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Title of Study: TRANSFORMED NONPARAMETRIC FUNCTIONS ESTIMA-
TION
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The estimation of an unknown probability density functions of a random variable or
its distribution function or a function related to it using standard kernel density esti-
mate is the most popular technique among many density estimation methods. This
is due to its favorable features such as it does not assume any functional form, data
guide the underlying density and it accurately detects any multimodality present in
the target density. Often, the standard kernel chosen has its support on whole Eu-
clidean space. However, in many situations such as in survival, reliability, social and
ecological analyses, the random variables have support only on positive half of the
real line or on a compact interval and using standard kernel to estimate the density of
these random variables assigns positive probabilities outside the support of the target
density. Ignoring the probability mass outside the support of random variables will
result in erroneous bias. To circumvent this problem, transformed kernel density and
distribution functions estimates are proposed. A similar approach is used to estimate
the density and distribution functions of data from weighted distribution. These es-
timates are used to estimate failure rate and regression functions. The asymptotic
properties of these estimators are studied including the most crucial bandwidth se-
lection. These new estimators have the same support as the data and preserve the
fundamental properties of the random variables. Simulation studies and some real
data examples are presented.
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CHAPTER 1

INTRODUCTION

This dissertation focuses on nonparametric density estimations of unbiased and biased

sampling. The regression and failure rate functions are also estimated as examples of

applications of both unbiased and biased sampling. For the unbiased case, we apply

our technique to nonnegative random variables and for the biased case, samples from

weighted distribution are considered.

1.1 Nonparametric Kernel Function Estimation

Nonparametric functions estimations are a major field of study in nonparametric

statistics. It is an important data analytic tool in preliminary data analysis since it

provides a very effective way of showing structure of data. This is specially important

when the data structure has multimodality, skewed shape and long or heavy tails since

parametric models are inadequate in these situations. The nonparametric estimators

do not assume any fixed form of the target functions and depend upon random vari-

ables on hand to reach an estimate. The obvious example of function estimation is the

density estimation of random variables. The most basic nonparametric example of

the density estimate is the histogram. The histogram has several drawbacks such as

it does not provide smooth estimate, it depends upon the starting point and number

of bins grows exponentially with the number of dimensions in multivariate setting.

The kernel density estimator is a class of nonparametric density estimators and has

received tremendous attention in the past six decades. It is widely used in theoretical

and applied fields, particularly in exploratory data analysis when parametric models
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are inadequate. It is the most popular technique of density estimations due to its

simple assumptions and its accuracy in complex situations.

1.2 Kernel Density Estimation(KDE)

Let X1, X2, ....., Xn be nonnegative random variables with density function f(x). The

standard kernel estimate(KDE) of f(x) is

f̂n(x) =
1

na

n∑
i=1

K

(
x−Xi

a

)
, −∞ < x <∞ (1.1)

where a is called bandwidth and K is a known probability density that is symmetric

with zero mean and finite variance.

Similarly,

F̂n(x) =
1

n

n∑
i=1

K
(
x− xi
a

)
. (1.2)

Where K is the distribution function for corresponding K.

In many studies such as survival and reliability analysis, ecological and social sciences,

data comes from Euclidean half space or from a compact interval. The classical kernel

estimate(1.1) when used in estimating the density of nonnegative random variables

or variables confined to finite support, however, suffers a major drawback as it as-

signs positive values outside the support of random variables. Ignoring the positive

mass out side the support of the target density results in unnecessary bias and the

estimate does not integrate out to unity. It is desirable to have the same support

of random variables as the kernel density. To overcome this problem, we use in the

current research transformation of nonnegative random variables to variables defined

on the whole real line and propose a new kernel-type density estimator of transformed

random variables on the entire real line. Then one can re-transform back to obtain

the density estimates of the original data preserving fundamental property of random

variables. The density function estimate is assessed both globally by Mean Integrated

2



Square Error (MISE) and locally by Mean Square Error(MSE). The Mean Squared

Error is used in assessing distribution function to avoid integrability problems.

1.3 Regression Function Estimation

In many situations, the functional form of regression function is unknown and non-

parametric estimation is used to estimate the regression function. Let Y and X be

continuously distributed response and independent variables respectively with a joint

density f(y, x) and let f(y|x) = f(x)) be conditional density of Y given x. The

regression function of Y on X is given by

m(x) = E(y|X = x) =

∫
yf(x, y)dy

f(x)
.

For the nonnegative data, the standard kernel estimate of this function puts weights

out side the support of target function. We used proposed transformed kernel density

estimates in estimating the regression function.

1.4 Failure Rate Function Estimation

Let F (x) be distribution function of non negative random variable X that represents

time to failure of a subject , then the univariate failure rate function is defined as

h(x) = − d

dx
log(1− F (x) =

f(x)

1− F (x)
=
f(x)

F (x)
, x ≥ 0. (1.3)

where F (x) > 0 is a survival function and is given by

F (x) = P (X > x) = 1−
x∫

0

f(u)du.

Kernel failure rate is then estimated by plugging in the estimates of f(x) and F (x)

in equation (1.3).
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Nonnegative random variables have major role in reliability theory and survival anal-

ysis. The density of nonnegative random variables has a support on the positive half

of the real line so in estimating reliability functions such as Failure Rate Function,

Mean Residual Life and Conditional Survival Function, it is desirable to use the den-

sity estimate that has nonnegative support. Thus, for the estimation of failure rate

function, the density and distribution estimates of transformed random variables are

used. To find the estimate of failure rate function of the original nonnegative random

variables, one can re-transform the failure rate function estimate back. Asymptotic

properties of the estimates have been studied. We examine univariate and bivari-

ate cases and multivariate case can be generalized analogously from the bivariate

estimation.

1.5 Nonparametric Weighted Kernel Function Estimation

The theory of weighted distributions provide a unifying approach in situations where

the random variables of interest come from the non-experimental, non- replicated,

and nonrandom categories such as in environmental and ecological study. The esti-

mation of the density in this arrangement is important for data analysis. To consider

the method of ascertainment, the weighted distributions adjusts the probabilities of

actual occurrence of events to arrive at a specification of the probabilities of those

events as observed and recorded. Failure to make such adjustments can result in

erroneous conclusions.

1.6 Weighted Kernel Density Estimation(WKDE)

Weighted distributions are used to deal missing data, damaged data, sociological

or ecological data. Let Xi, i = 1, 2, ..., n are non-negative random variables with

probability density function(pdf) f and distribution function F .The weighted density
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g is related to f as :

g(x) =
w(x)f(x)

θw
where θw = Efw(X).

Let G be the distribution function of g.

SupposeXi is not observable but we observe another random variable Yi, i = 1, 2, ..., n

from the weighted distribution G and we want to use these random variables to esti-

mate f . Then the weighted Kernel Density Estimation is

f̂n(x) =
1

a

(∑
i

1

w(Yi)

)−1∑
i

1

w(Yi)
K

(
x− Yi
a

)
, 0 < w(y))

Since Xi are non negative and if the standard kernel is used here, this estimate assigns

positive probabilities to the left of the origin where no random variables exist.

1.7 Regression Function Estimation

The idea of transformed weighted kernel density estimator can be used to estimate the

regression function of nonnegative random variables. Let Y and X be continuously

distributed response and independent variables. The regression function of Y on X

is given by

m(x) = E(y|X = x) =

∫
yf(x, y)dy

f(x)
.

Where f(y, x) is a joint density of x and y, f(y|x) is a conditional density of Y given x

and f(x) is a marginal density of X. We used proposed transformed weighted kernel

density estimate in estimating the regression function.

1.8 Failure Rate Function Estimation

Let X represents time to failure of a subject with density f(x) and distribution F (x).

The univariate failure rate function is given by

h(x) = − d

dx
log(1− F (x) =

f(x)

1− F (x)
=
f(x)

F (x)
, x ≥ 0. (1.4)
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where F (x) > 0 is a survival function and is given by

F (x) = P (X > x) = 1−
x∫

−∞

f(u)du.

When the random variables X come from nonexperimental, nonreplicated and non-

random categories, the transformed weighted kernel estimators are used.
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CHAPTER 2

Literature Review

The nonparametric density estimation was first introduced by Fix and Hodges [16]

in the form of histogram in their unpublished manuscript in 1952. Rosenblat [30]

proposed a naive kernel-based estimator where the kernel function was a simple uni-

form distribution and in 1962, Parzen [26] presented theoretical and mathematical

framework for the kernel estimator including large sample theory and point-wise con-

sistency. Some of the most important works over the last six decades were accom-

plished by many including Rudemo [31], Stone [35], Bowman [6], Silverman [34], Scott

and Terrell [33], Jones and Marron [20], Wand and Jones [36], and Mnatsakanov and

Sarkisian [22]. Rudemo [31], and Bowman [6] had independently developed least

square cross validation (LSCV) technique to compute a data based bandwidth. Also,

Scott and Terrell [33] presented biased cross validation (BCV) method of bandwidth

selection. These two methods remain the most popular techniques in selecting data

based bandwidth.There have been number of papers devoted to density estimation of

non negative random variables. Many authors including Rao and Bagai [28], Comte

and Catalot [14] briefly mentioned the necessity of transformation while estimating

density of nonnegative random variables. Silverman [34] provides some adaptations

of the existing methods when handling the nonnegative random variables. Marron

and Ruppert [13], and Alberts and Karunamuni [4] used transformation to reduce the

bias at the boundaries.

The study of suicidal data by Silverman [34] shows that the estimate of nonnegative

random variables with the standard kernel function has positive values on the nega-
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tive half of the real line [34] (page 18). However, if the area to the left of the origin

is ignored then the density estimate would not integrate out to one. To avoid this

problem, Rao and Bagai [28] used kernels with the support of positive half of the real

line. Their use of exponential kernel has poor performance near the origin and in the

tail area. The optimal bandwidth has slower convergence rate than the bandwidth of

standard kernel. Also, their use of exponential kernel may encounter non integrability

issue if x < X(1). Chen [11] and Scaille [32] proposed boundary bias free estimate by

implementing asymmetric kernels with the support of positive half of the real line.

The convergence rate of their estimates depends on the position of data point from

the origin.

Failure rate function is widely used in life time data analysis. The failure rate func-

tion provides important information about the distributions of random failure times

of objects in reliability and survival analysis. The pioneering work in nonparametric

estimation of the univariate failure rate function can be found in Watson and Lead-

better [37], [38] and Ahmad and Lin [2]. Basu [8], Cox [15], and Puri and Rubin [27]

have proposed a scalar-valued multivariate analog of univariate failure rate function

which does not possess similar relationships between survival probability and the fail-

ure rate function which in otherwise well established in univariate case. Johnson and

Kotz [19], and Marshal [21] defined bivariate failure rate function as vector-valued

bivariate failure rate function which is in agreement with univariate case. The non-

parametric kernel-type estimation of vector-valued bivariate failure rate function have

been considered by Ahmad and Lin [1]. In univariate and bivariate estimation of fail-

ure rate functions, Watson and Leadbetter [37], [38] Ahmad and Lin [2], and Ahmad

and Lin [1] used classical kernel density functions without transformation and hence

their estimators give positive weight to the area where random variables do not exit.

Fisher [17] introduced the concept of weighted distribution in the study of the ef-

fects of methods of ascertainment upon the estimation of frequencies and Rao [29]

8



formalized weighted distribution in a unifying theory. As a special case of weighted

distribution, Zelen [39] introduced weighted distribution to represent length-biased

sampling in the context of cell kinetics and the early detection of disease. Patil [25]

provided various examples such as encountered data analysis, equilibrium population

analysis subject to harvesting and predation, meta-analysis incorporating publica-

tion bias and heterogeneity, clustering and extraneous variation using length biased

distributions. Bhattacharyya, Franklin and Richardson [5] proposed kernel density

estimate of length-biased distribution. Bhattacharyya estimate failed to be density

and their estimate is erroneous near origin. Jones [12] proposed a new kernel based

estimator for the length-biased distribution which is analogous to the kernel estimator

of direct sampling case.
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CHAPTER 3

Transformed Nonparametric Functions Estimation

This research focuses on nonnegative random variables. Since standard kernel density

is inadequate in estimating functions that involves random variables which has sup-

port on positive half of the Euclidean space, we propose transform kernel functions

estimations. We show that our estimators have better performance in tail area and

have smaller mean integrated square errors by simulation. Proofs of theorems are pre-

sented in the appendix. New notations that are used in this research are introduced

in this section.

3.1 Transformed Kernel Density Estimation (TKDE)

In situations where random variables come from life time distribution or from a fi-

nite support, transformation of random variables is one possibility of solving spill

over effect in standard kernel density and distribution functions estimations. Let

X1, X2, ....., Xn be nonnegative random variables with density function f(x) and cu-

mulative distribution function F (x). We want to estimate f(x) and F (x). Let

Y = φ(X) denote a known transformation of X such that Y ∈ R and the new random

variables Y may have a density that can be more easily estimated using the standard

kernel. Then one would invert the density estimate of Y to the density estimate of

original random variables X. The new estimator is called the transformed kernel

density estimator (TKDE). The TKDE is simply based on the standard statistical

distribution theory:

f(x) = g(t(x))|t′(x)|

10



. Our proposed estimator of f(x) is

f̂(x) =
|φ′(x)|
na

n∑
i=1

K

(
φ(x)− φ(Xi)

a

)
(3.1)

where a is bandwidth. The detailed method for finding the optimal bandwidth is dis-

cussed later. The kernel function is a symmetric probability density function about

the origin and it has the following properties

1.
∫
K(u)du = 1,

2.
∫
|u|K(u)du = 0,

3.
∫
K2(u)du <∞,

∫
u2K2(u)du <∞

In similar fashion, we propose an estimate of F (x) as

F̂n(x) =
1

n

n∑
i=1

K
(
φ(x)− φ(Xi)

a

)
. (3.2)

The following theorem summarizes the properties of f̂(x).

Theorem 3.1 1. E(f̂(x)) → f(x) asn → ∞ such that na → ∞ and for all x,

f(x) is continuous.

2. E{f̂(x)− f(x)}2 → 0 as n→∞ such that na→∞ for all continuity points of

f(x).

3. The optimal choice of the bandwidth is aopt =


R(K)

∫
|φ′(x)|f(x)dx

S(G2,(φ′)8)n


1
5

,

where R(K) =
∫
K2(u)du and S(G2, (φ′)8) =

∫ G2(x)
(φ′(x))8

dx with

G(x) = f(x)
{

3(φ′′(x))2 − φ′(x)φ′′′(x)
}
− 3f ′(x)φ′(x)φ′′(x) + f ′′(x){φ′(x)}2

11



Corollary 3.1 For the log transformation φ(x) = lnx, aopt =

{
R(K)(

∫ f(x)
|x| )dx

Ψ(f,f ′,f”)n

} 1
5

,

where Ψ(f, f ′, f ′′) =
∫

(f(x)dx+ 3|x|f ′(x)dx+ x2f ′′(x))
2
dx.

Proof: Let φ(x) = ln x then φ′(x) = 1
x
, φ′′(x) = − 1

x2
and φ′′′(x) = 2

x3

Thus,

G(x) = f(x)

{
3

x4
− 2

x4

}
− 3f ′(x)

1

x

(
− 1

x2

)
+ f ′′(x)

1

x2

together with |φ′(x)|8 = 1
x8

gives us

S(G2, |φ′|8) =

∫ 
(
f(x)
x4

+ 3f
′(x)
x3

+ f ′′(x)
x2

)2

1
x8

 dx

=

∫ {
f(x) + 3|x|f ′(x) + x2f ′′(x)

}2
dx

= Ψ(f, f ′, f ′′)

Therefore

E
{
f̂(x)− f(x)

}2

≈ R(K)

na

∫
f(x)

|x|
dx+

a4

4
Ψ(f, f ′, f ′′))

Therefore, the result follows aopt =

{
R(K)(

∫ f(x)
|x| )dx

Ψ(f,f ′,f ′′)n

} 1
5

.

The expression for optimal bandwidth involves an unknown density which is to be

estimated.

The most crucial part in the density estimation is a selection of optimal bandwidth.

Any attempt to decrease either the bias or the variance with respect to smoothing

parameter a will result in an increase of the other. We adapted some techniques such

as Unbiased Cross Validation (UCV) and Biased Cross Validation (BCV) methods to

evaluate the optimal bandwidths.
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3.2 Unbiased Cross Validation (UCV)

The usual criteria to assess the accuracy of density estimate is the integrated square

error (ISE). The idea of the cross validation(UCV) arises from expanding the inte-

grated square error of f̂(x).

ISE(f̂(x)) =

∫ (
f̂(x)− f(x)

)2

dx

=

∫
f̂ 2(x)dx− 2

∫
f(x)f̂(x)dx+

∫
f 2(x)dx

The last term is independent of bandwidth a. Therefore, minimizing ISE(f̂(x)) is

the same as minimizing the first two terms of above expression. The UCV is the

procedure of obtaining unbiased estimate of the ISE(f̂(x)).

ISE(f̂(x)) =

∫ (
f̂(x)− f(x)

)2

dx =

∫
f̂ 2(x)dx− 2

∫
f̂(x)dFn

≈
∫
f̂ 2(x)dx− 2

∫
f̂(x)dFn

=
n∑
i=1

n∑
j=1

∫
|φ′(x)|2

n2a2
K

(
φ(x)− φ(Xi)

a

)
K

(
φ(x)− φ(Xj)

a

)
dx

−2

∫
|φ′(x)|
na

n∑
i=1

K

(
(φ(x)− φ(Xi)

a

)
dFn(x)

Let I1 =
n∑
i=1

n∑
j=1

∫
|φ′(x)|2

n2a2
K

(
φ(x)− φ(Xi)

a

)
K

(
φ(x)− φ(Xj)

a

)
dx

and I2 = −2

∫
|φ′(x)|
na

n∑
i=1

K

(
(φ(x)− φ(Xi)

a

)
dFn(x)

Finding I1 depends upon the choice of a kernel function and a type of transformation.

For example if φ(x) = log x and standard normal for the kernel function, I1 can be

simplified as:

I1 =
n∑
i=1

n∑
j=1

∫
|φ′(x)|2

n2a2
K

(
φ(x)− φ(Xi)

a

)
K

(
φ(x)− φ(Xj)

a

)
dx

13



Let φ(x) = log x = y then x = ey and φ′(x) = 1
x

and a standard normal kernel.

Thus,

I1 =
1

n2a2

n∑
i=1

n∑
j=1

∫
1

x2
K

(
log x− logXi

a

)
K

(
log x− logXj

a

)
dx

=
1

n2a2

n∑
i=1

n∑
j=1

∫
e−yK

(
y − logXi

a

)
K

(
y − logXj

a

)
dy

=
1

n2a2

1

2π

n∑
i=1

n∑
j=1

∫
e−ye

−
(

(y−logXi)
2

2a2

)
−
(

(y−logXj)
2

2a2

)
dy

Completing square in the exponent,

−
{
y +

1

2a2

[
2y2 − 2y(log xi + logxj) + log x2

i + logx2
j

]}
= − 1

a2

{
y2 − y(log xi + log xj − a2) +

cij
2

}
= − 1

a2

(
y − (log xi + log xj − a2)

)2
+

1

4a2
(log xi + log xj − a2)2 − cij

2a2

where cij = log(xi)
2 + log(xj)

2

Hence,

I1 =
n∑
i=1

n∑
j=1

1

2
√
πan2

exp

{
1

4a2
(logxi + logxj − a2)2 − cij

2a2

}
Also,

I2 = − 2

n

n∑
i=1

f̂−1(Xi) = − 2

n2

∑
i

∑
j

φ′(Xi)

a
K

(
φ(Xi)− φ(Xj)

a

)
which reduces in the log and normal kernel function case to

I2 = − 2

n2

∑
i

∑
j

1

Xia
√

2π
exp

−(log(Xi)−log(Xj))
2

2a2

Then ÎSE = I1 + I2

3.3 Bias Cross Validation (BCV)

The biased cross validation method of obtaining optimal bandwidth aopt is based on

minimizing Asymptotic Mean Integrated Square Error(AMISE) of f̂(x).

AMISEf̂(x) =
R(k)

na

∫
|φ′(x)|f(x)dx+

a4

4
µ2

2(K)S(G2, |φ′|8)

14



So,

âopt =

{
R(K)

∫
|φ′(x)|f(x)dx

µ2(K)S(G2, (φ′)8)n

} 1
5

âopt is obtained by estimating
∫
|φ′(x)|dF (x) and S(G2, (φ′)8).

Then
∫
|φ′(x)|f(x)dx is estimated by

∫
|φ′(x)|dFn(x) = 1

n

n∑
i=1

|φ′(Xi)|.

Thus,

aopt =


R(K) 1

n

n∑
i=1

|φ′(Xi)|

S(G2, (φ′)8)n


1
5

.

For example when φ(x) = ln x, we have

S(G2, |φ′|8) =

∫ {
f(x) + 3|x|f ′(x) + x2f ′′(x)

}2
dx

To estimate aopt, we estimate S(G2, |φ′|8) by plugging in the estimates of f(x), f ′(x)

and f ′′(x) in S(G2, |φ′|8) and put that estimate of S(G2, |φ′|8) in the expression of

aopt.

Theorem 3.2 The mean square error of F̂ (x) is given by

MSE(F̂ (x)) =
F (x)(1− F (x))

n
− a

n
τ(K, F, φ) +

[
a2

2
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz

]2

Corollary 3.2 The optimal bandwidth of F̂ (x) is given by

a∗ =

{
τ(K, F, φ)

n
[
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz

]2
} 1

3

.

Where,

τ(K, F, φ) = 2(F ◦ φ−1)′φ(x)

∫
uK(u)K(u)du

Proof: Differentiating MSE(F̂ (x)) with respect to a and setting it to zero immedi-

ately gives the optimal bandwidth that minimizes the MSE.
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3.4 Regression Function Estimation

The transformed nonparametric density estimation can be applied in estimating re-

gression function when non negative random variables are regressed to a response

variable y.

Let Yi and Xi be response variable and non negative explanatory variables respec-

tively. The relation of Y to X is described by

yi = m(xi) + εi, i = 1, 2, 3, ..., n, εi
i.i.d∼ N(0, σ2).

We are interested in estimating the regression m(x) with out any assumption on εi.

The regression m(x) can be expressed as

m(x) = E[Y |X = x] =

∫
yf(x, y)dy

f(x)

where f(x, y) is a joint density of x and y. Then the regression estimate is

m̂(x) =

n∑
i=1

YiK
(
φ(x)−φ(Xi)

a

)
n∑
i=1

K
(
φ(x)−φ(Xi)

a

) (3.3)

The mean square error of the estimate is given by the following equation. Its deriva-

tion is provided in the appendix.

E (m̂(x)−m(x))2

=
R(K)|φ′(x)|
nam2(x)f1(x)

[
ψw(φ(x)) +m2(x)− 2m(x)ηw(φ(x))

]

+

[
a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x))

)
/f1(x)

]2

(3.4)

Thus, IMSE is obtained by integrating equation 3.4 with respect to x, we assume

that all integrals exist.
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3.5 Failure Rate Function Estimation

In this section, we propose estimates of univariate and bivariate failure rate functions.

These estimates are based on our density estimate of nonnegative random variables.

It is noted that bivariate case can be generalized to any multivariate case.

(A) Univariate Failure Rate Function Estimation

As mentioned earlier, univariate failure rate function is defined as

h(x) = − d

dx
log(1− F (x) =

f(x)

1− F (x)
=
f(x)

F (x)
. x ≥ 0

Where F (x) > 0 is a survival function and is given by

F (x) = P (X > x) = 1−
x∫

0

f(u)du

In the literature, hazard rate is also known as conditional failure rate, instantaneous

death rate, force of mortality etc. The failure rate h(x)dx represents the instantaneous

chance that subject fails in the time interval (x, x+ dx), given that it has survived of

age x.

Our estimate of univariate failure rate function is

ĥ(x) =
f̂(x)

F̂ (x)
=

f̂(x)

1− F̂ (x)
, x ≥ 0

where

f̂(x) =
|φ′(x)|
na

n∑
i=1

K

(
φ(x)− φ(Xi)

a

)
and

F̂ (x) =
1

n

n∑
i=1

K
(
φ(x)− φ(Xi)

a

)
.

Theorem 3.3 Expected value of ĥ(x) is

Eĥ(x) = h(x)

{
1 +

a2

2

(√
S(G2, |φ′(x)|8)

f(x)
− (F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz

)}
.
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Corollary 3.3 Bias of ĥ(x) is

Bias(ĥ(x)) = h(x)a2

2

{√
S(G2,|φ′(x)|8)

f(x)
− (F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz

}
.

Theorem 3.4 Var ĥ(x) is given by

V ĥ(x) = h2(x)|φ′(x)|R(K)
naf(x)

Corollary 3.4

MSE(ĥ(x)) =
h2(x)|φ′(x)|R(K)

naf(x)
+

{
h(x)a2

2

(√
S(G2, |φ′(x)|8)

f(x)

−(F ◦ φ−1)′′|φ(x)|
∫
z2K(z)dz

)}2

(3.5)

Corollary 3.5 The optimal bandwidth that minimizes the MSE(ĥ(x)) is given by

a∗Opt =

 |φ′(x)|R(K)

nf(x)

{√
S(G2,|φ′(x)|8)

f(x)
− (F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz

}


1
5

.

Proof: Differentiating equation 3.5 w.r.t. a and setting it to 0, immediately gives

the optimal bandwidth.

In practice, we generally deal with multivariate cases. In the following section, we

propose estimate of vector-valued bivariate failure rate function and its properties.

(B) Bivariate Failure Rate Function Estimation

Let X = [X11, X21]′, ........, [X1,n, X2,n]′ be a bivariate nonnegative random vector with

cumulative distribution function F and probability density function f . The bivariate

vector-valued failure rate function is defined as

h(x) = [h1(x), h2(x)]′

where

hi(x) =
−δ
δxi

lnF (x) =
gi(x)

F (x)
, i = 1, 2.
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g1(x) =

∞∫
xi

f(x1, y2)dy2 and g2(x) =

∞∫
xi

f(y1, x2)dy1.

Let yi = φi(Xi1) be the transformation i = 1, 2. We propose estimates of f , g and F

respectively as follows.

f̂(x1, x2) =
|φ′x1(x1)φ′x2(x2)|

na1a2

n∑
i=1

K1

(
φ1(x1)− φ1(x1i)

a1

)
×K2

(
φ2(x2)− φ2(x2i)

a2

)
, i = 1, .., n.

ĝ1(x1, x2) =

∫
x2

f̂(x1, y2)dy2 =
|φ′x1(x1)|
na1

n∑
i=1

K1

(
φ1(x1)− φ1(x1i)

a1

)

×K2

(
φ2(x2)− φ2(x2i)

a2

)
ĝ2(x1, x2) =

∫
x1

f̂(y1, x2)dy1 =
|φ′x2(x2)|
na2

n∑
i=1

K1

(
φ1(x1)− φ1(x1i)

a1

)

×K2

(
φ2(x2)− φ2(x2i)

a2

)
F̂ (x1, x2) =

1

n

n∑
i=1

K1

(
φ1(x1)− φ1(x1i)

a1

)
K2

(
φ2(x2)− φ2(x2i)

a2

)
Finally, our estimator of vector-valued bivariate failure rate function is

ĥ(x) = [ĥ1(x), ĥ2(x)]′ with ĥ1(x) =
ĝ1(x1, x2)

F̂ (x1, x2)
with ĥ2(x) =

ĝ2(x1, x2)

F̂ (x1, x2)
.

The vector-valued bivariate failure rate function is also known as hazard gradient.

Remaining part of this section provides asymptotic properties of f̂(x1, x2),

ĝ1(x1, x2) and g2(x1, x2). Also, the consistency of ĥ(x) is established in this section .

Theorem 3.5 The expected value of ĥ(x) is

E(ĥ(x)) =

[ {
h1(x)

(
1 +

biasĝ1(x)

g1(x)
+
biasF̂ (x)

F (x)

)}
,
{
h2(x)

(
1 +

biasĝ2((x)

g2(x)
+
biasF̂ (x)

F (x)

)}]′
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where

biasF̂ (x) =
1

2

[
a2

1z
2
1F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

+a2
2z

2
2F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

]
×K1(z1)K2(z2)dz1dz2

biasĝ1(x) =
1

2

∞∫
x2

∫ ∫ [
a2

1z
2
1f
(
(φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

)
+a2

2z
2
2f
(
(φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

) ]
dz1dz2dy

biasĝ2(x) =
1

2

∞∫
x1

∫ ∫ [
a2

1z
2
1f
(
(φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

)
+a2

2z
2
2f
(
(φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

) ]
dz1dz2dy.

Theorem 3.6

lim
na→+∞

Cov[ĥi(xα), ĥj(xβ)]′ =
|φ′i(xα)|R(ki)

gi(xα)
+ h2

i (xα)
[1− F (xα)]

F (xα)
for i = j; α = β,

= gi(xα)gj(xα)
[1− F (xα)]

F
3
(xα)

for i 6= j and α = β

=
gi(xα)gj(xβ)

F
2
(xα)F

2
(xβ))

(F (xmax(α,β))− F (xα)F (xβ)) for i, j = 1, 2; α 6= β

where x′max(α,β = (xαmax, xβmax) = (max(x1α, x1β),max(x2α, x2β)),

for α 6= β = 1, 2.

Proof of this theorem follows immediately after using theorem 4.1 of Ahmad and

Lin[1]. The mean square error is then calculated using bias and variance of h(x).

3.6 Computational Study

In this section, we present simulated and a real data examples of transformed ker-

nel density estimation. We computed mean integrated square errors to asses the

estimates.
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3.7 Simulations

For optimal bandwidth of density and distribution functions estimate, Monte Carlo

simulations of 500 iterations was carried out in R and sample of sizes n= 10, 20,

40, 60, 100 were generated from log normal distribution with mean 0 and variance

1. The table below summarizes the optimal bandwidths using UCV and BCV along

with their corresponding standard errors in the parenthesis. The simulation result

shows that unbiased cross validation of bandwidth selection method does not work

for log transformation. This is partly because there are a terms with high power in

the denominator when we use Newton-Raphson method and those terms unusually

get too big. However, that problems does not appear in biased cross validation.

Table 3.1: Optimal bandwidth using unbiased and biased cross validation for lognor-

mal(n,0,1) and optimal bandwidth for its distribution.

n hucv (se) hbcv(se) h∗(se)

10 0.495(0.083) 0.592(0.203) 0.205(0.168)

20 0.486(0.0540) 0.540(0.175) 0.097(0.010)

40 0.481(0.035) 0.497(0.136) 0.047(0.006)

60 0.480 (0.029) 0.425(0.118) 0.033(0.004)

100 0.478(0.023) 0.394(0.099) 0.033(0.002)

The failure rate function of log normal data is estimated at 40th percentile. The

table below summarizes the result. The simulation shows that standard error for

this example is quite big but it is in decreasing order with larger sample size. We

believe that the sample size for this type of estimation is too small. With the better

computational resources, we can get better result with the larger sample size.
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Table 3.2: Failure Rate function estimated at 40th percentile of lognormal(n,0,1) with

standard error in parenthesis.

n h(se) hbcv h∗

10 0.345(0.19) 0.59 0.205

20 0.331(0.187) 0.540 0.097

40 0.323(0.177) 0.497 0.047

60 0.301 (0.162) 0.425 0.033

100 0.289(0.154) 0.394 0.033

We performed transformed kernel, standard kernel and parametric simple linear

regression analysis on child’s weights on a data set child’s weight to child’s height

found on sas manual with bandwidths 0.033 and 3.24 for transformed and standard

kernel cases respectively. Transformed kernel regression estimation performs almost

as good as the parametric regression. the prediction result shows that standard ker-

nel regression analysis slightly overestimates or underestimates than the transformed

kernel regression analysis. The following table summarizes transformed nonparamet-

ric(tkde), standard nonparametric(kde) and parametric(ppred) prediction of child’s

weight on given height. The lower(plwr) and upper(pupr) 95% prediction intervals

are provided in the last two columns.
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Table 3.3: Regression function estimation of child’s weight vs child’s height data set found

in sas manual.

height weight(tkde) weight(ppredict) weight(kde) plwr pupr

51 51.17834 55.82363 65.50283 28.56741 83.07984

53 63.59846 63.62169 74.57251 37.28011 89.96327

55 81.14582 71.41975 81.52674 45.83965 96.99985

57 84.69134 79.21781 86.50457 54.23203 104.20358

60 92.81439 90.91490 94.27482 66.48142 115.34837

64 105.16550 106.51102 104.81542 82.14301 130.87903

67 113.13985 118.20811 111.30079 93.38269 143.03353

69 119.20833 126.00617 116.42506 100.64559 151.36675

72 136.09423 137.70326 127.25181 111.22252 164.18400

Random samples of sizes n= 200, 400, 600 and 800 were generated from Log

normal(0,1) and gamma(2,1) densities and the corresponding mean integrated square

errors were computed. We compare these results with varying kernel and standard

kernel densities results found in table 1 of [22]. The following tables summarize the

results.

Table 3.4: MISEs of varying, standard and transformed kernel densities for lognor-

mal(n,0,1).

n f̂α f̂ ∗α f̂h f̂tkde(StdErr) αcv α∗cv hcv h

200 0.0092 0.0066 0.0166 0.0053(0.0030) 14 10 0.30 0.375

400 0.0057 0.0043 0.0103 0.0034(0.0021) 18 14 0.25 0.335

600 0.0039 0.0030 0.0075 0.0023(0.0013) 22 16 0.22 0.317

800 0.0029 0.0022 0.0059 0.0019(0.0010) 24 18 0.19 0.263
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Table 3.5: MISEs of varying, standard and transformed kernel densities for gamma(n,2,1).

n f̂α f̂ ∗α f̂h f̂tkde(StdErr) αcv α∗cv hcv h

200 0.0060 0.0046 0.0080 0.0041(0.0021) 11 7 0.14 0.29

400 0.0033 0.0026 0.0045 0.0023(0.0011) 14 9 0.11 0.27

600 0.0020 0.0016 0.0030 0.0016(0.0009) 17 11 0.10 0.25

800 0.0018 0.0015 0.0026 0.0013(0.0008) 19 12 0.09 0.22

The computational results show that TKDE performs as good as or better than

varying kernel estimator in terms of integrated mean square error. It is always better

than the standard kernel density estimation.

The figures 3.1.a and 3.1.b are the density estimates using standard kernel density

of Log Normal data of sample sizes 40 and 10000 respectively. Clearly, the standard

kernel assigns positive probabilities to the left of the origin. The figures 3.1.c and

3.1.d are the density estimates of log transformed data using standard kernel and

the figures 3.1.e and 3.1.f can be considered as back transformed density estimates of

3.1.c and 3.1.d which are given by our proposed density estimate (TKDE).
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(a) n=40, h=0.50 (b) n=10000, h=0.15

(c) n=40, h=0.45 (d) n=10000, h=0.20

(e) n=40, h=0.39 (f) n=10000, h=0.27

Figure 3.1: The figures (a) and (b) are density estimates of Log Normal data using

standard kernel. Figure (c) and (d) are density estimate of log transformed data using

standard kernel and Figure (e) and (f) are density estimates using proposed TKDE
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3.8 Real Data Examples

The figure 3.2.a is taken from Silverman[34](page 18) which shows the density estimate

of suicidal data using standard kernel density estimate whereas figure 3.2.b is taken

from Rao and Bagai [28] and is also the density estimate of the suicide study data

using exponential kernel. The graph 3.2.c is the density estimate of the suicide study

data by using TKDE. The TKDE performs better in the tail area and near zero.

(a) suicide data, n= 86, h=20 (b) suicide data, n= 86, h=20

(c) suicide data, n= 86, h=0.10

Figure 3.2: The figures (a), (b), and (c) are kernel density estimates of suicide data found

in Silverman[34] page 18 using standard , exponential and transformed kernel(3.1) densities

respectively. The figures (a) and (b) are taken from Silverman[34] and Rao and Bagai[28]

respectively.
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CHAPTER 4

Transformed Nonparametric Weighted Functions Estimation

The new transformed weighted kernel estimators are proposed along with their prop-

erties. The short mathematical results are presented in this section and the results

requiring rigorous proofs are provided in the appendix. New notations that are used

in this research are introduced in this section.

4.1 Transformed Weighted Kernel Density Estimation(TWKDE)

We propose transformed density estimate as:

Let Wi = φ(Yi) then the TWKDE of Xi is

f̂(x) =
|φ′(x)|
a

(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|
K

(
φ(x)− φ(Yi)

a

)
(4.1)

Similarly, An estimate of F (x) is

F̂ (x) =

(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|
K
(
φ(x)− φ(Yi)

a

)
(4.2)

Where K(u) is corresponding distribution function of K(u).

We write

f(x) =
g(x)θw
|w(φ(x))|

where θw = Ef (|w(φ(X))|)

Then, we can write the cdf as

F (x) = θw

φ(x)∫
0

(|w(u)|)−1dG(u)

= |Eg
[
I(φ(Y ) ≤ φ(x))

|w(φ(Y ))|

]
/Eg

[
|w(φ(Y ))|−1

]
.
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The empirical distribution of F (x) is given by

Fn(x) =

[
n∑
i=1

(|w(φ(Yi)|)−1

]−1 n∑
i=1

(|w(φ(Yi)|)−1I(φ(Yi) ≤ φ(x)). (4.3)

The kernel estimate of a density function f is defined as

f̂(x) =
d

dx

∫
1

a
K

(
φ(x)− φ(w)

a

)
Fn((w))dw. (4.4)

Using eqn 4.3 in 4.4 gives[
n∑
i=1

(|w(φ(Yi)|)−1

]−1
d

dx

∫
1

a
K

(
φ(x)− φ(w)

a

)
×

n∑
i=1

(|w(φ(Yi)|)−1I(φ(Yi) ≤ φ(x))dw (4.5)

The derivative is equal to

n∑
i=1

(|w(φ(Yi)|)−1 d

dx

∞∫
φ(Yi)

1

a
K

(
φ(x)− φ(w)

a

)
dw

=
n∑
i=1

(|w(φ(Yi)|)−1 |φ′(x)|
a2

∞∫
φ(Yi)

K ′
(
φ(x)− φ(w)

a

)
dw

= −|φ
′(x)|
a2

n∑
i=1

(|w(φ(Yi)|)−1

∞∫
φ(x)−φ(Yi)

a

K ′(w)dw

=
|φ′(x)|
a

n∑
i=1

(|w(φ(Yi)|)−1K

(
φ(x)− φ(Yi)

a

)
Hence

f̂(x) =
|φ′(x)|
a

[
n∑
i=1

(|w(φ(Yi)|)−1

]−1 n∑
i=1

(|w(φ(Yi)|)−1K

(
φ(x)− φ(Yi)

a

)
.

Then the estimate of F (x) is obtained by using
φ(x)∫
0

f̂(w)dw.

In the following section, we study the asymptotic properties of f̂(x) and F̂ (x).

4.2 Asymptotic MSE and IMSE of the Estimates

In this section, we derive mean square errors, integrated mean square errors and

optimal bandwidths of weighted density and distribution functions. The mean square
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error of the weighted density estimate is given by

E(f̂(x)− f(x))2 =
f(x)θw|φ′(x)|R(K)

na|w(φ(x))|
+
a4

4
µ2

2(K)S(G2, |φ′(x)|8). (4.6)

The optimal bandwidth aopt is given by

aopt =

{
f(x)θw|φ′(x)|R(K)

n|w(φ(x))|µ2
2(K)S(G2, |φ′(x)|8)

} 1
5

. (4.7)

The integrated mean square error is obtained by integrating equation 4.6 with respect

x provided that all integrals exist.

E(F̂ (x)− F (x))2 =
θw

n|w(φ(x))|

[
(F (x)(1− F (x))− aτ(K, F, φ))

+|w(φ(x))|F 2(x)θwη(θw, νw)− 2F 3(x)

θ2
w

]

+
a4µ2

2(K)((F ◦ φ−1)′′(φ(x)))2

4
(4.8)

The optimal bandwidth a∗opt is given by

a∗opt =

{
θwτ(K, F, φ)

n|w(φ(x))|µ2
2(K)((F ◦ φ−1)′′(φ(x)))2

} 1
3

(4.9)

also ∫
E(F̂ (x)− F (x))2 =

θw
n

∫ [
F (x)

|w(φ(x))|
− aτ(K, F, φ)

|w(φ(x))|

−F 2(x)

(
1

|w(φ(x))|
− θwη(θw, νw) +

2F (x)

|w(φ(x))|θ2
w

)
+
a4µ2

2(K)

4
((F ◦ φ−1)′′(φ(x)))2

]
dx (4.10)

Next, we discuss large sample properties of the estimates.

4.3 Large Sample Properties of the Estimates

it is clear that f̂(x) → f(x) as n → ∞ in probability at every continuity point x of

f .
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Theorem 4.1 (I) If na → ∞ and na5 → 0 as n → ∞, if f ′′ exists and is bounded,

then
√
na(f̂(x) − f(x) is asymptotically normal with mean 0 and variance σ2 =

|φ′(x)|f(x)R(K)
|w(φ(x))| .

(II) If na2 →∞ as n→∞ and if f is uniformly continuous, and if
∫
e−itu

[|φ′(x)|K(φ(x)−φ(y)a )]
|w(φ(x))| dx

is absolutely integrable in t, then supx|f̂(x)− f(x)| → 0 in probability as n→∞.

(III) If for any ε > 0,
n∑
i=1

e−εna
2
<∞, if f is uniformly continuous and if

[|φ′(x)|K(φ(x)−φ(y)a )]
|w(φ(x))|

is a function of bounded variation,then supx|f̂(x)− f(x)| → 0 with probability one as

n→∞.

The proof of this theorem is provided in the appendix. Next, we summarize the large

sample properties of F̂ (x) in the following theorem without proof. The proof follow

in similar fashion as above, so is omitted.

Theorem 4.2 (I) If na4 → 0 as n→∞, if f ′ exits and is bounded, then
√
n(F̂ (x)−

F (x)) is asymptotically normal with mean 0 and variance

1

θwn|w(φ(x))|
[F (x)(1− F (x)− aτ(K, F, φ)]

(II) If F is uniformly continuous, then supx |F̂ (x) − F (x)| → 0 with probability one

as n→∞.

4.4 Regression Estimation for Transformed Weighted Data

This section illustrates regression estimate of weighted data, its mean square error

and large sample properties.

Since

f(x, y) =
θwg(x, y)

|w(φ(x), φ(y))|
,

thus

F (x, y) = θw

φ(x)∫
−∞

φ(y)∫
−∞

(|w(r, s))−1dG(r, s)
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=
Eg {I(φ(U) ≤ φ(x), φ(V ) ≤ φ(y)/|w(φ(U), φ(V )|}

Eg(|w(φ(U), φ(V )))−1
.

Let (U1, V1), ...., (Un, Vn) be a random sample from G, then the empirical estimate of

F (x, y) is given by

Fn(x, y) =

n∑
i=1

(|w(φ(Ui), φ(Vi)|)−1I(φ(Ui) ≤ φ(x), φ(Vi) ≤ φ(y))

n∑
i=1

(|w(φ(Ui), φ(Vi)|)−1

.

Then the joint kernel density estimate is given by

f̂(x, y) =

[
n∑
i=1

|w(φ(Ui), φ(Vi))|a2

|φ′(x)φ′(y)|

]−1 n∑
i=1

(|w(φ(Ui), φ(Vi)|)−1

×K(2)

(
φ(x)− φ(Ui)

a
,
φ(y)− φ(Vi)

a

)
. (4.11)

Where K(2) is a known density which is bounded and ‖.‖K(2)(., .)→ 0 as ‖(u, v)′‖ →

∞. The regression m(x) = E(φ(Y )|φ(X = x)) =
∫
φ(y)f(x, y)/f1(x). Then the

regression estimate is

m̂(x) =

n∑
i=1

ViK
(
φ(x)−φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))|

n∑
i=1

K
(
φ(x)−φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))|

. (4.12)

Theorem 4.3 The mean square error of the regression estimate is given by the fol-

lowing equation

E (m̂(x)−m(x))2

=
R(K)|φ′(x)|
nam2(x)f1(x)

[
ψw(φ(x)) +m2(x)νw(φ(x))− 2m(x)ηw(φ(x))

]

+

[
a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x))

)
/f1(x)

]2

(4.13)

Thus, IMSE is obtained by integrating (4.13) with respect to x, we assume that all

integrals exist.
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Theorem 4.4 (I) If na → ∞ and na5 → 0 as n → ∞, if f ′′ and h′′ exist and are

bounded, then
√
na(m̂(x)−m(x) is asymptotically normal with mean 0 and variance

σ2 = R(K)|φ′(x)| [ψw(φ(x)) +m2(x)νw(φ(x))− 2m(x)νw(φ(x))]/m2(x)f1(x).

(II) If na2 → ∞ as n → ∞ and if f and h are uniformly continuous, and

if
∫
e−itu |φ

′(x)|K(u)
|w(φ(u),φ(v))|du is absolutely integrable in u,if infa≤x≤b h(x) = α > 0 and if

0 ≤ α ≤ v ≤ b <∞, then supv<a≤x≤b<∞ |m̂(x)−m(x)| → 0 in probability as n→∞.

(III) If for any ε > 0,
n∑
i=1

e−εna
2
< ∞, if f1 and k are uniformly continuous and if

[|φ′(x)|K(φ(x)−φ(y)a )]
|w(φ(x))| is a function of bounded variation (in u)and ,if infa≤x≤b h(x) = α >

0 and if 0 ≤ α ≤ v ≤ b <∞, then supv<a≤x≤b<∞ |m̂(x)−m(x)| → 0 in probability as

n→∞.

,then supx |f̂(x)− f(x)| → 0 with probability one as n→∞.

4.5 Univariate Failure Rate Function of Weighted Data

The estimate of failure rate function for weighted data is obtained by plugging the

estimates f̂(x) and F̂ (x) in ĥ(x) = f̂(x)

F̂ (x)
, x > 0 and F̂ (x) > 0. Note that expected

value of failure rate function in biased and unbiased cases are identical.The following

theorems provide variance and mean square error of the failure rate function estimate

of weighted data.

Theorem 4.5 V arĥ(x) is

V ar(ĥ(x) = h2(x)|φ′(x)|R(K)θw
naf(x)|w(φ(x))|

Theorem 4.6 MSEĥ(x) is

MSE(ĥ(x) =

{
h(x)a2

2

(√
S(G2, |φ′(x)|8)

f(x)
− (F ◦ φ−1)′′|φ(x)|

×
∫
z2K(z)dz

)}2

+
h2(x)|φ′(x)|R(K)θw
naf(x)|w(φ(x))|
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4.6 Computational Study

In this section, we present some simulated examples. The graphical results are com-

pared with Jones [12] in which standard normal kernel was used in estimating the

density of length biased data. Note that the length biased distribution is a special

case of weighted distribution. The length biased data arises when the probability of

an observation to be included in the sample is proportional to its length.

4.7 Simulations

Random samples of size n= 200 are generated from chi-square density with 12 and 2

degrees of freedom. These distributions are chosen to make comparison with Jones

[12]. Patil [25] shows that length biasing χ2
p results in χ2

p+2 distribution. Figures 4.1a

and 4.1b are taken from Jones [12]. Figures 4.1c, and 4.1d are produced by TWKDE.

In figure d, we clearly see that Jones [12] truncated the density estimate about Y

axis which they also acknowledged. This problem of spill over effect has taken care

by the proposed transformed weighted kernel density estimate. The density estimate

using standard kernel will be worse if the data come from compact interval. The

TWKDE handles appropriately when data comes from finite support. As in the

transformed kernel density estimate, the TWKDE will have lower bias and so smaller

mean integrated square error. The detail simulation studies with various cases will

be immediate future study.
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(a) χ2
12 with h=1.88, n=200 (b) χ2

2 with h=0.72, n=200

(c) χ2
12 with h=0.22, n=200 (d) χ2

2 with h=0.38, n=200

Figure 4.1: The figures (a) and (b) are taken from Jones[12]. The figures (c) and (d) are

produced by TWKDE.

4.8 Real Data Example

The density estimate of the data on the widths of n=46 shrubs obtained by line

transect sampling found in Table 3 of Muttlak and McDonald (1990) is shown below.

The figure 4.2a is taken from Jones (1990) and figure 4.2b is obtained by using the

proposed TWKDE
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(a) n=46, h= 0.23 (b) h= 0.48

Figure 4.2: The density estimate of the data on the widths of n=46 shrubs obtained by

line transect sampling found in Table 3 of Muttlak and McDonald(1990). The figure a is

taken from Jones(1990) and figure b is obtained by using the proposed TWKDE.
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CONCLUSIONS

The standard kernel density estimation performs well in many situations when the

parametric models does not. The parametric models can not detect the multi modes

if they are present but the kernel density accurately identifies not only the modes

but also the nature of the modes over time. This is the reason that many researchers

recommended using the kernel density estimate to estimate the density of random

variables. But dealing with non negative random variables or the variables from com-

pact intervals with standard kernel density estimate technique encounters boundary

bias problem. Simply, the standard kernel density estimation technique is inadequate

to estimate the density of the non-negative random variables. By comparing our

technique with other currently existing ones, the non-parametric transformed kernel

density estimate is recommended to estimate the density of non-negative random

variables. It does not suffer from spill over effect and boundary biased problem. It

has better performance in tail area. The simulation study shows that, for smaller

sample sizes, it has smaller integrated mean square than the varying kernel density

estimation.

TKWDE appropriately takes care of spill over effect when dealing random variables

from weighted distribution. It does not suffers from any boundary effect problem.

We are free to choose a kernel function from large class of densities.

Various aspects of transformed kernel case is under review. Of course, finding the

right choice of transformation is a topic for future study along with better simulations

work specially in the area of bandwidth selection.
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CHAPTER 5

Future Study

5.1 Transformed Multivariate Kernel Density Estimation

The purpose of this study is to generalize the univariate transformed kernel density

estimate to the multivariate setting. The generalization is carried out using the

product of univariate kernel functions provided in Cacoullos[10].

Suppose that X1, .....,Xn is i.i.d. q-vector where Xi∈ Rq
+, for q > 1 having a common

pdf f(X) = f(x1,x2, ....,xq). Let Y = φ(X) be known transformation such that

the density of new random vector can be easily estimated by using standard kernel

density estimate. The density of the original random vector is then obtained by back

transforming the density of the new random vector. We propose an estimate of f(X)

as

f̂(X) =
||φ′(X)||

n

n∑
j=1

{
q∏
i=1

1

hi
K

(
φ(xi)− φ(Xij)

hi

)}
. (5.1)

Where hi are bandwidths and K(.) is known multivariate probability density with

the following properties:

sup
y∈q
|K(y)| <∞ (5.2)∫
|K(y)|dy = 1 (5.3)

lim
|y|→∞

|y|pK(y) = 0 (5.4)

Similarly, the estimate of the distribution function is

F̂ (X) =
||φ′(X)||

n

n∑
j=1

{
q∏
i=1

K
(
φ(xi)− φ(Xij)

hi

)}
. (5.5)
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We will investigate the asymptotic properties and bandwidth selection of our

estimate in future study.

5.2 Transformed Multivariate Weighted Kernel Density Estimation

In this section, we generalized transformed weighted kernel density estimate to its

multivariate version. Weighted distributions arise in area such as sociological, eco-

nomical, missing data or damaged data. Let X be a q dimensional random vector

with common probability density f(X). Suppose random vector X is not observable

but we observe another random vector Y with distribution G and density g which is

related to f as

g(y) =
w(y)f(y)

θw
,

where θw =
∫
w(x)f(x)dx <∞.

Note that weighted distribution makes sense only for nonnegative data. We want to

estimate natural multivariate density f of random vector X when we observe random

vector Y from weighted distribution G. We propose the generalization of transformed

weighted kernel density estimate as follows: Let Wi = φ(Yi)

f̂(X) =
||φ′(x)||
aq

(
n∑
j=1

q∏
i=1

1

|w(φ(Yij))|

)−1∑ q∏
i=1

1

|w(φ(Yij))|
K

(
φ(yi)− φ(Yij)

ai

)
(5.6)

Similarly, An estimate of F (x) is

F̂ (X) =

(
n∑
j=1

q∏
i=1

1

|w(φ(Yij))|

)−1 n∑
j=1

q∏
i=1

1

|w(φ(Yij))|
K
(
φ(yi)− φ(Yij)

ai

)
(5.7)

where K(u) is corresponding distribution function of K(u).

The asymptotic properties, bandwidth selection and applications of the propose esti-

mators are left for the future study.
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5.3 Transformed Kernel Mean Residual Life Estimation

Suppose that a subject or a component survived of age t, the remaining life time

after t is random. The expected value of this random remaining life time is called the

mean residual life(MRL) and it has great interest in many areas including survival

analysis, reliability analysis and actuarial science. The MRL is an important criterion

for finding an optimal burn-in time for a component.

Let X be a life time random variable with survival function function F (X) > 0. The

residual life random variable at age t is given by Xt = X − t\X > t. Then the MRL

is define as

µ(t) = E(X − t\X > t) =

[∞∫
t

F (x)dx

]
F (t)

where µ(0) = µ = E(X).

which can be also written as

µ(t) =

(∞∫
t

xf(x)dx

)
F (t)

− t

We like to estimate µ(t) using transformed kernel density and distribution functions

by plugging them in the above equation. The properties and applications are left for

the future study.

39



CHAPTER 6

Appendix

THEOREM 3.1:

(i) E(f̂(x)→ f(x) as n→∞ such that na→∞ and for all x, f(x) is continuous.

(ii) E{f̂(x)− f(x)}2 → 0 as n→∞ such that na→∞ for all continuity points of f.

(iii) The optimal choice of a is aopt =

{
R(K)

∫
|φ′(x)|f(x)dx

S(G2, (φ′)8)n

} 1
5

Proof: (i) Note that

E(f̂(x)) =
φ′(x)

a
EK

(
φ(x)− φ(x1)

a

)
= φ′(x)

∞∫
0

1

a
K

(
φ(x)− φ(y)

a

)
f(y)dy

= |φ′(x)|
∫
K(u)f ◦ φ−1(φ(x)− au)(φ−1)′(φ(x)− au)du

But (φ−1)′ is continuous and (φ−1)′ → 0 as x→∞. It is bounded and hence, we have

E(f̂(x))→ ||φ′|(x)f(x)
[
(φ−1)′(φ(x)

] ∫
R
K(u)du = f(x)

at every continuity point x of f(x).

(ii) Since the kernel is symmetric about the origin, we only need to look at the Var(f̂).

So,

Var(f̂(x) =
φ′2(x)

n
V ar

{
1

a
K

(
(φ(x)− φ(xi)

a

)}
=
φ′2(x)

na2
EK2

(
(φ(x)− φ(x1)

a

)
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But as in (i), we have,

φ′2(x)

na2
EK2

(
(φ(x)− φ(x1)

a

)
=
φ′2(x)

na

∫
K2(u)(f ◦ φ−1)(φ(x)− au)

1

|φ′(φ−1(φ(x)− au)|
du

≈ |φ
′(x)|
na

f(x)

∫
K2(u)du

=
|φ′(x)|
na

f(x)R(K)

(iii) We shall define the argument used in (i) and (ii).

Let Pn(x, u) = f ◦ φ−1(φ(x)− au)|(φ−1)′(φ(x)− au)|.

=

{
f(x)− au(f ◦ φ−1)′(φ(x)) +

a2u2

2
(f ◦ φ−1)′′(φ(x))− ...

}
×
{

(φ−1)′φ(x)− au(φ−1)′′φ(x) +
a2u2

2
(φ−1)′′′φ(x)− ...

}
Let φ(x) = lnx = y ⇒ φ−1(y) = ey = x then (φ−1)′(φ(x)) = (φ−1)′(y) = (φ−1)′′(y) =

....... = (φ−1)′′′′(y) = ey = elnx = x

Hence

=

{
f(x)− au(f ◦ φ−1)′(φ(x)) +

a2u2

2
(f ◦ φ−1)′′(φ(x))− ...

}
×
{

(φ−1)′φ(x)− au(φ−1)′′φ(x) +
a2u2

2
(φ−1)′′′φ(x)− ...

}
=

1

ax

∫
K(u)

[
f(x)− auf ′(x)x+

a2u2

2
{f ′′(x)x2 + f ′(x)x}

]

×
{
x− aux+

a2u2

2

}
du

≈

[
f(x) +

a2

2
µ2(K)f(x) + µ2(K)a2xf ′(x) +

a2

2
µ2(K)x2f ′′(x)

+
a2

2
µ2(K)xf ′(x)

]
.

Hence, The bias is

a2

2
µ2(K)

[
f(x) + 3xf ′(x) + x2f ′′(x)

]
. (6.1)
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Also,

MSE(f̂(x)) = E(f̂(x)− f(x))2 = var(f̂(x)) +
[
biasf̂(x)

]2

=

[
Ef̂ 2(x)−

(
Ef̂(x)

)2
]

+
[
Ef̂(x)− f(x)

]2

=
(φ′(x))2

na

{∫
K2(u)Pn(x, u)du− a

[∫
K(u)Pn(x, u)du

]2
}

+

{∫
K(u)|φ′(x)|Pn(x, u)du− f(x)

}2

Substitution pn(x, u) in the above expression will give

MSE(f̂(x)) ≈ R(K)

na
|φ′(x)|f(x) +

a4

4

µ2
2(K)G2(x)

(|φ′|8(x))
.

Where

G(x) = f(x)
{

3(φ′′(x))2 − φ′(x)φ′′′(x)
}
− 3f ′(x)φ′(x)φ′′(x) + f ′′(x){φ′(x)}2.

Then,

MISEf̂(x) ≈ R(K)

na

∫
|φ′(x)|f(x)dx+

a4

4
µ2

2(K)

∫
S(G2, |φ′|8(x)) (6.2)

where S(G2, (φ′)8) = G2(x)
(φ′(x))8

dx,
[
Biasf̂(x)

]2

=
a4

4
µ2

2(K)S(G2, |φ′|8) and V arf̂(x) =

R(K)
na
|φ′(x)|f(x)dx.

Differentiating (6.2) with respect to a and solving for a by setting it to 0 , gives the

desired result.

Theorem 3.2 The mean square error of F̂ (x) is given by

MSE(F̂ (x)) =
F (x)(1− F (x))

n
− a

n
τ(K, F, φ) +

[
a2

2
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz

]2

Proof:

MSEF̂ (x) = E(F̂ (x)− F (x))2 = V (F̂n(x)) + (Bias(F̂n(x))2

Let I=Bias(F̂ (x)) and II=V (F̂ (x))

I =

∫
y

K
(
φ(x)− φ(y)

a

)
f(y)dy − F (x)
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First, consider only

∫
y

K
(

(φ(x)− φ(y)

a

)
f(y)dy.

= F (y)K
(

(φ(x)− φ(y))

a

) ∣∣∣∞
−∞

+

∫
F (y)K

(
φ(x)− φ(y)

a

)
φ′(y)

a
dy

= 0 +

∫
F (y)K

(
φ(x)− φ(y)

a

)
φ′(y)

a
dy

=

∫
F (y)K

(
φ(x)− φ(y)

a

)
φ′(y)

a
dy

Let z =
φ(x)− φ(y)

a
then φ(y) = φ(x)− az.

y = φ−1(φ(x)− az) and so |φ′(y)dy| = | − adz| = adz,

Then ∫
F (y)K

(
φ(x)− φ(y)

a

)
|1
a
φ(y)|dy =

∫
F (φ−1(φ(x)− az))K(z)dz

By using Taylor series expansion,

=

∫
[F ◦ φ−1(φ(x))− az(F ◦ φ−1)′(φ(x)) +

a2z2

2
(F ◦ φ−1)′′(φ(x))]K(z)dz

= F ◦ φ−1(φ(x))

∫
K(z)dz − a(F ◦ φ−1)′(φ(x))

∫
zK(z)dz

+
a2

2
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz

= F (x) +
a2

2
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz,
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So,

I =
a2

2
(F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz

I2 =

[
a2

2
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz

]2

II = V F̂ (x) = V

{
1

n

n∑
i=1

K
(

(φ(x)− φ(Xi)

a

)}
=

1

n
VK

(
φ(x)− φ(y)

a

)

=
1

n

{
EK2

(
φ(x)− φ(y)

a

)
−
(
EK

(
φ(x)− φ(y)

a

))2
}

=
1

n

{∫
K2

(
φ(x)− φ(y)

a

)
dF (y)− F 2(x) + o

(a
n

)}
Now, consider

∫
K2

(
φ(x)− φ(y)

a

)
dF (y).

Let u =

(
(φ(x)− φ(y)

a

)
then φ(y) = φ(x)− au⇒ φ′(y)dy = −adu.

=
1

n

{
F (y)K

φ(x)− φ(y)

a

∣∣∣∞
−∞

+ 2

∫
(F ◦ φ−1)(φ(x)− au)K(u)K(u)du

}
=

1

n

{
0 + 2

∫
(F ◦ φ−1)(φ(x)− au)K(u)K(u)du

}
=

1

n

{
2

∫ (
F (x)− au(F ◦ φ−1)′φ(x) +

a2u2

2

(
F ◦ φ−1

)′′
φ(x)

)
×K(u)K(u)du}

=
2

n
F (x)

∫
K(u)K(u)du− 2a

n
(F ◦ φ−1)′φ(x)

∫
uK(u)K(u)du

+
a2

2n

(
F ◦ φ−1

)′′
φ(x)

∫
u2K(u)K(u)du

=
2F (x)

n

(
1

2

)
− a

n
τ(K, f, φ)

=
F (x)

n
− a

n
τ(K, F, φ)
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where

τ(K, F, φ) = 2(F ◦ φ−1)′φ(x)

∫
uK(u)K(u)du

V F̂ (x) =
F (x)(1− F (x)

n
− a

n
τ(K, F, φ)

Thus, MSE(F̂ (x)) =
F (x)(1− F (x))

n
− a

n
τ(K, F, φ)

+

[
a2

2
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz

]2

Regression Function Estimation

Calculating mean square of the regression estimate.

Note that,

E

(
|φ′(x)|
na

n∑
i=1

K

(
φ(x)− φ(Xi)

a

))

= f1(x) +
a2

2
µ2(K)

√
S(G2, |φ′|8) (6.3)

Also,

E

{
n∑
i=1

|φ′(x)φ(Yi)|
a

K

(
φ(x)− φ(Xi)

a

)}
=

∫ ∫
K(z)φ(y)(f ◦ φ−1)(φ(x)− az, φ(y))dzdy

=

∫
(m ◦ φ−1)(φ(x)− az)(f1 ◦ φ−1)(φ(x)− az)K(z)dz

≈
∫ {

m(x)− az(m ◦ φ−1)′(φ(x)) +
a2z2

2
(m ◦ φ−1)′′(φ(x))

}
×
{
f1(x)− az(f1 ◦ φ−1)′(φ(x) +

a2z2

2
(f ◦ φ−1)′′(φ(x))

}
K(z)dz

≈

[
m(x)f1(x) +

a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x)) + (f1 ◦ φ−1)′′(φ(x))m(x)

)]
. (6.4)
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Hence

E(m̂(x)) = m(x) +
a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x))

+(f1 ◦ φ−1)′′(φ(x))m(x)

)
/f1(x). (6.5)

Next, we find the variance of the estimate.

First,

V

{
n∑
i=1

|φ′(x)φ(Yi)|
na

K

(
φ(x)− φ(Xi)

a

)}

=
(φ′(x))2

na2
V

{
|φ(Y1)|K

(
φ(x)− φ(X1)

a

)}
≈ (φ′(x))2

na2
E

{
|φ(Y1)|K

(
φ(x)− φ(X1)

a

)}2

=
(φ′(x))2

na2

∫ ∫
(φ(y))2K2

(
φ(x)− φ(x1)

a

)
f(x, y)dxdy

=
|φ′(x)|
na

∫ {∫
(φ(y∗))2f

(
φ(y∗)\(φ(x)− aφ(x∗)

)
dy∗

}
= ×f(x− ax∗)K2(x∗)dx∗

≈ |φ
′(x)|
na

R(K)f1(x)ψw(φ(x)). (6.6)

where ψw(φ(x)) = E {φ2(Y )\φ(X = x)} . from earlier result, we have

V

{
n∑
i=1

|φ′(x)

na
K

(
φ(x)− φ(Xi)

a

)}

=
|φ′(x)|R(K)f1(x)

na
. (6.7)

Also,

Cov

{
|φ′(x)|
na

n∑
i=1

K

(
φ(x)− φ(Xi)

a

)
,
|φ′(x)φ(Yi)|

na

n∑
i=1

K

(
φ(x)− φ(Xi)

a

)}

≈ |φ
′(x)|θw
na

R(K)f1(x)ηw(x). (6.8)
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where ηw(φ(x)) = E {φ(Y )\φ(X = x)} . Hence, putting (6.5),(6.6),(6.7) and (6.8)

into V(U/V) and simplifying, we get that

V m̂(x) =
R(K)|φ′(x)| [ψw(φ(x)) +m2(x)− 2m(x)ηw(φ(x))]

nam2(x)f1(x)
. (6.9)

Hence

E (m̂(x)−m(x))2

=
R(K)|φ′(x)|
nam2(x)f1(x)

[
ψw(φ(x)) +m2(x)− 2m(x)ηw(φ(x))

]

+

[
a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x))

)
/f1(x)

]2

(6.10)

Thus, IMSE is obtained by integrating (6.10) with respect to x, we assume that all

integrals exist.

Univariate Failure Rate Function

Theorem 3.3 Expected value of ĥ(x) is

Eĥ(x) = h(x)

(
1 +

a2

2

{√
S(G2, |φ′(x)|8)

f(x)
− (F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz

})
Proof:

Eĥ(x) =
Ef̂(x)

EF̂ (x)
=

f(x) + biasf̂(x)

F (x) + biasF̂ (x)
=
f(x)

F (x)

1 + bias f̂(x)
f(x)

1− bias F̂ (x)

F (x)

= h(x)

[
1 +

biasf̂(x)

f(x)

][
1 +

biasF̂ (x)

F (x)

]

= h(x)

[
1 +

biasf̂(x)

f(x)
+
biasF̂ (x)

F (x)
+ bias

f̂(x)

f(x)
bias

F̂ (x)

F (x)

]

= h(x)

[
1 +

a2

2

√
S(G2, |φ′(x)|8)

f(x)
+
a2(F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz)

2F (x)

]

+h(x)

[
a2(F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz)

2F (x)
∗ a

2

2

√
S(G2, |φ′(x)|8)

f(x)

]

47



Ignoring a4 term, we have

≈ h(x)

[
1 +

a2

2

{√
S(G2, |φ′(x)|8)

f(x)

+
(F ◦ φ−1)′′|φ(x)|

∫
z2K(z)dz)

2F (x)

}]
Thus,

Eĥ(x) = [h(x) + h(x)(I1 + I2)]

bias(ĥ(x)) =
a2

2

{√
S(G2, |φ′(x)|8)

f(x)
+

(F ◦ φ−1)′′|φ(x)|
∫
z2K(z)dz)

2F (x)

}

Theorem 3.4 V ĥ(x) = h2(x)|φ′(x)|R(K)
naf(x)

Proof:

V (ĥ(x)) = V

(
f̂(x)

F̂ (x)

)
=

[Ef̂(x)]2

[EF̂ (x)]2

[
V f̂(x)

[Ef̂(x)]2
+

V F̂ (x)

[EF̂ (x)]2
− 2cov(f̂(x), F̂ (x))

Ef̂(x)EF̂ (x)

]

First, by theorem 3,

[Ef̂(x)]2

[EF̂ (x)]2
= [h(x) + h(x)(I1 + I2)]2

= h2(x)

[
1 +

a2

2

{√
S(G2, |φ′(x)|8)

f(x)
+

(F ◦ φ−1)′′φ(x)R(K)

2F (x)

}]2

≈ h2(x)

[
1 + a2

{√
S(G2, |φ′(x)|8)

f(x)
+

(F ◦ φ−1)′′φ(x)R(K)

2F (x)

}]
Second,

V f̂(x)

[Ef̂(x)]2
=

|φ′(x)|f(x)
∫
K2(u)du

na

[f(x) + biasf̂(x)]2
=

|φ′(x)|f(x)R(K)

na

[
f(x) + a2

2

√
S(G2,|φ′(x)|8)

f(x)

]2

=
|φ′(x)|R(K)

naf(x)

[
1 +

a2
√
S(G2,|φ′(x)|8)

2f(x)

]2

≈ |φ′(x)|R(K)

naf(x)
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Third,

V F̂ (x)

[EF̂ (x)]2
=

F (x)(1−F (x))
n

− a
n
τ(K, F, φ)

[F (x)− biasF̂ (x)]2

=
F (x)(1−F (x)

n
− a

n
τ(K, F, φ)[

F (x)− a2

2
(F ◦ φ−1)′′(φ(x))

∫
z2K(z)dz

]2
≈ F (x)(1− F (x))

nF (x)
− aτ(K, F, φ)

nF (x)

Fourth,

2cov(f̂(x), F̂ (x))

Ef̂(x)EF̂ (x)
= 2

[
E[f̂(x)F̂ (x)]− Ef̂(x)EF̂ (x)

Ef̂(x)EF̂ (x)

]
= 2

[
E[f̂(x)F̂ (x)]

Ef̂(x)EF̂ (x)
− 1

]

Now,

E[f̂(x) ˆF (x)]

= E

{
φ′(x)

na

n∑
i=1

K

(
φ(x)− φ(Xi)

a

)}{
1

n

n∑
j=1

K
(
φ(x)− φ(Xj)

a

)}

=
|φ′(x)|
n2a

∑
i

E

{
K

(
φ(x)− φ(Xi)

a

)
K
(
φ(x)− φ(Xj)

a

)}
=
|φ′(x)|
n2a

∑
i

E

{
K

(
φ(x)− φ(Xi)

a

)
K
(
φ(x)− φ(Xi)

a

)}
+
|φ′(x)|
n2a

∑∑
i 6=j

EK

(
φ(x)− φ(Xi)

a

)
EK

(
φ(x)− φ(Xj)

a

)

Let I1 =
|φ′(x)|
n2a

E

{
K

(
φ(x)− φ(Xi)

a

)
K
(
φ(x)− φ(Xi)

a

)}
and

I2 =
|φ′(x)|
n2a

EK

(
φ(x)− φ(Xi)

a

)
EK

(
φ(x)− φ(Xj)

a

)
.
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Working on I1 first,

I1 =
|φ′(x)|
n2a

E

{
K

(
φ(x)− φ(Xi)

a

)
K
(
φ(x)− φ(Xi)

a

)}
=

∫
|φ′(x)|
na

K

(
φ(x)− Φ(y)

a

)
K
(
φ(x)− φ(y)

a

)
f(y)dy

Let

z =

(
φ(x)− φ(y)

a

)
⇒ φ(y) = φ(x)− az ⇒ y = φ−1(φ(x)− az).

Then,

|φ′(y)dy| = | − adz| ⇒ dy =
adz

|φ′(y)|
=

adz

|φ′[φ−1(φ(x)− az)]|
So,

I1 =
φ′(x)

na

∫
K(z)K(z)f(φ−1(φ(x)− az))

adz

φ′[φ−1(φ(x)− az)]

=
φ′(x)

n

∫
K(z)K(z)

f ◦ φ−1(φ(x)− az)

φ′[φ−1(φ(x)− az)]
dz

By Taylor series expansion,

φ−1(φ(x)− az) ≈ x− (φ−1)′(x)φ(x)(−az) + φ−1′′φ(x)a
2z2

2
≈ x

So, φ′[φ−1(φ(x)− az)] ≈ φ′(x)

Thus,

I1 =
φ′(x)

n

∫
K(z)K(z)

f ◦ φ−1(φ(x)− az)

φ′(x)
dz

=
1

n

∫
K(z)K(z)η(φ(x)− az)dz

where

η(φ(x)− az) = f ◦ φ−1(φ(x)− az),
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Again, by Tayler series expansion,

I1 =
1

n

∫
K(z)K(z)[η(φ(x))− azη′φ(x) +

a2z2

2
η′′(φ(x)]dz

≈ η(φ(x))

n

∫
K(z)K(z)dz − a

n
η′(φ(x))

∫
zK(z)K(z)dz

=
η(φ(x))

n

[∫
K(z)dz −

∫
K(z)dK(z)

]
− a

n
η′(φ(x))

∫
zK(z)K(z)dz

=
η(φ(x))

n
(1− 1

2
)− a

n
η′(φ(x))

∫
zK(z)K(z)dz

=
η(φ(x))

2n
− S(K)

where S(K) =
a

n
η′(φ(x))

∫
zK(z)K(z)dz is a known quantity.

Now,

I2 =
φ′(x)

n2a

∑∑
i 6=j

EK

(
φ(x)− φ(Xi)

a

)
EK

(
φ(x)− φ(Xj)

a

)
If i 6= j then Xi and Xj are independent. Thus,

I2 =
|φ′(x)|
n2a

n(n− 1)

{
EK

(
φ(x)− φ(y)

a

)
EK

(
φ(x)− φ(y)

a

)}
=
|φ′(x)|
na

(n− 1)

{
EK

(
φ(x)− φ(y)

a

)
EK

(
φ(x)− φ(y)

a

)}
Using earlier results, we have

E
φ′(x)

a
K

(
φ(x)− φ(y)

a

)
≈ f(x) and

EK
(
φ(x)− φ(y)

a

)
= 1− EK

(
φ(x)− φ(y)

a

)
≈ 1− F (x) = F (x)

Thus,

E[f̂(x)F̂ (x)] = η(φ(x))
2n
− S(K) + n−1

n
f(x)(1− F (x)),
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and

2cov(f̂(x), F̂ (x))

Ef̂(x)EF̂ (x)
= 2

[
E[f̂(x)F̂ (x)]

Ef̂(x)EF̂ (x)
− 1

]

≈ 2

[
η(φ(x))

2n
− S(K) + n−1

n
f(x)(1− F (x))

f(x)F (x)
− 1

]

= 2

[
η(φ(x))

2nf(x)F (x)
− S(K)

f(x)F (x)
+ 1− 1

n
− 1

]
≈ η(φ(x))

nF (x)f(x)
− 2S(K)

F (x)f(x)
− 1

n

Combining all the results, we have

V ĥ(x) ≈ h2(x)

[
1 + a2

{√
S(G2, |φ′(x)|8)

f(x)
+

(F ◦ φ−1)′′φ(x)R(K)

2F (x)

}]
×{

|φ′(x)|R(K)

naf(x)
+
F (x)

n
+
aτ(K, F, φ)

nF (x)
− η(φ(x))

nF (x)f(x)

− 2S(K)

F (x)f(x)
− 1

n

}
≈ h2(x)

{
|φ′(x)|R(K)

naf(x)
+
F (x)

n
+
aτ(K, F, φ)

nF (x)
− η(φ(x))

nF (x)f(x)

− 2S(K)

F (x)f(x)
− 1

n

}
≈ h2(x)|φ′(x)|R(K)

naf(x)

Theorem 3.5

Eĥ(x) =

[ {
h1(x)

(
1 +

biasĝ1(x)

g1(x)
+
biasF̂ (x)

F (x)

)}
,
{
h2(x)

(
1 +

biasĝ2((x)

g2(x)
+
biasF̂ (x)

F (x)

)}]′
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where

biasF̂ (x) =
1

2

[
a2

1z
2
1F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

+a2
2z

2
2F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

]
×K1(z1)K2(z2)dz1dz2

biasĝ1(x) =
1

2

∞∫
x2

∫ ∫ [
a2

1z
2
1f
(
(φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

)
+a2

2z
2
2f
(
(φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

) ]
dz1dz2dy

biasĝ2(x) =
1

2

∞∫
x1

∫ ∫ [
a2

1z
2
1f
(
(φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

)
+a2

2z
2
2f
(
(φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

) ]
dz1dz2dy

Proof: We derive for Eĥ1(x), Eĥ2(x), follows exactly.

Eĥ1(x) = Eĝ1(x)

EF̂ (x)

First, Eĝ1(x) = E
∞∫
x2

f̂(x1, y)dy =
∞∫
x2

[
Ef̂(x1, y)

]
dy

Let’s consider

Ef̂(x1, y) =

∫ ∫ |φ′x1(x1)φ′y(y)|
a1a2

K1

(
φ1(x1)− φ1(u)

a1

)
×

K2

(
φ2(y)− φ2(v)

a2

)
f(u, v)dudv
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Using Taylor series expansion, we get

f̂(x1, y) = f(x1, y) +
1

2

∫ ∫ [
a2

1z
2
1f
(
((φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

)
+a2

2z
2
2f
(
((φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

) ]
dz1dz2

Eĝ1((x)) =

∞∫
x2

Ef̂(x1, y)dy

= g1(x1, x2) +
1

2

∞∫
x2

∫ ∫ [
a2

1z
2
1f
(
((φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

)
+a2

2z
2
2f
(
((φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

) ]
dz1dz2dy

biasĝ1(x) =
1

2

∞∫
x2

∫ ∫ [
a2

1z
2
1f
(
((φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

)
+a2

2z
2
2f
(
((φ−1

1 )′′(φ1(x1)), (φ−1
y )′′(φ2(y))

) ]
dz1dz2dy

Similarly,

f̂(y, x2) = f(y, x2) +
1

2

∫ ∫ [
a2

1z
2
1f
(
((φ−1

1 )′′(φ2(y)), (φ−1
2 )′′(φ2(x2))

)
+a2

2z
2
2f
(
((φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

) ]
dz1dz2

Eĝ2((x)) =

∞∫
x1

Ef̂(y, x2)dy

= g2(x1, x2) +
1

2

∞∫
x1

∫ ∫ [
a2

1z
2
1f
(
((φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

)
+a2

2z
2
2f
(
((φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

) ]
dz1dz2dy

biasĝ2(x) =
1

2

∞∫
x1

∫ ∫ [
a2

1z
2
1f
(
(φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

)
+a2

2z
2
2f
(
((φ−1

1 )′′(φ1(y)), (φ−1
2 )′′(φ2(x2))

) ]
dz1dz2dy
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now,

EF̂ (x) =

∫ ∫
K1

(
φ1(x1)− φ1(u)

a1

)
K2

(
φ2(x2)− φ2(v)

a2

)
f(u, v)dudv

=

∫ [
Fu(u, v)K1

(
φ1(x1)− φ1(u)

a1

)∣∣∣∞
−∞

+

∫
Fu(u, v)

×K1

(
φ1(x1)− φ1(u)

a1

)
|φ′(u)|
a2

du

]
×K2

(
φ2(x2)− φ2(v)

a2

)
dv

=

∫
Fu(u, v)K2

(
φ2(x2)− φ2(v)

a2

)
dv

∫
K1

(
φ1(x1)− φ1(u)

a1

)

×|φ
′(u)|
a1

du

=

∫ [
Fuv(u, v)K2

(
φ2(x2)− φ2(v)

a2

)∣∣∣∞
−∞

+

∫
Fuv(u, v)

×K2

(
φ2(x2)− φ2(v)

a2

)
|φ′(v)|
a2

dv

]
×K1

(
φ1(x1)− φ1(u)

a1

)

×|φ
′(u)|
a1

du

=

∫ ∫
Fuv(u, v)K1

(
φ1(x1)− φ1(u)

a1

)
K2

(
φ2(x2)− φ2(v)

a2

)
|φ′(u)|
a1

×|φ
′(v)|
a2

dudv

Using Taylor series expansion,∫ ∫
F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)))K1(z1)K2(z2)dz1dz2

≈
∫ ∫ [

F (x1, x2) +
1

2

[
a2

1z
2
1F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

+a2
2z

2
2F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

]]
K1(z1)K2(z2)dz1dz2

= F (x1, x2) +
1

2

[
a2

1z
2
1F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

+a2
2z

2
2F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

]
K1(z1)K2(z2)dz1dz2
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Thus, biasF̂ (x) is given by

1

2

[
a2

1z
2
1F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2) + a2

2z
2
2F ((φ−1

1 )′′(φ(x1)), (φ−1
2 )′′(φ(x2)

]
×K1(z1)K2(z2)dz1dz2

TWKDE

Asymptotic MSE and IMSE of the Estimates

We study MSE and IMSE by evaluating the mean and variance of the estimates.

First,

Let

f̂(x) =
|φ′(x)|
a

[
n∑
i=1

(|w(φ(Yi)|)−1

]−1 n∑
i=1

(|w(φ(Yi)|)−1K

(
φ(x)− φ(Yi)

a

)
=

Un,a(x)

Vn
(6.11)

We know,

E(U/V ) ≈ E(U)/E(V ), and

V (U/V ) ≈
[
E(U)

E(V )

]2(
V (U)

(E(U))2
+

V (V )

(E(V ))2
− 2

Cov(U, V )

E(U)E(V )

)
So,

Ef̂(x) ≈ EUn,a(x)

EVn
= θwEUn,a(x)

But

EUn,a(x) = E

{
|φ′(x)|
a

(|w(φ(Y1)|)−1K

(
φ(x)− φ(Y1)

a

)}
=

∫
|φ′(x)|
a

(|w(φ(Y1)|)−1K

(
φ(x)− φ(y)

a

)
g(y)dy

=

∫
θ−1
w

|φ′(x)|
a

K

(
φ(x)− φ(y)

a

)
f(y)dy

Thus,

EUn,a(x) ≈ θ−1
w

{
f(x) +

a4

4
µ2

2(K)S(G2, |φ′(x)|8)

}
. (6.12)
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where S(G2, |φ′|8(x)) is defined in theorem 3.1.

Hence

Ef̂(x) ≈ f(x) +
a2

2
µ2(K)

√
S(G2, |φ′(x)|8). (6.13)

Where µ2(K) =
∫
u2K(u)du and we use the fact that

∫
uK(u)du = 0. Next,

V (Un,a(x)) ≈ φ′(x)|2

na2
E

{
(w(φ(Y1)))−2K2

(
φ(x)− φ(Y1)

a

)}
=

φ′(x)|2

na2

∫
(w(φ(y)))−2K2

(
φ(x)− φ(y)

a

)
g(y)dy

=
φ′(x)|2

θwna2

∫
|(w(φ(y)))|−1K2

(
φ(x)− φ(y)

a

)
f(y)dy

=
φ′(x)|
θwna

∫
|(w(φ(x)− au)|−1K2(u)f(φ(x)− au)du

≈ φ′(x)|(f(x)

θwna(w(φ(x)))

∫
K2(u)du

Hence

V (Un,a(x)) =
|φ′(x)|(f(x)R(K)

θwna(w(φ(x)))
. (6.14)

Also

V (Un,a(x))

(E(Un,a(x)))2
=

{
|φ′(x)|(f(x)R(K)
θwna(w(φ(x)))

}
{
θ−1
w

{
f(x)−

∫ a2u2K(u)(f◦φ−1)′′(φ(x))du
2

}}2

≈ θw|φ′(x)|R(K)

f(x)naw(φ(x))
(6.15)

Where R(K) =
∫
K2(u)du. Next

nV (Vn) = V [(wφ(Y1))−1] =

∫
(w(φ(y))−2g(y)dy − θ−2

w = θ−1
w

∫
(w(y))−1f(y)dy − θ−2

w .

Thus

nV (Vn) = θ−1
w

(∫
(w(y))−1f(y)dy − θ−1

w

)
= η(θw, νw)(suppose) (6.16)
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Hence

V (Vn)

(E(Vn))
=
θ2
wη(θw, νw)

n
(6.17)

Finally,

nCov(Un,a(x), Vn) = n {E(Un,a(x), Vn)− E(Un,a(x))E(Vn)}

= E

{
|φ′(x)|
a

(|w(φ(Y1)|)−2K

(
φ(x)− φ(Y1)

a

)}
−θ−1

w

{
f(x)−

∫
a2u2K(u)(f ◦ φ−1)′′(φ(x))du

2

}
θ−1
w

≈ |φ′(x)|
a

∫
(|w(φ(y)|)−2K

(
φ(x)− φ(y)

a

)
g(y)dy

=
|φ′(x)|
aθw

∫
(|w(φ(y)|)−1K

(
φ(x)− φ(y)

a

)
f(y)dy.

Hence

Cov(Un,a(x), Vn) ≈ |φ′(x)|f(x)

nθw|w(φ(x))|
(6.18)

Combining equations 6.17, 6.19, 6.20 and 6.18 into V(U/V) and simplifying gives

V (f̂(x)) =
f(x)θw|φ′(x)|R(K)

na|w(φ(x))|
+ o

(
1

na

)
. (6.19)

Hence from equations 6.17 and 6.19, we have

E(f̂(x)− f(x))2 =
f(x)θw|φ′(x)|R(K)

na|w(φ(x))|
+
a4

4
µ2

2(K)S(G2, |φ′(x)|8). (6.20)

The optimal bandwidth aopt is given by

aopt =

{
f(x)θw|φ′(x)|R(K)

n|w(φ(x))|µ2
2(K)S(G2, |φ′(x)|8)

} 1
5

. (6.21)
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In similar manner, we derive MSE and IMSE of F̂ (x).

F̂ (x) =

(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|
K
(
φ(x)− φ(Yi)

a

)
E(F̂ (x) = E(Un,a(x)/Vn) ≈ θwE

[
1

|w(φ(Yi))|
K
(
φ(x)− φ(Yi)

a

)]
≈ F (x) +

a2µ2(K)(F ◦ φ−1)′′(φ(x))

2

Thus,

E(F̂ (x)) = F (x) +
a2µ2(K)(F ◦ φ−1)′′(φ(x))

2
(6.22)

Next

nV (Un,a(x) ≈ E

(
|w(φ(Y1)))−2K

(
φ(x)− φ(Y1)

a

))
− F 2(x)

=

∫
(|w(φ(y)))−2K2

(
φ(x)− φ(y)

a

)
g(y)dy − F 2(x)

= θ−1
w

∫
(|w(φ(y))|)−1K2

(
φ(x)− φ(y)

a

)
f(y)dy − F 2(x)

≈ 1

θw|w(φ(x))|
[F (x)(1− F (x)− aτ(K, F, φ)]

Hence

V (Un,a(x)) =
1

nθw|w(φ(x))|
[F (x)(1− F (x))− aτ(K, F, φ)] (6.23)

Where

τ(K, F, φ) = 2(F ◦ φ−1)′(φ(x))

∫
uK(u)K(u)du
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Next

nCov((Un,a(x), Vn) = {E(Un,a(x), Vn)− E(Un,a(x))E(Vn)}

≈ E

{
(|w(φ(Y1)|)−2K

(
φ(x)− φ(Y1)

a

)}
=

∫
(|w(φ(y)|)−2K

(
φ(x)− φ(y)

a

)
g(y)dy

= θ−1
w

∫
(|w(φ(y)|)−1K

(
φ(x)− φ(y)

a

)
f(y)dy

≈ 1

θw|w(φ(x))|

(
F (x) +

a2

2
(F ◦ φ−1)′′µ2(K)

)
Thus

Cov((Un,a(x), Vn) =
1

nθw|w(φ(x))|

(
F (x) +

a2

2
(F ◦ φ−1)′′µ2(K)

)
(6.24)

Combining all terms into V(U/V) and simplifying gives

V arF̂ (x) =
θw

n|w(φ(x))|

[
(F (x)(1− F (x))− aτ(K, F, φ))

+|w(φ(x))|F 2(x)θwη(θw, νw)− 2F 3(x)

θ2
w

]
(6.25)

Where τ(K, F, φ), η(θw, νw) are as defined before. Hence

E(F̂ (x)− F (x))2 =
θw

n|w(φ(x))|

[
(F (x)(1− F (x))− aτ(K, F, φ))

+|w(φ(x))|F 2(x)θwη(θw, νw)− 2F 3(x)

θ2
w

]

+
a4µ2

2(K)((F ◦ φ−1)′′(φ(x)))2

4
(6.26)

The optimal bandwidth a∗opt is given by

a∗opt =

{
θwτ(K, F, φ)

n|w(φ(x))|µ2
2(K)((F ◦ φ−1)′′(φ(x)))2

} 1
3

(6.27)
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Also ∫
E(F̂ (x)− F (x))2 =

θw
n

∫ [
F (x)

|w(φ(x))|
− aτ(K, F, φ)

|w(φ(x))|

−F 2(x)

(
1

|w(φ(x))|
− θwη(θw, νw) +

2F (x)

|w(φ(x))|θ2
w

)
+
a4µ2

2(K)

4
((F ◦ φ−1)′′(φ(x)))2

]
dx (6.28)

Then IMSE is given by∫
E(f̂(x)− f(x))2dx =

θw|φ′(x)|R(K)

na

∫
|w(φ(x)|−1f(x)dx

+
a4

4
µ2

2(K)

∫
S(G2, |φ′(x)|8). (6.29)

THEOREM 4.1: (I) If na → ∞ and na5 → 0 as n → ∞, if f ′′ exists and is

bounded, then
√
na(f̂(x)− f(x)) is asymptotically normal with mean 0 and variance

σ2 = |φ′(x)|f(x)R(K)
|w(φ(x))| .

(II) If na2 →∞ as n→∞ and if f is uniformly continuous, and if
∫
e−itu

[|φ′(x)|K(φ(x)−φ(y)a )]
|w(φ(x))| dx

is absolutely integrable in t, then supx|f̂(x)− f(x)| → 0 in probability as n→∞.

(III) If for any ε > 0,
n∑
i=1

e−εna
2
<∞, if f is uniformly continuous and if

[|φ′(x)|K(φ(x)−φ(y)a )]
|w(φ(x))|

is a function of bounded variation,then supx|f̂(x) − f(x)| → 0 with probability one

as n→∞. To show uniform consistency and asymptotic normality, first we write the

following decomposition:

f̂(x)− f(x) = θw

{
E
|φ′(x)|
a

1

|w(φ(Y1)|
K

(
φ(x)− φ(Y1)

a

)

− g(x)

w(φ(x))

}
+ θw

{
|φ′(x)|
na

n∑
i=1

1

|w(φ(Yi))|
K

(
φ(x)− φ(Yi)

a

)

−E |φ
′(x)|
a

1

|w(φ(Y1))|
K

(
φ(x)− φ(Y1)

a

)}

−θw

{
|φ′(x)|
a

n∑
i=1

1

|w(φ(Yi))|
K

(
φ(x)− φ(Yi)

a

)(
1

|w(φ(Yi))|

)−1
}

{
1

n

1

|w(φ(Yi))|
− θw

}
= I1n(x) + I2n(x)− I3n(x) (6.30)

61



Proof:(I) Under the given conditions,
√
na
(
Ef̂(x)− f(x)) = o((na5)1/2 = o(1)

)
.

Thus,
√
naI1n(x) = o(1) as n→∞. Also in I3n(x), 1

n

∑
1

|wφ(y)|−θw = Op(1) by the law

of large number and since f̂(x)→ f(x) in probability for all x when f is continuous,

it follows that
√
naI3n(x) = Op(a

1/2) = o(1). Finally
√
naI2n(x) is asymptotically

normal with 0 mean and variance given in equation 1.27 follows by standard argument

provided by (cf. Parzen (1962)).

(II) We have I1n = |φ′(x)|
a

∫
K
(
φ(x)−φ(y)

a

)
f(y)dy− f(x), again by arguments provided

in Parzen(1962), we easily see that supx|I1n(x)| → 0 as n → ∞, since f is uniformly

continuous. Since K is bounded,

supx|I3n(x)| ≤
(
Cθw
a

){
1
n

∑
1

|w(φ(Y1))| − θw
}

= op((na
2)1/2) = op(1). Finally, by using

Theorem 3A of Parzen (1962), It is obvious that supx|I2n(x)| → 0 in probability.

(III) By following the proof of Nadaraya(1965)(cf. Prakasa Rao(1983) p.37), it is

obvious that supx|I2n(x)| → 0 in probability.

Next, we summarize the large sample properties of F̂ (x) in the following theorem

without proof. The proof follow in similar fashion as above, so is omitted.

THEOREM 4.3: The mean square error of the regression estimate is given by the

following equation

E (m̂(x)−m(x))2

=
R(K)|φ′(x)|
nam2(x)f1(x)

[
ψw(φ(x)) +m2(x)νw(φ(x))− 2m(x)ηw(φ(x))

]

+

[
a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x))

)
/f1(x)

]2

(6.31)

62



First, we estimate Em̂(x). Note that,

E

{
n∑
i=1

|φ′(x)|
a

K

(
φ(x)− φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))

}

=
|φ′(x)|
a

E

{
K

(
φ(x)− φ(U1)

a

)
/|w(φ(U1), φ(V1))

}
=
|φ′(x)|
a

∫ ∫
|w(φ(u), φ(v))|−1K

(
φ(x)− φ(u)

a

)
g(u, v)dudv

≈ θw|φ′(x)|
∫ ∫

K(z)(f ◦ φ−1)(φ(x)− az, φ(v))dz

= θw

{
f1(x) +

a4

4
µ2(K)S(G2, (φ′)8)

}
. (6.32)

Also,

E

{
n∑
i=1

|φ′(x)φ(Vi)|
a

K

(
φ(x)− φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))

}
= θw

∫ ∫
K(z)φ(y)(f ◦ φ−1)(φ(x)− az, φ(y))dzdy

= θw

∫
(m ◦ φ−1)(φ(x)− az)(f1 ◦ φ−1)(φ(x)− az)K(z)dz

≈ θw

∫ {
m(x)− az(m ◦ φ−1)′(φ(x)) +

a2z2

2
(m ◦ φ−1)′′(φ(x))

}
×
{
f1(x)− az(f1 ◦ φ−1)′(φ(x) +

a2z2

2
(f ◦ φ−1)′′(φ(x))

}
K(z)dz

≈ θw

[
m(x)f1(x) +

a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x)) + (f1 ◦ φ−1)′′(φ(x))m(x)

)]
. (6.33)

Hence

E(m̂(x)) = m(x) +
a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x))

+(f1 ◦ φ−1)′′(φ(x))m(x)

)
/f1(x). (6.34)
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Next, we find the variance of the estimate.

V

{
n∑
i=1

|φ′(x)φ(Vi)|
na

K

(
φ(x)− φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))|

}

=
(φ′(x))2

na2
V

{
|φ(V1)|K

(
φ(x)− φ(U1)

a

)
/|w(φ(U1), φ(V1))|

}
≈ (φ′(x))2

na2
E

{
|φ(V1)|K

(
φ(x)− φ(U1)

a

)
/|w(φ(U1), φ(V1))|

}2

(φ′(x))2θw
na2

∫ ∫
(φ(v))2K2

(
φ(x)− φ(u)

a

)
|w(φ(u), φ(v))|−1f(u, v)dudv

|φ′(x)|θw
na

∫ {∫
(φ(v∗))2

|w(φ(x), φ(v∗))|
f(φ(v∗))\(φ(x)− aφ(u∗))dv∗

}
×f(x− aφ(u∗))K2(u∗)du∗

=
|φ′(x)|θw

na
R(K)f1(x)ψw(φ(x)). (6.35)

where ψw(φ(x)) = E {φ2(Y )/|w(φ(X), φ(Y ))\φ(X = x)|} . Next, following exactly

the same steps above, one can show that

V

{
n∑
i=1

|φ′(x)

na
K

(
φ(x)− φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))|

}

=
|φ′(x)|θw

na
R(K)f1(x)νw(x). (6.36)

where νw(φ(x)) = E [1/|w(φ(X), φ(Y )\φ(X = x)|].

Also,

Cov

{
|φ′(x)|
na

n∑
i=1

K

(
φ(x)− φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))|,

|φ′(x)|Vi
na

n∑
i=1

K

(
φ(x)− φ(Ui)

a

)
/|w(φ(Ui), φ(Vi))|

}

≈ |φ
′(x)|θw
na

R(K)f1(x)ηw(x). (6.37)

where ηw(φ(x)) = E {φ(Y )/|w(φ(X), φ(Y ))\φ(X = x)|} .Hence, putting (3.37),(3.38),(3.39)

and (3.40) into V(U/V) and simplifying, we get that

V m̂(x) =
R(K)|φ′(x)| [ψw(φ(x)) +m2(x)νw(φ(x))− 2m(x)ηw(φ(x))]

nam2(x)f1(x)
. (6.38)
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Hence

E (m̂(x)−m(x))2

=
R(K)|φ′(x)|
nam2(x)f1(x)

[
ψw(φ(x)) +m2(x)νw(φ(x))− 2m(x)ηw(φ(x))

]

+

[
a2µ2(K)

2

(
2(f1 ◦ φ−1)′(φ(x))(m ◦ φ−1)′(φ(x))

+f1(x)(m ◦ φ−1)′′(φ(x))

)
/f1(x)

]2

(6.39)

Large Sample Properties of the Regression Estimate

Writing m̂(x) = ĥ(x)/f̂1(x), it is obvious that following hold:

ĥ(x)− h(x) = θw

{
|φ′(x)|a−1E

(
φ(V1)

|w(φ(U1), φ(V1))|
K

(
φ(x)− φ(U1)

a

))}

+θw

{
|phi′(x)|(na)−1

n∑
i=1

φ(Vi)

|w(φ(Ui), φ(Vi))|
K

(
φ(x)− φ(Ui)

a

)

−a−1E

(
φ(V1)

|w(φ(U1), φ(V1))|
K

(
φ(x)− φ(U1)

a

))}

−θw

{
n∑
i=1

|φ′(x)φ(Vi)|K
(
φ(x)−φ(Ui)

a

)
|w(φ(Ui), φ(Vi))|

/a
n∑
i=1

1

|w(φ(Ui), φ(Vi))|

}

×

{
1

n

n∑
i=1

1

|w(φ(Ui), φ(Vi))|
− θw

}
= I1n(x) + I2n(x)− I3n(x). (6.40)
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where h(x) =
∫
|φ(y)| 1

|w(φ(x),φ(y))|g(x, y)dy, and

f̂1(x)− f1(x) = θw

{
|φ′(x)|a−1E

(
φ(V1)

|w(φ(U1), φ(V1))|
K

(
φ(x)− φ(U1)

a

))
− f1(x)

}

θw

{
|phi′(x)|(na)−1

n∑
i=1

1

|w(φ(Ui), φ(Vi))|
K

(
φ(x)− φ(Ui)

a

)

−a−1E

(
1

|w(φ(U1), φ(V1))|
K

(
φ(x)− φ(U1)

a

))}

−θw

{
n∑
i=1

|φ′(x)|K
(
φ(x)−φ(Ui)

a

)
|w(φ(Ui), φ(Vi))|

/a

n∑
i=1

1

|w(φ(Ui), φ(Vi))|

}

×

{
1

n

n∑
i=1

1

|w(φ(Ui), φ(Vi))|
− θw

}

×

{
1

n

n∑
i=1

1

|w(φ(Ui), φ(Vi))|
− θw

}
= J1n(x) + J2n(x)− J3n(x). (6.41)

it is clear that m̂(x) → m(x) in probability as n → ∞ at every continuity of

m(.)and that na → ∞. Next, f1 and m have bounded second derivatives, then√
(na)

{(
ĥ(x)− h(x)

)
,
(
f̂(x)− f(x)

)}′
has the same limiting distribution as

√
(na) (I2n(x), J2n(x))′,

which is bivariate normal with mean (0, 0)′ and covariance matrix

Σ = |φ′(x)|θwR(K)f1(x)

ψw(φ(x)) ηw(φ(x))

ηw(φ(x)) νw(φ(x))

 ,
where η, ν ,and ψ are defined above. Hence using similar argument to that of Prakasa

Rao(1983) p. 240-243, one can show that
√

(na) (m̂(x)−m(x)) is asymptotically

normal with mean 0 and variance

σ2 = R(K)|φ′(x)| [ψw(φ(x)) +m2(x)νw(φ(x))− 2m(x)νw(φ(x))]/m2(x)f1(x).

To show uniform consistency(weak or strong), we use arguments as in Nadaraya((1970),

if infa≤x≤b h(x) > 0 and if 0 ≤ a ≤ V ≤ b <∞ with probability one, then

P

[
sup
a≤x≤b

|m̂(x)−m(x)| ≥ ε

]
≤ P

[
sup
a≤x≤b

|ĥ(x)− h(x)| ≥ ε∗
]

+P

[
sup
a≤x≤b

|f̂1(x)− f1(x)| ≥ ε∗∗
]
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where ε∗ and ε∗∗ are independent of n.Theorem 3.1 (II) and (III) gives the uniform

convergence( weak and strong, respectively) of f̂1(x) and applying similar argument

yields analogous results for ĥ(x) under the conditions:
∫
e−itu |φ

′(x)|K(u)
|w(φ(u),φ(v))|du is abso-

lutely integrable in u and K(u)/|w(φ(u), φ(v)) is of bounded variation.

We summarize the result in the following theorem.

THEOREM 4.4: (I) If na → ∞ and na5 → 0 as n → ∞, if f ′′ and h′′ exist and are

bounded, then
√
na(m̂(x)−m(x) is asymptotically normal with mean 0 and variance

σ2 = R(K)|φ′(x)| [ψw(φ(x)) +m2(x)νw(φ(x))− 2m(x)νw(φ(x))]/m2(x)f1(x). (II) If

na2 →∞ as n→∞ and if f and h are uniformly continuous, and if
∫
e−itu |φ

′(x)|K(u)
|w(φ(u),φ(v))|du

is absolutely integrable in u,if infa≤x≤b h(x) = α > 0 and if 0 ≤ α ≤ φ(v) ≤ b < ∞,

then supv<a≤x≤b<∞ |m̂(x)−m(x)| → 0 in probability as n→∞.

(III) If for any ε > 0,
n∑
i=1

e−εna
2
< ∞, if f1 and k are uniformly continuous and if

[|φ′(x)|K(φ(x)−φ(y)a )]
|w(φ(x))| is a function of bounded variation (in u) and ,if infa≤x≤b h(x) = α >

0 and if 0 ≤ α ≤ v ≤ b <∞, then supv<a≤x≤b<∞ |m̂(x)−m(x)| → 0 in probability as

n→∞.

,then supx |f̂(x)− f(x)| → 0 with probability one as n→∞.

THEOREM 4.5: V arĥ(x) is

V ar(ĥ(x) = h2(x)|φ′(x)|R(K)θw
naf(x)|w(φ(x))|

Proof:

V (ĥ(x)) = V

(
f̂(x)

F̂ (x)

)
=

[Ef̂(x)]2

[EF̂ (x)]2

[
V f̂(x)

[Ef̂(x)]2
+

V F̂ (x)

[EF̂ (x)]2
− 2cov(f̂(x), F̂ (x))

Ef̂(x)EF̂ (x)

]
(6.42)

It is only remained to calculate 2cov(f̂(x), F̂ ) in the above expression.

2cov(f̂(x), F̂ (x))

Ef̂(x)EF̂ (x)
= 2

[
E[f̂(x)F̂ (x)]− Ef̂(x)EF̂ (x)

Ef̂(x)EF̂ (x)

]
= 2

[
E[f̂(x)F̂ (x)]

Ef̂(x)EF̂ (x)
− 1

]
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Now,

E

[{
|φ′(x)|
a

(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|
K

(
φ(x)− φ(Yi)

a

)}
{(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|
K
(
φ(x)− φ(Yi)

a

)}]

= E

[
|φ′(x)|
a

(∑
i

1

|w(φ(Yi))|

)−2∑
i

1

|w(φ(Yi))|2
K

(
φ(x)− φ(Yi)

a

)

×K
(
φ(x)− φ(Yi)

a

)
+ E

[
|φ′(x)|
a

(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|

×K
(
φ(x)− φ(Yi)

a

)]
E

[(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|

×
∑

K
(
φ(x)− φ(Yi)

a

)]

Let

I1 = E

[
|φ′(x)|
a

(∑
i

1

|w(φ(Yi))|

)−2∑
i

1

|w(φ(Yi))|2
K

(
φ(x)− φ(Yi)

a

)
×K

(
φ(x)− φ(Yi)

a

)
and

I2 = E

[
|φ′(x)|
a

(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|

×K
(
φ(x)− φ(Yi)

a

)]
E

[(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|

×
∑

K
(
φ(x)− φ(Yi)

a

)]
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Then

I1 =

∫
|φ′(x)|
a

(∑
i

1

|w(φ(Yi))|

)−2∑
i

1

|w(φ(Yi))|2
K

(
φ(x)− φ(Yi)

a

)
×K

(
φ(x)− φ(Yi)

a

)
g(y)dy

= θ−1
w

∫
|φ′(x)|
a

(∑
i

1

|w(φ(Yi))|

)−1∑
i

1

|w(φ(Yi))|2
K

(
φ(x)− φ(Yi)

a

)
×K

(
φ(x)− φ(Yi)

a

)
f(y)dy

using earlier results, it is straight forward to show that

I1 = (η(θw, νw) + θ2
w)(θ−1

w |(w(φ(x)|))−1(η(φ(x)− nS(K))

where S(K) and η(φ(x) and η(θw, νw) are defined as above.

Also

I2 = E

[
|φ′(x)|
a

(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|

×K
(
φ(x)− φ(Yi)

a

)]
E

[(∑ 1

|w(φ(Yi))|

)−1∑ 1

|w(φ(Yi))|

×
∑

K
(
φ(x)− φ(Yi)

a

)]
≈ f(x)(1− F (x)

Substituting all results terms in equation the equation of V (ĥ(x)) then simplifying

gives varĥ(x) = h2(x)|φ′(x)|R(K)θw
naf(x)|w(φ(x))| .

THEOREM 4.6: MSEĥ(x) is

MSE(ĥ(x) = h(x)

{
h(x)a2

2

(√
S(G2, |φ′(x)|8)

f(x)
− (F ◦ φ−1)′′|φ(x)|

×
∫
z2K(z)dz

)}2

+
h2(x)|φ′(x)|R(K)θw
naf(x)|w(φ(x))|
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