 

boundaries. Thus no future knowledge of the parameters is necessary for generating 

synthetic speech for the current frame. This is in contrast to the previous reconstruction 

methods discussed, making OLA the obvious choice for reconstructing speech for the 

proposed analysis-by-synthesis methods. 

OLA is described in the following manner. The input speech waveform is 

separated into frames using a finite length lowpass overlapping window function. Each 

frame is analyzed independently for the sinusoidal model parameters and each frame is 

synthesized independently using the sinusoidal model. In order to produce correct output 

speech, the frarn,es must overlap in the synthesizer. The output speech for any sample is 

defined in general using 

y[ n]= x[ n]w[R:... n]+ x[ n]w[2R-n]+ ... + x[ n]w[NR-n]. (5-14) 

This equation assumes an overlap of N frames and R determines the amount of 

overlap. The result is that any sample is defined to be the sum of N numbers. This 

concept is illustrated in Figure 5-3 for an overlap of N = 4 frames, using a 240 point 

Hamming window, and the ratio of frame length and number of overlapping frames gives 

R = 60 . The result in this case is that any output sample is the sum of 4 numbers, one 
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from the current frame's contribution and three from the three overlapping frame's 

contribution as given by 

y[ n]= x[ n]w[R-n]+ x[ n]w[2R-n] 
+ x[ n]w[2R-n]+ x[ n]w[4R-n]" 

l : : : 7\/\Z:\J 
J?C:1~ ~ ~ 1~ 1~ 2~1 

i_J~o -1~ ~1~ 1~ 2~1 

.:ro -1~0 -1~0~~00 21 

_:r -1~ -1~0 -~ ~ 
-200 -150 -100 -50 0 50 100 150 200 

n 

Figure 5-3. Reconstruction Using a Hamming Window 

(5-15) 

Using the concept of OLA, a formulation for the structure of the synthetic output 

speech is determined from equation 5-10. A frame of synthetic speech corresponding to 

the ~inusoidal model parameters for the current analysis frame independent of the 

previous output is generated using equation 5-10. Then the current output s[n] is 

overlapped and added to the weighted previous output samples, thus producing the actual 

synthetic speech estimate s [ n] . The amount of overlap is determined by the update rate 

of the analysis procedure. For example, if an overlap of 2 is being used then the full 

overlapped synthetic speech estimate s [ n] is represented by 
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s[ n]= wr [ n]sk-1[ n]+ wr[n-N]sk[n-N], (5-16) 

where s k [ n] is the synthetic speech corresponding to the current frame's model 

parameters and sk-l [ n] is the synthetic speech corresponding to the previous frame's 

model parameters. 

The window W7 [n] is the overlap addition reconstruction window used to smooth 

the overlapping speech segments. In general, the reconstruction window w r [ n] is 

designed with the constraint that 

(5-17) 

Equation 5-17 says that the full overlap of the windows must sum to be equal to unity, 

whether the overlap is 2, 3, etc. A number of window types are available, including 

triangular, Hamming, hanning, and trapezoidal to name a few. 

For the reasons previously stated in this section, the synthesis technique chosen in 

this dissertation is the Overlap Addition Method. Overlap addition has been shown to be 

capable of producing high quality synthetic speech using the sinusoidal model 

independent of whether the phase information is generated artificially in the synthesizer 

or transmitted to the synthesizer [3], [24]. The next section describes the combination of 

the analysis and synthesis procedures into an analysis-by-synthesis approach to determine 

the model parameters for the sinusoidal model. 
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5.4 Frequency-Domain Analysis-By-Synthesis Sinusoidal Model 

5.4.0 Introduction 

This section describes the development of a frequency-domain analysis-by-

synthesis method. The analysis and synthesis techniques.described in sections 5.2 and 5.3 

are combined to form a closed-loop analysis to estimate the model parameters using a 

mean-squared error approach. The frequency-domain approach assumes that no phase 

information is transmitted so the phase information is not available. A block diagram for 

the frequency-domain analysis-by-synthesis approach is shown in Figure 5-4. 

Input Speech 

s[n] 
\I/ 

DFT 
Magnitude 

\I/ l s[ k] 
Analysis ' Sinusoidal ' DFT ' .,, .,, .,, -

·. Synthesis s[n] Magnitude s[k] 1r-, 

PS I/ Error e[n] Perceptual 
I' .,, I/ 

Minimization ' Weighting I' 

Figure 5-4. Frequency-Domain Analysis-By-Synthesis Using Sinusoidal Model 

The parameters needed to synthesize speech using the sinusoidal model are pitch, 

voicing, synthesized phase, and spectral amplitudes. This parameter estimation is 

accomplished by first computing the magnitude spectrum of the input vector. Then a 

candidate sub-sampling period Ps is selected to represent the current analysis frame. 

Using the technique described in section 5.2 the amplitudes are estimated as a function of 
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the candidate sub-sampling period Ps . The spectral amplitudes are determined by sub-

sampling the magnitude spectrum. Since the assumption is that no phase information is 

available in the analyzer it must be generated in the synthesizer. The method for 

generating the synthetic phase is discussed in section 5.2 and presented in greater detail 

in Appendix A2. 

The next two sections provide the mathematical development for both the 

frequency-domain and time-domain analysis-by-synthesis methods. 

5.4.1 Frequency-Domain Analysis-By-Synthesis 

Using the parameter estimates presented above, the sinusoidal model is used to 

generate a frame of synthetic speech. The synthetic speech vector is subtracted from the 

input speech vector, and a mean-squared error value (MSE) is computed. The MSE is 

used to select another candidate sub-sampling period, which selects an alternate set of 

spectral amplitudes. This process is repeated until a MSE value is computed for each 

candidate sub-sampling period. The sub-sampling period that corresponds to the set of 

model parameters having the minimum MSE is chosen to represent the current frame of 

input speech. 

This procedure is written mathematically using the common notation for the 

mean-squared error as 

(5-18) 

where e[n] = sw [n ]- s[n ], sw [n] is the appropriately windowed input signal, and s[n] is 
r r 

given by equation 5-16. The input signal has the reconstruction window w r [n] applied so 
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that the comparison between the · input signal s[n] and the synthetic signal s[n] is 

approximately a one-to-one matching. The total error E, after substituting equation 5-16 

into equation 5-18 and substituting in the reconstruction window w r [n], is given as 

(5-19) 

The main problem in this approach is the fact that by generating the phase 

information artificially, the time alignment between the original input signal and the 

synthetic signal is lost. This problem is countered by performing the analysis-by-

synthesis in the frequency-domain using the magnitude spectrum and neglecting the 

phase response. 

The obvious problem with the frequency-domain approach is that equation 5-19 

would involve performing convolutions. Initially this problem is viewed as an extremely 

complex problem to solve because of the number of time varying parameters and the 

dependence on knowing. information about frequency-domain parameters using a time-

domain synthesis. This problem is simplified by redefining equation 5-16, making a 

number of assumptions about the generation of the synthetic signal, and performing the 

analysis-by-synthesis in the frequency-'domain. This problem is redefined using 

knowledge about the sub-sampling process. We know that the energy in the synthetic 

signal is not equal to the energy in the original signal as a result of the sub-sampling 

process. The problem is now defined by rewriting equation 5-16 in terms of a gain g 

multiplied by the weighted suni of sinusoids as given by 

(5-20) 
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Equation 5-18 is now rewritten by substituting equation 5-20 producing the new 

total error E as defined by 

(5-21) 

This equation does not lend itself to an easy minimum solution in either the time-domain 

or frequency-domain. The time-domain approach still has problems with misalignment 

because of the lack of phase information. The frequency-domain approach is simplified 

by making some reasonable assumptions. The first assumption is to perform the analysis 

before the reconstruction window is applied. The second is that the overlap is not 

included in the analysis of the current frame. The total error E is now rewritten using 

equation 5-20 and per the assumptions as 

1 N-1 

£ =-·I(s[n]-gs[n])2 

N n~o 
(5-22) 

where the frame designation k has been dropped. 

Note that the initial target is being defined without the overlap from the previous 

frame. This seems to be. a correct approach since the idea is to match the frequency 

response of the current frame of synthetic speech with that of the input frequency 

response. By including the overlap, the frequency response of the synthetic speech is 

distorted because of the effect of the reconstruction window. The current frame of 

synthetic speech is defined as a gain g multiplied by the synthetic speech generated 

using equation 5-10. The addition of the gain term seems appropriate because the 

magnitude spectrum of the synthetic speech has less energy than the magnitude spectrum 

of the input speech. By undersampling the magnitude spectrum, quantization error is 
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introduced into the reconstructed speech; the energy in the reconstructed speech is not 

equal to the energy of the original input speech as shown in Chapter 4. 

Equation 5-22 is written to reflect the frequency-domain approach by computing 

the magnitude spectrum of s[n] and gs[n] which is defined by 

E =-1 I(s(k)-os(k))2 
M k=O . 

(5-23) 

where the magnitude spectra are found using the DFT, M is the length of the DFT, and it 

is assumed that proper windowing has been applied. 

The total error E in equation 5-23 is the term that we want to minimize. The 

search procedure consists of finding the sub-sampling period Ps that produces a set of 

parameters that produces synthetic speech that best matches the input speech in a 

weighted least square error sense as shown in equation 5-23. 

First let us expand equation 5-23 by computing the square and substituting J for 

E; the reason becomes clear later. The total error J computed for each of the candidate 

sub-sampling periods Ps is given by 

(5-24) 

where the index i selects the ;th candidate sub-sampling period P/ and its corresponding 

spectral amplitudes selected by sub-sampling the magnitude spectrum. The total error f 

is associated with the current frame's parameters. 

As with any minimum error scheme, defining the appropriate match criterion is 

key to the success of the minimization process. Initially we want to match the original 

input signal to the corresponding synthetic signal, and in this case we are trying to match 
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the magnitude spectra. The target signal to be matched is defined to be E(0)(k) which is 

given by 

(5-25) 

The substitution of equation 5-25 into 5-24 leads to the new total error term defined as 

(5-26) 

The total error P is still dependent on the gain term G; and the candidate sub-sampling 

period P/. This is still a complex problem that calls for solving for G; and P/ 

simultaneously. An alternate approach is to solve for the two parameters sequentially. 

The sequential approach is as follows: solve for the optimum G; using equation 5-26, 

then solve for P/ given the optimum gain G;. 

The gain is found by computing the partial derivative of J; with respect to the 

gain G; , and setting the result equal to zero and solving. This is given in the following 

two equations. 

M-1 

IE(o)(k )s(k y 
Gi = _k=_O ____ _ 

M-1 

Is 2 (kY 
k=O 

(5-27) 

(5-28) 

Equation 5-28 is the normal form of the cross-correlation. In order to find the 

optimal minimum MSE sub-sampling period equation 5-26 is set equal to zero as shown 

by 
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M~ M~ M~ 

f = IE(0)2(k)-2IGiE(0)(k)S(kY + LG2iS2 (kY =0. (5-29) 
k=O k=O k=O 

The target E(o) is not a function of the index i so equation 5-29 is rewritten by 

moving the target energy term to the left side producing 

M~ M~ M~ 
LE(o)2(k):?: 2LGiE(o)(k)s(kY - IG2iS 2 (kY (5-30) 
k=O k=O k=O 

This inequality is motivated in the following way. The term on the left side of the 

inequality is the autocorrelation of the target vector. · This value represents the best 

possible match between the target vector E(o) and the synthesized magnitude spectrum 

Gi S(k f. This would suggest that we would want to maximize the term on the right side 

of the inequality. This is fine if G; is a positive value, but the gain G; is a quantity that is 

either positive or negative. Since G; can be negative, there is a possibility that the 

autocorrelation of the target E(o) is equal to a negative value. This problem is easily 

solved by the fact that the only way G; is going to be negative is if the quantity 

S(k Y E(o) results in a negative value. If this happens then the term on the right side of 

equation 5-30 has a positive result, since G(;) and S{k Y E(o) are both negative. The right 

side of equation 5-30 is largest when the synthetic speech vector S(k Y approaches the 

target vector E(o). This suggests that the optimum minimum MSE is determined by 

M-1 M-1 

maximizing the quantity 2IGiS(kY E(o) - IGi 2S2 (kY as shown by 
k=O k=O 

M-1 M-1 

M~ = 2IGiS(kY E(o) _ IGi2S2 (kY. (5-31) 
k=O k=O 
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Equation 5-31 is referred to as the match score M! for the current set of model 

parameters and is rewritten in a more compact form by substituting the optimal gain G; 

from equation 5-28 into equation 5-31. The result is the following match score 

(5-32) 

k=O 

This is the squared cross-correlation of the target vector and the synthesized magnitude 

spectrum normalized by the energy in the synthetic magnitude spectrum corresponding to 

index i, which directly relates to the optimum sub-sampling period P/. 

In summary, a set of candidate sub-sampling periods is selected to represent the 

current analysis frame. This vector is denoted as P/ and typically ranges from 20 

samples to 114 samples for speech signals. For each value of Ps;, a gain G; and a match 

score M! are computed as shown in equations 5-28 and 5-32. Since the match score is a 

maximizing function, the sub-sampling period corresponding to the largest match score is 

selected to represent the current analysis frame along with the corresponding gain and 

amplitudes. The following paragraphs discuss the results of the frequency-domain 

analysis-by-synthesis method derived above. 

For ease of development, clarity, and without loss of generality the development 

of the previous equations are written in terms of vector notation. This is acceptable since 

it is equivalent to dividing the input data into frames. The total error now becomes 

(5-33) 
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As above, the match criterion is defined as the current frame's synthetic speech 

scaled by a gain g . The match criterion vector for the current synthesis frame is given by 

" -s =gs (5-34) 

Since this is a frequency-domain approach, equations 5-33 and 5-34 must be 

rewritten in terms of the magnitude spectrum. The general form for computing the 

minimum total error, using an alternate notation, is rewritten as 

J = II E 112 = E~ + E; + .. + E~ . (5-35) 

The new match criterion equation defined in terms of the magnitude spectrum is defined 

by 

" -S=GS, (5-36) 

where S and S are computed using equation 5-2, and the magnitude spectrum are found 

using equation 5-3 of the input speech signal and the synthetic speech signal, 

respectively. 

The common forin for the error vector J is a perceptually weighted difference 

between the magnitude spectrum of the input speech vector and the magnitude spectrum 

of the synthetic speech vector defined as 

(5-37) 

where W is a lower triangular matrix that represents the impulse response of the 

perceptual weighting filter [20], [26]. The perceptual weighting is included without loss 

of generality or clarity as is discussed in a later section. The index i determines the 

synthetic speech vector that corresponds to a given candidate sub-sampling period Ps and 

the associated voicing decisions, phases, and spectral amplitudes. 
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From equation 5-37 a target vector is defined by E(o) = WS. Now by substituting 

equation 5-36 into equation 5-37 and rewriting, a new error vector is specified in terms of 

the target vector as 

(5-38) 

Substituting equation 5-38 into equation 5-35 leads to the following error metric. 

(5-39) 

J is the total squared error sum corresponding to the candidate sub-sampling period 

vector P: , and T is the transpose of the vector. Since J is a function of both G and i 

then an optimal G is found for a given index i . This is accomplished by computing the 

partial derivative of J with respect to the gain G and then setting the derivative equal to 

zero. This is computationally shown as 

(5-40) 

This equation is solved to find an optimal gain G , in the minimum mean-squared 

error sense. The optimal gain G is found from computing the normalized cross-

correlation between the target vector E(o) and the synthetic speech vector Si 

corresponding to index i as shown by 

(5-41) 

To determine the optimal minimum MSE sub-sampling period P:, equation 5-39 

is set equal to zero as shown in the equation below. 

(5-42) 
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Since the target vector E(o) is not a function of index i it is moved to the left side 

producing the following equation. 

(5-43) 

This inequality is motivated in the following way. The term on the left side of the 

inequality is the autocorrelation (energy) of the target vector. This value represents the 

best possible match between the target vector E(o) and the synthesized speech Gisi. This 

would suggest that we would want to maximize the term on the right side of the 

inequality. This is fine if Gi is a positive value, but the gain Gi is a quantity that is 

either positive or negative. Since G i can be negative, there is a possibility that the 

autocorrelation of E(o)Y is equal to a negative value. This problem is easily solved by the 

fact that the only way Gi is negative is if the quantity siTE(o) results in a negative value. 

If this happens then the term on the right side of equation 5-43 has a positive result, since 

Gi and Si T E(o) are both negative. The right side of equation 5-43 is largest when the 

synthetic speech vector Si approaches the target vector E(o). This suggests that the 

optimum minimum mean-squared error index i is found by maximizing the quantity 

2GiSiTE(o) _Gi 2SiTsi' as given by 

(5-44) 

Equation 5-44 is referred to as the match score for the current set of model 

parameters and is rewritten in a more compact form by substituting the optimal gain G 

from equation 5-41 into equation 5-44. The result is the following expression for the 

match score 
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(5-45) 

This is the squared cross-correlation of the target vector and the synthesized speech 

normalized by the energy in the synthetic speech vector corresponding to index i . 

In summary, a set of candidate sub-sampling periods is selected to represent the 

current analysis frame. This vector is denoted as P; and typically ranges from 20 

samples to 114 samples for speech signals. For each value of P;, a gain Gi and a match 

score Mi are computed as shown in equations 5-39 and 5-43. Since the match score is a 

maximizing function, the sub-sampling period corresponding to the largest match score is 

selected to represent the current analysis frame along with the corresponding gain and 

amplitudes. The following paragraphs discuss the simulation of the frequency-domain 

analysis-by-synthesis method derived above. 

5.4.2 Simulation 

5.4.2.0 Introduction 

This section describes the simulation of the :frequency-domain analysis-by-

synthesis method derived in this section. The simulation is written in the 'C' 

programming language on a Sun Spare Workstation Ultra 170. The idea here is to prove 

the concept of the :frequency-domain analysis-by-synthesis approach so complexity is 

considered to be of secondary importance. While this is a simulation it is worth noting 

that since no phase information is necessary to perform the analysis, this simulation is 

naturally targeted towards low bit rates. 
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The input signals used in this simulation are quantized using 16 bits and sampled 

at 8,000 samples per second. The input signal is windowed using a 240 (30ms) point 

square-root of Hamming window. This windowed signal represents a frame of speech. 

This window has less smearing of the main lobe and higher side lobes as compared to a 

regular Hamming but has more smearing of the main lobe and greater attenuation of the 

side lobes as compared to a rectangular window. The analysis window is updated by 

shifting across in 7.5ms intervals (60 Samples). Assuming the center of the window is the 

time reference, this update structure results in an overlap of 90 samples in the Pll:St and 90 

samples in the future. 

The magnitude spectrum of the input signal is computed using the DFT. As stated 

in section 5.2, the length of the DFT is chosen to provide appropriate resolution for 

selection of the spectral amplitudes. The DFT length chosen is M = 16,384. This length 

provides a resolution of approximately 0.5 Hz for 8 KHz sampled signals. This 

magnitude spectrum is sub-sampled producing a set of spectral amplitudes for a given 

candidate sub-sampling period. 

The phase information is computed as presented in section 5.2. A cubic spline is 

fitted to the logarithm of the spectral amplitudes for each of the corresponding candidate 

sub-sampling periods. A set of cepstral coefficients is found for each of the 

corresponding candidate sub-sampling periods that provide a good fit to the cubic spline 

envelope. These cepstral coefficients are then used to compute the system phase for the 

sinusoidal model. This phase parameter is only computed at the sample points. 

The range for the sub-sampling period Ps is selected to be 20 to 114 samples. 

While the sub-sampling period is defined on a finite range the number of possible sub-
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sampling candidates is refined further. The process is divided into two stages. The first 

stage performs the analysis-by-synthesis on only the integer sub-sampling periods. The 

second stage is used to perform a refinement by searching . ± 2 samples around the integer 

sub-sampling candidate producing the highest match score, in the stage one analysis, in 

0.2 sample increments. 

After obtaining the spectral amplitudes for each of the corresponding candidate 

sub-sampling periods, a set of voicing decisions are_ computed. The voicing decisions 

determine which spectral amplitudes in a given frame are to be generated as either voiced 

or unvoiced. The frequency-domain approach developed in EMBE is used to determine 

the voicing decisions. This method is·detailed in Chapter 3. 

For each of the candidate sub-sampling periods a synthetic signal is generated 

using the sinusoidal model with OLA. The synthetic signals are compared in a least 

mean-squared error sense to the original input signal. An optimum gain and a match 

score are found for each of the corresponding synthetic signals where the parameter set 

producing the highest match score is chosen to represent the current frame. 

The following paragraphs discuss in more detail the signals used in testing the 

concept of frequency-domain analysis-by-synthesis, the sub-sampling process, the 

analysis-by-synthesis loop, the match scores, and the resulting sub-sampling contour. 

5.4.2.1 Test Signals 

Three signals are used to test the frequency-domain analysis-by-synthesis process. 

The first signal shown in Figure 5-5 is a constant tone that is generated from a weighted 

sum of sinusoids where the fundamental frequency is equal to approximately 126 Hz. 

This signal is used to test the response to an all voiced speech signal. 
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Figure 5-5. All Voiced Signal 
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2500 

The second signal shown in Figure 5-6 is bandlimited white noise that is also 

generated from a sum of weighted sinusoids with no periodic structure (the frequencies 

are selected arbitrarily). This signal is used to test the response to an all unvoiced signal. 

0 100 200 300 400 500 600 700 800 900 
Time 

Figure 5-6. All Unvoiced Signal 
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The third signal shown in Figure 5-7 is a speech signal with no noise and is the 

word "Figure". This signal is used to test the response to a segment of speech that is 

composed of both voiced and unvoiced (mixed) excitation. All three signals are used to 

test the response of the analysis-by-synthesis loop for the frequency-domain and time-

domain approach. The following section describes the sub-sampling process for each of 

the test signals presented in this section. 
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Figure 5-7. The Word "Figure" 

5.4.2.2 Sub-Sampling Process 

In order to some provide clarity about the sub-sampling process a number of 

examples are shown below. Figure 5-8 shows the sample points selected in the magnitude 

spectrum of the all voiced signal when the candidate sub-sampling period is equal to 20 

samples. This candidate sub-sampling period produces only 9 sample points, which are 

designated by the 'x'. This is clearly not enough sample points to produce an accurate 
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representation of the original input magnitude spectrum. It is also worth noting that none 

of the sample points is near the peaks where most of the energy is contained. 
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Figure 5-8. All Voiced Magnitude Spectrum Sub-Sampled with Ps = 20 

The second example of the sub-sampling process is provided in Figure 5-9. The 

candidate sub-sampling period in this case is 114 samples. The number of sample points 

that correspond to this sub-sampling period is 56. The larger number of sample points 

appears to results in a closer approximation to the original magnitude spectrum but the 

sample points still do not occur near the spectral peaks where the largest energy 

concentrations are located. 
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Figure 5-9. All Voiced Magnitude Spectrum Sub-Sampled with Ps = 114 

The three Figures 5-10, 5-11 and 5-12 below represent how the sample points 

change as the optimum sub-sampling period is approached and then passed over. Figure 

5-10 shows that the sampling points are starting to select the spectral peaks that are 

present in the magnitude spectrum. But, notice the high frequency region is not being 

sampled at the appropriate spectral peaks. This error in matching the peaks of the 

magnitude spectrum is comparable to the error associated with selecting a pitch that is 

close to the correct pitch but is off by a fraction of a Hertz as is associated with the STC 

and MBE models. For these models, if the pitch is off even by a fractional value then the 

error in the sampling process has a multiplicative effect as the magnitude spectrum is 

being sampled. 
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Figure 5-10. All Voiced MagQ.itude Spectrum Sub-Sampled with P5 = 62.80 

Figure 5-11 represents the candidate sub-sampling period that generates a 

magnitude spectrum which corresponds "best" to the magnitude spectrum of the original 

input speech signal. Notice that each of the sample points select all the spectral peaks in 

the magnitude spectrum independent of the frequency region. 
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Figure 5-11. All Voiced Magnitude Spectrum Sub-Sampled with Ps = 63.20 

As the candidate sub-sampling period is incremented past the "best" sub-sampling 

period the spectral peaks in the high frequency region of the magnitude spectrum are no 

longer represented accurately. This is seen in Figure 5-12. 
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Figure 5-12. All Voiced Magnitude Spectrum Sub-Sampled with Ps = 63.40 
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Figure 5-13 shows the sample points selected in the magnitude spectrum of the all 

unvoiced signal when the candidate sub-sampling period is equal to 20 samples. Again, 

this is clearly not enough sample points to produce ' an accurate representation of the 

original input magnitude spectrum. The idea is still to model the original magnitude 

spectrum with minimum error. So even for the unvoiced signal it is important to represent 

the high energy frequencies in the sub-sampling process. 
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Figure 5-13. All Unvoiced Magnitude Spectrum Sub-Sampled with P. = 20 

The second example of the sub-sampling process for the all unvoiced signal is 

provided in Figure 5-14. The candidate sub-sampling period in this case is 114 samples. 

Again, the larger number of sample points appears to result in a close approximation to 

the original magnitude spectrum. In contrast to the all voiced signal the sample points for 

a sub-sampling· period of 114 provides a much closer representation to the original 

magnitude spectrum. This seems to be appropriate since a large number of sinusoids are 

necessary to generate a noise signal. 
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Figure 5-14. All Unvoiced Magnitude Spectrum Sub-Sampled with Ps = 114 

A third example of the sub-sampling process · for the all unvoiced signal 1s 

provided in Figure 5-15. The candidate sub-sampling period in this case is 75 samples. 

Again, the larger number of sample points, compared to the sub-sampling period of 20, 

appears to result in a close approximation to the original magnitude spectrum. 
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Figure 5-15. All Unvoiced Magnitude Spectrum Sub-Sampled with Ps = 75 

Figure 5-16 shows the sample points selected in the magnitude spectrum of the 

mixed excitation signal when .the candidate sub-sampling period is equal to 20 samples. 

Again, this is clearly not enough sample points to produce an accurate representation of 

the original input magnitude spectrum. 
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Figure 5-16. Speech Magnitude Spectrum Sub-Sampled with Ps = 20 

The second example of the sub-sampling process for the mixed excitation signal 

is provided in Figure 5-17. The candidate sub-sampling period in this case is 114 

samples. The large number of sample points does not result in a close approximation to 

the original magnitude spectrum. In the three test signals, it is obvious that an arbitrarily 

high sub-sampling period does not result in the appropriate selection of spectral 

amplitudes. 
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Figure 5-17. Speech Magnitude Spectrum Sub-Sampled with Ps = 114 

Figures 5-18 and 5-19 below represent how the sample points change as the 

optimum sub-sampling period is approached for a mixed excitation signal. Figure 5-18 

shows that the sampling points are starting to select the spectral peaks that are present in 

the magnitude spectrum. The low frequency and high frequency regions appear to be 

sampled properly but the mid-frequency region is not being sampled properly. In Figure 

5-19 the low and mid-frequency regions are sampled properly but the high frequency 

region is not sampled properly. 
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Figure 5-18. Speech Magnitude Spectrum Sub-Sampled with Ps = 61.2 
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Figure 5-19. Speech Magnitude Spectrum Sub-Sampled with Ps = 62.4 
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5.4.2.3 Analysis-By-Synthesis Loop 

This section describes in more detail the operation of the analysis-by-synthesis 

loop. A comparison of the original magnitude spectrum with the synthetic magnitude 

spectrum is provided for a particular frame of all three of the test signals. 

The first test signal is the all voiced constant tone. Figure 5-20 displays the . 

original magnitude spectrum in the top plot and the synthetic magnitude spectrum for a 

frame of the all voiced signal at a sub-sampling period of 20 samples. The sub-sampling 

period of 20 samples and the corresponding spectral amplitudes do not produce an 

appropriate magnitude spectrum as is clearly obvious. The original magnitude spectrum 

has approximately 30 spectral peaks and the synthetic magnitude spectrum only has 9 

spectral peaks. 
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Figure 5-20. Original Magnitude Spectrum and All Voiced Synthetic Magnitude 
Spectrum for Ps = 20 

Figure 5-21 shows the original magnitude spectrum in the top plot and the 

synthetic magnitude spectrum for a frame of the all voiced signal at a sub-sampling 
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period of 114 samples. The sub-sampling period of 114 samples and the corresponding 

spectral amplitudes do not produce an appropriate magnitude spectrum although the 

higher sub-sampling rate produces a closer approximation than for a sub-sampling period 

PS= 20. 
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Figure 5-21. Original Magnitude Spectrum and All Voiced Synthetic Magnitude 
Spectrum for Ps = 114 

Figures 5-22, 5-23, and 5-24 show the convergence of the analysis-by-synthesis 

loop. As the optimum sub-sampling period is approached the synthetic all voiced 

magnitude spectrum converges to the original magnitude spectrum. The synthetic all 

voiced magnitude spectrum corresponding to Ps = 62.76 is shown at the bottom of 

Figure 5-22. This synthetic magnitude spectrum matches the original magnitude spectrum 

best in the formant regions but does not match well in the frequency ranges from 800 to 

1,200 Hz and from 2,400 to 2,800 Hz. The synthetic all voiced magnitude spectrum for 

Ps = 63.2 is presented at the bottom of Figure 5-23. Again the best matches between the 
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synthetic magnitude spectrum and the original magnitude spectrum occur in the formant 

regions. The high frequency region for this sub-sampling period does appear to have 

better shape over the previous candidate. As the sub-sampling period is incremented to 

Ps = 63.4, the synthetic all voiced magnitude spectrum shown at the bottom of Figure5-

24 again matches best in the formant regions. The high frequency region for this sub-

sampling period does not appear to match as well as the previous sub-sampling period. 

The process of selecting the synthetic all voiced magnitude spectrum that best matches 

the original is very difficult, which is the reason for the development of the objective 

measure presented in this dissertation. 
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Figure 5-22. Original Magnitude Spectrum and All Voiced Synthetic Magnitude 
Spectrum for P5 = 62.80 
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Figure 5-23. Original Magnitude Spectrum and All Voiced Synthetic Magnitude 
Spectrum for Ps = 63.2 

1010 

Q) 
"O 
::, 

"" C 

~ 105 
2 

0 500 1000 1500 2000 2500 3000 3500 4000 
Frequency (Hz) 

1010 

Q) 
"O 

~ 
C 
C) 

~ 105 

0 500 1000 1500 2000 2500 3000 3500 4000 
Frequency (Hz) 

Figure 5-24. Original Magnitude Spectrum and All Voiced Synthetic Magnitude 
Spectrum for Ps = 63.4 

The next three figures show the relationship between the original all unvoiced 

magnitude spectrum and the synthetic all unvoiced magnitude spectrum for sub-sampling 



151 

periods of Ps = 20, Ps = 114, and Ps = 75, shown in Figures 5-25, 5-26, and 5-27, 

respectively. The synthetic magnitude spectra in Figures 5-25 and 5-27 do not represent 

accurately the original magnitude spectrum while the synthetic magnitude spectrum of 

Figure 5-26 appears to be a good match. The synthetic all unvoiced magnitude spectrum 

for Ps = 20 looks like a voiced spectrum because of the low number of sample points 

which suggest that the sub-sampling period should be higher. The synthetic all unvoiced 

magnitude spectrum for Ps = 7 5 again appears to have too much harmonic structure to be 

a good match for the original magnitude spectrum. As the sub-sampling period is 

increased, the synthetic all unvoiced magnitude spectrum takes on the shape of the 

original all unvoiced magnitude spectrum. 
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Figure 5-25. Original Magnitude Spectrum and All Unvoiced Synthetic Magnitude 
Spectrum for P. = 20 
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Figure 5-26. Original Magnitude Spectrum and All Unvoiced Synthetic Magnitude 
Spectrum for Ps = 114 
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Figure 5-27. Original Magnitude Spectrum and All Unvoiced Synthetic Magnitude 
Spectrum for Ps = 75 

The next set of figures is an analysis of the response of the frequency-domain 

analysis-by-synthesis to a frame of a real speech signal. Once again the synthetic 
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magnitude spectrum shown in Figure 5-28 and corresponding to Ps = 20 does not match 

the original magnitude spectrum because of the low number of sampling points. 
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Figure 5-28. Original Magnitude Spectrum and "Figure" Synthetic Magnitude 
Spectrum for Ps = 20 

If a synthetic magnitude spectrum is generated for a sub-sampling period of 

Ps = 114, then the magnitude spectrum starts looking like an unvoiced spectrum as 

shown in Figure 5-29. This is a result of the high number of sample points (56). 
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Figure 5-29. Original Magnitude Spectrum and "Figure" Synthetic Magnitude 
Spectrum for Ps = 114 

As previously stated, subjectively selecting the synthetic magnitude spectrum that 

best matches the original magnitude spectrum is a difficult task. This is clearly obvious in 

the analysis for this particular frame of speech. The original magnitude spectrum appears 

to have a strong voiced region, an unvoiced region, and a voiced region. The synthetic 

magnitude spectra corresponding to Ps = 61.2 and Ps = 62.4 shown in Figures 5-30 and 

5-31 exhibit the properties of a frame of speech that is declared entirely voiced. This 

issue is addressed in the conclusion. Disregarding the potential error in the voicing 

decisions, both synthetic magnitude spectra are representative of the original magnitude 

spectrum. The synthetic magnitude spectrum of Figure 5-31 does appear to model the last 

peak of the original magnitude spectrum better that the synthetic magnitude spectrum of 

Figure 5-30. The next section discusses the match scores for all three test signals. 
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Figure 5-30. Original Magnitude Spectrum and "Figure" Synthetic Magnitude 
Spectrum for Ps = 61.20 

0 500 1000 1500 2000 2500 3000 3500 4000 
Frequency (Hz) 

0 500 1000 1500 2000 2500 3000 3500 4000 
Frequency (Hz) 

Figure 5-31. Original Magnitude Spectrum and "Figure" Synthetic Magnitude 
Spectrum for Ps = 62.40 
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5.4.2.4 Match Scores 

This section discusses the match scores for the frames of speech that are being 

analyzed thus far in this chapter. The match scores represent how well the synthetic 

magnitude spectrum, given an optimum gain, for each candidate sub-sampling period 

corresponds to the original magnitude spectrum. 

The process of finding the optimum sub-sampling period is split into a two stage 

process because of the shear computational complexity of the problem ( correlation of 

sequences of length 8,192). The first stage computes the match scores for all the possible 

integer sub-sampling periods, and stage two performs a refinement around the sub­

sampling period producing the highest match score in the first stage. This refinement 

ranges plus and minus two samples in 0.2 increments. The results for a particular frame 

are presented below. 

The integer match scores for the synthetic all voiced magnitude spectrum is 

shown in Figure 5-32. Note, there are a number of methods for finding the minimum 

solution to the mean-squared error problem as developed in section 5.4, but for the 

methods to work correctly only one minimum should exist. In the case of analyzing 

speech or speech like signals using analysis-by-synthesis it is clearly seen that these 

signals have more than one possible minimum value as shown in Figure 5-32 and in the 

following figures. 

The integer match scores for the synthetic all voiced magnitude spectra have 6 

possible maxima for this particular frame of the all voiced signal. This is the first 

indication that the frequency-domain analysis-by-synthesis approach to selecting the 

appropriate sub-sampling period is correct. 
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The all voiced signal has a fundamental frequency equal to approximately 126 Hz 

or 63.4 samples. The sub-sampling period producing the highest match score is 63 

samples. It is also worth pointing out that a potential maximum occurs at the integer sub-

sampling period of 32 samples, this corresponds to the effect of pitch doubling present in 

the common open-loop pitch estimation algorithms. The other potential maximum match 

scores are a result of other sub-sampling periods providing reasonable fits to the original 

magnitude spectrum in specific frequency ranges. 
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Figure 5-32. Match Scores for Integer Sub-Sampling Periods of the All Voiced 
Signal 

The set of match scores corresponding to the fractional sub-sampling periods is 

shown in Figure 5-33. The sub-sampling period resulting in the highest match score is 

63.2 samples, although the sub-sampling periods of 63 and 63.4 also produce high match 

scores. This is not exactly equal to the fundamental frequency of the original all voiced 

signal. The error is associated with the resolution in the DFT. It is commonly known that 

the longer the DFT the more accurate the frequency resolution of the signal being 
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analyzed. Typically, the more accurate frequency resolution is obtained by padding the 

input signal with zeros. In this case, if an even longer OFT is used then the sub-sampling 

period corresponding to the exact fundamental frequency is probable. 
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Figure 5-33. Match Scores for Fractional Sub-Sampling Periods of the All Voiced 
Signal 

The match scores corresponding to the synthetic all unvoiced magnitude spectrum 

are presented in Figures 5-34 and 5-35. As stated previously, the synthetic all unvoiced 

magnitude spectrum becomes a closer match as the sub-sampling period is increased. 

This is shown to be the case in Figure 5-34. Notice that as the sub-sampling period is 

increased there is a steady although not continuous climb in match score. Again, note the 

number of potential maximum values possible when trying to minimize along the line. 

The match scores for the fractional sub-sampling periods are shown in Figure 5-

35. In this case the sub-sampling period producing the highest match score is the same as 

in the integer case. Sub-sampling periods that do not fall within the range of 20 to 114 are 

not considered to be reliable candidates and are not considered. 
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Figure 5-34. Match Scores for Integer Sub-Sampling Periods of the All Unvoiced 
Signal 

X 1010 

11) 

16 

14 

12 

!!! 
8 10 

Cl) 

..c: 
~ 8 
:ii: 

6 

4 

2 

0 

) 
I) i) 

I) (Ll ) CD 

(i) ) 

112 112.2 112.4 112.6 112.8 113 113.2 113.4 113.6 113.8 114 
Sub-Sampling Candidate 

Figure 5-35. Match Scores for Fractional Sub-Sampling Periods of the All Unvoiced 
Signal 

The first two signals, the all voiced and all unvoiced, produce match score 

contours that produce the appropriate selection of sub-sampling period as is expected for 

nearly ideal conditions. The final test is to determine the match scores in response to a 
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frame of a real speech signal, the word "Figure". The integer sub-sampling period match 

scores are presented in Figure 5-36 and the fractional sub-sampling match scores are 

presented in Figure 5-37. Again, there are a number of potential maxima on the match 

score contour ( a line). The integer sub-sampling period producing the highest match 

score is 62 samples. This sub-sampling period is then refined over the range 60 to 64 

samples with Ps = 62.4 producing the highest match score. B.ased on observation and 

experience with this particular word the sub-sampling period found using the frequency-

domain analysis-by-synthesis is a reasonable estimate. The next section discusses the 

resulting sub-sampling period contour produced after analyzing each of the test signals. 
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Figure 5-36. Match Scores for Integer Sub-Sampling Periods of the Word "Figure" 
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Figure 5-37. Match Scores for Fractional Sub-Sampling Periods of the Word 
"Figure" 

5.4.2.5 Sub-Sampling Period Contour 

This section discusses the results of the sub-sampling period contour obtained by 

analyzing the entire test signals: all voiced, all unvoiced, and the word "Figure". Since 

the all voiced signal is a constant tone it is expected that the sub-sampling period contour 

would also be constant. Figure 5-38 shows the sub-sampling period contour produced 

using the frequency-domain analysis-by-synthesis method to estimate the sub-sampling 

period. The contour, as expected, is constant except in the transition regions at the 

beginning and end of the signal. 
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The second test signal is an all unvoiced signal. In contrast to the constant tone it 

is expected that the sub-sampling period contour would not be constant but vary from 

frame-to-frame. Also it is expected that the sub-sampling periods would be biased 

towards the higher sub-sampling periods. Figure 5-39 shows the sub-sampling period 

contour produced using frequency-domain analysis-by-synthesis to estimate the sub-

sampling period. The contour, as expected, is not constant from frame-to-frame and is 

biased towards the higher sub-sampling periods. 
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The third test signal and the real key to the success of the frequency-domain 

analysis-by-synthesis method is a real speech signal. Unlike the all voiced signal, which 

is a constant tone, the speech signal in general is a time-varying signal so the fundamental 

frequency varies from frame-to-frame. The sub-sampling period contour is expected to 

vary slightly from frame-to-fame in the areas of voiced speech and be biased towards the 

higher sub-sampling periods. Figure 5-40 shows the sub-sampling period contour 

produced using frequency-domain analysis-by-synthesis to estimate the sub-sampling 

period. The contour, as expected, is not constant from frame-to-frame but tracks the time-

varying properties of the speech signal from frame-to-frame in the voiced regions. In the 

transition and unvoiced regions the sub-sampling period contour is biased towards the 

higher sub-sampling periods. The next section describes the synthetic signals produced 

from parameter estimates obtained by the frequency-domain analysis-by-synthesis 

method. 
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5.4.2.6 Synthesized Test Signals 
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This section looks at the resulting synthetic signals produced from the parameter 

estimates obtained from the frequency-domain analysis-by-synthesis approach and using 

the sinusoidal model for reconstructing the synthetic signal. · 

The three test signals, all voiced, all unvoiced, and the word "Figure", are shown 

in Figures 5-41, 5-42, and 5-43, respectively. The synthetic all voiced signal is a close 

approximation to the original all voiced signal shown in Figure 5-5. The main differences 

are that the synthetic signal is delayed, the onset is not as sharp, and the amplitude 

modulation is slightly enhanced. There is a difference in the maximum and minimum 

values in the synthetic signal but this is dismissed because the reconstructed signal is 

guaranteed to be out of phase with the original signal thus producing the difference in 

maximum and minimum values. 
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The synthetic all unvoiced signal is not a good approximation to the original all 

unvoiced signal. Again the reconstructed signal is delayed and the maximum and 

minimum values are different. One interesting note is that the reconstructed signal 

appears to have more structure than the original all unvoiced signal. This is attributed to 

the phase difference between the original and the reconstructed. 

The reconstructed signal for the word "Figure" does not resemble the original 

signal. The synthetic signal is delayed, the noise regions are attenuated, and the harmonic 

structure is stronger in the voiced regions. The latter two are attributed to the fact that the 

phase relationship between the synthetic and original signal is different. While all three of 

the synthetic test signals have a few differences, the true test is the listening test. If the 

synthetic speech looks almost exactly like the original but does not sound anything like 

the original then the method would not be useful for analysis or synthesis. If the synthetic 

speech is similar to the original and sounds like the original then the method is useful for 

analysis and synthesis. In all three cases the synthetic signal sounds similar to the original 

signal. 



Q) 
"C 
:J 

2 

i 0 
E 
<( 

-1 

-2 

-3'--~~--'--~~__J._~~-----'-~~~'--~~-'-~~-'------' 
0 

2 

-1 

-2 

500 1000 1500 
Time 

2000 2500 

Figure 5-41. Synthetic All Voiced Signal 

3000 

-3'---~~-'-~~~-'---~~---''--~~-----'-~~~--'--~--' 
0 200 400 600 

Time 
800 1000 

Figure 5-42. Synthetic All Unvoiced Signal 

166 



Q) 
"O 

X 104 

3~--~ --~---~--~- - - ~~ 

2 

~ 01--------.A.ll'III a. 
E 
<( 

-1 

-2 

-3~--~-----'-----'------'-----'--~ 
0 500 1000 1500 

Time 
2000 

Figure 5-43. Synthetic Word "Figure" 

5.4.2. 7 Conclusion 

2500 

167 

In section 5.4 a frequency-domain analysis-by-synthesis method of selecting the 

appropriate parameters for the sinusoidal model was developed. A complete theoretical 

development was presented along with the simulation results. 

The simulation was tested on three different test signals: an all voiced, an all 

unvoiced, and a speech signal (the word "Figure"). The all voiced signal is used to test 

the response of the system on a constant tone. In contrast to the all voiced signal, the all 

unvoiced signal is used to test the system response to a noise signal. Both of these 

represent the ideal conditions for pure voiced speech and pure unvoiced speech. The 

word "Figure" is added to test the system response to a more realistic signal. 

The frequency-domain analysis-by-synthesis method is shown to respond as 

expected given the signals tested. A major disadvantage to the frequency-domain 

approach is the amount of computational complexity required to perform the analysis-by-
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synthesis loop. The DFT length chosen is 16,384 points. The analysis-by-synthesis loop 

has to perform correlations on sequences of length 8,192. This is done for 95 integer sub­

sampling periods and a maximum of 21 fractional sub-sampling periods. A second 

weakness is in tying the voicing decisions into the analysis-by-synthesis loop, as is 

evident in the reconstruction of the synthetic all voiced magnitude spectrum shown in 

Figures 5-22, 5-23, and 5-24. 

The next section introduces an alternate approach to the frequency-domain 

analysis-by-synthesis approach presented in this section. The alternate approach is a time­

domain analysis-by-synthesis method. 

5.5 Time-Domain Analysis-By-Synthesis Sinusoidal Model 

5.5.0 Introduction 

This section describes the development of the time-domain analysis-by-synthesis 

method. The analysis and synthesis techniques described in sections 5.2 and 5.3 are 

combined in a closed-loop fashion to estimate the model parameters using a mean­

squared error approach similar to that described in the frequency-domain section. The 

time-domain approach differs from the frequency-domain approach in that the 

assumption is that phase information is transmitted, thus the phase information is 

available in the analyzer and the synthesizer. A block diagram for the time-domain 

analysis-by-synthesis approach is shown in Figure 5-5. 
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Figure 5-44. Time-Domain Analysis-By-Synthesis Using Sinusoidal Model 

First, the input vector is analyzed by computing the magnitude and phase 

response of the DFT. Then a candidate sub-sampling period Ps is selected to represent 

the current analysis frame. Using the technique described in section 5.2 the amplitudes 

and phases are estimated as a function of the candidate sub-sampling period. The 

parameters needed to synthesize speech using the sinusoidal model are sub-sampling 

period, phase, and spectral amplitudes. Using these parameter estimates, the sinusoidal 

model is used to generate a frame of synthetic speech. The synthetic speech vector is 

subtracted from the input speech vector and a MSE value is computed. The MSE is used 

to select another sampling period, which selects an alternate set of amplitudes and phases. 

This process is repeated until a MSE value is computed for each candidate sub-sampling 

period. The sub:.sampling period that selects the set of model parameters having the 

minimum MSE is chosen to represent the current frame of input speech. 

The search procedure consists of finding a sub-sampling period that produces the 

set of parameters that in tum produces synthetic speech that best matches the input 

speech in a weighted least square error sense. The next section describes the 



170 

mathematical development for the time-domain analysis-by-synthesis procedure used to 

determine the parameters for the sinusoidal model of reconstruction. 

5.5.1 Time-Domain Analysis-By-Synthesis 

The time-domain analysis-by-synthesis method developed in this section is nearly 

equivalent to the frequency-domain analysis-by-synthesis method derived in section 5.4; 

however the two approaches are completely different. One method is derived in the 

frequency-domain using no phase information and the other method is derived in the 

time-domain using phase information. There are some new assumptions made about the 

synthesis model, which are pointed out during the development. 

As in the frequency-domain approach, the sinusoidal model is used to generate a 

frame of synthetic speech. The synthetic speech vector is subtracted from the input 

speech vector and a mean-squared error value is computed. The MSE is used to select 

another candidate sub-sampling period, which selects an alternate set of spectral 

amplitudes and phases. This process is repeated until a MSE value is computed for each 

candidate sub-sampling period. The sub-sampling period that corresponds to the set of 

model parameters having the minimum MSE are chosen to represent the current frame of 

input speech. 

Again, the MSE procedure is written mathematically as 

1 N-1 

E =-Ie 2 [n] 
N n=O 

(5-46) 

where e[n]= sw, [n]-s[n], sw, [n] is the appropriately windowed input signal, and s[n] is 

given by equation 5-16. The input signal has the reconstruction window w r [n] applied so 
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that the comparison between the input signal s[n] and the synthetic signal s[n] is 

approximately a one-to-one matching. The total error E after substituting equation 5-16 

into equation 5-46 and substituting in the reconstruction window, w r [n], is written as 

(5-47) 

In the frequency-domain approach equation 5-:47 is not used because of the lack 

of phase information which led to a time alignment between the original input signal and 

the synthetic signal. For the time-domain approach equation 5-47 is valid since the phase 

information is being used in the synthesizer. 

As in the frequency-domain approach, this problem is viewed as an extremely 

complex problem to solve because of the number of time-varying parameters and the 

dependence on knowing information about frequency-domain parameters using a time-

domain synthesis. This problem is simplified by redefining equation 5-16, making a 

number of assumptions about the generation of the synthetic signal, and performing the 

analysis-by-synthesis in the time-domain. Noting that the energy in the synthetic signal is 

not equal to the energy in the original signal as a result of the sub-sampling process, a 

gain term is introduced into equation 5.:.20. Equation 5-20 is presented again here for 

clarity as given by 

(5-48) 

Equation 5-47 is now rewritten by substituting equation 5-48 producing the new 

total error E as defined by 

(5-49) 
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This is exactly the same problem that is being solved in the frequency-domain analysis-

by-synthesis approach, only now it is solved in the time-domain. This equation still does 

not lend itself to an easy minimum solution in either the time-domain or frequency-

domain. But now the time-domain approach no longer has problems with misalignment 

because of the inclusion of phase information. This is the point where the two approaches 

start to diverge at least for the moment. 

The total error E to minimize is as defined in equation 5-49. The frequency-

domain approach had to be simplified to not include the overlap portion of the 

reconstruction. The time-domain approach is going to use the overlap from the previous 

frame to help maintain the most accurate representation of the time-domain signal as 

possible. 

Equation 5-49 is now rewritten in a form that is more usable. The signal and gain 

from the previous frame are considered to form a known sequence and is represented by 

s_1 [n ]. The reconstruction window is not included, without loss of generality, in the rest 

of the development. Although, it is worth noting that the appropriate windowing 

operations must be applied to the original input signal and the synthetic signal being 

tested in order to obtain a true error measure. The rewritten error term is given by 

1 N-1 2 

£ =-I(s[n]-gs[n]-s_1[n]) 
N n=O 

(5-50) 

where the N is the length of the analysis frame. 

The total error E in equation 5-50 is the term that we want to minimize. The 

search procedure consists of finding the sub-sampling period Ps that produces a set of 
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parameters that produces synthetic speech that best matches the input speech in a least 

square error sense as shown in equation 5-50. 

First let us expand equation 5-50 by grouping the input signal and previous 

frame's synthesized signal together and then computing the square. The total error E 

computed for each of the candidate sub-sampling periods ~ is given by 

(5-51) 

where the index i selects the i'h candidate sub-sampling period Ps; and its corresponding 

spectral amplitudes and phases selected by sub-sampling the magnitude spectrum and the 

phase response with the total error E; is associated with the current frame's parameters. 

As with any minimum error scheme, defining the appropriate match criterion is 

key to the success of the minimization process. Initially we want to match the original 

input signal to the corresponding synthetic signal, and in this case we are trying to match 

the original input time-domain signal. The target, signal to be matched, is defined to be 

e(0)[n] which is given by 

(5-52) 

The substitution of equation 5-52 into 5-51 leads to the new total error term defined as 

1 N-1 · 2 N-1 1 N-1 . . 

Ei =-Le(0)2 [n]--Lisi[n]e(o)[n]+-Lg 21 s 21 [n]. (5-53) 
N n=O N n=O N n=O 

The total error E; is still dependent on the gain term g; and the candidate sub-sampling 

period P/. This is still a complex problem that calls for solving for g; and P/ 

simultaneously. An alternate approach is to solve for the two parameters sequentially. 
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The sequential approach is as follows: solve for the optimum g; using equation 5-53 then 

solve for P/ given the optimum gain g;. 

The gain is found by computing the partial derivative of E; with respect to the 

gam g; and setting equal to zero and solving for the gain g;. This is given in the 

following two equations. 

(5-54) 

(5-55) 

Equation 5-55 is the normal form of the cross-correlation. In order to find the 

optimal minimum MSE sub-sampling period equation 5-53 is set equal to zero as shown 

by 

(5-56) 
n=O n=O n=O 

The target i 0)[n] is not a function of the index i so equation 5-56 1s now 

' 
rewritten by moving the target energy term to the left side producing 

(5-57) 
n=O n=O n=O 

This inequality is motivated in the following way. The term on the left side of the 

inequality is the autocorrelation of the target vector. This value represents the best 

possible match between the target signal e(o)[n] and the synthesized time-domain signal 

g;s; [n]. This would suggest that we would want to maximize the term on the right side 
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of the inequality. This is fine if g; is a positive value, but the gain i is a quantity that is 

either positive or negative. Since g; can, be negative, there is a possibility that the 

autocorrelation of the target e(0)[n] is equal to a negative value. This problem is easily 

solved by the fact that the only way g; is going to be negative is if the quantity 

N-1 

:I>(o)[n]s;[n] results in a negative value. If this happens then the term on the right side 
n=O 

N-1 

of equation 5-57 has a positive result, since gi and Ie(o)[n ]s; [n] are both negative. The 
n=O 

right side of equation 5-57 is largest when the synthetic speech vector s;[n] approaches 

the target signal e(0)[n]. This suggests that the optimum minimum MSE is determined by 

N-1 N-1 . . 

maximizing the quantity 2Igie(0)[n]si[n]- Ig2's2'[n] as shown by 
n=O 

(5-58) 
n=O n=O 

Equation 5-58 is referred to as the match score m; for the current set of model 

parameters and is rewritten in a more compact form by substituting the optimal gain i 

from equation 5-55 into equation 5-58. The result is the following match score 

(5-59) 

n=O 

This is the squared cross-correlation of the target vector and the synthesized magnitude 

spectrum normalized by the energy in the synthetic magnitude spectrum corresponding to 

index i, which directly relates to the optimum sub-sampling period P/ . 
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In summary, a set of candidate sub-sampling periods is selected to represent the 

current analysis frame. This vector is denoted as Ps; and typically ranges from 20 

samples to 114 samples for·speech signals. For each value of P/, a gain g; and a match 

score m~ are computed as shown in equations 5-55 and 5-59. Since the match score is a 

maximizing function, the sub-sampling period corresponding to the largest match score is 

selected to represent the current analysis frame along with the corresponding gain and 

amplitudes. The following paragraphs. discuss the results of the frequency-domain 

analysis-by-synthesis method derived above .. 

For ease of development, clarity, and without loss of generality the development 

of the previous equations are written in terms of vector notation. This is acceptable since 

this representation is equivalent to dividing the input data into frames. The total error 

defined in terms of vector notation is 

(5-60) 

As stated in the previous section, with any minimum error scheme, defining the 

appropriate match criterion is key to the success of the minimization process. In this case 

the match criterion is defined to be the current frame's synthetic speech scaled by a gain 

g plus the overlap from the previous frame's synthetic speech. This is in contrast to the 

frequency-domain approach, which does not consider any past data in the analysis-by­

synthesis loop. This match criterion for the time-domain approach is given by 

(5-61) 

This is the overlap procedure as given in equation 5-20, with the reconstruction 

window left out for simplicity but without loss of generality. The current frame of 
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synthetic speech is defined as a gain g multiplied by the synthetic speech generated 

using equation 5-10. The addition of the gain term seems appropriate since the Fourier 

transform is being undersampled. By undersampling, quantization error is introduced into 

the reconstructed speech; the energy in the reconstructed speech is not equal to the energy 

in the original input speech as shown in Chapter 4. 

The common form for the error vector e is a perceptually weighted difference 

between the original input speech vector and the ·synthetic speech vector defined as 

(5-62) 

where W is a lower triangular matrix that represents the impulse · response of the 

perceptual weighting filter [26]. For the developments in this dissertation W is set to be 

the identity matrix I . The index i determines the synthetic speech vector that 

corresponds to a given candidate sub-sampling period Ps and the associated phases and 

spectral amplitudes. 

By substituting equation 5-61 into equation 5-62, a new match criterion is defined 

as 

(5-63) 

From this equation we define the target vector as e(o) = W(s-s_1 ). Equation 5-63 is now 

written compactly in terms of the target vector as 

(5-64) 

where i = Wsi. 

Substituting equation 5-64 into equation 5-60 leads to the following error metric. 
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(5-65) 

E is the total squared error sum corresponding to the candidate sub-sampling 

period vector P: and Tis the transpose of the vector. Since Eis a function of both g and i 

then an optimal g is found for a given index i. This is accomplished by computing the 

partial derivative of E with respect to the gain g and then setting the derivative equal to 

zero. This is computationally shown as 

(5-66) 

This equation is solved for an optimal gain g in the minimum mean-squared error 

sense. The optimal gain g is found from the normalized cross-correlation between the 

target vector e(o) and the synthetic speech vector si corresponding to index i. 

(5-67) 

To determine the optimal minimum MSE sub-sampling period, equation 5-65 is 

set equal to zero as shown in the equation below. 

(5-68) 

Since the target vector e(o) is not a function of index i it is moved to the left side 

producing 

(5-69) 

The inequality is motivated in the following manner. The term on the left side of 

the inequality is the autocorrelation (energy) of the target vector e(o). This value 

represents the best possible match between the target vector e(o) and the current frames' 
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synthetic speech s i . This would suggest that we would want to maximize the term on the 

right side of the inequality. This approach is fine if gi is a positive value, but there are no 

constraints on gi and it takes on positive and negative values. Since gi can be negative, 

there is a possibility that the autocorrelation of e(o) is equal to a negative value. This 

problem is easily solved by the fact that the only way gi is negative is if the quantity 

siT e(o) results in a negative value. If this happens then the term on the right side of 

equation 5-69 has a positive result, since gi and siT e(o) are both negative. The right hand 

side of equation 5-69 is largest when the synthetic speech vector i approaches the target 

vector e(o). This suggests that the optimum minimum mean-squared error index i is found 

by maximizing the quantity 2 gi siT e(o) -g2i siT si, as shown in equation 5-70. 

(5-70) 

Equation 5-70 is referred to as the match score for the current set of model 

parameters and is rewritten by substituting the optimal gain g from equation 5-67 into 

equation 5-70. The result is the following match score 

(5-71) 

This is the squared cross-correlation of the target vector and the synthesized speech 

vector normalized by the energy in the synthetic speech vector corresponding to index i. 

In summary, a set of sub-sampling periods is selected as candidates for 

representing the current analysis frame. This vector is denoted as P: and typically ranges 

from 20 to 114 for speech signals. For each value of P;, a gain gi and a match score m! 



180 

are computed as shown in equations 5-67 and 5-70. Since, the match score is a 

maximizing function, the sampling period corresponding to the largest match score is 

selected to represent the current analysis frame along with the corresponding gain, 

amplitudes, and phases. 

5.5.2 Simulation 

5.4.2.0 Introduction 

This section describes the simulation of the time-domain analysis-by-synthesis 

method derived in this section. This simulation, just like the frequency-domain approach, 

is also written in the 'C' programming language on a Sun Spare Workstation Ultra 170. 

The idea again is to prove the concept of the time-domain analysis-by-synthesis method 

so complexity is considered to be of secondary importance. In contrast to the low bit rate 

nature of the frequency-domain analysis-by-synthesis method, the time-domain analysis­

by-synthesis method is naturally targeted at high bits rates (approximately 13,000 bps and 

up). 

The input signals used· in this simulation, as in the frequency-domain method, are 

quantized using 16 bits and a sampling frequency of 8,000 samples per second. The input 

signal is windowed using a 240 (30ms) point square~root of Hamming window same as in 

the frequency-domain simulation. This window is used to compute the magnitude 

spectrum and phase response for each frame. The reconstruction window is a 240 point 

triangle window, other windows such as Hamming, hanning, and rectangle are possible 

alternate windows. The analysis window is updated by shifting in 7.5ms (60 samples) 
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intervals. The center of the analysis window is the time reference, which results in an 

overlap of the 90 samples in the past and 90 samples in the future. 

The magnitude spectrum of the input signal is computed using the DFT. The 

length is chosen to provide the appropriate resolution for the selection of the spectral 

amplitudes and their corresponding phases. As in the frequency-domain simulation, the 

DFT length chosen is M = 16,384. The resulting magnitude spectrum and phase response 

is then sub-sampled producing a set of spectral amplitudes and corresponding phases for 

a given candidate sub-sampling period. The phase information is found using the sub­

sampling formulas of section 5.2. 

The sub-sampling period P, is selected to fall in the range of 20 samples to 114 

samples. In contrast to the frequency-domain approach, a single stage process is used to 

determine the sub-sampling period for the current frame. The sub-sampling range is 

linearly quantized over the sub-sampling range using 8 bits, which results in 256 possible 

candidate sub-sampling periods to test. This approach is chosen over the two stage 

frequency-domain approach because the time-domain method is lower complexity so is 

afforded the luxury of a more exhaustive search. 

In contrast to the frequency-domain analysis-by-synthesis method, no vmcmg 

decisions are necessary. This results from the fact that the phase contains the voicing 

information. This has the advantage of being more robust and less susceptible to errors 

especially in the transition regions. The disadvantage is that the bit rate increases to 

accommodate the extra information. 

For each of the candidate sub-sampling periods a synthetic signal is generated in 

the time-domain using the sinusoidal model with OLA. These synthetic signals are 
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compared in a mean-squared error sense in the time-domain to the original time-domain 

input signal. An optimum gain and a match score are found for each of the corresponding 

synthetic signals where the parameter set producing the highest match score is chosen to 

represent the current frame. 

The following paragraphs discuss in more detail the signals used in testing the 

concept of time-domain analysis-by-synthesis, the sub-sampling process, the analysis-by­

synthesis loop, the match scores, and the resulting sub-sampling contour. 

5.5.2.1 Test Signals 

The same three signals used in testing the frequency-domain analysis-by­

synthesis method are used to the time-domain analysis-by-synthesis method. The three 

signals are an all voiced signal, an all unvoiced signal, and a real speech signal containing 

the word "Figure". These signals are presented in Figures 5-5, 5-6, and 5-7. 

· 5.5.2.2 Sub-Sampling Process 

The sub-sampling process is the same as the sub-sampling process described in 

section 5.4.2.2. The main difference between the frequency-domain method and the time­

domain method is the addition of sub-sampling the phase response for the time-domain 

method. The phase response is sub-sampled at exactly the same points as the magnitude 

spectrum. These points are determined using the methods presented in the analysis 

section of this chapter. 

5.5.2.3 Analysis-By-Synthesis Loop 

This section describes in more detail the operation of the time-domain analysis­

by-synthesis loop. A comparison of the appropriately windowed original input time-
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domain signal with the appropriately windowed synthetic signal is provided for a 

particular frame for all three tests signal and multiple sub-sampling periods. 

The first test signal is the all voiced constant tone. Figure 5-45 displays the 

windowed input signal, the solid line, with the windowed synthetic signal, the dashed 

line. The sub-sampling period for this case is ~ = 20 . As in the case of the frequency-

domain method the low sub-sampling rate does not produce a good match to the input 

time-domain signal. 
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Figure 5-45. Original Input Signal and All Voiced Synthetic Signal for Ps = 20 

Figure 5-46 shows the windowed input signal with the windowed synthetic signal 

at a sub-sampling period of Ps = 114. For this case, the synthetic signal does match a 

couple of the peaks in the time-domain signal but mostly varies away from the input 

signal. Note, based on this observation the best match is not obtained by artificially sub-

sampling at a high rate. 
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Figure 5-46. Original Input Signal and All Voiced Synthetic Signal for Ps = 114 

Figures 5-4 7, 5-48, and 5-49 show how the synthetic signals converge to the input 

signal as the sub-sampling period producing the highest match score is approached. In all 

three cases the high amplitude regions are matched quite well. The low amplitude region 

is where most of the error between the signals is associated. In Figures 5-47 and 5-49 the 

synthetic signal does not match as closely as the synthetic signal in Figure 5-48 in the 

range of the 2001h sample and up. 
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Figure 5-47. Original Input Signal and All Voiced Synthetic Signal for Ps = 62.76 
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Figure 5-48. Original Input Signal and All Voiced Synthetic Signal for Ps = 63.13 
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Figure 5-49. Original Input Signal and All Voiced Synthetic Signal for Ps = 63.50 

The next three figures show the relationship between the original all unvoiced 

time-domain signal and the all unvoiced synthetic signal for the sub-sampling periods of 

Ps = 20, Ps = 114, and Ps = 74.92. The windowed synthetic signals are presented in 

Figures 5-50, 5-51, and 5-52, respectively. Once again the lowest sub-sampling period, 

shown in Figure 5-50, does not provide a good match to the original windowed input 

signal. The synthetic signal of Figure 5-51 appears to be varying in a pattern that is 

similar to the original time-domain input signal. The third synthetic signal, shown in 

Figure 5-52, also appears to be varying in a pattern similar to the original time-domain 

input signal. This supports the fact that it takes a large number of sinusoids to generate 

synthetic unvoiced signals. This is the same observation made in the frequency-domain 

analysis-by-synthesis method. 
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Figure 5-50. Original Input Signal and All Unvoiced Synthetic Signal for Ps = 20 
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Figure 5-51. Original Input Signal and All Unvoiced Synthetic Signal for Ps = 114 
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Figure 5-52. Original Input Signal and All Unvoiced Synthetic Signal for Ps = 74.92 

The following set of figures is an analysis of the response of the time-domain 

analysis-by-synthesis to a frame of a real speech signal. Figure 5-53 is the synthetic 

signal for the sub-sampling period Ps = 20 . The low number of sample points does not 

allow this sub-sampling period to model accurately the high energy regions of the input 

time-domain signal. In Figure 5-54, the synthetic signal corresponding to the sub-

sampling period of P. = 114 is provided. The large number of sample points allows this 

synthetic signal to model the input time-domain signal with more accuracy than the sub-

sampling period of Ps = 20 , at least in the high energy regions. The low energy regions 

are still not modeled as accurately as they should be. 
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Figure 5-53. Original Input Signal and "Figure" Synthetic Signal for Ps = 20 
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Figure 5-54. Original Input Signal and "Figure" Synthetic Signal for Ps = 114 
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In the frequency-domain method, the selection of the best synthetic magnitude 

spectrum through observation is not an easy task. This observation is also true in the 

time-domain. As noted in the frequency-domain section this particular frame of speech 
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contains both voiced and unvoiced excitation. The three synthetic signals corresponding 

to the sub-sampling periods Ps = 62.4, Ps = 62.76, and Ps = 63.12 are presented in 

Figures 5-55, 5-56, and 5-57. In all three cases, the synthetic signal seems to closely 

match the original time-domain input signal. The high energy region is modeled well and 

the error between the original signal and the synthetic signal stems from the low energy 

regions. 

The next section discusses the match scores that are associated with the test 

signals used for analysis in this section. 
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Figure 5-55. Original Input Signal and "Figure" Synthetic Signal for Ps = 62.40 
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Figure 5-56. Original Input Signal and "Figure" Synthetic Signal for Ps = 62. 76 
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Figure 5-57. Original Input Signal and "Figure" Synthetic Signal for Ps = 63.12 

5.5.2.4 Match Scores 

This section discusses the match scores for the frame of speech that is being 

analyzed. The match scores represent how well the windowed synthetic time-domain 
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signal, for each candidate sub-sampling period given an optimum gain, corresponds to the 

original windowed input time-domain signal. 

The process of searching for the optimum sub-sampling period is found by a more 

exhaustive search than the frequency-domain analysis-by-synthesis method presented in a 

previous section. The sub-sampling range is quantized to 256 levels and each one of the 

candidates is searched. The candidate sub-sampling period producing the highest match 

score is chosen to represent the current frame along with its corresponding spectral 

amplitude and phases. 

The match scores for the synthetic all · voiced time-domain signal are shown in 

Figure 5-58. Again, it is worth noting that a number of methods exist for finding the 

minimum solution to the mean-squared problem developed in section 5.5, but for the 

methods to work properly only one minimum should exist. Figures 5-58, 5-59, and 5-60 

show that for speech or speech like signals several local minimum and maximum exist. 

So a more exhaustive type of search is necessary to find the optimal solutions to the 

mean-squared error problem. 

The all voiced signal has a fundamental frequency equal to approximately 63.4 

samples. The sub-sampling period producing the highest match score, given the OLA 

sinusoidal model of reconstruction, is 63 .12 samples. Another method of reconstruction 

in the analysis-by-synthesis loop may produce a slightly different result. Once again the 

effect of pitch doubling or halving does not appear to be a problem although the sub­

sampling period corresponding to a pitch doubling does produce a maximum. 
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Figure 5-58. Match Scores for Sub-Sampling Periods of the All Voiced Signal 

The match scores corresponding to the windowed synthetic all unvoiced signal 

are presented in Figure 5-59. As stated in previous sections, the synthetic all voiced 

signal produces a closer match to the original time-domain signal as the sub-sampling 

period is increased. This fact is not quite as evident as in the frequency-domain method. 

The match scores do increase as the sub-sampling is increased but the use of the phase 

information shows a sub-sampling period that best fits the original time-domain signal 

using the sinusoidal model of reconstruction. 
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Figure 5-59. Match Scores for Sub-Sampling Periods of the All Unvoiced Signal 

As in the case of the frequency-domain approach, the match score contours 

produced in the first two signals result in the appropriate selection of the sub-sampling 

period and the corresponding spectral amplitudes and phases for the nearly ideal 

conditions. The final and most important test is to determine the match scores in response 

to a frame of real speech, the word "Figure". Similar to the all voiced signal, there is 

more than one possible maximum, but the highest match score corresponds to the sub-

sampling period of 62.76. This is a slightly different result than the frequency-domain 

analysis-by-synthesis approach, which produced a sub-sampling period of 114. The next 

section discusses the resulting sub-sampling period contour produced after analyzing 

each of the test signals entirely. 
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Figure 5-60. Match Scores for Sub-Sampling Periods of the Word "Figure" 

5.5.2.5 Sub-Sampling Period Contour 

This section discusses the results of the sub-sampling period contour obtained by 

analyzing the three test signals, all voiced, all unvoiced, and the word "Figure". As noted 

previously, the all voiced signal is a constant tone so the sub-sampling period contour is 

expected to also be constant. Figure 5-61 shows the sub-sampling period contour 

produced using the time-domain analysis-by-synthesis method to estimate the sub-

sampling period. The contour as expected is constant except in the transition regions at 

the beginning and the end of the signal. 
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The next test signal is the all unvoiced signal. In contrast to the all voiced signal it 

is expected that the contour will not be constant but will be biased towards the high sub-

sampling periods. The sub-sampling period contour determined using the time-domain 

analysis-by-synthesis method for the all unvoiced signal is shown in Figure 5-62. In 

Figure 5-62 the sub-sampling period contour does vary from frame-to-frame and in 

general is biased to the higher sub-sampling periods. 
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The third test signal and the real key to the success of the time-domain analysis-

by-synthesis method, as in the frequency-domain method, is a real speech signal. The real 

speech signal has time-varying properties that were not present in either the all voiced or 

all unvoiced signal. The sub-sampling period contour is expected to vary slightly from 

frame-to-frame during the voiced and unvoiced regions but should be biased towards the 

higher sub-sampling periods in the unvoiced regions. Figure 5-63 presents the sub-

sampling period contour for the real speech signal produced using the time-domain 

analysis-by-synthesis method to estimate the sub-sampling period for each frame. The 

contour as expected is not constant at any time but varies from frame-to-frame. In the 

voiced regions the sub-sampling period contour is smoothly varying and in the unvoiced 

regions the sub-sampling period contour is biased towards the higher sub-sampling 

periods. The next section describes the synthetic signals produced from the parameter 

estimates obtained using the time-domain analysis-by-synthesis method. 
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This section looks at the resulting synthetic signals produced from the parameter 

estimates obtained from the time-domain analysis-by-synthesis approach and using the 

sinusoidal model for reconstructing the synthetic signal. 

The three test signals, all voiced, all unvoiced, and the word "Figure" are shown 

in Figures 5-64, 5-65, and 5-66, respectively. The synthetic all voiced signal is almost an 

exact replica of the original time-domain signal, other than being delayed. The main 

difference is in the amplitude, which is a result of the quantization of the spectral 

amplitudes and phases. The onset, while not exact, is much sharper than the frequency-

domain method. In contrast to the frequency-domain method the time-domain analysis-

by-synthesis method produces a synthetic signal that is in phase with the original. 

The synthetic all unvoiced signal is a good approximation to the original time-

domain all unvoiced signal, other than being slightly delayed. Because of the inclusion of 
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the phase information the synthetic unvoiced signal is a more realistic match than the 

frequency-domain method. 

The reconstructed signal for the word "Figure" does resemble the original time-

domain signal, besides being delayed. The synthetic version has slightly smoother 

amplitude variations but the onset is modeled much closer than with the frequency-

domain method. The result is that the time-domain analysis-by-synthesis method 

produces synthetic signals that appear to match the original time-domain signals with 

mm1mum error. 

In the end the true test is the listening test. The signals synthesized using the time-

domain analysis-by-synthesis produced reconstructed signals that in most cases are 

indistinguishable from the original. 
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5.5.2. 7 Conclusion 

In section 5.5 a time-domain analysis-by-synthesis method of selecting the 

appropriate parameters for the sinusoidal model using OLA is developed. A complete 

theoretical development is presented along with the simulation results. 

The simulation is tested on three different test signals, an all voiced, an all 

unvoiced, and a speech signal (the word "Figure"). The all voiced signal is used to test 

the response of the time-domain method using a constant tone. The all unvoiced signal is 

used to test the response to the time-domain method using a noise signal. Both of these 

signals represent the ideal conditions for pure voiced and pure unvoiced speech. The 

word "Figure" is added to test the response of the time-domain method of a more realistic 

signal. 

The time-domain analysis-by-synthesis method is shown to respond as expected 

given all three of the test signals. While the complexity of the analysis-by-synthesis loop 

of the time-domain method is much less than the frequency-domain method, a trade is 

made for shorter correlation and a more exhaustive search. The frequency-domain 

method required correlation on the length of 8192 but the time-domain method only 

needs correlation on lengths the size of the frame, 240 points in this simulation. 

The frequency-domain sub-sampling search range consisted of 95 integer 

searches and at most 21 fractional searches, which totals 116 searches. The time-domain 

method quantizes the sub-sampling range using 8 bits so the total number of searches is 

256, more than 2 times that of the frequency-domain method. 

Ignoring complexity, the time-domain analysis-by-synthesis has a major 

advantage over the frequency-domain method because the time-domain method does not 
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require any voicing decisions. The voicing decisions as noted earlier may handicap the 

frequency-domain method. The drawback to no voicing decisions is the higher bit rate 

required to code the phase information. 

The next chapter discusses a mid/low bit rate vocoder that combines the best of 

the frequency-domain and time-domain methods. This vocoder is an analysis-by­

synthesis vocoder using the sinusoidal model with OLA for reconstruction. 
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6 SINUSOIDAL MODEL ANALYSIS-BY-

SYNTHESIS VOCODER 

6. 0 Introduction 

This chapter describes the implementation of an analysis-by-synthesis sinusoidal 

vocoder based on a combination of the frequency-domain and time-domain analysis-by­

synthesis methods developed in Chapter 5. This new vocoder, referred to as SMABS, is 

targeted for 8,000 bps (1 bit per sample for speech sampled at 8,000 samples per second). 

In Chapter 5 of this dissertation two novel methods for determining the model 

parameters for the sinusoidal model of reconstruction using analysis-by-synthesis are 

presented. One method is developed in the frequency-domain using a no phase 

assumption and the other method is developed in the time-domain based on the 

assumption that phase information is available. 

The SMABS vocoder uses the time-domain analysis-by-synthesis method for 

estimating the model parameters. The time-domain analysis-by-synthesis method is 

chosen over the frequency-domain analysis-by-synthesis because of the computational 

complexity of the frequency-domain approach. This topic is discussed further in the 

future research section of Chapter 7. 

The disadvantage of the time-domain approach is the high bit rate. For this reason, 

the time-domain approach is used to perform the parameter estimation but voicing 
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decisions are transmitted instead of the phase information. This results in a considerable 

reduction in the bit rate. Since the phase information is lost in transmission it is 

regenerated in the synthesizer using the techniques discussed in the frequency-domain 

approach. As a side result, a new gain term is needed because of the loss of phase 

information. 

The model parameters are coded into an 8,000 bps bit stream. These parameters 

are decoded and synthetic speech is reconstructed using a sinusoidal model with OLA. 

The phase information, as stated, is generated in the synthesizer using a linear phase 

model along with a system phase component that is determined from the spectral 

envelope. 

The following sections describe the procedures used to estimate, quantize, and 

code the relevant parameters into an 8,000 bps bit stream, decode the coded parameters 

from the bit stream, and reconstruct high quality speech from the estimated parameters. It 

is assumed that the reader is familiar with short-time analysis, so the details of the 

implementation are not presented. 

6.1 Analyzer 

6.1.0 Introduction 

Speech analysis is performed sequentially every 30ms on overlapping analysis 

frames, producing a frame rate of approximately 33 analysis frames/second. Each analysis 

frame is then split into four 7.5ms subframes. An alternating superframe/subframe 

analysis strategy is applied so as to reduce the total number of parameters being produced 
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each second, thus reducing the required bit rate. Each superframe consists of a full update 

of all coder parameters, while each subframe represents only a partial update. A full 

analysis and update occurs twice for each analysis frame. The partial updates also occur 

twice for each analysis frame. This framing strategy is found to be sufficient for good 

temporal resolution. 

Analysis consists of prefiltering, parameter estimation, quantization, and coding. 

Parameter decoding and frame-by-frame reconstruction of the coded speech form the 

synthesis stage. The relevant parameters, which are used to represent the input speech 

waveform, are sub-sampling period, vocal tract spectrum, voicing decisions, and a gain. 

A block diagram of the analyzer is shown in Figure 6-1. 
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Figure 6-1. Block Diagram of SMABS Analyzer 

Sub­
Sampling 
Periods 

Pitch 

The SMABS analyzer estimates the following parameters: sub-sampling period 

(pitch), voicing, spectrum, and gain. These parameters are quantized and coded for either 

transmission or storage. The input speech is framed, filtered and windowed into multiple 

data paths. The pitch estimate is determined using time-domain analysis-by-synthesis and 

the voicing decisions are computed as a result of the best pitch estimate determined by the 
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analysis-by-synthesis. The spectral amplitudes are modeled using linear prediction and a 

gain is found by equalizing the energy in the original spectrum and the synthetic 

spectrum. 

6.1.1 Pre-Filtering and Windowing 

The input speech s[ n] is filtered with a high pass filter with a cutoff frequency of 

approximately 70 Hz. This filter is used mainly for removing the low frequency 

components that may inhibit the parameter estimation. For example, the pitch is only 

estimated over the range 70 Hz to 400 Hz so frequencies below 70 Hz are not needed for 

analysis. 

The high pass filter is a 5th order elliptic filter with 0.25 dB of ripple in the 

passband and more than 20 dB of attenuation at 60 Hz. The frequency response of this 

high pass filter is pictured in Figure 3-3 and the filter transfer function, with quantized 

coefficients, is provided in equations 3-1 and 3-2. 

The high pass filtered signal, SHPF[n], is computed using 

N-1 

sHPF[n] = Is[r]hHPF[n-r] (6-1) 
r=O 

where N is the length of the data segment, s[ n] is the input speech signal and hHPF[ n] is 

the impulse response of the transfer function HHpF(z) given in equation 3-1. 

After the input speech is filtered, it is windowed using a rectangular window, 

square-root of Hamming window, Hamming window, and a triangular window. The 

windowing operations are given by 

(6-2) 
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(6-3) 

(6-4) 

(6-5) 

where s v [ n] represents the data used to aid in determining voicing decisions, s M [ n] 

represents the data used to compute the magnitude spectrum for sub-sampling, sJ n] 

represents the data used for computing the linear prediction coefficients, and s T [ n] 

represents the data used to determine the target data for the analysis-by-synthesis loop. 

These windows are defined by 

{
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(6-6) 

(6-7) 

(6-8) 

6-9) 

where N is defined by the length of the analysis window and the triangular window is 

scaled appropriately so that when fully overlapped sums to 1. For an analysis window of 

240 points with a 60 sample update (an overlap of four) the scaling factor is one-half. 
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6.1.2 Pitch Estimate 

The pitch is estimated using the time-domain analysis-by-synthesis technique 

developed in Chapter 5. First the magnitude spectrum and phase response are computed 

using equations 5-1 through 5-4 with a DFT length of 16,384. The magnitude spectrum 

and phase response are sub-sampled to produce an estimate for the spectral amplitudes 

and corresponding phases. A set of spectral amplitudes and phases is found for each 

candidate sub-sampling period. The candidate sub-sampling period ranges from 20 

samples to 114 samples. The sub-sampling range is constrained to only 256 values using 

a linear spacing, which allows this parameter to coded using 8 bits. 

Each set of spectral amplitudes and phases is applied to the sinusoidal model of 

reconstruction to obtain an estimate for the current frame of speech. The synthetic signal 

is then compared to the original in a mean-squared error sense. The sub-sampling period 

producing the best set of spectral amplitudes and phases is determined by equations 5-55 

and 5-58. 

6.1.3 Voicing 

The voiced and unvoiced decisions are the heart of any MBE based analysis 

model. It is assumed that the speech spectrum is composed of both voiced and unvoiced 

bands, thus multiple voicing decisions are made in each frame. This is equivalent to 

considering the excitation to contain both periodic and aperiodic components 

simultaneously in the same frame. The MBE approach has been shown to produce higher 

quality synthetic speech and is more robust than the single voicing decision approach. For 

this reason the multiple voicing decision approach is used in this vocoder, since the phase 
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information is not being transmitted. This vocoder uses a non-linear band structure, 

containing 4 bands, as defined in Chapter 3 and reproduced here for clarity 

5 11 15 16~25 L~42 

5 9 13 5-14 32~ L <42 

B -L - 5 7 7 6-12 25~ L <32. (6-10) 

3 5 5 2-11 15 ~ L < 25 

3 3 3 0-6 L < 15 

where L represents the number of harmonics corresponding to the current frame. 

The estimation of the voicing decisions turned out to be more difficult than 

expected. The frequency-domain method described in the EMBE vocoder was tested first. 

The problem with the frequency-domain method of estimating the voicing is that the sub-

sampling period determined using the time-domain analysis-by-synthesis method is not 

compatible thus resulting in very poor voicing decisions. For this reason an alternate 

voicing scheme is needed. The method developed for the SMABS vocoder is described in 

the following paragraphs. 

One possible solution for estimating the voicing decisions is to use the signal-to-

noise (SNR) ratio. This seems reasonable since during voiced periods the match between 

the original time-domain signal and the synthetic time-domain is high indicating a small 

mean-squared error. During periods of unvoiced speech the SNR is low indicating that 

the mean-squared error is high even with the optimum sub-sampling period. In the 

transition regions the SNR falls somewhere in between the voiced and voiced values. 

Based on experience and observation the voicing decisions need to vary in a 

smooth fashion from frame-to-frame. For this reason a predetermined set of voicing 

combinations is selected. The possible combinations of voicing decisions are given by 
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[l 1 1 l] SNR >35 

[l 1 1 O] 28 <SNR <35 

V = BL 
[l 1 0 O] 24 <SNR <28, (6-11) 

[1 0 0 O] 20 <SNR < 24 

[O 0 0 O] SNR<20 

where a 1 corresponds to voiced and O corresponds to unvoiced, going left to right the 

voicing VB vector goes form band 1 to band 4, and the number of harmonics given in 
L 

specific band is determined by equation 6-10. 

6.1.4 Spectrum 

As with EMBE, the goal of a spectral model for a harmonic based vocoder is to 

accurately represent the harmonic amplitudes for voiced speech, and to fit the spectrum in 

an average sense for unvoiced speech. Harmonic coders usually employ some direct form 

of quantization of the harmonic amplitudes to achieve this. While this results in a highly 

accurate representation of the spectrum, the number of bits required precludes its use for 

low and mid rate coding, depending on the frame rate. This is overcome with the use of a 

parametric model for the spectrum, such as Linear Prediction. Similar to EMBE, the 

SMABS vocoder represents the spectrum using a spline enhanced, linear predictive (LP) 

model for voiced speech, and a traditional LP model for unvoiced speech. 

In this vocoder an LP model order of 18 is selected to model the spline envelope 

of the magnitude spectrum. The LP model coefficients are computed using a frequency 

domain approach, rather than the traditional time-domain approach. This allows the 

manipulation of the spectrum prior to model computation to enhance perceptually 
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important areas. This concept is the same as presented in Chapter 3 for the EMBE 2,400 

bit per second speech coder. The main difference is that the SMABS vocoder is not using 

the warping function. 

In the case that the current frame of speech is declared entirely unvoiced, the LP 

coefficients are computed using equations 3-57,. 3-58, and 3-59 with no spectral 

amplitude compression or spline fit to the spectral amplitudes. If any band is declared 

voiced then the spectral amplitudes are compressed using a logarithm function and then a 

cubic spline is fit to the compressed spectral amplitudes as described by equations 3-60 

through 3-69. An LP model is then fit to the spline envelope using equations 3-73 

through 3-75. 

Once the LP model coefficients have been calculated, they are converted to an 

alternate representation, known as line spectral pairs (LSP's). Line spectral pairs are 

known to exhibit superior quantization properties when compared to predictor 

coefficients. The LSP' s are obtained by decomposing the impulse response of the LP 

analysis filter into difference and sum filters. These operations are shown in equations 3-

76-3-78. 

6.1.5 Gain 

The gain value from the analysis-by-synthesis loop as presented in Chapter 5 for 

the time-domain analysis-by-synthesis method is no longer a valid gain term outside the 

loop since the phase information is not being transmitted. Thus it is sufficient to compute 

a gain for the LP model by calculating the ratio of the energy of the original spectrum and 

LP model spectrum, as is typically done. 
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This concept is slightly modified for the SMABS vocoder. For the voiced frames 

the gain is found by computing the ratio of the energy of the LP model spectrum and the 

energy of the cubic spline envelope. The gain for unvoiced frames is found in typical 

fashion by computing the ratio of the energy of the original spectrum and LP model 

spectrum. 

6.2 Quantizer 

Once the model parameters are calculated, they are quantized to approximately 

8,000 bps for transmission. At this bit rate and update rate, 242 bits are available to 

represent all the parameters in each 30 ms interval. The gain, pitch, and voicing decisions 

are coded using simple scalar quantization, while the spectral model is coded using vector 

quantization of the line spectral pairs. Figure 6-2 summarizes the bit allocation and 

sub/superframe update scheme for each parameter, where there are two subframes and 

two superframes in each analysis frame. 

Gain In 

Pitch Table 

Voicing 

Spectrum VQ 

Sync 

Encode Decode 
Bits 

Super/sub 

7-7 

8-8 

4-4 

41 - 41 

1-0 

exp Gain 

Table Pitch 

Voicing 

Spectrum 

Sync 

Figure 6-2. Block Diagram of Quantization and Coding 
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The voicing decisions are quantized as 4 bits with each bit corresponding to the 

voicing decision for the respective frequency band. As stated previously, the pitch is 

quantized linearly in samples from the range of 20 samples to 114 samples using 8 bits 

per subframe. The gain G is logarithmically scalar quantized as is done in EMBE 

following equations 3-90 and 3-91. The main difference is that there are 7 bits available 

for each subframe. 

Prior to quantization, the LP coefficients are converted to line spectral pairs 

(LSP's). As stated, LSP's have superior transmission and quantization properties over 

traditional LP coefficients. A vector quantization (VQ) approach is used for coding the 

18th order LSP model. One potential implementation is a 41-bit, 4 way split VQ 

codebook. The 4 way split is broken down to 11, 10, 10, and 10 bits respectively. The VQ 

codebooks are searched for each target LSP by minimizing the squared distance between 

the original LSP's and the target codebook vector. The split codebooks reduce the 

computational complexity by allowing each codebook to represent only a small segment 

of the LSP spectrum and reducing the amount of memory necessary to store the VQ 

tables. 

6.3 Synthesizer 

6.3.0 Introduction 

In the synthesizer, each parameter vector is recovered by reversing the encoding 

procedure applied in the analyzer. The vocal tract spectrum, represented as LSPs, is 

converted back to the coefficients of an LP model. Similar to EMBE a sinusoidal model 
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is used to generate synthetic data on a frame-by-frame basis. In contrast to the method of 

reconstruction used in EMBE, a single method of reconstruction is used for both the 

voiced and unvoiced bands. A block diagram of the SMABS synthesizer is given in 

Figure 6-3. 

Pitch , Sinusoidal - Synthesis 
Voicin g ::. withOLA 

t 
Postfiltering 

i 
- LP -Spectrum 

' Spectrum ,, 
Model Gain 

Reconstruction 
' Window - --

Synthesized 
Speech 

Figure 6-3. Block Diagram of SMABS Synthesizer 

If the current band is declared voiced or unvoiced, a bank of sinusoidal oscillators 

is used to generate a periodic or aperiodic signal corresponding to each harmonic in the 

band. These harmonics are then scaled by the appropriate harmonic amplitudes, rotated 

by the appropriate phases, and summed and overlapped with the previous frame( s) 

producing a signal estimate for the current frame. 

It is also possible that the gain varies substantially from one frame to the next, so 

some amplitude smoothing is needed. This is accomplished by overlapping the 

reconstructed speech frames using a Triangular reconstruction window. The window is 

designed so that the sum of the overlapped windows is unity. 
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The sections following, Spectral Filtering and Synthesis, describe the method used 

to generate synthetic speech using the sinusoidal model. 

6.3.1 Spectral Filtering 

This stage of the synthesizer refers to the processing of the spectral model 

transmitted by the analyzer. While this is presented as a prefiltering stage in the 

synthesizer it is most often referred to as postfiltering. Postfiltering is generally needed to 

aid in masking noise induced by the reconstruction process when no phase information is 

available, as is the case for this vocoder. The postfilter presented here is a slightly 

modified form of the filter presented in .Chapter 3 for EMBE. 

First, the spectral amplitudes are obtained by computing the LP spectrum and sub-

sampling at the specified pitch and scaling by the respective gain. This postfilter is based 

on a design presented by [24] for sinusoidal based vocoders and is a variant of the 

postfilter presented in [22]. The amplitudes are weighted as given by 

(6-12) 

" where S1 represents the postfiltered spectral amplitude and S1 represents the spectral 

amplitude estimated from the LP model. The weighting is determined by µ, which is 

given by 

{
1.2 WI> 1.2 

µ = 0.5 Wi < 0.5, 

Wi otw 

where Wi is the weighting function given by 

(6-13) 
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(6-14) 

L represents the number of harmonics in the current frame and y falls in the range 

between O and 1, where y = 0.5 for the SMABS vocoder. The thresholds for Wi were 

determined experimentally in [24]. The R's represent the energy and the first correlation 

coefficient and both are given by 

(6-15) 

and 

L 

Ri = Is/ cos(lroo}. (6-16) 
l=l 

The last term to define is a. . This coefficient is used to normalize the energy so 

that the original spectral amplitude estimates and the postfiltered spectral amplitudes have 

the same energy. This coefficient is given by 

a.= 

6.3.2 Synthesis 

l 

2 

(6-17) 

The synthetic speech is generated on a frame-by-frame basis by decoding the 

transmitted parameters and applying them to the sinusoidal model. The speech is 

reconstructed using overlap addition. This method is chosen over that of EMBE because a 

. single method is used to generate the voiced speech and the unvoiced speech. 
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This approach is detailed in Chapter 5, section 3. The speech for the current frame 

is computed using equation 5-13 and is then overlapped and added based on equation 5-

16, where the reconstruction window is triangular shaped and satisfies the requirements 

of equation 5-17. 

6.3.3 Reconstructed Output 

The window used in the reconstruction process is an overlapping triangular 

window. This is the same window used in the analysis-by-synthesis loop defined in 

equation 6-9. The current frame produces 240 points of speech reconstructed using the 

sinusoidal model. The output is updated every 60 points which results in an overlap of 

four frames. 

6.4 Conclusion 

This chapter introduced a new analysis-by-synthesis vocoder known as Sinusoidal 

Model Analysis-By-Synthesis (SMABS). This vocoder used the time-domain analysis-by­

synthesis procedure developed in Chapter 5 to estimate the model parameters for the 

sinusoidal model of reconstruction using OLA. 

The synthetic speech generated using this vocoder is deemed to be of high quality 

based on informal listening tests. The synthetic speech produced is comparable to that of 

the frequency-domain analysis-by-synthesis approach but lower quality than that of the 

time-domain analysis-by-synthesis approach. The reason for this is the lack of phase 

information available in the receiver. 
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The computational complexity is still an issue. The frequency-domain analysis­

by-synthesis approach was too computationally complex to be considered as a useful 

solution so the time-domain analysis-by-synthesis approach was selected for 

implementation. The computational complexity is contained in the number of sub­

sampling periods that are searched. In th~ frequency-domain approach, the integer sub­

sampling periods are searched and then a refinement stage is used to find the best sub­

sampling period and its corresponding spectral amplitudes. The time-domain method uses 

much shorter, correlations so the number of sub-sampling periods searched is increased. 

Even with this increase in the number of sub-sampling periods searched, the 

computational complexity of the time-domain approach is.less than that of the frequency­

domain approach. 
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7 CONCLUSION 

7. 0 Introduction 

The sinusoidal model is chosen as the topic of this dissertation because sinusoidal 

based vocoders have been shown to be able to produce high quality speech at low bit 

rates. The main disadvantage of using the sinusoidal model in developing low bit rate 

vocoders is the high dependence on the parameter estimation, especially the pitch. The 

goal of this chapter is to apply the technique of analysis-by-synthesis to the problem of 

parameter estimation for sinusoidal based vocoders. 

Assuming a frame of speech is modeled accurately using the sinusoidal model, as 

presented in Chapter 4, then a technique is needed to determine the appropriate set of 

amplitudes, frequencies, and phases (the model parameters) used to represent a frame of 

speech. The DFT is utilized in the analyzer for extracting the amplitudes, frequencies, 

and phases for the sinusoidal synthesis procedure. Determining these parameters is 

accomplished by developing an analysis-by-synthesis technique to improve the parameter 

estimation for sinusoidal based vocoders. Two novel analysis-by-synthesis methods are 

presente~ in Chapter 5. The first approach is developed in the frequency-domain and the 

second is developed in the time-domain. 

The main difference between the methods developed in this dissertation and 

typical LP analysis-by-synthesis systems is the method used to perform the 

reconstruction. In this dissertation a sinusoidal synthesis procedure is included in the 
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analysis loop to determine the appropriate model parameters for the sinusoidal model. 

The main advantage for including the synthesis method in the analysis is to aid in 

determining the appropriate model parameters for a given reconstruction method. This 

leads to a closed-loop analysis-by-synthesis procedure for determining the sinusoidal 

model parameters. By using a closed-loop approach, the parameters of the model are 

varied in a systematic way to produce a set of parameters that produce a synthetic signal, 

which matches the original signal in a minimum mean-squared error sense. 

7.1 Frequency-Domain Analysis-By-Synthesis 

A frequency-domain analysis-by-synthesis method for determining the model 

parameters for a sinusoidal model was developed in this dissertation. The analysis and 

synthesis techniques described in sections 5.2 and 5.3 are combined to form a closed-loop 

analysis-by-synthesis procedure to estimate the model parameters for a sinusoidal model 

using a minimum mean-squared error. This approach assumes that no phase information 

is available, so the phase must be synthesized according to the methods presented in 

Chapter 5 and in Appendix Al. 

A mathematical development that determines the optimum sub-sampling period 

and its corresponding spectral amplitudes is presented in Chapter 5. This is accomplished 

by first determining a set of spectral amplitudes by sub-sampling the original magnitude 

spectrum. The phase is then synthesized from the spectral envelope corresponding to the 

spectral amplitudes. Then based on the sub-sampling period and the corresponding 

spectral amplitudes a set of voicing decisions are determined using the MBE analysis 

model (multiple voicing decisions). The sub-sampling period, spectral amplitudes, 
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voicing decisions, and synthetic phase are applied to the sinusoidal model to produce an 

estimate for the original magnitude spectrum. The minimum mean-squared error between 

the original magnitude spectrum and the synthetic magnitude spectrum is found using a 

two-stage process. First an optimum gain term is computed. Then a match score between 

the target magnitude spectrum and the synthetic magnitude spectrum is computed based 

on the optimum gain and the parameters corresponding to the optimum gain. The 

parameters that correspond to the minimum mean-squared error are selected to represent 

the current analysis frame. 

Since the assumption is that no phase information is available in the analyzer it 

must be generated in the synthesizer. The method for generating the synthetic phase is 

discussed in section 5.2 and is presented in greater detail in Appendix Al. 

This frequency-domain analysis-by-synthesis approach was found to be sufficient 

to determine the model parameters for the sinusoidal model using OLA for 

reconstruction. The synthetic speech generated using the frequency-domain analysis-by­

synthesis method using the sinusoidal model with OLA was deemed to be of high quality 

from informal listening tests. 

The main drawback with the frequency-domain analysis-by-synthesis is the 

computational complexity that results from having to use a OFT of length 16,384. The 

optimum gain and match scores are found by computing the correlation between the 

synthetic magnitude spectrum and the target magnitude spectrum. A OFT length equal to 

16,384 results in the correlation of sequences oflength 8,192. This is done for each sub­

sampling candidate in every analysis frame. 
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7.2 Time-Domain Analysis-By-Synthesis 

A time-domain analysis-by-synthesis method for determining the model 

parameters for a sinusoidal model was also developed in this dissertation. Again the 

analysis and synthesis techniques described in sections 5.2 and 5.3 are combined to form 

a closed-loop analysis-by-synthesis procedure to estimate the model parameters for a 

sinusoidal model using a minimum mean-squared error. In contrast to the frequency­

domain analysis-by-synthesis this approach assumes that phase information is available, 

thus time alignment is maintained. 

The mathematical development that determines the optimum sub-sampling period 

and its corresponding spectral amplitudes is presented in Chapter 5 .. This is accomplished 

by first determining a set of spectral amplitudes and phases by sub-sampling the original 

magnitude spectrum and phase response. The sub-sampling period, spectral amplitudes, 

and phases are applied to the sinusoidal model to produce an estimate for the original 

time-domain signal. The minimum mean-squared error between the original time-domain 

signal and the synthetic time-domain signal is found using a two-stage process, similar to 

the frequency-domain analysis-by-synthesis. First an optimum gain term is computed. 

Then a match score is computed given the optimum gain and the parameters 

corresponding to the optimum gain. The parameters that correspond to the minimum 

mean-squared error are selected to represent the current analysis frame. 

This time-domain analysis-by-synthesis approach was found to be· sufficient to 

determine the model parameters for the sinusoidal model using OLA for reconstruction. 

The synthetic speech generated using the time-domain analysis-by-synthesis method 

using the sinusoidal model with OLA was deemed to be of high quality through informal 
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listening tests. The quality of the time-domain analysis-by-synthesis method is much 

higher than that of the frequency-domain analysis-by-synthesis method. This result was 

attributed to the fact that the phase information is available, instead of the less reliable 

voicing decisions. The time-domain approach is also very robust in a number of different 

environments such as quiet and office noise. The addition of the phase information also 

masked any potential problems with pitch halving or doubling. 

The main drawback with the time-domain analysis-by-synthesis is that the phase 

information must be transmitted. The inclusion of the phase information forces the 

vocoder to operate at a much higher bit rate as compared to the frequency-domain 

analysis-by-synthesis approach. 

7.3 Sinusoidal Model Analysis-By-Synthesis Vocoder 

The frequency-domain analysis-by-synthesis method of parameter estimation is 

targeted at low bit rates but has high computational complexity, while the time-domain 

analysis-by-synthesis method of parameter estimation is targeted at higher bit rates with 

lower computational complexity. Therefore a combination of the two approaches is used 

to develop a new vocoder targeted for 8,000 bps. 

The time-domain analysis-by-synthesis method is used to estimate the sinusoidal 

model parameters for this vocoder. The analysis and synthesis techniques described in 

sections 5.2 and 5.3 are combined with the time-domain analysis-by-synthesis method to 

form a closed-loop procedure to estimate the model parameters for a sinusoidal model 

using a minimum mean-squared error. This approach assumes that phase information is 

available for the analysis so that time alignment is maintained. This phase information is 
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not transmitted to the receiver in order to reduce the overall bit rate. The phase is 

synthesized in the receiver using the method presented in the frequency-domain analysis­

by-synthesis method of parameter estimation. 

This sinusoidal model analysis-by-synthesis (SMABS) vocoder was found to be 

sufficient to determine the model parameters for the sinusoidal model using OLA for 

reconstruction. The synthetic speech generated using this approach was deemed to be of 

high quality through informal listening tests. The quality of the time-domain analysis-by­

synthesis method is similar to that of the frequency-domain analysis-by-synthesis but 

with lower computational complexity. 

The main disadvantage of this vocoder was in the estimation of the voicing 

decisions, an unexpected problem. 

7.4 Future Research 

7.4.0 Introduction 

The following paragraphs outline and discuss potential topics of future research 

for the two analysis-by-synthesis methods developed in this dissertation. The topic of 

computational complexity is discussed for both methods while the trade-off between "no 

phase" and phase is discussed in the case of the time-domain method. 

7.4.1 Frequency-Domain Analysis-By-Synthesis 

The frequency-domain analysis-by-synthesis method of parameter estimation is 

sufficient for determining the parameters of a sinusoidal model using overlap addition. 

The main disadvantage of this method is the computational complexity that results from 
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the long DFTs that are computed, which are necessary to obtain sufficient frequency 

resolution. 

In the simulation a 16,384 point DFT is used to compute the magnitude spectrum 

of the original input signal and is used to compute the synthetic magnitude spectrum for 

each sub-sampling period candidate. Then to determine the best sub-sampling period, the 

correlation between the target magnitude spectrum and the synthetic magnitude spectrum 

is computed over half of the spectrum, in this case a correlation length of 8,192. If only 

the integer sub-sampling periods are considered this results in 95 DFTs of length 16,384 

and 94 correlations of length 8,192 for each frame. A topic of future research for 

reducing the complexity is to develop a harmonic based DFT, which only compute the 

desired values (i.e., the harmonic values). 

This seems reasonable since the only values used from the magnitude spectrum 

are determined by the sub-sampling period, which has a maximum number of 56 sample 

points at a sub-sampling period of 114 samples. In the worst case scenario, sub-sampling 

period equal to 114, only 56 of the 8,192 values are necessary. By developing a harmonic 

based DFT only the values necessary are computed. A M point DFT takes 

(M /2)1og2 (M) number of complex multiplications and Mlog2 (M) number of complex 

additions. If M = 16,384 there are 114,688 complex multiplications and 229,376 

complex additions are necessary. The problem lies in the fact the analysis frame contains 

only 240 points of real data, the rest of the values are zero as a result of the zero padding. 

If the DFT values can be computed in a harmonic fashion and all the zero multiplications 

are avoided, the equivalent would be a DFT of maximum length 56 (64 if rounded to a 

power of 2). The number of complex multiplications and additions necessary to compute 
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a M = 64 point DFT are 192 and 384, respectively. This results in considerable savings 

in the amount of computation necessary to perform the analysis-by-synthesis making it a 

more viable alternative. 

The idea presented here is not meant to be an exact solution but is presented so as 

to promote thought in the area of determining the spectral amplitude and phases for 

sinusoidal based vocoders. 

7 .4.2 Time-Domain Analysis-By-Synthesis 

The time-domain analysis-by-synthesis method of parameter estimation is 

sufficient for determining the parameters of a sinusoidal model using overlap addition. 

This approach has the advantage over other methods of not estimating any voicing 

decisions. This is reasonable since the phase information is being transmitted. The 

disadvantage with this approach is the higher bit rate, 16,000 bps. While this does code 

speech sampled at 8,000 samples per second using 2 bits per sample, a more useful 

application is in the area of mid and low bit rate coding, 8,000 bps and below. 

The sub-sampling period and gain can be coded with a minimal number of bits 

and methods exist to code the spectral amplitudes in an efficient manner. So the problem 

here is to find a method to code the phase information efficiently. This would provide a 

big improvement in the quality, intelligibility, and robustness of sinusoidal based 

vocoders. 
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·APPENDIX 

A.I Synthetic Phase 

The generation of high quality speech using the sinusoidal model is dependent on 

an accurate phase track at least for harmonic amplitudes, which are declared voiced. It is 

well known that during voiced speech the production of speech begins with a sequence of 

excitation pitch pulses that represent the closure of the glottis at a rate determined by the 

pitch frequency. This suggests that a linear phase model is sufficient for modeling the 

phase. It is noted that in general the harmonic amplitudes may not be harmonically related 

to the pitch. The altering of the spectral amplitudes and corresponding phase is modeled 

by the transfer function Hs(ro), which is defined to be a minimum phase system [24]. 

This transfer function is made up of the composite of two transfer functions written as 

where this composite function is referred to as the system function and jHs(m)j 

represents the magnitude and <1> s (ro) represents the system phase and j = H . The 

harmonic phase model is now defined in terms of the linear portion plus the system phase 

given by 

(A.1-2) 
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where ~ 0 represents the starting phase corresponding to the fundamental frequency and 

l~l~L. 

The starting phase is determined by computing the integral of the instantaneous 

frequency given by 

'Po = </Jt1 + f m0 (a )da, (A.1-3) 
T 

where ~~-I represents the starting phase from the previous frame, ro 0 (cr) represents the 

time-varying property of the pitch frequency, and T is defined to be the length of the 

synthesis frame. The pitch frequency is defined to be a linearly varying function from 

frame-to-frame and is written in terms of the previous frame's pitch frequency and the 

current frame's pitch frequency. This function represents an average pitch and is written 

as 

(A.1-4) 

The substitution of this function into the integral equation above results in a 

representation for the starting phase in the current frame. This is given by 

f k-1 k )r 
~ _ ~k-1 \mo + mo 
'l'O - 'l'O + • 

2 
(A.1-5) 

The previous equations define the computation of linear phase portion of the 

phase model. · The following equations define the computation of the system phase 

portion. As stated above the system function is defined to be a minimum phase system. If 

this assumption is true then the system function is can be expressed in terms of the 

cepstral coefficients. 
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We start by computing the complex logarithm of the function Hs(ro) and then 

compute the inverse Fourier transform to obtain the cepstral coefficients. The complex 

logarithm [ 40] is given as 

(A.1-6) 

In computing the inverse Fourier transform the system phase term is ignored since 

only the magnitude function IHs (w) I is available. The inverse Fourier transform is 

written as 

(A.1-7) 

Since the magnitude function IHs(w)I has the property of being an even function then the 

inverse Fourier transform is written solely in terms of a cosine, as given by 

1 7r 

en=- J1n(IH)w)I )cos(wn)dw. 
7r 0 

(A.1-8) 

The system phase is now computed using the Fourier transform. This is defined by 

(A.1-9) 
n 

This equation is now rewritten by substituting the magnitude and phase functions for 

Hs (ro) and rewriting the complex exponential in terms of cosines and sines. The Fourier 

transform is now given by 

(A.1-10) 
n 
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This equation is now split into the real and imaginary parts, shown below, 

resulting in the following equations for the logarithm magnitude function and system 

phase function and exploiting the symmetry properties. 

n = 0,1, ... ,N (A.1-11) 
n 

n = 1,2, ... ,N (A.1-12) 
n 

For a speech signal sampled at 8,000 samples per second a value of N greater 

then or equal to 44 has been determined to be sufficient for computing the system phase. 

The harmonic phase model is now defined in terms of the linear model and the system 

phase given by 

B,=Zrp;-1 +~ 0 0 -2~:Cnsin(mn). ( f(J/-1 +(Jl)rJ N 

2 n~I 

(A.1-13) 

A.2 Postjilter 

The sinusoidal model of speech reconstruction' has been shown to produce high 

quality and intelligible speech. Although the reconstructed speech, typically has a muffled 

quality. A number of efforts have been directed towards correcting for this muffled 

quality which is result of the sinusoidal model analysis [24]. The biggest effort to get rid 

of this coder noise is in the area of auditory masking or postfiltering of the spectral 

envelope. The approach used in this dissertation is a variant of the FS 1016 CELP 

postfilter. Since the analysis and synthesis are performed in the frequency-domain, it 

makes sense that the postfiltering should occur in the same domain. 
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The idea is to design the postfilter such that the dynamic range between the 

formant peaks and formant nulls of the spectral envelope is increased. This is 

accomplished using a filter that performs a spectral tilt of the spectral envelope as given 

by 

(A.2-1) 

where T(ro) represents the tilting function, Hs (ro) is spectral envelope, and F(ro) is the 

spectrally flattened version of H s( ro) . , 

In order to perform compression of F(ro) then it must be normalized to have unity 

gain. If this is true then the compression function is given by 

C(m)= [F(m)]a, (A.2-2) 

where O ::;; a ::;; 1. The spectral tilting function can be defined by a simple first order all 

pole model written as 

T(ro) = K . , 
1 -Jro -µe 

(A.2-3) 

where µ is found using LPC analysis techniques on the synthetic speech waveform and 

K represents the gain of the filter. This coefficient represents the first prediction 

coefficient, which is found from the ratio of the energy R0 and the first correlation 

coefficient R1 • It can be shown that these correlation coefficients can be found in the 

frequency-domain and are given by 

(A.2-4) 
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and 

L 

RI= Is? cos(lroo), (A.2-5) 
/;I . 

where µ = R0 I RI , L determined the number of harmonics in the current synthesis frame, 

and ro0 is the pitch frequency for the current synthesis frame. 

By making the appropriate substitutions the spectrally flattened spectral envelope 

is now written as 

(A.2-6) 

Since F(ro) is normalized to have unity gain, K is chosen such that the average 

power of the spectrally flattened amplitudes is unity and is given by 

(A.2-7) 

lbis equation is now solved for the gam µ and making the appropriate 

substitutions results in 

(A.2-8) 

By substituting the gain term into the equation for the spectrally flattened spectral 

envelope the result is a given by 

(A.2-9) 

The values of the postfilter are given by raising the spectrally flattened spectral 

envelope to the appropriate power as defined previously; The postfilter is now written as 
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(A.2-10) 

After postfiltering the spectral amplitude, the energy in the postfiltered amplitudes 

is no longer equal to the original spectral amplitudes so it is necessary correct the energy 

level in the synthetic signal. This is accomplished by scaling the postfiltered amplitudes 

such that the energy is the same as before the post:filtering defined by 

O'= 

I 

2 

(A.2-11) 

The postfilter described above is the one used in this dissertation. There are other 

postfilter forms available. One alternate form of postfilter is used in the EMBE 2,400 bps 

vocoder and is described.in Chapter 3 of this dissertation. 
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