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Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses 
characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. 
Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. 
Additionally, it can also grow solely as a heterotroph, which results in the cessation of 
photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely 
correlated with G. sulphuraria’s broad capacity for carbon metabolism, which rivals that 
of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria 
revealed several pathways that are uncharacteristic for plants and algae, even red algae. 
Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest 
multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer 
and conservation through ancestry. Although some metabolic pathways as a whole appear 
to be retained through ancestry, genes encoding individual enzymes within a pathway 
were substituted by genes that were acquired horizontally from other domains of life. 
Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic 
patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary 
processes. Substitution of genes encoding pathway enzymes also extends to metabolic 
pathways in other eukaryotic organisms. Specifically, de novo NAD+ biosynthesis in 
eukaryotes, including those possessing a plastid, has been subjected to numerous gene 
transfer events, some of which were responsible for the establishment of novel metabolic 
pathways in plastid-bearing eukaryotes. Another characteristic of G. sulphuraria is 
observed when cultivating the alga in a liquid medium. Under light limiting conditions, 
G. sulphuraria excretes porphyrins, which fluoresce when illuminated with near-UV 
wavelengths of light. Examination of the absorption and emission (fluorescence) spectra 
of the porphyrin mixture led to the hypothesis of spectral shifting, whereby near-UV light 
that is unusable for photosynthesis is converted into light readily absorbed by 
phycocyanin, a photosynthetic pigment synthesized by G. sulphuraria. The calculated 
relative fluorescence quantum yield, i.e., the efficiency at which absorbed photons are re-
emitted as fluoresced light, of the excreted porphyrins was lower than to be expected for 
counteracting light limiting conditions, possibly indicating a different biological function 
for porphyrin excretion in G. sulphuraria. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Galdieria sulphuraria is a thermoacidophilic, red microalga which thrives in 

environments, such as hot sulfur springs, volcanic calderas, and strip mines, that are usually 

deemed uninhabitable by eukaryotes (Weber, et al. 2004). It can survive temperatures up to 56°C 

with pH values ranging from 0-4 (Gross 2000) and displays heavy metal (Yoshimura, et al. 1999; 

Nagasaka, et al. 2004) and salt tolerance (Barbier, et al. 2005). G. sulphuraria possesses an 

extensive metabolic flexibility as shown by the ability to grow photoautotrophically, 

heterotrophically, or mixotrophically (a combination of the prior two) on over 50 different carbon 

sources (Weber, et al. 2004) (Fig. 1). 

Fig. 1: Phototrophic (left) and heterotrophic (right) G. 

sulphuraria cells taken from Schönknecht, et al. (2013). 

Left: Phototrophic culture of G. sulphuraria cells (top) and 

light microscopic image (bottom; bar represents 10 µm) 

grown under continuous light with no supplemental carbon 

source. Right: Heterotrophic culture of G. sulphuraria cells 

grown in darkness supplemented with 200 mM glucose 

(top) and light microscopic image (bottom). 
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Red algae provide insight into the process of early eukaryotic evolution. One of the earliest 

fossil records for multicellular eukaryotes is a red alga, Bangiomorpha pubescens, estimated to be 1.2 

billion years old (Butterfield 2000). Not only does the B. pubescens fossil provide a broader 

perspective on the evolution of multicellular eukaryotes as a whole, it specifically has an impact when 

considering evolution of the supergroup Archaeplastida (Plantae), which is comprised of 

Viridiplantae (land plants and green algae), Rhodophyta (red algae), and Glaucophyta (glaucophytes). 

More specifically, G. sulphuraria is a member of Cyanidiophyceae, an early diverging family of red 

algae. In the context of the B. pubescens fossil, it is possible that Cyanidiophyceae evolved well 

before the estimate 1.2 billion years ago (Yoon, et al. 2002). Furthermore, all Cyanidiophyceae 

species are unicellular, suggesting that Cyanidiophyceae possibly split off from other red algal 

lineages prior to the development of multicellularity in red algae. The primary endosymbiosis event, 

whereby a heterotrophic, protist-like eukaryote engulfed a cyanobacterium ultimately giving rise to 

modern day chloroplasts, occurred in the common ancestor of Archaeplastida (Gould, et al. 2008; 

Archibald 2009). The initial establishment of plastids in Archaeplastida provided the foundation for 

the radiation of plastids throughout other eukaryotic lineages. A substantial number of other plastid 

bearing eukaryotes, such as brown algae, diatoms, haptophytes, and cryptophytes, possess a plastid of 

red algal origin that results from secondary endosymbiosis events (McFadden 2014). Several 

secondary endosymbiosis events entailed the engulfment of a red alga by a once-heterotrophic 

eukaryote, leading to the establishment of (red algal) plastids in other eukaryotic lineages. Modern 

day eukaryotes possessing a plastid of red algal origin encompass a wealth of biodiversity on Earth. 

Thus, understanding the biology and evolution of red algae is essential to understanding the biology 

and evolution of other photosynthetic eukaryotes that possess plastids of red algal origin. 

The genome of G. sulphuraria has been published (Schönknecht, et al. 2013) and sheds light 

on the diversity of  metabolic pathways in red algae. In addition, the metabolic pathways present in G. 

sulphuraria and other Cyanidiophyceae algae provide a glimpse into early eukaryotic metabolism and 
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its evolution. Another species within Cyanidiophyceae, Cyanidioschyzon merolae, has also been 

sequenced (Matsuzaki, et al. 2004) in addition to other red algae, Porphyridium purpureum 

(Bhattacharya, et al. 2013), Chondrus crispus (Collén, et al. 2013), and Pyropia yezoensis 

(Nakamura, et al. 2013), making direct comparisons of metabolic pathways possible within 

Cyanidiophyceae, and more broadly Rhodophyta. While G. sulphuraria shares many metabolic 

pathways in common with other red algae, it also possesses pathways and enzymes that make it 

unique among red algae. 

Coupling phylogenetic analyses with the annotation of the metabolic pathways, the 

evolutionary history of different pathways present in G. sulphuraria was elucidated. For some 

pathways, simply determining the distribution among different eukaryotic lineages provided insight 

into the origin of metabolic pathways in eukaryotes, and even photosynthetic eukaryotes in some 

instances. The diversity of pathways encoded by the genome of G. sulphuraria seems to be a 

‘metabolic patchwork’, with some pathways appearing to be conserved through ancestry, and others 

being acquired from prokaryotes either via endosymbiosis or horizontal gene transfer. Furthermore, 

some genes encoding enzymes for metabolic pathways, those which have been conserved throughout 

eukaryotic evolution, have been substituted by genes of prokaryotic origin. Consequently, some 

metabolic pathways in G. sulphuraria, otherwise attributed to ancestry, contain enzymes encoded by 

genes that have not been conserved through ancestry. 

 

AN ‘ANCIENT’ PATHWAY FOR DE NOVO NAD+ BIOSYNTHESIS 

 A distinguishing metabolic pathway in G. sulphuraria and other red algae, in contrast with 

Viridiplantae and Glaucophyta, is the route by which the amino acid L-tryptophan is degraded. 

Tryptophan degradation in G. sulphuraria proceeds through the intermediate metabolite L-

kynurenine, similar to that of Opisthokonta (animals and fungi), in what has been deemed the 
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kynurenine pathway (Fig. 2). Not only is the kynurenine pathway responsible for the degradation of 

tryptophan, but it is also coupled with de novo biosynthesis of the essential cofactor nicotinamide 

adenine dinucleotide, or NAD+. NAD+ is essential for a multitude of cellular processes and is 

arguably the most ubiquitous electron carrier in the cell, being associated with glycolysis, the TCA 

cycle, and the electron transport chain for respiration on the inner membrane of the mitochondria. The 

phosphorylated form of NAD+, NADP+, is indispensable for biosynthetic pathways, such as the 

oxidative pentose phosphate pathway that regenerates NADPH and synthesizes carbohydrate 

intermediates for other biosynthetic pathways (Voet and Voet 2004). In the light-dependent reactions 

of photosynthesis, NADP+ is reduced to form 

NADPH, which is used to help fuel the Calvin-

Benson cycle to synthesize carbohydrates from 

CO2 (Taiz and Zeiger 2010). 

Fig. 2: The two different pathways for de novo 

NAD+ biosynthesis starting with either 

tryptophan for the kynurenine pathway or 

aspartate for the aspartate pathway are shown. 

Both pathways converge at quinolinate. The 

salvage pathway recycles NAD+ components 

(see text), and pathways are dependent upon 

lineage, e.g. one or two enzymes required to 

synthesize particular intermediates. Structural 

formulas for intermediates and all substrate and 

enzyme names according to KEGG (Kanehisa, 

et al. 2014). Abbreviations: AO, aspartate 

oxidase; QS, quinolinate synthase; TDO/IDO, 

tryptophan - / indoleamine 2,3-dioxygenase; 
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AFM, arylformamidase; KMO, kynurenine 3-monooxygenase; KYU, kynureninase; HAO, 3-

hydroxyanthranilate 3,4-dioxygenase; NNP, nicotinate-nucleotide adenylyltransferase; NADS, NAD+ 

synthase; NMA2, nicotinamide-nucleotide adenylyltransferase 2; NMN, nicotinamide mononucleotide 

nucleosidase; NASE, 5’-nucleotidase; UN, uridine nucleosidase; NA, nicotinamidase; PNP, purine-

nucleotide phosphorylase; NRK, nicotinamide/nicotinate riboside kinase; NAPRT, nicotinate 

phorphoribosyltransferase. 

Based on sequenced eukaryotic genomes, the distribution of which de novo NAD+ 

biosynthesis pathway is present in different eukaryotic lineages was determined. This resulted in an 

unexpected pattern for photosynthetic eukaryotes, with red algae using the kynurenine pathway, while 

Viridiplantae, diatoms, and brown algae (Phaeophyta) appear to use the aspartate pathway for de novo 

NAD+ biosynthesis (Fig. 2). Phylogenetic analyses (conducted here) indicate that the evolution of de 

novo NAD+ biosynthesis was driven by several instances of gene transfer, both endosymbiotic gene 

transfer and horizontal gene transfer from bacteria or archaea into eukaryotic genomes. 

 

G. SULPHURARIA EXCRETES FLUORESCENT PIGMENTS 

 When grown to high cell densities in liquid medium, G. sulphuraria excretes fluorescent 

pigments into the culture medium. Once the cells are removed, the medium retains a reddish-pink 

coloration (Fig. 3). The fluorescent pigments displayed interesting spectral properties, whereby near-

UV radiation was absorbed and re-emitted as orange light, similar to the spectral characteristics of 

porphyrins. In essence, these pigments potentially act as ‘light converters’, transforming near-UV 

radiation that cannot be used by photosynthesis into ‘photosynthetically active radiation’ (PAR), 

radiation that can be used for photosynthesis. 
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Fig. 3: Stationary growth phase G. sulphuraria liquid culture supplemented with 50 mM glucose. Cells 

were allowed to settle for several hours. Left: Culture medium under fluorescent lighting showing a 

pink coloration. Right: culture medium illuminated with blue LED lighting showing fluorescence. 

Based on the observation that G. sulphuraria excretes fluorescent pigments into the culture medium 

under increased cell density, and considering the spectroscopic properties of the pigments, it seems 

reasonable that the fluorescent pigments could serve as a mechanism to counteract conditions when 

light becomes limiting, either as a result of high cell density or low light environments. This 

mechanism could ultimately allow cells to utilize light energy otherwise not photosynthetically 

available by absorbing near-UV radiation and re-emitting photosynthetically active orange light 

readily used by chlorophylls a and b and phycocyanin. In order to determine the effectiveness of 

‘spectral shifting’ by the fluorescent pigments excreted by G. sulphuraria, the pigments were fully 

characterized spectroscopically as they existed in the culture medium. A complete, emission 

(fluorescence) spectroscopy characterization determined the effectiveness of spectral shifting of these 

pigments; the single, most important measurement was the fluorescence quantum yield (or 

efficiency). The fluorescence quantum yield describes how many photons are re-emitted in relation to 

how many photons are absorbed, e.g. an efficiency of 20% would mean for every five photons that 

are absorbed, one photon is re-emitted. 

 Photosynthesis is the limiting factor for both terrestrial crops and algal biomass. 

Photosynthesis in land plants and algae is driven by photosynthetically active radiation (PAR) 



7 

 

between 400 and 700 nm. Only about 50% of the solar radiation that reaches a plant’s surface is used 

to drive photosynthesis (Monteith 1969; Meek, et al. 1984). There is a clear correlation between 

intercepted light and biomass production (Monteith 1994), and expanding the solar spectrum effective 

for photosynthesis could significantly increase productivity. Yet, oxygenic photosynthesis is largely 

limited to the 400-700 nm wavelength range (Chen and Blankenship 2011), and only anoxygenic, 

photosynthetic bacteria use a considerably wider range of wavelengths (300-1000 nm) (Scheer 2003; 

Kiang, et al. 2007). It has been experimentally shown that spectral shifting, i.e. the conversion of UV 

light (<400 nm) into PAR, enhances algal growth (Prokop, et al. 1984). Thus, the fluorescent 

pigments excreted by G. sulphuraria could potentially be used for biotechnology applications, such as 

algal biofuel production, to increase biomass production in cell cultures that experience low light 

conditions, as a result of high cell density. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

EVOLUTION SHAPES METABOLIC PATHWAYS AND PROCESSES 

Evolution has played a direct role in shaping the metabolic pathways present in 

photosynthetic organisms. While global metabolism in the cell was undoubtedly established in 

the ancestor of all eukaryotes, different lineages of photosynthetic eukaryotes have undergone 

their own evolution, which further shaped metabolism in a lineage-specific manner. The result is 

a common core of centralized metabolic pathways, i.e. glycolysis, TCA cycle, etc., with 

differences existing amongst different plastid-bearing lineages, especially when considering 

compartmentalization, the specific organellar location of a particular metabolic pathway 

(Sweetlove and Fernie 2013). The primary endosymbiosis event, whereby a cyanobacterial 

ancestor was engulfed by a protist-like, heterotrophic eukaryote (Gould, et al. 2008), significantly 

changed eukaryotic evolution. Consequently, thousands of genes were transferred from the 

cyanobacterium to the nucleus of the eukaryotic host in a process known as endosymbiotic gene 

transfer (Timmis, et al. 2004). As expected, a large portion of the transferred genes encoded 

proteins that function enzymatically in metabolic pathways and were ultimately integrated into 

the existing metabolism of the eukaryotic host. Some introduced pathways simply served as 

alternative routes to synthesize the same metabolites, such as terpenoid backbone biosynthesis 

(Lange 2000); however, some pathways were entirely novel due to their association with
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photosynthesis, e.g. the Calvin-Benson cycle, which is responsible for converting CO2 into sugars 

(Martin and Schnarrenberger 1997). Therefore, the merging of cyanobacterial and eukaryotic 

genomes provided a new set of genes encoding metabolic pathways that could further be shaped 

by evolution in eukaryotes. 

 Within the past several years, it has become increasingly apparent that another 

evolutionary mechanism plays an important role in eukaryotic evolution. The vertical inheritance 

of genetic material, DNA passed from parent to offspring, was originally thought to be the only 

form of transferring genetic information between eukaryotes besides endosymbiotic gene transfer. 

However, horizontal gene transfer, a common mechanism in bacteria, also occurs in eukaryotes. 

Horizontal gene transfer is the direct transfer of genetic material from one organism to another as 

opposed to inheritance via reproduction, whereby genetic material is passed vertically from 

parent to offspring. 

Fig. 4: Comparison between G. sulphuraria protein 

families (both enzymes and transporter proteins) 

classified as horizontal gene transfer candidates and 

protein families not considered candidates 

(Schönknecht, unpublished). Protein families within 

G. sulphuraria were divided into two categories, 

HGT and Non-HGT, based on protein phylogenies, 

and the number of introns present and GC% of the 

respective genes. Then each category was divided 

into enzymes and transporters. Figure produced by G. 

Schönknecht. 

An overwhelming number of examples, including those where genes encode metabolic pathway 

enzymes, have shown horizontal gene transfer to occur in eukaryotes, whether it be prokaryote to 
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eukaryote, or eukaryote to eukaryote gene transfer (Oborník and Green 2005; Kondrashov, et al. 

2006; Richards, et al. 2006; Keeling and Palmer 2008; Whitaker, et al. 2009; Qiu, Price, et al. 

2013; Qiu, Yoon, et al. 2013; Schönknecht, et al. 2013; Schönknecht, et al. 2014; Ternes and 

Schönknecht 2014). Furthermore, it has been reported that entire metabolic pathways that were 

subsequently lost in a lineage have been reacquired via horizontal gene transfer (Nedelcu, et al. 

2009; Pombert, et al. 2012). In the specific case of G. sulphuraria, numerous protein families (77 

total) result either entirely or partly from horizontal gene transfer (Fig. 4). Protein families that 

are not considered horizontal gene transfer candidates do not necessarily result from eukaryotic 

ancestry, but may result from endosymbiotic gene transfer, which is not considered as horizontal 

gene transfer in Figure 4 (Schönknecht, unpublished). 

 

ENDOSYMBIOTIC PLASTID EVOLUTION FUELED RADIATION OF 

PHOTOSYNTHESIS 

 Oxygenic photosynthesis first evolved in the ancestor of cyanobacteria, but later spread 

to eukaryotes through endosymbiosis (Archibald 2009; Dagan, et al. 2013). The earliest 

photosynthetic, eukaryotic ancestor eventually gave rise to the supergroup Archaeplastida, one of 

the largest lineages of photosynthetic eukaryotes (Fig. 5). Initially, there was little evidence 

supporting Archaeplastida as being monophyletic (all groups evolved from a single, common 

ancestor); however, the surge in sequenced genomes and subsequent phylogenomic studies are 

providing ever-growing evidence to support the monophyly hypothesis (Bhattacharya, et al. 2004; 

Keeling 2010; Dorrell and Smith 2011; Burki, Okamoto, et al. 2012). The exact order of 

divergence within Archaeplastida is unknown. Many scientists studying Archaeplastida evolution 

propose the glaucophytes diverged first, yet there is little supporting evidence and still remains an 

active area of debate to this day. The nuclear genome of C. paradoxa, the most studied 
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glaucophyte, was recently published; however, phylogenomic analyses failed to solidify 

glaucophytes as the basal lineage (Price, et al. 2012). 

 Following the primary endosymbiosis event, additional endosymbioses resulted in the 

radiation of other major lineages of photosynthetic eukaryotes. Secondary endosymbiosis events, 

whereby an ancient Archaeplastida was engulfed by a heterotrophic, protist-like eukaryote, 

extended photosynthetic ability to other eukaryotic lineages, some of which account for a large 

portion of phytoplankton biomass in the world’s oceans (Archibald 2009; Keeling 2013). There is 

debate surrounding the origin of the ancient Archaeplastida that was engulfed; yet, the general 

consensus agrees on a red algal endosymbiont. Of the currently described species regarded as 

(unicellular) protists, which includes unicellular algae, more than 50% contain secondary plastids 

(plastids resulting from secondary endosymbiosis) derived from a red alga (Keeling 2010), 

emphasizing the need to further our understanding of red algal biology and evolution. 
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Fig. 5: Schematic of plastid evolution taken from Keeling (2013). From the top, the primary 

endosymbiosis event established the three major lineages of Archaeplastida (glaucophytes, red 

algae, green algae and land plants), designated by dark green lines. Plastids present in other 

linages including cryptomonads (cryptophytes), haptophytes, stramenopiles, ciliates, 

apicomplexans, and dinoflagellates, which are of red algal origin as a result of secondary 

endosymbiosis, are indicated by red lines. These individual lineages were then involved in tertiary 

endosymbiosis with a dinoflagellate host as indicated by pink, cyan, orange, and purple lines 

depicting the plastid origin in different genera of dinoflagellates. The red lines leading to 

cryptomonads and haptophytes are dashed due to the uncertainty of evolutionary relationships. 

While Burki, Okamoto, et al. (2012) proposed explicit relationships (see text), there is still debate 

regarding where they reside in the tree of life. Lineages containing plastids of green algal origin 

via secondary endosymbiosis (euglenids, chlorarachniophytes, and Lepidodinum [dinoflagellate]) 
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are indicated by light green lines. Paulinella appears to have undergone its own independent 

primary endosymbiosis involving cyanobacteria. 

A major eukaryotic lineage with the ability to photosynthesize is the SAR supergroup 

(Archibald 2009; Burki, et al. 2010), composed of Stramenopiles (brown algae, diatoms, and 

Oomycota [water molds or downy mildew]), Alveolata (dinoflagellates, apicomplexans, and 

cilitates), and Rhizaria (chloroarachniophytes) (Fig. 5). The plastids present in stramenopiles 

and alveolates are the result of a secondary endosymbiosis event whereby a red algal ancestor 

was engulfed by a heterotrophic, eukaryotic ancestor (Gould, et al. 2008). The plastids 

present in the chloroarachniophyte Bigelowiella natans are also a result of a secondary 

endosymbiosis event that occurred independently from endosymbiosis events in 

stramenopiles and alveolates within the SAR supergroup. However, the plastid progenitor in 

Rhizaria is of green algal origin (Archibald, et al. 2003). 

 Other algal groups also possess secondarily derived plastids, either of red or green 

algal origin. Haptophytes, marine phytoplankton that significantly impact global carbon 

fixation, have been shown to be related to the SAR supergroup. Together, haptophytes and 

SAR form one, large monophyletic group (Burki, Okamoto, et al. 2012; Read, et al. 2013). 

Haptophyte plastids are of red algae origin, yet experienced their own endosymbiosis event 

independently of the groups within SAR (Burki, Okamoto, et al. 2012). Cryptomonads also 

possess a red algal derived plastid that was acquired independently via secondary 

endosymbiosis. The position in the tree of life where cryptomonads reside is unknown; 

however, Burki, Okamoto, et al. (2012) proposed that they are more closely related to 

Archaeplastida than any other eukaryotic lineage. The number of secondary endosymbiosis 

events remains unknown and is still a subject of debate. Conversely, the eukaryotic 

supergroups that possess secondary plastids are not monophyletic, but are para- or 

polyphyletic (do not directly share a common ancestor) and are a result of their own 
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independent evolution. Plastid evolution is an important and complex facet of algal biology. 

Many characteristics of plastid evolution, such as the presence or absence of metabolic 

pathways (taken together with phylogenetics) and photosynthetic pigments, provide more 

information regarding the potential origin of plastids present in a particular algal group. The 

aforementioned characteristics also shed light on early eukaryotic biology. Unraveling the 

fine details of early eukaryotic evolution will aid in resolving the deepest regions in the tree 

of life. 

 

THE SWEET LIFE OF G. SULPHURARIA 

 G. sulphuraria is able to grow on more than 50 different carbon sources, a feat 

unrivaled by any other alga (Oesterhelt, et al. 1999; Weber, et al. 2004). The high degree of 

metabolic diversity is directly attributed to the enzymes (and transporters [see below]) 

encoded by the G. sulphuraria genome. For example, several different types of sugar kinases 

not only play a role in sugar sensing (Oesterhelt and Gross 2002), but directly phosphorylate 

sugars that can subsequently be funneled into various metabolic pathways. These kinases 

include glucokinase (Gasu_04750, EC 2.7.1.2), galactokinase (Gasu_09360, EC 2.7.1.6), 

fructokinase (Gasu_01610 & Gasu_04420, EC 2.7.1.4), glycerol kinase (Gasu_03170 & 

Gasu_60010, EC 2.7.1.30), xylulokinase (Gasu_46540, EC 2.7.1.17), and ribokinase 

(Gasu_33210, EC 2.7.1.15) (Barbier 2005). Despite the lack of phylogenetic analyses for the 

majority of these kinases, they are more similar to prokaryotic enzymes rather than sugar 

kinases from plants (Heilmann, et al. 1997; Barbier, et al. 2005). G. sulphuraria is also able 

to metabolize sugar alcohols by oxidation catalyzed by dehydrogenases. Following oxidation, 

the resulting sugar can then be phosphorylated by kinases, such as those mentioned above. A 
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polyol dehydrogenase, xylitol dehydrogenase (Gasu_25510, EC 1.1.1.9), was detected in G. 

sulphuraria using ESTs and biochemical assays (Stein, et al. 1997; Barbier 2005). 

 Mannose, more specifically mannose-6-phosphate, is a sugar that becomes toxic at 

increased levels in higher plants (Knudson 1917; Stenlid 1954; Morgan and Street 1959). The 

lack of substrate specificity by plant hexokinases leads to an accumulation of mannose-6-

phosphate. Hexokinase can phosphorylate mannose, in addition to glucose, fructose, and 

other sugars (Herold and Lewis 1977). When mannose-6-phosphate accumulates, phosphate 

levels decrease, hindering many processes in higher plants such as ATP synthesis, 

germination, photosynthesis, and starch synthesis. Elevated mannose-6-phosphate levels also 

inhibit phosphoglucomutase and glucose phosphate isomerase (Herold and Lewis 1977; 

Barbier 2005). In contrast, G. sulphuraria is able to grow solely on mannose. The genome of 

G. sulphuaria does not appear to encode a hexokinase, but rather a glucokinase 

(Gasu_04750, EC 2.7.1.2); the phosphorylation of mannose has been shown to be catalyzed 

by glucokinase (Heilmann, et al. 1997). In G. sulphuraria, mannose-6-phosphate isomerase 

(Gasu_38450, EC 5.3.1.8) converts mannose-6-phosphate to fructose-6-phosphate, a 

glycolytic intermediate. Even though some higher plants possess this isomerase and do not 

exhibit toxicity symptoms, the isomerase in G. sulphuraria is highly active, ensuring that 

mannose toxicity will not occur (Heilmann, et al. 1997). Galactose also presents a problem to 

most plants where it accumulates as galactose-1-phosphate or UDP-galactose, which inhibits 

carbon metabolism (Roberts, et al. 1971). The presence of a few key enzymes allows G. 

sulphuraria to metabolize galactose: galactokinase (Gasu_09360, EC 2.7.1.6), (UTP)-

galactose-1-phosphate-uridylyltransferase (Gasu_52840, EC 2.7.7.12), and UDP-glucose-

4-epimerase (Gasu_12030, EC 5.1.3.2) (Gross and Schnarrenberger 1995b; Prosselkov, et al. 

1996; Barbier 2005). 
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WHAT IS METABOLISM WITHOUT TRANSPORTERS? 

 Transporters are key components that contribute significantly to G. sulphuraria’s 

ability to utilize a wide spectrum of carbon substrates. There seems to be a correlation 

between the life style of an organism, heterotrophic and/or mixotrophic, and the number and 

diversity of membrane transport proteins (Ren and Paulsen 2005). The large number of 

proteins in G. sulphruaria annotated as membrane transport proteins indicates—and is 

probably essential—to a heterotrophic lifestyle that depends on the uptake of organic 

compounds (Barbier 2005; Schönknecht, et al. 2013). G. sulphuraria encodes numerous 

‘sugar porters’, proteins specialized to transport a particular sugar or carbohydrate, which 

might have been acquired horizontally from fungi (Schönknecht, et al. 2013). Additionally, 

some of the transport proteins possess partly overlapping specificities, further contributing to 

the diversity of substrates that can be taken up (Oesterhelt, et al. 1999). Polyol transport 

proteins, transporters responsible for importing sugar alcohols, are also present in G. 

sulphuraria. Even though only a few polyol dehydrogenases have been characterized and 

annotated, numerous sugar alcohols can be taken up by G. sulphuraria, including sorbitol, 

arabitol, xylitol, and dulcitol among others (Oesterhelt, et al. 1999). G. sulphuraria can also 

grow solely on glycerol (Gross and Schnarrenberger 1995a). Five genes have been annotated 

in the G. sulphuraria genome as encoding glycerol transporters, and phylogenetic analysis 

indicates these transporter proteins were probably acquired via horizontal gene transfer from 

Proteobacteria (Schönknecht, et al. 2013). Of all the proteins encoded by the G. sulphuraria 

genome, 5.2% are annotated as membrane transporters. As expected and given the metabolic 

diversity of G. sulphuraria, the number of encoded transporters is more than for most 

eukaryotes, especially when compared to C. merolae, the other sequenced Cyanidiophyceae 

red alga (Fig. 6) (Schönknecht, et al. 2013). 
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Fig. 6: The percentage of proteins annotated as transporter proteins for 49 various eukaryotes 

taken from Schönknecht, et al. (2013). The red line indicates the 5% level of which G. sulphuraria 

surpasses as do other organisms such as fungi and two stramenopiles that are capable of 

heterotrophic growth (Tyler, et al. 2006; Gobler, et al. 2011). 

 

ADAPTATION VIA HORIZONTALLY ACQUIRED TRANSPORTERS 

The heavy metal and salt tolerance exhibited by G. sulphuraria is made possible due 

in part to transporters. Arsenic is removed from the cell by first being reduced from arsenate 
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to arsenite via arsenate reductase (Gasu_63270, EC 1.20.4.1). Arsenite is then pumped out 

of the cell by ArsB, a plasma membrane arsenic pump. Phylogenetic analysis revealed the 

ArsB to be of prokaryotic origin, namely from thermoacidophilic species, and was probably 

acquired via horizontal gene transfer. Furthermore, both genes encoding ArsB (Gasu_31570 

& Gasu_56050) do not contain any introns, whereas 72.4% of genes in G. sulphuraria do 

contain introns (Schönknecht, et al. 2013). Salt tolerance is also partially achieved by 

employing a membrane transporter. The monovalent cation/proton antiporter, i.e. Na+:H+ 

antiporter, allows G. sulphuraria to exchange sodium ions with protons. Seven different 

genes encode this type of antiporter. Based on their position in a phylogenetic tree, five of the 

antiporters are localized either to the plasma membrane or internally, i.e. an organellar 

membrane. The localization of the other two antiporters are currently unknown; however, the 

genes encoding them have been acquired via horizontal gene transfer from bacteria 

(Schönknecht, et al. 2013). 

 

WHERE THERE’S LIFE, THERE’S NAD+ 

NAD+, nicotinamide adenine dinucleotide, is a coenzyme essential for each living 

cell. NAD+ functions in redox biochemistry and energetic metabolism as an electron carrier 

and cofactor of oxidoreductases without being consumed. NAD+ is consumed in ADP-ribose 

transfer reactions where it serves as a substrate for the synthesis of the Ca2+-mobilizing 

second messengers cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide 

phosphate (NAADP) (Belenky, et al. 2007; Pollak, et al. 2007; Noctor, et al. 2011). These 

NAD+-consuming reactions require continuous de novo biosynthesis. In addition, so-called 

salvage pathways recycle components containing a nicotinamide ring (i.e., nicotinic acid, 

nicotinamide, nicotinamide ribose) (Fig. 2); these components result from NAD+ cleavage or 
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are taken up with food (in heterotrophic organisms) (Preiss and Handler 1958; Katoh and 

Hashimoto 2004). De novo NAD+ biosynthesis in all free-living, eukaryotic organisms is 

achieved by one of two de novo pathways, the aspartate pathway (Griffith, et al. 1975) or the 

kynurenine pathway starting with tryptophan (Gaertner and Subbayya Shetty 1977). Both 

pathways converge at the intermediate quinolinate, which in three additional reaction steps is 

converted into NAD+ (Fig. 2). 

The kynurenine pathway has long been characterized for animals and fungi (Beadle, 

et al. 1947), but more recently for bacteria (Kurnasov, et al. 2003). In humans, metabolic 

intermediates of the kynurenine pathway serve an important role in neurophysiology and 

have implications for neurodegenerative diseases (Schwarcz, et al. 2012). Yeast strains 

lacking any of the kynurenine pathway enzymes require nicotinic acid for normal growth 

(Panozzo, et al. 2002). With the sequencing of two red algae, C. merolae (Matsuzaki, et al. 

2004) and G. sulphuraria (Schönknecht, et al. 2013), it became clear that red algae employ 

the kynurenine pathway as well (Schönknecht, et al. 2013; Ternes and Schönknecht 2014). In 

contrast, land plants and green algae encode the aspartate pathway, which is commonly 

referred to as the bacterial pathway (Katoh, et al. 2006; Lin, et al. 2010). The aspartate 

pathway is localized to the plastid in Arabidopsis thaliana, and A. thaliana genes encoding 

aspartate pathway enzymes have been shown to complement E. coli knockout mutants 

(Katoh, et al. 2006). Green algae Chlamydomonas reinhardtii mutants lacking any of the five 

genes converting aspartate into NAD+ require supplemental nicotinamide for growth (Lin, et 

al. 2010). 

GALDIERIA SPP. ALGAE EXCRETE PORPHYRINS 

When supplemented with aminolevulinic acid (ALA), Cyanidium caldarium was 

observed excreting fluorescent pigments into the culture medium (Troxler and Bogorad 
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1966). In much of the older literature (before sequencing technology rapidly improved), G. 

sulphuraria was commonly referred to as Cyanidium caldarium. After the sequencing of the 

G. sulphuraria genome (sequenced in 2004), it became known that what many had thought 

was C. caldarium, was indeed G. sulphuraria. Later, another species of Cyanidiophyceae red 

algae, Galdieria partita, was also observed excreting fluorescent pigments during cultivation 

when supplemented with glucose (Stadnichuk, et al. 1998). Identification of the pigments was 

achieved by both Troxler and Bogorad (1966) and Stadnichuk, et al. (1998) via 

chromatography in conjunction with absorption and emission (fluorescence) spectroscopy. 

Both studies concluded the pigments were porphyrins, cyclic tetrapyrroles that serve as 

precursor metabolites for other photosynthetic pigments including chlorophyll and 

cytochromes. 

Troxler and Bogorad (1966) did not speculate as to the potential function of 

porphyrin excretion, nor the mechanism by which it occurred, because porphyrin excretion 

was only observed when C. caldarium cultures were supplemented with δ-aminolevulinic 

acid (ALA), the first metabolite in the tetrapyrrole biosynthetic pathway. Likewise, porphyrin 

excretion in C. caldarium was also observed in a later study and appeared to be dependent 

upon incubation with an additional compound, specifically N-methylprotoporphyrin IX 

(NMP), a phycocyanobilin biosynthesis inhibitor; incubations with both ALA and NMP 

resulted in porphyrin excretion (Brown, et al. 1982). Growth studies conducted on G. partita 

observed excretion of porphyrins when supplied with exogenous glucose (Stadnichuk, et al. 

1998). The excretion of porphyrins by G. partita was attributed to an inhibitory effect on 

chlorophyll a and phycocyanobilin biosynthesis caused by D-glucose. Yet, Stadnichuk, et al. 

(1998) provide no evidence supporting inhibition of pigment biosynthesis by D-glucose. It 

seems that the conclusions drawn by Stadnichuk, et al. (1998), whereby porphyrin excretion 

is the result of an inhibitory effect by D-glucose, are merely based on the similar results 
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presented by Troxler and Bogorad (1966) and Brown, et al. (1982). In mature leaves, a 

correlation between D-glucose and the inhibition of photosynthetically-driven carbohydrate 

biosynthesis, owing to source-sink regulation, has been previously observed in terrestrial 

plants (Sheen 1990; Rolland, et al. 2006). Given that all species within Cyanidiophyceae are 

unicellular, source-sink regulation hardly seems applicable. Furthermore, Stadnichuk, et al. 

(1998) made direct comparisons between heterotrophic and photoautotrophic cultures despite 

the approximately 25-fold difference in cell density. There was no mention of the correlation 

between porphyrin excretion and overall cell density of the cultures. Thus, further 

investigation is required surrounding the potential ‘trigger’ for porphyrin excretion, in 

addition to the biological significance of the phenomenon. 
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CHAPTER III 
 

 

METHODOLOGY 

 

ENZYME AND METABOLIC PATHWAY ANNOTATION 

A preliminary protein annotation spreadsheet assembled by bioinformatics scripts and 

pipelines was initially provided by Wei-Hua Chen to begin enzyme and metabolic pathway 

annotation. The spreadsheet included all relevant information about the protein sequences, i.e. 

GeneID number (Gasu_#), amino acid sequence and length, in addition to the best bi-directional 

BLASTP (Altschul, et al. 1997) hit at NCBI (Pruitt, et al. 2007) using the non-redundant 

database, the C. merolae genome BLAST database (http://merolae.biol.s.u-tokyo.ac.jp), and The 

Arabidopsis Information Resource (Lamesch, et al. 2011). Gene Ontology (The Gene Ontology, 

et al. 2000) and Mercator (Lohse, et al. 2014) BLAST results were also provided for all protein 

sequences. Both annotation programs classify protein sequences by assigning a ‘functional term’ 

to a particular protein sequence, e.g. amino acid biosynthesis, lipid metabolism, etc., that can be 

used for organizing and annotating protein sequences. Along with the preliminary spreadsheet 

mentioned above, another spreadsheet was provided containing BLASTP results generated from 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000). All 

predicted protein sequences (6,623 in total) from G. sulphuraria were submitted to BLASTP at 

KEGG, and the best BLASTP hit (BLASTing against all organisms in the KEGG database) for 

each predicted protein sequence was recorded. Furthermore, in addition to the ‘BLAST against
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all’approach, all predicted protein sequences from G. sulphuraria were BLASTed against 

different, organismal databases at KEGG (plants and fungi, archaea, bacteria, and cyanobacteria) 

due to the unique characteristics of G. sulphuraria, i.e. high frequency of horizontal gene transfer 

and high degree of metabolic diversity. All best bi-directional BLASTP hits were recorded for 

each predicted protein sequence.  

The Kyoto Automatic Annotation Server (KAAS) (Moriya, et al. 2007) was used to 

generate a set of preliminary metabolic pathway maps based on the pathway map templates used 

by KEGG. KAAS assigns enzyme classes (EC), which are organized by the type of reactions, to 

protein sequences based on ‘best BLAST hit information’. For example, a submitted query 

protein sequence is BLASTed against the protein sequences in the KEGG database, and based on 

the degree of ‘best hit information’, the query protein sequence is assigned to an enzyme class 

associated with a particular enzymatic reaction (see Moriya, et al. (2007) for details). Five 

different sets of KEGG metabolic pathway maps were generated in total for G. sulphuraria. The 

first set of pathway maps were based on the ‘BLAST against all’ approach mentioned above; no 

specific organismal database at KEGG was selected to serve as a ‘reference’ for generating 

pathway maps. The remaining four sets of pathway maps were generated from using the specific 

organismal databases mentioned above to serve as a ‘reference’, i.e. plants and fungi, archaea, 

bacteria, and cyanobacteria. All annotation data generated from KAAS, such as GeneID number 

(Gasu_#), EC number, and predicted enzyme annotation (enzyme class assignment via KAAS) 

was compiled in a spreadsheet to directly compare the different KAAS protein annotations using 

the ‘BLAST against all’ approach and the four different ‘reference’ databases, e.g. KAAS results 

could potentially provide five different annotations for a given predicted protein sequence. The 

resulting five different sets of metabolic pathway maps were manually inspected and consolidated 

to construct a final set of pathway maps using the KEGG Search & Color module (91 individual 

pathway maps in total). If the KAAS annotations for a predicted protein sequence was unanimous 
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for at least three of the five KAAS annotation assignments, the protein sequence was assigned 

that particular annotation after performing an additional BLASTP search at NCBI using the non-

redundant database and conserved domain searches using the Conserved Domain Database 

(CDD) (Marchler-Bauer, et al. 2011), InterProScan (Zdobnov and Apweiler 2001), and HMMer 

(Finn, et al. 2011) to ensure congruency. 

For instances where no protein sequence was assigned to a specific enzyme class, i.e. 

there was a ‘gap’ in a metabolic pathway, reference sequences from other organisms were used to 

BLAST against the G. sulphuaria genome (http://genomics.msu.edu/cgi-bin/galdieria/blast.cgi) to 

manually search for potential candidates. Reference sequences were retrieved from databases 

including NCBI RefSeq (Pruitt, et al. 2007), TAIR (Lamesch, et al. 2011), and BRENDA 

(Scheer, et al. 2011). Subsequent protein annotations were made with the aid of BLAST searches 

from NCBI and Uniprot (Consortium 2014) and conserved domain searches using the Conserved 

Domain Database (CDD) (Marchler-Bauer, et al. 2011), InterProScan (Zdobnov and Apweiler 

2001), and HMMer (Finn, et al. 2011). In several instances the KAAS generated false positives 

for a given enzyme. False positives usually resulted from using bacteria as the ‘reference’ 

organismal database, whereas the other three ‘reference’ databases (fungi and plant, archaea, and 

cyanobacteria) usually did not make an assignment. Putative false positives were not immediately 

discredited due to the potential of being a horizontally acquired gene. Protein sequences were 

subjected to the battery of BLAST and conserved domain searches mentioned above. If BLAST 

and domain searches were congruent with the KAAS annotation using bacteria as the ‘reference’ 

organismal database, the protein was considered to be a horizontal gene transfer candidate and 

was further investigated phylogenetically and statistically by Gerald Schönknecht.  

Numerous studies, including EST datasets, have previously reported characterized and 

assayed enzymes from G. sulphuraria. Table A1 (appendix) shows a compilation of the literature 
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describing enzymes in G. sulphuraria in comparison with enzymes that have been annotated in 

the genome of G. sulphuraria. 

 

PHYLOGENETIC TREE CONSTRUCTION AND TOPOLOGY TESTING (DE NOVO 

NAD+ BIOSYNTHESIS) 

Homologous protein sequences were identified by BLAST (Altschul, et al. 1997) 

searches at NCBI (Pruitt, et al. 2007), KEGG (Kanehisa, et al. 2014), http://genome.jgi.doe.gov/, 

http://www.broadinstitute.org, http://cyanophora.rutgers.edu, and collected using MEGA 5 

(Tamura, et al. 2011). Individual BLAST searches were carried out separately for different clades 

for broad phylogenomic sampling, e.g. an animal sequence was used as a query to BLAST 

against all animals. Both incomplete and/or highly redundant sequences were removed. No 

sequences were allowed to share greater than 90% amino acid identity in attempt to remove 

highly similar (or redundant) sequences, i.e. multiple isoforms. The NCBI GeneID number for 

each sequence is displayed in the phylogenetic tree. Multiple sequence alignments were generated 

with T-COFFEE (Notredame, et al. 2000) using the ‘accurate’ mode. The ‘accurate’ mode 

BLASTs all sequences (to be aligned) at NCBI to generate a sequence profile. The sequence 

profiles are used to search the database (PDB) (Berman, et al. 2000) looking for structural 

templates. The structural templates are then aligned, which are used with homology extension for 

generating the multiple sequence alignment (Di Tommaso, et al. 2011; Taly, et al. 2011). T-

COFFEE ‘scores’ each position within the alignment based on the degree of conservation with ‘9’ 

being the most conserved and ‘1’ being the least conserved. High scoring portions of multiple 

sequence alignments (T-COFFEE score 5 to 9) were extracted in order to retain the most highly 

conserved regions of the (amino acid) multiple sequence alignment and also remove regions 

containing lengthy gaps (Talavera and Castresana 2007). The scenario in which a different score 

was used is when extraction of high scoring blocks (5 to 9) resulted in an overall alignment length 
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of less than 200 amino acids. In these cases (nicotinate-nucleotide adenylyltransferase and 

tryptophan 2,3-dioxygenase alignments) a score of 3 to 9 was used instead. Deviations from the 

aforementioned 5 to 9 high scoring blocks extraction are also mentioned in the figure legends. 

The best model of protein evolution estimated to fit the multiple sequence alignment best was 

generated by ProtTest (Abascal, et al. 2005). The best model, in most cases LG+I+G (deviations 

mentioned in figure legend), was used to generate phylogenetic trees with PhyML 3.0 (Guindon 

and Gascuel 2003) estimating branch support values by non-parametric bootstrap with 200 

replicates. The LG model of protein evolution is not implemented in the MPI version of MrBayes 

v3.1.2 (Altekar, et al. 2004), and the best model implemented for all but one multiple sequence 

alignment (specified in figure legend) was WAG+I+G. MrBayes was run with 12 chains at a 

temperature of 0.05 for 5,000,000 generations sampling every 100th generation. The first 25% of 

samples were considered ‘burn in’, thus being ignored when calculating parameters and 

consensus tree. Trace files from Bayesian MCMC runs were inspected with Tracer 1.6 

(http://beast.bio.ed.ac.uk/Tracer) to ensure that likelihoods beyond the 25% cutoff had converged 

and stabilized, and also showed an approximately Gaussian distribution. The phylogenetic trees 

displayed are unrooted Bayesian trees with larger clades collapsed. Support values >50% are 

shown above the branches. Bootstrap support values as calculated by PhyML 3.0 are shown as 

percentages below the branches; only support values >50% are given. 

Alternative evolutionary scenarios, with specific clades constrained as monophyletic, 

were tested using likelihood values. All constrained and unconstrained Bayesian trees were 

constructed using MrBayes v3.1.2, and the harmonic mean (H) and Akaike's information criterion 

through Markov chain Monte Carlo (AICM) (Baele, et al. 2012) of log-likelihood values from the 

stationary phase of Bayesian analyses were calculated by Tracer 1.6. Differences between 

harmonic means (ΔH) and differences between AICM values (ΔAICM) usually showed a ratio 

close to ΔH ≈ ΔAICM/-2, as expected. Constraint trees were regarded significantly different from 
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the unconstrained tree when ΔH > 3 SD (SD, standard deviation of log-likelihood values as 

calculated by Tracer 1.6, ranging from 10.6 to 16; using the larger SD between the constrained 

and unconstrained tree), and -ΔAICM > 6 SD. Constrained and unconstrained maximum 

likelihood trees were generated using RAxML 8.0 (Stamatakis 2006) using the same model of 

protein evolution as for PhyML 3.0 mentioned above. However, a defined number of bootstrap 

replicates was not specified. Rather, RAxML 8.0 was allowed to determine the adequate number 

of bootstrap replicates, i.e. bootstopping (-# autoMRE command), based on convergence. Once 

support values stabilized, or converged, the current number of bootstrap replicates was considered 

sufficient. The best scoring (lowest log-likelihood) maximum likelihood tree from the bootstrap 

analysis was used for further statistical analysis in both cases of unconstrained and constrained 

trees. RAxML 8.0 was also used to calculate site-likelihood values to use as input for CONSEL 

(Shimodaira and Hasegawa 2001) to calculate p-values of the Kishino-Hasegawa (KH) test and 

the approximate unbiased (AU) test (Shimodaira 2002). At p-values <5%, log-likelihood values 

of constraint trees were regarded as significantly lower. 

 

G. SULPHURARIA LIQUID CULTURES 

Phototrophic G. sulpharia cells were grown in liquid medium according to Gross and 

Schnarrenberger (1995a). Liquid culture medium was supplemented with D-glucose, yielding 

final concentrations of 50 mM, 100 mM and 200 mM. Culture flasks were wrapped in aluminum 

foil, incubated at 37°C, and shaken continuously at 200 rpm. Biomass (absorbance at 800 nm), 

porphyrin concentration (absorbance at 400 nm), and glucose concentration were measured every 

day and every three days after stationary growth was reached. Due to the relatively long (initial) 

lag phase of G. sulphuraria cells, cultures were not successfully grown continuously in the 

exponential growth phase, as is routinely done for algal cultures in general. Glucose 

concentrations were measured using the dinitrosalicylic acid assay (Miller 1959). 
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SPECTROSCOPY & RELATIVE FLUORESCENCE QUANTUM YIELD 

 The method for determining the relative fluorescence quantum yield (ΦF) of the 

porphyrin mixture excreted by G. sulphuraria was adapted from Würth, et al. (2013) and Horiba 

(2014). Experimental determination of the absolute fluorescence quantum yield is complex and 

requires special equipment. In practice, one usually determines the relative fluorescence quantum 

yield (Crosby and Demas 1971; Würth, et al. 2013). The relative fluorescence quantum yield was 

determined by comparing the porphyrin mixture to well-characterized fluorescence standards, i.e. 

Coumarin 102 and Coumarin 153, whose fluorescence quantum yields are known (Rurack and 

Spieles 2011). Using the equation below (Eq. 1), the relative fluorescence quantum yield (ΦF) for 

the porphyrin mixture was determined.  

 , Eq. (1) 

where A is the absorbance at the excitation wavelength, F is the integrated area under the 

corrected emission curve (expressed in number of photons), and η is the refractive index of the 

solvents used; subscripts ST and X refer to the standard and to the substance of interest, 

respectively. For the equation above, it is critical to ensure that the absorbance values for both the 

standard and the unknown sample are equal at the desired wavelength. Significant differences in 

absorbance values between the standard and the unknown sample at the desired wavelength 

requires considerably more calculations in addition to Eq. 1 above (Würth, et al. 2013). The 

wavelength at which absorbance spectra overlap, i.e. absorbance values for both the standard and 

the unknown sample are equal at a given wavelength, is referred to as a ‘cross point’ (Fig. 7). By 

using the wavelength at which the cross point (of the absorption spectra) resides as the excitation 

wavelength, it can be assumed that both samples are absorbing the same amount of light at that 

particular wavelength. Thus, the amount of fluoresced light is a direct result of the molecule’s 

fluorescence quantum yield, i.e. if both samples are excited with the same number of photons 

2
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(equal absorbance values), but one sample has a larger fluorescence intensity, that is a relative 

indicator of the fluorescence quantum yield. 

Fig. 7: Using overlapping absorption spectra to 

determine the excitation wavelength for emission 

spectra taken from Würth, et al. (2013). The 

position at which the two absorption spectra 

overlap (indicated by red circle) signifies a cross 

point. The wavelength at which the cross point 

resides indicates the best wavelength to be used as 

the excitation wavelength for collecting emission 

spectra (red line below red circle). 

Fig. 8: Linear regression showing 

integrated fluorescence as a function of 

absorbance [F=f(A)] taken from Horiba 

(2014). The slope values for Gradient A 

and Gradient B are determined via linear 

regression, which are proportional to the 

fluorescence quantum yield, and are used 

as the Grad values in Eq. 2 and Eq. 3 

below. 

Emission (or fluorescence) spectra were then collected for all of the concentration 

dilutions for both the standard and the unknown sample using the cross point wavelength as the 

excitation wavelength. The resulting emission spectra were integrated individually (summation of 

the area under the emission curve), to determine the number of photons that were fluoresced by 

the standard and the unknown sample. A series of both absorbance and emission spectra were 

recorded at five different concentrations for the standard and the unknown sample to plot F=f(A) 
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(integrated fluorescence as a function of absorbance), where the slope was determined via linear 

regression (Grad =F/A) (Fig. 8). By using identical solvents with identical refractive indices (ηX
2 

= ηST
2, when possible) for both, the standard and the unknown sample, Eq. 1 can be simplified to  

,    Eq. (2) 

where Grad is the slope value as determined by linear regression. Using the slope values 

generated via linear and the published fluorescence quantum yield value for the standard, 

determination of the relative fluorescence quantum yield for the unknown sample was achieved. 

Absorption spectra were collected with a Shimadzu UV-1800 UV-Vis spectrophotometer 

using Hellma 10 mm 104B-QS cuvettes. Fluorescence standards Coumarin 102 (CAS 41267-76-

9) and Coumarin 153 (CAS 53518-18-6) were purchased from Sigma-Aldrich, and were chosen 

as the fluorescence standards because they both exhibited similar absorption spectra when 

compared to the absorption spectra of porphyrin mixture excreted by G. sulphuraria (see 

Findings, Fig. 41). All solutions were diluted to concentrations with low absorbance values (A < 

0.1) at the excitation wavelength to minimize inner filter effects. Two major components 

contribute to inner filter effects: reabsorption of fluoresced or emitted light and insufficient 

excitation of the sample, both of which can yield lower, underestimated values for the total 

amount of fluoresced light (Dhami, et al. 1995; Lakowicz 2009). Reabsorption, whereby the 

sample reabsorbs fluoresced light, was assumed to be a nonissue due to the large Stoke’s shift 

(distance between maximum absorption peak and maximum emission peak) exhibited by both 

fluorescence standards and the porphyrin mixture. Overlap between the absorption and emission 

spectra was insignificant for both fluorescence standards and the porphyrin mixture. Another 

component contributing to inner filter effects is high sample concentrations. High sample 

concentrations (where A > 0.1) can lead to unevenly distributed excitation light throughout the 

F(X) F(ST) X STGrad GradΦ Φ =
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sample, whereby not all of the molecules are equally excited, again resulting in underestimated 

values of total fluoresced light (Lakowicz 2009). 

The maximum absorption peak for the porphyrin mixture was 400 nm, the wavelength at 

which light was strongly absorbed. Therefore, the excitation wavelength used for determining the 

fluorescence quantum yield needed to be as close to 400 nm as possible. Preliminary absorption 

spectra were collected in order to determine which concentrations of both fluorescence standards 

and the porphyrin mixture would yield a cross point wavelength closest to 400 nm. The cross 

point (and excitation) wavelength chosen was 404 nm. All of the absorbance spectra for both 

fluorescence standards and the porphyrin mixture crossed at 404 nm. Five different concentration 

dilutions, all with A < 0.1 and absorption spectra crossing at 404 nm at each respective 

concentration, were made for both fluorescence standards and the porphyrin mixture.  

Emission (fluorescence) spectra were collected using a Horiba Fluoromax-3 fluorescence 

spectrometer with Hellma 10 mm 111 cuvettes using an excitation wavelength of 404, the cross 

point wavelength of the absorption spectra. As both fluorescence standards, Coumarin 102 and 

Coumarin 153, were dissolved in ethanol, a baseline ethanol emission spectrum was subtracted 

from emission spectra for both Coumarin standards. A baseline water emission spectrum was 

subtracted from the porphyrin mixture emission spectrum as well. In addition, emission spectra 

were ‘corrected’ for all samples. The emission correction factors used to produce ‘corrected 

emission spectra’ were previously generated and integrated into the DataMax software by the 

Fluoromax-3 manufacturer (Horiba) in order to remove any type of bias introduced by the 

fluorescence spectrometer. This bias includes any (manufacturer specific) settings that may be 

used by the fluorescence spectrometer that could result in small changes in the emission spectrum 

simply as a result of which machine was used (Würth, et al. 2013). IGOR Pro 6 

(www.wavemetrics.com) was used for integrating the area under emission spectra to determine 

the total number of photons emitted, or fluoresced. To determine the slope values [Grad = F(A)], 
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when integrated fluorescence was plotted as a function of absorbance [F=f(A)], a linear regression 

was performed using GraphPad Prism 6 (www.graphpad.com). 

Both fluorescence standards, Coumarin 102 and Coumarin 153, were cross-calibrated with 

one another. This step was crucial in order to determine if the published values for the 

fluorescence standards could be reproduced before attempting to determine the fluorescence 

quantum yield of the porphyrin mixture. As mentioned above, both Coumarin 102 and Coumarin 

153 were dissolved in ethanol; therefore, Eq. 2 was used to calculate the relative fluorescence 

quantum yield for the fluorescence standards. However, the porphyrin mixture was dissolved in 

water. Thus, Eq. 3, which still accounts for solvents with differing refractive indices, was used to 

calculate the relative fluorescence quantum yield of the porphyrin mixture excreted by G. 

sulphuraria. 

Eq. (3) 

 

 

 

ΦF(X) = ΦF(ST)

Grad
X

⋅ηX
2

GradST ⋅ηST
2
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CHAPTER IV 
 

 

FINDINGS 

 

In total, 91 KEGG metabolic pathway maps were annotated and constructed for the G. 

sulphuraria genome; however, only 11 out of the 91 are presented here. Core metabolic 

pathways, many that contain enzymes unique to G. sulphuraria, are shown below. Furthermore, 

metabolic pathway maps associated with carbon metabolism are shown to emphasize the diversity 

of carbon metabolism in G. sulphuraria, in addition to pathway maps depicting metabolic 

pathways unique to G. sulphuraria. Not all pathways possess enzymes encoded by genes 

acquired via horizontal gene transfer, as is common in G. sulphuraria, but display a metabolic 

diversity otherwise not characteristic for land plants and algae. 

CORE METABOLIC PATHWAYS IN G. SULPHURARIA 

As expected, G. sulphuraria possesses the core carbon metabolic pathways common 

throughout all eukaryotes. Glycolysis and a complete citric acid (TCA) cycle including the 

pyruvate dehydrogenase complex were annotated (Figs. 9 & 10). Similar to animals, 

photosynthetic eukaryotes require the ability to synthesize glucose from organic acids, such as 

lactate and pyruvate, in a process known as gluconeogenesis (Rylott, et al. 2003). The 

gluconeogenesis pathway is very similar to glycolysis, but occurs in reverse for carbohydrate 

biosynthesis. Both glycolysis and gluconeogenesis employ the same enzymes, with a few 

exceptions where the enzymatic reactions for glycolysis are thermodynamically unfavorable for
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gluconeogenesis (Voet and Voet 2004). These irreversible enzymatic reactions of glycolysis are 

replaced in the gluconeogenic pathway with enzymes favoring the reverse reaction. G. 

sulphuraria, in addition to land plants and algae, share two enzymes in common with animals for 

gluconeogenesis, phosphoenol-pyruvate carboxykinase (Gasu_48040, EC 4.1.1.49), which 

synthesizes phosphoenolpyruvate from oxaloacetate, and fructose-1,6-bisphosphatase (4 genes, 

EC 3.1.3.11), which generates fructose-6-phosphate (Fig. 9). Plants and most algae, including G. 

sulphuraria and red algae, do not encode the animal-characterized gluconeogenic enzyme 

pyruvate carboxylase (EC 6.4.1.1) (Fig. 10), which synthesizes oxaloacetate. Although 

oxaloacetate is a TCA cycle intermediate, it also serves an intermediate in gluconeogenesis in 

animals. Instead, G. sulphuraria encodes a pyruvate, water dikinase (Gasu_42070, EC 2.7.9.2) 

(Fig. 12), which yields phosphoenolpyruvate (PEP) directly from pyruvate, bypassing 

oxaloacetate formation. Land plants and algae can also catalyze the formation of 

phosphoenolpyruvate directly from pyruvate; however, they possess pyruvate, orthophosphate 

dikinase (EC 2.7.9.1) instead of pyruvate, water dikinase (EC 2.7.9.1). It appears that 

gluconeogenesis in G. sulphuraria does not require the intermediate oxaloacetate, similar to land 

plants and algae. Bypassing the oxaloacetate intermediate also allows G. sulphuraria to operate 

gluconeogenesis, while sparing oxaloacetate for the TCA cycle. G. sulphuraria possesses a 

glucose-6-phosphate isomerase (Gasu_20100 & Gasu_55050, EC 5.3.1.9) (Fig. 9), which yields 

either α-D-glucose-6-phosphate or β-D-glucose-6-phosphate. It appears that α-D-glucose-6-

phosphate and/or β-D-glucose-6-phosphate represent the end product of gluconeogenesis in G. 

sulphuraria, similar land plants and most algae, whereas α-D-glucose is the gluconeogenic end 

product in animals via glucose-6-phosphatase (EC 3.1.3.9) (Fig. 9).  
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Fig. 9: Glycolysis and gluconeogenesis pathways (KEGG pathway 00010 (Kanehisa, et al. 2014)). 

Enzymes marked in red and yellow have been annotated in the G. sulphuraria genome. Enzymes 

marked in yellowed have been marked for easy identification and are directly referenced in the 

main text. The enzyme covered by large X (glucose-6-phosphatase, EC 3.1.3.9), commonly 

annotated in the gluconeogenesis pathway in animals, could not be detected in the G. sulphuraria 

genome. 
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Fig. 10: The TCA cycle (KEGG pathway 00020 (Kanehisa, et al. 2014)). Enzymes marked in red 

have been annotated in the G. sulphuraria genome. Pyruvate carboxylase (EC 6.4.1.1) was 

surprisingly absent from the G. sulphuraria (indicated by large X) despite being characteristic for 

green algae and localized in the plastid of the haptophyte alga Emiliania huxleyi, which possesses 

a plastid of red algal origin (Tsuji, et al. 2012). 

Of the alternative glycolytic reactions present in green plants, but absent in most other 

eukaryotes, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (Gasu_00840 & 

Gasu_43210; EC 1.2.1.9) (Fig. 9), which functions in carbohydrate partitioning and storage in 

heterotrophic cells (Piattoni, et al. 2011), is present in G. sulphuraria. Additionally, G. 

sulphuraria encodes a pyrophosphate-dependent phosphofructokinase (Gasu_20900, EC 

2.7.1.90), which has been proposed to be involved in stress response, such as low oxygen and 

phosphate availability (Mustroph, et al. 2007) (Fig. 11). Phosphoenolpyruvate phosphatase (EC 
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3.1.3.60; not shown), which also produces pyruvate from phosphenolpyruvate and functions in 

land plants to bypass pyruvate kinase (4 genes, EC 2.7.1.40) (Fig. 12) under decreased 

phosphate levels (Duff, et al. 1989), could not be detected in the G. sulphuraria genome. Similar 

to other eukaryotes, fructose 2,6-bisphosphate is synthesized and degraded by a bifunctional 

enzyme, 6-phosphofructo-2-kinase / fructose-2,6-bisphosphatase (Gasu_45440 & 

Gasu_55220, EC 2.7.1.105, EC 3.1.3.46) (Fig. 11). Fructose-2,6-bisphosphatase is a crucial 

enzyme in plant physiology and metabolism. Fructose-2,6-bisphosphate, the substrate for 

fructose-2,6,-bisphosphatase, controls carbon partitioning by coordinating glycolysis, 

gluconeogenesis, and sucrose biosynthesis, ultimately coordinating respiration and carbohydrate 

(sucrose) biosynthesis (Nielsen, et al. 2004). It seems reasonable to assume that fructose-2,6-

bisphosphate in G. sulphuraria controls carbon partitioning, similar to land plants. 
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Fig. 11: Fructose and mannose metabolism (KEGG pathway 00051 (Kanehisa, et al. 2014)). 

Enzymes marked in red and yellow have been annotated in the G. sulphuraria genome. Enzymes 

marked in yellowed have been marked for easy identification and are directly referenced in the 

main text. Although the pathway map shows many uncolored boxes (enzymes not annotated in the 

G. sulphuraria genome), it does show alternative glycolytic reactions metabolizing 

phosphorylated β-D-fructose (EC 3.1.3.11 & EC 2.7.1.90) and the bifunctional enzyme 6-

phosphofructo-2-kinase / fructose-2,6-bisphosphatase (EC 2.7.1.105, EC 3.1.3.46) which is 

essential in plant physiology and biochemistry (Nielsen, et al. 2004). 
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Fig. 12: Pyruvate metabolism (KEGG pathway 00620 (Kanehisa, et al. 2014)). Enzymes marked 

in red and yellow have been annotated in the G. sulphuraria genome. Enzymes marked in 

yellowed have been marked for easy identification and are directly referenced in the main text. 

Enzymes covered by large X (pyruvate carboxylase, EC 6.4.1.1; L-lactate dehydrogenase, EC 

1.1.1.27), was absent from the G. sulphuraria genome (see Fig. 10 caption for EC 6.4.1.1).  

 

Methylglyoxal is a ubiquitous, cytotoxic byproduct most commonly associated with 

glycolysis. The non-enzymatic removal of phosphate from two glycolysis intermediates, 

dihydroxyacetone phosphate and glyceraldehyde phosphate, results in the production of 

methylglyoxal, which is enhanced under salt and heavy metal stress (Engqvist, et al. 2009), of 
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which G. sulphuraria is commonly exposed. The most common pathway used for detoxification 

utilizes two enzymes: lactoylglutathione lyase (glyoxalase I; Gasu_09680 & Gasu_49880, EC 

4.4.1.5) and hydroxyacylglutathione hydrolase (glyoxalase II; Gasu_21860, Gasu_08440, & 

Gasu_57940, EC 3.1.2.6) (Fig. 12). The enzymatic product of hydroxyacylglutathione hydrolase 

is D-lactate [(R)-lactate], which has been shown to be an accumulated fermentation product and 

does not appear to be further metabolized in G. sulphuraria under anaerobic conditions (Lafraie 

and Betz 1985). Methylglyoxal also accumulates in E. coli when grown using glycerol as a sole 

carbon source under anaerobic conditions (Zhu, et al. 2001). The G. sulphuaria genome encodes 

for D-lactate dehydrogenase (Gasu_43520, EC 1.1.1.28) and D-lactate dehydrogenase 

[cytochrome] (Gasu_04450 & Gasu_38460, EC 1.1.2.4), which both catalyze the reversible 

formation of pyruvate from D-lactate for further methylglyoxal detoxification, and also pyruvate 

fermentation under anaerobiosis (Fig. 12). Gasu_00450 and Gasu_38460 have 29% and 45% 

amino acid identity, respectively, to the D-lactate dehydrogenase [cytochrome] characterized in 

Arabidopsis thaliana (At5g06580), which has a strong preference for D-lactate, significantly 

more so than for L-lactate (Engqvist, et al. 2009). Interestingly, G. sulphuraria does not encode 

an L-lactate dehydrogenase (EC 1.1.1.27) (Fig. 12) indicating G. sulphuraria neither produces L-

lactate, nor can readily degrade it in contrast with land plants and C. merolae, another 

Cyanidiophyceae red alga. Thus, both anaerobic fermentation and methylglyoxal detoxification in 

G. sulphuraria proceed through the intermediate D-lactate, in contrast to plants and C. merolae, 

which seem to generate L-lactate during anaerobiosis. 



41 

 

 

Fig. 13: Oxidative pentose phosphate pathway (KEGG pathway 00030 (Kanehisa, et al. 2014)). 

Enzymes marked in red and yellow have been annotated in the G. sulphuraria genome. Enzymes 

marked in yellow, transaldolase (Gasu_24580, EC 2.2.1.2), phosphogluconate dehydrogenase 

(Gasu_02940, EC 1.1.1.44), ribulose-phosphate 3-epimerase (Gasu_18200, EC 5.1.3.1), 6-

phosphogluconolactonase (Gasu_43900, EC 3.1.1.21), are encoded by a single gene, possibly 

indicating one (cellular) location for the pentose phosphate pathway. Enzymes marked in red are 

encoded by two or more genes in the G. sulphuraria genome. 

As expected, the oxidative pentose phosphate pathway (OPPP) is complete in G. sulphuraria 

(Fig. 13). The OPPP serves many functions, such as regenerating NADPH, a reducing agent 

commonly employed in biosynthetic processes, being one of the most important. Additionally, 

the OPPP generates (four carbon) erythrose-4-phosphate and (five carbon) ribose-5-phosphate 

sugar intermediates used as precursors for aromatic amino acid biosynthesis and nucleic acid 
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biosynthesis, respectively. Several enzymes are encoded by a single gene (Fig. 13, yellow boxes), 

indicating this pathway probably exists either in the cytosol or in the plastid in G. sulphuraria. In 

contrast, land plants and green algae operate the oxidative pentose phosphate pathway in the 

cytosol, as well as the plastid (Kruger and von Schaewen 2003). The Calvin-Benson cycle, 

responsible for converting CO2 into carbon molecules readily metabolized by the cell, is also 

present in its entirety (not shown). The pathways shown above represent some of the core 

metabolic pathways in G. sulphuraria involved in carbon metabolism. No comment can be made 

regarding enzymes resulting from horizontal gene transfer as no evolutionary trees were 

constructed. Yet, several examples are given that illustrate the metabolic diversity of G. 

sulphuraria, even in core metabolic pathways that are common to eukaryotes as a whole. 

The genome appears to be very close to complete given that for each enzymatic step in 

the aforementioned metabolic pathways, (at least) one protein has been annotated. The glyoxylate 

cycle appears (after exhaustive searching) to be incomplete. The two enzymes unique to this 

cycle, isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 2.3.3.9), are absent from the genome 

and also appear absent from other sequenced red algae based on BLAST searches (Fig. 14). This 

suggests that substrates ultimately degraded to acetyl-CoA in G. sulphuraria (and red algae) are 

directly incorporated into the citric acid cycle, forgoing carbohydrate biosynthesis. 
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Fig. 14: Glyoxylate and dicarboxylate metabolism (KEGG pathway 00630 (Kanehisa, et al. 

2014)). Enzymes marked in red have been annotated in the G. sulphuraria genome. Enzymes 

covered by a large X, isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 2.3.3.9), could not be 

detected in the genome resulting in a missing glyoxylate cycle, in contrast with many 

photosynthetic, eukaryotic lineages including land plants, some green algae, and stramenopiles. 

 

TRANSPORT SUGARS IN G. SULPHURARIA 

Green plants and algae have long been characterized as using sucrose as the main 

transport sugar, whereas red algae are known to produce the soluble heterosides floridoside (2-α-

D-galactosylglycerol) and isofloridoside (1-α-D-galactosylglycerol), which also double as 

compatible solutes, compounds that accumulate to regulate osmotic potential, under salt stress 

(Kirst 1980; Pade, et al. 2014). Likewise, sucrose is also implicated with abiotic stress responses, 

such as aiding in osmoregulation. Sucrose can be broken down into glucose and fructose, both of 



44 

 

which can also act as signaling molecules (Ruan 2014). Metabolic profiling of G. sulphuraria 

extracts indicated the presence of both sucrose and floridoside (Horst 2006). Unlike all other red 

algae sequenced thus far, G. sulphuaria synthesizes sucrose and possesses the enzymes that 

synthesize sucrose from UDP-glucose and fructose-6-phosphate, namely sucrose-phosphate 

synthase (Gasu_03810, EC 2.4.1.14) and sucrose-phosphatase (Gasu_32680, EC 3.1.3.24) (Fig. 

15). The sucrose-phosphate synthase (Gasu_03810) contains an N-terminal glucosyl-transferase 

domain and a C-terminal phosphohydrolase domain, analogous to bacterial and land plant 

sucrose-phosphate synthases (Salerno and Curatti 2003). In an evolutionary tree, the sequence 

from G. sulphuraria (Gasu_03810) forms a separate branch and is neither closely related to land 

plant, nor bacterial sucrose-phosphate synthases (Schönknecht, unpublished). With the sequences 

currently available, it is not possible to discern whether the sucrose-phosphate synthase 

(Gasu_03810) was retained from the last common ancestor of land plants and red algae (i.e. the 

ancestor of Archaeplastidae), or was acquired via horizontal gene transfer from bacteria. 
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Fig. 15: Starch and sucrose metabolism (KEGG pathway 00500 (Kanehisa, et al. 2014)). Enzymes 

marked in red and yellow have been annotated in the G. sulphuraria genome. Enzymes have been 

marked in yellow for easy identification are directly mentioned in the main text. The enzyme 

marked by the large X, ADP-glucose pyrophosphorylase (EC 2.7.7.27), could not be detected in 

the genome of G. sulphuraria indicating glucose polymers are synthesized similarly to animals, 

via UDP-glucose. 

 

G. SULPHURARIA SYNTHESIZES GLYCOGEN 

Archaeplastida store carbohydrates as polyglucans, which are polysaccharides composed 

of D-glucose subunits linked by glycosidic bonds (Ball, et al. 2011). Green plants and algae 

(Viridiplantae) usually store polyglucans in the form of starch inside chloroplasts. Red algae 

synthesize floridean starch in the cytosol, i.e. cytosolic starch. G. sulphuraria synthesizes 

glycogen, a highly branched storage glucan usually observed in heterotrophic eukaryotes and 

bacteria (Hirabaru, et al. 2010; Ball, et al. 2011). In contrast to Viridiplantae, where starch 

biosynthesis uses the ADP-glucose-based pathway, G. sulphuraria and all other eukaryotes, 

including red algae, use the UDP-glucose-based pathway (Ball, et al. 2011). G. sulphuraria 

encodes a UDP-glucose pyrophosphorylase (Gasu_00869, EC 2.7.7.9, UTP-glucose-1-

phosphate uridylyltransferase), but does not appear to encode ADP-glucose pyrophosphorylase 

(EC 2.7.7.27) (Fig. 15). This corroborates earlier observations in red algae whereby polyglucan 

synthesis proceeds via a UDP-glucose-selective α-glucan synthase (Viola, et al. 2001). Red algal 

UDP-glucose pyrophosphorylases are related to cytosolic UDP-glucose pyrophosphorylases from 

Viridiplantae, which utilize UDP-glucose for sucrose biosynthesis, and other eukaryotes (Patron 

and Keeling 2005). It appears the UDP-G biosynthesis pathway in eukaryotes may originate from 

ancestry and was retained for cytosolic sucrose biosynthesis in Viridiplantae. On the other hand, 
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the ADP-G biosynthesis pathway operates solely in the chloroplast of Viridiplantae species, 

further supporting acquisition via endosymbiosis from a cyanobacterium. 

The glycogen synthase (Gasu_14030, EC2.4.1.11) in G. sulphuraria is 1699 amino acids 

long, and only the C-terminal 700 amino acids contain the glycogen synthase domain. The N-

terminal half shows similarity with 1,4-α- glucan branching enzyme (Gasu_50970, EC 2.4.1.18, 

GlgB domain) (Fig. 16) that catalyzes the formation of α-1,6-linked side branches (Baecker, et al. 

1986). 

 

 

Fig. 16: Conserved Domains Database (CDD) (Marchler-Bauer, et al. 2011) search results indicate 

Gasu_14030 is a bifunctional protein consisting of both, a glycogen synthase (GlgA) and a 1,4-α-

glucan branching domains. Glycogen synthase is responsible for the elongation of glucose 

polymers synthesizing α-1,4 glycosidic bonds, whereas 1,4-α-glucan branching enzyme generates 

short chains of glucose polymers by cleaving α-1,4 linkages and catalyzing α-1,6 branching 

linkages leading to the highly branched architecture of glycogen. 
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Fig. 17: Degree of polyglucan branching taken from Hirabaru, et al. (2010). Degree of 

polymerization is abbreviated as DP, which refers to the (linear) length of each chain. Moving 

from the bottom, right to the top, left of the graph signifies moving from short, highly branched 

polyglucans to long, linear polylglucans with little branching. 

G. sulphuraria synthesizes glycogen-type polysaccharides that possess a very high 

degree of branching when compared to several other species of red algae (Fig. 17) (Shimonaga, et 

al. 2008; Hirabaru, et al. 2010). The G. sulphuraria genome encodes only one dedicated glycogen 

branching enzyme (Gasu_50970). However, as mentioned above, the glycogen synthase 

(Gasu_14030) also contains a glycogen branching enzyme (GlgB) domain. Assuming the 

predicted protein sequence of Gasu_14030 is not the result of a genome assembly error, glycogen 

synthase and 1,4-α-glucan branching enzyme appear to form a bifunctional, fusion enzyme in G. 

sulphuraria. Based on the large degree of polyglucan branching, the branching domain of the 

glycogen synthase in G. sulphuraria might significantly aid in achieving the abundance of α-1,6 

linkages. Using Gasu_14030, the glycogen synthase, as a query sequence, BLASTP searches 

using the non-redundant database at NCBI resulted in only a handful of hits with similar (amino 

acid) length. Two species of red algae, C. merolae and C. crispus, and four alveolates all possess 

glycogen synthases of comparable length to that of G. sulphuraria. However, none of the 
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sequences from the six organisms mentioned above, contain an N-terminal 1,4-α-glucan 

branching domain (GlgB), making the glycogen synthase from G. sulphuraria (Gasu_14030) the 

only one of its kind to date. 

 

GLYCEROL: A LINK BETWEEN CARBOHYDRATES AND LIPIDS 

G. sulphuraria can grow on glycerol as a sole carbon source (Gross and Schnarrenberger 

1995a). Multiple pathways exist for metabolizing glycerol (Fig. 18), two of which convert 

glycerol into glycerone phosphate, a glycolysis intermediate also known as dihydroxyacetone-

phosphate. A third pathway for metabolizing glycerol ultimately produces glycerate-3-phosphate, 

another glycolytic intermediate. All three routes serve as a link between lipid metabolism and 

carbohydrate metabolism. 

 

Fig. 18: Pathways for metabolizing glycerol. Enzymes abbreviations given in black have been 

annotated in the G. sulphuraria genome. Glycerone kinase, enzyme abbreviation given in gray 

(GEK), has not been annotated in G. sulphuaria. Abbreviations are as follows: GDH, glycerol 

dehydrogenase (NAD+); GEK, glycerone kinase; GLK, glycerol kinase; GPDH, glycerol-3-

phosphate dehydrogenase (NAD+); AD, alcohol dehydrogenase; AHD, aldehyde dehydrogenase; 
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G3K, glycerate 3-kinase. Structural formulas for intermediates and all substrate and enzyme 

names according to KEGG (Kanehisa, et al. 2014). 

As in most eukaryotes, G. sulphuraria can convert glycerol into glycerone phosphate by 

glycerol kinase (Gasu_03170 & Gasu_60010, EC 2.7.1.30) and glycerol-3-phosphate 

dehydrogenase (Gasu_03180, Gasu_57960, & Gasu_57980; EC 1.1.1.6), i.e. phosphorylation 

followed by oxidation (GLK and GPDH respectively, Fig. 18). G. sulphuraria is also likely able 

to convert glycerol into glycerone phosphate by glycerol dehydrogenase (Gasu_03180, 

Gasu_57960, & Gasu_57980, EC 1.1.1.6) and glycerone kinase (EC 2.7.1.29), i.e. oxidation 

followed by phosphorylation (GDH and GEK respectively, Fig. 18). Even though the G. 

sulphuraria genome does not appear to encode a glycerone kinase (GEK, Fig. 18), it is known 

that proteins from different families can act as a glycerone kinase (Erni, et al. 2006); glycerol 

kinases (EC 2.7.1.30) have been shown to possess glycerone kinase activity (Hayashi and Lin 

1967; Janson and Cleland 1974). Moreover, glycerol dehydrogenase (Gasu_03180) and glycerol 

kinase (Gasu_03170) are encoded by neighboring, unidirectional genes separated by just 5 bp, 

pointing to the possibility of coordinated transcription (Schönknecht, unpublished). A third 

pathway is also employed by G. sulphuraria whereby glycerol is converted to glycerate-3-

phosphate, another glycolytic intermediate. Glycerol undergoes two rounds of oxidation (AD and 

AHD in Fig. 18), by alcohol dehydrogenase (Gasu_53790, EC 1.1.1.2) and aldehyde 

dehydrogenase (6 genes, EC 1.2.1.3) generating glycerate. Glycerate-3-phosphate is then 

generated by glycerate 3-kinase (Gasu_01520, EC 2.7.1.31) (G3K, Fig. 18). Results from 

phylogenetic analyses suggest that the diversity of glycerol metabolizing pathways, including the 

ability to take up glycerol into the cell, was facilitated by horizontal gene transfer from bacteria. 

All three of the glycerol-3-phosphate dehydrogenases encoded by G. sulphuraria (Gasu_03180, 

Gasu_57960, & Gasu_57980) appear to originate from bacteria followed by gene duplication 

(Schönknecht, et al. 2013). Furthermore, all five of the genes encoding glycerol uptake 
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facilitators (transporter proteins) also originate from bacteria via horizontal gene transfer 

(Schönknecht, et al. 2013). 

 

Fig. 19: Glycerolipid metabolism (KEGG pathway 00561 (Kanehisa, et al. 2014)). Enzynmes 

marked in red and yellow have been annotated in the genome of G. sulphuraria. Enzymes directly 

mentioned in the main text have been marked in yellow for easy identification. As depicted in Fig. 

18, glycerone kinase (EC 2.7.1.29) could not be detected in the G. sulphuraria genome as 

indicated by a large X. 

Even though lipids are not a major storage molecule in G. sulphuraria (Graziani, et al. 

2013), the metabolic pathways for the synthesis and degradation of lipids are present, as 
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expected. Triacylglycerides (a type of lipid [ester] composed of glycerol and three fatty acids) can 

be directly degraded to recover the glycerol residue and the associated fatty acids. 

Triacylglycerol lipase (Gasu_07310 & Gasu_17090, EC 3.1.1.3) and acylglycerol lipase 

(Gasu_37420, EC 3.1.1.23) cleave the glycerol residue, which can then be converted into 

glycolytic intermediates, and fatty acids (Fig. 19). The remaining fatty acids, which represent the 

energy-rich component of triacyglycerols, are degraded through successive rounds of oxidation 

producing acetyl-CoA (and succinyl-CoA from odd-chain fatty acids; see below). 

 

DISTINGUISHING METABOLIC PATHWAYS IN G. SULPHURARIA 

G. sulphuraria possesses metabolic pathways that not only distinguish it from land plants 

and green algae, but also from other red algae. The distribution of metabolic pathways present in 

different eukaryotic lineages is a direct result of evolution, and in some cases, the presence or 

absence of a pathway has become an identifying characteristic for particular eukaryotic lineages. 

In the context of lineage-specific, characteristic pathways, G. sulphuraria appears to be an 

exception. G. sulphuraria not only encodes pathways that are characteristic for red algae and 

other photosynthetic eukaryotes, including Viridiplantae, but also encodes pathways 

uncharacteristic for photosynthetic eukaryotes all together (Fig. 20). 
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Fig. 20: Global metabolism of G. sulphuraria with distinguishing metabolic pathways highlighted 

and labeled; modified from KEGG (Kanehisa, et al. 2014). Black lines represent enzymes 

annotated in the genome of G. sulphuraria, and black dots represent the corresponding metabolites 

associated with each enzyme. 

METHYLMALONYL-COA PATHWAY 

Fatty acids are crucial components of cellular biology. The long, hydrophobic chains are 

indispensable for lipid membranes and sustain the hydrophobic region spanning the intersection 

between both sides of a lipid bilayer. Not only are fatty acids considered an import energy source 

for heterotrophic eukaryotes, they are also the major component of seed oils, a lipid-based energy 

reserve for germinating seeds. The end products resulting from fatty acid oxidation (or 

degradation) is dependent upon the type of fatty acid. Oxidation of even-chain fatty acids only 

results in the end product acetyl-CoA, which is easily incorporated into the TCA cycle. The 

complete oxidation of odd-chain fatty acids (β-oxidation) results in two end products: acetyl-CoA 

and propionyl-CoA. Propionyl-CoA must be metabolized by utilizing another pathway. The 
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three-reaction step methylmalonyl-CoA pathway allows for 

the degradation of propionyl-CoA, in addition to the 

degradation of the branched amino acids valine and 

isoleucine. Valine and isoleucine must first be converted into 

propionyl-CoA before entering the methylmalonyl-CoA 

pathway. The final metabolite of the methylmalonyl-CoA 

pathway is succinyl-CoA, which can also be fed into the 

TCA cycle (Fig. 21). In plants and seeds, fatty acid β-

oxidation occurs in peroxisomes (Engqvist, et al. 2009) and 

glyoxysomes respectively, but the exact route by which 

propionyl-CoA is metabolized is not currently understood 

(Lucas, et al. 2007). Nonetheless, the methylmalonyl-CoA 

pathway has neither been annotated, nor characterized for 

any Viridiplantae species. Methylmalonyl-CoA pathway 

enzymes are most commonly associated with prokaryotes 

and animals. Yet, other photosynthetic eukaryotes, namely 

stramenopiles, appear to encode the methylmalonyl-CoA 

pathway as well.  

Currently, only two red algae appear to encode the 

methylmalonyl-CoA pathway: G. sulphuraria and the 

unicellular, red alga Porphyridium purpureum 

(Bhattacharya, et al. 2013). Phylogenetic analyses 

indicate the methylmalonyl-CoA pathway enzymes in 

G. sulphuraria have been conserved through ancestry, 

and not from horizontal gene transfer, supporting the 

Fig. 21: Enzymes of the 

methylmalonyl-CoA pathway 

annotated in G. sulphuraria are listed 

for each enzyme as genome identifiers 

(Gasu_#). Abbreviations: PCC, 

propionyl-CoA carboxylase; MCE, 

methylmalonyl-CoA epimerase; 

MCM, methylmalonyl-CoA mutase. 
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idea that the methylmalonyl-CoA pathway underwent multiple losses throughout major 

eukaryotic lineages, such as Viridiplantae and fungi. Evolutionary trees for methylmalonyl-CoA 

pathway enzymes showed similar results for all G. sulphuraria protein sequences; all enzymes 

appear to originate from ancestry (Figs. 22, 23, & 24). Sequences from the red alga P. 

purpureum, which possesses the methylmalonyl-CoA pathway, were not included due to 

sequences being unavailable at the time of the phylogenetic analysis.  

 

Fig. 22: An evolutionary tree for the alpha chain of propionyl-CoA carboxylase shows the 

expected separation of bacterial and eukaryotic sequences. The unrooted Bayesian tree was 

generated using the WAG+I+G model of protein evolution with posterior probabilities above the 

branches and PhyML bootstrap values (LG+I+G; 200 replicates) displayed as percentages below 

the branches. Thickened horizontal lines represent 1.0 Bayesian posterior probability. Only 

support values >50% are shown. Larger clades have been collapsed for presentation and size is 

indicative of the number of taxa within the clade. Scale bar represents 0.2 substitutions per site.  
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Fig. 23: An evolutionary tree for methylmalonyl-CoA epimerase shows disbanded eukaryotic 

lineages, i.e. Unikonta, Excavata, and Viridiplantae. The unrooted Bayesian tree was generated 

using the WAG+I+G model of protein evolution with posterior probabilities above the branches 

and PhyML bootstrap values (LG+I+G) displayed as percentages below the branches. Thickened 

horizontal lines represent 1.0 Bayesian posterior probability. Only support values >50% are 

shown. Larger clades have been collapsed for presentation and size is indicative of the number of 

taxa within the clade. Scale bar represents 0.2 substitutions per site.  
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Fig. 24: An evolutionary tree for methylmalonyl-CoA mutase shows the expected separation of 

bacterial and eukaryotic sequences. The unrooted Bayesian tree was generated using the 

WAG+I+G+F model of protein evolution with posterior probabilities above the branches and 

PhyML bootstrap values (LG+I+G; 200 replicates) displayed as percentages below the branches. 

Thickened horizontal lines represent 1.0 Bayesian posterior probability. Only support values 

>50% are shown. Larger clades have been collapsed for presentation and size is indicative of the 

number of taxa within the clade. Scale bar represents 0.2 substitutions per site.  

 

The final enzyme in the methylmalonyl-CoA pathway, methylmalonyl-CoA mutase (EC 

5.4.99.2) (MCM in Fig. 25), requires vitamin B12 (Ado-cobalamin), an essential cofactor for the 

reaction mechanism (Cannata, et al. 1965). Bacteria are the only known organisms able to 

synthesize vitamin B12 (Roth, et al. 1996). However, algae have been shown to obtain vitamin B12 

from bacteria through a symbiotic relationship (Croft, et al. 2005). G. sulphuraria can account for 

more than 98% of the eukaryotic biomass in its specific niches, such as volcanic calderas (Weber, 

et al. 2004), habitats usually deemed suitable only for prokaryotes. Furthermore, G. sulphuraria 

has been shown to coexist alongside prokaryotes within the same biofilm in extreme 

environments (Hoeft, et al. 2010). Thus, it seems reasonable to assume G. sulphuraria acquires 

vitamin B12 from neighboring bacteria. 

Propionyl-CoA degradation is also achieved through another metabolic route, which 

fungi and some bacteria utilize. The coupling of the methylcitrate pathway and the glyoxylate 

cycle allows propionyl-CoA to be converted into succinate, another intermediate metabolite of 

the TCA cycle. As mentioned above, G. sulphuraria neither possesses a glyoxylate cycle, nor are 

the genes encoding the methylcitrate pathway present in the genome. Therefore, the presence of 

the methylmalonyl-CoA pathway, in the absence of the glyoxylate cycle, provides a route to 
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metabolize odd-chain fatty acid end products, namely propionyl-CoA, and the branched amino 

acids, isoleucine and valine.  

 

Fig. 25: Two different routes for the degradation of propionyl-CoA. The 3-step methylmalonyl-

CoA pathway is employed by G. sulphuraria and other organisms including bacteria and animals. 

The methylcitrate pathway and the glyoxylate cycle are utilized in conjunction by fungi and some 

bacteria. Abbreviations are: PCC, propionyl-CoA carboxylase; MCE, methylmalonyl-CoA 

epimerase; MCM, methylmalonyl-CoA mutase; SUS, succinyl-CoA synthetase; MCS, 2-

methylcitrate synthase; MCD, 2-methylcitrate dehydratase; MCH, (2R,3S)-2-methylcitrate hydro-

lyase; MIL, 2-methylisocitrate lyase; PDH, pyruvate dehydrogenase complex; CS, citrate 

synthase; ACS, aconitase; ICL, isocitrate lyase; MS, malate synthase; MD, malate dehydrogenase. 

Intermediate molecular structures according to KEGG are depicted (Kanehisa, et al. 2014). 
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TERPENOID BIOSYNTHESIS 

Terpenoids, also known as isoprenoids, are ubiquitous throughout the tree of life and 

serve crucial physiological and biochemical roles in plants. Carotenoids, a broad class of 

terpenoids, function as accessory pigments for photosynthesis and are also involved in oxidative 

stress response (Owen and Peñuelas 2005). Another terpenoid, gibberellic acid, is an essential 

plant hormone in land plants (Lange 2000; Owen and Peñuelas 2005). Terpenoids represent one 

of the largest classes of biological metabolites and the largest class of natural plant products. 

Terpenoid backbone biosynthesis can be accomplished by two different pathways: the cytosol-

localized mevalonate (MVA) pathway, which uses acetyl-CoA as a precursor, and the plastid-

localized methylerythritol phosphate (MEP) pathway, which utilizes glyceraldehyde-3-phosphate 

and pyruvate as precursors (Fig. 26). 
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Fig. 26: Terpenoid backbone biosynthesis (KEGG pathway 00900 (Kanehisa, et al. 2014)). 

Enzymes marked in red and yellow have been annotated in the genome of G. sulphuraria. 

Enzymes have been marked in yellow for easy identification and are directly referenced in the 

main text. 
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The mevalonate pathway is most commonly associated with heterotrophic eukaryotes and 

archaea, and has even been coined as the ancestral, eukaryotic pathway (Lombard and Moreira 

2011). However, land plants encode both, the mevalonate and methylerythritol phosphate 

pathways, while green algae only encode the methylerythritol phosphate pathway. The presence 

of the bacterial-associated methylerythritol phosphate pathway is believed to have been acquired 

during the primary endosymbiosis event, further supported by its plastid localization (Lange 

2000). Interestingly, G. sulphuraria encodes both, the mevalonate and methylerythritol phosphate 

pathway. Currently, G. sulphuraria is the only red alga that possesses both pathways in contrast 

to other red algae, such as C. merolae and C. crispus, which only possess the methylerythritol 

phosphate pathway. No phylogenetic analyses have been conducted specifically investigating the 

evolutionary history of the enzymes involved in terpenoid backbone biosynthesis in G. 

sulphuraria. Best BLASTP hits from enzymes of both the mevalonate and methylerythritol 

phosphate pathways resided in expected lineages. Enzymes from the ancestral, eukaryotic 

mevalonate pathway had best BLASTP hits with other mevalonate pathway encoding eukaryotes, 

whereas most enzymes from the endosymbioint-derived methylerythritol phosphate pathway had 

best BLASTP hits in other photosynthetic eukaryotes. Unexpectedly, two enzymes from the 

methyleythritol phosphate pathway, 1-deoxy-D-xylulose-5-phosphate reducoisomerase 

(Gasu_57430, EC 1.1.1.267) and (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase 

(Gasu_27800, EC 1.17.7.1) (Fig. 26), had best BLASTP hits in cyanobacteria. While best BLAST 

hits cannot provide conclusive information regarding evolutionary histories, the best hits were 

surprising considering red algae share a more recent common ancestor with other plastid-bearing 

eukaryotes than with cyanobacteria, even in the context of genes with cyanobacterial origin. 

It is unknown why G. sulphuraria is the only red alga that encodes both pathways, and why 

the mevalonate pathway has been lost in other red algae. Transporters could have played a key 

role in the establishment of the one pathway over another (Lohr, et al. 2012). If a plastid-localized 
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transporter was established relatively soon after the acquisition of the plastid, access to plastid-

produced terpenoid intermediates could have facilitated the loss of the ancestral mevalonate 

pathway (Lohr, et al. 2012). Given the unique evolutionary history of not only G. sulphuraria, but 

Cyanidiophyceae as a whole, it is difficult to definitively say which evolutionary scenarios could 

have accounted for the present day distribution of terpenoid biosynthesis pathways in red algae. 

Nonetheless, common habitats for G. sulphuraria and other Cyanidiophyceae algae are often 

harsh, and present numerous, potential abiotic stressors that terpenoids may help circumvent as it 

does in the green alga Dunaliella salina (Lohr, et al. 2012). Thus, the presence of both the 

mevalonate and methylerythritol phosphate pathway may be explained by an abiotic stressor 

context. 

 

LINEAGE SPECIFIC DISTRIBUTION OF DE NOVO NAD+ BIOSYNTHESIS 

PATHWAYS 

The two de novo NAD+ biosynthesis pathways seem to be mutually exclusive in eukaryotes 

(Fig. 27). Thus far no eukaryotic organism has been discovered that contains both pathways. 

Earlier reports (Katoh and Hashimoto 2004) of the existence of enzymes for the kynurenine 

pathway in rice were not corroborated by the bioinformatics and phylogenetic analyses presented 

here. Some parasitic eukaryotes, such as Plasmodium spp., acquire nicotinic acid and/or 

nicotinamide from their hosts. These parasitic eukaryotes lack the ability to biosynthesize NAD+ 

de novo and only operate salvage pathways (Plata, et al. 2010). In Eukaryota, the kynurenine 

pathway is observed in most lineages, with the exception of some photosynthetic lineages (or 

lineages closely related to photosynthetic ones), which utilize the aspartate pathway for 

quinolinate biosynthesis (Fig. 27). The phylogenetic distribution of the two different de novo 

NAD+ biosynthesis pathways indicates that the kynurenine pathway was the ancestral pathway in 
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the last common ancestor of all eukaryotes. The primary endosymbiosis event, which gave rise to 

photosynthesis in some eukaryotic lineages, was more than likely responsible for the substitution 

of the kynurenine pathway by the aspartate pathway. Since the aspartate pathway is only 

observed in plastid-bearing eukaryotes, or in lineages which probably had a plastid-bearing 

ancestor, it seems reasonable to assume that the aspartate pathway was introduced into eukaryotes 

by endosymbiotic gene transfer from a cyanobacterial genome when photosynthesis was initially 

established in eukaryotes. 

 

Fig. 27: Phylogenetic distribution of de novo NAD+ biosynthesis pathways in eukaryotes shows a 

patchy distribution. Shown is the organismal phylogeny (Keeling and Palmer 2008; Burki, 

Okamoto, et al. 2012) for the major groups of life with emphasis on plastid bearing eukaryotes 

(star symbols: yellow, most species photoautotroph; white, some species photoautotroph; SAR, 

Stramenopiles, Alveolates, and Rhizaria; Phaeo’, Phaeophyceae or brown algae). For each clade 

the presence of enzymes catalyzing the aspartate (closed symbols; AO, aspartate oxidase; QS, 
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quinolinate synthase) or the kynurenine pathway (open symbols; TDO/IDO, tryptophan - / 

indoleamine 2,3-dioxygenase; AFM, arylformamidase; KMO, kynurenine 3-monooxygenase; 

KYU, kynureninase; HAO, 3-hydroxyanthranilate 3,4-dioxygenase) are indicated. Grey open 

symbols indicate that the IDO identified in this work, based on sequence similarity, might not 

actually catalyze the first reaction of the kynurenine pathway (see text). Most bacteria use the 

aspartate pathway, while some have the kynurenine pathway (see text). Very few bacteria, if any, 

seem to use both pathways in parallel. 

Within Archaeplastida, the presence of the aspartate pathway (and absence of the 

kynurenine pathway) is well established in Viridiplantae. In addition, the two aspartate pathway 

enzymes in Arabidopsis thaliana are orthologous to bacterial enzymes (Katoh, et al. 2006; 

Noctor, et al. 2011). Analysis of the glaucophyte Cyanophora paradoxa genome (Price, et al. 

2012) indicates the presence of the aspartate pathway (see below). However, the third major 

lineage within Archaeplastida, red algae (Rhodophyta), solely encodes the kynurenine pathway 

for de novo NAD+ biosynthesis. All five red algal genomes, Cyanidioschyzon merolae 

(Matsuzaki, et al. 2004), Galdieria sulphuraria (Schönknecht, et al. 2013), Pyropia yezoensis 

(Nakamura, et al. 2013), Chondrus crispus (Collén, et al. 2013), and Porphyridium purpureum 

(Bhattacharya, et al. 2013) appear to encode the kynurenine pathway, whereas the aspartate 

pathway appears to be absent. 

Interestingly, diatoms and brown algae, which possess secondary plastids of red algal 

origin, and Oomycota (water molds or downy mildew) appear to use the aspartate pathway for 

quinolinate biosynthesis, and not the conserved kynurenine pathway observed in red algae and 

some other Stramenopile groups (Labyrinthulomycetes and Pelagophyceae) (Fig. 27). This raises 

the question of how diatoms, brown algae, and Oomycota might have acquired the aspartate 

pathway? Thousands of genes of potential green algal origin have been detected in diatoms, 

resulting in the hypothesis that Stramenopiles have undergone a cryptic secondary endosymbiosis 
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with a green alga, prior to acquiring the red algal endosymbiont (Moustafa, et al. 2009). However, 

this hypothesis has been met with much criticism (Woehle, et al. 2011; Burki, Flegontov, et al. 

2012; Deschamps and Moreira 2012). The basal Stramenopile group, Labyrinthulomycetes, 

(which lack plastids) encodes enzymes for the kynurenine pathway, indicating this lineage might 

have split off from other Stramenopiles before the aspartate pathway was acquired. Surprisingly, 

the genome of the pelagophyte A. anophagefferens (Gobler, et al. 2011) lacks genes for the 

aspartate pathway, but encodes for the kynurenine pathway, in contrast to other photosynthetic 

Stramenopiles (Fig. 27), which can probably not be explained by conservation of the kynurenine 

pathway (see below). The presence of the kynurenine pathway in Cryptophyta and Haptophyta, 

which also acquired plastids independently by secondary endosymbiosis with a red alga, can 

probably be best explained by conservation of the kynurenine pathway in the host (Fig. 27). 

 

EVOLUTIONARY HISTORY OF ASPARTATE PATHWAY ENZYMES 

The aspartate pathway consists of two reaction steps whereby aspartate is converted into 

quinolinate, the precursor metabolite at which both de novo NAD+ biosynthesis pathways 

converge (Fig. 2). L-aspartate oxidase (EC 1.4.3.16) catalyzes the first step; L-aspartate is 

reduced by electrons from molecular oxygen to form iminoasparate. Surprisingly, phylogenetic 

analysis revealed that aspartate oxidases found in three (photosynthetic) eukaryotic lineages do 

not form a monophyletic group. An evolutionary tree of aspartate oxidases (Fig. 28) shows the 

enzyme from Cyanophora paradoxa as monophyletic with cyanobacterial aspartate oxidases. 

This was expected for a gene that was acquired via endosymbiotic gene transfer from a 

cyanobacterial endosymbiont. The protein sequence from C. paradoxa resides deep within a 

cyanobacterial branch next to a sequence from Thermosynechococcus elongates BP-1, close to 

the position where plastids were presumed to branch from the cyanobacterial tree according to 
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Criscuolo and Gribaldo (2011). However, aspartate oxidases from Viridiplantae and 

Stramenopiles are neither closely related to cyanobacterial sequences, as expected specifically for 

Viridiplantae, nor show similar evolutionary origins. Instead, sequences from Viridiplantae form 

a monophyletic group with Bacteroidetes, whereas Stramenopile oxidases are monophyletic with 

spirochaetes and salt-loving, aquatic archaea. 

 

Fig. 28: Evolutionary tree for L-aspartate oxidase indicates separate origins of eukaryotic 

sequences. The unrooted Bayesian tree shows posterior probabilities above the branches and 

PhyML bootstrap values displayed as percentages below the branches. Thickened horizontal lines 

represent 1.0 Bayesian posterior probability. Larger clades have been collapsed for presentation 

and size is indicative of the number of taxa within the clade. Scale bar represents 0.2 substitutions 

per site. 

The most surprising result of the aspartate oxidase phylogeny is that no eukaryotic 

lineage is monophyletic with another. All three of the eukaryotic lineages reside within different 
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parts of the phylogeny ruling out a direct, vertical inheritance of aspartate oxidase among these 

eukaryotic lineages. Instead, all three eukaryotic lineages appear to originate from three different 

lineages within Bacteria or Archaea. Alternative evolutionary trees with topological constraints 

enforcing monophyly of any two of the three (including all three) eukaryotic, photosynthetic 

lineages had extremely low probabilities (Table 1). Additional evolutionary scenarios were also 

tested (Table 1) including a monophyletic group consisting of Halobacteriaceae and 

Stramenopiles, and a monophyletic group consisting of Viridiplantae and Proteobacteria. Even 

though the Halobacteriaceae sit immediately basal to Spirochaeta and Stramenopiles with good 

support, a monophyletic group consisting only of Halobacteriaceae and Stramenopiles cannot be 

ruled out statistically. Thus, results are inconclusive regarding which group (Spirochaeta or 

Halobacteriaceae) actually forms the sister-relationship with the Stramenopiles. Monophyly of 

Viridiplantae and proteobacteria was tested based on results from the phylogenetic analysis of 

quinolinate synthase (see below). Despite the Bayesian posterior probability of 1.0 for some 

clades deep within bacteria containing Viridiplantae, bootstrap support for some clades was low 

(<50%). Given the latter, it was not surprising that monophyly of Viridiplantae and proteobacteria 

also cannot be ruled out statistically under maximum likelihood. Another relationship observed in 

the quinolinate synthase tree (see below) was tested where proteobacteria and Stramenopiles 

encoding the aspartate pathway were forced to be monophyletic; that scenario can be ruled out 

statistically. 
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Table 1: Bayesian and Maximum Likelihood analyses of constraint trees for aspartate oxidase. 

From left to right, clades for which protein sequences were forced to be monophyletic, harmonic 

mean (H) of log-likelihood values from stationary phase of Bayesian analysis as calculated by 

Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic means of unconstrained and 

constrained tree (ΔH), Akaike's information criterion through Markov chain Monte Carlo (AICM) 

as calculated by Tracer, difference in AICM between unconstrained and constrained tree 

(ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference between log-

likelihoods (Δlog L) of unconstrained and constrained tree, p-values from approximately unbiased 

(AU) test and from Kishino-Hasegawa (KH) test as calculated by CONSEL (Shimodaira and 

Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values indicating no significant difference 

in italics and reduced font size. 

The second reaction step of the aspartate pathway is catalyzed by quinolinate synthase 

(EC 2.5.1.72). Iminoasparate reacts with dihydroxyacetone phosphate to generate quinolinate. An 

evolutionary tree of quinolinate synthases (Fig. 29) shows the sequence from C. paradoxa 

residing deep within a cyanobacterial branch, in agreement with an origin by endosymbiotic gene 

transfer. The gene for quinolinate synthase is encoded by the cyanelle (chloroplast) genome of C. 

paradoxa, providing further support for endosymbiotic origin. Quinolinate synthases from 

Stramenopiles and Viridiplantae are not closely related to cyanobacterial sequences, but form a 

separate monophyletic group, together with a synthase from the proteobacterium Plesiocystis 

pacifica. This separate monophyletic group, as well as the descent of C. paradoxa quinolinate 

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆ log L AU KH

Eukaryota -51141 323.0 102430 -634.2 -50703 314.4 3E-06 0

Viridiplantae & Cyanophora -51048 230.2 102249 -453.0 -50612 224.1 2E-05 0

Viridiplantae & Stramenopiles (asp) -50952 134.9 102047 -251.3 -50507 118.4 4E-06 0.0001

Stramenopiles (asp) & Cyanophora -50979 161.5 102109 -312.4 -50547 158.3 7E-06 9.0E-06

Bacteria -51153 335.6 102460 -663.8 -50717 328.6 3E-254 0

Archaea -51148 330.2 102452 -655.6 -50434 46.2 0.054 0.058

Viridiplantae & Proteobacteria -50943 125.9 102043 -246.4 -50397 8.2 0.32 0.33

Stramenopiles (asp) & Proteobacteria -51020 202.4 102207 -411.0 -50482 93.7 4.0E-05 0

Stramenopiles (asp) & Halobacteria -50827 9.1 101802 -5.8 -50391 2.8 0.274 0.29

Maximum LikelihoodBayesianAspartate Oxidase

 Monophyletic Constraints
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synthase from cyanobacterial sequences, is well supported by both Bayesian posterior 

probabilities and bootstrap support values. Alternative trees with topological constraints 

enforcing monophyly of all three photosynthetic eukaryotic clades had extremely low 

probabilities (Table 2), ruling out a direct, vertical inheritance. The monophyly of C. paradoxa 

and Viridiplante was tested to determine if vertical inheritance was a possible scenario, being 

they both reside within Archaeplastida and utilize the aspartate pathway, but statistical results 

ruled out this relationship. Relationships that were observed in the aspartate oxidase phylogeny 

were also tested to assess if both genes for the aspartate pathway were possibly acquired in the 

same event that established aspartate oxidases. Alternative trees (constructed irrespectively) with 

monophyletic Viridiplantae and Bacteriodetes, monophyletic Stramenopiles and 

Halobacteriaceae, and monophyletic Stramenopiles and Spirochaetes were insignificant, 

supporting different origins of both aspartate pathway enzymes in Viridiplantae and 

Stramenopiles. Evolutionary relationships observed in the aspartate oxidase phylogeny above 

were also tested for quinolinate synthase. These included monophyly of Viridiplantae and 

Bacteriodetes, Halobacteriaceae and Stramenopiles encoding the aspartate pathway, and 

Spirochaetes and Stramenopiles encoding the aspartate pathway. All three evolutionary scenarios 

could be rejected statistically (Table 2). 
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Fig. 29: Evolutionary tree for quinolinate synthase indicates separate origins of eukaryotic 

sequences. The unrooted Bayesian tree shows posterior probabilities above the branches and 

PhyML bootstrap values below the branches. Thickened horizontal lines represent 1.0 Bayesian 

posterior probability. Larger clades have been collapsed for presentation and size is indicative of 

the number of taxa within the clade. Scale bar represents 0.2 substitutions per site. 

It appears that aspartate oxidase and quinolinate synthase have different evolutionary 

origins in different photosynthetic, eukaryotic clades. To explain this somewhat complex 

evolutionary pattern, several separate gene transfer events must be postulated. The high similarity 

of both enzymes of the aspartate pathway between the glaucophyte C. paradoxa and 

cyanobacteria seems to support acquisition of the aspartate pathway by photosynthetic eukaryotes 

via endosymbiotic gene transfer from the cyanobacterial endosymbiont. When the three lineages 

of Archaeplastida (namely Glaucophyta, red algae, and green plants and algae) split, Glaucophyta 
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seem to have kept the cyanobacterial genes encoding aspartate oxidase and quinolinate synthase, 

while the ancestor of Viridiplantae appears to have substituted the cyanobacterial genes via 

horizontal gene transfer with genes from non-photosynthetic bacteria. In the lineage giving rise to 

red algae, the aspartate pathway was not established, and the kynurenine pathway remained 

active. The monophyly of quinolinate synthases from Viridiplantae and Stramenopiles indicates 

horizontal gene transfer between green plants and algae and Stramenopiles. The close similarity 

of Stramenopile aspartate oxidases to prokaryotic aspartate oxidases could be explained by 

another horizontal gene transfer from a spirochaete or a halobacterium into an ancestor of 

Stramenopiles. In higher plants it has been demonstrated that aspartate oxidase and quinolinate 

synthase are located in plastids, in agreement with their endosymbiotic origin (Katoh, et al. 2006). 

Somewhat unexpected, nicotinate-nucleotide pyrophosphorylase (see below) of higher plants is 

targeted to plastids as well (Katoh, et al. 2006). 

 

Table 2: Bayesian and Maximum Likelihood analyses of constraint trees for quinolinate synthase. 

From left to right, clades for which protein sequences were forced to be monophyletic, harmonic 

mean (H) of log-likelihood values from stationary phase of Bayesian analysis as calculated by 

Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic means of unconstrained and 

constrained tree (ΔH), Akaike's information criterion through Markov chain Monte Carlo (AICM) 

as calculated by Tracer, difference in AICM between unconstrained and constrained tree 

(ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference between log-

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆ log L AU KH

Eukaryota -29507 343.8 59159 -684.4 -29176 332.1 1.0E-92 0

Viridiplantae & Cyanophora -29552 388.7 59274 -799.8 -29219 375.8 9.0E-121 0

Bacteria -29842 678.7 59838 -1363.1 -29465 621.4 3.0E-29 0

Archaea -29282 118.9 58714 -239.5 -28965 121.4 1.0E-06 0

Viridiplantae & Bacteriodetes -29577 414.2 59312 -837.6 -29248 404.2 4.0E-116 0

Stramenopiles & Halobacteriaceae-29407 244.0 58975 -500.6 -29084 240.1 2.0E-14 0

Stramenopiles & Spirochaetes -29419 256.2 59000 -524.9 -29089 245.3 3.0E-12 0

Quinolinate Synthase

 Monophyletic Constraints

Bayesian Maximum Likelihood
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likelihoods (Δlog L) of unconstrained and constrained tree, p-values from approximately unbiased 

(AU) test and from Kishino-Hasegawa (KH) test as calculated by CONSEL (Shimodaira and 

Hasegawa 2001; Shimodaira 2002).  

 

EVOLUTIONARY HISTORY OF THE CONVERGED PATHWAY ENZYMES 

Nicotinate-nucleotide pyrophosphorylase (EC 2.4.2.19) catalyzes the reaction of 

quinolinate with 5-phosphoribosyl diphosphate to synthesize nicotinate D-ribonucleotide plus 

pyrophosphate and CO2 (Fig. 2). Because the aspartate pathway and kynurenine pathway 

converge at quinolinate, all free-living eukaryotes contain nicotinate-nucleotide 

pyrophosphorylase. The evolutionary tree for this enzyme shows eukaryotic sequences forming 

one monophyletic branch, with the exception of sequences from green plants and algae 

(Viridiplantae) and Bigelowiella natans, which reside together deep within the bacterial branch 

(Fig. 30). Nicotinate-nucleotide pyrophosphorylases in most eukaryotic lineages appear to 

descend from the last common ancestor of all eukaryotes. In contrast, nicotinate-nucleotide 

pyrophosphorylases from Viridiplantae form a sister group to sequences from Bacteroidetes, 

indicating the nicotinate-nucleotide pyrophosphorylase gene of eukaryotic origin was substituted 

by horizontal gene transfer from a bacterium in an early ancestor of Viridiplantae. The sequence 

from C. paradoxa was omitted from an evolutionary analysis because it is incomplete. The best 

BLASTP hit for the incomplete sequence from C. paradoxa using the non-redundant database 

from NCBI was with a nicotinate-nucleotide pyrophosphorylase sequence from Capsaspora 

owczarzaki (167 score, 67% coverage), and all top 100 BLASTP hits were with sequences from 

non-photosynthetic eukaryotes, indicating possible descent of nicotinate-nucleotide 

pyrophosphorylase in C. paradoxa from the last common ancestor of eukaryotes. Alternative 

trees enforcing monophyly of all eukaryotic sequences had low probabilities (Table 3). The clade 

comprised of B. natans, Viridiplantae, and Bacteriodetes is not statistically concrete. Alternative 
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trees (constructed irrespectively) with monophyletic Viridiplantae and B. natans, and 

monophyletic Viridiplantae and cyanobacteria cannot be ruled out. Despite the uncertain topology 

regarding Viridiplantae and B. natans, the pyrophorphorylases present in these organisms is not 

of eukaryotic origin. The nicotinate-nucleotide pyrophosphorylase gene from tobacco has been 

shown to functionally complement E. coli cells lacking the orthologous enzyme (Sinclair, et al. 

2000), emphasizing the similarity between higher plant and bacterial orthologs. 

 

Fig. 30: An evolutionary tree for nicotinate-nucleotide pyrophosphorylase indicates that some 

photosynthetic eukaryotes acquired genes via transfers. The unrooted Bayesian tree shows 

posterior probabilities above the branches and PhyML bootstrap values below the branches. 

Thickened horizontal lines represent 1.0 Bayesian posterior probability. Larger clades have been 

collapsed for presentation and size is indicative of the number of taxa within the clade. Scale bar 

represents 0.2 substitutions per site. Tree produced by G. Schönknecht. 
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The monophyletic relationship between Viridiplantae and Stramenopiles (possessing the 

aspartate pathway) observed in the quinolinate synthase phylogeny can be ruled out statistically 

(Table 3). Some discrepancies are present in the eukaryotic clade, i.e. a disbanded Opisthokonta 

(red algal sequences reside within the clade resulting in paraphyletic opisthokonts). However, 

forcing Opisthokonta to be monophyletic resulted in a topology that was not significantly 

different from the topology presented here. Furthermore, enforcing other major eukaryotic 

lineages to be monophyletic (i.e. Stramenopiles, Unikonta, red algae, etc.) resulted in topologies 

also not significantly different from the topology presented here. Lastly, monophyly of 

Stramenopiles and Halobacteriaceae cannot be statistically ruled out indicating a possible gene 

transfer between the ancestors of the two lineages. The similarity of nicotinate-nucleotide 

pyrophosphorylase from B. natans and green plants can probably be explained by endosymbiotic 

gene transfer. The chlorarachniophyte B. natans is known to have acquired its plastid via 

secondary endosymbiosis with an ancient green alga (Archibald, et al. 2003). Endosymbiotic 

gene transfer from an ancestral green algal endosymbiont into the genome of B. natans probably 

resulted in the substitution of the eukaryotic pyrophosphorylase gene. 

 

Table 3: Bayesian and Maximum Likelihood analyses of constraint trees for nicotinate-nucleotide 

pyrophosphorylase. From left to right, clades for which protein sequences were forced to be 

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆log L AU KH

Eukaryota -38680 61.6 77583 -103.6 -38283 59.9 0.019 0.02

Viridiplantae & Bigelowiella -38630 11.5 77485 -5.5 -38224 1.1 0.474 0.476

Viridiplantae & Cyanobacteria -38654 36.1 77555 -75.7 -38250 27.8 0.099 0.092

Viridiplantae & Red Algae -38851 232.9 77943 -463.2 -38443 219.9 4.0E-06 0

Viridiplantae & Stramenopiles (asp) -38857 238.4 77958 -478.1 -38429 206.4 5.0E-15 0

Bigelowiella & Stramenopiles [SAR] -38783 165.0 77803 -322.9 -38381 158.5 7.0E-08 0

Bacteria -38642 23.5 77519 -39.3 -38253 29.9 0.077 0.072

Opisthokonta -38641 22.9 77524 -43.9 -38235 11.8 0.173 0.172

Unikonta -38637 19.3 77496 -16.8 -38235 11.8 0.172 0.174

Red Algae -38624 5.7 77478 1.2 -38231 8.5 0.232 0.223

Stramenopiles -38633 15.0 77478 2.1 -38226 3.4 0.417 0.424

Stramenopiles (asp) & Halobacteriaceae -38686 67.9 77623 -143.1 -38273 49.9 0.057 0.06

Maximum Likelihood
Nicotinate-Nucleotide 

Pyrophosphorylase

 Monophyletic Constraints

Bayesian
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monophyletic, harmonic mean (H) of log-likelihood values from stationary phase of Bayesian 

analysis as calculated by Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic 

means of unconstrained and constrained tree (ΔH), Akaike's information criterion through Markov 

chain Monte Carlo (AICM) as calculated by Tracer, difference in AICM between unconstrained 

and constrained tree (ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference 

between log-likelihoods (Δlog L) of unconstrained and constrained tree, p-values from 

approximately unbiased (AU) test and from Kishino-Hasegawa (KH) test as calculated by 

CONSEL (Shimodaira and Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values 

indicating no significant difference in italics and reduced font size. 

 

Fig. 31: An evolutionary tree for nicotinate-nucleotide adenylyltransferase shows the expected 

separation of bacterial and eukaryotic sequences. The unrooted Bayesian tree was generated using 

the VT+G model of protein evolution with posterior probabilities above the branches and PhyML 

bootstrap values (LG+G) displayed as percentages below the branches. A score of 3 to 9 instead of 

5 to 9 was used to extract multiple sequence alignments. Thickened horizontal lines represent 1.0 

Bayesian posterior probability. Larger clades have been collapsed for presentation and size is 

indicative of the number of taxa within the clade. Scale bar represents 0.2 substitutions per site. 
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Nicotinate-nucleotide adenylyltransferase catalyzes the conversion of ATP plus β-

nicotinate D-ribonucleotide into deamido-NAD+ plus pyrophosphate (EC 2.7.7.18). This enzyme 

also catalyzes the conversion of ATP plus nicotinamide D-ribonucleotide into NAD+ plus 

diphosphate (nicotinamide-nucleotide adenylyltransferase; EC 2.7.7.1). In an evolutionary tree of 

nicotinate-nucleotide adenylyltransferases (Fig. 31), eukaryotic sequences form one monophyletic 

branch, and bacterial sequences form another branch. The topology of the eukaryotic branch does 

not reflect established eukaryotic phylogeny (compare to Fig. 27). Enforcing monophyly of 

established eukaryotic lineages (with the exception of the Stramenopiles and Amoebozoa) results 

in alternative trees with almost identical log-likelihood values (Table 4).  

 

Table 4: Bayesian and Maximum Likelihood analyses of constraint trees for nicotinate-nucleotide 

adenylyltransferase. From left to right, clades for which protein sequences were forced to be 

monophyletic, harmonic mean (H) of log-likelihood values from stationary phase of Bayesian 

analysis as calculated by Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic 

means of unconstrained and constrained tree (ΔH), Akaike's information criterion through Markov 

chain Monte Carlo (AICM) as calculated by Tracer, difference in AICM between unconstrained 

and constrained tree (ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference 

between log-likelihoods (Δlog L) of unconstrained and constrained tree, p-values from 

approximately unbiased (AU) test and from Kishino-Hasegawa (KH) test as calculated by 

CONSEL (Shimodaira and Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values 

indicating no significant difference in italics and reduced font size. 

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆log L AU KH

Amoebozoa -41091 15.5 82552 -24.9 -40058 20.2 0.016 0.030

Excavata -41101 25.9 82577 -50.6 -40051 13.0 0.310 0.307

Stramenopiles -41135 59.1 82601 -74.5 -40086 48.2 0.004 0.006

Unikonta -41089 13.1 82537 -10.7 -40053 15.3 0.191 0.196

Viridiplantae & Red Algae -41087 11.4 82550 -23.3 -40048 10.5 0.367 0.350

Nicotinate-Nucleotide 

Adenylyltransferase

 Monophyletic Constraints

Bayesian Maximum Likelihood
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Fig. 32: An evolutionary tree for NAD+ synthases shows the expected separation between 

eukaryotes and prokaryotes with the exception of A. anophagefferens, which possibly acquired a 

gene via horizontal gene transfer from a bacterium. The unrooted Bayesian tree shows posterior 

probabilities above the branches and PhyML bootstrap values (LG+I+G+F) below the branches. 

Thickened horizontal lines represent 1.0 Bayesian posterior probability. Larger clades have been 

collapsed for presentation and size is indicative of the number of taxa within the clade. Scale bar 

represents 0.2 substitutions per site. 

 

The final step in de novo NAD+ biosynthesis is catalyzed by NAD+ synthase (EC 

6.3.5.1), catalyzing the conversion of deamino-NAD+ into NAD+ using glutamine as an NH3 

donor (Fig. 2). An evolutionary tree of NAD+ synthases shows all eukaryotic sequences, with 

exception of the sequence from A. anophagefferens, as a monophyletic group (Fig. 32). The 
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NAD+ synthase sequence from A. anophagefferens resides within a branch composed entirely of 

bacterial protein sequences, suggesting horizontal gene transfer from a bacterium. An alternative 

tree enforcing monophyly of all eukaryotic sequences had extremely low probability (Table 5). 

Enforcing monophyly of established eukaryotic lineages that are disbanded in the unconstrained 

phylogeny (Unikonta, stramenopiles [minus A. anophagefferens], and Alveolata) resulted in trees 

that were not significantly different from the tree presented here. 

 

Table 5: Bayesian and Maximum Likelihood analyses of constraint trees for NAD+ synthase. 

From left to right, clades for which protein sequences were forced to be monophyletic, harmonic 

mean (H) of log-likelihood values from stationary phase of Bayesian analysis as calculated by 

Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic means of unconstrained and 

constrained tree (ΔH), Akaike's information criterion through Markov chain Monte Carlo (AICM) 

as calculated by Tracer, difference in AICM between unconstrained and constrained tree 

(ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference between log-

likelihoods (Δlog L) of unconstrained and constrained tree, p-values from approximately unbiased 

(AU) test and from Kishino-Hasegawa (KH) test as calculated by CONSEL (Shimodaira and 

Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values indicating no significant difference 

in italics and reduced font size. 

 

 

 

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆ log L AU KH

Eukaryota -101181 222.2 202620 -457.7 -100249 226.8 0 0

Bacteria -101692 733.3 203653 -1490.4 -100755 733.3 0 0

Unikonta -100973 13.9 202195 -32.0 -100040 18.3 0.209 0.190

Stramenopiles (all - A.a.) -101135 176.1 202510 -347.6 -100040 17.9 0.204 0.203

Alveolata -101000 40.8 202213 -50.1 -100046 24.1 0.143 0.138

NAD+ Synthase

 Monophyletic Constraints

Bayesian Maximum Likelihood
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EVOLUTIONARY HISTORY OF KYNURENINE PATHWAY ENZYMES 

Given the numerous gene transfer events for the aspartate pathway, phylogenetic analyses 

were also conducted for the kynurenine pathway to elucidate possible gene transfer events. The 

first reaction in the kynurenine pathway produces N-formylkynurenine from tryptophan and 

molecular oxygen. This reaction is catalyzed by either the highly specific tryptophan 2,3-

dioxygenase (EC 1.13.11.11) or the less specific indoleamine 2,3-dioxygenase (EC 1.13.11.52). 

An evolutionary tree of tryptophan 2,3-dioxygenase does not show the expected separation of 

eukaryotic and bacterial protein sequences (Fig. 33), and alternative trees enforcing monophyly of 

all eukaryotic or all bacterial sequences have low probability (Table 6). The sequence from 

Naegleria gruberi is the only eukaryotic protein sequence in a prokaryotic branch, probably 

indicating horizontal gene transfer of a bacterial tryptophan 2,3-dioxygenase gene into (an 

ancestor of) N. gruberi. 



79 

 

 

Fig. 33: An evolutionary tree for tryprophan 2,3-dioxygenase indicates that N. gruberi acquired a 

gene via horizontal gene transfer. The unrooted Bayesian tree shows posterior probabilities above 

the branches and PhyML bootstrap values below the branches. A score of 3 to 9 instead of 5 to 9 

was used to extract multiple sequence alignments. Thickened horizontal lines represent 1.0 

Bayesian posterior probability. Larger clades have been collapsed for presentation and size is 

indicative of the number of taxa within the clade. Scale bar represents 0.2 substitutions per site. 

 

Monophyly of unikonts and red algae was tested in order to determine if they could be 

treated as one monophyletic group when testing other topologies. Enforcing monophyly of 1) 

unikonts, red algae, and Perkinsus marinus and 2) red algae, unikonts, and Guillardia theta 
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(irrespective of each other) resulted in topologies that could not be rejected statistically. 

Furthermore, an alternative tree forcing G. theta and P. marinus to be monophyletic was also 

significant. Horizontal gene transfer between eukaryotes is a possible scenario. However, this 

opens the door for more possibilities such as eukaryote→eukaryote→bacteria or 

bacteria→eukaryote→eukaryote gene transfer. The tryptophan 2,3-dioxygenases from P. marinus 

and G. theta might originate from horizontal gene transfer from bacteria, or bacteria might have 

acquired eukaryotic genes, followed by gene transfers between bacteria. The evolutionary 

analysis of tryptophan 2,3-dioxygenases was limited by relatively short multiple sequence 

alignments (250 to 350 amino acids) and limited sequence availability (some eukaryotic clades 

only contain indoleamine 2,3-dioxygenase, such as fungi mentioned below). 

 

Table 6: Bayesian and Maximum Likelihood analyses of constraint trees for tryptophan 2,3-

dioxygenase. From left to right, clades for which protein sequences were forced to be 

monophyletic, harmonic mean (H) of log-likelihood values from stationary phase of Bayesian 

analysis as calculated by Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic 

means of unconstrained and constrained tree (ΔH), Akaike's information criterion through Markov 

chain Monte Carlo (AICM) as calculated by Tracer, difference in AICM between unconstrained 

and constrained tree (ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference 

between log-likelihoods (Δlog L) of unconstrained and constrained tree, p-values from 

approximately unbiased (AU) test and from Kishino-Hasegawa (KH) test as calculated by 

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆log L AU KH

Eukaryotes (all) -40116 68.6 80399 -149.6 -39838 73.6 0.013 0.011

Unikonts & Red Algae -40038 -8.7 80267 -17.2 -39769 5.1 0.370 0.357

Unikonts & Red Algae & Naegleria -40095 48.2 80375 -125.2 -39817 52.6 0.001 0.001

Unikonts & Red Algae & Perkinsus -40057 10.5 80300 -50.2 -39791 26.6 0.077 0.081

Unikonts & Red Algae & Guillardia -40044 -2.7 80257 -7.1 -39772 8.4 0.283 0.284

Perkinsus & Guillardia -40051 4.0 80282 -31.8 -39781 16.7 0.054 0.054

Bacteria -40206 158.9 80596 -346.0 -39927 162.6 6.00E-18 0

Gammaproteobacteria -40772 725.5 81733 -1483.1 -40492 728.2 9.00E-70 0

Deltaproteobacteria -40771 724.5 81690 -1440.3 -40469 704.8 2.00E-05 0

Tryptophan Dioxygenase

 Monophyletic Constraints

Bayesian Maximum Likelihood
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CONSEL (Shimodaira and Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values 

indicating no significant difference in italics and reduced font size. 

An evolutionary tree of indoleamine 2,3-dioxygenase (Fig. 34) has three main branches, 

all three containing sequences from both Eukaryota and Bacteria. Alternative trees enforcing 

monophyly of all eukaryotic or all bacterial sequences have low probability (Table 7). However, 

only enzymes in one of the three main branches seem to catalyze the reaction of tryptophan and 

O2 with an affinity, and at a rate expected for effective tryptophan degradation. This is the branch 

containing sequences from mammals, fungi, and the bacteria Gemmatimonas aurantiaca and 

Streptomyces scabiei (Yuasa, et al. 2011). Enzymes from the other two branches that were 

biochemically characterized show very low reaction rates, questioning a function in tryptophan 

degradation. These are fungal indoleamine 2,3-dioxygenases γ (Yuasa and Ball 2012) and 

recombinant indoleamine 2,3-dioxygenases from Erythrobacter litoralis (Alphaproeobacteria) 

and Neptuniibacter caesariensis (Gammaproteobacteria) (Yuasa, et al. 2011). On the other hand, 

indoleamine 2,3-dioxygenases from the stramenopiles Aplanochytrium kerguelense, 

Aurantiochytrium limacinum, Schizochytrium aggregatum (Labyrinthulomycetes), A. 

anophagefferens (Pelagophyceae), and the haptophyte Emiliania huxleyi located in these two 

branches were the only candidates identified in BLAST searches that seem suitable (based on 

multiple sequence alignments) to catalyze the reaction with tryptophan. It seems possible that for 

some Stramenopiles and Haptophyta, the first enzyme of the kynurenine pathway still awaits 

identification (indicated by grey open circles in Fig. 27). 
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Fig. 34: An evolutionary tree for indoleamine-2,3-dioxygenase shows a complex mixture of 

bacterial and eukaryotic sequences. The unrooted Bayesian tree shows posterior probabilities 

above the branches and PhyML bootstrap values below the branches. Thickened horizontal lines 

represent 1.0 Bayesian posterior probability. Curly brackets refer to enzymatic activity; only 

enzymes from the upper branch show reaction rates as expected for effective tryptophan 

degradation, while fungal indoleamine-2,3-dioxygenase γ (IDOγ) and some bacterial enzymes in 

the lower two branches have very low reaction rates (Yuasa and Ball 2011; Yuasa and Ball 2012). 

Larger clades have been collapsed for presentation and size is indicative of the number of taxa 

within the clade. Scale bar represents 0.2 substitutions per site. Tree produced by G. Schönknecht. 

An alternative tree enforcing the stramenopiles clade (three species of 

Labyrinthulomycetes and A. anophagefferens) to be monophyletic with Ectocarpus siliculosus 
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could not be rejected statistically (Table 7). The evolutionary tree containing the former 

constraint showed the Stamenopiles group being ‘pulled up’ to where E. siliculosus resides. Also, 

enforcing the ‘Stramenopiles’ and ‘Eukaryota 2’ clades to be monophyletic cannot be rejected 

(Table 7). While the unconstrained topology (Fig. 34) shows a rather distant relationship between 

‘Stramenopiles’ and E. siliculosus, the exact position where the ‘Stramenopiles’ clade resides is 

uncertain, and could have implications regarding enzyme kinetics. Further biochemical 

investigation would be required to determine if the dioxygenases in the ‘Stramenopiles’ clade do 

in fact catalyze the formation of N-formylkynurenine from L-tryptophan. 

 

Table 7: Bayesian and Maximum Likelihood analyses of constraint trees for indoleamine 2,3-

dioxygenase. From left to right, clades for which protein sequences were forced to be 

monophyletic, harmonic mean (H) of log-likelihood values from stationary phase of Bayesian 

analysis as calculated by Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic 

means of unconstrained and constrained tree (ΔH), Akaike's information criterion through Markov 

chain Monte Carlo (AICM) as calculated by Tracer, difference in AICM between unconstrained 

and constrained tree (ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference 

between log-likelihoods (Δlog L) of unconstrained and constrained tree, p-values from 

approximately unbiased (AU) test and from Kishino-Hasegawa (KH) test as calculated by 

CONSEL (Shimodaira and Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values 

indicating no significant difference in italics and reduced font size. 

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆log L AU KH

Eukaryota -44187 82.5 88534 -166.0 -43890 78.8 9.0E-05 0.001

Bacteria -44198 93.2 88541 -173.3 -43913 101.9 6.0E-08 0

Stramenopiles & Eukaryota 2 -44112 7.9 88374 -6.3 -43813 1.8 0.408 0.414

Stramenopiles & Eukaryota 2 & Eukaryota 1 -44150 45.2 88459 -91.2 -43851 40.0 0.026 0.030

Stramenopiles & Eukaryota 2 & Eukaryota 3 -44135 30.9 88422 -54.2 -43836 24.7 0.036 0.037

Eukaryota 1 & Eukaryota 3 -44171 66.7 88497 -129.0 -43873 62.0 0.0001 0.001

Ectocarpus & Eukaryota 3 (algae) -44146 41.2 88451 -83.0 -43853 41.8 0.001 0.001

Ectocarpus & Stramenopiles -44120 15.6 88398 -30.2 -43828 16.9 0.134 0.136

Stramenopiles (from all branches) -44164 59.4 88490 -122.0 -43871 59.7 0.0001 0

Fungi -44424 319.0 89004 -636.1 -44118 307.2 4.0E-09 0

Indoleamine Dioxygenase

 Monophyletic Constraints

Bayesian Maximum Likelihood
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In the second reaction step of the kynurenine pathway, N-formylkynurenine is 

hydrolyzed into L-kynurenine and formate. This reaction can be catalyzed by two different, 

nonorthologous enzymes. In many eukaryotes an α/β hydrolase fold enzyme with an 

esterase/lipase domain functions as arylformamidase (EC 3.5.1.9) (Pabarcus and Casida 2002; 

Wogulis, et al. 2008), whereas a cyclase functions as an arylformamidase in many bacteria 

(Kurnasov, et al. 2003). Eukaryotic arylformamidases show little conservation, with just 22% 

amino acid similarity (11% identity) between yeast and mouse (Wogulis, et al. 2008). Outside 

Opisthokonta very few eukaryotic arylformamidases have been annotated, and BLAST searches 

with opisthokont sequences do not result in meaningful hits outside Opisthokonta, preventing an 

phylogenetic analysis of eukaryotic arylformamidases. In the genome of the red alga G. 

sulphuraria, a cyclase with homology to bacterial arylformamidases has been annotated, and a 

phylogenetic analysis indicates that G. sulphuraria acquired this enzyme via horizontal gene 

transfer from Actinobacteria (Schönknecht, et al. 2013). 

Kynurenine-3-monooxygenase (EC 1.14.13.9) catalyzes the third reaction step of the 

kynurenine pathway, the hydroxylation of L-kynurenine into 3-hydroxy-L-kynurenine. In an 

evolutionary tree of this enzyme, sequences from most eukaryotic clades form one major branch 

(Fig. 35). However, the other major branch, composed mostly of bacterial sequences, has several 

eukaryotic sequences interspersed, indicating possible instances of horizontal gene transfer. 

Alternative evolutionary trees enforcing monophyly of eukaryotic clades have low probability 

(Table 8). Earlier phylogenetic analyses of kynurenine-3-monooxygenases also place the 

sequence from Dictyostelium discoideum (Amoebozoa) in a branch with bacterial sequences 

(Lima, et al. 2009), in good agreement with results shown here. Phylogenomic analyses for the 

amoebozoans D. discoideum (Eichinger, et al. 2005; Andersson 2011) and Entamoeba histolytica 

(Loftus, et al. 2005) identified several instances of horizontal gene transfer from bacterial 

genomes, and it has been suggested that the phagotrophic life style of amoebozoa promoted DNA 
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uptake (Ford Doolittle 1998). Interestingly, none of the three phylogenomic studies with 

amoebozoa seem to have identified kynurenine-3-monooxygenase as a candidate for horizontal 

gene transfer. This might be caused by several interspersed eukaryotic sequences rather than just 

one, making it harder to detect a specific horizontal gene transfer event. 

 

Fig. 35: An evolutionary tree for kynurenine-3-monooxygenase indicates that some 

unicellular eukaryotes acquired genes via horizontal transfers. The unrooted Bayesian 

tree shows posterior probabilities above the branches and PhyML bootstrap values below 

the branches. Thickened horizontal lines represent 1.0 Bayesian posterior probability. 

Larger clades have been collapsed for presentation and size is indicative of the number of 

taxa within the clade. Scale bar represents 0.2 substitutions per site.  

Somewhat surprising is a branch with sequences from four eukaryotes from different 

lineages embedded in the bacterial branch (‘Eukaryota 2 (marine)’ in Fig. 35). A. 
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anophagefferens and P. marinus both belong to the SAR (Stramenopiles, Alveolata, Rhizaria) 

supergroup, which may have a common ancestor with the haptophyte E. huxleyi (Fig. 35) (Burki, 

Okamoto, et al. 2012; Read, et al. 2013). However, sequences from other Stramenopiles 

(Labyrinthulomycetes) and from B. natans (Rhiziaria) are not monophyletic with the sequences 

from A. anophagefferens, P. marinus, and E. huxleyi (Table 8), indicating that the latter three 

probably acquired their kynurenine-3-monooxygenase via horizontal gene transfer. Moreover, the 

sequence from Sphaeroforma artica (Ichthyosporea, Opisthokonta) is not monophyletic with 

other opisthokont sequences (Fig. 35; Table 8), and was probably acquired via horizontal gene 

transfer as well. While phylogenetically distant, A. anophagefferens, P. marinus, E. huxleyi, and 

S. artica are marine organisms, all four occurring in the northern Atlantic Ocean. The sequences 

next to this eukaryotic branch are from Kangiella koreensis and Kangiella aquimarina, marine 

bacteria from the family of Alcanivoracaceae, with several species also occurring in the northern 

Atlantic Ocean. The co-occurrence of homologous proteins in distantly related organisms within 

the same environments has been observed before in studies of horizontal gene transfer, both, in 

prokaryotes (Beiko, et al. 2005), and in eukaryotes (Andersson 2011). Enforcing Amobozoa and 

‘Eukaryota 2 (marine)’ to be monophyletic could not be rejected statistically, indicating that these 

two possible horizontal gene transfer events happened independently. 

 

Table 8: Bayesian and Maximum Likelihood analyses of constraint trees for kynurenine 3-

monooxygenase. From left to right, clades for which protein sequences were forced to be 

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆ log L AU KH

Eukaryotes -58159 41.0 116502 -94.6 -57736 45.3 0.015     0.02

Unikonta without S. artica -58183 64.7 116546 -139.3 -57755 64.2 0.032     0.04

Eukaryota 1 & Eukaryota 2 (marine) -58138 20.1 116470 -62.7 -57723 32.4 0.003     0.013

Opisthokonts -58230 112.4 116659 -252.1 -57819 128.0 2.0E-06 0

SAR & Haptophyta -58250 131.8 116712 -304.5 -57830 139.1 3.0E-79 0

Stramenopiles -58438 319.7 117095 -687.5 -58009 318.5 2.0E-38 0

Amoebozoa & Eukaryota 2 (marine) -58138 20.5 116443 -35.5 -57704 13.3 0.096       0.107

Kynurenine Monooxygenase

 Monophyletic Constraints

Bayesian Maximum Likelihood
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monophyletic, harmonic mean (H) of log-likelihood values from stationary phase of Bayesian 

analysis as calculated by Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between harmonic 

means of unconstrained and constrained tree (ΔH), Akaike's information criterion through Markov 

chain Monte Carlo (AICM) as calculated by Tracer, difference in AICM between unconstrained 

and constrained tree (ΔAICM), log-likelihood (log L) of best maximum likelihood tree, difference 

between log-likelihoods (Δlog L) of unconstrained and constrained tree, p-values from 

approximately unbiased (AU) test and from Kishino-Hasegawa (KH) test as calculated by 

CONSEL (Shimodaira and Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values 

indicating no significant difference in italics and reduced font size. 

 

Fig. 36: An evolutionary tree of kynureninases shows the expected separation of eukaryotic and 

bacterial sequences. The unrooted Bayesian tree shows posterior probabilities above the branches 

and PhyML bootstrap values below the branches. Thickened horizontal lines represent 1.0 

Bayesian posterior probability. Larger clades have been collapsed for presentation and size is 
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indicative of the number of taxa within the clade. Scale bar represents 0.1 substitutions per site. 

Tree produced by G. Schönknecht. 

 

Kynureninase (EC 3.7.1.3) catalyzes the fourth step of the kynurenine pathway, the 

hydrolysis of 3-hydroxy-L-kynurenine into 3-hydroxyanthranilate and alanine, and 3-

hydroxyanthranilate 3,4-dioxygenase (EC:1.13.11.6) catalyzes the fifth step, the decyclization 

of 3-hydroxyanthranilate into 2-amino-3-carboxymuconate semialdehyde (Fig. 2). For both 

enzymes evolutionary trees have two major branches, one with eukaryotic sequences, and the 

other with bacterial sequences (Figs. 36 & 37). Earlier evolutionary analyses of kynureninases 

and 3-hydroxyanthranilate 3,4-dioxygenases were limited to Unikonta, but had a wider coverage 

of bacterial sequences (Lima, et al. 2009), and resulted in comparable tree topologies. The 

kynureninase phylogeny shows several eukaryotic lineages that are disbanded, i.e. Unikonta, 

stramenopiles, Excavata, and SAR. Enforcing any of these major groups to be monophyletic 

(irrespective of one another) could not be rejected (Table 9). Similar to the kynureninase 

phylogeny, the evolutionary tree for 3-hydroxyanthranilate 3,4-dioxygenase also contains major 

eukaryotic groups that are disbanded (i.e., red algae and SAR). Enforcing these groups to be 

monophyletic could not be rejected. However, enforcing monophyly among Unikonta or 

Opisthokonta had extremely low probability, supporting a paraphyletic relationship between 

fungi and animals in contrast to established organismal evolution (Fig. 27). 
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Fig. 37: An evolutionary tree of 3-hydroxyanthranilate-3,4-dioxygenases shows the expected 

separation of eukaryotic and bacterial sequences. The unrooted Bayesian tree shows posterior 

probabilities above the branches and PhyML bootstrap values below the branches. Thickened 

horizontal lines represent 1.0 Bayesian posterior probability. Larger clades have been collapsed for 

presentation and size is indicative of the number of taxa within the clade. Scale bar represents 0.2 

substitutions per site. The sequence from Aureococcus anophageferens was omitted from an 

evolutionary analysis because it is incomplete. 
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Table 9: Bayesian and Maximum Likelihood analyses of constraint trees for kynureninase and 3-

hydroxyanthranilate-3,4-dioxygenase. From left to right, clades for which protein sequences were 

forced to be monophyletic, harmonic mean (H) of log-likelihood values from stationary phase of 

Bayesian analysis as calculated by Tracer (http://beast.bio.ed.ac.uk/Tracer), difference between 

harmonic means of unconstrained and constrained tree (ΔH), Akaike's information criterion 

through Markov chain Monte Carlo (AICM) as calculated by Tracer, difference in AICM between 

unconstrained and constrained tree (ΔAICM), log-likelihood (log L) of best maximum likelihood 

tree, difference between log-likelihoods (Δlog L) of unconstrained and constrained tree, p-values 

from approximately unbiased (AU) test and from Kishino-Hasegawa (KH) test as calculated by 

CONSEL (Shimodaira and Hasegawa 2001; Shimodaira 2002). ΔH, ΔAICM, and p-values 

indicating no significant difference in italics and reduced font size. 

 

THE HIGHLY CONSERVED PATHWAY FOR TETRAPYRROLE BIOSYNTHESIS 

Tetrapyrroles, including porphyrins, chlorophylls, and heme, are synthesized though a 

pathway possessing high conservation among all eukaryotic lineages throughout evolution 

(Kořený and Oborník 2011). Tetrapyrrole biosynthesis begins with the precursor δ-

aminolevulinic acid (ALA) (Figs. 38 & 39); however, two different routes can be used for δ-

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆log L AU KH

Unikonta -73137 11.5 146577 -38.6 -72570 9.6 0.155 0.160

Stramenopiles -73152 27.2 146574 -35.3 -72588 27.7 0.103 0.102

Excavata -73131 5.4 146546 -7.4 -72564 3.0 0.446 0.434

SAR -73152 27.2 146574 -35.3 -72596 34.9 0.070 0.072

H ∆∆∆∆H AICM ∆∆∆∆AICM log L ∆∆∆∆log L AU KH

Unikonta -25839 111.2 51894 -189.5 -25578 104.6 4.00E-08 0.0003

Opisthokonta -25843 115.1 51926 -221.4 -25584 110.8 3.00E-44 0

Red Algae -25737 8.8 51713 -8.2 -25475 1.4 0.161 0.226

SAR -25755 26.6 51742 -36.9 -25497 23.7 0.046 0.051

3-Hydroxyanthranilate-3,4-

Dioxygenase

 Monophyletic Constraints

Bayesian Maximum Likelihood

Kynureninase

 Monophyletic Constraints

Bayesian Maximum Likelihood
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aminolevulinic synthesis. Heterotrophic eukaryotes, such as animals and fungi, employ the so-

called C4, or Shemin pathway, where δ-aminolevulinic acid is generated through the 

condensation of glycine and succinyl-CoA. G. sulphuraria synthesizes δ-aminolevulinic acid 

similar to almost all photosynthetic eukaryotes, starting with the amino acid glutamate (Fig. 39). 

 

Fig. 38: Porphyrin metabolism modified from KEGG (Kanehisa, et al. 2014). For known enzyme 

catalyzed reactions, abbreviated enzyme names, EC numbers, and ID’s for the G. sulphuraria 

genome (Gasu_#) are given. Porphyrin names are printed in larger font (and red). 

The results obtained by Troxler and Bogorad (1966) and Brown, et al. (1982) are 

somewhat expected when considering the tetrapyrrole biosynthetic pathway. Supplementing 

cultures with exogenous aminolevulinic acid, the initial precursor metabolite of the pathway 



92 

 

whose synthesis represents the rate-limiting step of overall tetrapyrrole biosynthesis (Papenbrock, 

et al. 2000; Vasileuskaya, et al. 2005), resulted in porphyrin excretion in C. caldarium. The 

formation of uroporphyrin I and III, and coproporphyrin I and III occurs by a spontaneous 

reaction (Fig. 38). Therefore, one might expect that ‘flooding’ the biosynthetic pathway with an 

excess of the precursor metabolite, aminolevulinic acid, would invoke an increased total amount 

of tetrapyrroles, especially porphryins which are partially synthesized through spontaneous 

reactions. Furthermore, incubation with both aminolevulinic acid and N-methylprotoporphyrin 

IX, a strong ferrochelatase (Gasu_58560, EC 4.99.1.1; Fig. 39) inhibitor, also resulted in the 

excretion of porphyrins in C. caldarium. Again, this would be expected, as the biosynthetic 

pathway is ‘flooded’ with the precursor metabolite, aminolevulinic acid, and one of the two 

routes, phycobilin synthesis (via heme synthesis) is blocked, resulting in an increase porphyrin 

biosynthesis. 
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Fig. 39: Porphyrin and chlorophyll metabolism (KEGG pathway 00860 (Kanehisa, et al. 2014)). 

Enzymes marked in red and yellow have been annotated in the G. sulphuraria genome. G. 

sulphuraria synthesizes δ-aminolevulinic acid via the C5 pathway using three enzymes (marked in 

yellow): glutamyl-tRNA synthetase (Gasu_18280 & Gasu_27890, EC 6.1.1.17), glutamyl-tRNA 

reductase (Gasu_39730, EC 1.2.1.70), and glutamate-1-semialdehyde 2,1-aminomutase 

(Gasu_02530, EC 5.4.3.8). 
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SPECTRAL SHIFTING BY PORPHYRINS EXCRETED FROM G. SULPHURARIA 

When G. sulphuraria cells were transferred to lower light intensities or grown to produce 

dense cultures causing light-limitation, a pink color and a strong fluorescence of the culture 

medium were observed. Growth studies showed a correlation between cell density and the 

excretion of porphyrins (Fig. 40), suggesting conditions exhibiting light limitation may be 

responsible for eliciting the response. No correlation was observed when comparing porphyrin 

excretion to supplemental glucose, in contrast to observations and interpretations with G. partita 

(Stadnichuk, et al. 1998). 

 

Fig. 40: Concentration of excreted pigments appears to be density dependent in glucose 

supplemented cultures (glucose concentrations indicted in legend). Pigment concentration 

increases prior to cultures reaching stationary phase ruling out cell lysis as a major contributing 

factor. Absorption at 400 nm was used to determine the presence of the porphyrin mixture as 400 

nm was the maximum absorption peak in the absorption spectrum. Abbreviation: O.D., optical 

density. 

Separation on a horizontal, native (1.2%) agarose gel resulted in three distinct bands with 

differing fluorescence intensities (Fig. 41), indicating the presence of three different porphyrins in 

the culture medium.  
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Fig. 41: Horizontal, native agarose (1.2%) gel showing the 

separation of the three different porphyrins excreted by G. 

sulphuraria when cultivated in liquid medium. All lanes (with 

exception of the far right lane) were loaded with supernatant 

from the same liquid culture medium. The lane furthest to the 

right was loaded with supernatant from a different liquid 

culture medium. Samples were mixed with glycerol at a 9:1 

ratio (sample:glycerol).  

 

THE BASICS: ABSORPTION, EMISSION & EXCITATION 

To determine the fluorescence quantum efficiency of the porphyrin mixture excreted by 

G. sulphuraria, three different types of spectra were recorded: absorption, emission, and 

excitation. A simple absorption spectrum was recorded to determine which wavelengths of light 

were absorbed by the excreted pigments (Fig. 42, solid line). The wavelength at which the 

maximum absorption peak resides (400 nm) was then used as the excitation wavelength to 

measure a fluorescence (or emission) spectrum. Emission spectra requires the selection of a fixed 

excitation wavelength, i.e. the wavelength of light at which the sample is excited. The resulting 

emission spectrum is the spectrum of light which is emitted (or fluoresced) by the sample (Fig. 

42, dotted line). An excitation spectrum shows the wavelengths of light which can excite the 

sample to elicit fluorescence. Excitation and absorption spectra are generally similar. The 

maximum emission peak (591 nm) from the emission spectrum was used as the emission 

wavelength to measure an excitation spectrum (Fig. 42, dashed line). The emission wavelength is 

used to ‘see’ the spectrum of light which excites the sample. The excitation spectrum for the 

porphyrin mixture showed a broad peak in the near-UV region overlapping with the maximum 
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absorbance peak. Thus, even wavelengths shorter than 400 nm could be used to generate 

fluorescence from the excreted porphyrin mixture. 

 

Fig. 42: Three different types of spectra for the porphyrin mixture excreted by G. sulphuraria. 

Culture medium containing porphyrin mixture was at pH 2. 

Spectra of the pink culture medium (porphyrin mixture) show a strong excitation peak in 

the near-UV (320-420 nm), while emission (or fluorescence) spectra revealed two large peaks for 

yellow and orange light (520 and 660 nm) (Figs. 42 & 43). The excitation peak resides in the 

near-UV region of the visible spectrum of light, capable of absorbing higher-energy photons in an 

area of shorter wavelengths when compared to the maximum absorption peaks for both 

chlorophylls a and b (Fig. 43). The two large emission peaks in yellow and orange light overlap 

with the absorption spectra of another photosynthetic pigment, phycocyanin, which G. 

sulphuraria produces in large amounts (Schmidt, et al. 2005). The excitation and emission 

spectra, taken together with the absorbance spectra of other photosynthetic pigments, namely 

phycocyanin, gave rise to the hypothesis of spectral shifting. Near-UV light that is not absorbed 

by photosynthetic pigments is absorbed by the excreted porphyrin mixture, and is then remitted as 

yellowish-orange light that could be absorbed by phycocyanin (Fig. 43). The excreted porphyrin 
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mixture could potentially act as light converters, converting light that is unusable 

photosynthetically into photosynthetically active radiation (PAR) usable by plants and algae. 

Fig. 43: Excitation spectrum (solid line) and 

emission spectrum (dashed line) of culture 

medium (pH 2.0) from light-limited 

G. sulphuraria cultures compared to absorption 

spectra of different photosynthetic pigments (grey; 

modified from 

http://www.biologie.redio.de/pigment.gif). The 

excitation spectrum was recorded at 600 nm 

emission; the emission spectrum was recorded 

with 400 nm excitation. The absorption spectra are for (peaks from left to right) chlorophyll a, 

chlorophyll b, β-carotene (double peak), phycoerythrin, and phycocyanin. Excitation, emission, 

and absorption spectra are normalized to have roughly the same amplitude. The color bar on top 

reflects the different colors visible between 400 nm and 700 nm, the range of wavelengths 

considered ‘photosynthetically active radiation’ (PAR). 

 

ABSORPTION AND EMISSION: THE FINER DETAILS 

Absorption spectra of the liquid supernatant containing the porphyrin mixture from 

mixotrophic G. sulphuraria cultures supplemented with 50 mM glucose display three distinct 

absorption peaks at pH 2. The largest peak is very narrow at 400 nm with a small, short-

wavelength shoulder. The two smaller peaks are at 550 nm and 590 nm. The absorption spectrum 

slightly changes at pH 8. However, the only significant change occurs in the region of the two 

smaller peaks between 550 and 590 nm. The two absorbance peaks observed at pH 2 become four 

peaks at pH 8 (Fig. 44, bottom middle). At pH 8, the emission spectrum contains two peaks at 
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608 nm and 674 nm when excited at 400 nm, the wavelength of the maximum absorption peak 

(Fig. 44). A small difference does exist when comparing emission spectra from pH 2 and pH 8, 

mainly the wavelength of the emission peaks. At pH 8 the emission curve is shifted to the right 

towards longer wavelengths. The longer-wavelength emission peak also has a slightly lower 

fluorescence intensity (Fig. 45). As mentioned above, the region at which the emission curve (at 

pH 2) resides, is within the absorption spectrum for phycocyanin, a photosynthetic pigment 

produced in G. sulphuraria. 

 

Fig 44: Spectra of uroporphyrin I (top) and spectra of culture medium from light-limited G. 

sulphuraria cultures supplemented with 50 mM glucose (bottom). Top: Uroporphyrin I spectra 

from the authentic substance (dashed line) and the isolated pigment from E. coli cultures (solid 

line) (Akhtar, et al. 2003). Left: Absorption spectra at pH 2.0. Insets show minor peaks between 

450 and 650 nm at an expanded Y-axis. Middle: Absorption spectra at pH 8.0. Right: 

Fluorescence emission spectra at pH 8.0. Figure produced by G. Schönknecht. 
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Fig. 45: The effect of pH on excitation and emission spectra. In alkaline conditions the emission 

spectrum is shifted to longer wavelengths. The maximum peak of the excitation spectrum (400 

nm) remains the same at different pH values; however, the 400 nm peak is smaller at pH 8 

suggesting a lower energy input is required to elicit a similar magnitude of fluorescence. An 

excitation wavelength of 400 nm was used for both emission spectra.  

The absorption and emission spectra collected for the excreted porphyrin mixture by G. 

sulphuraria show a remarkable similarity to a pigment excreted by an engineered strain of E. coli. 

Akhtar, et al. (2003) identified the pigment excreted by the engineered E. coli to be uroporphyrin 

I, a cyclic tetrapyrrole similar to that of chlorophyll and heme. Comparing the spectra between 

uroporphyin I excreted by engineered E. coli to isolated, authentic uroporphyrin I, showed no 

difference except for the height of the peaks (Fig. 44, top, (Akhtar, et al. 2003)). At both pH 2 and 

pH 8, absorption spectra (Fig. 44, top left and middle) and emission spectra (Fig. 44, top right) 

were practically identical, confirming the excreted pigment from engineered E. coli to be 

uroporphyrin I. The absorption and emission spectra for the excreted porphyrin mixture from G. 

sulphuraria are nearly identical to the spectra presented by Akhtar, et al. (2003), even for both pH 

2 and pH 8. Taken together with the results from Troxler and Bogorad (1966) and Stadnichuk, et 

al. (1998), and comparing absorption and emission spectra between G. sulphuraria culture 



100 

 

medium and published uroporphyrin I, the mixture of fluorescent pigments excreted by G. 

sulphuraria appeared to contain, if not mostly composed of, uroporphyin I and/or III. 

 

DETERMINING RELATIVE FLUORESCENCE QUANTUM YIELD  

Two characterized fluorescence standards were used in order to determine the relative 

fluorescence quantum yield (ΦF) of the porphyrin mixture excreted by G. sulphuraria. 

Coumarin 102 and Coumarin 153 both possess an absorption spectrum with the maximum 

absorption peak near that of the porphyrin mixture at 400 nm (Fig. 46). Coumarin 102 and 

Coumarin 153 both exhibit a single peak absorption spectrum. Coumarin 102 has a maximum 

absorption peak at 391 nm and Coumarin 153 at 426 nm. 

Fig. 46: Absorption spectra for 

Coumarin 102, Coumarin 153, and 

porphyrin mixture in culture 

medium showing maximum 

absorption peak similarities in the 

short wavelength region. Inset 

shows the 404 nm wavelength at 

which the absorption spectrum of all 

three samples overlap signifying a 

cross point.  

Preliminary absorption spectra were collected for both Coumarin standards and the porphyrin 

mixture at differing concentrations. These spectra were collected in order to determine at which 

wavelengths the cross points resided when using different concentrations. The ideal wavelength 

for all absorption spectra to cross would be 400 nm, the wavelength for the maximum absorption 
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peak for the porphyrin mixture. However, generating a cross point for all three absorption spectra 

at 400 nm was not possible. To minimize inner filter effects, which can lead to underestimated 

values of the relative ΦF, the maximum absorption peak for both Coumarin standards and the 

porphyrin mixture had to have a maximum absorbance value at or below 0.1. Thus, the closest 

wavelength that could be achieved was 404 nm (Fig. 46). The relative ΦF was calculated by 

cross-calibrating the two Coumarin standards first, to ensure published values for relative ΦF 

could be reproduced before proceeding with the porphyrin mixture. The initial starting 

concentrations for Coumarin 102 and Coumarin 153 were 6 µM and 10 µM, respectively. At 

these concentrations, both Coumarin 102 and Coumarin 153 had an absorbance of less than 0.1 at 

the maximum absorbance peak, removing any possible inner filter effects. Additionally, these 

concentrations resulted in absorption spectra that crossed at 404 nm, the (cross point) wavelength 

used for excitation to collect emission spectra. Each solution was then diluted 20% (four times) 

with ethanol creating dilutions with 80%, 60%, 40%, and 20% concentrations (for both Coumarin 

standards) to be used for performing a linear regression (see below). Final dilutions of the 

concentration series were adjusted slightly with ethanol and/or ‘100% stock’ (6 µM Coumarin 

102 and 10 µM Coumarin 153) to ensure all absorption curves overlapped at the cross point 

wavelength of 404 nm (Fig. 47) as determined above. When exciting at 404 nm for both 

Coumarin standards at the concentrations given above, the Coumarin standards were assumed to 

be absorbing the same amount of light (both had equal absorbance values). Thus, the differing 

magnitudes of emission (or fluorescence) intensity are dependent upon the molecule’s ΦF. 
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Fig. 47: Absorption spectra of the diluted concentration series of both Coumarin 102 and 

Coumarin 153. The X-axis resolution has been increased to show the cross points of each 

concentration dilution. The absorption spectrum for each concentration dilution crosses at or very 

close to 404 nm, the wavelength that was used for excitation to collect emission spectra. 

The cross point wavelength of 404 nm was then used as the excitation wavelength for 

collecting emission spectra of the Coumarin standards. The first several attempts to measure 

emission spectra that matched published emission spectra for the Coumarin standards were 

unsuccessful due to the increased sensitivity of the fluorescence spectrometer. Emission peaks 

were routinely different than those of published spectra and were the result of saturating the 

fluorescence detector, which leads to inaccurately quantified fluorescence intensities by the 

fluorescence spectrometer at various wavelengths. Excitation and emission slit widths were 

reduced from 5 mm (maximum sensitivity) to 1 mm (minimum sensitivity). Reducing the slit 

widths resulted in emission spectra that matched published spectra (Rurack and Spieles 2011) and 

did not exhibit saturation by the fluorescence detector (Fig. 48). 
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Fig. 48: Raw emission spectra for all five 

concentration dilutions for both Coumarin 102 

and Coumarin 153. The differing magnitudes of 

fluorescence intensity are a reflection of each 

Coumarin standard’s fluorescence quantum 

yield as depicted in Fig. 49 below. The cross 

point wavelength (404 nm) was used as the 

excitation wavelength for collecting emission 

spectra. R.U., relative units. 

The emission spectra for each concentration dilution of both Coumarin standards were integrated 

(summation of the area under the emission spectrum), and integrated fluorescence was plotted as 

a function of absorbance [F=f(A)], in order determine the slope via linear regression (Grad=F/A) 

(Fig. 49). As both Coumarin standards were dissolved (and diluted) in ethanol, the refractive 

indices for all solutions were identical. Thus, Equation 2 (Methodology, pg. 30) was used in order 

to calculate the relative ΦF for Coumarin 153, using the published value for the ΦF of Coumarin 

102 (ΦF =0.764) (Rurack and Spieles 2011) as the known standard. The calculated ΦF of 

Coumarin 153 was 0.494. Coumarin 153 has a published value of 0.544 for the ΦF (Rurack and 

Spieles 2011), which gives a difference of 9.2% between published and experimental values 

(shown here). The calculated experimental value of 0.494 lies within the 10% allowance for the 

determination of relative ΦF (Horiba 2014). Given that published values for the relative ΦF of 

Coumarin 153 could be reproduced with confidence (within ±10%), determination of the relative 

ΦF for the porphyrins excreted by G. sulphuraria was attempted next. 
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Fig. 49: Linear regression showing 

integrated fluorescence as a function of 

absorbance [F=f(A)]. The slope values are 

67.53 and 43.68 for Coumarin 102 and 

Coumarin 153 respectively (Table 10, pg. 

107), and were used as Grad values in Eq. 2 

(pg. 30). Integrated fluorescence values 

were divided by 107 for presentation 

purposes. R.U., relative units. 

Similar to the concentration dilutions for the Coumarin standards, the porphyrin mixture 

was diluted to differing concentrations in order to determine which concentration would yield an 

absorbance value equal to, or less than, 0.1 at the maximum absorption peak, and additionally, 

overlap the absorption spectra of the Coumarin standards at the cross point wavelength of 404 

nm. The same concentration dilutions used above for cross calibrating the Coumarin standards 

were used for determining the relative ΦF of the porphyrin mixture. By all absorption spectra for 

both Coumarin standards and the porphyrin mixture overlapping at the cross point wavelength 

(404 nm) for all concentration dilutions, both Coumarins 102 and 153 were used individually to 

calculate the relative ΦF of the porphyrin mixture. The initial concentration of the porphyrin 

mixture used to generate the concentration dilutions was 12% (diluted with water) of the culture 

medium as it existed, after centrifugation and sterile filtration to remove any cells or cell debris. 

The 12% porphyrin mixture solution was then used to generate the concentration dilutions by 

diluting the solution 20% (four times) with water, to create dilutions with 80%, 60%, 40%, and 

20% concentrations. The final concentration dilutions of the porphyrin mixture were slightly 

adjusted with water and/or ‘100% stock’ (12% porphyrin mixture solution) to ensure absorption 

spectra for each concentration dilution crossed the absorption spectra of the concentration 

dilutions for the Coumarin standards at 404 nm (Fig. 50). 
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Fig. 50: Absorption spectra of the concentration dilutions for both Coumarin standards and the 

porphyrin mixture. X-axis resolution has been increased to show cross points and region 

surrounding cross point wavelength of 404 nm, the wavelength used for excitation when collecting 

emission spectra. 

Fig. 51: Raw emission spectra for both 

Coumarin standards and the porphyrin 

mixture. Emission spectra for the 

porphyrin mixture were placed on a 

secondary Y-axis for presentation 

purposes due to substantially lower 

fluorescence intensity for the 

concentration dilutions. The cross point 

wavelength (404 nm) was used as the 

excitation wavelength for collecting 

emission spectra R.U., relative units.  
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The emission spectra for each concentration dilution of the porphyrin mixture and the 

Coumarin standards (Fig. 51) were integrated (summation of the area under the emission 

spectrum), and integrated fluorescence was plotted as a function of absorbance [F=f(A)], in order 

determine the slope via linear regression (Grad=F/A) (Fig. 52). Because the porphyrin mixture 

was dissolved (and diluted) in water, whereas the Coumarins were dissolved (and diluted) in 

ethanol, the differing refractive indices of the solutions (water vs. ethanol) had to be taken into 

consideration. Thus, Equation 3 (Methodology, pg. 32) was used for calculating the relative ΦF of 

the porphyrin mixture. 

Fig. 52: Linear regression showing 

integrated fluorescence as a function of 

absorbance [F=f(A)] for both Coumarin 

standards and the porphyrin mixture. The 

slope values of the linear regressions are 

listed in Table 10. Integrated fluorescence 

values were divided by 107 for 

presentation purposes. R.U., relative units. 

Using Coumarin 102 and Coumarin 153 individually as the known fluorescence standards, the 

porphyrin mixture was calculated to have a relative ΦF of 0.032 and 0.035, respectively 

(approximately 9% difference). The calculated relative ΦF of the porphyrin mixture was lower 

than to be expected for counteracting light limiting conditions. The large difference in the 

fluorescence intensities between the Coumarin standards and the porphyrin mixture was also 

reflected by the large difference in relative ΦF values. The excretion of porphyrins by G. 

sulphuraria might not be directly associated with environmental lighting conditions, but may 

serve another biological function that is not easily observed during laboratory cultivation. 
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  Coumarin 102 Coumarin 153 Porphyrin Mixture 

Best-fit values 
 

     Slope 67.53 43.68 2.979 

     Y-intercept; X=0.0 0.0716 0.0388 0.0167 

     X-intercept; Y=0.0 -0.0011 -0.0009 -0.0056 

95% Confidence Intervals 
 

     Slope 64.73 to 70.32 41.82 to 45.54 1.163 to 4.794 

     Y-intercept; X=0.0 -0.0494 to 0.1927 -0.0426 to 0.1202 -0.0621 to 0.0954 

     X-intercept; Y=0.0 -0.003 to 0.0008 -0.0029 to 0.0009 -0.0742 to 0.0143 

Goodness of Fit 
 

     R square 0.9991 0.9991 0.8383 

Equation 
Y = 67.53*X + 

0.07162 
Y = 43.68*X + 

0.03880 
Y = 2.979*X + 

0.01667 

 

Table 10: Linear regression analyses of all samples (Coumarin standards and porphyrin mixture) 

where absorption is plotted as a function of integrated fluorescence [F=f(A)] (Fig. 52). The slope 

values given were used for the Grad values in Eq. 2 (pg. 30) and Eq. 3 (pg. 32) to calculate the 

relative fluorescence quantum yield of Coumarin 153 and the porphyrin mixture excreted by G. 

sulphuraria respectively.  
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CHAPTER V 
 

 

CONCLUSION 

 

THE METABOLIC DIVERSITY OF G. SULPHURARIA 

The diversity of metabolic pathways and associated enzymes make G. sulphuraria unique 

not only when compared to other red algae, but also to other algal lineages including green algae. 

Without question, several evolutionary events have played an important role in shaping metabolic 

pathways in G. sulphuraria, from the primary endosymbiosis event to horizontal gene transfer. 

Ancestral inheritance was even responsible for the establishment of certain metabolic pathways, 

such as the methylmalonyl-CoA pathway and tryptophan degradation, which is coupled with de 

novo NAD+ biosynthesis (via kynurenine pathway). Thus, the metabolic diversity present in G. 

sulphuraria is a direct result of G. sulphuraria’s evolutionary history that was also shaped by 

numerous gene transfers.  

Several enzymes implicated in glycogen metabolism in G. sulphuraria have been shown 

to have eukaryotic origins that do not directly result from the primary endosymbiosis event 

(Patron and Keeling 2005; Deschamps, et al. 2008). While the primary endosymbiosis event 

unquestionably impacted polyglucan metabolism in several photosynthetic lineages, namely 

Viridiplantae, polyglucan metabolism in G. sulphuraria appears to have mostly retained and still 

utilizes the eukaryotic, ancestor-established pathways. The architecture of glycogen synthesized 

by G. sulphuraria contains more α-1,6 branching linkages than other red algae, in addition to
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Viridiplantae and cyanobacteria (Hirabaru, et al. 2010). Even though synthesizing glycogen may 

seem peculiar compared to other photosynthetic eukaryotes, utilizing highly-branched glycogen 

in favor of minimally-branched starch does have its advantages. Glycogen molecules are 

completely hydrosoluble and like starch (which is not entirely hydrosoluble), have little to no 

impact on osmoregulation (Ball, et al. 2011). Considering G. sulphuraria’s habitat and the 

mechanisms by which it deals with increased levels of salt (McCoy, et al. 2009; Schönknecht, et 

al. 2013), osmoregulation is an important facet of G. sulphuraria’s physiology. Additionally, due 

to the highly soluble nature and architecture, carbon reserves stored as glycogen are more readily 

available compared to starch. When additional energy is required, glucose monomers can be 

readily mobilized as opposed to starch, which requires a rather lengthy process for mobilization. 

G. sulphuraria synthesizes glycogen via a glycogen synthase (Gasu_14030) that appears to be a 

bifunctional, fusion enzyme possessing both, a glycogen synthase domain (GlgA) and a glycogen 

branching domain (GlgB). To date, no other organism, whether eukaryotic or prokaryotic, appears 

to possess a glycogen biosynthesis enzyme of similar nature. The underlying evolution of how the 

glycogen synthase fusion enzyme came to be is unclear; nonetheless, the glycogen synthase in G. 

sulphuraria is unique.  

Of all the currently sequenced red algae to date, G. sulphuraria is the only alga that can 

synthesize sucrose. Furthermore, based on phylogenetic analysis, the enzymes responsible for 

synthesizing sucrose in G. sulphuraria do not provide any clue regarding their evolutionary 

history. The enzymes do not form a sister relationship with either Viridiplantae or bacteria, 

despite possessing conserved domains similar to both lineages. In land plants, sucrose functions 

as a transport sugar, as well as being involved in sugar signaling (Ruan 2014). Given that G. 

sulphuraria is unicellular, a transportation role for sucrose in G. sulphuraria seems unlikely. In 

light of the extensive diversity for carbon metabolism exhibited by G. sulphuraria, sucrose 
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metabolizing enzymes provide yet another example of the extensive capacity for carbon 

metabolism in G. sulphuraria. 

Both glycerol metabolism and terpenoid backbone biosynthesis appear to result from 

multiple evolutionary events. Two routes metabolizing glycerol can likely be attributed to 

ancestral conservation, while the third route, initially catalyzed by glycerol dehydrogenase, was 

acquired from bacteria via horizontal gene transfer (Schönknecht, et al. 2013). The mevalonate 

pathway of terpenoid backbone biosynthesis in G. sulphuraria appears to be of eukaryotic origin, 

similar to other eukaryotes possessing the mevalonate pathway. Conversely, the methylerythritol 

phosphate pathway was probably acquired from the primary endosymbiosis event, which is 

responsible for the establishment of plastids in eukaryotes. Thus, three different types of 

evolutionary processes, namely ancestry, endosymbiosis, and horizontal gene transfer, have 

shaped the diversity of metabolic pathways in G. sulphuraria, creating a metabolic patchwork. 

 

THE UNCERTAIN EXTENT OF CARBON METABOLISM IN G. SULPHURARIA 

While G. sulphuraria displays an unparalleled ability to metabolize carbon compounds, the 

exact extent of carbon metabolism in G. sulphuraria is unknown, and might even be 

underestimated. For example, a D-arabitol dehydrogenase has been described experimentally for 

G. sulphuraria (Stein, et al. 1997); however, the D-arabitol dehydrogenase is not directly 

supported, nor easily detected in the genome. The D-arabitol dehydrogenase activity can most 

likely be attributed to another enzyme. Hallborn, et al. (1995) isolated a short chain 

dehydrogenase from the fungus Pichia stipitis that was shown to exhibit D-arabitol 

dehydrogenase activity, and even showed a preference for D-arabitol. The short chain 

dehydrogenase/reductase has a 51% amino acid identity to a short chain dehydrogenase/reductase 

found in G. sulphuraria (Gasu_09280). The short chain dehydrogenase/reductase (Gasu_09280) 



111 

 

might be the enzyme exhibiting D-arabitol dehydrogenase activity. The G. sulphuraria genome 

encodes several short chain dehydrogenases/reductases, some of which have been annotated as 

specific enzymes based on BLAST and conserved domain searches (see Methodology). Given the 

ambiguous nature of the substrate specificity for just one short chain dehydrogenase/reductase 

(Stein, et al. 1997), it is difficult to assess the exact capabilities of the short chain 

dehydrogenases/reductases, and their impact on carbon metabolism.  

Like most red algae, G. sulphuraria does possess a cell wall. Generally, red algal cell 

walls are composed of agar, carragennan, lignin (or lignin-like compounds), and (1-3)(1-4)-β-D-

glucans (Popper, et al. 2011). Exact biosynthetic pathways for cell wall biosynthesis in red algae 

still remain unknown. However, several enzymes are known to participate in cell wall 

biosynthesis, several of which are encoded in the G. sulphuraria genome including 

fucosyltransferase (Gasu_23840), galactosyltranferase (6 genes), mannosyltransferase (15 

genes), and glucosyltransferase (8 genes). It is unlikely that all of the aforementioned genes 

encode enzymes directly associated with cell wall biosynthesis, yet it is very likely that many 

more unannotated enzymes are implicated with synthesizing cell walls. Approximately 38% of 

the predicted protein sequences encoded by the G. sulphuraria genome are still annotated as 

‘hypothetical protein’. It would not be surprising if several of the enzymes annotated as 

‘hypothetical protein’ participated in cell wall biosynthesis, and even more broadly in carbon 

metabolism. Thus, without further experimental work it, is difficult to assess the full spectrum of 

carbon metabolizing enzymes and pathways present in G. sulphuraria. 

 

LIFE WITHOUT A GLYOXYLATE CYCLE 

As mentioned above, G. sulphuraria surprisingly does not possess a glyoxylate cycle. 

The two enzymes unique to the glyoxylate cycle, isocitrate lyase (EC 4.1.3.1) and malate 
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synthase (EC 2.3.3.9), have yet to be annotated in any red algal genome to date. The glyoxylate 

cycle serves a crucial function in higher plants by providing the metabolic intermediates for 

carbohydrate biosynthesis. In seeds, carbon reserves are typically stored as lipids (fatty acids), 

polysaccharides, and proteins. Upon germination, fatty acids are broken down and used as 

precursors via the glyoxylate cycle for anabolic carbohydrate biosynthesis to sustain the growth 

of the developing plant, until photosynthesis can be established. Given the absence of the 

glyoxylate cycle, G. sulphuraria does not appear to be able to directly convert fatty acids into 

carbohydrates, and it seems logical that a minimal amount of carbon is allocated to lipid reserves. 

Lipids account for approximately 10% of storage molecules in G. sulphuraria, while 

carbohydrates (~65%) and proteins (~25%) make up the remainder (Graziani, et al. 2013). 

Although the G. sulphuraria genome does encode the methylmalonyl-CoA pathway, it 

does not entirely circumvent the absence of a glyoxylate cycle. While both the methylmalonyl-

CoA pathway and glyoxylate cycle (to a somewhat lesser extent) are involved in metabolizing 

propionyl-CoA, an end product of fatty acid β-oxidation, the methylmalonyl-CoA pathway does 

not serve the same fundamental role, the direct conversion of fatty acids to carbohydrates, as the 

glyoxylate cycle. However, the methylmalonyl-CoA pathway in G. sulphuraria might assume a 

supporting role specifically for propionyl-CoA metabolism. In the bacterium Mycobacterium 

tuberculosis, the glyoxylate cycle, together with the methylcitrate pathway, detoxify propioniate 

(via propionyl-CoA), which becomes lethal at elevated levels (Savvi, et al. 2008). When grown 

on propionate and supplemented with 3-nitropropionate, a methylcitrate pathway and glyoxylate 

cycle inhibitor, M. tuberculosis was shown to utilize the methylmalonyl-CoA pathway as a 

bypass for propionate degradation. The use of the methylmalonyl-CoA pathway in G. sulphuraria 

may serve as a comparable approach to that of M. tuberculosis for propionate (via propionyl-

CoA) degradation. The presence of the methylmalonyl-CoA pathway may bypass the absence of 

the methylcitrate pathway and the glyoxylate cycle, which would allow G. sulphuraria to 



113 

 

potentially utilize propionate as a carbon source without experiencing toxicity. The enzymes 

underlying the methylmalonyl-CoA pathway in G. sulphuraria seem to have been retained 

through ancestry, suggesting this pathway may have been operating in the earliest of eukaryotes, 

but was subsequently lost throughout different eukaryotic lineages. Habitats where G. 

sulphuraria is commonly found are characteristically acidic, and may have provided a persistent, 

selective pressure to retain the methylmalonyl-CoA pathway, in addition to the added benefit of 

metabolizing end products of fatty acid β-oxidation. 

 

GENE TRANSFERS UNDERSCORE THE EVOLUTION OF DE NOVO NAD+ 

BIOSYNTHESIS 

The different gene transfers contributing to the evolution of de novo NAD+ biosynthesis 

are summarized In Figure 53. The gene transfer events displayed are somewhat conservative, as 

only transfer events with good statistical support, both from Bayesian (ΔH > 3 SD and -ΔAICM > 

6 SD) and maximum likelihood analyses (p-values < 5%), were included. Possible transfer events 

of indoleamine dioxygenase homologs (Fig. 34) were not included, because these enzymes may 

not actually catalyze tryptophan degradation (see above). 
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Fig. 53: Gene transfers in the evolution of de novo NAD+ synthesis. Shown is an organismal 

phylogeny (Keeling and Palmer 2008; Burki, Okamoto, et al. 2012) of the major eukaryotic 

lineages (SAR, Stramenopiles, Alveolates, and Rhizaria) with emphasis on plastid bearing clades. 

Horizontal arrows indicate putative horizontal gene transfers from Bacteria or Archaea, with the 

most likely ‘donor clade’ indicated. The horizontal gene transfer of a KMO gene from a 

proteobacterium into Sphaeroforma arctica (Ichthyosporea, Opisthokonta) is omitted for clarity. 

Abbreviated enzymes names are AFM, arylformamidase; AO, aspartate oxidase; KMO, 

kynurenine 3-monooxygenase; NADS, NAD+ synthase; QPRT, nicotinate-nucleotide 

pyrophosphorylase (quinolinate phosphoribosyltransferase); QS, quinolinate synthase; TDO, 

tryptophan dioxygenase. Black indicates kynurenine (and converged) pathway, grey indicates 

aspartate pathway. 

 

THE ASPARTATE PATHWAY: EVOLUTIONARY ORIGINS IN EUKARYOTES 

To explain the current phylogenetic pattern of aspartate oxidases and quinolinate 

synthases in eukaryotes, a minimum of five gene transfer events have to be postulated. (1) Both 
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genes were probably introduced into eukaryotes by endosymbiotic gene transfer from the 

cyanobacterial endosymbiont into the host genome of an early ancestor of Archaeplastidae. While 

Glaucophyta kept the genes of cyanobacterial origin, the aspartate pathway was not established, 

and the kynurenine pathway remained active in red algae. In an early ancestor of Viridiplantae, 

(2) aspartate oxidase and (3) quinolinate synthase were substituted by horizontal gene transfers 

from non-photosynthetic bacteria. (4) Gene transfer from an ancient green alga established 

quinolinate synthase (and possibly aspartate oxidase) in an early ancestor of Stramenopiles. (5) 

The aspartate oxidase gene observed in Stramenopiles was most likely acquired via horizontal 

gene transfer from a spirochaete or a halobacterium. This seems to be the most parsimonious 

explanation of the current evolutionary pattern of aspartate oxidases (Fig. 28) and quinolinate 

synthases (Fig. 29) in eukaryotes. 

The hypothesis that the aspartate pathway was introduced into eukaryotes by 

endosymbiotic gene transfer during the evolution of plastids is based on the observations that i) 

the aspartate pathway is only detected in photosynthetic (or, in the case of Oomycota, closely 

related) eukaryotic clades, ii) in the glaucophyte C. paradoxa, aspartate oxidase (Fig. 28) and 

quinolinate synthase (Fig. 29) seem to be of cyanobacterial origin, and iii) in land plants, both 

enzymes are targeted to plastids (Katoh, et al. 2006), as many gene products of endosymbiotic 

origin are. While endosymbiotic acquisition of the aspartate pathway at the base of the 

Archaeplastidae seems like the most parsimonious explanation of the evolutionary trees presented 

here, alternative explanations cannot be ruled out. Not all photosynthetic eukaryotes use the 

aspartate pathway, such as red algae or the pelagophyte A. anophagefferens, and not all 

eukaryotes using the aspartate pathway are photosynthetic, such as Oomycota. Yet, Oomycota 

form a sister clade to several photosynthetic Stramenopiles, and probably descend from an 

ancestor with photosynthetic capacity (Cavalier-Smith and Chao 2006; Tyler, et al. 2006). The 

aspartate oxidase and quinolinate synthase in C. paradoxa theoretically might have been acquired 



116 

 

by horizontal, instead of endosymbiotic gene transfer, and with just one glaucophyte genome 

available, gene transfer from cyanobacteria could be much more recent than indicated in Figure 

53. The phylogeny of the plastid ancestor has not been resolved, and due to frequent gene transfer 

between bacteria the plastid ancestor, may never be fully resolved (Dagan, et al. 2013). 

Evolutionary trees from single proteins, as in Figures 28 and 29, do not allow for the 

differentiation between endosymbiotic and horizontal gene transfer from cyanobacteria into C. 

paradoxa. Yet, with both aspartate oxidase (Fig. 28) and quinolinate synthase (Fig. 29) 

originating from cyanobacteria, and quinolinate synthase being encoded in the cyanelle genome, 

endosymbiotic acquisition by an ancestor of C. paradoxa seems most parsimonious. While many 

gene products with endosymbiotic ancestry are targeted to plastids (Timmis, et al. 2004), not all 

plastid-targeted proteins are probably of endosymbiotic origin (Qiu, Price, et al. 2013). Therefore, 

it is possible that the glaucophyte C. paradoxa and Viridiplantae could have acquired the 

aspartate pathway independently, instead of a single, endosymbiotic gene transfer at the base of 

the Archaeplastidae, as indicated in Figure 53. 

How some stramenopile clades acquired the aspartate pathway is not clear. Stramenopile 

aspartate oxidases form a sister group to aspartate oxidases from Spirochaeta and 

Halobacteriaeceae (Fig. 28), whereas quinolinate synthases from Stramenopiles and Viridiplantae 

are sister groups neighboring Deltaproteobacteria and other Proteobacteria (Fig. 29). It is assumed 

that aspartate oxidase was acquired by a Stramenopile ancestor via horizontal gene transfer from 

Sprochaeta or Halobacteriaceae, and that stramenopile quinolinate synthases originate from a 

gene transfer from Viridiplantae (Fig. 53). However, due to the limited sequences in the 

evolutionary trees, the direction of potential gene transfers cannot be determined, and 

theoretically, Viridiplantae might have acquired quinolinate synthase from Stramenopiles. A 

strong phylogenetic signal connecting Viridiplantae and Stramenopiles has been observed earlier, 

and gave rise to the hypothesis of a cryptic endosymbiosis between a heterotrophic ancestral 
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stramenopile and an ancient green alga (Moustafa, et al. 2009). However, both the extent of this 

phylogenetic signal and how it is to be interpreted are a matter of debate (Woehle, et al. 2011; 

Burki, Flegontov, et al. 2012; Deschamps and Moreira 2012). Both aspartate oxidase and 

nicotinate-nucleotide pyrophosphorylase (Fig. 30) in Viridiplantae seem to originate from 

Bacteroidetes, even though a proteobacterial origin for aspartate oxidase cannot be ruled out 

(Table 1). Therefore, aspartate oxidase and nicotinate-nucleotide pyrophosphorylase are assumed 

to have been acquired in a single transfer event, possibly from a bacteroidetes encoding both 

enzymes in one operon. The quinolinate synthase in Viridiplantae was most likely acquired 

separately from a deltaproteobacterium. 

 

EVOLUTION OF THE KYNURENINE PATHWAY IN EUKARYOTES 

The evolutionary origin of the kynurenine pathway is unclear. The last common ancestor 

of all eukaryotes probably possessed enzymes for the kynurenine pathway (see above; Fig. 27), 

whereas archaea and most bacteria use the aspartate pathway. The patchy distribution of genes for 

the kynurenine pathway among different bacterial lineages gave rise to the hypothesis that some 

bacteria, especially Xanthomonadales and Flavobacteriales, have acquired these genes via 

horizontal transfer from eukaryotes (Lima, et al. 2009). Yet, with more and more bacterial 

genomes being sequenced and annotations improving, the kynurenine pathway has been detected 

in numerous bacterial lineages. The Kyoto Encyclopedia of Genes and Genomes (Kanehisa, et al. 

2014) currently contains 91 bacterial genomes that contain genes encoding enzymes for at least 

four of the five catalyzed reactions of the kynurenine pathway. These are genomes from 

Gammaproteobacteria (23), Betaproteobacteria (13), Deltaproteobacteria (5), Alphaproteobacteria 

(1), Firmicutes (9), Actinobacteria (11), Acidobacteria (1), and Bacteroidetes (28). Evolutionary 

analyses of the enzymes catalyzing the kynurenine pathway (Figs. 33 through 37) currently do 
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not support horizontal gene transfer from eukaryotes into Xanthomonadales, Flavobacteriales, or 

other bacterial lineages. Bacterial lineages are not nested within a clade of eukaryotic lineages 

showing the expected organismal phylogeny, as it is required to determine the direction of a gene 

transfer (Stanhope, et al. 2001). This also holds for earlier evolutionary analyses (Lima, et al. 

2009), which do not show sequences from Xanthomonadales, Flavobacteriales, or other bacterial 

lineages embedded within a eukaryotic clade. It remains to be clarified whether the kynurenine 

pathway evolved in a very early eukaryote and spread to bacterial lineages (Lima, et al. 2009), or 

evolved in a bacterial lineage that contributed to the genome of the first eukaryotic organisms. 

For some enzymes of the kynurenine pathway, horizontal gene transfer from Bacteria or 

Archaea into eukaryotic genomes seems likely, such as the acquisition of tryprophan-2,3-

dioxygenase by the excavate N. gruberi from Bacteria (or Archaea; Fig. 33), and the acquisition 

of bacterial kynurenine-3-monooxygenase by different unicellular eukaryotes (Fig. 35). In 

addition to a horizontal gene transfer from Bacteroidetes into an early ancestor of Amoebozoa, 

which has been reported earlier (Lima, et al. 2009), kynurenine-3-monooxygenase has been 

acquired from Gammaproteobacteria by four unrelated marine eukaryotes, namely P. marinus 

(Alveolata), S. artica (Ichthyosporea, Opisthokonta), A. anophagefferens (Pelagophyceae, 

Stramenopiles), and E. huxleyi (Haptophyta). In this case it seems likely that a horizontal gene 

transfer from a marine gammaproteobacterium into a eukaryote, probably P. marinus, was 

followed be gene transfers from one unicellular, marine eukaryote to another (Fig. 53). 

 

IMPACT OF GENE TRANSFER ON METABOLIC EVOLUTION IN EUKARYTOES 

Numerous gene transfers shaped de novo NAD+ biosynthesis in eukaryotes, resulting in 

the acquisition of the aspartate pathway in different photosynthetic clades, and the substitution of 

several enzymes of the kynurenine and the converged pathways. In Figure 53, which summarizes 
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these gene transfers, endosymbiotic- and horizontal gene transfers were not differentiated. Due to 

currently available sequences, these can hardly be discriminated. For the enzymes of the aspartate 

pathway in C. paradoxa, which are of cyanobacterial origin, it seems reasonable to assume they 

were acquired via endosymbiotic gene transfer. The same holds for nicotinate-nucleotide 

pyrophosphorylase in B. natans, which probably was acquired from green plants during the 

secondary endosymbiosis giving rise to plastids in Chlorarachniophyta. However, horizontal gene 

transfer cannot be ruled out in either case as an alternative explanation. On the other hand, the 

enzymes of the aspartate pathway in Viridiplantae seem to originate from non-photosynthetic 

bacteria making an acquisition via endosymbiotic gene transfer during plastid evolution unlikely. 

However, the plastid ancestor, while still a free-living cyanobacterium, might have acquired these 

two genes encoding the aspartate pathway via horizontal gene transfer from non-photosynthetic 

bacteria, followed by endosymbiotic gene transfer of these two genes during plastid evolution. 

Neither has the phylogenetic origin of plastids within cyanobacteria been resolved, nor is the 

acquisition of hundreds of genes in green plants originating from other prokaryotes well 

understood (Dagan, et al. 2013). 

Regardless whether endosymbiotic or horizontal, the relative large number of gene 

transfers shaping NAD+ biosynthesis in eukaryotes is unexpected. De novo NAD+ biosynthesis is 

essential, and lack of just one enzyme is usually lethal (Panozzo, et al. 2002; Katoh, et al. 2006; 

Lin, et al. 2010). Therefore, one might expect high conservation of de novo NAD+ biosynthesis. 

In contrast, phylogenetic analyses show that entire pathways were swapped (kynurenine versus 

aspartate pathway), and enzymes were substituted by orthologs from bacteria via horizontal gene 

transfer. Horizontal gene transfer is very common in Bacteria and Archaea (Koonin, et al. 2001; 

Treangen and Rocha 2011), and there are indications that adaptive evolution of bacterial 

metabolic networks was largely driven by horizontal gene transfers (Pal, et al. 2005). Systematic 

screens of eukaryotic genomes for genes originating from horizontal transfer identified many 
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genes encoding enzymes (Whitaker, et al. 2009; Schönknecht, et al. 2014), and essential 

metabolic pathways, such as isoprenoid biosynthesis (Lange 2000), heme biosynthesis (Oborník 

and Green 2005), or the shikimate pathway (Richards, et al. 2006), have been shown to be 

encoded by a mosaic of genes inherited vertically, and acquired via endosymbiotic or horizontal 

gene transfers. In addition to de novo NAD+ biosynthesis, salvage biosynthesis of NAD+ starting 

with nicotinamide was shaped by horizontal gene transfers as well. Phylogenetic analyses of the 

two nicotinamide-metabolizing enzymes nicotinamide phosphoribosyltransferase (EC 2.4.2.12) 

and nicotinamidase (EC 3.5.1.19) show clear deviations from established organismal phylogenies, 

possibly indicating several instances of horizontal gene transfer (Gazzaniga, et al. 2009). For 

nicotinamide phosphoribosyltransferase there is evidence for virus- and plasmid-mediated gene 

transfers (Gazzaniga, et al. 2009). Gene transfers seem to have contributed significantly to the 

evolution of metabolic pathways in eukaryotes, as shown here for de novo NAD+ biosynthesis. 

 

BIOLOGICAL SIGNIFICANCE OF PORPHYIN EXCRETION IN G. SULPHURARIA 

Light limited G. sulphuraria cultures, whether light limitation is caused by high density 

or low-light conditions, excrete a mixture of porphyrins into the liquid medium. Our hypothesis 

proposed that the excreted porphyrins may serve as a ‘light converter’, by shifting the light 

spectrum in order to utilize (short) wavelengths of light that were unusable by photosynthetic 

pigments synthesized in G. sulphuraria. The premise of the spectral-shifting hypothesis was 

based on the absorption and emission spectra of the porphyrins excreted by G. sulphuraria. Light 

was strongly absorbed in the near-UV around 400 nm and re-emitted (fluoresced) between 600- 

and 700 nm, the region where the photosynthetic pigment phycocyanin shows a high level of 

absorption. However, given the low calculated relative fluorescence quantum yield of the 

porphyrin mixture secreted by G. sulphuraria (approximately 3%), the effect on photosynthetic 
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efficiency is likely to be minimal at best. The work presented here is the first time a fluorescence 

quantum yield has been determined for the Soret band of a porphyrin (400 nm maximum 

absorption peak). Previous studies on the fluorescence quantum yield of prophyrins solely 

concentrated on the much smaller Q bands (550 and 590 nm absorption peaks) (Seybold and 

Gouterman 1969; Figueiredo, et al. 1999; Hu, et al. 2011). 

G. sulphuraria only excreted porphyrins when supplemented with glucose. A 

photoautotrophic culture with high density was achieved only once (using the first approach 

mentioned below), and did not appear to excrete porphyrins into the liquid medium, i.e. no pink 

coloration of the culture medium was observed. High densities of phototrophically grown G. 

sulphuraria was not repeatedly achieved due to the less than optimal growth conditions resulting 

from a lack of available equipment. Phototrophic cultures were grown two different ways. The 

first was using a Percival growth chamber set to 37°C under continuous, 24 hour (fluorescent) 

light. An exogenous supply of CO2 was provided by directly aerating the culture flasks with pure 

CO2. This method was largely unsuccessful in achieving high density cultures comparable to 

densities achieved with mixotrophic/heterotrophic cultures supplemented with glucose. The other 

approach was similar to that used for mixotrophic/heterotrophic cultures. Phototrophic cultures 

were grown in an incubated, shaker table under 24 hour continuous light from a 120W flood 

lamp; these cultures were not supplemented with glucose. However, carbon was assumed to be 

limiting under the second approach, and could not be mediated by supplying carbonate without 

affecting the pH of the liquid medium (pH 2). Nonetheless, the suggested glucose inhibition of 

photosynthetic pigments in G. partita (Stadnichuk, et al. 1998) leaves some questions 

unanswered. Stadnichuk, et al. (1998) never achieved cell densities of photoautotrophic cultures 

comparable to that of heterotrophic cultures supplemented with glucose. Even though high 

density photoautotrophic cultures were never continuously achieved here either, there is no way 

to rule out porphyrin excretion as a result of high cell density. Furthermore, growth studies 
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conducted here showed no correlation with glucose supplementation, but only with cell density 

(Fig. 40). 

Porphyrins are conjugated tetrapyrroles, most of which contain, and are identified by, 

their alkyl and/or carboxylic acid embellishments. Porphyrins are ubiquitous among all living 

organisms, and have even been proposed as a biomarker in the search for extraterrestrial life (Lim 

2010). Porphyrin precursors are used as skeletons for many molecules essential for life including, 

but not limited to, chlorophyll and heme groups found in hemoglobin, cytochromes, and 

peroxidases (Lim 2010). Porphyrins are synthesized by a metabolic pathway that is highly 

conserved throughout all life. All of the enzymes for this pathway have been identified in the G. 

sulphuraria genome (Figs. 38 & 39). Thus, the question remains: why does G. sulphuraria 

excrete porphyrins into its environment? Spectral shifting, although seemingly unlikely based on 

the low relative fluorescence quantum yield, cannot entirely be ruled out. To ultimately address 

the hypothesis of spectral shifting, growth studies would need to be conducted not only with G. 

sulphuraria, but with other algal species, some of which hold significance to algal biofuel 

production. The idea of spectral shifting is not entirely novel. Several patents exist that are 

centered on repurposing light to be used for photosynthesis. A polymeric material containing 2,5-

di-(5-tert-butyl-2-benzoxazolyl) thiophene was patented to shield plants in greenhouses from UV 

radiation by converting UV into visible light, thereby increasing photosynthetically active 

radiation (PAR) (Treadaway 1980). One patent describes a variety of approaches to add 

wavelength-shifting pigments to algal cultures to increase PAR, and thus, growth rates (Sayre 

2009). Another patent application describes the transformation of algae or cyanobacteria to 

express “fluorescent proteins, that absorb the harmful UV or near UV wavelengths and emit 

wavelengths that are photosynthetically more active” (Einbinder, et al. 2010). 

Porphyrins can accumulate to levels where they become toxic. High levels of porphyrins 

have been shown to promote the formation of reactive oxygen species (ROS), which damage cell 
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components via oxidation (Böhm, et al. 2001). The excretion of porphyrins by G. sulphuraria 

could simply be a mechanism by which the potentially cytotoxic accumulation of porphyrins is 

removed from the cell. However, endogenous porphyrins could potentially impact the growth of 

neighboring organisms. Porphyrins are relatively hydrophobic by nature (as dictated by their side 

chains), and some have been shown to penetrate and become lodged in lipid bilayers (Ricchelli 

1995). Once embedded in a membrane, porphyrins can cause oxidative damage compromising 

membrane integrity. In the specific case of heme, a porphyrin chelated with an iron atom, 

oxidative damage from embedded heme molecules results in the formation of lipid peroxide, 

which amplifies membrane permeability, ultimately leading to cell lysis and death (Chiabrando, 

et al. 2014). Currently, no studies have specifically investigated ‘free’ porphyrins, those that are 

not chelated with a metal atom, such as uroporphyrin I and III, and their ability to penetrate lipid 

bilayers. The ability of porphyrins to become lodged into membranes, subsequently causing 

oxidative membrane damage, has been exploited by biomedical technology. Photodynamic 

therapy and photodynamic inhibition, whereby membrane-lodged porphyrins are photoexcited to 

cause oxidative damage through reactive oxygen species formation, have been extensively 

studied for applications treating cancerous tumors, in addition to combating antibiotic-resistant 

bacteria (Dolmans, et al. 2003; Huang, et al. 2010; Pereira, et al. 2014). 

G. sulphuraria could potentially use porphyrins as a quorum sensing molecule. 

Historically, quorum sensing, the mechanism by which intraspecies and interspecies 

communication is achieved typically in the context of population density, has been characteristic 

for bacteria. More recently, it has been shown that fungi also employ their own variation of 

quorum sensing (Sprague and Winans 2006). Even plants possess the ability to detect bacterial 

quorum sensing molecules (Williams 2007). It seems rather unlikely that G. sulphuraria excretes 

porphyrins to initiate a quorum sensing mechanism, given the ubiquitous nature of porphyrins 

throughout the tree of life. Porphyrins serve several biological functions, many of which persist 
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throughout all three domains of life; however, porphyrins could potentially function to alter 

quorum sensing molecules produced by neighboring prokaryotes. Some plant and algal species 

produce molecules that mimic or possess the ability to manipulate bacterial quorum sensing 

molecules. The red alga Delisea pulchra produces halogenated furanones, which are structurally 

similar to N-acyl homoserine lactones, a common quorum sensing molecule produced by bacteria, 

and alter lactone-mediated quorum sensing behavior in bacteria (Bauer and Mathesius 2004). 

Although no studies exist investigating the interaction between porphyrins and bacterial quorum 

sensing molecules, it is possible that porphyrins could promote the degradation or manipulation 

of quorum sensing signals created by neighboring bacteria. 

Porphyrin excretion may result from poor regulation of gene expression. This would be 

surprising considering the biosynthesis of pophyrins is energetically costly from a biological 

standpoint. If secreted porphyrins aren’t serving a direct biological purpose, one would suspect 

the corresponding genes to be down regulated, in order to conserve cellular resources. Previous 

studies on G. sulphuraria revealed a very slow response time when supplied with alternative 

carbon sources. Oesterhelt and Gross (2002) observed a 45 day ‘lag phase’ after switching carbon 

sources when investigating changes in gene expression of genes involved in carbon metabolism. 

On the other hand, considering that porphyrin excretion was only observed when cultures were 

supplemented with high concentrations of glucose, carbon might not be limiting under that 

particular scenario, providing no incentive to ration exogenous carbon supplies. Additionally, 

porphyrin excretion may serve as a mechanism—although a seemingly wasteful one—which 

triggers the switch from a phototrophic lifestyle to that of heterotrophy. Established heterotrophic 

cells do not appear to produce photosynthetic pigments as indicated by the loss of the green 

coloration (Fig. 1). The offloading of excess photosynthetic pigment precursors, i.e. porphyrins, 

could further promote the switch to a heterotrophic lifestyle. Nonetheless, the biological reason 

why G. sulphuraria excretes porphyrins remains unclear. Several speculations have been made 
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addressing this phenomenon. However, without performing additional experiments, even those 

aimed to support the possible speculations listed here, it is difficult to definitively determine the 

underlying cause for porphyrin excretion in G. sulphuraria. 
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APPENDICES 
 

 

Author / 
Year 

Enzyme 
Supporting Information From 

Literature 
Genome 

Oesterhelt 
2008 

L-Ascorbate Peroxidase 
EF589723 (GSuAPX01), 
EF589721 (GSuAPX02) 

Gasu_33520, 
Gasu_32860 

Cytochrome C Peroxidase EF589722 (GSuCcP01) Gasu_42210 

Peroxidase 

EF589724 (GSPrx01), 
EF589725 (GSPrx02), 
EF589726 (GSPrx03), 
EF589727 (GSPrx04) 

Gasu_17800, 
Gasu_17790, 
Gasu_50480, 
Gasu_50490 

Oesterhelt 
2002 

Glucokinase Enzymatic Activity Detected Gasu_04750 

Galactokinase Enzymatic Activity Detected Gasu_09360 

Glycerokinase Enzymatic Activity Detected 
Gasu_03170, 

Gasu_60010 (Glycerol 
Kinase) 

Hexokinase Enzymatic Activity Detected 
Not Supported By 

Genome 

Xylulokinase Enzymatic Activity Detected Gasu_46540 

Pyruvate, Orthophosphate 
Dikinase (PPDK) 

Enzymatic Activity Detected Gasu_42070 

McCoy 
2009 

Sarcosine 
Dimethylglycine 

Dimethyltransferase 

Assayed Enzymatically & 
Crystallized 

Gasu_06500, 
Gasu_07580, 
Gasu_07590 

Marquardt 
1997, 
2001 

Light Harvesting 
Complexes 

Immunoprecipitated & 
Determined Spectroscopically 

Protein Cluster 32 (Light-
Harvesting Complex 

Proteins) 

Gross 
1999 & 

Reichert 
2003 

Fructose-1,6-
Bisphosphatase 

Molecular Mass: 165 kDa; 
Enzymatic Assay 

Protein Cluster 87 

Seckbach 
1992 

Catalase Enzymatic Assay Gasu_11340 

Glycolate Oxidase Enzymatic Activity Detected 
Protein Cluster 109 (S-2-
Hydroxy-Acid Oxidase) 

Glutamate-Glyoxylate 
Aminotransferase 

Enzymatic Activity Detected 

Gasu_04830, 
Gasu_31580 (Alanine-

Glyoxylate Transaminase / 
Serine-Pyruvate 

Aminotransferase) 

Serine-Glyoxylate 
Aminotransferase 

Enzymatic Activity Detected Gasu_01160 

Hydroxypyruvate 
Reductase 

Enzymatic Activity Detected 

Gasu_47310 (Glyoxylate 
Reductase / 

Hydroxypyruvate 
Reductase) 
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Tischendorf 
2007 

Triose Phosphate Isomerase Enzymatic Activity Detected Gasu_29840 

Glyceraldehyde-3-Phosphate 
Dehydrogenase (NAD 

Dependent) 
Enzymatic Activity Detected Gasu_04650 

Glyceraldehyde-3-Phosphate 
Dehydrogenase (NADP 

Dependent) 
Enzymatic Activity Detected 

Gasu_43210, 
Gasu_48130 

3-Phosphoglycerate Kinase Enzymatic Activity Detected 
Gasu_00270, 
Gasu_34520 

Fructose-1,6-Bisphosphate 
Aldolase 

Enzymatic Activity Detected Protein Cluster 42 

Fructose-1,6-Bisphosphatase Enzymatic Activity Detected Protein Cluster 87 

Malate Dehydrogenase none 
Protein Cluster 84, 

Gasu_24070, 
Gasu_28900 

Glucosephosphate Isomerase Enzymatic Activity Detected 

Gasu_20100, 
Gasu_55050 
(Glucose-6-
Phosphate 
Isomerase) 

Glucose-6-Phosphate 
Dehydrogenase 

Enzymatic Activity Detected 

Gasu_04100 
,Gasu_42750 
(Glucose-6-

Phosphate 1-
Dehydrogenase) 

6-Phosphogluconate 
Dehydrogenase 

Enzymatic Activity Detected 
Gasu_02840, 
Gasu_15770 

Phosphoglucomutase Enzymatic Activity Detected 
Gasu_08170, 
Gasu_46280, 
Gasu_28550 

Ribulose-5-Phosphate 
Epimerase 

Enzymatic Activity Detected 
Gasu_18200 

(Ribulose-Phosphate 
3-Epimerase 

Weber 
2004 

Hexokinase none 
Not Supported By 

Genome 

Ribose-5-Phosphate 
Isomerase 

none 
Gasu_37650, 
Gasu_51780 

Glucose-6-Phosphate 
Dehydrogenase 

EST present 

Gasu_04100 
,Gasu_42750 
(Glucose-6-

Phosphate 1-
Dehydrogenase) 

Transaldolase (Pentose 
Phosphate Pathway) 

none Gasu_24580 

Fumarase (Citric Acid Cycle) none 
Gasu_00620 
(Fumarate 
Hydratase) 

Phosphoglucomutase none 
Gasu_08170, 
Gasu_46280, 
Gasu_28550 

Phosphoglucoisomerase none 

Gasu_20100, 
Gasu_55050 
(Glucose-6-
Phosphate 
Isomerase) 

Fructokinase none 
Gasu_01610, 
Gasu_04420 

Glucokinase none Gasu_04750 
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UDP-Glucose 
Pyrophosphorylase 

A4_36F11 

Gasu_00860 (UTP-
Glucose-1-
Phosphate 

Uridylyltransferase) 

ADP-Glucose 
Pyrophosphorylase 

none 
Not Supported By 

Genome 

Floridoside-Phosphate 
Synthase 

none 
Not Supported By 

Genome 

Floridoside-Phosphate 
Phosphatase 

none 
Not Supported By 

Genome 

Galactose-1-Phosphate 
Uridylyltransferase 

HET_36B03, HET_11G09 Gasu_52840 

UDP-Glucose Epimerase none 
Gasu_12030 (UDP-

glucose 4-epimerase) 

α-Galactosidases A4_22C06, HET_24G12 
Gasu_33800, 
Gasu_48280, 
Gasu_60270 

Phosphoglycolate 
Phosphatase 

HET_43H04 Gasu_54160 

Glycolate Oxidase A4_38D07, HET_37H12 
Protein Cluster 109 
(S-2-Hydroxy-Acid 

Oxidase) 

Catalase A4_33F10 Gasu_11340 

Serine-Glyoxylate 
Aminotransferase 

A4_32A08 
Gasu_01160 (Serine-

Glyoxylate 
Transaminase) 

Serine 
Hydroxymethyltransferase 

A4_32A08, A4_36C10, 
A4_10D04, A4_39-E01 

Protein Cluster 207 

Glutamine Synthetase 
A4_33A10, A4_33F03, 

HET_10AO, HET_24C05 
Gasu_37790 

Glycerate Kinase none Gasu_01520 

Biotin Carboxylase A4_40C10 
Gasu_03050 (Acetyl-
CoA Carboxylase / 
Biotin Carboxylase) 

β-Carboxyltransferase (Acetyl-
CoA Carboxylase subunit) 

HET_25A08 Gasu_40060 

3-Ketoacyl-ACP Reductase Gasu_01440 

Gasu_60850 (3-
Oxoacyl-[Acyl-
Carrier-Protein] 

Reductase) 

Enoyl-ACP Reductase HET_03C09 
Gasu_47760 (Enoyl-
[Acyl-Carrier Protein] 

Reductase I) 

Fatty Acid Desaturases EST present 
Gasu_25760, 
Gasu_32800 

Acyl-CoA Synthetase EST present 

Protein Cluster 41, 
Gasu_01790, 
Gasu_03440, 
Gasu_35980 

Thiolases EST present 

Gasu_26380, 
Gasu_55920 (Acetyl-

CoA C-
acetyltransferase) 

Acyl-CoA Oxidase EST present 
Gasu_21670, 
Gasu_50940 

Acetyl-CoA Thiolase EST present 

Gasu_26380, 
Gasu_55920 (Acetyl-

CoA C-
acetyltransferase) 
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Enoyl-CoA Hydratase none 

Gasu_06240 (3-
Hydroxyacyl-CoA 
Dehydrogenase / 

Enoyl-CoA Hydratase 
/3-Hydroxybutyryl-
CoA Epimerase / 

Enoyl-CoA 
Isomerase) 

3-Hydroxyacyl-CoA 
Dehydrogenase 

none 

Gasu_06240 (3-
Hydroxyacyl-CoA 
Dehydrogenase / 

Enoyl-CoA Hydratase 
/3-Hydroxybutyryl-
CoA Epimerase / 

Enoyl-CoA 
Isomerase) 

Phosphatidylserine 
Decarboxylase 

HET_44E08 Gasu_07890 

Ethanolamine Kinase HET_10E09 

Gasu_18300 
(Choline / 

Ethanolamine 
Kinase) 

Ethanolamine Phosphate 
Cytidylyltransferase 

A4_10G06 

Gasu_26040, 
Gasu_30330, 
Gasu_25270 

(Phosphatidate 
Cytidylyltransferase) 

Phosphoethanolamine Methyl-
Transferase 

A4_09F12 
Not Supported By 

Genome 

Phosphatidylglycerophosphate 
Synthase (PGP Synthase) 

GS06870, two ESTs 

Gasu_18340, 
Gasu_01450 (CDP-

Diacylglycerol-
Glycerol-3-

Phosphate 3-
Phosphatidyltransfer

ase) 

Cardiolipin Synthase HET_11H01 Gasu_07980 

Inositol-3-Phosphate Synthase HET_12A09 

Gasu_11420, 
Gasu_30560 (Myo-

Inositol-1-Phosphate 
Synthase) 

Phosphatidylinositol 4-Kinase 
(PI-4-Kinase) 

HET_10C06 
Gasu_17510, 
Gasu_36730 

Serine Palmitoyltransferase HET_31C05 
Gasu_24950, 
Gasu_30970 

Sphingolipid-D4 Desaturase GS00710, two ESTs 
Gasu_65890 

(Sphingolipid Delta-4 
Desaturase) 

LpxA (UDP-N-
Acetylglucosamine 

Acyltransferase) 
EST present 

Gasu_47350, 
Gasu_63160 (Acyl-

[ACP]-UDP-N-
Acetylglucosamine 
O-Acyltransferase) 

LpxB (Lipid-A-Disaccharide 
Synthase) 

EST present 
Gasu_47910, 
Gasu_06440, 
Gasu_47780, 

LpxC (UDP-3-0-[3-
Hydroxymyristoyl] N-
Acetylglucosamine 

Deacetylase) 

EST present 

Gasu_03310 (UDP-
3-O-[3-

Hydroxymyristoyl] N-
acetylglucosamine 

Deacetylase) 
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LpxD (UDP-3-0-[3-
Hydroxymyristoyl] 
Glucosamine N-

Acetyltransferase) 

EST present 

Gasu_49020 (UDP-
3-O-[3-

Hydroxymyristoyl] 
Glucosamine N-
acyltransferase) 

LpxK (Tetraacyldisaccharide 
4'-Kinase) 

EST present 
Gasu_45040 

(Tetraacyldisaccharid
e 4'-Kinase) 

WaaA (3-Deoxy-D-Manno-
Octulosonic-Acid Transferase) 

EST present 

Gasu_00550 (3-
Deoxy-D-Manno-
Octulosonic-Acid 

Transferase) 

Polyphosphate Kinase EST present Gasu_32760 

Glycerol Kinase EST present 
Gasu_03170, 
Gasu_60010 

Glucokinase Sequence Identifier Gasu_04750 

Galactokinase Sequence Identifier Gasu_09360 

Fructokinase Sequence Identifier 
Gasu_01610, 
Gasu_04420 

Xylulokinase / Ribulokinase Sequence Identifier 

Gasu_46540 / 
Gasu_19690, 
Gasu_20140 

(Phosphoribulokinase
) 

Ribokinase Sequence Identifier Gasu_33210 

Glycerol Kinase GS02230, A4_40D08 
Gasu_03170, 
Gasu_60010 

Phosphoglucomutase Sequence Identifier 
Gasu_08170, 
Gasu_46280, 
Gasu_28550 

Phosphomannomutase A4_10D11 Gasu_47860 

Glucose-6-Phosphate 
Isomerase 

Sequence Identifier 
Gasu_20100, 
Gasu_55050 

Mannose-6-Phosphate 
Isomerase 

Sequence Identifier Gasu_38450 

Sorbitol Dehydrogenase Sequence Identifier 
Gasu_40800 (L-Iditol 
2-Dehydrogenase) 

Glycogenin-
Glucosyltransferase (aka 

Glycogenin) 
HET_19E06 

Gasu_06400 
(Glycogenin-like 

Protein) 

Glycogenin Sequence Identifier 
Gasu_06400 

(Glycogenin-like 
Protein) 

Glycogen Synthase HET_25C3 
Gasu_14030 

(Glycogen Synthase) 

Glycogen Phosphorylase A4_22A10, HET_36G09 

Gasu_26320, 
Gasu_53650 

(Glycogen 
Phosphorylase) 

4-α-Glucanotransferase D-
enzyme 

Sequence Identifier Gasu_34050 

(1,4)-α-Glucan Branching 
Enzyme 

Sequence Identifier Gasu_50970 

Isoamylase Type Debranching 
Enzyme 

Sequence Identifier 
Gasu_05830, 
Gasu_10920 

Isoamylase A4_41H04 
Gasu_05830, 
Gasu_10920 

α-Amylase A4_6H07 Gasu_21330, 
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Gasu_32260, 
Gasu_14640 

β-Amylase A4_14E02 
Gasu_04150, 
Gasu_29320, 
Gasu_58550 

Amylopullulanase Sequence Identifier 
Not Supported By 

Genome (Might be a 
type of α-amylase) 

Glucan-(1,4)-α-Glucosidase Sequence Identifier 

Gasu_25530, 
Gasu_25520, 
Gasu_00130, 

Gasu_06640 (α-
Glucosidase) 

Fucosyltransferase Sequence Identifier Gasu_23840 

Galactosyltransferase Sequence Identifier Gasu_09650 

Glucosyltransferase Sequence Identifier 

Gasu_29940 (α-1,3-
Glucosyltransferase), 
Gasu_44200 (α-1,4-
Glucosyltransferase) 

Mannosyltransferase GS11580, A4_34E06 

Gasu_08940, 
Gasu_42280 (α-1,2-

Mannosyltransferase)
, Gasu_08400, 

Gasu_57500 (α-1,3-
Mannosyltransferase)
, Gasu_12290 (β-1,4-
Mannosyltransferase)

, Gasu_17110, 
Gasu_59940, 

Gasu_59850 (α-1,6-
Mannosyltransferase) 

Xylanase Sequence Identifier 
Not Supported By 

Genome 

Nucleoside-Diphosphate-
Sugar Epimerase 

HET_37D08 

Gasu_16250, 
Gasu_43480 
(Nucleoside-

Diphosphate Kinase) 

UDP-Glucose-4 Epimerase A4_14C11 
Gasu_04050 (Aldose 

1-Epimerase) 

UDP-Galactose-4 Epimerase* Sequence Identifier 
Gasu_04050 (Aldose 

1-Epimerase) 

UTP-Glucose-1-Phosphate 
Uridylyltransferase 

A4_36F11 

Gasu_00860 (UTP-
Glucose-1-
Phosphate 

Uridylyltransferase) 

UTP-Galactose-1-Phosphate 
Uridylyltransferase 

HET_36B03, HET_11G09 

Gasu_52840 
(Galactose-1-

Phosphate 
Uridylyltransferase) 

α-Galactosidase HET_24G12, A4_22C06 
Gasu_33800, 
Gasu_48280, 
Gasu_60270 

Secreted α-Galactosidase Sequence Identifier Unable To Determine 

β-Galactosidase Sequence Identifier Protein Cluster 89 

α-Glucosidase A4_5D11, A4_32D09 

Gasu_25520, 
Gasu_25530, 
Gasu_00130, 
Gasu_06640 

Mannosyl-Oligosaccharide A4_6F10, A4_5D11 Gasu_23130 
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Glucosidase 

β-Mannosidase Sequence Identifier Gasu_22860 

APS-Reductase Sequence Identifier Gasu_09200 

PAPS-Reductase Sequence Identifier 
Not Supported By 

Genome 

Trehalose Synthase A4_6H07 

Gasu_13550, 
Gasu_55660 
(Maltose α-D-

Glucosyltransferase 
aka Trelahose 

Synthase) 

Trehalose-Phosphate 
Synthase 

A4_23G07, A4_8G11, 
HET_40F04, A4_10B08, 
A4_17F02, HET_40F04, 
HET_42A08, A4_14F07 

Protein Cluster 46 (α-
α-Trehalose-

Phosphate Synthase) 

Trehalose Phosphatase HET_19A04 
Gasu_25840, 
Gasu_55870 

Trehalase HET_20C04 
Gasu_29340 (α-α-

Trehalase) 

Sucrose-Phosphate Synthase 

HET_13E07, HET_24A9, 
A4_11B10, 

A4_T7comboE05, 
A4_T7comboC01, 

A4_11E07, A4_32F05 

Gasu_03810 

Sucrose-Phosphate 
Phosphatase 

Sequence Identifier 

Gasu_32680 
(Sucrose 

Phosphatase-1 
[SPP1]) 

Baranowski 
2007 

Ribulose Bisphosphate 
Carboxylase Oxidase 

Purified & Crystallized Gasu_40760 

Gross 1995 
Galactose-1-Phosphate: UDP-

Glucose Uridylyltransferase 

Homodimer; Molecular 
Weight: Between 60 & 82 

kDa; Enzymatic Assay 

Gasu_52840 
(Galactose-1-

Phosphate 
Uridylyltransferase) 

Gross 1997 Aldose Reductase 
Homodimer; Molecular 

Weight: ~80 kDa; Enzymatic 
Assay 

Protein Cluster 210 
(Aldehyde 

Reductase) 

Stein 1997 
& Gross 

2003 
Myo-Inositol Dehydrogenase 

Homotetramer; Molecular 
Weight: 42 kDa; Enzymatic 

Assay; 2 Isozymes (Cytosolic 
& Mitochondrial) 

Gasu_32250 

Heilmann 
1997 

Mannose-6-Phosphate 
Isomerase 

Molecular Weight: 48 kDa; 
Enzymatic Assay 

Gasu_38450 

Fructokinase 
Molecular Weight: 36 kDa; 

Enzymatic Assay 
Gasu_01610, 
Gasu_04420 

Oesterhelt 
1996 

Phosphomannomutase 
Dimer; Molecular Weight: 40 

kDa (subunit); Enzymatic 
Assay 

Gasu_47860 

Phosphoglucomutase 
Dimer; Molecular Weight: 40 

kDa (subunit); Enzymatic 
Assay 

Gasu_08170, 
Gasu_46280, 
Gasu_28550 

Stein 1997 

Xylitol Dehydrogenase 
Molecular Weight: 220-295 

kDa; Enzymatic Assay 
Gasu_25510 

D-Arabitol Dehydrogenase 
Molecular Weight: 105 kDa; 

Enzymatic Assay 

Not Supported By 
Genome (probably 

resides within protein 
cluster #70) 
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Table A1: Comparisons between genome annotation and characterized or detected enzymes in G. 

sulphuraria. Previously reported enzymes are from experimental work and EST datasets. From 

left to right: Author and year, enzyme, supporting information, genome identifier (Gasu_#). 
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