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Abstract 

Urban area expansion is one of the most powerful anthropogenic forces 

changing the earth‘s surface. Such changes are happening at much faster rates in 

African and Asian cities. Several interconnected but distinct processes like increase in 

population concentration and extensive alteration of the landscape are associated with 

urban area expansion. Therefore, understanding the urban area expansion and its drivers 

is a key task to devise a plan for sustainable urban development. In this study we 

mapped and analyzed urban area growth of six mid to large size cities of West Africa.  

In land cover studies, growth in urban land use are characterized by the declines 

in cropland. So, firstly we evaluated twelve freely available, remotely sensed land cover 

and land use (LCLU) datasets at the eco-region, country, and pixel levels in West Africa 

to estimate croplands. The result shows a very high variability of estimated cropland at 

all levels. Despite this variability, datasets having a finer spatial resolution and 

representing a similar time period—specifically data from the International Institute for 

Applied Systems Analysis-International Food Policy Research Institute (IIASA-IFPRI), 

Global Land Cover-SHARE(GLC-SHARE), Moderate Resolution Imaging 

Spectroradiometer-UMD (MODIS-UMD), Global Cropland Extent, Moderate 

Resolution Imaging Spectroradiometer-UMD (MODIS-IGBP), and GLOBCOVER 

(GlobCover V23)—estimated comparable cropland areas at eco-region and country 

levels. The countrywide cropland area, obtained from the selected datasets, when 

compared with the sum of arable land and permanent crop area obtained from the Food 

and Agriculture Organization (FAO), showed high coefficient of determination 

(R2>0.95) for IIASA-IFPRI, and GLC-SHARE. At the pixel level, at the original 



xiv 

resolution, the newer datasets have a comparable user’s accuracy (UA>53%) and 

producer’s accuracy (PA>46%), except for the Global Cropland Extent data. Overall, 

two datasets – IIASA-IFPRI and GLC-SHARE– performed better in the region to 

estimate the cropland area at all levels. 

Next, we used Landsat MSS, TM and ETM+ images to map the urban land area 

in six West African cities for four different time steps from the early-1970s to 2010. 

The selected cities are Kumasi of Ghana, Daloa of Cote d’Ivoire, Abuja and Kano in 

Nigeria, Kindia of Guinea, and Ouagadougou of Burkina Faso. They also represent 

three different eco-regions: Eastern Guinean Forest, Guinean Forest-Savanna Mosaic, 

and West Sudanian Savanna of West Africa. We found that all the cities, except Daloa, 

have a large number of non-urban pixel converted to urban in the past three to four 

decades. The growth of the urban areas was high, 13 to 54%, but the growth trajectories 

were not consistent. For example, the rate of urban growth has been declining in Abuja 

and Ouagadougou in recent years while Kumasi has been growing consistently at a 

much higher rate since 1975 and was still growing about 13% annually, between 2005 

and 2010. Also, most of the cities have shown a higher rate of growth of urban land use 

than population except Abuja and Ouagadougou. These cities revealed higher 

population growth, (10.7 to 15.8%) than urban land use growth, which varies from 3.0 

to 4.5%.  We did not observe any similarities in the growth of cities from the same eco-

region. 

Finally, we identified that Normalized Difference Vegetation Index (NDVI) and 

distance to the urban area showed strong associations with the growth of six cities in 

West Africa. The six cities include Kumasi, Daloa, Abuja, Kindia, Ouagadougou, and 
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Kano. We found that none of the factors showed a consistent association with urban 

land use.  Out of the six cities, Ouagadougou and Kano showed some level of 

agreement in associating the urban growth with NDVI at different time periods. In the 

rest of the cities, proximity parameters such as distance to the nearest urban area and 

distance to the core city area showed some level of association to urban growth. These 

findings shows that the process of conversion of urban land use is unique for a city at a 

given time period. 
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Chapter 1: Introduction 

Urban area expansion, one of the most powerful anthropogenic forces changing 

the earth‘s surface (Dawson et al. 2009; Cui and Shi 2012), is associated with several 

interconnected but distinct processes like increase in population concentration and 

extensive alteration of the landscape (McDonnell and Pickett 1990). The literature treats 

urbanization differently in different contexts (Hope 1942; Satterthwaite et al. 2010; 

Marcotullio and Solecki 2013; Seto et al. 2013). Some define urbanization as a 

movement of people from rural to urban areas with population growth equating to urban 

migration (DESA/UN 2011) while others argue that urbanization is the process which 

covers some aspect of a region’s population, economy, or built infrastructure (Seto et al. 

2011).  

Since 2010, more people live in urban than in rural areas around the world (UN 

2011). It is expected that by 2050, more than 60 percent of the global population will 

live in urban areas. However, the level of urbanization differs greatly across the world. 

On the one hand, the population of many of the countries in Europe, Latin America and 

the Caribbean, Northern America and Oceania is mostly urban. On the other hand, 

despite an increase in the rate of urbanization around the world since 1950, the majority 

of the population in countries in Africa and Asia (except China) remain mostly rural 

(DESA/UN 2011; Cui and Shi 2012; Seto et al. 2013). Major changes in urban 

population are projected to take place in developing countries in Africa and Asia 

(Satterthwaite et al. 2010; DESA/UN 2011) likely altering the landscapes greatly. 

Historically, urban hubs around the world have been the center of economic and 

social development, but urbanization has also negatively affected Earth’s environment 
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(Hope 1942; Satterthwaite et al. 2010; Rodriguez 2008; Marcotullio and Solecki 2013). 

As urban centers grow, the increasing concentration of people and economic activities 

demand further development of housing and public infrastructures (Thapa and 

Murayama 2009) changing the urban landscape. Several studies have investigated 

impacts of such development on the biota and physical environment (McDonnell and 

Pickett 1990; Lambin et al. 2001; Kalnay and Cai 2003; Alberti 2005; Satterthwaite et 

al. 2010; Tian et al. 2011; Marcotullio and Solecki 2013). One of the serious impacts of 

urbanization according to those studies is on land use and land cover (LULC) in and 

around the urban centers including encroachment on croplands (Tian et al. 2011). 

Furthermore, LULC changes, associated with urban development, are considered one of 

the most disturbing processes and are the causes of changes in mesoscale weather 

patterns, water resources, and biodiversity (McDonnell and Pickett 1990; Kalnay and 

Cai 2003; Alberti 2005; Liu et al. 2010). There is also evidence of changes in 

composition and structure of ecological communities associated with urban land use 

(Posa and Sodhi 2006; Sadler et al. 2006).  

Traditionally, migration from rural to urban areas is credited for urbanization. 

The classic push and pull factors working in tandem with strong links to economic 

development are the prime reason of such movement of the human population. But 

urbanization in developing countries including countries in Sub-Sahara Africa (SSA) 

does not show the same level of economic improvement in the urban area as has been 

found in the developed countries (Barrios et al. 2006). Recent studies in China show 

that government policies have played a key role in the migration of people and the 

growth of urban areas (Cui and Shi 2012). The growth of urban population in West 
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Africa is also attributed to high population growth and migration from the rural area 

(UNEP 2012). The economy is the primary driver for urbanization in developing 

regions, including West Africa (UNEP 2012; Barrios et al. 2006; DESA/UN 2011). 

Shortfall in crop production affecting livelihood, lack of services (e.g. health and 

education) and poor security situations are some of the common push factors while 

higher employment opportunities, better services and security are the main pull factors 

(AEO/UNEP, date; Barrios et al 2006; DESA/UN 2011).  An increasing number of 

studies on rural urban migration in SSA also show climate as an important factor 

(Barrios et al. 2006; Parnell and Walawege 2011) along with social and economic 

factors for the movement of people to urban areas. In a region like West Africa where 

the agricultural sector employs 60 percent of the active labor force as subsistence 

farmers (Jalloh et al. 2013), changes in the rainfall amount and onset of rainfall play a 

significant role. A poor harvest due to such changes means a likely loss of livelihood for 

these farmers. This situation has caused movement of people from rural areas to the 

nearby urban areas looking for jobs and improved livelihoods (Barrios et al. 2006).  

There are many studies of urban growth around the world using remote sensing 

data (Mundia and Aniya 2005; Seto et al. 2011; Attua and Fisher 2011; Forkuor and 

Cofie 2011; Weng 2012; Karolien et al. 2012; Kamh et al. 2012; Brinkman et al. 2012; 

Linard et al. 2013; Wania et al. 2014). But the number of studies vary across the regions 

of the world. Seto et al. (2011) did a meta-analysis of studies that monitored changes in 

urban land-use using remote sensing for the period between 1988 and 2008. They listed 

326 case studies around the world meeting their criteria. The majority of the studies 

were carried out in China, North America, Europe, and South West Asia. In Africa, they 
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found only twenty nine studies addressing urban expansion (Seto et al. 2011). Yeboah 

(2000, 2003) also mentions that urban expansion in Africa had not been adequately 

studied. However, the situation is changing as an increasing number of studies are being 

carried out focusing on the expansion of urban and peri-urban area in Africa in recent 

years (Karolien et al. 2012, Attua and Fisher 2011, Forkuor and Cofie 2011, Kamh et al. 

2012, Brinkman et al. 2012, Linard et al. 2013, Wania et al 2014). Below, I will 

summarize some of the research that has focused on urban expansion in West Africa. 

One of the commonalities of these studies is the use of Landsat imagery at several time 

steps. Another commonality is the focus on the expansion of just one city disregarding 

the development of other cities in the region. 

Mundia and Aniya (2005) studied the land use/ cover changes and urban 

expansion of Nairobi City, Kenya using Landsat Multi-spectral Scanner (MSS), 

Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM +) images for 

1976, 1988 and 2000. They found that for the period from 1976 to 2000, the urban area 

grew by about 50 square kilometers. They also identified economic growth and 

proximities to transportation routes as the major factors for urban growth. 

Karolien et al. (2012) used Landsat images from 1989, 1995, 2003 and 2010 to 

map and analyze the urban growth of Kampala, Uganda.  In the study, a logistic 

regression model for the growth of Kampala was developed, and it revealed the 

presence of roads, accessibility of city center, and distance to the existing built-up area 

as the controlling factors of the growth of the city. They also predicted the future urban 

growth for three alternative scenarios.   
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Attua and Fisher (2011) used Landsat data 1985 to 2003, to study the urban 

expansion of the New Juaben municipality in Ghana. The study found that the urban 

core expanded by 10% and the periurban areas expanded by 25% over the period at the 

expense of open woodlands, tree, grass, and crop areas. They also found that the prime 

drivers of land-cover changes are demographic changes and past microeconomic 

policies.  

Forkuor and Cofie (2011) used Landsat data from 1974, 1986, and 2000 to study 

the land use and land cover change in Freetown, Sierra Leone, and found an astounding 

growth of the urban area by more than 140% for the period 1974 to 2000. The change 

occurred at the loss of agriculture areas, grasslands, forests, and barren lands.  

Kamh et al. (2012) evaluated the urban land cover change in the Hurghada, 

Egypt using Landsat 7 ETM+, Landsat 5TM and Advanced Space borne Thermal 

Emission and Reflection Radiometer (ASTER) data from 1987, 2000 and 2005. They 

used post-classification comparison of the urban expansion and found expansion of the 

urban area by 40 square kilometers for the period 1987 to 2005. 

Brinkman et al. (2012) used a Corona (KH-4B) panchromatic image and 

Landsat (TM and ETM) data in combination with geographical and demographic data to 

study landscape transformation processes (LTP) in four different cities of West Africa. 

They mapped four LTP processes namely urbanization, crop expansion, deforestation, 

and land abandonment for the cities and surrounding area for the period from 1986 to 

2009 on the basis of common classification of the Landsat and Corona images. 

Linard et al. (2013) studied the spatial pattern of urban growth in twenty large 

cities of Africa using the Atlas of urban expansion available from the Lincoln Institute 
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of Land Policy (http://www.lincolninst.edu/) and Landsat images from the 1990s and 

2000s. They classified Landsat images into built-up and non-built-up pixels.  They used 

travel time to core business district, distance to nearest urban pixels and slope as the 

covariates to model the urban growth in those cities.  

Wania et al. (2014) mapped the built-up area changes in the city of Harare, 

Zimbabwe with Spot-2 and Spot-5 for the period 2004-2010 at 10m spatial resolution.  

They investigated the change in built-up area with the change in population density and 

observed a good correlation between these two parameters. They analyzed the change at 

the grid and administrative levels. 

Most of the research on urban land cover change in Africa presented above is 

primarily focused on one city. These studies map the land cover for different time 

period (s) using remote sensing data, mainly Landsat data along with some ancillary 

data and analyze the change in urban growth over certain time period(s). None of the 

studies so far have taken a comprehensive look at urban growth. For example, they do 

not investigate the interplay of environmental and socio-economic factors in the growth 

urban land use of a city, let alone cities across the various ecoregions of West Africa. In 

addition, none of the studies have looked into any similarities or differences in the 

urban growth of the cities within West Africa. This study attempts to fill this gap. 

A review of existing land cover change studies including the expansion of urban 

area or urban land use shows that such studies have focused mainly on spatio-temporal 

changes on land cover in an area or a region (Mundia and Aniya 2005; Seto et al. 2011; 

Attua and Fisher 2011; Forkuor and Cofie 2011; Weng 2012; Karolien et al. 2012; 

Kamh et al. 2012; Brinkman et al. 2012; Linard et al. 2013; Wania et al. 2014) as 

http://www.lincolninst.edu/
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described in previous paragraphs. A comprehensive analysis of environmental and 

socio-economic parameters could help our understanding of the process and drivers of 

urban area expansion. For example, about 60 percent of active labor force depends on 

subsistence agriculture in the study region. Since agricultural productivity is highly 

dependent on favorable climatic conditions (i.e., good and timely onset of rainfall, 

suitable temperature), any variability on climate impends the livelihood of subsistence 

farmers triggering the movements of more people to the cities causing the physical 

growth of cities in the region. Thus, I postulate that studying urban growth of cities 

from three different eco-regions: Eastern Guinean Forest, Guinean Forest-Savanna 

Mosaic, and West Sudanian Savanna representing five different countries (Burkina 

Faso, Cote d’Ivoire, Ghana, Guinea, and Nigeria) within West Africa will help to better 

explain the nature of urban growth in the region. Furthermore, urban growth analysis 

based on cities across the eco-regions will help researchers to identify factors affecting 

the urban growth among the cities of West Africa. I am interested in studying if those 

factors vary across the eco-regions and/or countries. 

 

Research questions and hypothesis 

The overarching research question is: How has the urban land use expanded and 

what are the reasons of such expansion in the region? More precisely this research 

attempts to answer the following specific questions. 

1. How have publically available land cover and land use datasets mapped 

and quantified agriculture land use in West Africa? How does this data 

quantify agriculture land use in the various eco-regions of West Africa? 
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2. What is the rate of urban land use change for the selected nine West 

African cities since 1970s based on remote sensing data?  

3. Do environmental factors (e.g. Normalized Difference Vegetation Index-

NDVI and precipitation anomalies) play a role in the expansion of the 

urban land use in the selected cities of West Africa? If so, how? 

4. Do socio-economic factors (e.g. population growth, security, and human 

influence index) play a role in the expansion of urban land use in the 

selected cities of West Africa? If so, how?   

5. Are the same causal factors responsible for expansion of urban land use 

of the cities within an eco-region? If so, do they influence the urban land 

use expansion equally or differently?   

 

To address these research questions, I propose the following hypothesis: 

 

Null hypothesis (H0): If the growth of cities within specific eco-regions of West 

Africa are driven by the same environmental factors, then changes in these 

environmental factors will result in similar expansion of urban expansion of these cities 

within the ecoregions leading to comparable urban land use. 

 

Alternative hypothesis (H1): Other factors, such as national policies and 

localized socio-economic factors play a more significant role in the urban expansion of 

cities within specific eco-regions, resulting in cities within ecoregions to reveal urban 

land use expansion at differential rates. 
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Study area 

The study area covers the fifteen contiguous countries (Figure 1.1) of West 

Africa (referred as West Africa) from Sub-Sahara Africa (SSA). This region of Africa 

has witnessed the most severe and longest droughts in the world since the late 1970s 

(Druyan, 2011; Wang and Eltahir, 2000). The general climate in the region is dictated 

by the tropical continental air mass, dry and dusty from the Sahara Desert and another 

mass of tropical maritime air, warm and humid from the south Atlantic forming a 

convergence zone (the Inter Tropical Convergence Zone or ITCZ). The ITCZ also 

dominates the 

annual rainfall 

variability in the 

region (AIACC, 

2006). This 

region of Africa 

has a population 

of a little over 

300 million people 

as of 2010 and is expected to reach 570 million in 2050 and 735 million by the end of 

21st century (DESA/UN 2011). The average urban population growth rate since 1950 is 

the second highest compared to the other regions of Africa. In 1900 the growth rate was 

5% which rose to 12% in 1950, 28% in 1980 and 17% in 2000 (Fuwape and Onyekwelu 

2010). I selected six cities from four eco-regions (Olson et al 2001) of West Africa for 

detailed study (Figure 1.2 and Table 1.1). 

Figure 1.1. Study area of West Africa and selected cities.  
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Figure 1.2. Selected cities and their eco-regions in West Africa. 
 

 
Table 1.1. Salient features of selected cities. 

*Sources: DESA/UN, 2011 and Institut National de la Statistique 

The selected six cities are some of the medium to large and fastest growing 

cities in West Africa and are from five different countries: Ghana, Cote d’Ivoire, 

Cities Countries Eco-
regions 

Mean 
annual 
rainfall 

(mm, for 
2001-10) 

Population 
(for 2000 
in ‘000)* 

Population 
(for 2010 
in ‘000)* 

1. Kumasi Ghana Eastern 
Guinean 
Forest 

1,146 1,187 1,935 
2. Daloa Cote 

d’Ivoire 1,026 185 248 
3. Abuja Nigeria Guinean 

Forest-
Savanna 
Mosaic 

1,436 833 2,153 

4. Kindia Guinea 730 96 135 

5. Ouagadougou Burkina 
Faso West 

Sudanian 
Savanna 

812 921 1,911 
6. Kano Nigeria 712 2,602 3,271 
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Nigeria (two), Guinea, and Burkina Faso. In terms of eco-regions, the cities are from 

four eco-regions of West Africa: Eastern Guinean Forest, Guinean Forest-Savanna 

Mosaic, and West Sudanian Savanna of West Africa. Although by definition an 

ecoregion has a relatively uniform climate with unique ecological communities (Olson 

et al. 2001), climatic parameters like annual rainfall may vary within the same 

ecoregion (Table 1.1). Therefore, at least two cities from the same eco-region with 

different annual rainfall patterns are selected for this study. In addition, as urban growth 

may have been affected as a result of government’s land policy (Wu et al. 2011) the 

selected cities capture any variability that exist in the region both in terms of climate 

and land policy. A brief description about the cities is given below. 

 

Kumasi, Ghana 

Kumasi was founded in 1680 and developed into a major commercial hub 

during the British rule (Fynn 1971; Dickson 1969). The British rule, which started in 

1890, the city grew and became second to Accra—the capital city of Ghana—in terms 

of land area, population and economic activity (Adu Boahen 1964). The first city plan 

of Kumasi was laid out by the British administration in 1896 (Urban Design Lab/Earth 

Institute 2012). The city of Kumasi turned into a major commercial hub primarily due 

to major road connections to the other West African cities in Cote d’Ivoire, Togo and 

Burkina Faso (Baker 2008). The growth of Kumasi originally occurred radially as the 

result of arterial roads in the city. In modern times, the passage of the Town and 

Country Planning Ordinance, Cap 84, marked the genesis of an organized urban 
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development of Kumasi in 1945 (Urban Design Lab/Earth Institute 2012; Kasanga and 

Kotey 2001).  

Kumasi, situated in a wet semi-equatorial zone, has bi-modal rainfall 

distributions with two peaks (Nkrumah et al. 2014). The major rainfall season is from 

April to July (about 160 to 225mm/month) followed by a minor rainfall season that 

occurs between September and mid-November (60-175mm/month) (Maoulidi 2010; 

Nkrumah et al., 2014). The average temperature in the city varies from 24°C to 27 °C 

(ClimaTemps 2016). The central location of the city and its milder climatic conditions 

have contributed to the high rate of migration to the city (Cobbinah and Amoako 2012) 

and its expansion. The completion of the Volta River Dam Project in 1970 also 

contributed to the growth of urban population in Ghana including the city of Kumasi 

(d’Auria and De Meulder 2011; d’Auria 2012).  In 2013, the population in Kumasi has 

found to have grown at 5.4 % annually, the fastest in Ghana causing the growth in the 

outskirts of the city as well (Amoateng et al. 2013). According to a 2010 estimate the 

city has the area of about 21,400 ha (Ghana Statistical Service 2014). The outskirts have 

become the preferred places for residential and commercial development due to the 

relatively low land values (Drabkin 1977; Cobbinah and Amoako 2012; Amoateng et al. 

2013). The physical development of the area is going on in a haphazard manner at the 

cost of prime agriculture land surrounding the city (Amoateng et al. 2013).  Scattered or 

dispersed development is the most common sprawl type happening in Kumasi 

(Cobbinah and Amoako 2012).  

In terms of city amenities, Kumasi is not different from any other third world 

city in Africa and Asia. The pace of the population growth has outpaced the 
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development of infrastructure for better public health and safety (Urban Design 

Lab/Earth Institute 2012; Cobbinah and Amoako 2012) as a result roads are very 

congested, and the water and sanitation network in the city become inadequate.  

 

Figure 1.3. A view of Central Market, Kumasi, Ghana. (Photo credit: Ian Bacon, 
Univ. of Oregon, 2014) 

 

 

Figure 1.4. A view of an outskirt area of Kumasi, Ghana. (Photo credit: Ian Bacon, 
Univ. of Oregon, 2014) 
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Daloa, Cote d’Ivoire 

Daloa is the third largest city of Cote d’Ivoire in terms of population size.  

Currently, the city serves as the capital of the Haut Sassamdra region of Cote d’Ivoire 

(Daddieh 2012). Daloa became a French military post in 1903 (Daloa 2016). Daloa was 

granted the status of a medium-sized town, called “normal exercise” commune, through 

a law in late 1955 along with six other towns (Attahi 1989). Despite such arrangements, 

the communes such as Daloa lacked resources even to prepare the city master plan 

(Attahi 1989). During the Ivoirian civil war that lasted from 2002 to 2007, and again 

from 2010-2011, the city became the battleground for the rebels, mainly representing 

Muslim northerners and government security forces, dominated by the Christian 

southerner (Daddieh 2012). 

The city of Daloa falls on the forest agro-ecological zones of Cote d’Ivoire and 

receives average annual rainfall of 1,300mm to 2,540mm and is humid year around 

(Erenstein et al. 2006; Aregheore 2009).  The average temperature varies from 24°C to 

27 °C (Climate-Data, 2016). So the seasons in the city are less clearly marked 

(Aregheore 2009).  

The population of Daloa rose from 20,000 in 1960 to 112, 000 in 1988 

(Population Statistics 2016). Due to the development of the plantation sector the 

economy of Cote d’Ivoire has attracted foreign labors since the colonial times (ICMPD 

and IOM 2015). Daloa receives a good share of such migrants from drier areas to the 

north who are attracted by the labor opportunities in the cocoa and coffee plantations in 

the region (Erenstein et al. 2006). The city is a local trading center for rice, cassava, 

cocoa and coffee (Daloa 2016). 
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Abuja, Nigeria 

The city of Abuja is located in the central part of Nigeria. Abuja was designated 

as the capital city in 1976 by a military government decree (Ikoku, 2004; Abubakar and 

Doan, 2010). All Federal Government institutions and diplomatic missions were 

relocated to Abuja from Lagos during the 1990s (Ikoku, 2004). The city area is hilly 

and dissected terrain at 760m from the mean sea level (Balogun, 2001). Abuja receives 

about 1630 mm rainfall annually while the mean annual temperature ranges from 26°C 

to 30°C (Fanan et al. 2011). 

Abuja was initially developed based on a master plan devised in 1976 so as to 

avoid problems associated with the unplanned growth in other Nigerian cities (Imam et 

al., 2008). The city is planned in such a way that the central area, which has a layout in 

the form of a grid, extends east-west while the residential areas are planned in the north 

and south of the city (Ebo 2006). But while implementing the original plan, the 

Nigerian Government had to change the resettlement policies to address the concern of 

indigenous people living outside the first phase of the master plan (Ebo, 2006). So, 

many provisions of the original plans were revised or not implemented. 

Despite the objectives of the creation of a modern, spacious, and functional city 

with an emphasis on preserving the nature and environmental quality, a 1999 review of 

the Abuja master plan found that the city is dysfunctional and physically worsening 

(Adama, 2012; Ikoku 2004; Ebo, 2006). The city saw rapid growth in its population, 

from 379,000 in 1991 to 1.4 million in 2006 (Adama, 2012). The physical deterioration 

in the city is attributed to the poor management of solid waste, however, some argue 

that population growth alone does not explain the failure to solid waste management but 
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it is an issue of urban governance (Adama 2012). Also, in recent decades, several 

suburbs of the city have seen a proliferation of squatter settlements mainly driven by 

rural migration and very high housing prices in the city (Abubakar 2014). Furthermore, 

the pace of urban development is slow compared to the rate of population growth 

(Abubakar 2014; Ujoh et al. 2010). This creates sub-urban areas without adequate basic 

infrastructure and social amenities creating very poor living conditions (Adama 2007; 

Imam et al. 2008).  

 

Kindia, Guinea 

The city of Kindia in Guinea was established in 1904 as a collection point for 

agriculture produce on the railroad and became a primary trading center for rice, cattle, 

fruits and palm oil (Kindia 2016).  

According to the latest population data Kindia has a population of 117,062 

which is the fourth largest in Guinea (GeoNames 2016). The city has a tropical, sub-

hum climate with an average annual rainfall that varies from 1,900 to 3,600 mm and 

average annual temperature of about 26°C (Camara et al. 2011; Climate-Data 2016). 

The rainy season in the city lasts six months, from April to September. 

The surrounding area of the city of Kindia has a majority population depend on 

farming, which shows the importance of agriculture in the local economy. The share of 

agriculture contribution in the economy of the region is about 80% (Camara et al. 

2011). In addition to the farming, a significant bauxite mining is done near Kindia (Bah 

2014; Kindia 2016).  
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The city amenities are poor. The region of Kindia has little over 55% coverage 

of improved drinking water sources (ACAPS 2015). In recent years, international 

development agencies such as the World Bank are supporting the city for the inner 

roads and sewer systems (The World Bank 2006).    

 

Ouagadougou, Burkina Faso 

Ouagadougou, the capital city of Burkina Faso, was founded in the 15th century 

and developed into a trading and business center (Skinner 1974). The city is a part of 

the Soudano-Sahelian eco-region and has a tropical savannah climate (Santos and 

LeGrand 2002) with decreasing gradient of average annual rainfall from south, with 

average annual rainfall of about 900mm, to the north, with an average annual rainfall of 

less than 500mm (Offerle et al. 2005; Henry et al. 2004). The rain falls during a single 

wet season from May to September (Henry et al. 2004). The mean air temperature in the 

city varies from 23°C to 34°C (Offerle et al. 2005). During the dry season, January to 

March, the climate of the city is very dry. During this time, dusty wind resulting from 

the Harmattan wind blows from the Sahara (Offerle et al. 2005). 

In 1962, the population of Ouagadougou was about 60,000 (Skinner 1974), 

which grew to about 1.9 million in 2010 (DESA/UN 2011). The growth is expected to 

continue in future. Being one of the two largest urban centers in Burkina Faso, 

Ouagadougou has attracted the largest percentage share of migrants from the rural area, 

within and outside the country, over the past decades (Henry et al. 2004; Beauchemin 

and Schoumaker 2005). The rural to urban migration is attributed to the environmental 

conditions, primarily to an insufficient or late onset of rainfall hampering agriculture 
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production. As Burkina Faso has experienced long droughts, mainly in the early 1970s 

and in the mid-1980s, migration from the rural to the urban centers are also taken as a 

survival strategy by the people (Henry et al. 2004; Guilmoto 1998). 

 

Kano, Nigeria 

The city of Kano is located between latitude 11° 55’24” N to 12° 3’ 53” N and 

longitude 8°27’42” E to 8° 36’42” E (Dankani 2013). Kano, located in the semi-arid 

savannah belt, has a distinct wet and dry seasons (Lynch et al. 2001). The wet season 

lasts about five months from May to September, with August being the wettest month. 

The annual rainfall varies from 600 to 1200 mm. The mean annual temperature varies 

from 26°C to 32°C (Mohammed et al. 2015). There is little variation in temperature, 

compared to the rainfall, but the mean temperature value could be cooler during the 

Harmattan period (Gwadabe 2012). A network of rivers and rivulets including 

Challawa, Kano, and Jakara Rivers drains the city (Gwadabe 2012). 

Kano was established in the 9th century and its planning and development started 

in the period 1095-1134 (Barau 2006; Dankani 2013). In 1820, Kano had the population 

of about 30 to 40 thousand people (Minjibir 2012). According to the 2006 census, the 

population of the metropolitan Kano was 2.2 million which is the second largest in 

Nigeria after Lagos (National Population Commission, 2006). Currently, the city serves 

as the capital of Kano State and is an important commercial and administrative center of 

northern Nigeria (Barau 2006).  

A twenty year development plan was prepared in 1963 (Home, 1986) and 

revised in 1976, 1980 and 1990 (Dankani 2013). But this plan had been marred by 
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shortcomings related to procedural, technical, financial and enforcement issues 

(Dankani 2013). In 1963, the plan intended to expand to the southwest and indicated the 

future road network and neighborhoods. This is only partly implemented The urban 

landscape of Kano has gone through several changes from the cluster of indigenous 

buildings and structures to Islamic architecture, and to British colonist’s changes in 

built environment including land development policies (Barau et al. 2008). The city has 

two settlement patterns: traditional nucleated pattern with irregularly shaped houses 

with narrow streets and a modern nucleated pattern where houses are rectangular or 

square shaped and attached with wider streets (Gwadabe 2012). 

As other major cities of Nigeria, Kano also lacks efficient management of solid 

waste generated in the city.  The rate of generation of solid waste has outpaced the 

development of infrastructure and efficiencies of solid wastes management practices 

(Nabegu and Mustapha 2015) threatening the well-being of the public at large in the 

city (Butu and Mshelia 2014). 

 

Methodology 

To accomplish the objectives of this research, the following tasks are 

accomplished. 

1. Examine the agriculture land use in West Africa based on available global land 

cover land use datasets. 

2. Map and analyze the urban growth of the six selected cities of West Africa.  

3. Investigate the relationship of environmental and socio-economic factors and the 

urban growth. 
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4. Compare the factors of urban growth in the selected cities across the same and 

different eco-regions of West Africa. 

This study primarily uses remote sensing and geographic information systems to 

map and analyze the land cover in West Africa and logistic regression to understand the 

drivers of the urban growth. The details about the methodology are presented in each 

chapters in details.    

Organization of dissertation 

The dissertation chapters are structured as standalone manuscripts for the 

publication in professional journals. Chapter one provides an introduction to the topic 

including research questions, hypothesis, study area, and tasks. Chapter two, compares 

twelve global and regional Land cover and Land use (LCLU) datasets to estimate 

cropland. This chapter has been submitted to the International Journal of Remote 

Sensing for publication and is under review.  Chapter three maps and analyzes the 

growth in urban land use in the selected six West African cities and is formatted for 

submission to Land Use Science. Chapter four identifies factors responsible for the 

growth of urban land use in the cities analyzed in chapter three. This chapter is 

formatted for submission to the journal of Urban Ecosystems.  Finally, in chapter five I 

summarize conclusions obtained in the previous chapters and propose future research. 
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Abstract: West Africa is one of the fastest growing regions of the world and depends 

heavily on rain-fed agriculture for its food production. This study evaluates twelve 

freely available land cover and land use (LCLU) datasets at the eco-region, country, and 

pixel levels in West Africa to estimate croplands. The selected datasets are primarily 

derived using remote sensing data, representing different time periods and using various 

classification schemes. The result shows a very high variability of estimated cropland at 

all levels. Despite this variability, datasets having a finer spatial resolution and 

representing a similar time period—specifically data from the International Institute for 

Applied Systems Analysis-International Food Policy Research Institute (IIASA-IFPRI), 

Global Land Cover-SHARE(GLC-SHARE), Moderate Resolution Imaging 

Spectroradiometer-UMD (MODIS-UMD), Global Cropland Extent, Moderate 

Resolution Imaging Spectroradiometer-UMD (MODIS-IGBP), and GLOBCOVER 

(GlobCover V23)—estimated comparable cropland areas at eco-region and country 

levels. The countrywide cropland area, obtained from the selected datasets, when 

compared with the sum of arable land and permanent crop area obtained from the Food 
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and Agriculture Organization (FAO), showed high coefficient of determination 

(R2>0.95) for IIASA-IFPRI, and GLC-SHARE. At the pixel level, at the original 

resolution, the newer datasets have a comparable user’s accuracy (UA>53%) and 

producer’s accuracy (PA>46%), except for the Global Cropland Extent data. Overall, 

two datasets – IIASA-IFPRI and GLC-SHARE– performed better in the region to 

estimate the cropland area at all levels. 

 

Keywords: land cover and land use; cropland; arable land; eco-region; West Africa 

 

Introduction 

The importance of land cover datasets in ecosystem assessment, bio-diversity 

conservation, and environmental modelling are well known (Giri et al., 2005; Roy et al., 

2015). With the advancement of remote sensing techniques, land cover mapping at 

various scales has gained momentum and many regional and global land cover datasets 

are currently available. Still, many developing countries have not been able to use this 

technology to create (and update) their land cover and land use (LCLU) data because of 

the cost associated with the acquisition and processing of satellite data (Giri 2012; Fritz 

et al. 2010). This situation is slowly changing. Since 2001, yearly land cover data from 

MODIS has been available for the entire world at 500 m resolution. Additionally, much 

finer resolution (30 m) data from Landsat sensors has been used to map the LCLU of 

any region of the world as these images have been freely available since December 

2008 (Gong et al. 2013). Although the Landsat data are available freely, the processing 

of data requires expertise on radiometric and atmospheric corrections and resources that 
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many developing countries are lacking (Giri 2012). One of the ways to fill this gap in 

LCLU data is to use freely available global and regional land cover land use datasets. 

But these datasets were created for different purposes at different time periods 

employing different algorithms to classify LCLU types (Loveland et al., 2000; 

Ramankutty, 2004; Hansen et al., 2000; Mayaux et al., 2003; Bicheron et al., 2008; 

Pitman et al., 2010; FAO, 2011; Defourny et al., 2012). As a result, there are 

inconsistencies among these datasets, which can partly be attributed to differences in 

land cover typology, time, limited accuracy of land cover classifications, and the use of 

various environmental properties (like climate, topography, human influence) for 

discriminating land cover and land use types (Defourny et al., 2012; Townsend et al., 

1991).  

Several studies have compared and investigated inconsistencies of LCLU 

datasets at global, regional, and country levels (Fritz et al., 2010; Hensen and Reed, 

2000; Giri et al., 2005; McCallum et al., 2006; de Beurs and Ioffe, 2013). In general, 

these comparisons were carried out for a particular land cover class or for multiple land 

cover classes among the selected datasets themselves, globally or regionally. Sometimes 

the selected datasets were compared with national / subnational statistical data for some 

land cover classes (e.g. forest or cropland area). The following paragraph provides a 

brief account of these comparisons. 

Hansen and Reed (2000) compared the International Geosphere-Biosphere 

Program Data and Information System (IGBP-DISCover), which was based on 1992-

1993 Advanced Very High Resolution Radiometer (AVHRR) data, and the University 

of Maryland (UMD) 1 Km land cover maps. Both of these datasets are derived using 
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data from the same satellite sensor. They found that the global area totals of aggregated 

vegetation types were very similar with a per-pixel agreement of about 75% while for 

tall versus short/no vegetation, the per-pixel agreement was about 85%. However 

transition zones around core areas differed significantly, resulting in high regional 

variability between the datasets. Individual class agreement between the two datasets 

was about 50%. Giri et al. (2005) compared the Global Land Cover 2000 (GLC-2000) 

that used SPOT vegetation data (Fritz et al., 2003) and the MODIS global land cover 

data for the year 2000 for 17 classes of the IGBP. They found agreement at the class 

aggregate level for all classes except for savannas/shrublands and wetlands. 

Disagreement between the datasets was observed because the comparison was made at 

the detailed land cover classes. McCallum et al. (2006) compared four satellite derived 

datasets: International Geosphere Biosphere Project (IGBP) (Loveland et al., 2000), 

University of Maryland (UMD) (Hansen and Reed, 2000), GLC-2000 (Fritz et al., 

2003) and MODIS (Strahler et al., 1999). They reported a reasonable agreement in total 

area and spatial pattern at a global level among the four datasets. However, at the 

individual class level, the agreement of the spatial distribution was reduced to 82% (in 

South America), 11% (in Africa) and 4% (in Asia). McCallum et al. (2006) concluded 

that when global datasets were used at a continental or regional level, agreement 

decreased considerably. Fritz et al. (2010) compared four global and regional land cover 

datasets to determine their suitability for monitoring croplands in Africa: GLC-2000 

(Fritz et al., 2003), the MODIS land cover product (MOD12V1) with 17 classes of the 

IGBP, the Center for Sustainability and the Global Environment (SAGE) Cropland data 

(Leff et al., 2004) and the AFRICOVER data (from the FAO) based on visual 
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interpretation of Landsat TM data (Fritz et al., 2010). They found that the MODIS data 

underestimated the cropland compared to FAO statistics (AFRICACOVER), whereas 

GLC-2000 overestimated cropland in countries located at the northern transition zone of 

subtropical shrublands and semi-desert areas. Compared to GLC-2000 and MODIS 

datasets, the SAGE data estimations were poor at the regional scale. de Beurs and Ioffe 

(2013) evaluated three global datasets and compared classified croplands with the 

census data for twenty-two oblasts and republics of Russia. They found that the 

MODIS-IGBP and MERIS GlobCover 2009 quantified cropland very similarly and 

compared more favorably with the agricultural census data than the Global Cropland 

Extent dataset.  

In this study we expand on previous studies and evaluate twelve LCLU datasets. 

The list is representative of LCLU datasets currently available in the public domain 

being used in research around the world. It is difficult for the scientific community, 

planners, and natural resource managers to choose one dataset over another without 

knowing their strengths and weaknesses for a specific geographic region. Furthermore, 

some of these datasets are also being used to update or create newer LCLU datasets 

(Latham et al., 2014). Therefore, the objective of this paper is to evaluate twelve LCLU 

datasets, representing various time periods and to find their suitability to estimate 

cropland area in West Africa. Here, we focused on croplands because of their 

importance in land cover studies. Declines in cropland are mainly characterized by the 

expansion of urban and/or other impervious areas into cropland, while cropland 

expansion typically occurs at the cost of grasslands, savannahs and forests (Holmgren, 

2006). More specifically, this study analyzes accuracies of the land cover data from 
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different time periods to represent cropland at the eco-region, country, and pixel levels 

in West Africa. This evaluation is expected to help the scientific community identify the 

existing limitations of cropland maps derived from global classification data. In 

addition, we expect that highlighting the errors and uncertainties in these dataset will 

result in improved attention to classification techniques to map cropland using remote 

sensing data in regions like West Africa where croplands are often relatively small and 

sometimes ephemeral. Furthermore, the result from this study could help natural 

resource managers to make an informed decision in selecting a particular dataset for use 

in West Africa. 

This paper is organized as follows: The first section provides background 

information and objectives of the study. The second section describes the study area 

followed by data and methods in the third and fourth sections, respectively. The fifth 

section provides results and discussion followed by the conclusions of the study at the 

end. 

 

Study Area 

The study area (Figure 2.1) consists of the fifteen contiguous countries of 

Western Africa referred to as West Africa hereafter. It is a part of Sub-Saharan Africa 

(SSA). Most of the countries in the region have experienced long droughts (Tarhule and 

Woo, 1997; Jalloh et al., 2013; EM-DAT; UCD) and are vulnerable to climate change. 

As of 2014, West Africa has a population of a little over 340 million people and  is 

expected to reach more than 800 million people in 2050 (DESA/UN, 2014), making it 

one of the fastest growing regions of the world.  



32 

 

The region heavily depends on rain-fed agriculture which extends from the 

Atlantic coast to the east of Nigeria (Droogers et al., 2001). The climate in the study 

area is driven by a tropical continental air mass, dry and dusty from the Sahara Desert, 

and another mass of tropical maritime air, warm and humid from the South Atlantic. 

These form a convergence zone called the Inter Tropical Convergence Zone (ITCZ) that 

causes the annual rainfall variability (Druyan, 2011; AIACC, 2006) in the region 

(Figure 1). 

An eco-region is a relatively large unit of land or water containing a unique 

community of species and environmental settings (Olson et al., 2001). There are 

twenty-six terrestrial eco-regions, with areas varying from about 3 kilo hectares (KHa) 

to 163.18 million hectares (MHa), in West Africa (Olson et al., 2001). In this study, 

eight eco-regions, each with an area of more than 10 MHa were selected. These eight 

eco-regions together cover more than ninety-four percent of West Africa (Figure 2.2, 

Table 2.1).  
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Figure 2.1. The study area, West Africa extends from 4º 13’ N to 27º 22’ N, and 17º 
34’ W to 15º 56’ E. It is surrounded by the Sahara desert to the North and the 
Atlantic Ocean to the South and West. The map also shows the spatial rainfall 
variability in the region for the period 2001-2010 (Data sources: FEWSNET; 
ESRI). 
 

 

Figure 2.2. The selected eight eco-regions in West Africa (Data sources: Olson et 
al., 2001; ESRI) 
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Data  

Twelve freely available LCLU datasets were evaluated in this study (Table 2.2). 

All the datasets except the Regional Cropland Intensity and AFRICA COVER have 

global coverage. The Regional Cropland Intensity data was prepared for West Africa 

only while AFRICA COVER data was available for the entire continent of Africa.  The 

datasets represented different time periods from the early 1990s to 2013. They were also 

representative of various land cover classification systems. The spatial resolution of the 

datasets varied from 300 meters to 10 kilometers. The MODIS land cover datasets 

(MODIS-IGBP and MODIS-UMD) were the only datasets that have been available on a 

yearly basis since 2001. All other datasets were produced for a particular year only 

once, or sometimes with a gap of a couple of years after the first production. The 

majority of the datasets had both pure and mosaic pixels classified as croplands. Most 

of the datasets used remote sensing data to map land cover, with the exception of the 

Regional Cropland Intensity data, which infused ancillary data, such as population 

density and agriculture census/inventory with the cultivation intensity data derived from 

Landsat and Normalized Difference Vegetation Indices from AVHRR (Ramankutty, 

2004). The IIASA-IFPRI and GLC-SHARE data infused satellite data from various 

sensors and the total cropland area was matched to the global food and agriculture 

statistics available from the United Nations Food and Agriculture Organization 

(FAOSTAT) for 2005 (Fritz et al., 2015; Latham et al., 2014). A high resolution land 

cover dataset, with a spatial resolution of 30m × 30m, produced using the Landsat 

imagery is available from Gong et al. (2013). Although this dataset is much finer 
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resolution than the rest of the twelve datasets we compared them with the rest to 

estimate the country level cropland area. 

To visually evaluate the data we homogenized (Fritz and See, 2008) all the 

datasets by assigning a “1” to pure cropland pixels and a “0” to non-cropland pixels. For 

pixels with a mix of cropland and other LCLU types, fractional values varying from 0.1 

to 0.9 were assigned to all datasets except for the Regional Cropland Intensity and the 

Global Cropland Extent datasets. The Regional Cropland Intensity dataset already has 

pixels with fractional values of crop intensity, while the Global Cropland Extent dataset 

provides the probability value of a pixel being a cropland. For the other datasets, the 

fractional values were based on the descriptions of the land cover classification system 

in each of the land cover datasets (Table 2). For example, in the case of AFRICA 

COVER, one of the land cover classes is ‘croplands with open vegetation’. Pixels in this 

class contain 30% cropland mixed with natural vegetation (Mayaux et al. 2003). So, for 

this class, we assigned a value of 0.3. For the country and regional level analysis 

described below, if a pixel was assigned a fractional crop value (e.g. 0.3) we took only 

0.3 of the total area of the pixel as the estimated cropland area.  

We used the Food and Agriculture Organization (FAO) of the United Nations 

data for the country level analysis. The FAO has compiled time-series data since the 

1960s relating to global food and agricultural statistics (FAOSTAT). We used the sum 

of the country level arable land and permanent crop area as a variable and analyzed its 

relationship with the estimated cropland from the selected classification datasets. The 

arable land gives the land area with temporary agriculture while the permanent crop 

area gives land area cultivated with long-term crops (FAOSTAT). For this part of the 
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analysis, we matched the year of the arable and permanent crop area with the year for 

which the selected LCLU datasets were available. For example, we matched the UMD-

AVHRR estimated cropland area (1992-1994) with the FAOSTAT data from 1993. 

FAOSTAT only provides arable land and permanent crop area data until 2012, so we 

used the 2012 data for the comparison of the GLC-SHARE estimated cropland area of 

the year 2014. 



38 

 

 



39 

 

Methods  

We extracted the cropland data and calculated the total cropland area in the 

study domain for all eco-regions and countries. The variability in the countrywide 

estimated area was determined by the coefficient of variation (CV), which measures the 

dispersion of the data (e.g. cropland area) from the mean value obtained from all the 

datasets for an ecoregion or a country (Bruin, 2006). A high CV indicates greater 

dispersion and uncertainty of the data to estimate the cropland. To minimize the effect 

of time gaps among datasets, we chronologically grouped them into three groups: Early 

1990s, 2000s, and around 2010. We calculated the CV for each group separately. 

Furthermore, we also compared the countrywide estimated cropland with the sum of the 

country level arable land and permanent crop area data obtained from FAOSTAT.  

 

Pixel level validation  

We validated the original datasets with imagery from Google EarthTM. The 

Google EarthTM images were selected for validation because they are available at high 

spatial resolution of at least 15 m, and they are updated regularly, every one to three 

years (Google Earth Help). Furthermore, these images are better alternatives for 

validation if the area is large and field data are not available. For the collection of 

Google EarthTM data points, we used the extent of West Africa as the sampling frame. 

We randomly collected 1,000 pixels, at 1 Km × 1 Km grids and visually determined the 

land cover class for each grid. For each pixel a maximum of three dominating land 

cover classes (selected from impervious surface, grass and herbaceous, trees and forest, 

soil and barren, water, cropland, and wetlands) with estimated percentage of land cover 
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were assigned based on visual interpretation (Figure 3). We omitted samples with poor 

resolution or those that were contaminated by clouds and replaced these samples with 

visually distinguishable samples. The collected cropland samples include both 

agricultural and fallow land. We identified 215 (with 1 Km × 1 Km resolution) as 

cropland (50% or more cropland) in the set of 1,000 randomly selected points. All of 

the cropland points sampled from Google EarthTM were from the year 2000 or later. 

Among them, about 80% were from the year 2008 or later (Table 2.3). 

 

Table 2.3. Time stamps on randomly selected 1 Km × 1 Km Google EarthTM 
cropland points  

2007 or earlier 2008-2013 No dates Total 

24 172 19 215 

 

Finally, we calculated the user’s and producer’s accuracies (Congalton, 1991; 

See et al., 2013): 

 

Overall accuracy (OA)=
∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖,𝑗𝑗=1

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

×100  ----- (1) 

 
User's accuracy (UA)= xi,i

∑ xi, j
n
j=1

×100           ----- (2) 

 
 Producer's accuracy (PA)=

xj,j
∑ xi, j

n
j=1

×100     ----- (3) 

 
Kappa (k)= 𝑁𝑁∑ 𝑥𝑥𝑖𝑖,𝑖𝑖−∑ (𝐺𝐺𝑖𝑖𝐶𝐶𝑖𝑖)𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1
𝑁𝑁2−∑ (𝐺𝐺𝑖𝑖𝐶𝐶𝑖𝑖)𝑛𝑛

𝑖𝑖=1
×100          ----- (4) 

 
Where i and j are the cropland class from the selected datasets and sampled 

pixels from the Google EarthTM imagery, respectively, and N is the total pixels 

including cropland and non-cropland classes, Ci are the total number of classified pixels 
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(by the selected datasets) to cropland class, and Gi are the total number of ground truth 

pixels (obtained from Google EarthTM imagergy) belonging to cropland class. 

  

Figure 2.3. Two data pixels (1 Km × 1 Km) collected using the Google EarthTM. 
The pixel on the left panel shows a mix of two dominating land cover classes, 
cropland and fallow land (about 70%), and grass and herbaceous (about 30%). 
The pixel on the right panel also shows a mixed pixel with cropland and fallow 
land (80%), trees and forest (10%) and buildings (10%).   
 
 

Results and Discussion  

Cropland areas estimated by the twelve datasets were first mapped at their 

original resolutions (Figure 2.4). Although these datasets represent cropland at different 

times, we see certain patterns in the region. We observed that most of the datasets have 

identified croplands in the south and southeast of the study area, including the coastal 

areas. The Regional Crop Intensity identified the largest area of cropland among all 

datasets. The IGBP-SiB identified croplands along the coastal regions in the south only. 

The IGBP-DISCover, AFRICA-Cover, LADA-FAO, GlobCover V23, MODIS-IGBP, 
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MODIS-UMD and GLC-SHARE have a swath of area identified as cropland just south 

of the Sahara desert, which is the area with rain-fed agriculture (Jalloh et al. 2013). The 

IIASA-IFPRI shows cropland primarily in the East Central and coastal area of West 

Africa. The Global Cropland Extent, however, showed high probability of croplands 

across the south and a small pocket of area in the East Central part (North Western 

Nigeria). 

 

Figure 2.4. Cropland map from the global LCLU datasets. 
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Eco-region level 

None of the datasets showed cropland in the NSSW and SD eco-regions. 

Therefore, these two eco-regions were excluded from this analysis. Overall, there is a 

high variability in estimated cropland across all eco-regions at all time periods (Table 

2.4). We observed that the estimates from datasets from the early 1990s and 2000s 

varied widely. Cropland estimation varied more than 50% across all eco-regions in the 

datasets that were from the early 1990s. The datasets from the 2000s also showed wide 

variability except for the EGF, and WGLF eco-regions. The variability was smallest for 

the datasets from around 2010. Across the different time periods, we did not find any 

increasing or decreasing trend in estimated cropland area. For example, in WSS, the 

cropland area ranged from 16 MHa – estimated by the Regional Crop Intensity (early 

1990s) data – to 60 MHa estimated by AFRICA-COVER in the 2000s. For the same 

eco-region, the GlobCover V23 (around 2010) estimated cropland to be around 58 

MHa. In contrast, the cropland area in the EGF eco-region was 10.57 MHa, according 

to the IGBP-DISCover dataset in the early 1990s, and 10.71 MHa according to the 

LADA-FAO from the 2000s. Despite a 10 year gap, the cropland area remained 

virtually unchanged in the region. For the same region, the maximum cropland area 

estimated a decade later (around 2010) was 30% lower (7.54Mha). The newer datasets 

have less variability in estimating cropland compared to the older datasets from the 

early 1990s or 2000s. 
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Country level 

The estimated cropland area varied widely in the twelve datasets at the country 

level as well (Table 2.5). In the datasets from the early 1990s, the CV ranges from 20-

107% for all countries, and it was the highest for Gambia (107%) and Benin (100%). 

For most countries, datasets from the 2000s have a low CV compared to the 1990s 

datasets, with some exceptions, such as Guinea, Guinea-Bissau, Mauritania, and Niger. 

The datasets from around 2010 have a low CV for most countries compared to the 

datasets from the 1990s. Liberia revealed a CV of 139%, which was the highest among 

all countries. In addition, eight other countries had a CV of 50% or more. The 

uncertainties in cropland estimation around 2010 decreased compared to the 

uncertainties in the datasets from the early 1990s. We also compared these data with the 

cropland area obtained from Gong et al. (2013). We found that the Gong et al. (2013) 

data highly underestimated cropland area in West Africa. For example, only 0.02% of 

the FAO’s Arable Land and Permanent Cropland data are identified in Gong et al. 

(2013) data for Sierra Leone as cropland area. This number is only 11%, the highest 

among the countries in the study area, for Guinea-Bissau. For countries such as Nigeria 

and Senegal, the 30m data from Gong et al. (2013) identified only 2.86% and 2.27% of 

the FAO data as cropland area respectively. As the countrywide cropland area obtained 

from Gong et al. (2013) were too low we did not use the data for further analysis. 

We also investigated how estimated cropland areas compare with the sum of the 

arable land and permanent cropland obtained from FAOSTAT. As mentioned earlier, 

we matched the reference year of the estimated cropland areas with the year of the sum 

of the arable land and permanent cropland data for each country (Table 2.6). We 
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observe that over the years, arable land and permanent cropland data have changed, but 

the changes were not consistent. For example, in the case of Benin, arable land and 

permanent cropland value increased from 1.77 MHa (1993) to 2.65 MHa in the year 

2000. In contrast, the value decreased to 2.9 MHa in 2009 compared to 2.97 MHa in 

2005.   

A linear regression between the estimated cropland areas (X-axis) with the sum 

of arable land and permanent cropland areas (Y-axis), from the FAOSTAT showed R2 

values of 0.52 or greater (significant at 0.05 level) (Figure 2.5). The IIASA-IFPRI has 

the best R2 at 0.99 followed by the GLC-SHARE (R2=0.89), Global Cropland Extent 

(R2=0.74), and Regional Cropland Intensity (R2=0.58). Most of the data since 2005 

have R2 values 0.52 or greater. For this analysis, we dropped Nigeria as it presented 

much larger cropland area as a result of its size and thus skewed the regression results. 

The slope of the regression line for the datasets varies from 0.10 to 1.56. The 

LADA-FAO has the lowest slope of 0.10. The IIASA-IFPRI and GLC-SHARE have 

slopes of 0.97 (R2=0.99) and 1.46 (R2=0.89), respectively, which show their better 

agreement with the sum of the arable land and permanent cropland data than the rest of 

the datasets, which is expected. As mentioned earlier FAOSTAT cropland statistics for 

2005 are used to produce IIASA-IFPRI and GLC-SHARE (Fritz et al., 2015; Latham et 

al., 2014). Cropland area estimated from remotely sensed data alone mapped the arable 

and permanent cropland relatively poorly in the study area compared with the results 

from multiple, fused data sources.       

  



46 

 

 



47 

 

  

 



48 

 

Table 2.6. Sum of arable land and permanent crop (AL&PC) over the years.  

Country 
Sum of Arable and Permanent Cropland, AL & PC (in MHa) 

1993 2000 2005 2008 2010  2012 

Benin 1.77 2.65 2.97 2.90 2.89 3.15 

Burkina Faso 3.50 3.77 4.97 6.07 6.07 6.07 

Cote D'Ivoire 6.50 6.60 7.00 7.40 7.40 7.40 

Gambia 0.17 0.29 0.34 0.38 0.46 0.45 

Ghana 4.40 6.10 6.80 7.30 7.32 7.40 

Guinea 3.35 2.79 3.42 3.54 3.60 3.70 

Guinea-Bissau 0.39 0.55 0.53 0.53 0.55 0.55 

Liberia 0.50 0.61 0.62 0.63 0.66 0.71 

Mali 3.14 4.60 5.75 5.91 6.41 7.01 

Mauritania 0.44 0.50 0.41 0.41 0.46 0.41 

Niger 13.00 14.00 14.18 15.00 15.20 16.00 

Nigeria 34.90 41.00 42.40 42.40 39.70 41.70 

Senegal 3.07 3.11 3.23 3.70 3.91 3.42 

Sierra Leone 0.61 0.61 1.61 1.51 1.73 1.90 

Togo 2.30 2.63 2.25 2.55 2.67 2.85 
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 Figure 2.5. Country wide estimated cropland area (EstCrp) estimated by the 
selected datasets (X-axis) vs sum of arable land and permanent crop area 
(AL&PC) from FAOSTAT (Y-axis). The regression showed R2≥0.52 (significant at 
p<0.05) for six datasets: Regional Cropland Intensity, IIASA-IFPRI, Global 
Cropland Extent, MODIS-IGBP, MODIS-UMD and GLC-SHARE.  
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Pixel level 

We investigated the agreement of the cropland pixels with the points collected 

from the Google EarthTM images. As most of the validation points collected were from 

2005 or later, we evaluated the accuracy of the datasets with reference year 2005 or 

later for this part of the analysis (Table 7). We calculated the accuracies of the original 

datasets against the cropland pixels collected using Google EarthTM images. The user’s 

accuracies of the original datasets were found to be in the range of 53-93% while the 

producer’s accuracies varied from 47-70% except for the Global Cropland Extent data 

which is only 6%. This result is less than what is reported in the literature for most of 

the selected data (Table 7) except for MODIS-IGBP. The accuracies for MODIS-IGBP 

are close to the reported value. Any deviations between reported accuracies and our 

calculated accuracies are likely due to sampling strategy used to collect validation 

points from Google EarthTM. Furthermore, reported accuracies were based on sample 

points from various parts of the world, not just West Africa.        

 
Table 2.7. Accuracies (%) of the datasets to estimate cropland in West Africa. 
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In general, we found that the newer datasets (around 2010) have performed 

better in estimating the cropland. They have the high UA, PA, OA and Kappa values. 

More specifically, IIASA-IFPRI and GLC-SHARE were found to be the best. The 

variability at the regional and country levels (except in the case of Liberia and Senegal) 

was less in the case of these datasets. Furthermore, the estimated cropland areas were 

comparable with the sum of arable land and permanent cropland at the country level.  

 

Cropland data agreement 

We recognize the fact that all twelve datasets represent different reference 

periods. Despite this constraint, we tried to understand where in West Africa the data 

agreed or disagreed in predicting croplands. We summed up the cropland area of all 

twelve datasets in West Africa. Theoretically, neglecting any change in cropland, a 

value of 12 for pixels in the resulting raster means all datasets agree to classify those 

pixels as cropland (Figure 6), but only 25 pixels have a value of 11 from the entire study 

area. 
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Figure 2.6. Agreement/disagreement of datasets to identify croplands in the study 
area. 
 

The areas where most of the data agreed were along the West Sudanian 

Savanna, Guinean Forest-Savanna Mosaic, and Eastern Guinean Forest eco-region 

bands. Only 11% of the pixels agreed among six or more datasets. In the case of the 215 

Google EarthTM pixels, where croplands are the dominant land use (out of 1,000 random 

samples), only 48 pixels (i.e. 22%) revealed agreement between six to nine datasets 

(indicated as purple dots in Figure 6). Out of these 48 pixels, 32 were from the year 

2010 to 2013. This shows that the Google EarthTM points have better agreement with 

the newer datasets, as they are from the same time period.   
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Conclusions  

This study evaluated twelve LCLU datasets to estimate the cropland in West 

Africa. Despite limitations in the sampling strategy, homogenizations and aggregation, 

discrepancies that we found in this study were not new (Giri et al., 2005; Fritz et al., 

2010). The datasets were from different time periods and used different sensors and 

techniques to acquire and classify remote sensing images (Xie et al. 2008). In addition, 

variability in the datasets to estimate cropland is also attributed to agricultural areas 

mixed with significant non-agricultural land cover classes and low agriculture intensity 

(Xie et al., 2008; Ramankutty and Foley, 1999; Mayaux et al., 2004). These 

complexities were also evident in this study, especially when we collected 1,000 Google 

EarthTM data points.  

The eco-region and country level analysis showed high variability in cropland 

estimation. At the pixel level, the IIASA-IFPRI and GLC-SHARE showed better user’s 

and producer’s accuracies as well as better Kappa values. In general, this study showed 

the limitations of using remotely sensed global land cover and land use products to 

estimate cropland area in a region like West Africa with a complex land cover system.  

Furthermore, cropland is defined differently in each dataset. In IGBP-DISCover, 

AFRICA-COVER, LADA-FAO, GlobCover, MODIS-IGBP, and GLC-SHARE data 

croplands are combined into mixed classes while IGBP-SiB, UMD-AVHRR, and 

MODIS-UMD present croplands only as pure pixels.  The share of cropland in each 

mixed pixel varies (Fritz et al., 2003; Mayaux et al., 2003). Also, while classifying the 

images different thresholds on the spectral profile were used to identify land covers 
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including cropland (Mayaux et al., 2003) which is also a source of uncertainty in 

cropland area estimations.   

In addition, detecting agriculture in Africa is challenging due to farming system 

and the spatial pattern of croplands (Mayaux et al., 2003). The majority of farms in Sub 

Saharan Africa are small, with 60% less than a hectare and 95% less than 5 hectares, 

which makes it difficult to map cropland at 1 Km × 1 Km resolution (Lowder et al, 

2014; Mayaux et al., 2003; Gallego et al., 2010). However, we found that even the 

much finer data from Gong et al. (2013) underestimated the cropland areas for the 

countries in West Africa, which clearly indicate limitation of current classification 

algorithm.  

In recent years attempts are made to correctly map cropland are at regional level 

(Lavreniuk et al., 2015, Matton et al., 2015). Lavreniuk et al. (2015) used multilayer 

perceptrons to obtain land cover map for Ukraine using Landsat imagery with overall 

accuracy of 97%.  Similarly, Matton et al. (2015) mapped annual cropland in different 

agro-systems using global land cover data as the baseline data (without field data) with 

an overall accuracy of more than 85%. Such techniques have potential to be utilized in 

the region like West Africa too. 

In this study, newer datasets provided more accurate cropland estimates. This 

can be attributed to continuously improving sensor technology and algorithms to 

interpret the collected remotely sensed data and methodological changes like the fusion 

of various remote sensing data. Further, collection of training data has significantly 

improved both in terms of quality and quantity in recent years, compared with the 
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1990s, contributing to better classification of land cover classes (Fritz et al., 2015; See 

et al., 2013).  

In conclusion, we observed that the IIASA-IFPRI and GLC-SHARE datasets 

were better in estimating cropland at all levels in the study area.  Both IIASA-IFPRI and 

GLC-SHARE datasets were the ones which infused multiple, remotely sensed land 

cover products and directly tied their results to the FAO statistics. The IIASA-IFPRI 

also used crowdsourced data for better training (Fritz et al., 2015). Therefore, data 

fusion, the collection of better training data and improvement in image classification 

techniques help improve the accuracy of cropland mapping in a region like West Africa 

in the future. 
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Abstract: Urban area expansion is one of the most powerful anthropogenic forces 

bringing changes to the earth’s surface. Such changes are happening at much faster rates 

in Asian and African cities than elsewhere. In this study, we used Landsat MSS, TM 

and ETM+ images to map the urban land area in six West African cities for four 

different time steps from the early-1970s to 2010. The selected cities are Kumasi of 

Ghana, Daloa of Cote d’Ivoire, Abuja and Kano in Nigeria, Kindia of Guinea, and 

Ouagadougou of Burkina Faso. These cities are some of the small to large size cities 

with a medium to high rate of population growth in West Africa. They also represent 

three different eco-regions: Eastern Guinean Forest, Guinean Forest-Savanna Mosaic, 

and West Sudanian Savanna of West Africa. We found that all the cities, except Daloa, 

have a large number of non-urban pixel converted to urban in the past three to four 

decades. The growth of the urban areas was high, 13 to 54%, but the growth trajectories 

were not consistent. For example, the rate of urban growth has been declining in Abuja 

and Ouagadougou in recent years while Kumasi has been growing consistently at a 

much higher rate since 1975 and was still growing about 13% annually, between 2005 

and 2010. Also, most of the cities have shown a higher rate of growth of urban land use 
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than population except Abuja and Ouagadougou. These cities revealed higher 

population growth, (10.7 to 15.8%) than urban land use growth, which varies from 3.0 

to 4.5%.  We did not observe any similarities in the growth of cities from the same eco-

region.  

 

Keywords: Urban land use; Urban growth; Cities; West Africa; Landsat,  

 
Introduction 

Urban area expansion is one of the most powerful anthropogenic forces 

changing the earth’s surface (Dawson et al., 2009; Cui and Shi, 2012).  Such expansion 

is associated with several interconnected but distinct processes such as an increase in 

population concentration and extensive alteration of the landscape due to infrastructure 

development (McDonnell and Pickett 1990). However, literature treats urbanization 

differently depending on contexts (Hope 1942; Satterthwaite et al. 2010; Marcotullio 

and Solecki 2013; Seto et al. 2013). For example, some limit urbanization to just the 

movement of people from rural to urban areas with population growth equating to urban 

migration (DESA/UN 2011) while others argue that urbanization encompasses  

processes which cover some aspect of a region’s population, economy, or built 

infrastructure (Seto et al., 2011). In this research, we use urbanization as a process 

where built infrastructures have expanded changing the earth’s surface from one land 

cover or land use type to the urban land use type.  

There is no doubt that population growth is one of the most important drivers of 

urban area expansion. Since 2010, more people live in urban than in rural areas around 

the world (DESA/UN 2011). It is expected that by 2050, more than 60 percent of the 
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global population will live in urban areas. However, the level of such growth in urban 

population differs markedly across the world. On the one hand, the population of many 

of the countries in Europe, Latin America and the Caribbean, Northern America and 

Oceania is mostly urban. On the other hand, the majority of the population in countries 

in Africa and Asia (except China) remains mostly rural (DESA/UN 2011; Cui and Shi 

2012; Seto et al. 2013). So, in coming decades major changes in urban population are 

projected to take place in developing countries of Africa and Asia (Satterthwaite et al., 

2010; DESA/UN, 2011) likely altering the landscapes greatly. 

Historically, urban hubs have been the center of economic and social 

development but urbanization has also negatively affected Earth’s environment (Hope, 

1942; Satterthwaite et al., 2010; Rodriguez, 2008; Marcotullio and Solecki, 2013). As 

urban centers grow, the increasing concentration of people and economic activities 

demand further development of housing and public infrastructures (Thapa and 

Murayama, 2009) changing the urban landscape. Several studies have investigated 

impacts of such development on the biota and physical environment (McDonnell and 

Pickett, 1990; Lambin et al., 2001; Kalnay and Cai, 2003; Alberti, 2005; Satterthwaite 

et al., 2010; Tian et al., 2011; Marcotullio and Solecki, 2013). One serious impact of 

urban development is the land use and land cover (LULC) change in and around the 

urban centers including encroachment on croplands (Tian et al., 2011). LULC changes 

associated with urban development are considered one of the most disturbing processes 

and are the cause of changes in mesoscale weather patterns, water resources and 

biodiversity (McDonnell and Pickett, 1990; Kalnay and Cai, 2003; Alberti, 2005; Liu et 

al., 2010). There is also evidence of changes in composition and structure of ecological 
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communities associated with urban land use (Posa and Sodhi, 2006; Sadler et al., 2006).  

Therefore, study of the expansion of urban land use holds a significant importance. This 

study aims to provide evidence for urban land use growth in West African cities and to 

quantify their growth so that authorities and land managers, both at the national and 

regional levels, can devise strategies balancing the urban growth with conservation 

efforts and socio-economic challenges facing the country and the region.  

There are many urban growth studies around the world using remote sensing 

data (Mundia and Aniya, 2005; Seto et al., 2011; Attua and Fisher, 2011; Forkuor and 

Cofie, 2011; Weng, 2012; Karolien et al., 2012; Kamh et al., 2012; Brinkman et al., 

2012; Linard et al., 2013; Wania et al., 2014). But the number of studies varies across 

the regions of the world. Seto et al. (2011) performed a meta-analysis of studies that 

monitored changes in urban land-use using remote sensing for the period between 1988 

and 2008. They listed 326 case studies around the world meeting their criteria. The 

majority of the studies was carried out in China, North America, Europe and South 

West Asia. In Africa, they found only twenty-nine studies addressing urban expansion 

(Seto et al., 2011). Yeboah (2000, 2003) also mentions that urban expansion in Africa 

has not been adequately studied. However, the situation is changing as recently an 

increasing number of studies has been carried out focusing on the expansion of urban 

and peri-urban area in Africa in recent years (Karolien et al., 2012; Attua and Fisher, 

2011; Forkuor and Cofie 2011; Kamh et al., 2012; Brinkman et al., 2012; Linard et al., 

2013; Wania et al., 2014). One of the commonalities of these studies, in Africa, is the 

use of multi-temporal Landsat imagery. 
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Most of the research on urban land cover change in Africa presented above is 

primarily focused on one city. These studies map the land cover for the different time 

period(s) using remote sensing data, mainly Landsat imagery, along with some ancillary 

data and analyze the change in urban growth over a certain time period(s). None of the 

studies so far have taken a comprehensive look at urban growth across the region of 

West Africa. Therefore, the objective of this study is to quantify and compare the 

growth of urban land use in six different cities in West Africa using Landsat imagery 

for multiple time periods between the early-1970s and 2010.  

 

Materials and Methods 

Study area 

The study area covers six cities from five countries and three eco-regions in 

West Africa (Fig. 3.1). 

 

Figure 3.1. Selected cities in West Africa. Also shown are the eco-regions (Olson et 
al. 2001) in West Africa. 
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The selected six cities are a representative mix of small to large size cities in 

West Africa. They are from five different countries: Ghana, Cote d’Ivoire, Nigeria, 

Guinea, and Burkina Faso. The cities are selected in such a way that at least two cities 

are from the same eco-region: Eastern Guinean Forest (EGF), Guinean Forest-Savanna 

Mosaic (GFM), and West Sudanian Savanna (WSS) in West Africa (Table 3.1). 

Although by definition an ecoregion has a relatively uniform climate with unique 

ecological communities (Olson et al. 2001), climatic parameters like annual rainfall 

vary within the same ecoregion. 

To capture such variabilities at least two cities from the same eco-region with 

different annual rainfall are selected for this study. In addition, as urban growth may 

have been affected as a result of governmental policies (Wu et al., 2011) the selected 

cities capture variability that exists in the region both in terms of climate and land 

policy. The selected cities had populations as low as 96 thousand (Kindia) to more than 

two million (Kano) in 2000. The population in the cities has grown substantially for the 

period 2000-2010. Abuja grew the most with 15.8% followed by Ouagadougou’s 10.7% 

and Kumasi 6.3%. Among the six cities Kano grew the least, by 2.6%. 

 
  



68 

 

Table 3.2. Features of selected cities for the study of urban land use growth.  

 

 

Data 

Landsat data are obtained from the Earth Resources Observation and Science 

Center (EROS) (http://glovis.usgs.gov/). First, scenes without any cloud contaminations 

are selected using the web-filter available on the EROS website. Ideally, a minimum of 

two scenes— one each from wet and dry seasons— were obtained. If there was not at 

least a scene without cloud cover every four to five years then scenes with cloud cover 

up to ten percent —avoiding clouds just above the city and its immediate vicinity— 

were acquired (Figure 3.2).   
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Figure 3.2. Landsat image (raw image without atmospheric correction) of 1973 
(left panel) and 1986 (right panel) over Kumasi, Ghana. Due to different sensors 
used in different Landsat missions the types of spectral bands acquired varied 
among different Landsat missions. The image on left panel has bands 5(Red), 
7(Near Infrared) and 4 (Green) while the image on right panel has bands 2(Red), 
4(Near Infrared) and 1 (Green).There is some cloud contamination on the 1973 
image (left panel). 

A list of Landsat path and rows for the selected urban centers along with the 

years and number of scenes that have been acquired for this study is provided below 

(Table 3.2).  

 

 

 
 
 
 
 
 
 

 



70 

 

Table 3.2. Landsat path and rows, years of acquisition, number of scenes and 
sensors used in the acquisition. 

*Satellites LM2-5: Landsat 2, 3, 4 or 5 MultiSpectral Scanner (MSS); LT 4-5: Landsat 4 

or 5 Thematic Mapper ™; LE 7: Landsat 7 Enhanced Thematic Mapper plus (ETM+). 

The spatial resolution of Landsat product varies. Landsat 1 and 2 have a spatial 

resolution of 80m. Landsat 3 has a spatial resolution of 40 meters and Landsat 4 

through 8 have a spatial resolution of 30 meters. 

 

Methods 

Mapping the urban area involves the following four steps: data preprocessing, 

image classification, accuracy assessment, and mapping the area. The process of 

mapping the urban growth is explained based on a case study to map the city of 

Kumasi, Ghana in this section. The process is summarized in a flow chart (Figure 3.3). 
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Figure 3.3. Flow chart of mapping and analyzing urban growth in West Africa. 
 
 

Data preprocessing  

The Landsat images for this research cover the entire period of the Landsat 

mission. There are only four spectral bands in Landsat Multispectral Scanner (MSS) 

series 1 to 5 while there are seven spectral bands in Landsat Thematic Mapper (TM). In 

the Landsat Enhanced Thematic Mapper Plus (ETM+) there are eight spectral bands 

including the panchromatic band. The selected Landsat images were radiometrically 
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and atmospherically corrected. The Landsat MSS images were corrected using Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). The Landsat 

TM and ETM+ images were corrected using the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDPAS) (Vermote et al., 1997; Masek et al., 2013). 

Some of images, especially images from the early 1970s, were geometrically corrected 

using a base map to maintain proper alignment. Also in case of images with clouds, 

cloud cover and associated shadows were masked using an unsupervised classification 

technique (Irish et al., 2006).  

Since 2003 the Scan Line Corrector (SLC) on Landsat 7 failed causing a series 

of gaps on the Landsat scenes. The SLC-off effects are more significant along the edges 

than at the center of the scenes (Chen et al., 2011). There were several scenes from 

2005 to 2010 in the list presented in table 3.2 with gaps. We filled gaps using the 

Delaunay triangulation (Lee and Schachter, 1980; de Berg, 2002) of surface fitting 

algorithm, based on the neighboring pixel values (Liu et al., 1999) which is available in 

ENVI 5.1, an image analysis software.  

 

Image classification  

Broadly speaking there are three types of image classification techniques. They 

are pixel-based, sub-pixel based, and object-based techniques (Li et al., 2014). In pixel 

based techniques unsupervised and supervised classifiers are some of the widely used 

classifiers. In unsupervised classifier, clustering algorithms are used to classify the 

image based on spectral signatures (Jansen, 2007). While in using the supervised 
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classifier, training pixels are required to create representative parameters for each land 

cover class (Jansen, 2007).  The most commonly used supervised classification is 

maximum likelihood classification which assumes that each spectral class can be 

described by a multivariate normal distribution (Otukei and Blaschke, 2010). But the 

accuracy of maximum likelihood classification depends on correct estimation of the 

mean vector and the covariance matrix for each spectral class based on training pixels 

(Richards, 1993; Jansen, 2007). Generating a satisfactory classification image from 

remotely sensed data depends on many factors:  (a) the characteristics of the study area, 

(b) availability of suitable remotely sensed data, ancillary and ground reference data, (c) 

proper use of variables and classification algorithms, (d) the analyst’s experience, and 

(e) available time (Lu and Weng, 2005). Therefore, there is no single method which 

performs better than others to classify land cover and land use (including urban land 

use) in all circumstances (Seto et al., 2011). Various methods have been employed to 

classify images for urban land use based on multispectral and hyperspectral remote 

sensing data (Herold and Roberts, 2010; Fan and Fan, 2014). They include decision 

tree, supervised and unsupervised maximum likelihood classifier, neural network, 

regression tree model, and spectral unmixing (Rashed et al., 2001; Yang et al., 2003; 

Bauer et al., 2004; Xian and Crane, 2005; Lee and Lathrop, 2006; Lu and Weng, 2006; 

Mohapatra and Wu, 2008;Wu, 2009; Hu and Weng, 2009). In this study, we used the 

maximum likelihood classification algorithm. The classification process involves three 

steps: defining the training pixels, extraction of signatures from the identified training 

pixels and classification of the image.  
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We collected training and validation pixels using Google EarthTM imagery. The 

Google EarthTM images were selected because they are available at high spatial 

resolution of at least 15 m, and are updated regularly —every one to three years 

(Google Earth Help). Furthermore, these images are better alternatives for training and 

validation if the area is large and field data are hard to come by because of their 

accuracy (Potere 2008; Knorn et al.2009). For the collection of Google EarthTM data 

pixels, we used the extent of the Landsat scenes that covered the selected cities as the 

sampling frame. We randomly collected about three thousand pixels each, at 30 m and 

60 m. For each grid cell we assigned a maximum of three dominating land cover classes 

from eleven possible classes —Buildings, Paved roads, Unpaved roads, Airports, Grass 

and herbaceous, Tree and forest, Croplands, Fallow lands, Soil and barren, Water 

bodies and Wetlands (Figure 3.4). We replaced pixels with poor resolution or cloud 

contamination. The majority of the pixels were from images of the year 2010 or later.  

  
Figure 3.4. Two data points (30 m × 30 m) collected using the Google EarthTM. The 
pixel on the left panel shows a mix land cover classes, cropland (70%) and grass 
and herbaceous near Abuja, Nigeria. The pixel on the right panel shows a mixed 
pixel with buildings (80%) and unpaved roads (20 %) near Kano, Nigeria.   
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Only pixels with 50% or more of the same land cover class were retained for 

training and validation. After filtering out pixels not meeting the criteria, we aggregated 

some of the land cover classes. We grouped buildings, paved roads, unpaved roads and 

airports to a new class called impervious. Similarly, the croplands and fallow croplands 

were combined. Water bodies and wetlands pixels were grouped as water. Furthermore, 

if there were less than 10 pixels for a certain land cover type, we dropped that land 

cover class during classification. The number of pixels for the six resulting land cover 

classes over the selected cities varied (Table 3.3). After filtering the total number of 

pixels left for training and validation was much lower, as much as 68% less (such as in 

Abuja) than the originally collected three thousand pixels.  
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Studies have shown effective use of Normalized Difference Vegetation Index 

(NDVI) (Masek et al., 2000; Gillies et al., 2003; Baur et al., 2004) to distinguish 

vegetated (e.g. croplands or grassland) and non-vegetated area (impervious surface such 

as a road or residential area). To increase class separability values, we used an NDVI 

threshold to further refine the quality of collected pixels. NDVI is derived from the red 

to near-infrared (NIR) reflectance ratio as follows (Eq. 3.1). 

NDVI =
NIR − RED
NIR + RED

−−−−− (3.1) 

Here, NIR and RED are the percentages of near-infrared and red light reflected by the 

vegetation and captured by satellite sensors (Karnieli et al., 2010). We used the NIR and 

RED bands from the Landsat images to calculate the NDVI.   

Based on the filtered training pixels, we calculated the spectral separability —

measured by the Jeffries-Matusita Transformed Divergence separability, using the 

separability tool available in ENVI 5.1. Standard separability values vary from 0 to 2 

with a value closer to 2 showing higher separability.  The spectral separability for the 

training data 1.5 or more. Approximately two third of the pixels for each land cover 

class were used for training and the remainder one third pixel were used for validation. 

Based on the refined training pixels, the images are classified into five different classes 

as listed in table 3.4.  
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Accuracy assessment  

The accuracy of the classification is determined based on a confusion matrix. A 

confusion matrix is calculated using ground truth pixels collected from Google Images. 

In deriving a confusion matrix, the location and class of each ground truth pixel with the 

corresponding location and class in the classification image are determined. The overall 

accuracy is obtained by summing the number of correctly classified pixels and dividing 

by the total number of pixels. The producer accuracy is a measure indicating the 

probability that the classifier has labeled a pixel into a certain class given that the 

ground truth is that class. User accuracy is a measure indicating the probability that a 

pixel is in a class given that the classifier has labeled the pixel into that class (Jensen, 

2005). The Kappa statistics (Lillesand et al., 2006) is calculated using equation (3.2).  

𝑘𝑘 = N∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟
𝑖𝑖=1 −∑ (𝑥𝑥𝑖𝑖+.𝑥𝑥+𝑖𝑖)𝑟𝑟

𝑖𝑖=1
𝑁𝑁2−∑ (𝑥𝑥𝑖𝑖+.𝑥𝑥+𝑖𝑖)𝑟𝑟

𝑖𝑖=1
− − − − − (3.2)  

Where, 

R = number of rows in the error matrix, 

xii = number of observations in row i and column x, 

 xi+ = number of observation in row i 

x+i = number of observations in column i, and 

N = number of observation within the matrix.  
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Change analysis   

After image classification we categorized each pixel into either urban or non-

urban. A box of 30 Km × 30 Km containing the city is used to extract urban and non-

urban pixels for mapping and further analysis of the cities and their surroundings. 

Furthermore, to maintain the consistency of the classified images to represent urban 

pixels, it is assumed that if a pixel is classified as urban at the beginning (e.g. 1973 in 

the case of Kumasi or 1986 in the case of Daloa) then the pixel remains urban in 

subsequent years. 

 

Results 

Urban land use maps 

The overall accuracy of the classified images varies from 67% to 98% and the 

Kappa statistics varies from 0.54 to 0.98 (Table 3.5). The urban land area in each city 

has grown over the past several decades (Figures 3.5-3.10). In general, cities expanded 

either along the road network or around the core city area.  The city of Kumasi 

primarily expanded first nearer to the road network and along the city periphery. The 

city of Daloa, Kindia and Ouagadougou grew on the city fringes rather than along the 

roads. The situation is different in Abuja. The urban area grew within the core city area 

as well as expanded along the roads.  The city of Kano also followed a similar pattern of 

growth around the city and expanding along the road network. We also observed that 

there were some pockets of the area along the roads in the cities where new built-up 

areas had emerged. Such development was visible in all cities except in Daloa and 

Kindia.  
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Table 3.5. Accuracy assessments of classified images. 
  

Cities Image 
Year 

Kappa 
coefficient 

Overall 
accuracy (%) 

Kumasi 1973 0.66 75.34 
 1986 0.54 67.82 
 2005 0.74 80.85 

  2010 0.77 83.52 
Daloa 1986 0.79 85.92 

 1991 0.98 98.85 
 2000 0.80 88.85 

  2008 0.81 85.75 
Abuja 1986 0.94 94.87 

 1990 0.97 97.54 
 2001 0.98 98.70 

  2005 0.97 97.28 
Kindia 1990 0.65 74.34 

 1995 0.76 80.12 
 2005 0.87 89.64 

  2010 0.91 90.27 
Ouagadougou 1975 0.93 95.12 

 1986 0.73 79.50 
 2005 0.86 89.27 

  2010 0.85 88.32 
Kano 1975 0.90 91.23 

 1985 0.86 88.56 
 2000 0.95 94.54 
 2010 0.92 93.12 
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Urban growth-Transition matrices growth 

Based on the urban area maps derived in section 3.1 we prepared three pixel 

based transition matrices for each city (Table 3.6-3.11). These matrices show how many 

non-urban pixels, from an earlier time step, converted to urban in a later time step and 

the proportion of such change.  For example, in the city of Kumasi a total of 29,867 

non-urban pixels from the year 1973 turned into urban pixels in 1986 (Table 3.6A). 

These newly converted pixels constitute 22% of the total urban pixels in 1986. The 

conversion from non-urban to urban pixels were much higher, 45%, for the period 

1986-2005 (Table 3.6-B) while for the period 2005-2010 it fell slightly to 39% (Table 

3.6-C).  

The conversion from non-urban pixels to urban is very high in all cities except 

for Daloa. In Daloa, the changes were 13% or below (Table 3.7A-C). In the rest of the 

cities the conversion were as high as 54% (Abuja and Kindia, Tables 3.8A-C, 3.9A-C). 

In Kindia, the trend of conversion of non-urban to urban pixels was high, but decreasing 

from 54% to 28% (Table 3.9A-C). In the city of Kumasi, Abuja and Ouagadougou the 

conversion started high at the beginning (22-41%), continued to grow higher (42-54%) 

and started to fall (13-39%) for the recent time periods (Table 3.6A-C, Table 3.8A-C 

and Table 3.10A-C). The city of Kano revealed a different trajectory of non-urban to 

urban conversion (Table 3.11A-C). The conversion was 49% at the beginning time 

period (1990-1995), which dropped to 10% in the middle time steps (1995-2005) and 

picking up again to 25% in recent time period (2005-2010).    

A year to year comparison of the non-urban to urban conversion between cities 

from the same or different ecoregion is not possible—except in the case of Kumasi, 
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Ouagadougou and, to some extent to Kano—as the urban area maps belong to different 

years. Despite this limitation, we can see trends for certain time periods. We could not 

find any similarity in the conversion of non-urban land to urban between the cities from 

the same eco-region. For example, the city of Kumasi and Daloa fall in the same 

ecoregion of Eastern Guinean Forest (EGF), but the conversion is much higher in 

Kumasi than in Daloa. In Daloa, the periods 1986-1991 and 1991-2000 saw a 13% and 

4% change from non-urban to urban conversion, respectively.  In Kumasi, for the period 

1986-2005, which compasses both periods 1986-1991 and 1991-2000 of Daloa, the 

conversion from non-urban to urban is 45%, much higher than in Daloa for the period 

1986-2005 both Kumasi and Ouagadougou which are cities from two different eco-

regions: EGF and West Sudanian Savanna (WSS) have added almost equal percentage 

(45% and 42% respectively), of non-urban pixels to urban. But for the next time period, 

2005-2010, Kumasi still added 39% non-urban pixels as urban while Ouagadougou 

added only 13%, only a third that the city of Kumasi added. Similarly the city of 

Kindia, in Guinean Forest-Savanna Mosaic (GFSM) ecoregion, has a comparable 

conversion of non-urban pixels to urban with the city of Kano, from the WSS eco-

region, for the period 2005 and 2010 which is 28% and 25% respectively. Although, 

overall there were large areas converting to urban land use in the cities but no 

comparable trends were observed for the cities from the same eco-region or country for 

that matter.
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Rate of growth in urban land use 

We also calculated the overall and annual growth of the cities over the three 

different time periods. Overall, the growth of the cities are high but inconsistent over 

the past several decades. Also, the path of the growth is different in each city. We also 

calculated the overall and annual growth rate of the cities over the three different time 

periods. Overall, the growth of the cities are high but inconsistent over the past several 

decades. Also, the path of the growth is different in each city. For example, the urban 

land area in Kumasi had been continuously growing annually, since 1973 to 2010—the 

highest rate being 12.6% (Table 3.12) for the most recent period 2005-2010. The city of 

Daloa, Kindia, and Kano have a slightly different path of urban land area growth 

compared to Kumasi. 

The city of Daloa, Kindia, and Kano have the slightly different path of the urban 

land area growth compared to Kumasi. All three cities saw a higher growth (3 to 5.5%) 

at the beginning followed by a marginal drop for some time in the middle (1.9 to 4.1%) 

and grew again (3-4.8%) for the most recent time periods. (Tables 3.13, 3.15, and 3.17). 

The growth is slowest in Daloa among all six cities.  

In contrast, the annual growth of the urban area had been decreasing in Abuja 

and Ouagadougou in recent time periods. In Abuja, the annual growth rate was 4.9% for 

the period 2001-2005 compared to 10.2% during 1990-2001 (Table 3.14). Similarly, in 

Ouagadougou, the annual growth rate was 3.0% for 2000-2010 which was 4.1% in 

1986-2010 (Table 3.16). The remaining cities have mixed trends on the growth of the 

urban area.  
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The physical growth of the urban area is consistently high for Kumasi. In Abuja, 

Kindia and Ouagadougou urban growth can be observed during the past four decades, 

but the rate of growth has gradually decreased since the late 1970s or early 1980s. In 

Daloa and Kano, urban growth has not been consistent over the past four decades. 

During some time periods, the growth is very high which decreased for some time, and 

started to increase in recent times. Conversion of non-urban to urban is inevitable as the 

population grow in the cities creating a demand for more services such as 

transportation, housing and industries. Such infrastructures development are changing 

the urban land area. 

 When we compare the growth of the urban land use with the population growth 

in the selected cities (Table 3.1) we have mixed trends. The city of Kumasi, Daloa, 

Kindia and Kano’s urban land area grew quicker than the population growth. For 

example, the city of Kumasi’s urban land area grew by 12.6% annually while its 

population grew by 6.3% for circa 2010. In contrast, Abuja and Ouagadougou physical 

growth were outpaced by the population growth. Abuja saw a surge in its population by 

about 16% (for 2000-2010) while its area grew only by 4.5% (2001-2005) annually. 

 

Discussion 

At the global scale, there are at least ten different land cover datasets which can 

be used to identify urban areas. But it is difficult to pick one dataset over the others as 

the total urban land area among the datasets varies widely (Potere et al., 2009). Also, 

very few datasets are available for multiple years to study the growth of urban land use 

in an area. In addition, the resolution of global datasets varies from 300 m to 1000 m 
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(Gong et al., 2013) making their usefulness limited for subnational and national level 

studies. Recently, Gong et al. (2013) have created a global land cover map at 30 m × 30 

m resolution using Landsat TM/ETM+ images. Most of the Landsat images used in 

Gong et al. (2013) were from circa 2010.  

Gong et al. (2013) land cover data has an overall accuracy of about 65%. 

However, the user's and producer's accuracies for the impervious surface, which 

includes urban areas, are 31% and 11%, respectively. This new dataset drastically 

underestimates urban land area in West Africa. For example, for the city of Kindia 

Gong et al. (2013) estimates the area of impervious surface to be around one two 

thousandth of the area obtained here in this study. Big cities such as Abuja and Kano, 

were also underestimated in the order of one-fifth to one-seventh. This shows limitation 

of image classification techniques adopted for a large global scale mapping to identify 

urban land use at a subnational level. 

The Lincoln Institute of Land Policy has prepared an Atlas of Urban Expansion 

which contains map of 120 cities around the world for two time periods: circa 1990 and 

2000 using Landsat MSS and TM/ETM+ images. Only five cities in the Atlas are from 

West Africa (Angle et al., 2011). Ouagadougou was the only city which was part of our 

study as well. We found that the urban land area in Ouagadougou was about 6,660 and 

14,940 hectares in circa 1990 and circa 2000 respectively.  The urban land use area in 

the Atlas is comparable with our results, which is about 11,900 (for 1986) and 23,500 

hectares (for 2010).  

Ade and Afolabi (2013) mapped the city of Abuja in Nigeria for three years; 

1987, 1999 and 2007. According to this study the built up area grew from 7,875 to 
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14,722 hectares for the period 1987-1999. In 2007, the built up area was found to be 

about 41,622 hectares. We found that the urban land use area in Abuja was d 4,260 and 

15,870 hectares for 1986 and 2001 respectively. But for the year 2005 our estimation 

was almost 50% less than the results obtained by Ade and Afolabi (2013) for 2007, 

demonstrating the inconsistencies of image classification methods to estimate the urban 

land use.  

Attua and Fisher (2010) studied the urban land cover change in New Juaben 

municipality of Ghana, which is located 160 Km South East of Kumasi. The 

municipality grew by 35% from 1985-to 2003, with the majority of growth in peri-

urban areas. This rate is about 2% per annum compared to 4% we obtained for the city 

of Kumasi for around the same time period.  

The long term average annual physical growth in the six cities is about 9.5%, 

which is about 4% for a sample of 30 cities used in Angel et al. (2011) study. The 

physical growth could be attributed to the growth in the population. But we find that the 

growth in physical area and population manifested differently in six cities. The city of 

Kumasi, Daloa, Kindia and Kano have more growth in their urban land area while 

Abuja and Ouagadougou have more growth in their population. The result from Abuja 

and Ouagadougou contrasts the result obtained from the sample of 120 cities, where the 

growth of urban land used outpaced the population growth (Angel et al., 2011).  

The urban land use maps prepared in this study show that for the past four 

decades the cities in the region have experienced extensive transformations. The city 

centers were infilling and the fringes around the core city area were transforming to 

urban landscape. Another major feature of the growth was expansion along the major 
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transportation corridors and some pockets along the road network. This pattern of the 

growth looks similar to the urban growth reported from other cities in Africa (Abebe, 

2013; Olayiwola and Igbavboa, 2014; Ade and Afolabi, 2013) but the rate of growth in 

urban land use varies among the cities in the same eco-region or country. 

 

Conclusions 

Despite many shortcomings of remote sensing data either in terms of spectral 

quality and atmospheric effects or sub-pixel mixing within the urban space (Potere et al. 

2009, Strahler et al. 2006) we mapped the urban land use in six cities of West Africa 

from early 1970s to 2010 with fair accuracy. The uniqueness of a geographical area to 

map using remote sensing data is also evident in the study. For example, the NDVI 

threshold applied in this study to improve the spectral separability of different land 

cover types has different ranges for different Landsat images used in this study. This 

variability in NDVI threshold also depends on the season at which the images were 

captured. So, the same threshold for a particular land cover class across the different 

Landsat images to map urban area could not be used.  

In some of the cities, our estimations were comparable to other studies as 

discussed in the previous section. We observed that the physical growth of the city is 

happening but the rate of such growth varies in the study area. At the same time, the 

rate of population rise and physical growth of the cities do not match proportionally 

indicating likely changes in the intensity of urban land use. Such changes in the 

intensity of urban land use can be studied using finer resolution remote sensing images. 

Finer resolution data will also help improve the understanding the impacts of urban land 
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use on the urban ecosystem, urban heat islands and microclimate, and urban landscape 

pattern (Jansen et al. 2004; Du et al., 2014; Meinel et al 2001).    
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Abstract: The urban land use system is a complex system. Understanding the growth of 

the city’s land use system is an important task to devise a plan for sustainable urban 

development. In this study, we identified that Normalized Difference Vegetation Index 

(NDVI) and distance to the urban area showed strong associations with the growth of 

six cities in West Africa. The six cities include Kumasi, Daloa, Abuja, Kindia, 

Ouagadougou, and Kano. We found that none of the factors showed a consistent 

association with urban land use.  Out of the six cities, Ouagadougou and Kano showed 

some level of agreement in associating the urban growth with NDVI at different time 

periods. In the rest of the cities, proximity parameters such as distance to the nearest 

urban area and distance to the core city area showed some level of association to urban 

growth.  

Key words: Urban land use; West Africa; Logistic Regression; NDVI; Urban pixel. 

 

Introduction 

The global share of urban land use is estimated to be in the range of 1% to 6% of 

the Earth’s surface (UNEP-IRP, 2013; Gong et al. 2013; Alberti et al., 2013; Lambin et 
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al. 2001). Although the share of urban land use is small, the ecological footprint of such 

land use is large (Alberti et al. 2003). The ecological footprint is large for urban land 

use because urban area expansion causes extensive alteration of the landscape 

(McDonnell and Pickett 1990). Losses of arable lands and increased imperviousness 

surface area (Arnold and Gibbons, 1996; Tian et al., 2011; Eppler et al., 2015; UN-

Habitat 2014) are some aspects of this alteration. These types of alterations directly 

impact the geomorphology and hydrology of the landscape ultimately affecting its 

ecosystem dynamics in urban areas (Alberti et al. 2003). A comprehensive and 

multidisciplinary approach understanding urban expansion processes (Veldkamp and 

Lambin, 2001) is a precondition to devise a sustainable urban development plan. 

One way to analyze the effect of urban area expansion or the conversion of non-

urban to urban land use is the use of simulation and empirical models. Several 

simulation and empirical models have been developed to study the land use dynamics 

including urban land use system (EPA, 2000; Briassoulis, 2000; Agarwal et al., 2001). 

A review of the literature shows four broad categories of land use change models: a) 

statistical and empirical models, b) spatial interaction models, c) optimization models, 

and d) integrated models (Briassoulis, 2000; Agarwal et al., 2002; Cheng and Masser, 

2003; Robinson et al., 2006). The use of particular type of model depends on the scope, 

scale and extent of analysis (Agarwal et al., 2002). 

Statistical and empirical models derive a mathematical relationship between the 

dependent (also called response variable) and independent variables (also called 

predictor or explanatory variables) based on historical data (Hu and Lo, 2007). 

Empirical models such as logistic regression models have been used in the study of 
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urban growth, agriculture, deforestation, invasive species and landslide susceptibility 

mapping (EPA, 2000; Agarwal et al., 2001; Geoghegan et al., 2001; Schneider and 

Pontius, 2001; Serneels and Lambin, 2001; Walsh et al., 2001; Allen and Lu, 2003; 

Cheng and Masser, 2003; Zhu and Huang, 2006; Hu and Lo, 2007; Aguayo et al., 

2007). The advantage of logistic models is that they identify the influence of 

independent variables and also provide a degree of confidence regarding their 

contribution to the dependent variable (Hu and Lo, 2007; Irwin and Geoghegan, 2001). 

Furthermore, logistic regression models are data driven and do not need intensive 

computational capabilities (Hu and Lo, 2007). Therefore, the objectives of this study are 

to model and quantify the probability of urban land use growth with a set causative 

factors that include environmental and social variables. Furthermore, we analyze 

whether or not causative factors identified for the cities of the same eco-region or 

country show a similar level of association to urban growth.  

 

Materials and methods 

Study area 

The study area covers six cities from five countries and three eco-regions (Olson 

et al., 2001) of West Africa (Fig. 4.1). The countries in West Africa are located along a 

climatic gradient from the Sahel region in the north to the Guineo-Congolese zone in 

the south (FAO, 2001). The general climate in the region is dictated by the tropical 

continental air mass, dry and dusty from the Sahara Desert and another mass of tropical 

maritime air, warm and humid from the south Atlantic forming the Inter Tropical 
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Convergence Zone (ITCZ). The ITCZ also dominates the annual rainfall variability in 

the region (AIACC, 2006).  

West Africa has a population of a little over 300 million people as of 2010 and is 

expected to reach 570 million in 2050 and 735 million by the end of 21st century 

(DESA/UN 2011). The average urban population growth rate since 1950 is the second 

highest compared to the other regions of Africa despite the countries in the region 

witnessing severe droughts since the late 1970s (Druyan, 2011; Wang and Eltahir, 2000; 

Tarhule and Woo, 1997). The growth in urban population in SSA, in part, is credited to 

rural to urban migration driven by climatic variability, social, and economic factors 

(Barrios et al., 2006; Parnell and Walawege 2011). In a region like West Africa where 

the agricultural sector employs 60 percent of the active labor force as subsistence 

farmers (Jalloh et al. 2013), any changes in the rainfall amount or onset of rainfall 

trigger crop failures ultimately driving rural population to the urban area in search of 

jobs and improved livelihood (Barrios et al. 2006). But recent literature on rural-urban 

migration in West Africa shows that that the share of such migration is not an important 

component of the urban growth (Beauchemin, 2011). 
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Figure 4.1. Location of six cities in West Africa. 
 

The selected six cities are medium to large in size but fast growing cities in 

West Africa. They are from five different countries: Ghana, Cote d’Ivoire, Nigeria, 

Guinea, and Burkina Faso. The cities are selected in such a way that at least two cities 

are from the same three eco-regions in West Africa: Eastern Guinean Forest (EGF), 

Guinean Forest-Savanna Mosaic (GFM), and West Sudanian Savanna (WSS) of West 

Africa (Table 4.1). Although by definition an ecoregion has a relatively uniform climate 

and houses unique ecological communities (Olson et al. 2001), climatic parameters like 

annual rainfall vary (Table 4.1). 
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Table 4.1. Features of selected cities. 

*Sources: DESA/UN, 2011 and http://www.citypopulation.de 

To capture variability at least two cities from the same eco-region with different 

annual rainfall are selected for this study. In addition, as urban growth may have been 

affected by governmental policies (Wu et al., 2011) the selected cities capture 

variability that exists in the region both in terms of climate and country specific land 

policy. The selected cities had populations as low as 96 thousand (Kindia) to more than 

two million (Kano) in 2000. The population in the cities has grown substantially for the 

period 2000-2010. Abuja grew the most with 15.8% followed by Ouagadougou’s 10.7% 

and Kumasi at 6.3%. Among the six cities Kano grew the least, by 2.6%. 

Logistic regression  

A logistic regression model is used to study the urban growth with socio-

economic and environmental variables as causative factors and to generate (predict) 

urban growth. The model is set-up in a raster modeling environment to form a grid of 

cells at 30 m × 30 m spatial resolution. In this case, the nature of the urban land use of a 

Cities Countri
es 

Eco-
regions 

Mean 
annual 
rainfall 

(mm, 
2001-10) 

Populat
ion 
(Year 
2000, in 
‘000)* 

Populati
on 
(Year 
2010 in 
‘000)* 

Annua
l rate 

of pop. 
growth 

(%) 
1. Kumasi Ghana Eastern 

Guinean 
Forest 

1,146 1,187 1,935 6.3 
2. Daloa Cote 

d’Ivoire 1,026 185 248 3.4 

3. Abuja Nigeria Guinean 
Forest-
Savanna 
Mosaic 

1,436 833 2,153 15.
8 

4. Kindia Guinea 730 96 135 4.1 
5. Ouagadougou Burkina 

Faso West 
Sudanian 
Savanna 

812 921 1,911 10.
7 

6. Kano Nigeria 712 2,602 3,271 2.6 



114 

 

cell is dichotomous: either the presence or absence of urban. I used binary values to 

represent urban and non-urban and I assumed that the probability of a cell changing to 

urban follows a logistic curve (Kleinbaum and Klein, 2010): 

𝑓𝑓(𝑧𝑧) = 1
1+𝑒𝑒−𝑧𝑧

 ----- (4.1) 

The probability of a pixel to be urbanized can be estimated with the following logistic 

regression model: 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋1,𝑋𝑋2, … . .𝑋𝑋𝑘𝑘) = 1

1+𝑒𝑒−(𝛼𝛼+∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)𝑘𝑘
𝑖𝑖=1

 ----- (4.2) 

Where, 

P(Y = 1|X1, X2, . . ., Xk) is the probability of the response(or dependent) variable Y being 

1 given (X1, X2, . . ., Xk), i.e. the probability of a pixel being converted to urban; Xi is an 

explanatory (or an independent) variable representing a causal factor for urban growth. 

The explanatory variables can be of interval, ordinal or categorical type variable; and βi 

is the coefficient for variable Xi. The logistic regression model is implemented using 

IBM SPSS Statistics Software, Version 22.0. 

 

Data 

Response variable 

The response variable is the urban or non-urban pixel obtained from the six city 

maps (Chapter 3, Figures 3.5 through 3.10). Also, the methods used to create the urban 
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land cover data are presented in Chapter 3 section 2.3. The years for which the urban 

area map are available do not match one to one in all cities (Table 4.2). I used the first 

available year as the base year and applied the logistic regression analysis to the 

remaining three year. The causative factors and their association with the conversion of 

non-urban to the urban pixel are compared to the following three years for each city. As 

the land covered data are prepared at 30m × 30m spatial resolution, a total number of 

pixels for each city for this analysis were close to 1 million.  

 

Table 4.2. Cities and years for which the urban area are used in the study. 

Cities/Country Year of urban area 

maps 

Kumasi, Ghana 1973, 1986, 2005, 2010 

Daloa, Cote d’Ivoire 1986, 1991, 2000, 2008 

Abuja, Nigeria 1986, 1990, 2001, 2005 

Kindia, Guinea 1990, 1995, 2005, 2010 

Ouagadougou, Burkina Faso 1975, 1986, 2005, 2010 

Kano, Nigeria 1975, 1985, 2000, 2010 

 

Explanatory variables 

Several environmental and socio-economic factors are used as explanatory 

variables in the logistic model. In general, these variables alone or in combination 

reflect the overall physical setting of the city. An overview of all selected explanatory 

variables can be found in table 4.3. The details about each variable follow after the 

table. 
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Physical and environmental  

Elevation and slope 

I downloaded the Global Digital Elevation Model-GDEM (Version 2) from 

NASA’s Earth Observing System Data and Information System. The data has a spatial 

resolution of 1 arc-second (~30 meters). For the logistic regression, we extracted 

elevation (in meters) for each pixel within a 30 Km × 30 Km city boundary. The same 

elevation data is used to calculate the slope as a rate of change in elevation (in 

percentage) for a pixel. 

 

Distance to the major roads  

Major road data was obtained from the Center for International Earth Science 

Information Network (CIESIN 2013). The road data is presented in polyline vector 

format. The Euclidean distance (in meters) to the major roads from each pixel within 

the city are calculated in ESRI’s ArcGIS and used in the regression. As we have road 

data for only one time period, the same road data is used for all three years.  

 

Distance to the core city area  

Generally, the core city area in developing countries has highest population 

density (Suzuki et al., 2013). Therefore, the core city area was demarcated based on the 

population data mentioned in the subsection Population under Scoio-Economic 

Variables (Page 118 below). The Euclidean distance (in meters) to the core city area 

from each pixels within the city is calculated in ESRI’s ArcGIS. 
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Distance to the nearest urban pixels  

Based on the urban land cover maps (e.g. 1973, 1986, 2005 and 2010 for 

Kumasi), the Euclidean distance to the nearest urban pixels from each pixels within the 

30Km × 30Km city boundary is obtained for the year for which the land cover maps are 

available. For example, while making predictions for 1986, in Kumasi, we used the 

distance to urban pixel in 1973 as the distance to the nearest urban pixel. Similarly for 

2005 we used the distance to urban pixels in 1986.   

 

Distance to the river  

I obtained river polyline data from the Unites States Geological Survey 

(http://hydrosheds.cr.usgs.gov/index.php). The Euclidean distance to the rivers (in 

meters) from each pixel within city boundary were obtained in ArcGIS. For all years the 

same river data used to calculate the distance to the river. 

 

Distance to other water bodies  

Data for other water bodies is obtained in vector form from the Digital Chart of 

the World (http://www.diva-gis.org/gdata). For each pixel, within the city boundary I 

calculated the Euclidean distance to the nearest water body. 

 

Vegetation indices   

The normalized difference vegetation index (NDVI) is one of the most 

commonly used vegetation indices (Pettorelli et al., 2005). Research has shown that 

NDVI can be used as a proxy for yield in semi-arid rain fed agro-ecosystems in the 
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developing world (Buerkert et al., 1995; Funk and Budde, 2009; Maselli et al., 2000; 

Rasmussen, 1998; Reynolds et al., 2000). NDVI is derived from the red and near-

infrared (NIR) reflectance ratio as follows 

NDVI =
NIR − RED
NIR + RED

−−−−− (4.3) 

Here NIR and RED are the percentages of near-infrared and red light reflected by the 

vegetation and captured by satellite sensors (Karnieli et al., 2010).  NDVI data was 

obtained from Global Inventory Modeling and Mapping Studies (GIMMS) which is a 

15-day maximum value composite and available from mid of 1981 to 2012 at 8 km 

spatial resolution (Tucker et al. 2005). For our purpose, the maximum and minimum 

NDVI were extracted over the cropped areas of the country that the city belongs to. The 

cropland area was masked using Moderate Resolution Imaging Spectroradiometer 

MODIS-Type 2 land cover data for the period since 2001. For example, in the case of 

Abuja 2005, I used the crop mask for Nigeria using Moderate Resolution Imaging 

Spectroradiometer MODIS-Type 2 land cover data of 2005. For the time before 2001, 

we used data from other sources listed in Chapter 2 (Chapter 2, Table 2) that are closest 

to the year for which the urban land use data is available. 

To address any time lag between a change in NDVI and movement of people to 

the cities a 5-year average maximum and minimum NDVI prior to the year, for which 

urban land use data was available, were derived. For example, to study the role of 

NDVI on urban growth in 2005, the average maximum and minimum NDVI for past 

five years (from 2000 to 2004) were obtained for the cropland area over the country the 

city belonged.  
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 Now, we used the same Landsat image that was used to create the urban land 

use map and calculated NDVI for that year. The NDVI thus obtained was then 

normalized by the maximum NDVI for that year. For example, for the year 2005, we 

calculated NDVI for each pixels within the city boundary of 30 Km × 30 Km. Then the 

NDVI for 2005 was normalized. This normalized raster is then multiplied using the 

maximum and minimum NDVI obtained for the country cropland area as explained in 

previous paragraph for the city for 2005. 

 

Precipitation anomalies  

Precipitation anomaly (mm/month) data was used to investigate the impact of 

climatic conditions in the country during the time the city expanded. Precipitation 

anomaly provides a deviation (departure) in the amount of precipitation compared to a 

long-term average (normal). The monthly precipitation anomaly data is obtained from 

the Climate Anomaly Monitoring System (CAMS) of the NOAA Climate Prediction 

Center’s. The data is available at 2.5o lat/lon resolution (~280 Km × 280 Km) for the 

period 1979 to 2014 (Janowiak and Xie, 1999). Both the wettest and driest values 

during the past five years for which the urban area maps are available are used in this 

analysis to address the any lag between the precipitation anomaly and its likely impacts 

on agriculture. I resampled the precipitation anomaly data to 30m × 30m to match the 

urban land cover data.   
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Palmar Drought Severity Index  

The PDSI measures the departure of the moisture supply and was developed by 

W.C. Palmer in 1965 (Guttman, 1998). We used PDSI as it is calculated based on 

precipitation, temperature, and local available water content of the soil making it better 

suited to represent the soil water content. Soil water content is critical for the crop 

growth (Shaxson and Barber, 2003) and potentially better represent the dry and wet 

seasons in the study area.  This dataset has a spatial resolution of 2.5o × 2.5o and is 

available from (http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html). The PDSI 

incorporates the duration of the dry or wet period and ranges in values from -10 to 10 

and lag emerging droughts by several months. The value -10 indicates extreme drought 

while the +10 shows the wettest period. I resampled the data to 30m × 30m. 

 

Socio-Economic Variables 

Population  

The global country and city level yearly population data are available from 

various international agencies including the World Bank, the United Nations since 

1950. But most of these datasets are tabular data. There are some gridded population 

data, such as the one from United Nations Environment Program, but they are available 

at 2.5º × 2.5º spatial resolution. A much finer gridded global population data is 

available since 2001 from the LandScan™ (Bright et al. 2012).  

To create gridded population data, matching the urban area data for the selected 

cities, we used the 2012 LandscanTM data. The 2012 LandscanTM data was first 

resampled at 30m × 30m. Then each pixels were normalized with the total population 
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that fall within the city boundary of 30 Km × 30 Km. The total population data is 

disaggregated to naturally grown and migrated populations. We assumed that a city has 

the same population growth rate (World Development Indicators, data.worldbank.org) 

as that of the country that it belongs. Based on five year average population growth rate 

we first calculated the naturally grown population for each year by multiplying the 

normalized gridded population with the population for the year. For example, the 

normalized gridded data is multiplied by 397,000 to get the gridded population for 1973 

in the city of Kumasi. Similarly, the normalized gridded data is multiplied by 385,527 

to get the naturally grown population. Finally, migrated population was calculated by 

deducting naturally grown population from the total population. The disaggregated 

population data used in this study are presented for each city in Tables 4.4 through 4.9.         

 

Table 4.4. Population - Kumasi, Ghana. 

Population 1972 1973 1986 2005 2010 

Total population 374,300 397,000 532,000 1,537,000 1,935,000 

Annual growth rate (%)  2.89 3.00 2.60 2.38 

Naturally grown 

population 

 385,527 519,087 794,663 1,734,441 

Migrated population  11,473 12,913 742,337 200,559 

 

Table 4.5. Population - Daloa, Cote d’Ivoire. 

Population 1985 1986 1991 2000 2008 

Total population 111,800 116,620 138,280 184,800 234,720 

Annual growth rate (%)  4.12 3.52 2.71 1.47 

Naturally grown 

population 

 116,421 120,731 142,029 187,521 

Migrated population  199 17,549 42,771 47,199 
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Table 4.6. Population - Abuja, Nigeria. 

Population 1985 1986 1990 2001 2005 

Total population 204,000 229,200 330,000 929,600 1,316,000 

Annual growth rate (%)  2.59 2.61 2.50 2.53 

Naturally grown 

population 

 209,290 235,185 338,258 953,130 

Migrated population  19,910 94,815 591,342 362,870 

 

 

 
Table 4.7. Population - Kindia, Guinea. 

Population 1989 1990 1995 2005 2010 

Total population 53,255 57,148 76,611 96,074 135,000 

Annual growth rate (%)  3.10 5.35 1.73 2.43 

Naturally grown 

population 

 54,905 60,205 77,939 98,412 

Migrated population  2,243 16,406 18,135 36,588 

 

 

 

Table 4.8. Population - Ouagadougou, Burkina Faso. 

Population 1974 1975 1986 2005 2010 

Total population 68,600 157,000 446,600 1,328,000 1,911,000 

Annual growth rate (%)  1.77 2.49 2.89 2.94 

Naturally grown 

population 

 69,815 160,911 459,496 1,366,985 

Migrated population  87,185 285,689 868,504 544,015 
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Table 4.9. Population - Kano, Nigeria. 

Population 1974 1975 1985 2000 2010 

Total population 64,300 77,000 204,000 2,602,000 3,271,000 

Annual growth rate (%)  2.40 2.65 2.50 2.66 

Naturally grown 

population 

 65,844 79,042 209,099 2,671,333 

Migrated population  11,156 124,958 2,392,901 599,667 

 

Security and conflict 

Poor security and conflict (a war, a non-state conflict and one sided violence) 

especially in rural areas have been mentioned as one of the reasons of migration to the 

cities of Africa (Barrios et al., 2006; DESA/UN, 2011). Therefore, in this study, the 

security situation was used as one of the variables in the logistic regression model. A 

global armed conflict database (V.4-2014) is available from the Department of Peace 

and Conflict Research of the Uppsala University (http://www.pcr.uu.se/).  This country 

level dataset has the information on armed conflict in a country with at least 25 battle-

related deaths and at least one party is the government of a state in the time period 

1946-2013 (Gleditsch et al., 2002; Themner et al., 2014).  Based on this data, a value of 

“1” was assigned to the city data if the country it belongs to had a record of a conflict 

during the time period of urban growth; otherwise a value of “0” was assigned.  

 

Human Influence Index 

The Global Human Influence Index is a global dataset, available at 1Km spatial 

resolution which indicates the human impact on earth’s land use. It is based on nine 

global data sets covering human population pressure, human land use and infrastructure, 
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and human access (WCS and CIESIN, 2005). This data was released in 2005 and covers 

the period from 1995-2004. Therefore, this data was used as a response variable only in 

or after 2005 prediction.   

Once the data were compiled for all cities, they were tested for multicollinearity. 

As expected two groups: one of maximum and minimum NDVI, and the other of the 

total population, naturally grown and migrated population are found to be highly 

correlated (CC > 0.9). So, only one of such highly correlated variables is used in the 

model at a time. While implementing the model, explanatory variables were added one 

by one and also in combinations and the performance of the models was noted against 

model’s capability to correctly predict the urban pixels (i.e. the response variable) with 

pseudo R2 (Nagelkerke R2) values. 

 

Results 

The results from the multiple runs of logistic regression for each city are 

presented in the tables below (Tables 4.10a-c through 4.15a-c). Explanatory variables 

which failed to predict the conversion of urban land use (p> 0.05) are not included in 

the table. The variables that are not reported include both elevation and slope, 

precipitation anomaly, PDSI, and conflict. Also, we did not find a difference between 

disaggregated population data as explanatory variables. So, we used only total 

population as an explanatory variable. Furthermore, if an explanatory variable has odd 

ratio of 1, we dropped the variable in the regression model as the variable could predict 

urban and non-urban area equally (Onlinecourses.science.psu.edu).   
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As expected, we observed total population playing a role in predicting urban 

land use. But the accuracy level of prediction varied both within the city, at different 

time steps, and across the cities. For example, in the case of Kumasi, total population 

alone predicted 28% urban land use in 1986 but it failed to predict urban area in 2010. 

Daloa which is located in the same eco-region—Eastern Guinean Forest—as Kumasi, 

total population predicted 43% urban land use correctly in 2008 (Table 4.11c). But in 

2005 and 2010 NDVI predicted as high as 65% in 2005 and 88% in 2010 correctly in 

Kumasi (Table 4.10b and 4.10c).  

In Abuja and Kindia, both of which falls on Guinean Forest-Savanna Mosaic 

eco-region, total population can predict much less urban land use compared to the city 

of Kumasi and Daloa. In the case of Abuja, population predicted 19% (1990) to 44% 

(2005) of urban land use correctly. Whereas NDVI alone predicted 23% in 2005 (Table 

4.12c) to 60% in 2001 (Table 4.12b) urban area correctly. Furthermore, the distance to 

the urban area is an important parameter that could predict 63 % urban area in 2001 

(Table 4.12b) while it could predict 91% urban land use correctly in 2005 (Table 4.12c). 

The city of Kindia had been the one of the least affected cities in the group by total 

population, only about 5%, in 2008 (Table 4.13b) urban land use was predicted 

accurately. In 2005 none of the parameters correctly predicted the urban land use in 

Kumasi. 

 In contrast to the cities reported earlier, the city of Ouagadougou and Kano, 

from the West Sudanian Savanna eco-region, have some commonalities. In both cities, 

population growth alone predicted of 21% (Kano in 1985, Table 4.15a) to 38% 

(Ouagadougou in 2010, Table 4.14c) of urban land use. The population size of these 
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cities in 2010 is also very similar, about 2 million and a little about 3 million for 

Ouagadougou and Kano respectively. In 2010, distance to the urban area alone 

predicted 90- 94 % of the urban land use in Ouagadougou and Kano (Tables 4.15c and 

4.14c). Whereas NDVI predicted 62% of urban land use in Kano in 1985 (Table 4.15a) 

whereas it predicted about 21% urban land use in Ouagadougou in 1986 (Table 4.14a). 

We observed that the explanatory variables —as well as their degree of impacts 

on urban land use conversion—are not consistent for different time periods even for the 

city. Distance to urban area, distance to the core city area, population growth and NDVI 

are the most common factors affecting the urban growth across all cities. But the scale 

of impacts vary at different time periods within a city. Two of the largest cities in the 

group, the city of Ouagadougou and Kano, reveal— distance to the urban area—predict 

90%-94% urban land use correctly. Furthermore, we observed that total population 

growth increased the odds of urban land conversion while the distance to the city area 

and NDVI decreased the odds of urban land conversion.   

 

 

 

 

 

 



128 

 

 

 

 



129 

 

 

 

 



130 

 

 

 



131 

 

 

 

 



132 

 

 

 

 

 



133 

 

 

 

 



134 

 

 

 



135 

 

 

 

 

 

 

 

Accuracy of predicted urban land use maps 
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The accuracy of the predicted urban area maps using the logistic regression for 

three different time periods for each city (with an exception of Kindia where none of the 

variables correctly predicted urban land use in 2005) are presented in figures 4.2 

through 4.7. The maps presented shows the pixels with 50% or higher probability to 

convert to the urban pixels in that particular year. When we compared the predicted 

urban area to the actual urban area maps described in the Data section, Response 

variable, we found mix results (Table 4.16 through 4.21). The logistic regression 

models underestimated urban area for all time steps for the city of Kumasi (Table 4.16), 

Kindia (Table 4.19) and Kano (Table 4.21) varying from about 0.5% to 27%. Whereas 

the models overestimated the urban area in Ouagadougou by 16%-28% (Table 4.20) in 

all time steps. In the city of Daloa, the logistic regression models underestimated the 

urban area for 1991 (by 13%) and 2000 (by 3%) while it overestimated the urban area in 

2008 by 7% 1990 (Table 4.17). Similarly, for the city of Abuja the logistic regression 

model underestimate urban area by 24% (in 1990) and by about 5% (in 2001) while in 

2005 it overestimated the area by almost 19% (Table 4.18). 
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Table 4.16. Kumasi-Accuracy of predicted of urban pixels. 

Year Actual (Pixels) Predicted (Pixels) Difference (%) 

1986 133,354 112,644 -15.53 

2005 242,690 197,807 -18.50 

2010 395,392 374,725 -5.23 

 

Table 4.17. Daloa-Accuracy of predicted of urban pixels. 

Year Actual (Pixels) Predicted (Pixels) Difference (%) 

1991 35,355 30,911 -12.57 

2000 36,955 35,810 -3.10 

2008 51,212 54,793 +7.00 

 

Table 4.18. Abuja-Accuracy of predicted of urban pixels. 

Year Actual (Pixels) Predicted (Pixels) Difference (%)  

1990 80,274 60,994 -24.02 

2001 176,273 167,740 -4.84 

2005 211,137 250,213 +18.51 

 

Table 4.19. Kindia-Accuracy of predicted of urban pixels. 

Year Actual (Pixels) Predicted (Pixels) Difference (%) 

1995 30,235 30,092 -0.47 

2010 62,282 45,373 -27.15 
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Table 4.20. Ouagadougou-Accuracy of predicted of urban pixels. 

Year Actual (Pixels) Predicted (Pixels) Difference (%) 

1986 131,792 157,428 +19.45 

2005 226,764 263,738 +16.31 

2010 261,097 335,109 +28.35 

 

Table 4.21. Kano-Accuracy of predicted of urban pixels. 

Year Actual (Pixels) Predicted (Pixels) Difference (%) 

1985 124,102 104,353 -15.91 

2000 137,791 172,809 -25.41 

2010 182,932 219,495 -19.98 

 

Discussion 

Urban growth and underlying determinants of such growth need special 

attention from planners and urban development professionals especially in a region, 

such as West Africa, which has a high population growth. In this study we identified 

and quantified the causative factors that are driving the growth of urban land use in six 

cities of West Africa. To my knowledge this is the first time that such attempt has been 

made for West Africa. 

All cities except the city of Daloa revealed urban area spread away from the city 

center in recent years.  This is comparable to what has been shown for other cities 

around the world (Henríquez and Azócar 2006; Schneider et al., 2008). 

We used sixteen different explanatory variables that potentially have an 

association with urban growth in the region. Some of the data for the explanatory 
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variables were too coarse to be useful in our study. For example, the precipitation 

anomaly and Palmer Drought Severity Index (PDSI) are important variables to 

understand the impact of climatic variability in the region which has faced long and 

severe droughts over the past 4-5 decades. Drought is thought to be one of the factors 

driving the rural to urban migration (Barrios et al., 2006; Parnell and Walawege 2011). 

However these two sets of data were available only at very coarse resolutions of 2.5º × 

2.5º which failed to capture the variability within the 30 Km × 30 Km city boundary 

used in our study.  Another important socio-economic variable, believed to have 

triggered rural to urban migration in the region, is conflict. This data is also available at 

the country level. These two variables did not reveal a significant relationship. 

Among the environmental parameters, NDVI played a role in predicting the 

urban land use. In some years, NDVI predicted urban land use by as high as 65% in the 

case of Kumasi (for the year 2005), 62% in the case of Kano for the year 1985, 61% in 

Daloa for the year 2000. But in the case of Abuja, Kano and Ouagadougou NDVI 

prediction were around 23% only for 2005 or later years. We did not observe clear 

trends in the prediction of the urban pixel in the region. Records show that Nigeria 

(Abuja and Kano) in 1983, Guinea (Kindia) in 1998, Burkina Faso (Ouagadougou) in 

1995, and again in 1998-2001 have droughts (Tarhule and Woo, 1997; Jalloh et al., 

2013). But we did not observe any effect of drought on the trend of the predictive 

capability of the logistic regression model using NDVI as the explanatory variables in 

those cities.  

Higher level of association of proximity parameters such as distance to the core 

city area or distance to the urban area have been extensively used in earlier studies and 
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found to be important in explaining land use transitions (Luo and Wei, 2009). The result 

from this study also demonstrates proximity parameters playing a key role in the 

transformation of urban land use in West African cities. The proximity parameters 

explained 40 to 100 percent of the urban transition in West Africa.  

 

Conclusions 

Well planned and managed cities with better mobility and services play an 

important role in a national development agenda (Kessides, 2005). But while providing 

such services, a city goes on extensive transformations affecting the urban ecosystem 

negatively. Therefore, understanding such transformation is an important step for the 

city planners, managers and researchers to come up with a sustainable urban 

development plan. 

Logistic regression is a way to analyze the complex process of urban 

transformation. The logistic regression model, though data intensive, can integrate 

various thematic variables concerning the urban transformation and predict their 

association with the urban transformation. In this study, we identified factors that have 

played a role in such transformation in six cities of West Africa.  

We observed that the factors related to proximity parameters and Normalized 

Difference Vegetation Index are the major factors in the region for the urban 

transformation but the levels of such transformation were inconsistent in cities whether 

or not they belong to the same country or same eco-region. This shows the uniqueness 

of the cities going urban transformation. 

  



144 

 

Literature cited 

Agarwal, C, G M Green et al. (2002). A review and assessment of land-use change 

models: dynamics of space, time, and human choice. 

Aguayo, M I, T Wiegand et al. (2007). Revealing the Driving Forces of Mid-Cities 

Urban Growth Patterns Using Spatial Modeling: a Case Study of Los Ángeles, 

Chile. Ecology and Society 12(1). 

Aguayo, M I, T Wiegand et al. (2007). Revealing the Driving Forces of Mid-Cities 

Urban Growth Patterns Using Spatial Modeling: a Case Study of Los Ángeles, 

Chile. Ecology and Society 12(1). 

Alberti, M., Marzluff, J. M., Shulenberger, E., Bradley, G., Ryan, C., & Zumbrunnen, 

C. (2003). Integrating humans into ecology: opportunities and challenges for 

studying urban ecosystems. BioScience, 53(12), 1169-1179. 

Allen, J. and K. Lu (2003). Modeling and Prediction of Future Urban Growth in the 

Charleston Region of South Carolina: a GIS-based Integrated Approach. Ecology 

and Society 8(2). 

Arnold Jr, C. L. and C. J. Gibbons (1996). Impervious surface coverage: the emergence 

of a key environmental indicator. Journal of the American planning Association 

62(2): 243-258. 

Barrios, S., L. Bertinelli, et al. (2006). Climatic change and rural–urban migration: The 

case of sub-Saharan Africa. Journal of Urban Economics 60(3): 357-371. 

Briassoulis, H (2000) Analysis of Land Use Change: Theoretical and Modeling 

Approaches, available online from 

http://www.rri.wvu.edu/Webbook/Briassoulis/contents.htm assessed on August-

September 2014. 

Buerkert, A., Lawrence, P.R., Williams, J.H., & Marschner, H. (1995). Non-destructive 

Measurements of Biomass in Millet, Cowpea, Groundnut, Weeds and Grass 



145 

 

Swards using Reflectance and their Application for Growth Analysis. 

Experimental Agriculture, 31, 1-11 

Chen, N., P. Valente and H Zlotnik (1998). What do we know about recent trends in 

urbanization? In Migration, urbanization, and development: New directions and 

issues: 59-88.  

Cheng, J. and I. Masser (2003). Urban growth pattern modeling: a case study of Wuhan 

city, PR China. Landscape and Urban Planning 62(4): 199-217. 

Cheng, J. and I. Masser (2003). Urban growth pattern modeling: a case study of Wuhan 

city, PR China. Landscape and Urban Planning 62(4): 199-217. 

DESA/UN (2011) Population Distribution, Urbanization, Internal Migration and 

Development: An International Perspective, Department of Economic and Social 

Affairs, Population Division of the United Nations available from  

www.unpopulation.org. 

EPA (2000) Projecting Land-Use Change: A Summary of Models for Assessing the 

Effects of Community Growth and Change on Land-Use Patterns. EPA/600/R-

00/098. U.S. Environmental Protection Agency, Office of Research and 

Development, Cincinnati, OH.  

Funk, C.C., Budde, M.E. (2009) Phenologically-tuned MODIS NDVI-based production 

anomaly estimates for Zimbabwe. Remote Sensing of Environment 113, 115-125. 

Geoghegan, J., S. C. Villar, et al. (2001). Modeling tropical deforestation in the 

southern Yucatan peninsular region: comparing survey and satellite data. 

Agriculture Ecosystems & Environment 85(1-3): 25-46. 

Gleditsch, Nils Petter, Peter Wallensteen, Mikael Eriksson, Margareta Sollenberg, and 

Håvard Strand (2002) Armed Conflict 1946-2001: A New Dataset. Journal of 

Peace Research 39(5). 

Guttman, N. B. (1998). Comparing the palmer drought index and the standardized 

precipitation index, Wiley Online Library. 

http://www.unpopulation.org/


146 

 

Hu, Z. and C. Lo (2007). Modeling urban growth in Atlanta using logistic regression. 

Computers, Environment and Urban Systems 31(6): 667-688. 

Irwin, E. G. and J. Geoghegan (2001). Theory, data, methods: developing spatially 

explicit economic models of land use change. Agriculture, Ecosystems & 

Environment 85(1): 7-24. 

Jalloh, Abdulai; Nelson,  G.C.; Thomas, T.S.; Zougmoré, R. B.; Roy-Macauley, H. eds. 

West African agriculture and climate change: a comprehensive analysis. Intl Food 

Policy Res Inst, 2013. 

Janowiak, J. E. and P. Xie, 1999: CAMS_OPI: A Global Satellite-Rain Gauge Merged 

Product for Real-Time Precipitation Monitoring Applications. J. Climate, vol. 12, 

3335-3342. 

Kleinbaum, D G, and M Klein (2010) Logistic Regression, Statistics for Biology and 

Health, DOI 10.1007/978-1-4419-1742-3_1, # Springer Science Business Media, 

LLC 2010 

Maselli, F., Romanelli, L., Bottai, L., Maracchi, G. (2000) Processing of GAC NDVI 

data for yield forecasting in the Sahelian region. International Journal of Remote 

Sensing 21, 3509-3523. 

McDonnell, M J and S T Pickett (1990) Ecosystem structure and function along urban-

rural gradients: an unexploited opportunity for ecology. Ecology: 1232-1237. 

Onlinecourses.science.psu.edu. "Welcome To STAT 504! | STAT 504". N.p., 2016. 

Web. 14 Feb. 2016. 

Parnell, S. and R. Walawege (2011). Sub-Saharan African urbanisation and global 

environmental change. Global Environmental Change 21, Supplement 1(0): S12-

S20. 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., & Stenseth, N.C. 

(2005). Using the satellite-derived NDVI to assess ecological responses to 

environmental change. Trends in Ecology & Evolution, 20, 503-510 



147 

 

Rasmussen, M S (1998) Developing simple, operational, consistent NDVI-vegetation 

models by applying environmental and climatic information. Part I: Assessment of 

net primary production. International Journal of Remote Sensing 19, 97-119. 

Reynolds, C A, M Yitayew, et al. (2000). Estimating crop yields and production by 

integrating the FAO Crop Specific Water Balance model with real-time satellite 

data and ground-based ancillary data. International Journal of Remote Sensing 21, 

3487-3508. 

Robinson, D. T., D. G. Brown, et al. (2007). Comparison of empirical methods for 

building agent-based models in land use science. Journal of Land Use Science 

2(1): 31-55. 

Schneider, A. and C. E. Woodcock (2008). Compact, Dispersed, Fragmented, 

Extensive? A Comparison of Urban Growth in Twenty-five Global Cities using 

Remotely Sensed Data, Pattern Metrics and Census Information. Urban Studies 

45(3): 659-692. 

Serneels, S. and E. F. Lambin (2001). Proximate causes of land-use change in Narok 

District, Kenya: a spatial statistical model. Agriculture, Ecosystems & 

Environment 85(1): 65-81. 

Tarhule, Aondover, and Ming-Ko Woo. Towards an interpretation of historical droughts 

in northern Nigeria. Climatic Change 37, no. 4 (1997): 601-616. 

Tucker, C.J., J. E. Pinzon, M. E. Brown, D. Slayback, E. W. Pak, R. Mahoney, E. 

Vermote and N. El Saleous (2005), An Extended AVHRR 8-km NDVI Data Set 

Compatible with MODIS and SPOT Vegetation NDVI Data. International 

Journal of Remote Sensing, Vol 26:20, pp 4485-5598. 

UN-Habitat (2014) The State of African Cities 2014: Re-imagining sustainable urban 

transitions, United Nations Human Settlements Program, available online 

http://unhabitat.org/books/state-of-african-cities-2014-re-imagining-sustainable-

urban-transitions/  

Veldkamp, A. and E. F. Lambin (2001). Predicting land-use change. Agriculture 

Ecosystems & Environment 85(1-3): 1-6. 

http://unhabitat.org/books/state-of-african-cities-2014-re-imagining-sustainable-urban-transitions/
http://unhabitat.org/books/state-of-african-cities-2014-re-imagining-sustainable-urban-transitions/


148 

 

Walsh, S. J., T. W. Crawford, et al. (2001). A multiscale analysis of LULC and NDVI 

variation in Nang Rong district, northeast Thailand. Agriculture Ecosystems & 

Environment 85(1-3): 47-64. 

Zhu, L. and J.-f. Huang (2006). GIS-based logistic regression method for landslide 

susceptibility mapping in regional scale. Journal of Zhejiang University Science 

7(12): 2007-2017. 

 

  



149 

 

Chapter 5: Conclusions 

This dissertation research has focused on West Africa, one of the fastest-

growing regions of the world. The average urban population growth rate since 1950 is 

the second highest in West Africa compared to the other regions of Africa. In 1900, the 

growth rate was 5% which rose to 12% in 1950, 28% in 1980 and 17% in 2000 (Fuwape 

and Onyekwelu 2010). This region is also one of the rapidly urbanizing sub-regions in 

Africa (UN-Habitat, 2014). 

The pressures on the land resources are palpable in the region as the result of the 

growing population and rapid growth of the small towns and cities. Therefore, 

understanding the current state of land cover and land use in the region is, therefore, 

critically important. Also, this is the region which has endured most severe and longest 

droughts since the late 1970s (Tarhule and Woo, 1997; Jalloh et al., 2013; Druyan, 

2011; Wang and Eltahir, 2000) showing its vulnerability to climatic variability.  

Many countries in the region lack resources to prepare a long term land cover 

data which play a critical role to formulate a sustainable land development policies. So, 

we investigated if the global land cover data that are available freely could be used for 

such purposes. We compared twelve datasets at the pixel, country and eco-region levels 

to estimate croplands. We choose to evaluate the datasets on the basis of cropland 

because of two prime reasons, the importance of agriculture in the region as well as in 

land cover change studies.  Agriculture is a crucial livelihood for over 50 percent of 

people in the region. Also, land use change is mainly characterized by the expansion of 

urban and infrastructure areas into cropland while the expansion of cropland occurred at 

the cost of grasslands, savannahs and forest areas (Holmgren, 2006). The eco-region 
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and country level analysis showed high variability in cropland estimation.  At the pixel 

level, the IIASA-IFPRI and GLC-SHARE showed better accuracies to estimate 

croplands in the region newer datasets agreed better to estimate the cropland. 

 With regards to the urban land use growth, this dissertation attempted to 

understand the phenomenon investigating six small to large but rapidly growing cities: 

Kumasi of Ghana, Daloa of Cote d’Ivoire, Abuja and Kano in Nigeria, Kindia of 

Guinea, and Ouagadougou of Burkina Faso in the region. We found that all the cities, 

except Daloa, have a large number area of non-urban converted to urban in the past 

three to four decades. The growth of the urban area is high, 13 to 54%, but the trends of 

the growth were not consistent. Abuja and Ouagadougou were growing but the rate of 

growth had been decreasing in the recent times. Kumasi has been growing consistently 

since 1975 at a much higher rate and still growing, about 13% annually. Also, most of 

the cities have shown a higher rate of growth of urban land use than population except 

Abuja and Ouagadougou. Abuja and Ouagadougou have higher population growth, in 

the range of 10.7 to 15.8% than the growth of the urban land use which varies from 3 to 

4.5%.  We did not observe any similarities on the growth of the urban area of the cities 

from the same eco-region.  

Finally, this research identified and quantified environmental and socio-

economic variables such as Normalized Difference Vegetation Index (NDVI), distance 

to the urban area and population showed strong associations with the growth of the six 

cities in West Africa. We found out that none of the variables showed consistency in 

their association of predicting urban land use for multiple years.  Out of the six cities, 

two cities Ouagadougou and Kano showed some level of agreement in associating the 
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urban growth with the NDVI at different time periods. In the rest of the cities, 

accessibility such as distance to the nearest urban area and distance to the core city area 

are the dominating factors in the growth of six cities in West Africa. We also observed 

that among all variables except the population growth and human influence index tend 

to decrease the odds of non-urban conversion to urban. 

This study revealed that the growth of the cities in the same country or eco-

region had different drivers of the urban growth at different times. Also, the association 

of the drivers for the growth were different within a city at the different time periods or 

in other cities from the same eco-region. So the Null hypothesis is rejected. Instead, the 

urban growth factors were localized and playing out a different level of associations in 

the conversion of urban land uses in the cities of West Africa. 
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