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CHAPTER I 
 

 

INTRODUCTION 

More than 15 years after the National Education Goals Panel (NEGP) set forth the 

goal of “Ready to Learn” (NEGP, 1999), school readiness is still on the national agenda. 

In his State of the Union Address (2013), President Obama detailed his Plan for Early 

Education, which calls for investing in quality early childhood education and child care to 

ensure all children enter kindergarten ready to learn. This is critical as considerable 

research shows that children who begin school without a solid foundation for learning are 

more likely to experience poor academic outcomes throughout school than their school-

ready peers (Bradley & Corwyn, 2002; Halle et al., 2009). Quality early education 

programs and child care have been shown to effectively increase children’s readiness for 

school, especially among children at highest risk for poor school readiness (Burchinal, 

Peisner-Feinberg, Pianta, & Howes, 2002; Shonkoff & Phillips, 2000; Tucker, Zayco, 

Herman, & Reinke, 2002). Limited resources at federal and state levels, however, restrict 

the extent to which quality early childhood programs can be implemented. Identifying 

areas where children are at greatest risk for starting school unprepared to learn can inform 

policy and resource 
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allocation decisions to reach those most in need. For this to happen, the construct of 

school readiness must be defined, and factors that affect readiness must be determined.  

Construct of School Readiness Risk 

School readiness is increasingly understood as a relational construct emerging 

from children’s experiences in their homes, communities and schools (Meisels, 1999). 

These experiences impact age-appropriate development of social-emotional, problem-

solving, language, motor and general cognitive skills (Masten & Coatsworth, 1998). 

Because of the interaction of environment and development, the construct of school 

readiness is not easily delineated, and researchers have wrestled with how best to define 

it for over two decades (Vernon-Feagans & Blair, 2006).  

Despite general agreement that being prepared for academic success at 

kindergarten entry is “school readiness at its most abstract level,” there is no universally 

accepted definition of school readiness as a construct (Snow, 2006, p. 16). Part of the 

issue is disagreement on which domains of child development are most critical for 

success. In various studies of teacher and parental perspectives of school readiness, 

teachers were found to place more emphasis on social-emotional skills, physical health, 

and approaches to learning than on counting or recognizing letters or shapes; however, 

the reverse has been found for parents, particularly among those of lower educational 

attainment and income levels (Heaviside & Farris, 1993; Piotrkowski, Botsko, & 

Matthews, 2004; West, Germino-Hausken, & Collins, 1995).  

Even though an exact definition of school readiness is debatable, it cannot be 

contested that children who are underdeveloped in some way, whether socially, 
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behaviorally, emotionally or cognitively, are likely to be less successful in school than 

children who start with a solid foundation in all of these domains. Comprehending how 

children develop in the context of their surroundings is perhaps more important than 

knowing which developmental domain is most critical for school readiness. A 

transactional/ecological framework is often used to understand how biology and 

environment interact to affect a child’s developmental trajectory (Bronfenbrenner & 

Morris, 1998; Sameroff & Fiese, 2000). Adverse situations, such as abuse and neglect, 

and limiting circumstances, such as poverty, are factors in a child’s risk for being 

developmentally unprepared for school. The cumulative risk model (Evans, 2004) posits 

that the combined effect of a number of risk factors is a more important indicator of poor 

developmental outcomes than any single factor.  

For this study, school readiness is defined in the context of risk, meaning that 

young children who experience factors that impede development are less likely to start 

school prepared to learn than those without these experiences. Therefore, identifying 

indicators of adverse sociodemographic and economic conditions is essential to 

operationalizing the construct of school readiness from a risk perspective.  

Indicators of School Readiness Risk 

Although there is considerable research that provides strong support for the 

connection between family and social environments and child development (Fantuzzo, 

LeBoeuf, & Rouse, 2014; Mashburn & Pianta, 2006; Rimm-Kaufman & Pianta, 2000; 

Rouse & Fantuzzo, 2009; Salzinger, Feldman, Stockhammer, & Hood, 2002; Vernon-

Feagans, Odom, Pancsofar, & Kainz, 2008), these studies have been conducted at the 

3 
 



individual level, making them ineffective for use in a policy context. Decisions related to 

policy and resource allocation are best informed by aggregate data that serve as spatial 

indicators of performance related to a particular issue (Early Childhood Data 

Collaborative [ECDC], 2014; Nardo, Saisana, Saltelli, & Tarantola, 2005). While 

aggregating data from individual-level records that can be matched across indicators is 

the ideal situation, Pennsylvania is currently the only state to have an integrated system 

of individual-level administrative data from municipal services such as human services 

and education (ECDC, 2014). This limitation requires the use of population-level data to 

identify areas where children may be most at risk for starting school developmentally 

behind.  

The National School Readiness Indicators Initiative (NSRII), a consortium of 17 

states, set forth 23 core population-level indicators organized by domains that reflect the 

transactional/ecological framework of school readiness (Rhode Island KIDS COUNT, 

2005). Indicators are measured at a spatial level, such as county or state, and include 

various sociodemographic, health and child development factors as well as access to 

early child care and education. Examples are enrollment in early child care and education 

programs, fourth-grade reading proficiency, and rates of teenage pregnancies, child 

poverty, and infants with low birth weight. Although the NSRII refers to all indicators as 

readiness indicators, it is important to note the distinction between indicators of readiness 

(e.g., reading proficiency) and predictors of readiness (e.g., program enrollment, 

poverty). These predictors are better thought of as indicators of risk, where risk is a 

quantifiable construct derived from some combination of multiple predictors. These risk 

indicators can be further divided into factors thought to increase risk (e.g., poverty) and 
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those that protect against it (e.g., early childhood education). This study focuses on 

factors demonstrated in the literature as increasing risk for being unprepared for school.   

Each NSRII state has selected a sub-set of indicators based on state needs and 

priorities and regularly monitors these indicators in an effort to influence public policy 

related to school readiness. A few states, such as Louisiana, Pennsylvania, Illinois and 

Oklahoma, as well as Washington, DC, have extended indicator monitoring by applying 

the cumulative risk model to create indexes that measure risk for poor school readiness 

and rank counties according to index scores (Lazarte Alcalá, Salehezadeh, & 

Schumacher, 2013; Lazarte Alcalá & Schumacher, 2014; Louisiana State 

University/Tulane Early Childhood Policy and Data Center [LSU/Tulane], 2012; Moodie 

& Rothenberg, 2011; Pennsylvania Office of Child Development and Early Learning [PA 

OCDEL], 2012; Thomas et al., 2012).  

Indexes consist of different but related indicators that, when combined in some 

way, produce a summary score used to compare geographic areas on the state of some 

construct (Nardo et al., 2008; Saisana, 2008; Simpson, 2006; Tate, 2012). Indexes are 

particularly useful in a policy context as they summarize several pieces of information in 

a way that makes the resulting message accessible and meaningful to the lay person 

(Davidson & Lambert, 2001). For example, the Oklahoma Department of Human 

Services (OKDHS) initially developed the Oklahoma School Readiness Risk Index (OK 

SRRI) to aid in preparing a proposal for a Race to the Top – Early Challenge Grant 

offered by the U.S. Department of Education and U.S. Department of Health and Human 
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Services and continues to update the index for use by policy makers and the general 

public.  

The Problem 

Although indexes fill important gaps in monitoring complex social issues, one of 

the primary challenges for indexes is that there are no established rules for their 

construction or agreement on a best method (Jones & Andrey, 2007; Saisana & Saltelli, 

2008; Tate, 2012; Wong, 2006). Outcomes of measuring the same construct may vary 

considerably depending on the assumptions that underlie design choices, such as 

indicator selection and methods of normalization, weighting and aggregation, which 

makes index construction “an inescapably subjective process” (Barnett, Lambert, & Fry, 

2008, p. 106). Because “there is no ‘correct’ method” for developing an index, there will 

always be opportunities for interested parties to alter an index to convey a particular 

message (Simpson, 2006, p. 5). As such, it comes as no surprise that the accuracy and 

significance of policy-related conclusions are often questioned due to concerns about the 

robustness of an index with respect to methodological decisions and subsequently the 

reliability of outcome rankings or scores (Nardo et al., 2005; Saisana & Saltelli, 2008). 

Decisions related to selecting indicators and weights are particularly vulnerable to 

political challenges (Esty, Levy, Srebotnjak, & de Sherbinin, 2005; Nardo et al., 2005).  

Because indexes are intended for use by mostly non-statisticians, transparency is 

of utmost importance (Nardo et al., 2005; Saisana, 2008; Sharpe & Andrews, 2012). 

Indexes constructed in a way that is incomprehensible to the public may only invite 

suspicion and doubt regarding the outcomes; thus, a delicate balance must be maintained 
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between rigor and simplicity. As such, the effects of various design choices on index 

outcomes should be tested (Nardo et al., 2005). Generally referred to as sensitivity 

testing, an index is evaluated for the extent to which it is sensitive to methodological 

changes at one or more stages of development. An index is said to be robust if rankings 

or scores remain relatively stable across various methods of construction. This is an 

important step that contributes to the credibility of the index, and index developers are 

encouraged to include it in publications of index results (Nardo et al., 2005). However, 

none of the school readiness risk indexes noted above appear to have been subjected to 

any type of sensitivity testing.  

Issues in Indicator Selection 

While choices made at all design stages should be evaluated, perhaps the most 

important is the selection of indicators. Nardo et al. (2008) stress that indicators, which 

should be selected on the basis of a theoretical framework, largely determine the quality 

of an index. Therefore, indicators should be examined for the extent to which they 

represent both the overall intended construct and the dimensions theorized to comprise 

this construct.  

Abstract constructs, such as risk for poor school readiness, are inherently 

unobservable on their own; as such, the use of observed variables (e.g., indicators or 

items) thought to be associated in some way with a particular construct is required. The 

nature of the relationship between observed indicators and constructs are specified using 

measurement models. Two predominant measurement models, reflective and formative, 

make distinctly different assumptions about these relationships. Reflective models are the 
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foundation for scales, which are used when the construct to be measured is 

unidimensional and items comprising the scale are considered to reflect, or be the effects 

of, the construct. For example, a test anxiety scale might consist of several items related 

to concentration and worrying prior to, during and after an exam (Larson, El Ramahi, 

Conn, Estes, & Ghibellini, 2010). Because these items are believed to be manifestations 

of the same construct, they are expected to be highly intercorrelated and therefore are 

interchangeable. Using one indicator over another should not affect the meaning of the 

results. This is because causal pathways emit from the latent variable (e.g., test anxiety) 

to the indicators.  

Conversely, in formative models, preferable for index construction, a composite 

variable is formed that is a direct linear combination of the indicators (Bollen & Bauldry, 

2011; Grace & Bollen, 2008). For example, the Human Development Index consists of 

measures of health, education and income (United Nations Development Programme 

[UNDP], 2013). Rather than being the effects of human development, the indicators are 

construed as defining, or causing, the construct. Causal pathways emit from the indicators 

to the composite variable; indicators are not expected to be highly interrelated as each 

forms a distinct dimension (e.g., health or income) of the construct. As such, indicators in 

a formative model are not interchangeable. Therefore, in index construction, “omitting an 

indicator is omitting a part of the construct” (Bollen & Lennox, 1991, p. 308). This 

makes the process of selecting indicators the most important step in index development.   

The fact that the basic assumption regarding the interrelatedness of indicators in a 

reflective model does not hold for a formative model has serious implications for 
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assessing the quality of an index. Concepts of dimensionality (e.g., “factorial unity”), 

validity and reliability all assume the use of a reflective measurement model (Bollen & 

Bauldry, 2011; Diamantopoulos & Siguaw, 2006, p. 271). Using a reflective model to 

construct an index is likely to misrepresent the intended construct and lead to policy 

decisions based on inaccurate conclusions (Bollen & Bauldry, 2011; Hudrliková, 2013). 

Although multivariate statistical methods are recommended to guide methodological 

decisions, such as weighting, during index construction, the lack of assumed 

intercorrelations among indicators means that using such methods as the basis for 

selecting indicators is likely to compromise the theoretical framework (Nardo et al., 

2008; Simpson, 2006). For example, in constructing the Oklahoma index, 18 variables 

were originally identified for consideration based on a review of the literature with the 

aim of representing the cumulative risk factor model (Lazarte Alcalá et al., 2013). Final 

indicator selection from among these 18 variables was driven entirely by multivariate 

statistical methods. As a result, all indicators associated with health, a domain known to 

be related to school readiness, were excluded from the final index. This calls into 

question the extent to which the index represents the full multidimensional nature of 

school readiness risk.  

Purpose of Study 

This study is a methodological investigation into the effects of indicator selection 

on the outcomes of a school readiness risk index. Using the Oklahoma index as a sample 

index, this study is a form of sensitivity analysis that examines the extent to which 

modifications to the indicator set change county rankings. The overarching research 
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question asks how the use of different indicators alters the meaning of a risk ranking. 

Methods follow existing frameworks published in the literature for assessing the impacts 

of indicator selection on index outcomes (Helton, Johnson, Rollstin, Shiver, & Sprung, 

1995; Saisana, 2008; Saisana & Munda, 2008; Schmidtlein, Deutsch, Piegorsch, & 

Cutter, 2008). The specific questions addressed by this study are listed below.   

1. What is the relationship among scores on the overall index, the domains and 

individual indicators?  

2. What is the impact of the indicators and domains on the overall index? In 

other words, do one or more indicators or domains dominate the index?  

3. What is the relative effect of individual indicators and domains on outcome 

rankings? In other words, how stable are index rankings when individual 

indicators or domains are removed from the index?  

4. To what extent do changes to the indicators and domains affect associations of 

index rankings with a proxy outcome of school readiness risk?   

Significance of Study 

This study responded to calls for assessing the potential biases of indexes by 

examining the relative importance of indicators used in the construction of a school 

readiness risk index (Fekete, 2009; Saisana, 2008). Ultimately, an index is only the sum 

of its parts; therefore, the selection of these parts must be transparent and defensible, and 

the parts themselves should logically sum to the whole. The question of which indicators 

to use to construct an index and the process of selecting these indicators is critically 
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important if risk is to be assessed in such a way that produces results that are transparent, 

meaningful, and useful.  

This study is significant in that it contributes to the transparency of the OK SRRI 

and to the field of index construction in general by highlighting issues surrounding the 

process of indicator selection. While many index developers rely on the assumptions of 

the reflective measurement model, thus calling into question the meaning of index 

outcomes as well as validation efforts, this study identified and justified the use of a 

composite (formative) measurement model for index construction and evaluation. This 

model informed indicator selection for an alternate index that was used for the study and 

provided a framework for assessing indicator impact and informed validation efforts. 

This study used an established framework for examining the relative importance 

of individual indicators and the meaning of index outcomes in light of changes to the 

indicator set (Saisana, 2008; Saisana & Munda, 2008). In this way, this study is a 

demonstration of how applying such a framework can increase understanding of the 

extent to which an index is measuring the intended construct. Understanding how an 

index responds to changes in the set of indicators increases confidence in the 

interpretation and implementation of the results (Schmidtlein et al., 2008). Because of the 

political nature of indexes, changes in risk ranks may have important consequences in 

terms of access to resources. The findings of this study will be important to early 

childhood program administrators, practitioners, policy makers and other stakeholders 

with an interest in monitoring school readiness risk factors. It will also be of relevance to 
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other states that use or plan to develop similar risk indexes. Results of this study will be 

shared with OKDHS, the agency responsible for Oklahoma’s risk index. 

Limitations and Delimitations 

An inherent limitation to indexes is data availability. Data for all indicators must 

be available at the desired geographic level for the desired timeframe, and should come 

from databases of government agencies or other credible sources (Fekete, 2009; Simpson, 

2006). Ideally, the same timeframe would be used for all variables; however, it may not 

always be possible to measure population-level data, collected and published by different 

sources, for the same time periods. To control for potential variation due to using revised 

data or indicators not previously considered, the data used in this study are the same data 

used to develop the OK SRRI, for which there is some variation in terms of time periods 

covered. Further, this study defines risk as a concentration of indicators at the county 

level, which excludes potentially important variables that may arise if examined at more 

micro levels, such as community or individual child. It may be, for example, that within 

larger counties high variability may exist on some or all indicators that is not reflected 

when data are presented at the county level.  

 This study is further limited by its focus on the indicator selection stage of index 

construction to the exclusion of other methodological decisions that must be made at later 

stages. The study is limited in its generalizability due to its focus on a risk index and data 

from a single state. Additionally, because there are no hard and fast thresholds from 

which to gauge the results of sensitivity testing, this process is more descriptive than 

empirical. In light of problems related to index validation, this study did not aim to 
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validate the index per se but rather to assess whether changes to an indicator set resulted 

in considerably different associations with a measure proposed to reflect, albeit 

incompletely, an effect of being unready for school. Unlike grade-level assessments of 

reading, mathematics and other subjects mandated by the No Child Left Behind Act of 

2001, there are no federally mandated kindergarten-entry assessments (ECDC, 2014). For 

this study, the proportion of entering kindergarteners in each county that scored below 

proficient on state-mandated school-entry pre-literacy assessments was used to represent 

the result of being at risk for starting school unready to learn. Given that focusing on one 

developmental domain to the exclusion of others is reductionist in its disregard for the 

multidimensional nature of school readiness (Snow, 2006), this is clearly an imperfect 

measure. Ideally, multiple indicators would be used to reflect being unprepared for 

school, but literacy is the only developmental domain required to be assessed across 

Oklahoma at school entry. This approach to validation was meant to be of an exploratory 

nature and followed Saisana’s (2008) method of examining whether enough evidence 

existed to reject (rather than validate) the index as a measure of school readiness risk.  

Definition of Terms 

The definitions of key terms used in this study are provided below.   

School readiness:  “[A] transactional construct from an ecological perspective and is at 

the intersection of person, process, and context. [It is] not within the child but at the 

intersection and fit between the child and his/her family and the ‘readiness’ of the 

classroom/school to teach that child” (Vernon-Feagans et al., 2008, p. 63).  
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Risk:  An “elevated probability of a negative or undesirable outcome in the future” 

(Masten & Gewirtz, 2006, p. 24). 

Indicator:  “[V]alue or group of values that give an indication or direction” (Simpson, 

2006, p. 2); “a measure that describes a condition...numbers, percents, fractions, or rates 

used to paint a picture of a specific outcome or situation” (Rhode Island KIDS COUNT, 

2005, para.1).   

Dimension:  The “highest hierarchical level of analysis and indicates the scope 

of…individual indicators. For example, a sustainability composite indicator can include 

economic, social, environmental and institutional dimensions” (Nardo et al., 2008, p. 51). 

Index (and composite indicator):  “[S]ets of items that are ‘causal indicators’…that 

determine the level of a construct” (DeVellis, 2003, p. 10); “a mathematical combination 

of individual indicators that represent different dimensions of a concept whose 

description is the objective of the analysis” (Nardo et al., 2005, p. 7) and measured by a 

composite score or rank that “is a function of indicators and weights” (Saisana & Saltelli, 

2008, p. 251).  

Organization of Study 

 This chapter introduced the problem and described the purpose of the study. 

Chapter II presents a general overview of indexes, discusses in more detail the study’s 

theoretical framework, and reviews the literature on school readiness risk factors. Chapter 

III describes the methodology and procedures used to answer the research questions, and 

Chapter IV presents the findings. This work concludes in Chapter V with a discussion of 

the outcomes and implications for practice and offers directions for future research.  
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CHAPTER II 
 

 

LITERATURE REVIEW 

 This chapter is organized into three main sections. The first discusses issues in 

index construction, including the choice of measurement models and why their 

distinctions are important considerations for index construction. The second describes a 

theoretical framework of school readiness, and the third reviews the empirical literature 

on factors identified as core indicators of risk for being unprepared for school.   

Indexes: Function and Form 

The use of social indicators and aggregated indexes for monitoring social issues 

began in the U.S. in the mid-1960s when a deeper understanding of emerging social 

problems was desired (Sheldon & Parke, 1975; Tate, 2012). Indexes, also known as 

composite indicators, are aggregated measures of individual indicators capable of 

representing a multi-dimensional social system or construct (Saltelli, Munda, & Nardo, 

2006). Because of the complexity of social phenomena, indexes are more effective 

measures of particular issues than individual indicators alone and are used to convey 

narratives about social problems that merit intervention (Hudrliková, 2013; Nardo et al., 

2005; Saltelli et al., 2006; Tallis, 2005). These narratives emerge from the performance 
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of geographic areas, such as a countries, states or counties, on the index. Each country, 

for example, is assigned an index score, derived through a mathematical combination of 

observations, and used for benchmarking and ranking countries according to performance 

on a particular issue (Nardo et al., 2005; Nardo et al., 2008; Simpson, 2006). By reducing 

a set of measures to a comprehensive, summary view of a complex phenomenon, indexes 

can raise awareness of critical issues and foster change (Jacobs, Smith, & Goddard, 2004; 

Nardo et al., 2005).  

Indexes are increasingly being applied to measure complex constructs related to a 

society’s social capital (Saltelli, Nardo, Saisana, & Tarantola, 2005), such as well-being 

(UNDP, 1990), social vulnerability to natural disasters (Cutter, Boruff, & Shirley, 2003; 

Davidson & Lambert, 2001; Jones & Andrey, 2007), environmental sustainability (Esty 

et al., 2005), disaster resilience (Cutter, Burton, & Emrich, 2010), technological 

achievement (Desai, Fukuda-Parr, Johansson, & Sagasti, 2002), lifelong learning 

(Saisana, 2008), knowledge as an economic driver (Saisana & Munda, 2008), sustainable 

growth in the European Union (Hudrliková, 2013; Saltelli et al., 2006) and numerous 

other issues.  

Indicator research in general and indexes in particular have become useful for 

increasing stakeholder participation in responding to social problems; developing and 

evaluating policies and interventions; allocating scarce resources; and monitoring change 

over time (Cutter et al., 2003; Jacob & Willits, 1994; Parris & Kates, 2003; Rossi & 

Gilmartin, 1980; Simpson, 2006; Wong, 2006). For example, the Social Vulnerability 

Index (Cutter et al., 2003) examines county-level vulnerability to natural disasters as a 

16 
 



means of understanding the social burdens of vulnerability and identifying counties 

where vulnerability is greatest. Vulnerability ranks have been compared to federal 

allocations of preparedness resources, which revealed that New Orleans, the most 

vulnerable city in the U.S., received only 1% of such resources at the time of the analysis 

(Borden, Schmidtlein, Emrich, Piegorsch, & Cutter, 2007). The United Nation’s Human 

Development Index measures well-being at the country level using indicators of life 

expectancy, educational attainment and income, and has been used to monitor gains in 

human progress, particularly in developing countries (UNDP, 2013). The Environmental 

Sustainability Index (Esty et al., 2005) is used to inform environmental policy decisions 

by identifying issues related to national environmental protection programs that warrant 

further attention and highlighting best practices.  

Recently in the U.S., there has been an emergence of indexes to measure risk for 

poor school readiness. Oklahoma, Louisiana, Pennsylvania, Illinois and Washington, DC 

have created school readiness risk indexes with the aim of drawing attention to counties 

where children are at greatest risk for starting school already behind. These indexes are 

designed to inform early childhood education policies and practices and resource 

allocation decisions related to early education and child care (LSU/Tulane, 2012; Lazarte 

Alcalá & Schumacher, 2014; Moodie & Rothenberg, 2011; PA OCDEL, 2012; Thomas 

et al., 2012).  
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Issues in Index Construction 

 Index construction is not a straightforward process as there is no correct or best 

method of development (Saisana & Saltelli, 2008; Tate, 2012; Wong, 2006). Subjective 

decisions have to be made at various stages of design, and the assumptions that underlie 

these decisions should be carefully evaluated to avoid questionable analytic rigor (Nardo 

et al., 2005; Nardo et al., 2008; Saltelli et al., 2006). Moreover, because the target 

audience for indexes is typically policy makers and the general public, and since 

numerous individual indicators can be argued to relate to a particular construct, 

methodological approaches should reflect parity between statistical robustness, simplicity 

and flexibility (Wong, 2006). A delicate balance between simplifying a particular social 

phenomenon and providing enough detail to identify differences is a necessary and 

inherently challenging aspect of index development (Diener & Suh, 1997).  

 Measurement models. The most critical, but often overlooked and perhaps 

misunderstood, step of index construction is to specify an appropriate measurement 

model and justify its use (Coltman, Devinney, Midgley, & Venaik, 2008). Nardo et al. 

(2008, p. 18) note that a suggested topic for future revisions of the Handbook on 

Constructing Composite Indicators is the relationship between index construction and 

“the traditional measurement theory developed in psychometrics and in particular the 

relationship between effect and cause indicators and the statistical tools proposed.” As 

discussed in this section, understanding these relationships is critical to developing an 

index that produces meaningful and relevant outcomes.  
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An inherent challenge in the social sciences is measuring abstract constructs that 

cannot be directly observed. To this end, multi-item measures are usually developed, 

which require the use of measurement models to specify associations between a construct 

and a set of observed variables, e.g., items or indicators, believed to be associated with 

the construct. The use of multiple items in a measure enhances its reliability and validity 

by increasing the likelihood of adequately identifying a particular construct and reducing 

random measurement error inherent in individual items (Eisinga, Grotenhuis, & Pelzer, 

2013). Theories underlying the association between indicators and construct drive which 

mathematical techniques can be used to model a construct and which methods of 

assessing a measure’s dimensionality, reliability and validity are most appropriate 

(Bollen & Lennox, 1991).  

Overview of reflective and formative models. Two fundamental measurement 

models are the reflective and formative models, with the reflective being the most 

common in the social sciences. This model is the foundation for the development of 

unidimensional scales, which use multiple items to measure an underlying latent variable, 

such as personality or attitude. Latent variables serve as “a kind of bridge between 

observed data and theoretical generalization” (Grace & Bollen, 2008, p. 194). A latent 

variable such as extroversion could be measured with a scale comprised of items 

theorized to reflect (be the effect of) extroversion, making these items effect indicators. A 

scale of extroversion might include items related to sociability, talkativeness and 

enthusiasm (Gosling, Rentfrow, & Swann Jr, 2003). These items are assumed to be 

highly related as they are all manifestations of the same latent variable (Bollen & 
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Lennox, 1991; Coltman et al., 2008; Diamantopoulos & Winklhofer, 2001). By 

definition, a manifestation is a form that something takes when it appears. Therefore, all 

items used in the scale are a form of extroversion; they are how extroversion is revealed. 

Because items are related by the same construct, an increase in extroversion will be 

accompanied by an increase in all of its associated indicators. This means effect 

indicators move in relation to each other, making them interchangeable. The inclusion or 

exclusion of a particular indicator does not change the interpretation of the latent variable 

(Bollen & Lennox, 1991).  

The reflective model, however, is not appropriate for all measures desired in the 

social sciences. A classic example is socioeconomic status (SES), which could be 

theorized to be a function of education, occupation, income and neighborhood. An 

increase in SES does not necessarily imply that all of these indicators will increase; gains 

in any single indicator will increase SES even if the others remain constant (Bollen & 

Lennox, 1991). This means the indicators are not required to move in relation to each 

other to be included in the model. In other words, it is not necessary for indicators to be 

highly related as each is perceived as a “cause” rather than an effect of SES (Bollen & 

Lennox, 1991, p. 305; Diamantopoulos & Winklhofer, 2001). Bollen and Lennox stress 

that the term “cause” carries no particular significance other than indicating a latent 

variable is determined by the indicators.  

It has been argued that the term latent variable does not even apply to formative 

models as, by definition, a latent variable is something that is hidden or concealed; it 

exists independently of its indicators (Coltman et al., 2008; Hardin & Marcoulides, 
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2011). Instead of a latent variable, formative models measure a composite variable, 

which cannot exist independently of its indicators since it is defined by them (Bollen & 

Bauldry, 2011; Grace & Bollen, 2008). A simple, albeit contrived, illustration is a house, 

which at its core consists of a foundation, walls and roof. Therefore, the definition of a 

house is a structure with all three items; an absence of one is an incomplete house. This is 

because the associations among these items are not expected to be high. Simply because a 

builder completes a foundation it cannot be assumed that the walls are up or will be soon. 

Although a house is clearly an observable variable, this example represents the basic idea 

behind formative models and composite variables and demonstrates why the difference 

from reflective models is important. When a composite variable is formed through linear 

combinations of indicators, which are assigned weights, the composite is “simply a 

weighted sum of its composite indicators” (Bollen & Bauldry, 2011, p. 265). For 

example, the composite variable of human development is measured by the Human 

Development Index, which is a linear combination of health, education and income 

indicators (UNDP, 2013). Human development, expressed as a ranking, does not exist in 

its defined form independently of its indicators. Provided indicators are not highly 

correlated, removing one changes the definition of the rankings. Because “the measures 

produce the constructs, so to speak” (Bagozzi, 1994, p. 332), variation in the indicators 

leads to variation in the meaning of the composite variable (Diamantopoulos & 

Winklhofer, 2001; Grace & Bollen, 2008).  

Because of this characteristic, the inclusion or exclusion of any indicator in a 

composite model would result in substantive changes to the meaning of the index 
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(Coltman et al., 2008). This has been confirmed by several studies that found altering the 

indicator set used to construct an index had considerable impacts on index outcomes 

(Chakraborty, Tobin, & Montz, 2005; Houweling, Kunst, & Mackenbach, 2003; Jones & 

Andrey, 2007; Schmidtlein et al., 2008).When theoretically important indicators are 

excluded part of the construct itself is excluded (Bollen & Bauldry, 2011; Bollen & 

Lennox, 1991; Grace & Bollen, 2008). In addition, excluding a necessary indicator biases 

the coefficients of the remaining indicators, assuming the omitted and included variables 

are correlated, which in turn affects the weights used to construct the index (Bollen & 

Bauldry, 2011; Bollen & Lennox, 1991). Selecting the most appropriate indicator set, 

therefore, depends on using the appropriate model to specify and measure the composite 

variable (Bollen & Bauldry, 2011; Coltman et al., 2008; Diamantopoulos & Siguaw, 

2006; Grace & Bollen, 2008; Roy, Tarafdar, Ragu-Nathan, & Marsillac, 2012).  

 Implications for reliability, validity and dimensionality. Although it has been 

argued that indexes follow a formative model, it is not uncommon for reflective models 

to be used in the process of index construction (Bollen & Bauldry, 2011; Coltman et al., 

2008; Diamantopoulos & Winklhofer, 2001; Grace & Bollen, 2008). Studies by business 

and organizational researchers have found important implications of this mistake 

(Coltman et al., 2008; Diamantopoulos & Siguaw, 2006). Using an incorrect 

measurement model “undermines the content validity of the constructs, misrepresents the 

structural relationships within which these constructs are imbedded, and ultimately 

lowers the usefulness of … theories” (Coltman et al., 2008, p. 1250). Considerable debate 

exists, however, about the efficacy of formative versus reflective measurement models 
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and the extent to which the former should be used in light of a “lack of theory underlying 

formative measurement and a misinterpretation of the early psychometric literature” on 

validity and reliability testing (Hardin & Marcoulides, 2011, p. 753). 

The assumption of the reflective model that individual items are comparable 

indicators of an underlying construct is at the heart of psychometrics, which “is the 

science concerned with evaluating the attributes of psychological tests” (DeVellis, 2003; 

Furr & Bacharach, 2008, p. 8). If indicators are reflections of the same latent variable, 

then empirical assessment can determine whether the set of indicators used in a particular 

measuring instrument adequately and consistently represent the intended construct. In 

other words, tests of reliability and validity, as well as evaluations of the dimensional 

structure, are based on the reflective model (Furr & Bacharach, 2008).  

Reliability. Reliability answers the question of how well an instrument measures 

what it is intended to measure by assessing the consistency of its results. The concept of 

reliability is based on classical test theory, which posits that a person’s observed score (or 

response) is equal to the sum of a true (but unknown) score (or response) and 

measurement error (Furr & Bacharach, 2008). The results of any measure are unreliable 

to a certain extent due to the presence of error, which can stem from a variety of sources, 

such as respondent fatigue or poorly constructed measures. Because error is theorized to 

be associated with observed responses in a reflective model, measurement error can be  

accounted for and in essence extracted (Coltman et al., 2008). Therefore, reliability can 

be viewed as a measure’s relative lack of error as it represents the “proportion of variance 

[in a set of items] attributable to the true score of a latent variable” (DeVellis, 2003, p. 
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27). In other words, if a latent variable is theorized to influence a set of items, reliability 

can assess how much influence is present (DeVellis, 2003). Various empirical estimates 

can be used to assess the extent to which scores produced by an instrument (e.g., 

extroversion scale) are reliable estimates of true scores (or the results that would be found 

in the absence of error). A common reliability measure is Cronbach’s alpha, which 

assesses internal consistency reliability, or the extent to which a set of items measures a 

single, unidimensional construct. As item intercorrelations increase, alpha is expected to 

increase, which means there is less error in the model (Furr & Bacharach, 2008).  

In the case of formative models, however, there is no assumption regarding the 

intercorrelations of indicators; nor is there a theory that proposes an observed score, 

whether from a single indicator (e.g., education level) or from an index (e.g., SES), is a 

function of a true score plus error. The concept of error as proposed in the reflective 

model does not fit the formative model. As such, error terms cannot be estimated if the 

model is estimated in isolation (meaning there is no effect in the model, only causes). 

This means measurement reliability cannot be empirically assessed (Bollen & Bauldry, 

2011; Diamantopoulos & Siguaw, 2006). As Coltman et al. (2008, p. 9) stress, “One of 

the key operational issues in the use of formative indicators is that no simple, easy and 

universally accepted criteria exists for assessing the reliability of formative indicators.” 

Despite this limitation, the Handbook on Constructing Composite Indicators (Nardo et 

al., 2008, p. 26) recommends assessing the internal consistency of an index using 

Cronbach’s alpha, but only when treated as a scale. This reflects the confusion regarding 

reflective versus formative models abundant in the literature on index construction. 

24 
 



Validity. Validity is the extent to which an instrument measures what it is 

intended to measure. It is concerned with “whether the [latent] variable is the underlying 

cause of item covariation” (DeVellis, 2003, p. 49). If so, then items should be similarly 

related in terms of direction and significance with construct determinants (e.g., causes of 

extroversion) and consequences (e.g., outcomes of extroversion) (Coltman et al., 2008). 

Assessments of convergent and discriminant validity, or the extent to which a measure’s 

results are alike or different from other measures of the same or opposite construct, are 

appropriate in a reflective model, as are tests for criterion validity, or the extent to which 

a measure can predict an outcome (Bollen & Bauldry, 2011; Coltman et al., 2008). 

Because there is no expected pattern of intercorrelations among indicators in a composite 

model, however, their covariance structure cannot be used to judge its validity. As Bollen 

and Lennox (1991, p. 312) argue, “Without external criteria, a cause induced latent trait is 

psychologically uninterpretable.” Thus, the assumption that indicators have similar 

relationships with construct determinants and consequences does not hold, and the types 

of validity assessments discussed above are not appropriate. Despite this limitation, 

criticisms of the lack of index validation can be found in the literature without a 

discussion of the limitations of such efforts (Fekete, 2009).  

Dimensionality. Another validity assessment concerns construct validity, or the 

extent to which an instrument measures the intended construct. In other words, construct 

validity asks whether inferences made from the measure’s results are appropriate given 

the intended construct. The multivariate technique of factor analysis is one approach to 

assessing construct validity by empirically examining the overall structure, or 
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dimensionality, of a measure. The goal of factor analysis is to represent a set of variables 

in terms of a smaller set of hypothetical (latent) variable (Tabachnick & Fidell, 2007). 

The covariance structure of a set of items is used to determine how many latent variables, 

or factors, underlie the set (DeVellis, 2003). By finding a common factor, extraneous 

variance (e.g., unique and error variance) among a set of items is removed “because the 

factor score contains only that part of the indicator that is shared with other indicators” 

(Coltman et al., 2008, p. 10). Accordingly, for factor analysis to be meaningful for 

assessing dimensionality, a reflective measurement model is required as there is no 

assumed pattern of intercorrelations in a formative model. Again, this makes covariance 

analysis of a formative model irrelevant.  

Limitations of multivariate methods for indicator selection. Principal 

components analysis (PCA), a related but statistically different technique from factor 

analysis, has been recommended for confirming that an acceptable amount of variance is 

present in a model and to inform later methodological decisions, such as weighting 

(Nardo et al., 2008; Saisana, 2008). The purpose of PCA is to see what patterns emerge 

from all variance, as opposed to only covariance in factor analysis (Tabachnick & Fidell, 

2007). PCA reduces a set of individual variables into new, uncorrelated variables, called 

principal components, that account for all variability in the set using a fewer number of 

variables. PCA is useful for dealing with multicollinearity in multiple regression in that 

components can be used as predictors in place of highly correlated variables (Pedhazur, 

1997). PCA is only concerned with the statistical structure of a set of items (or indicators) 

and is not driven by any theoretical notion of how items should fit together.   

26 
 



Like factor analysis, PCA is based on the assumption that indicators are 

correlated. As discussed earlier, the fact that indicators may not have high 

intercorrelations, which is actually a desired property of indexes, means statistical factors 

(or components) may not be appropriate for selecting indicators or defining index 

domains as straightforward interpretation might not be possible (Houweling et al., 2003; 

Nardo et al., 2008). The contributions of theoretically important variables that do not 

move in relation to other variables may be minimized; or variables may have moderate 

loadings across components rather than a large loading on a single component (Messer et 

al., 2006; Nardo et al., 2008; Saisana, 2008). Jones and Andrey (2007) noted that high 

loadings reflect spatial relationships among variables rather than those that most strongly 

influence a given construct. Saisana (2008) demonstrated how multivariate analysis of 

indicators comprising the Composite Learning Index (CLI), a measure of lifelong 

learning in Canadian communities, yielded factors that deviated from the theoretical 

structure of lifelong learning and lacked meaningful interpretation.  

PCA is further limited by its potential sensitivity to outliers, data revisions, the 

inclusion of new geographic units and small sample sizes (Nardo et al., 2008). Although 

no definitive rules exist regarding sample size, there are several guidelines. Some argue 

for absolute sample size thresholds, with Comfrey and Lee (1992) suggesting that 50 is 

poor while 1,000 is excellent, while others support the use of minimum subject-to-item 

ratios, such as 10:1 (Nunnaly, 1978), or some combination of ratio and size, such as 5:1 

with a minimum sample of 200 (Gorsuch, 1983). Using an average of 10 to 15 variables 

in an index and all counties in a state in the U.S., many states will have samples too small 
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to support the use of PCA. Moreover, these are not samples of counties but rather 

populations of counties, and therefore the data is not random but a census. Another 

limitation is the use of aggregated data that come from different sources and timeframes. 

There is no way to know whether an individual captured by one indicator is included in 

another, which makes any correlational conclusions tenuous at best (Thomas et al., 2012). 

Further, correlations among indicators do not necessarily represent the impact of 

individual indicators on index rankings (Nardo et al., 2008). Therefore, PCA is useful for 

confirming that a set of indicators accounts for an acceptable amount of variance and 

represents diverse aspects of a construct, but the statistical representation may not be as 

useful or informative as one derived from theory.  

As an example, the process of selecting indicators for the OK SRRI relied solely 

on the results of PCA using 18 population-level indicators identified for consideration 

and multiple regression analysis. This process is described in more detail in Chapter 3, 

while the relation of indicators to school readiness risk is discussed later in this chapter. 

Scores on the four resulting components as well as individual indicators that failed to 

load on a single component were used as predictors of third grade reading and math 

proficiency, with percent of students below proficiency in each area used as the 

dependent variable in separate regression models. The final 10 indicators were selected 

based on the statistical significance of coefficients for the components and remaining 

individual indicators. Indicators comprising the three components that were significant as 

well as a significant individual indicator were included in the index.  
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The goal in using PCA was to account for as much variance as possible using the 

smallest number of indicators in order to reduce multicollinearity in the regression 

models and identify index domains. The use of multiple regression analysis was 

complicated by the fact that population-level data were used and came from different 

sources covering different timeframes. Because third-grade reading and math scores were 

from the 2009-2010 academic year, and most data for the indicators, which were 

restricted to ages 0 to 5, stemmed from 2007 to 2011, it is highly unlikely that many 

children were captured in both the indicators and the outcome variables. Moreover, 

Greenland (2001) stresses that while the assumption of effects following a linear 

regression model may hold with individual-level data, this is not always the case for 

aggregated data.  

Because PCA is based on item intercorrelations, the three significant components 

were primarily comprised of indicators with the highest bivariate correlations. For 

example, the first component was comprised of the Hispanic, English-language learners 

(ELL) and low maternal education indicators. PCA capitalized on the correlation of 

Hispanic and ELL (r = .81) and the fact that correlations between these indicators and 

low maternal education (r = .55 and r = .60, respectively) were slightly higher than 

correlations between low maternal education and the indicators of poverty and young 

maternal age (r = .47 and r = .49, respectively), included in the second component. One 

problem with relying on correlations in studies using aggregated data, also referred to as 

ecologic studies, is that such studies are subject to ecological fallacy, or the use of 

aggregated (ecological) data to make inferences about individual-level relationships. A 
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source of bias in ecological studies is that associations of variables seen at an individual 

level are typically different, in terms of magnitude and sometimes direction, than 

associations of the same variables found in aggregated data (Hammond, 1973; King, 

1997).  

The factor matrix published in the first report on the index (Lazarte Alcalá et al., 

2013) showed a loading of .68 for low maternal education on the first component 

(loadings on other components were not listed). Given the correlational structure noted 

above, it is likely that this indicator had a moderate loading on the second component as 

well. Moreover, the indicator of no prenatal care, known to negatively impact child 

development, failed to load with other indicators and therefore was excluded from the 

component structure. Both of these observations reflect concerns discussed earlier that 

PCA can minimize the contributions of theoretically important variables, while moderate 

loadings across components can preclude meaningful interpretations.   

Although the Oklahoma index still follows the cumulative risk model, with high 

rates on multiple indicators resulting in a higher risk ranking, it does not represent the full 

spectrum of the transactional/ecological model of school readiness. The PCA component 

that was not a statistically significant predictor in the regression analyses was comprised 

of health-related indicators. Excluding these indicators, and hence a domain, on the basis 

of statistical analysis alone means the known relationship between health and child 

development is ignored and hence the index under-represents the construct of school 

readiness risk. In developing an index in the field of organizational studies, 

Diamantopoulos and Siguaw (2006) state explicitly that they did not use any empirical 
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assessments of dimensionality (e.g., PCA) in the process of selecting indicators due to the 

limitations described above. 

Data considerations. For indicators to be included in an index, data should be 

available across the desired spatial levels and timeframes and from reliable and, 

preferably, publicly available sources (Nardo et al., 2008; Simpson, 2006). Accuracy of 

the data and credibility of the sources are critical to ensuring an index is accepted by its 

intended audience, such as policy makers. As one of the main benefits of indexes is the 

ability to track trends over time, variables should be selected for which data can be 

efficiently obtained and are available for most, if not all, geographic areas of interest. 

Ideally, indexes planned for regular updating should use indicators derived from publicly 

accessible data sources, such as federal and state databases, to increase reliability, 

strengthen transparency and reduce production costs (Fekete, 2009; Parris & Kates, 2003; 

Simpson, 2006). Wong (2006) notes the advantage of using official data sources is their 

credibility and acceptance by the target audience. This can create barriers to the inclusion 

of relevant indicators if data are not published or otherwise available on a regular basis. 

For example, the indicators of ELL and abuse/neglect, factors known to decrease 

children’s school readiness and included in Oklahoma’s risk index, are not publicly 

available and require contacting agencies directly. Therefore, it is sometimes the case that 

a tradeoff must be made between transparency and full representation of a social 

phenomenon. Finally, as indexes are intended to inform policy decision-making (Wong, 

2006), policy-related variables should reflect variation both across spatial levels and 

across time (Kickham, 2000).   
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Once collected, data should be examined for missing observations and outliers 

and transformed as needed. Although there is no expected pattern of correlations among 

indicators in a formative model, analyzing correlations is an important step in 

determining whether the multidimensional nature of a construct is represented. Extremely 

high correlations among several variables may mean these variables measure the same 

thing and therefore inadequately represent the multidimensional nature of a particular 

construct. Further, a high degree of multicollinearity obscures the ability to determine 

each indicator’s influence on the latent variable (Coltman et al., 2008; Diamantopoulos & 

Siguaw, 2006). It may also introduce double counting, which will skew the weights used 

for individual domains depending on whether correlated indicators are used in the same 

domain (Nardo et al., 2008). A threshold for high correlations, however, has not been 

established, and other indexes have included indicators with correlations as high as .90 

(Jones & Andrey, 2007). The key is that there is not a systematic pattern of high 

correlations among multiple indicators (Saisana, 2008). 

Overcoming Issues in Index Construction 

Four main points related to indexes emerge from this discussion: 1) the construct 

to be measured by an index must be explicitly defined; 2) careful selection of indicators 

based on a strong theoretical perspective of their relation with the construct is imperative; 

3) using multivariate techniques to select indicators and identify the domain structure of 

an index can result in the exclusion of important indicators and misrepresent the intended 

construct; and 4) commonly used approaches to assessing the psychometric properties 
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(validity and reliability) of a measure are inappropriate for indexes. Bollen and Lennox 

(1991) sum up the situation related to index construction and evaluation nicely:  

Conventional wisdom on item selection and scale evaluation is thus shown to be 

qualified by consideration of the specific directional relationship between the 

indicators and the latent construct. Traditional measures of reliability and the 

examination of the correlation matrix of indicators are so ingrained that 

researchers have failed to realize that these are not appropriate under all situations 

(p. 312).  

Validity and reliability, therefore, take on new meaning for indexes. Since 

reliability cannot be empirically assessed, error in composite models can only be 

overcome by the design of the study, such as capturing all possible causes of the 

construct (Bollen & Lennox, 1991; Coltman et al., 2008). Diamantopoulus and Siguaw 

(2006) recommend examining the extent to which indicators have the same directional 

relationship with a construct as a means of assessing their appropriateness for an index. 

Another approach to assessing the reliability of an index is through sensitivity 

analysis (Fekete, 2009; Saisana & Saltelli, 2008). Sensitivity analysis aims to assess the 

extent to which methodological approaches to index construction affect the stability of 

summary rankings (Li & Wu, 2006; Nardo et al., 2005; Saisana, 2008; Tate, 2012). An 

index is said to be robust to methodological decisions if its outcomes remain relatively 

stable across changes to methodology, such as the use of different indicators or weighting 

schemes (Saisana & Saltelli, 2008; Tate, 2012). Choices surrounding indicator selection 

and weighting, for example, are sources of uncertainty that can significantly impact 
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outcome scores and rankings. Understanding how such uncertainties proliferate 

throughout the structure of an index to influence outcomes is a means of assessing the 

reliability of index rankings (Saisana & Saltelli, 2008). For example, a recommended 

early step in index construction is to identify the main drivers of performance, which 

reveals the relative importance of each indicator and whether the index is dominated by 

particular indicators (Nardo et al., 2008). This is referred to as “decomposition [of an 

index] into the underlying indicators” (Saisana, 2008, p. 14) and has been accomplished 

through various methods, including path analysis (Saisana & Munda, 2008), stepwise 

regression (Helton et al., 1995), and comparing rankings or scores from scenarios that 

leave out one or more indicators to those from the full index (Chakraborty et al., 2005; 

Saisana, 2008; Schmidtlein et al., 2008). Even if uncertainty cannot be reduced, analysis 

of the extent to which an index is sensitive to various sources of uncertainty lends 

credibility to a model by increasing its transparency is a means of ensuring valid 

interpretations of index outcomes (Li & Wu, 2006; Saisana, Tarantola, & Saltelli, 2005).  

Regarding validity, one perspective of index validation involves determining 

whether there is enough evidence to reject an index as an appropriate measure (Saisana, 

2008). To this end, linking index outcomes with another construct theorized to be either a 

determinant or outcome of the composite variable and derived through a reflective model 

is recommended (Bollen & Lennox, 1991; Coltman et al., 2008; Diamantopoulos & 

Siguaw, 2006; Saltelli et al., 2005). However, determining the direction of causal 

pathways in a model theorized to be the outcome of an index can be challenging. As 

Saisana (2008) notes regarding the construction of the Economic and Social Well-Being 
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Index, constructed using a reflective model in an effort to validate the CLI, the indicators 

used could very well be theorized to cause a society’s well-being rather than be its effect. 

Therefore, although attempts to validate an index in this way are useful, the results do not 

carry the same definitive meaning as they might in traditional psychometric testing.  

Given these limitations, the definition of valid information used in The Program 

Evaluation Standards seems relevant for index construction. According to the standards, 

a valid evaluation is one that “serve[s] the intended purposes and support[s] valid 

interpretations” (Yarbrough, Shulha, Hopson, & Caruthers, 2011). Careful analysis of 

decisions made regarding indicator selection is a means of understanding the extent to 

which an index is internally sound. At their foundation, indexes should have a theoretical 

framework that provides a clear understanding of the multidimensional nature of the 

phenomenon being measured and the domains represented. This serves as the basis for 

selecting and combining individual indicators under a “fitness-for-purpose” principle in 

which the overall index is considered for its relevance to the intended purpose and 

acceptance by intended users (Nardo et al., 2005; Saltelli et al., 2006, p. 224). As Grace 

and Bollen (2008, p. 201) stress, “any composite derived from the measures of that 

construct should be understood to represent the collective effects of its components, 

regardless of the label placed on that construct.” In other words, an index is no more than 

the sum of its parts, which, depending on the parts used, can convey different meanings. 

Theoretical Framework of School Readiness 

The transactional/ecological and cumulative risk perspectives discussed in this 

section serve as the theoretical foundation for the selection of indicators for a school 
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readiness risk index and the testing of varying indicator sets in the proposed study. These 

approaches naturally complement one another as an overall theoretical framework for 

understanding how risk factors interact to restrict a child’s normal pace of development. 

A child’s environment and experiences can range from providing all resources a child 

needs for healthy development to posing considerable barriers to development and 

subsequently school readiness.  

Children who are developmentally ready to start formal schooling possess age-

appropriate cognitive, social, emotional and physical skills. They are both ready to learn 

and ready to engage in the school environment (Carlton & Winsler, 1999). Definitions of 

school readiness that rest on children’s cognitive abilities, however, assume the 

experiences and learning opportunities in the early years are similar for all children 

(Meisels, 1999). Rather, a child’s development is highly dependent on the environment 

within which a child grows (Glaser, 2000; Kelley, 2003; Rodriguez & Tamis-LeMonda, 

2011; Shonkoff & Phillips, 2000; Thompson, Levitt, & Stanwood, 2009). Nurturing early 

environments contribute to normal brain maturation and appropriate development of 

cognitive, linguistic, and social/emotional skills (National Institute of Child Health and 

Human Development, 2002; Peisner-Feinberg et al., 2001; Shonkoff & Garner, 2012). 

These early skills can significantly impact subsequent achievement, such as performance 

in later primary grades (Claessens, Duncan, & Engel, 2009), high school completion 

(Garnier, Stein, & Jacobs, 1997) and college enrollment (Brooks-Gunn, Guo, & 

Furstenberg Jr., 1993).  
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Transactional/Ecological Model 

With the current interest among researchers, policy makers and community 

members in school readiness, it is generally accepted that school readiness is a 

multidimensional construct highly influenced by interrelated factors occurring in the 

context of home, school and community (Hair, Halle, Terry-Humen, Lavelle, & Calkins, 

2006; High, 2008). This perspective reflects the transactional/ecological framework of 

readiness that views child development as a product of complex interactions of 

experiences and environment (Felner, Felner, & Silverman, 2000; Huston & Bentley, 

2010; Vernon-Feagans et al., 2008). This framework stems from ecological systems 

theory (Bronfenbrenner & Morris, 1998) and transactional perspectives of development 

(Sameroff & Fiese, 2000). Together, these perspectives provide a foundation for 

understanding how circumstances such as poverty and associated adverse situations, such 

as teenage mothers and poor prenatal care, impact developmental outcomes (Felner & 

DeVries, 2013).  

Ecological systems theory, which serves as the foundation for the federally 

funded Head Start program for children in poverty, posits that child development stems 

from the interaction of five expanding structural systems (Bronfenbrenner, 1979; 

Bronfenbrenner & Morris, 1998). The microsystem is the first system and consists of a 

child’s immediate surroundings, such as home or school, which most directly impact 

child development. Following this is the mesosystem, which is the interaction of multiple 

microsystems in which children are active participants. These interactions are thought to 

be equally as important as the occurrences within a single microsystem. Extending 
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beyond the mesosystem is the exosystem, which consists of settings in which a child may 

never be directly involved but that nonetheless influence development. Examples of 

exosystems include parental employment or availability of child care subsidy benefits. 

The fourth system is the macrosystem, which consists of the values and beliefs of the 

culture within which a child lives, such as the value of a two-parent family or the belief 

that spending most of a child’s time in school contributes to success. Finally, the 

ecological systems conclude with the chronosystem, which encompasses the passage of 

time and considers the duration of exposure, either directly or indirectly, to experiences 

within the other four systems.  

Ultimately, ecological systems theory is based on the premise of development as 

“a function of forces emanating from multiple settings and from the relations among 

these settings” (Bronfenbrenner & Morris, 2007, p. 817). The “proximal processes” that 

interact between person and environment are key factors in the effects of these ecological 

systems on development, yet these processes are not the same for everyone and are 

influenced by the “biopsychological characteristics” of an individual as well as the 

contexts and time periods within which experiences occur (Bronfenbrenner & Morris, 

2007, p. 795). This concept of development as the interaction of biological and 

psychological traits, environment and time, is related to the proposition that development 

is transactional in nature. Systems such as the home and school interact over time not 

only with each other but also with a child’s internal processes, such as cognitive and 

social-emotional skills, to create a particular developmental trajectory (Sameroff & Fiese, 

2000). Thus, a transactional/ecological perspective has emerged that considers 
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“relationships between individuals and those [disadvantaged] environments, and the ways 

in which those environments and their experience may interact with each other, across 

contexts” to disrupt normal developmental processes (Felner & DeVries, 2013, p. 110).  

Cumulative Risk Model 

Another perspective, the cumulative risk model, operationalizes the 

transactional/ecological framework by proposing that it is the accumulation of risk 

factors that most inhibit a child’s developmental trajectory rather than any single factor 

(Evans, 2004; Stanton-Chapman, Chapman, Kaiser, & Hancock, 2004). Therefore, the 

combined effect of a number of factors should be assessed when measuring risk for poor 

school readiness rather than any single factor, which supports the use of an index to 

measure risk. Although particular types of risk, such as low maternal education, may 

inhibit healthy development of cognitive, language and social-emotional skills, type is 

not as important a consideration in child outcomes as is exposure to numerous risk factors 

(Burchinal, Roberts, Hooper, & Zeisel, 2000). It is hypothesized that exposure to a single 

risk factor is less disruptive than multiple risks due to increased stress levels that 

accompany a multiplicity of negative experiences (Deater-Deckard, Dodge, Bates, & 

Pettit, 1998).  

A review of the literature shows that considerable research has used the 

cumulative risk model to investigate the extent to which exposure to co-occurring risk 

factors, particularly during a child’s early years, restricts development and hampers 

achievement. For example, a longitudinal study of the effects of early and middle 

childhood exposure to child abuse, inter-parental violence, family disruption, poverty and 
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high parental stress on adolescent behavior showed that child outcomes worsened as 

children experienced a greater number of disruptive situations (Appleyard, Egeland, van 

Dulmen, & Alan Sroufe, 2005). Of particular importance to the topic of school readiness 

is that exposure during the early years explained variation in adolescent behavior even 

when controlling for exposure during middle childhood. The co-occurrence of risk factors 

has also been found to negatively impact child health. This is important to understanding 

how risk exposure impacts school readiness as poor child health is known to be 

associated with low academic achievement (Eide, Showalter, & Goldhaber, 2010). 

Research on the effects of poverty, minority race/ethnicity, low parental education levels 

and single-parent families found that children’s health status was significantly worse for 

children with more than one risk factor (Bauman, Silver, & Stein, 2006). Another study 

investigating eight social risk factors, including lack of health insurance, family conflict 

and low maternal mental health, among others, found that while individual factors were 

modestly related to poorer child health status, children with six or more risk factors were 

nearly 17 times more likely to be in poor health as those who experienced no risks 

(Larson, Russ, Crall, & Halfon, 2008). Numerous other studies point to the deleterious 

effects on academic outcomes of exposure to multiple risk factors above and beyond 

individual factors (Burchinal, Roberts, Zeisel, Hennon, & Hooper, 2006; Burchinal, 

Roberts, Zeisel, & Rowley, 2008; Gutman, Sameroff, & Cole, 2003; Sektnan, 

McClelland, Acock, & Morrison, 2010).   
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School Readiness Risk Factors 

Research suggests that providing children at high risk for poor school readiness 

with quality interventions at the earliest ages positively affects both cognition and long-

term health, which in turn contributes to increases in lifelong achievement and earnings 

potential (Campbell et al., 2014). Although schools are increasingly held accountable for 

student achievement, they often lack the resources to adequately address learning 

deficiencies that stem from detrimental circumstances in the home and community. 

However, studies of the extent to which school characteristics and resources, such as size 

and pupil expenditures, explain gaps in achievement have yielded mixed results (Teddlie 

& Reynolds, 2000). Instead, research has more consistently found that achievement gaps 

between schools are better explained by certain sociodemographic characteristics of 

families and communities and the concentration of these characteristics in schools 

(Fantuzzo et al., 2014). 

Efforts such as the NSRII and the State Early Childhood Comprehensive System 

(ECCS) Initiative have resulted in the identification of numerous indicators related to 

school readiness and recommendations for regular monitoring of these indicators at the 

state or local levels. The NSRII is a consortium of 17 states that came together with the 

goal of informing early childhood policy issues by identifying indicators thought to be 

most important in estimating school readiness. The NSRII organized the concept of 

school readiness into 6 domains that reflect the transactional/ecological framework of 

child development, and 23 population-level indicators nested within these domains were 

selected as core indicators of school readiness (Rhode Island KIDS COUNT, 2005). 
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Indicators are measured at a spatial level, such as county or municipality, and address 

various sociodemographic and health risk factors, as well as access to quality early child 

care and education and child development outcomes. Each NSRII state is encouraged to 

assess the state’s most pressing needs and identify a sub-set of indicators for regular 

monitoring.  

The NSRII domains are “ready children,” “ready families,” ready communities,” 

“ready services – health,” “ready services – early care and education,” and “ready 

schools” (Rhode Island KIDS COUNT, 2005). “Ready children” measures child 

development outcomes, including language, social-emotional and cognitive development. 

“Ready families” considers a child’s family environment, particularly maternal 

characteristics. “Ready communities” reflects an area’s socioeconomic status and support 

services for low-income families with young children. “Ready services – health” includes 

birth outcomes and other indicators of child health. “Ready services – early care and 

education” measures access to quality early education and child care and to child care 

subsidies. Finally, “ready schools” consists of classroom size for young children and 

fourth-grade reading proficiency.  

Another school readiness indicator effort is the ECCS, a national initiative to 

integrate early childhood services within states and monitor child development risk 

indicators and outcomes. An assessment of state ECCS reports and reviews of the 

empirical literature and existing indicator efforts at the state and national levels resulted 

in the recommendation of 36 indicators of school readiness (Johnson, Davidson, 

Theberge, & Knitzer, 2008). The assessment was conducted for the National Center for 
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Children in Poverty in an effort to facilitate cross-state comparisons and begin to monitor 

early childhood development and school readiness at the national level (Johnson et al., 

2008). Recommended indicators are organized into categories that reflect the NSRII 

domains and include child development and academic outcomes, population-based risk 

factors, health indicators, social-emotional development, and access to quality early child 

care and education. Of NSRII’s 23 indicators, all except early childhood classroom size 

are also identified as proposed indicators for monitoring by all ECCS states. The ECCS 

includes additional population-based risk factors (race/ethnicity and exposure to extreme 

poverty) not reflected by the NSRII and emphasizes consideration of exposure to multiple 

risk factors, which reflects the cumulative risk model.  

Conceptual Framework for School Readiness Indicators 

As NSRII and ECCS indicators address three key components of school readiness 

– risk factors, processes for ameliorating risk and child development outcomes – the 

overall concept of school readiness can be broadly conceptualized using a logic model 

framework. Logic models are frequently used in evaluation efforts and outline “how a 

program will work under certain conditions to solve identified problems” (Renger & 

Titcomb, 2002, p. 493). Logic models consist of three main components: “antecedent 

conditions,” or causal factors related to a problem (Renger & Titcomb, 2002, p. 496), 

responses to these conditions and outcomes. Using indicators recommended by the NSRII 

and ECCS, a logic model of school readiness would include risk factors as antecedent 

conditions; quality early education, child care and family support services as responses; 

and child development and reading proficiency rates as outcomes.  
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Understanding what is expected to change within a given timeframe is critical 

when establishing outcomes. As such, two additional population-level outcomes could be 

addressed in this framework: 1) increases in access to early childhood programs and 

family support services in areas where risk for poor school readiness is high; and 2) 

decreases in the prevalence of risk factors over time. This second outcome points to the 

need for focusing attention on risk indicators that can be changed, and developing 

responses to these problems through interventions or policies. These responses, such as 

programs aimed at reducing abuse and neglect by increasing parenting skills, should be 

included in the second stage of a school readiness logic model.  

Table 1 depicts a generic logic model for school readiness. Antecedent conditions 

are organized using NSRII domains representing risk indicators, which could be useful 

for organizing indicators to ensure full construct representation in an index. Johnson et al. 

(2008) propose a similar approach to conceptualizing school readiness using a results-

based accountability (RBA) framework that stresses accountability for the well-being of 

entire populations and client populations in particular. The use of indicators to develop 

Table 1 

Generic Logic Model Framework for School Readiness Indicators 
Antecedent Conditions Responses Outcomes 

   
Family risk indicators 
 
Community risk indicators 
 
Health risk indicators 

 

Early education programs 

Child care services 

Programs/policies to reduce risk 
factors 
 

Child outcomes, e.g., 
developmental domains and 
reading proficiency  
 
Population outcomes, e.g., 
reduction in risk factors  

 

44 
 



strategies for improving quality of life for children and families through programs and 

policies is a key component of RBA from a public accountability perspective (Friedman, 

2005). 

Review of School Readiness Risk Indicators 

Table 2 lists indicators of school readiness risk recommended for regular 

monitoring by the NSRII and ECCS and/or included in the school readiness risk indexes 

created for Oklahoma, Pennsylvania, Louisiana, Illinois and Washington, DC. As there 

are differences in the organization of indicators into domains and the naming of similar 

domains across monitoring efforts, the domains used to categorize risk indicators for this 

study follow those established by the NSRII of “ready families,” “ready communities” 

and “ready services – health.” Table 2 shows only one indicator – births to teenage 

mothers – is common to the seven monitoring efforts. Income is also reflected in all 

efforts, although one index measures it as family income less than 185% of the federal 

poverty level compared to less than 100% used in the other efforts. In addition to family 

income below the poverty level, three indicators – low maternal education, child 

abuse/neglect and low birth weight – are common to at least six efforts. Of the indicators 

listed, 10 are included in both the NSRII and ECCS recommendations. Table 2 also 

shows that indicators used for six of the seven monitoring efforts cut across all three 

NSRII domains represented. The exception is the Oklahoma index, which does not 

include indicators under the domain of “ready services – health.” The ECCS is the only 

entity to have an indicator measuring the presence of three or more demographic risk 

factors, such as poverty and parents who are single, non-English speaking, have less than 
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a high school education or are unemployed. Although much research points to the 

increased risk among racial/ethnic minorities, only three efforts – the Oklahoma and 

Illinois indexes and ECCS states – monitor racial/ethnic minority indicators, which are 

set apart from the NSRII domains in Table 2. 

The following section reviews the empirical literature on factors that place 

children at risk for poor school readiness. Representing the NSRII domains of ready 

families, communities and health services, these factors are perhaps the most critical as 

they are the most proximal to a child’s development.  

Family factors. Several factors related to family structure and environment have 

been found to affect school readiness, with many factors occurring at a higher rate among 

children in poverty (NEGP, 1997). Of numerous risk factors, low maternal education may 

be the most important predictor of poor school readiness. Research using individual-level 

data found that having a mother with less than a high school diploma was a stronger and 

more consistent predictor of poor reading and mathematics skills and inconsistent 

attendance patterns among third-grade students in an urban school than any other risk 

factor assessed (Fantuzzo et al., 2014; Rouse & Fantuzzo, 2009). Moreover, enrollment 

rates in early learning programs have been found to decline with maternal education level 

(Barnett & Yarosz, 2007), which may partially explain the negative effect of under-

educated mothers on a child’s school performance (West, Denton, & Germino-Hausken, 

2000; Zill & West, 2001). Using data from the National Evaluation of Welfare-to-Work 

Strategies Child Outcomes Study, Magnuson (2003) found that increases in maternal 

education positively affected school readiness. 

46 
 



Table 2 

School Readiness Risk Indicators used in Seven Monitoring Efforts 
 NSRII ECCS OK PA LA IL DC 

Ready Families         

Births to mothers with < 12th grade education        
Births to teenage mothers        

Child abuse/neglect         

Children in foster care         
Children birth to 5 living with single parent        
Births to single mothers        

Ready Communities        

Lead poisoning under age 6        
Children in families with incomes < 100% of federal 
poverty level (FPL) 

      
 

Children in extreme poverty (≤ 50% FPL)        
Children in families with incomes < 185% FPL        
Median income as percent of poverty        
Unemployment rate        
Homeless children         
Children in families that receive public assistance        
School free and reduced lunch participation        
Children who are English-language learners        
Children of parents who are migrant workers        

Ready Services - Health         

Uninsured children under age 6        
Vaccination rate children 19 to 35 months        
Low birth weight infants         
Births to mothers with late or no prenatal care        

Preterm births (prior to 32 weeks)         
Infant mortality rate        

Tobacco use during pregnancy        

Race/Ethnicity        

Children birth to 6 of non-white race/ethnicity        
Children birth to 4 of Hispanic ethnicity        
Children birth to 4 of American Indian race        

Cumulative Risk        

Children with multiple risk factors (≥ 3 risk factors)        

Note: Items included in risk monitoring efforts.   
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Several studies have found an association between teenage pregnancies and 

negative birth outcomes, such as low birth weight and inadequate prenatal care (Chen et 

al., 2007; Fraser, Brockert, & Ward, 1995). Teenage girls who live in poverty, are a 

racial/ethnic minority, or immigrated to the U.S. are more likely than others girls to 

become pregnant, receive little to no prenatal care, and drop out of school (Abrahamse, 

Morrison, & Waite, 1988; Chandra, Schiavello, Ravi, Weinstein, & Hook, 2002; Fiscella 

& Kitzman, 2009; McLafferty & Grady, 2004). As of 2010, Oklahoma was among the 

top five states in terms of births to teen mothers at 50 or more births per 1,000 teenage 

girls (Hamilton, Martin, & Ventura, 2012; Martin et al., 2012).  

Children born to teen mothers are at a particularly high risk of abuse and neglect 

compared to those of older mothers (Bartlett & Easterbrooks, 2012). Chronic stress from 

exposure to abuse and neglect presents serious risks for under-development. Children in 

abusive and neglectful environments are at higher risk for slowed brain development and 

poor academic performance than those raised in nurturing environments (Knitzer & 

Lefkowitz, 2005; Shonkoff & Phillips, 2000). Increasingly referred to as “toxic stress,” 

frequent or prolonged triggering of the body’s stress response system without the 

protective benefit of a nurturing adult relationship has been found to permanently change 

the structure of the brain and its functional capacity (Shonkoff & Garner, 2012). 

Longitudinal studies have demonstrated that adults who were abused or neglected as 

children have lower IQ scores, shorter attention spans, poorer memories, and increased 

risk of dropping out of school than non-abused or neglected children (Erickson & 

Egeland, 1996; Sapolsky, 1996; Widom, 2000). Severe child abuse and neglect often 
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leads to foster care placement (Stovall-McClough & Dozier, 2004), which is most 

prominent among the poor (Barth, Wildfire, & Green, 2006) and racial/ethnic minorities 

(Carter, 2010; Courtney & Skyles, 2003; Needell, Brookhart, & Lee, 2003). Several 

studies have demonstrated a strong relationship between foster care placement and poor 

academic outcomes (Fantuzzo & Perlman, 2007; Knitzer & Lefkowitz, 2005; Pears, 

Fisher, & Bronz, 2007). 

Factors associated with being from a single-parent family, such as poverty and 

decreased parental interaction with children, place a child at high risk of delayed social 

and academic development (Shonkoff & Phillips, 2000). Of single parents, most are 

mothers, and research shows that households headed by single mothers are more likely to 

be impoverished than two-parent households (McLanahan, 2004; Shonkoff & Phillips, 

2000). In a meta-analysis of 67 studies from the 1990s, Amato (2001) found that children 

of divorced parents had significantly lower academic achievement than children of 

married parents. Being from a single-parent home significantly increases the risk of 

dropping out of high school, as demonstrated by several national surveys (McLanahan & 

Sandefur, 1994). For children of single mothers, positive involvement by fathers has been 

shown to reduce negative outcomes (Coley, 1998).  

Community factors. A strong relationship exists between poverty and risk of 

adverse child outcomes, including low academic skills at kindergarten entry (Schulman & 

Barnett, 2005). Data from the Early Childhood Longitudinal Study – Kindergarten 

Cohort (ECLS-K) of 1998-1999 showed that poverty was negatively related to literacy 

development from kindergarten to first grade (Kaplan & Walpole, 2005) and overall 
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academic abilities (West et al., 2000; Zill & West, 2001). Children in poverty are three 

times more likely than those not in poverty to be born to an unmarried teenager and 

nearly seven times as likely to experience abuse and neglect (Shonkoff & Phillips, 2000). 

Poverty increases the chances that a child will be born at low birth weight, develop 

learning disabilities, be retained a grade in school or drop out of school altogether. Being 

poor not only exacerbates negative birth outcomes, but also places teen mothers at a 

disadvantage in terms of continuing their own education, which perpetuates a cycle of 

poverty for both mother and child (SmithBattle, 2007). Besides the obvious connection 

with poverty, parental unemployment is a school readiness risk factor for several reasons. 

Research suggests income insecurity contributes to low parental self-efficacy and 

decreased parental involvement, both factors that impact child-parent interactions and 

subsequently child development (Pelletier & Brent, 2002).  

Another risk factor associated with low socioeconomic status is lead poisoning 

(Sargent et al., 1995), which has been found to have long-term detrimental effects on 

child development and healthy physical and behavioral functioning (Lane et al., 2008). 

Lead poisoning is considered to be a community factor due to concentrations of homes 

with lead paint in low-income areas (Sargent et al., 1995). Other factors found to be 

related to poor school readiness but not identified by the NSRII or ECCS include 

homelessness, limited English skills and parents who are migrant workers. In addition to 

negatively affecting reading and math performance in the third grade, homelessness has 

been found to be one of the strongest predictors of school absenteeism, suspensions and 

poor social skills (Fantuzzo et al., 2014; Rouse & Fantuzzo, 2009). As language 
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development is a strong indicator of early reading skills, children living in homes and 

communities where little to no English is spoken are at a greater disadvantage for 

language development than children in English-fluent homes (Hair, Halle, Terry-Humen, 

Lavelle, & Calkins, 2006; West et al., 2000; Zill & West, 2001). This effect is even 

greater for children of migrant parents. Among all major demographic groups, migrant 

workers are recognized as the least educated, with most speaking little to no English 

(Nevárez-La Torre, 2012). Poverty is endemic among migrant families (Mathur & 

Parameswaran, 2011), whose children lack continuity of schooling and are often 

significantly behind in academic development (Green, 2003). 

Health factors. Considerable research also points to the effects of several health-

related issues, such as low birth weight, behind on vaccinations, and tobacco use during 

pregnancy, on school readiness. Poor birth outcomes, which result from inhibited in utero 

development of an infant’s brain, can have significant negative impacts on a child’s 

potential (NEGP, 1997; Thompson et al., 2009). For example, children with lower than 

normal birth weights or who were born pre-term are likely to have a learning or other 

type of disability at the start of kindergarten (Hair et al., 2006; High, 2008). Low birth 

weight, which can lead to permanent restrictions in physical and cognitive development 

(Kramer, 2003), contributes to racial and ethnic disparities in educational attainment, and 

can reduce future earnings potential (Behrman & Rosenzweig, 2004; Fiscella & Kitzman, 

2009). Adequate prenatal care is essential for reducing the risk of poor birth outcomes 

and is as necessary to preparing a child for school as high-quality early childhood 

education (High, 2008).  
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Tobacco use during pregnancy and second-hand smoke exposure have been noted 

as among the primary contributors to negative birth outcomes, such as restricted fetal 

growth, preterm births and infant mortality (Bloch et al., 2010; Kramer, Séguin, Lydon, 

& Goulet, 2001; Tong et al., 2013). Between one quarter and one third of sudden infant 

deaths are attributable to prenatal cigarette use (Tong et al., 2013). Moreover, research 

suggests that smoking during pregnancy may mediate some of the relationship between 

low maternal education level and low birth weight (Finch, 2003). According to data from 

the Pregnancy Risk Assessment Monitoring System (PRAMS), Oklahoma had one of the 

highest rates of smoking during the last trimester of pregnancy (Tong et al., 2013).  

Poor health, whether physical or emotional, can affect school readiness and 

subsequent academic performance in many ways. Students with frequent illnesses may be 

chronically absent; while those with behavioral problems, such as attention deficit and 

hyperactivity (ADHD) disorder, can significantly disrupt learning for themselves and 

even their peers.  Children who are chronically absent due to a health condition are more 

likely to struggle with school work, be retained a grade in school, or drop out of school 

altogether than even the chronically absent without health issues (Klerman, 1988). 

Access to health care is a critical factor in reducing health-related risks. Research on the 

effects of enrollment in insurance programs designed for low-income populations showed 

that previously uninsured children received more frequent and timely medical care than a 

matched control group not continuously enrolled in the programs (Lave et al., 1998).  

Childhood vaccinations are important to maintaining the health of children and 

reducing the risk of cognitive impairments that stem from preventable diseases, such as 
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measles (Bloom, Canning, & Weston, 2005; The National Education Goals report: 

Building a nation of learners, 1999; Robinson, Sepe, & Lin, 1993). Bloom et al. (2005) 

found that vaccinations were positively related to IQ and language and mathematics 

performance among young children. Several studies have identified factors that 

contribute to under-vaccination, which include race/ethnicity, low maternal education, 

single-mothers, poverty, and birth outside the United States (Findley, Irigoyen, & 

Schulman, 1999; Luman, McCauley, Shefer, & Chu, 2003). 

Racial/ethnic factors. Being of a racial/ethnic minority group increases the 

likelihood of experiencing multiple school readiness risk factors (West et al., 2000; Zill 

& West, 2001). Evidence shows that nearly 75% of Black and Hispanic children 

experience one or more risk factors, compared to 29% of White children (Zill & West, 

2001). Considerably more Black and Hispanic kindergarteners live in poverty and have 

higher rates of low maternal education, teen mothers and single parents (Ducan & 

Magnuson, 2005). Regarding health factors, Black and Hispanic females have higher 

rates of teen pregnancies than Whites (Chandra et al., 2002; Hamilton et al., 2012; Martin 

et al., 2012); and Black mothers are twice as likely as White mothers to have low birth 

weight infants (Martin et al., 2012). Of children in foster care, Black (Ards, Myers Jr, 

Malkis, & Zhou, 2003) and American Indian/Alaskan Native children (Carter, 2010) are 

overrepresented. 

American Indian children are least represented in early childhood education 

programs (Saluja, Early, & Clifford, 2002), followed by Hispanic children (Laosa & 

Ainsworth, 2007). Black and Hispanic children have been found to have lower social-
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emotional, cognitive, and language skills compared to White children (Carneiro & 

Heckman, 2003). American Indian children are overrepresented in learning disability 

status (Hosp & Reschly, 2004), and nearly 40% of Hispanic fourth graders are English 

language learners (National Center for Education Statistics [NCES], 2011). Research also 

shows that minority children have lower scores in grade-level mathematics and reading 

tests and higher rates of dropping out of school than their Caucasian peers (NCES, 2009; 

NCES, 2011).  

Chapter Summary 

 This literature review examined the purposes and key features of indexes and 

examined methodological issues surrounding their construction. It continued by 

examining the construct of school readiness and discussing the transactional/ecological 

model of child development and the cumulative risk model. The use of both in this study 

provides a solid foundation for examining the characteristics of a school readiness risk 

index with respect to its indicators. Finally, this chapter highlighted several school 

readiness risk factors discussed frequently in the literature and recommended for regular 

monitoring by national indicator efforts.  Several of these indicators will be used in this 

study. 
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CHAPTER III 
 

 

METHODOLOGY 

The purpose of this study was to examine the sensitivity of the Oklahoma School 

Readiness Risk Index (OK SRRI) (Lazarte Alcalá & Schumacher, 2014) to changes in the 

set of indicators used in its construction. The methods used in this study derived from 

several sources on index construction and sensitivity analysis, particularly those focused 

on the impacts of indicator selection (Helton et al., 1995; Houweling et al., 2003; Jones & 

Andrey, 2007; Saisana, 2008; Saisana & Munda, 2008; Scaglion & Condon, 1980; 

Schmidtlein et al., 2008). This study responded to one of the last steps of index 

construction, in which alternative methodological approaches are considered and 

analyzed for the extent of uncertainty they create in outcome rankings or scores (Nardo et 

al., 2008).  

Research Questions 

 This study was guided by the following research questions, which are similar to 

those used by Saisana (2008) in assessing the robustness of the CLI, which measures 

lifelong learning across Canadian regions. The CLI assessment examined three key 
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questions: the extent to which the index was “internally sound and robust with respect to 

its applications,” could “withstand validation” using alternate measures of learning, and 

was sensitive to differing methods of construction, including varying indicator sets 

(Saisana, 2008, p. 2).  

The research questions addressed by this study are listed below. 

1. What is the relationship among scores on the overall index, the domains and 

individual indicators?  

2. What is the impact of the indicators and domains on the overall index? In 

other words, do one or more indicators or domains dominate the index?  

3. What is the relative effect of individual indicators on outcome rankings? In 

other words, how stable are index rankings when individual indicators or 

domains are removed from the index?  

4. To what extent do changes to the indicators and domains affect associations of 

index rankings with a proxy outcome of school readiness risk?   

Two indexes of county-level characteristics for the state of Oklahoma were 

analyzed for this study. The first was the original index as published by OKDHS (Lazarte 

Alcalá & Schumacher, 2014). The second was an alternate index derived from risk 

indicators used in the initial selection of indicators for the original index (Lazarte Alcalá 

et al., 2013) and organized into different domains. The indicator sets for both indexes 

represented a combination of variables from Table 3. The intent of this study was not to 

suggest that one indicator set is necessarily better than the other, but instead to assess the 

differences in rankings that might exist with the use of different sets representing 
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different domains. All methods were conducted twice, once using the original index and 

again using the alternate index. 

Data and Sources 

 This section describes the variables and sources of data used in this study. First, 

data used for risk indicators is discussed, which is followed by a description of the 

variable used as a proxy indicator of the consequence of starting school unready to learn.  

Risk Indicators 

The indicators considered for inclusion in the alternate index came from those 

considered for the original index with a few exceptions. First, the indicators of 

kindergarten retention and children in pre-kindergarten and kindergarten with Individual 

Education Plans were excluded from consideration for the alternate index as these 

indicators are considered a reflection, or effect, of school readiness risk rather than a 

cause. In addition, the indicator of prenatal care was modified from the definition used 

during construction of the original index of no prenatal care to include late prenatal care 

in order to correspond with NSRII recommendations. This change did not affect analysis 

of the original index as prenatal care was not included.  

Indicator selection for the alternate index was guided by the theoretical 

framework of the transactional/ecological and cumulative risk models, the NSRII 

domains related to family, community and health factors, and the results of descriptive 

statistics, which revealed the extent to which indicators met necessary requirements for 

coverage and variability. With the exceptions noted above, indicators considered for 
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inclusion in the original index are listed in Table 3. Indicators are organized according to 

the three NSRII domains noted above, which were used for the alternate index. Although 

race is technically considered a covariate, a type of indicator not ordinarily used in 

formative composite models (Bollen & Bauldry, 2011), race/ethnicity variables were 

included in the analysis because they were included in the original index and therefore 

required assessment as part of the indicator set.  

This study used the same data examined in the process of selecting indicators for 

the original index (Lazarte Alcalá et al., 2013), as well as updated data used for the 

second publication of index findings (Lazarte Alcalá & Schumacher, 2014). The 

exception was the indicator of African American/Black race, which was not included in 

the original index and therefore not updated. For this study, data for this indicator were 

updated to match the timeframe of other race/ethnicity variables included in the original 

index and updated for the 2014 publication. Because data timeframes were restricted by 

what was most recently available from the source and the updating of only those 

indicators used in the original index, timeframes vary and range from 2007 to 2012.  

The unit of analysis was counties. Data came from the following government 

sources: OKDHS, Oklahoma State Department of Education (OSDE), Oklahoma State 

Department of Health (OSDH), and the American Community Survey of the U.S. 

Census. Data were obtained either by contacting state agencies directly or from datasets 

made publicly available through online databases. It is important to note that data were 

not random but rather represented a census of all 77 Oklahoma counties.  
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Table 3 

Indicators and Variables Assessed for Original and Alternate Indexes 
Indicator Variable 
Ready Families   
Low maternal education* Percent of live births to mothers without a high school diploma or 

GED of all maternal education levels (2008 to 2009) 
Young maternal age* Percent of live births to mothers ages 10 to 19 of all reported ages 

(2011 to 2012) 
Abuse/neglect*  Percent of children under age 6 in poverty with substantiated cases of 

abuse and neglect (state fiscal year 2012) 
Foster care*  Percent of children under age 6 in poverty in state protective custody 

(state fiscal year 2012) 
Single parents* Percent of children under age 6 living with single parents (2007 to 

2011) 

Ready Communities  

Poverty* Percent of children under age 6 living under 100% of the federal 
poverty level (2007 to 2011) 

Homeless children Percent of children in pre-kindergarten and kindergarten defined as 
homeless by the McKinney-Vento Homeless Assistance Act (2009-
2010) 

English-language learners*  Percent of children in pre-kindergarten and kindergarten who are 
learning English (academic year 2011-2012) 

Migrant children* Percent of children ages 3 to 5 served by federal Migrant Education 
Program (academic year 2009-2010) 

Ready Services - Health   

Vaccination rate  

Percent of children ages 13 to 35 months who are behind the current 
vaccination schedule as recommended by the Advisory Committee on 
Immunization Practices, the American Association of Pediatrics, and 
the American Academy of Family Physicians (2011) 

Low birth weight  Percent of infants born in 2012 weighing less than 2,500 grams (5.5 
pounds) (2012) 

Prenatal care Percent of infants born to mothers who had no or late (third 
trimester) prenatal care (2012) 

Tobacco use while pregnant Percent of infants born to mothers who used tobacco during 
pregnancy (2012) 

Race/Ethnicity  

Hispanic/Latino*  Percent of children under age 5 who are of Hispanic/Latino ethnicity 
(2007 to 2011) 

American Indian* Percent of children under age 5 who are of American Indian/Alaska 
Native race (2007 to 2011) 

Black Percent of children under age 5 who are of African American/Black 
race (2007 to 2011) 

Note: *Items included in original index. 
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Data related to maternal characteristics, pregnancies and birth outcomes came 

from the vital statistics section of the OSDH web-based query system, Oklahoma  

Statistics on Health Available for Everyone (OK2SHARE), which allows users to locate 

data directly without requesting access. Demographic data related to children and  

mothers are reviewed by the National Center for Health Statistics before final publication 

(Lazarte Alcalá et al., 2013). Data on characteristics related to poverty, single parent 

families and race/ethnicity came from the annual American Community Survey (ACS), a 

product of the U.S. Census. The ACS is an annual survey designed to gather information 

related to basic demographic variables (e.g., age, sex, race), family structures and 

income, education and other data and is designed to aid in decision making related to 

infrastructure and services at the federal, state and local levels.  

 All remaining data were requested directly from state agencies by OKDHS 

(Lazarte Alcalá et al., 2013). Data on child abuse/neglect and children in foster care came 

from the OKDHS “KIDS” system, a statewide centralized child welfare information 

system that records data on abuse/neglect, foster care, adoptions and related variables. 

Data on child homelessness, English-language learners, migrants and learning disabilities 

were requested from OSDE and came from the agency’s student information tracking and 

reporting system, known as “the Wave,” which maintains federally required student 

demographic, enrollment, teacher and course data. Child vaccination data were requested 

from OSDH and came from the Oklahoma State Immunization Information System 

(OSIIS), a registry that collects and maintains current vaccination records for all 

Oklahomans of all ages. Although the OSIIS is the only source for vaccination data 

across the state, not all clinics report to it.  
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Proxy Outcome Variable: Literacy Nonproficiency  

 An additional variable was included in this study to respond to question 4 

regarding the extent to which changes to the indicators and domains altered relationships 

with a variable theorized to reflect the outcome of being unready for school. To this end, 

this study used the county-level percent of kindergartners scoring below benchmark on 

one of three kindergarten-entry pre-literacy screening assessments approved for use 

during the 2012-2013 academic year. This year was selected as it was the last year that as 

few as three instruments were approved for use by the State Board of Education. Data 

were requested from OSDE by OKDHS researchers. The three literacy assessments used 

during this timeframe were the Dynamic Indicators of Basic Early Literacy Skills 

(DIBELS), Literacy First Phonological Awareness Skills Test (PAST) and phonics 

assessments, and the Basic Early Assessment of Reading (BEAR). Each Oklahoma 

public school district is required by law to administer at least one pre-literacy assessment 

(Reading Sufficiency Act of 1997, 2014). The availability of psychometric evidence for 

each instrument varies and is discussed below.  

DIBELS. Created by researchers at the University of Oregon’s Center on 

Teaching and Learning (Good & Kaminski, 2002), the DIBELS battery includes five 

main assessments measuring fundamental literacy skills, with four measures designed for 

use beginning at the kindergarten level (Shanahan, 2003). While more studies on the 

psychometric properties of DIBELS have been published compared to BEAR or Literacy 

First, the evidence is mixed and varies by specific DIBELS measure. In a review of 26 

psychometric studies, Goffreda and DiPerna (2010) found the only consistent evidence of 
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strong validity and reliability related to the DIBELS measure designed for use beyond 

kindergarten. Of those geared toward kindergarten, reliability testing included alternate 

forms and test-retest, with coefficients ranging from a low of .58 to a high of .97. 

Likewise, concurrent validity testing using a variety of instruments yielded a wide range 

of coefficients. Median values for the kindergarten-level assessments ranged from .33 to 

.58, with some measures performing better overall than others. For two measures, 

concurrent validity testing resulted in coefficients below .10. Similar evidence was found 

in studies of DIBELS predictive validity, with coefficients ranging from as low as .15 to 

a high of .93 (Goffreda & DiPerna, 2010).  

BEAR. A product of Riverside Publishing, BEAR is a criterion-referenced 

comprehensive battery of reading assessments for children from kindergarten through 

third grade with four assessments available for each grade level (Gratz, 2002; Rathvon, 

2004). The Initial-Skills subtest is designed to be administered at the start of the school 

year. The technical manual reports the results of reliability and validity studies using 

students from 37 schools nationwide during the 2001-2002 academic year (Gratz, 2002). 

For the paper-and-pencil version of the Initial Skills subtest, coefficients alpha ranged 

from .83 to .88 across all grade levels, while four-week test-retest studies yielded 

reliability estimates from .70 to .77. Similar coefficients were found for the computer-

administered versions. Evidence of predictive validity was presented through evaluations 

of the relationship between Initial Skills component scores and both skill-specific and 

summative subtests. Correlations ranged from .38 to .61 for kindergarten and first grade 

tests (Gratz, 2002).  
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Literacy First. The Literacy First assessments are part of an instructional 

framework of Catapult Learning that includes reading curricula specific to early 

childhood, elementary school, and middle and high school content areas ("Literacy First 

framework," 2014). A search of the peer-reviewed literature found no published studies 

of the psychometric properties of any Literacy First assessments. The only evidence 

found for the Literacy First PAST or phonics assessments comes from a paper on the 

company’s web site ("Comparison of Literacy First and DIBELS assessments," 2005). 

According to this document, reliability for both the PAST and phonics assessment was 

measured using Cronbach’s coefficient alpha. For the various PAST measures, values 

ranged from .84 to .95, with an overall coefficient of .96. For the various phonics 

assessments, it was reported that all coefficients either approached or exceeded .80 and 

were similar to the Woodcock Reading Mastery Word Identification subtest. Concurrent 

validity of both PAST and the phonics assessments was determined to be acceptable, with 

correlations with the Woodcock Word Identification subtest of .71 for the PAST 

composite score and at least .77 for the phonics measures.  

Procedures 

 This section begins with a discussion of the methods used to develop the original 

OK SRRI and derive index scores and continues with a description of the statistical 

methods used to answer the research questions.  

Oklahoma School Readiness Risk Index Development Process 

The OK SRRI originated as a partnership between OKDHS and the Oklahoma 

Partnership for School Readiness, also known as Smart Start Oklahoma, in response to a 
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statewide initiative to increase access to quality early childhood education and child care 

programs. Planned for annual updating, the index is intended to be used in tandem with 

measures of access to and availability of early childhood programs to pinpoint counties of 

greatest need and inform policy and resource allocation decisions at the state level. 

Several steps were used to construct the index.  

First, a comprehensive review of empirical studies related to school readiness was 

conducted to identify the most salient indicators of school readiness risk. Due to 

limitations related to data availability at the county level, 18 indicators were ultimately 

selected for consideration. Indicators were conceptually organized into the domains of 

infant/child, maternal and family factors and included indicators such as poverty, 

minority race/ethnicity, family structure, abuse/neglect and various health indicators. 

Data were collected at the county level. 

Statistical methods were used to select final indicators for the index, with the goal 

of identifying statistically significant predictors of being unready for school (Lazarte 

Alcalá et al., 2013). First, PCA was used as a data reduction technique, with the unit of 

analysis all of the state’s 77 counties, or the population of counties in the state. This 

resulted in 4 components comprised of 12 variables, and 6 variables that did not strongly 

correlate with any single component. Next, OLS multiple regression analysis was 

conducted to identify variables significantly associated with school readiness. Component 

scores and data for the six individual variables that failed to load on a single component 

were used as predictor variables in two regression models, one using percent of third-

grade students scoring below the satisfactory level in reading on the Oklahoma Core 
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Curriculum Test as the criterion variable, and the second using percent of third-grade 

students scoring below the satisfactory level in mathematics. Both variables were 

measured at the county level. Only the reading model had a significant F statistic (p < 

.05), and one outlier was detected. The adjusted R2 was 0.16 with the outlier and 0.24 

after the outlier was removed. Its removal did not affect the significance of individual 

coefficients, of which three of the four components and one individual indicator, migrant 

children, were significant (p < .05). As a result, the final 10 indicators selected for the 

index consisted of the 9 indicators that comprised the three significant components and 

the migrant indicator. Table 4 lists these components as named in the original index and 

their associated indicators (Lazarte Alcalá et al., 2013; Lazarte Alcalá & Schumacher, 

2014). Each component was used as an index domain, with scores calculated for each 

domain following the method used for overall index scores.   

Table 4 

Oklahoma School Readiness Risk Index Components and Indicators 
Component/Domain  Indicator 
Hispanic Background  Hispanic/Latino ethnicity 
  English-language learners 
  Low maternal education 
  Migrant children* 
   
Family Structure and Economic Distress  Poverty 
  Young maternal age 
  Single-parent family 
  American Indian/Alaska Native race 
   
Children in Child Welfare  Abuse/neglect 
  Foster care 
Note: *Although not reported to load on this component, this indicator was conceptually organized with this 
component but not included in calculations of index domain scores for the published index. For convenience, 
it is included in the Hispanic Background domain for this study.  
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The formula used to derive overall scores for each county was changed from the 

first publication of the index in 2013 to its subsequent publication in 2014. For the 2013 

index, scores were derived by assigning each county a value of 0 (low risk) to 3 (high 

risk) when compared to the national average for each indicator. Those below the national 

average were assigned a value of 1 if observations were above 0% and a value of 0 

otherwise. Next, for each indicator, the arithmetic median was calculated for all 

remaining county data above the national average. Counties below the median were 

assigned a value of 2, and those above it were assigned a value of 3. The arithmetic mean 

was calculated for each county across all 10 indicators, with scores ranging from 1.0 to 

2.5, and counties were categorized into three risk groups of low (1.0 to 1.4), medium (1.5 

to 2.4) and high (2.5). 

This approach resulted in numerous counties having the same index score, which 

prevented meaningful rankings, and little variability in risk groupings as only one county 

was ranked as high risk. To increase variability in the scores, the formula was changed 

for the next publication (Lazarte Alcalá & Schumacher, 2014). Instead of assigning 

county scores for each individual indicator based on the national average, county-level 

observations were transformed into z-scores using the mean and standard deviation of 

individual variable distributions across Oklahoma counties, with overall index scores 

derived using the arithmetic mean z-score across the 10 indicators. There were no weights 

assigned to indicators, so all indicators were considered equally important. Scores were 

arranged in descending order and counties ranked from 1 (highest risk) to 77 (lowest 

risk). Quartile distributions were then used to classify counties into four groups of high, 

high-medium, medium-low and low risk. This resulted in increased variability and the 
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ability to rank counties without numerous ties. Domain scores were computed and 

counties classified on each domain the same way. Although the 2014 index used updated 

data for some indicators as available and changed the operational definition of poverty 

from 200% to 100% of the federal poverty level, the indicators were the same as those 

selected on the basis of statistical analysis of data used for the 2013 index.  

Data Analysis Plan 

Data were analyzed for this study using IBM SPSS statistics software version 

22.0 and Microsoft Excel 2013. Methods followed recommended steps for 1) selecting 

and evaluating the relative importance of index indicators, and 2) linking with a variable 

thought to represent an outcome of the construct being measured (Nardo et al., 2008; 

Saisana, 2008; Saisana & Munda, 2008). Answering the research questions first required 

selecting indicators for use in the alternate index. Essentially the alternate index was a 

modified version of the original index with a different domain structure. Based on the 

criteria to include an indicator, described below, it was expected that the alternate index 

would consist of many of the indicators selected for the original index, in addition to 

some indicators considered for inclusion in the original index but ultimately excluded. 

These indicators were largely health related.  

Selecting indicators for the alternate index required consideration of their 

analytical soundness, measurability, coverage, relevance and relationships to each other, 

particularly in terms of representing the theorized domains. Indicator characteristics were 

evaluated by examining descriptive statistics for all variables from Table 3, with 

particular attention paid to means, standard deviations, range of observations, missing 
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values, correlations and the presence of outliers (e.g., 1.5 x interquartile range (IQR)). To 

be included in the alternate index, variables must have had observations for most of the 

state’s 77 counties and at least a moderate amount of variability and range to detect 

differences among counties. This follows the approach used to select indicators for the 

Illinois school readiness risk index. Among several variables considered, an indicator was 

excluded from the state’s index if it failed to impact county variation, was highly 

correlated with another variable, or contributed little to the total score (Thomas et al., 

2012). The first two criteria were used to select indicators for use in the alternate index, 

while the third research question addressed indicator impact. Scores on the alternate 

index were computed using the same methods of z-score transformations and aggregation 

used for the original index published in 2014.  

 Research question 1. What is the relationship among scores on the overall index, 

the domains and individual indicators? To answer question 1, the approach used by 

Saisana (2008) was employed for both the original and alternate indexes. Pearson’s r 

product-moment correlations were examined to evaluate the relationships between 

overall index scores and scores on the domains and individual indicators. Although it has 

been recommended that an individual indicator with a weak correlation with overall score 

should be removed, developers are cautioned against assuming that strong correlations 

mean an indicator should remain (Saisana, 2008). The decision to include or exclude an 

indicator should be driven by its adequacy and quality as a variable. An indicator should 

be considered for the extent to which it is known to be associated with the construct and 

is problematic across a particular area, such as a state or region.  
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Since higher scores on all dimensions of the original and alternate indexes 

indicate greater risk, these dimensions should be positively correlated with each other and 

with index scores (Saisana, 2013, Nov. 12). It is desirable for the relationships among the 

dimensions to vary, as this suggests the domains account for different aspects of the 

construct, yet partially overlap and are therefore inseparable (Saisana, 2008).  

Research question 2. What is the impact of the indicators and domains on the 

overall index? In other words, do one or more indicators or domains dominate the index?  

Commonality analysis was used to answer question 2. A method of partitioning 

variance, the goal of commonality analysis is to determine the proportion of variance in a 

dependent variable uniquely explained by an independent variable and the proportion 

shared in combination with other variables (Pedhazur, 1997). Dividing the total effect of 

a predictor by R2 yields its squared structure coefficient, which indicates its variance-

accounted-for effect size. This coefficient may be driven by a variable’s unique effect or 

the effect it shares in common with other predictors (Nimon, 2010). Unique effects 

represent the change in R2 that would occur if a variable was entered last in a hierarchical 

regression model, making the unique contribution a squared semipartial correlation 

between the independent and dependent variable when the effects of other independent 

variables are partialed out (Pedhazur, 1997). 

By identifying and accounting for the effects of suppression and multicollinearity, 

commonality analysis overcomes the problems of using beta weights or stepwise methods 

to assess the relative importance of predictors (Reichwein Zientek & Thompson, 2006). 

For index construction, commonality analysis can be used as a means of identifying 
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whether any indicators dominate the index, and the extent to which indicators share 

effects. A large unique effect relative to other indicators suggests an indicator dominates 

an index, whereas large shared effects among most indicators suggests indicators may not 

tap a construct’s multidimensional nature.  

Commonality analysis was conducted four times, twice to examine the indicator 

sets for both the original and alternate indexes and twice to examine domains for both 

indexes. For each index, the overall score served as the dependent variable, with indicator 

and domain scores z-scores used as independent variables. This approach provided 

insight into whether results were being primarily driven by particular indicators or 

domains and identified the relative importance of each. It is desirable that results show all 

indicators contribute some impact on index scores, and that the impact is not dominated 

by a small number of indicators. The impact of individual domains should also be 

distributed across domains rather than the index being dominated by one or two domains 

(Saisana, 2008).  

Research question 3. What is the relative effect of individual indicators and 

domains on outcome rankings? In other words, how stable are index rankings when 

individual indicators or domains are removed from the index? Another way of 

demonstrating the relative impact of individual indicators is to examine how much 

rankings change when indicators are removed from the index. Question 3 was answered 

by calculating various scenarios of indicator sets, each time leaving out one indicator or 

domain, and comparing county rankings on these reduced sets to their full index ranking. 

For examining domains, the full indexes were recalculated three times (corresponding to 
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three domains for each index), each time excluding the individual indicators that 

comprised each domain. This corresponds to the method used to construct the original 

index of aggregating individual indicator scores rather than domain scores. This process 

was conducted for each set of indicators used in the original and alternate indexes. Scores 

were computed for both indexes as well as for their associated reduced scenarios and 

ranks assigned using percentiles, with higher percentiles representing greater risk. For 

example, a county at the 70th percentile is considered at higher risk than 70% of the 

counties in the dataset. Differences in ranks between the reduced and full original and 

alternate indexes were calculated, with the full indexes serving as the reference point for 

each respective set.  

Indicator and domain impacts were examined at two levels. The first assessed the 

impact of indicators and domains overall, and the second evaluated impacts at the county 

level. To assess the magnitude of overall impacts, percentile differences were converted 

to absolute values. The median and maximum absolute shifts in rank across the reduced 

scenarios, as well as the number of counties with moderate to significant shifts were 

reported. As there are no established thresholds from which to evaluate shifts in rankings 

and make judgements regarding their importance, a cutpoint of 15 percentiles was 

selected as a meaningful change based on findings reported in other studies. A common 

lower bound threshold for significant rank changes reported by several researchers is 

approximately 20 percentiles (Jones & Andrey, 2007; Mather & Dupuis, 2012; 

Schmidtlein et al., 2008), although others maintain that shifts less than 25 (Saisana, 2008) 

or 30 percentiles are relatively minor (Houweling et al., 2003). For this study, an increase 

or decrease in rank of at least 20 percentiles was considered significant. To provide a 
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broader perspective of county-level impact, shifts in rank of 15 to 19 percentiles were 

reported and considered moderate.  

 To examine county-level impact, maximum rank changes, in absolute values, 

were plotted relative to each county’s full index ranking for counties with one or more 

shifts in rank of at least 15 percentiles across indicator- and domain-reduced scenarios. 

Comparing to the full index rank provided greater insight into the extent to which shifts 

affected interpretation of the rankings. For example, a shift could result in a county 

originally classified as moderate risk increasing to a classification of high risk or 

decreasing to a classification of relatively low risk depending on its full index ranking 

and magnitude and direction of the effect. The amount by which counties with 

meaningful shifts increased and/or decreased in rank on indicator- and domain-reduced 

scenarios was also reported. This approach identified which risk factors were the most 

influential for a particular county’s ranking.   

The analyses for question 3 concluded with an examination of the association 

between the two indexes using a Spearman’s rank order correlation coefficient. In 

addition, counties with meaningful differences in ranks between the full original and 

alternate indexes were identified. For counties with absolute shifts of at least 15 

percentiles, ranks on the alternate index were plotted relative to original index rankings. 

Changes to risk groupings between the full and alternate index were also assessed. Ranks 

on the alternate index were used to classify counties according to four categories of high 

to low risk following the methodology used in the original index. Counties with rank 

changes great enough to move them to a higher or lower risk category were reported, as 
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well as the actual rank increase or decrease from the alternate to the original index. This 

followed the approach used by Schmidtlein et al. (2008) to compare the full Social 

Vulnerability Index to an alternate index with a reduced number of variables.  

Research question 4. To what extent do changes to the indicators and domains 

affect associations of index rankings with a proxy outcome of school readiness risk? The 

scenarios used for question 3 were again used for question 4, which responded to the 

recommended step of linking indexes with other measures of the same phenomenon. The 

percent of Oklahoma kindergartners scoring below proficiency on one of three 

kindergarten-entry pre-literacy screening assessments was used as a proxy for starting 

school unready to learn. Using percentiles, counties were ranked from highest to lowest 

rates of children scoring below proficiency. The relationship between literacy rankings 

and rankings on the full and indicator- and domain-reduced indexes were computed using 

Spearman rank correlation coefficients. This is similar to the method used for CLI 

validation testing, which consisted of correlating scores on the overall index and multiple 

scenarios with scores on the Economic and Social Well-Being index and associated 

individual indicators, considered outcomes of lifelong learning (Saisana, 2008).  

Chapter Summary 

 This chapter discussed the context of the study and the development of the OK 

SRRI, which served as the sample index for this study. Further, this chapter discussed the 

data to be used and their sources. It listed the four research questions that guided this 

study and provided detail on the specific analytic methods that were used to answer these 

questions. 
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CHAPTER IV 
 

 

FINDINGS 

The purpose of this study was to assess the extent to which indicator selection 

affected county rankings on an index of risk for poor school readiness. This study 

addressed the following research questions.  

1. What is the relationship among scores on the overall index, the domains and 

individual indicators?  

2. What is the impact of the indicators and domains on the overall index? In 

other words, do one or more indicators or domains dominate the index?  

3. What is the relative effect of individual indicators and domains on outcome 

rankings? In other words, how stable are index rankings when individual 

indicators or domains are removed from the index?  

4. To what extent do changes to the indicators and domains affect associations of 

index rankings with a proxy outcome of school readiness risk?  
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Indicator Characteristics 

The first step in the analysis was to examine zero-order correlations and 

descriptive statistics of indicators used in the original index and those considered for the 

alternate index. Data were analyzed for missing data and the presence of outliers, with no 

missing data found. No outliers were found for the indicators of single parent and young 

maternal age or for the proxy outcome measure of percent of entering kindergartners with 

literacy skills below proficiency. The indicators of behind on vaccinations, low birth 

weight, foster care and American Indian race each contained one outlier county. Late or 

no prenatal care and tobacco use during pregnancy each had two outlier counties. The 

indicator of abuse/neglect contained three outlier counties, as did low maternal education. 

Poverty contained five outliers, and seven counties were outliers on the Hispanic 

ethnicity indicator. Of these counties, five were also outliers on the English-language 

learner (ELL) indicator, which included five additional outlier counties. 

The African American/Black race indicator had 10 outlier counties, and 29 

counties (38%) with no rates of Black children under age 5. The indicator of homeless 

children had rates for 17% of counties, while the migrant indicator had rates for 8% of 

counties, making all of these counties outliers. With the exception of the migrant 

indicator, used in the original index, these indicators were excluded from further analysis 

due to limited county coverage. In total, 23 counties were outliers on at least one of the 

remaining 14 indicators as shown in Table 5. Although discussion of the final selection of 

indicators for the alternate index follows analysis of correlations, indicators used in each 

index are denoted here for convenience and ordered by index (e.g., the first 10 indicators 
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were used in the original index, and the last 11 in the alternate index). Table 3 in Chapter 

3 provides a description of indicators, and Table 6 on the next page lists indicator labels.  

Table 5 

Outlier Counties by Indicator 
 Indicator 

County  A
I1  

 M
IG
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N

T1  
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PA
N
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1  
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1,
2  
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VE
RT

Y1,
2  

 S
PA
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T1,
2  

 M
AG

E1,
2  

 M
ED

U
C1,

2  

 A
BU

SE
1,

2  

 F
O

ST
ER

1,
2  

 V
AC

CI
N

E2  

 B
IR

TH
W

T2  

 P
RE

N
AT

AL
2  

 T
O

BA
CC

O
2  

Adair               
Beaver               

Caddo               
Cherokee               
Cimarron               
Coal               
Dewey               

Ellis               
Greer               
Harmon               
Harper               
Hughes               
Jackson               
Kingfisher               
Marshall               
Oklahoma               
Ottawa               

Pushmataha               
Seminole               
Sequoyah               

Texas               
Tillman               
Tulsa               
Note: N = 77. 1Indicators used in original index. 2Indicators selected for alternate index. 

Table 6 lists descriptive statistics for the 14 indicators used in either the original 

or alternate index or both, as well as the variable of literacy nonproficiency, considered a 

consequence of starting school unprepared. The indicators of abuse/neglect, foster care 
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and migrant all had mean rates of less than 3%. These indicators, in addition to low birth 

weight, all had standard deviations of no more than 2% and ranges of 1% to 9%. This 

suggests these indicators may have little impact on county variation.  

Table 6 

Descriptive Statistics for Indicators and Proxy Outcome Variable 

Indicators Label  M   SD  Min Max Range 
American Indian race1 AI 10.87 8.96 0 41.5 41.5 
Migrant education1 MIGRANT 0.04 0.17 0 1.2 1.2 
Hispanic ethnicity1 HISPANIC 12.83 9.52 3.3 58.6 55.3 
English-language learner1,2 ELL 6.54 9.99 0 57 57 
Poverty1,2 POVERTY 28.18 10.27 11 54.9 43.9 
Single parent family1,2 SPARENT 28.69 9.2 7.6 50.9 43.3 

Young maternal age1,2 MAGE 13.54 3.4 6.8 22 15.2 

Low maternal education1,2 MEDUC 20.95 6.47 8.8 48.2 39.4 
Abuse and neglect1,2 ABUSE 1.95 1.22 0 8.2 8.2 
Foster care1,2 FOSTER 2.47 1.51 0 7.9 7.9 
Late or no vaccines2 VACCINE 24.15 4.88 14.5 39 24.5 
Low birth weight2 BIRTHWT 7.38 1.74 2.5 11.4 8.9 
Late or no prenatal care2 PRENATAL 7.84 3.51 0 22.2 22.2 
Tobacco use while pregnant2 TOBACCO 18.42 5.72 7.8 35.1 27.3 
Below literacy proficiency   41.63 16.09 4.8 86 39.4 
Note: N = 77. 1Indicators used in original index. 2Indicators selected for alternate index. 

 
Correlations among indicators were also examined. Even though the data 

represent a population, for which the correlation coefficient is represented by ρ, for 

convenience the common nomenclature of r, the coefficient for a sample, will be used for 

all correlational analyses conducted for this study. Table 7 lists correlations among the 14 

index indicators. For convenience, the correlation matrix for the original and the alternate 

index is indicated.  
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Table 7 

Zero-order Correlations among Indicators 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

  1. AI1               
  2. MIGRANT1 -.20              

  3. HISPANIC1 -.36  .47 
 

           

  4. ELL1,2 -.25  .33  .81       
 

  original index 

  5. POVERTY1,2  .28  .13  .09  .06       
 

 alternate index 

  6. SPARENT1,2  .23  .17  .06  .05  .72          

  7. MAGE1,2  .26  .04  .08 -.05  .37  .32         

  8. MEDUC1,2  .20  .15  .55  .60  .47  .39  .49        

  9. ABUSE1,2  .05 -.21 -.09 -.25  .13 -.01  .41  .05       

10. FOSTER1,2  .10 -.25 -.13 -.29  .17  .07  .43  .07  .80      

11. VACCINE2 -.02 -.03 -.15 -.20 -.04 -.01 -.31 -.29 -.17 -.18     

12. BIRTHWT2  .05 -.18 -.06 -.13 -.06  .16  .11  .07 -.07  .06  .03    

13. PRENATAL2  .17  .12  .08  .06  .07  .08  .26  .24  .15  .16 -.04 -.22   

14. TOBACCO2 -.16  .08 -.03 -.10 -.19 -.18  .20 -.07  .14  .14 -.32  .03 -.16  
Note: N = 77. 1Indicators used in original index. 2Indicators selected for alternate index.  

In general, across the set, there were relatively few extremely high correlations, 

which means indicators represented the multidimensional nature of school readiness risk. 

Large correlations were found between the indicators of ELL and Hispanic (r = .81), 

abuse/neglect and foster care (r = .80), and poverty and single parent (r = .72). All of 

these indicators were used in the original index and all but one (Hispanic) in the alternate 

index. Remaining correlations across the entire set ranged from r = .60 between ELL and 

low maternal education to r = -.36 between American Indian and Hispanic. The original 

index had eight bivariate correlations of approximately r = .50 or higher. Excluding the 

Hispanic indicator from the alternate index removed three of these correlations, leaving 

this index with the same remaining five correlations of r ≥ .50 as in the original index. 

These were the only correlations of this magnitude in the alternate index. The high 
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correlation between Hispanic and ELL, and the desire for the alternate index to exclude 

indicators specific to race/ethnicity, suggested that ELL may be an effective proxy for the 

Hispanic indicator. 

Ten indicators had negative correlations, which, in general, were small. Most 

indicators with negative correlations had only two to three such correlations. The 

exceptions were the indicators of vaccinations and tobacco use, which had five and six 

negative correlations, respectively. For the most part, correlations for the tobacco 

indicator were small (r ≤ -.19). The exception is its moderate correlation with the 

vaccinations indicator (r = -.32), which also had a moderate association with young 

maternal age (r = -.31) and low maternal education (r = -.29). Although counterintuitive, 

these correlations make sense to some degree given the current anti-vaccination 

movement (Camargo & Grant, 2015). Mothers with higher levels of education may be 

more likely to read about and consider arguments for not vaccinating their children, 

whereas younger mothers and/or those of less education may be more likely to follow the 

advice of their doctor. As noted in Chapter 2, correlations of aggregated data may not 

follow the same patterns as what would be found with individual-level data. Therefore, 

negative correlations between indicators do not necessarily mean these indicators should 

be excluded from an index.  

Based on the above information and in context of the theoretical framework for 

school readiness risk described in Chapter 2, the alternate index included all indicators 

except homelessness and migrant due to low county coverage, and race/ethnicity due to 

the desire to focus on indicators that can be addressed through public policy and 
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interventions. Although descriptive statistics suggested the indicators of foster care and 

abuse/neglect might have little impact on overall outcome rankings, they were included 

in the alternate index as these are important issues for OKDHS, and nearly every county 

had at least some children in these situations. Similarly, despite concerns regarding low 

variability and negative correlations, the indicators of low birth weight, behind on 

vaccinations and tobacco use during pregnancy were included to allow for continued 

analysis of these indicators. 

 Table 8 lists indicators selected for the original and alternate indexes and indicates 

their associated domains.  

Table 8 

Indicators and Domains Used in the Original and Alternate Indexes 
Indicator  Original index Alternate index 
AI Family Structure/Economic Distress ------- 

MIGRANT Hispanic Background ------- 

HISPANIC Hispanic Background ------- 

ELL Hispanic Background Ready Communities 

POVERTY Family Structure/Economic Distress Ready Communities 

SPARENT Family Structure/Economic Distress Ready Families 

MAGE Family Structure/Economic Distress Ready Families 

MEDUC Hispanic Background Ready Families 

ABUSE Children in Child Welfare Ready Families 

FOSTER Children in Child Welfare Ready Families 

VACCINE ------- Ready Services - Health 

BIRTHWT ------- Ready Services - Health 

PRENATAL ------- Ready Services - Health 

TOBACCO ------- Ready Services - Health 
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Research Question 1 

 The first research question for this study asked, What is the relationship among 

scores on the overall index, the domains and individual indicators? To answer this 

question for both the original and alternate indexes, Pearson’s r product-moment 

correlations were used to examine the relationships between overall index scores and 

scores for the individual indicators and domains. 

 Indicators. Table 9 lists the correlations between indicators and the original 

index. All correlations were positive, which is desired since the index score is an exact 

linear combination of the indicators. There were no correlations between the overall 

original index and individual indicators that were of concern or unexpected. The largest 

correlation was with the indicator of low maternal education (r = .79), followed by 

poverty (r = .68), young maternal age (r  = .67) and single parent (r = .60). The smallest 

correlations were with the indicators of migrant (r = .32) and American Indian (r = .26). 

The remaining indicators of Hispanic, ELL, abuse/neglect and foster care all had 

moderate correlations with the overall index score.    

Table 9 

Pearson Correlation Coefficients between Original Index and its Indicators 

Hispanic Background 
 Family Structure/ 

Economic Distress 
 Children in Child 

Welfare 
HISPANIC .50  POVERTY .68  ABUSE .38 
ELL .40  MAGE .67  FOSTER .39 
MEDUC .79  SPARENT .60    
MIGRANT .32  AI .26    
Note: N = 77.        
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 Table 10 lists the correlations between indicators and the alternate index, with the 

mean z-score as the overall index score. The largest correlation was with the indicator of 

young maternal age (r = .74), followed by low maternal education (r = .68), poverty (r = 

.61) and single parent (r = .59). The indicators of abuse/neglect, foster care and prenatal 

care were moderately correlated with the alternate index score. The smallest correlations 

were with the indicators of low birth weight (r = .22), ELL (r = .17), tobacco use (r = .11) 

and vaccinations (r = -.12).  

Table 10 

Pearson Correlation Coefficients between Alternate Index and its Indicators 
Ready Families  Ready Communitiies  Ready Services - Health 

MEDUC .68  POVERTY .61  VACCINE -.12 
MAGE .74  ELL .17  BIRTHWT .22 
ABUSE .49     PRENAT .36 
FOSTER .55     TOBACCO .11 
SPARENT .59       
Note: N = 77.        

 Indicators that are theorized to move in the same direction as the index should be 

positively correlated with index scores. Therefore, the negative correlation between the 

vaccinations indicator and overall score is of concern as this suggests high rates of 

children behind on vaccination schedule would reduce a county’s school readiness risk 

score, even if to a small extent.  

 Of the seven indicators common to both  indexes, there were some notable 

changes from the original to the alternate index. The correlation coefficient for the ELL 

indicator declined in magnitude by .23, while the coefficients for abuse/neglect and foster 

care increased by .12 and .16, respectively. The coefficients for young maternal age and 
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low maternal education switched somewhat in terms of magnitude, with the coefficient 

for low maternal age dropping by .11 from the original to the alternate index and the 

coefficient for young maternal age increasing by .07.   

Domains. Regarding domain scores, there should be positive associations with 

index scores and with each other. Relationships among the domains should vary as this 

indicates they represent the multidimensional construct of school readiness risk, and they 

should have some degree of correlation. This indicates the domains are tightly connected; 

yet by themselves they convey information relevant to particular issues of importance. 

Table 11 lists correlations between full original index scores and domain scores.  

Table 11 

Pearson Correlation Coefficients between Original Index and its Domains 
 Hispanic 

Background 
Family Structure/ 
Economic Distress 

Children in Child 
Welfare 

Overall score .64 .77 .41 
Hispanic Background  .15 -.19 
Family Structure/Economic Distress  .25 
Note: N = 77.    

 All correlations were relatively moderate, with the highest being the correlation 

with the Family Structure/Economic Distress domain (r = .77), followed by the 

association with the Hispanic Background domain (r = .64) and Children in Child 

Welfare (r = .41) domain. Regarding correlations between domains, the most associated 

were the domains of Family Structure/Economic Distress and Children in Child Welfare 

(r = .25). The Hispanic Background domain had very low correlations with the other 

domains. This is not necessarily problematic, except for the negative correlation with 

Children in Child Welfare (r = -.19). This suggests these two domains work against each 
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other, even if to a small degree. This is likely due to the moderate negative correlations of 

the ELL indicator and to a lesser degree the Hispanic indicator with the two indicators of 

abuse/neglect and foster care that comprise the Children in Child Welfare domain. 

 As shown in Table 12, correlations of domain scores on the alternate index with 

overall scores ranged in magnitude from moderately to highly associated.  

Table 12 

Pearson Correlation Coefficients between Alternate Index and its Domains 
 Ready Families Ready 

Communities 
Ready Services - 

Health 
Overall score .92 .56 .35 
Ready Families  .40 .09 
Ready Communities   -.26 
Note: N = 77. 

 The alternate index was highly correlated with the domain of Ready Families (r = 

.92) and moderately associated with Ready Communities (r = .56) and Ready Services – 

Health (r = .35). While correlations of domains with overall index scores were less 

balanced in the alternate than in the original index, correlations between domains were 

more varied in the alternate index. The most associated were the Families and 

Communities domains (r = .40) and the least associated the Famillies and Health domains 

(r = .09). As noted above, these results are acceptable as they demonstrate the domains 

account for varying aspects of school readiness risk. There was one negative correlation 

between the domains of Communities and Health (r = -.26). Again, this suggests these 

domains work against each other, and is likely explained by the fact that both indicators 

that comprise the Communities domain (poverty and ELL) had small negative 
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correlations with three of the four indicators that comprise the Health domain. The 

prenatal care indicator was the only indicator positively associated with poverty and ELL. 

Research Question 2 

 The second research question asked, What is the impact of the indicators and 

domains on the overall index? In other words, do one or more indicators or domains 

dominate the index? To answer this question, commonality analysis was conducted using 

individual indicator and domain scores to determine the proportion of variance in index 

scores uniquely explained by an indicator and the proportion shared with other indicators.   

 Indicators. Table 13 presents the results of multiple regression and commonality 

analysis for the original index, with overall score as the dependent variable and 

indicators, ordered by magnitude of total effect, as independent variables. Because the 

overall score is comprised entirely of data from the indicators, the model R2 is 1.0.  

Table 13 

Regression Results: Effect of Indicators on Original Index Scores 
Indicator 

(x) 
R R2 R2adj β p Unique Common Total 

 1.0 1.0 1.0      
MEDUC    .200 .000 .010 .617 .627 
POVERTY    .201 .000 .017 .448 .464 
MAGE    .199 .000 .019 .429 .448 
SPARENT    .200 .000 .018 .346 .364 
HISPANIC    .202 .000 .010 .235 .245 
ELL    .198 .000 .009 .152 .161 
FOSTER    .200 .000 .013 .142 .155 
ABUSE    .200 .000 .014 .128 .142 
MIGRANT    .200 .000 .026 .078 .105 
AI    .202 .000 .026 .042 .068 
Note: N = 77. Unique = x’s unique effect. Common = ∑ x’s common effects. Total  = Unique + Common.  
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 In this instance, it is clear that using beta weights alone, all approximately .20, 

would provide no information as to the impact of the indicators. The commonality 

analysis showed considerable common effects among the indicators and little unique 

effects, suggesting that no indicator by itself dominated the index. The indicators of 

migrant and American Indian contributed the largest unique effects, yet had the least in 

common with other indicators and contributed the lowest total effects. Five indicators 

(low maternal education, poverty, young maternal age, single parent and Hispanic) had 

common and total effects ranging, in descending order, from .62 to .24, while the 

indicators of ELL, foster care and abuse/neglect all had similar common and total effects 

ranging from .16 to .13. 

 Table 14 shows results for the alternate index. The model R2 is again 1.0 since all 

indicators comprise the overall score. 

Table 14 

Regression Results: Effect of Indicators on Alternate Index Scores  
Indicator 

(x) R R2 R2adj β p Unique Common Total 

 1.0 1.0 1.0      
MAGE    .226 .000 .023 .517 .540 
MEDUC    .227 .000 .014 .452 .466 
POVERTY    .228 .000 .018 .353 .371 
SPARENT    .228 .000 .022 .329 .351 
FOSTER    .227 .000 .017 .286 .303 
ABUSE    .228 .000 .018 .225 .242 
PRENAT    .228 .000 .040 .093 .133 
BIRTHWT    .226 .000 .037 .011 .049 
ELL    .226 .000 .020 .008 .028 
VACCINE    .227 .000 .039     -.025 .014 
TOBACCO    .226 .000 .038     -.026 .012 
Note:  N = 77. Unique = x’s unique effect. Common = ∑ x’s common effects. Total  = Unique + Common. 
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 As with the original index, there was little unique effect of any indicator. Six 

indicators had common and total effects ranging from .54 to .23. Ordered by magnitude 

of effect, these were young maternal age, low maternal education, poverty, single parent, 

foster care and abuse/neglect. The first four indicators were the same indicators that made 

the largest contributions to original index scores. These indicators all had considerably 

more common than unique effects, while four indicators (low birth weight, ELL, 

vaccinations and tobacco use) all had very little common effects. Although unique effects 

for these indicators were higher than for the first six indicators, they were extremely 

small, with total effects of less than .05. The prenatal indicator had higher common than 

unique effect but had a small total effect (.13) relative to the six indicators that made the 

largest contributions. The negative shared effects of the vaccinations and tobacco use 

indicators, which reduced their total effects, were consistent with the numerous negative 

bivariate correlations associated with these indicators.  

 There are several notworthy differences between the alternate and original 

indexes. The distance between indicators that had the largest and second largest total 

effects on overall scores was .07 in the alernate index compared to .17 in the original 

index, suggesting less impact by a single indicator in the alternate index. The indicators 

of foster care and abuse/neglect had larger effects on the alternate index than on the 

original, making these indicators among the six most influential compared to being 

among the three least influential in the original index. The ELL indicator had 

considerably less impact on overall scores in the alternate than in the original index. ELL 

had a higher common than unique effect on the original index, whereas this pattern was 

reversed in the alternate index, with this indicator having very little in common with 
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other indicators. This suggests the effect of ELL on original index scores was largely 

shared with the Hispanic indicator and to a lesser extent shared with the migrant 

indicator.  

 Domains. As shown in Table 15, commonality analysis of domain scores for the 

original index revealed a relative balance in terms of total effects for the domains of 

Family Structure/Economic Distress (.59) and Hispanic Background (.41). The domain of 

Children in Child Welfare had a considerably lower total effect (.17) on overall scores. 

Both the Family Structure/Economic Distress and Hispanic Background domains had 

approximately equal unique effects at .31 and .33, respectively. However, while the 

Family Structure/Economic Distress domain had a moderate common effect, the Hispanic 

Background domain had little in common with the other domains. Most of the effect of 

the the Children in Child Welfare domain was also unique.   

Table 15 

Regression Results: Effect of Domains on Original Index Scores 
Domain 

(x) 
R R2 R2adj Β p Unique Common Total 

 1.0 1.0 1.0      
FS/ED* .578 .000 .300 .287 .587 
HISPANIC BACKGROUND  .626 .000 .363 .051 .414 
CHILD WELFARE   .379 .000 .128 .037 .165 
Note:  N = 77. Unique = x’s unique effect. Common = ∑ x’s common effects. Total  = Unique + Common. *Family 
Structure/Economic Distress.     

 Regarding the alternate index, Table 16 shows a similar pattern in terms of one 

domain (Health) having relatively low total effect. The domain of Families appeared to 

dominate the alternate index, with a unique effect (.46) that far exceeded the next highest 

unique effect (.12 for the Health domain) and a total effect of .84, which was 
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considerably greater than the next highest total effect (.29 for the Communities domain). 

In comparison, the largest total effect among original index domains was .59 for Family 

Structure/Economic Distress. The domain of Communities had very little unique effect 

on overall scores, but like the Families domain, had a modest common effect. In contrast, 

only one domain in the original index had a moderate common effect. Like the Children 

in Child Welfare domain in the original index, most of the effect of the the Health 

domain was unique, with almost no effect shared with the other domains. 

Table 16 

Regression Results: Effect of Domains on Alternate Index Scores 
Domain 

(x) R R2 R2adj β p Unique Common Total 

 1.0 1.0 1.0      
FAMILIES    .754 .000 .456 .388 .844 
COMMUNITIES    .329 .000 .082 .204 .286 
HEALTH    .369 .000 .122 .005 .127 
Note:  Unique = x’s unique effect. Common = ∑ x’s common effects. Total  = Unique + Common. 
         

Research Question 3 

 The third research question asked, What is the relative effect of individual 

indicators and domains on outcome rankings? In other words, how stable are index 

rankings when individual indicators or domains are removed from the index? To answer 

this question each index was recalculated several times, each time excluding one 

indicator or the set of indicators comprising each domain. Scores on each reduced index, 

also referred to as a scenario, were transformed into percentiles. The difference between 

the reduced and full percentiles represented an indicator’s effect on a county. As 

percentiles are ranks that convey the percentage of cases below a particular ranking, 
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higher percentiles represented greater risk in both indexes. For example, a county at the 

95th percentile was considered at higher risk than 95% of the counties in the dataset.  

 A decrease in risk ranking with the removal of a particular indicator (or domain) 

meant it was driving a county’s higher ranking. For example, if a county scored at the 

80th percentile on the full index but dropped to the 55th percentile when the poverty 

indicator was removed from the index calculation, then the county likely had a high rate 

of childhood poverty that was pulling up its average score. On the other hand, an increase 

in risk ranking with the exclusion of an indicator meant the indicator was lowering a 

ranking. If, with the exclusion of the poverty indicator, a county moved in the opposite 

direction from above, going from the 55th to the 80th percentile, then the county likely had 

a low poverty rate that pulled down the average score on the full index. For this analysis, 

shifts in rank from the full index of 15 to 19 were considered moderate, while those at 

approximately 20 or above were considered significant. The terms rank, position and 

percentile are used interchangeably throughout this discussion.  

 Overall impact. Two approaches were used in the analysis of indicator and 

domain impact. The first examined impact overall, and the second examined impacts on 

individual counties. This section reviews the results of overall impact, with shifts in rank 

presented in absolute values. The discussion of county-level impact examines direction of 

rank changes.  

 Indicators. The median and maximum percentile shifts in rank for each indicator-

reduced scenario for the original index are listed in Table 17, along with the number of 

counties that experienced notable shifts (≥ 15 percentiles).  
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Table 17 

Impact on Ranks with Indicators Excluded One at a Time: Original index 

Domain* Excluded indicator 
Median 

rank shift 
Maximum 
rank shift 

Number of counties 
shifting ≥ 15 ranks 

HB Hispanic 2.6 20.8 3 
FS/ED American Indian 3.9 19.5 3 
HB Migrant 1.3 33.8 2 
CW Foster care 2.6 24.7 2 
CW Abuse/neglect 2.6 22.1 2 
FS/ED Maternal age 3.9 16.9 2 
HB ELL 2.6 36.4 1 
FS/ED Single parent 2.6 18.2 1 
FS/ED Poverty 2.6 18.2 1 
HB Maternal education 2.6 14.3 0 
Note: N = 77. *HB = Hispanic Background; FS/ED = Family Structure/Economic Distress; CW = Children in Child 
Welfare. 

   
 With the exception of the migrant indicator, which had a median rank change of 1 

percentile when excluded, median shifts in rank were between 3 and 4 percentiles on the 

reduced scenarios of the original index. This means at least half of the counties moved up 

or down by no more than four positions across the scenarios. Most indicators 

significantly impacted one or two counties, with three counties experiencing significant 

changes in ranks with the exclusion of the American Indian and Hispanic indicators, 

respectively. Across indicators, the maximum shift in rank ranged from 36 positions with 

the exclusion of the ELL indicator to 14 positions with the exclusion of the low maternal 

education indicator.    

 The median and maximum percentile shifts in rank for each indicator-reduced 

scenario for the alternate index and the number of counties shifting by 15 or more 

percentiles are listed in Table 18.  
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Table 18 

Impact on Ranks with Indicators Excluded One at a Time: Alternate Index 

Domain Excluded indicator 
Median 

rank shift 
Maximum 
rank shift 

Number of counties 
shifting ≥ 15 ranks 

Communities ELL 2.6 27.3 7 
Health Prenatal 2.6 22.1 6 
Health Birth weight 3.9 24.7 5 
Health Vaccine 2.6 22.1 5 
Families Maternal education 2.6 29.9 4 
Families Single parent 3.9 27.3 4 
Communities Poverty 3.9 20.8 4 
Families Foster care 2.6 16.9 4 
Health Tobacco 3.9 35.1 3 
Families Abuse/neglect 3.9 20.8 3 
Families Maternal age 2.6 20.8 3 
Note: N = 77.     

 Median shifts in rank again ranged from 3 to 4 percentiles, with similar maximum 

shifts as the reduced scenarios for the original index. The scenario that excluded tobacco 

use had the largest maximum shift of 35 positions, while foster care had the smallest 

maximum shift at 17 positions. From three to seven counties were notably affected by the 

indicators, more so than across scenarios for the original index. The indexes that 

excluded tobacco use, young maternal age and abuse/neglect affected the fewest number 

of counties, while the exclusion of the ELL and prenatal care indicators resulted in the 

greatest number of counties experiencing moderate to large shifts in rank.  

 Of the indicators common to both the orignial and alternate indexes, the reduced 

scenarios for the alternate index resulted in an increase in the number of counties 

moderately to significantly affected. One additional county was impacted with the 

exclusion of young maternal age and abuse/neglect, respectively. The alternate scenario 

that excluded foster care affected two additional counties, followed by three additional 
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counties for the scenarios that excluded low maternal education, single parent and 

poverty. The ELL indicator experienced the greatest change in impact, with one county 

meaningfully affected when this indicator was removed from the original index to seven 

counties shifting by at least 15 percentiles when excluded from the alternate index.  

 Domains. The median and maximum percentile shifts in rank for each domain-

reduced scenario for the original and alternate indexes and the number of counties that 

experienced moderate to significant shifts are shown in Table 19. Rank changes are again 

presented in absolute values.  

Table 19 

Impact on Ranks with Domains Excluded One at a Time: Original and Alternate Indexes 

Excluded domain 
Median 

percentile 
shift 

Maximum 
percentile 

shift 

Number of counties 
shifting ≥ 15 

positions   
Original Index    

Hispanic Background   7.8 75.3 18 
Family Structure/Economic Distress 10.4 36.4 24 
Children in Child Welfare   5.2 24.8 11 
    

Alternate Index    
Ready Families 18.2 71.4 41 
Ready Communities   5.2 37.7 10 
Ready Services - Health   6.5 44.2 14 

Note: N = 77. 

 Median shifts across domain-reduced scenarios for the original index ranged from 

approximately 5 to 10 percentiles, meaning at least half of counties experienced relatively 

low effects when a particular domain was excluded. In contrast, median shifts in rank 

across scenarios for the alternate index ranged from 5 to 18 percentiles. Both the 

Hispanic Background domain in the original index and the Families domain in the 
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alternate index had maximum changes in rank of more than 70 positions. The lowest shift 

for the original index was 25 positions for the scenario that excluded the Children in 

Child Welfare domain. For the alternate index, the index that excluded the Communities 

domain resulted in the lowest shift at 38 positions. The number of counties moving above 

or below 15 percentiles from their full index rankings was relatively balanced in the 

original index, with ranges of 11 counties for the Children in Child Welfare domain to 24 

counties for the Family Structure/Economic Distress domain. In comparison, more than 

half of counties (41) shifted by at least 15 positions with the exclusion of the Families 

domain from the alternate index, while 14 counties were affected by the exclusion of the 

Health domain and 10 by the exclusion of the Communities domain.  

 County-level impact. The second part of the analysis of indicator and domain 

impact focused on individual counties, with the aim of identifying those with the largest 

shifts in rank on each reduced scenario for indicators and domains. The first part of the 

analysis for each index uses absolute values, while the second part examines direction of 

rank changes.  

 Indicators. Figure 1 shows maximum shifts in ranks across the indicator-reduced 

scenarios, relative to rankings on the original full index, for counties with absolute 

changes in position of 15 percentiles or more on at least one scenario.  
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Figure 1 

Maximum Rank Change* on Indicator-Reduced Scenarios Relative to Full Index Rank: 
Original Index 

 
Note: *For counties with shifts in rank of 15 percentiles or more.  

 Of Oklahoma’s 77 counties, 12 experienced moderate to significant shifts, with 

about a third affected by 2 or 3 indicators. There were 8 counties that experienced 

changes in rank of approximately 20 or more positions, with 3 experiencing shifts of 
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35 percentiles ranked at approximately the 63rd percentile on the full index. Depending on 

the indicators used in the index and the direction of the effect, the meaning of the 
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County remained the county with the lowest risk ranking, while Harmon County’s top 

ranking was mostly unaffected.  

 Regarding which indicators drove county rankings and the direction of effects, 

Table 20 shows counties with shifts in rank of 15 percentiles or more when each indicator 

was excluded from the original index.  

Table 20 

Changes in Ranks* on Indicator-Reduced Scenarios: Original Index 

Hispanic ELL Migrant 
Maternal 
education 

        
Beaver -15.6 Harper -36.4 Jackson -26.0 none ≥ |15%| 
Marshall -19.5   Beaver -33.8  
Jackson -20.8       
        

American Indian Poverty Single parent Maternal age 
Cimarron +16.9     Harper +16.9 
        
McIntosh -19.5 Cimarron -18.2 Kay -18.2 Johnston -16.9 
Okfuskee -19.5       
        

Abuse/neglect Foster care     
Cimarron +16.9       
        
Greer -22.1 Woods -16.9     
  Blaine -24.7     
Note: * For counties with shifts in rank of 15 percentiles or more. 

 For the most part, the exclusion of particular indicators resulted in a decline in 

risk ranking rather than an increase. Harper County experienced the largest shift, 

dropping by 36 percentiles with the exclusion of the ELL indicator. This was followed by 

Beaver and Jackson counties, which declined by 34 and 26 positions, respectively, with 

the exclusion of the migrant indicator. In addition to Marshall County, both counties also 
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experienced notable declines with the removal of the Hispanic indicator. Blaine County’s 

ranking dropped by 25 positions with the exclusion of the foster care indicator, and 

McIntosh and Okfuskee both declined in risk ranking by 20 positions with the exclusion 

of the American Indian indicator. This indicator was one of three that resulted in 

increases in rank for some counties when excluded, which means these indicators 

reduced rankings on the full index. For example, with a score at the 44th percentile on the 

full index, Cimarron County increased in rank to the 61st percentile on the scenarios that 

left out the American Indian and abuse/neglect indicators. In contrast, Cimarron dropped 

to the 26th percentile with the exclusion of the poverty indicator.    

 Figure 2 shows maximum shifts in ranks across the indicator-reduced scenarios, 

relative to rankings on the full alternate index, for counties with absolute changes in 

position of 15 percentiles or more on at least one scenario. Twice as many counties 

experienced notable shifts on the alternate index scenarios compared to those of the 

original index. Of the 26 counties with moderate to significant shifts in positions, about 

half were affected by 3 or more indicators. A change in rank of 20 or more positions was 

experienced by 16 counties, with 4 experiencing shifts of approximately 25 to 35 

positions. These counties had ranks on the full index ranging from approximately 70 to 

85 percentiles, meaning risk rankings could range from moderately low to extremely high 

depending on the direction of the effect. The largest shifts across reduced scenarios were 

again generally associated with higher rankings on the full index, and both Alfalfa and 

Harmon counties retained their lowest and highest rankings across scenarios. Unlike 

scenarios associated with the original index, the state’s two largest counties, Oklahoma 
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and Tulsa, both experienced significant shifts on at least one of the alternate reduced 

indexes.  

Figure 2 

Maximum Rank Change* on Indicator-Reduced Scenarios Relative to Full Index Rank: 
Alternate Index  

 
 
Note: *For counties with shifts in rank of 15 percentiles or more. 
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poverty and ELL, respectively, had only declines in rankings. All but the index that 

excluded the foster care indicator had at least one county that increased or decreased in 

rank by at least 20 positions. 

Table 21 

Changes in Ranks* on Indicator-Reduced Scenarios: Alternate Index 

Maternal age 
Maternal 
education Abuse/neglect Foster care 

Tulsa +20.8 Cotton +20.8 Cimarron +15.6 Garfield +16.9 
Oklahoma +15.6 Okmulgee +15.6   Tillman +15.6 
        
Le Flore -19.5 Marshall -18.2 Coal -18.2 Blaine -16.9 
  Adair -29.9 Greer -20.8 Woods -16.9 
        
        

Single parent Poverty ELL Vaccine 
Lincoln +20.8     Jefferson +22.1 
Okfuskee +16.9     Okmulgee +19.5 
        
Nowata -15.6 Pawnee -15.6 Marshall -15.6 Cotton -16.9 
Tillman -27.3 Tillman -15.6 Tulsa -15.6 Pawnee -16.9 
  Cimarron -16.9 Tillman -16.9 Nowata -19.5 
  Cherokee -20.8 Texas -18.2   
    Harper -24.7   
    Oklahoma -26.0   
    Adair -27.3   
        

Birth weight Prenatal Tobacco  
Coal +24.7 Coal +18.2 Cimarron +15.6   
Pawnee +16.9 Love +18.2     
Tillman +15.6       
        
Jefferson -16.9 Dewey -16.9 Jefferson -19.5   
Nowata -16.9 Cotton -18.2 Ottawa -35.1   
  Tillman -18.2     
  Sequoyah -22.1     
Note: *For counties with shifts in rank of 15 percentiles or more. 
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 The index that excluded tobacco use had the largest decrease with Ottawa County 

declining in rank by 35 positions, while the largest increase was for the index that 

excluded low birth weight, with Coal County moving up in rank by nearly 25 percentiles. 

Tulsa County had the largest shift on the index that excluded young maternal age, 

increasing by 21 positions, while Oklahoma County had a moderate increase of 16 

positions on this scenario. Conversely, on the ELL-reduced scenario, which saw no 

increases in rank, Oklahoma County had the second-largest decrease at 26 percentiles, 

while Tulsa county declined in rank by 16 percentiles. Two other counties (Harper and 

Adair) had significant declines on the ELL-reduced scenario, with Adair County also 

largely affected by the low maternal education indicator, declining in rank by 30 

positions with its removal.  

 Seven counties that had notable shifts on the reduced scenarios for the original 

index also had similar shifts on alternate index scenarios. Four counties (Blaine, 

Cimarron, Greer and Woods) had ranks on the full original and alternate indexes that 

were influenced by the abuse/neglect or foster care indicators. For the most part, shifts in 

position were moderate on both indexes with the exception of Blaine County, which 

experienced a larger impact from the foster care indicator on the original index. Harper 

County’s risk ranking was significantly affected by the ELL indicator in both indexes, but 

more so in the original index. Okfuskee County was mostly impacted by the American 

Indian indicator in the original index, but in the alternate index the single parent indicator 

had the largest effect. Cimarron County’s ranking was largely influenced by the 

abuse/neglect and poverty indicator on both indexes, and moderately influenced by 

indicators specific to the original and alternate indexes (American Indian and tobacco 
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use, respectively). While Marshall County was significantly affected by the Hispanic 

indicator in the original index, it was mostly influenced by the low maternal education 

indicator in the alternate index.  

 Domains. Figure 3 shows maximum shifts in ranks across domain-reduced 

scenarios, relative to rankings on the full original index, for counties with absolute 

changes in position of 15 percentiles or more on at least one scenario. As expected, 

counties were more significantly impacted by the exclusion of particular domains than 

individual indicators. There were 37 counties that experienced shifts of 15 positions or 

more on at least one reduced scenario, with 29 changing by at least 20 positions. Of 

these, 23 shifted by 25 percentiles or more. Most counties were moderately to 

significantly impacted by the exclusion of one domain, while nine counties experienced 

notable shifts with the exclusion of two domains. Three counties (Beaver, Harper and 

Woods) were significantly affected by all three domains. As with individual indicators, 

larger shifts were generally associated with higher rankings on the full index. There were 

a few exceptions, with three counties ranked near the bottom on the full index 

experiencing shifts of more than 25 percentiles on at least one reduced scenario. With 

low rankings, large shifts carry less importance than for counties ranked toward the 

middle or top. For example, with a ranking on the full index of about 5 percentiles, Major 

County’s shift of 25 positions still places it as relatively low risk. As with the indicator-

reduced scenarios, Alfalfa and Harmon County were virtually unchanged from their 

lowest and highest ranks across scenarios. 
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Figure 3  

Maximum Rank Change* on Domain-Reduced Scenarios Relative to Full Index Rank: 
Original Index

 
Note: *For counties with shifts in rank of 15 percentiles or more. 
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 Table 22 shows shifts above and below full original index rankings of at least 15 

percentiles with the exclusion of particular domains.  

Table 22 

Changes in Ranks* on Domain-Reduced Scenarios: Original Index 

Hispanic Background 
Family Structure/ 
Economic Distress Children in Child Welfare 

Woods +28.6 Kingfisher +39.0 Harper +26.0 
Cotton +20.8 Woods +33.8 Cimarron +24.7 
Nowata +20.8 Beaver +29.9 Garfield +24.7 
Okmulgee +20.8 Harper +28.6 Beaver +20.8 
Coal +18.2 Woodward +27.3 Love +18.2 
Atoka +16.9 Tulsa +27.3   
Osage +16.9 Major +26.0   
Pawnee +16.9 Beckham +18.2   
McIntosh +15.6 Blaine +18.2   

  Oklahoma +18.2   
  Canadian +15.6   
  Garvin +15.6   
      
Kingfisher -16.9 Pushmataha -16.9 Beckham -16.9 
Tulsa -20.8 Choctaw -20.8 Okfuskee -16.9 
Oklahoma -27.3 Pawnee -22.1 Coal -20.8 
Marshall -39.0 Johnston -22.1 Woods -24.7 
Tillman -41.6 Nowata -23.4 Blaine -31.2 
Harper -46.8 Okmulgee -24.7 Greer -52.0 
Jackson -46.8 Hughes -27.3   
Beaver -54.6 Atoka -28.6   
Texas -75.3 McCurtain -36.4   
  Ottawa -36.4   
  Kay -36.4   
  Delaware -39.0   
Note: * For counties with shifts in rank of 15 percentiles or more. 

 There was a relatively even split in terms of number of counties moving up or 

down in rank for each scenario. The magnitude of shifts in direction were relatively 

similar for the removal of the Family Structure/Economic Distress domain, with a range 

of +/- 39 positions. In comparison, the exclusion of the Hispanic Background domain 

resulted in several extremely large declines in position, with 6 counties dropping in risk 

ranking by 39 to 75 percentiles. While Texas county scored at the 97th percentile on the 
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full original index, the removal of the Hispanic Background domain dropped its ranking 

to the 22nd percentile. In comparison, Texas County’s ranking dropped by less than 3 

positions with the exclusion of the the Family Structure/Economic Distress and Children 

in Child Welfare domains. The removal of the latter domain also resulted in more 

extreme declines in ranking compared to increases, with Blaine and Greer counties 

dropping by 31 and 52 percentiles, respectively, while the largest increase was 26 

percentiles for Harper County.   

 While Tulsa and Oklahoma counties had no significant shifts on indicator-reduced 

scenarios for the original index, both experienced significant shifts on the domains. Tulsa 

County, with a full index score at the 51st percentile, was largely affected by the Hispanic 

Background domain, dropping to the 30th percentile with its removal, as well as the 

Family Structure/Economic Distress domain, increasing to the 78th percentile with its 

removal. Oklahoma County, with a full index score at the 74th percentile, was less 

affected by the latter domain but dropped to the 47th percentile with the exclusion of the 

Hispanic Background domain. Alfala and Harmon counties, the lowest and highest 

ranked on the full index, were again mostly unaffected by the exclusion of the domains.  

 Figure 4 shows maximum shifts in ranks across domain-reduced scenarios, 

relative to rankings on the full alternate index, for counties moving at least 15 positions.
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Figure 4 

Maximum Rank Change* on Domain-Reduced Scenarios Relative to Full Index Rank: 
Alternate  Index 

 

Note: *For counties with shifts in rank of 15 percentiles or more.  
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There were again considerably more significant impacts of excluding domains 

from the alternate index than excluding indicators. The removal of at least one domain 

impacted two-thirds of counties, for a total of 53 moderately to significantly affected. 

There were 40 counties that changed rank by approximately 20 or more positions; of 

these, 28 shifted by at least 25 percentiles. The majority of counties were moderately to 

significantly affected by one domain, while eight counties were impacted by two 

domains. Two counties (Blaine and Ellis) experienced large changes on all three 

domains. While the county with the largest shift ranked near the top on the full index, in 

general there was no clear pattern of shifts in relation to full index ranks. Of the counties 

that changed ranks by more than 25 percentiles, 6 had shifts that were larger than their 

ranks on the full index, which ranged from approximately 10 to 40 percentiles. As with 

the original index, for many counties the exclusion of a particular domain drastically 

changed the meaning of their risk ranking. The lowest and highest rankings of Alfalfa 

and Harmon counties, respectively, continued to be mostly unaffected by the exclusion of 

any domains.  

 Table 23 shows shifts above and below full index rankings of at least 15 

percentiles with the exclusion of particular domains. As shown in earlier analyses of 

domain impacts, the alternate index is heavily influenced by the Families domain, which 

is comprised of the maternal education, maternal age, single parent, abuse/neglect and 

foster care indicators. This is demonstrated by the large number of counties with 

moderate to significant shifts relative to the other two domains. There were 10 counties 

notably affected by the Communities domain and 14 by the Health domain.  
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Table 23 

Changes in Ranks* on Domain-Reduced Scenarios: Alternate Index 

Ready Families† 
Ready 

Communities 
Ready Services - 

Health 
McClain +59.7 Pushmataha -15.6 Creek +22.1 Coal +44.2 
Beaver +54.6 Johnston -18.2 Cotton +22.1 Harper +31.2 
Cimarron +49.4 Delaware -18.2 Lincoln +16.9 Love +23.4 
Tulsa +35.1 Adair -18.2 Woods +16.9 Washington +20.8 
Ellis +32.5 Craig -18.2   Pontotoc +19.5 
Pawnee +31.2 Seminole -18.2   Custer +19.5 
Lincoln +29.9 Bryan -19.5   Adair +15.6 
Wagoner +28.6 Pontotoc -19.5     
Jackson +28.6 Carter -20.8 Cimarron -16.9 Caddo -15.6 
Major +26.0 Atoka -23.4 Oklahoma -23.4 Jackson -16.9 
Dewey +24.7 Marshall -24.7 Cherokee -28.6 Sequoyah -16.9 
Harper +22.1 Okmulgee -24.7 Harper -29.9 Woodward -18.2 
Grant +22.1 McIntosh -24.7 Adair -31.2 Nowata -20.8 
Garfield +18.2 Woods -26.0 Tillman -37.7 Blaine -20.8 
Roger Mills +18.2 Pittsburg -29.9   Pottawatomie -27.3 
Creek +18.2 Beckham -29.9     
Kiowa +18.2 Muskogee -31.2     
Payne +18.2 Custer -31.2     
Rogers +16.9 Hughes -37.7     

  Le Flore -39.0     
  Coal -41.6     
  Greer -71.4     

Note: *For counties with shifts in rank of 15 percentiles or more. †Because of the number of counties affected by 
the Families domain, increases and decreases are presented side-by-side. 

 Rank changes with the exclusion of the Families domain ranged from a decline of 

71 percentiles for Greer County to an increase of 60 percentiles for McClain County. Of 

the 41 counties notably affected by this domain, 12 had rank changes of less than 20 

positions, while 15 changed by approximately 30 or more positions. In contrast, shifts 

when the Communities domain was excluded ranged from a decrease of 38 percentiles 

for Tillman County to an increase of 22 percentiles for Creek County. For the Health 

domain, shifts ranged from a drop of 27 positions for Pottawatomie County to an increase 

of 44 positions for Coal County. Whereas Texas County had an extreme effect from the 
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Hispanic Background domain in the original index, its largest change in rank was a 

decline of 10 positions with the exclusion of the Communities domain, which included 

the ELL and poverty indicators. Tulsa and Oklahoma counties each had large shifts on 

one scenario, with Oklahoma declining from the 74th to the 48th percentile with the 

exclusion of the Communities domain, and Tulsa experiencing an extreme increase from 

the 60th to the 95th percentile with the exclusion of the Families domain.  

 Full index rank comparisons. To conclude the analysis of the effect of 

indicators on outcome rankings, the association between the full original and alternate 

indexes was assessed. Shifts in county rankings between the two indexes were compared 

for the extent to which they resulted in changes to county risk group classifications. The 

four risk groups used to classify counties on the original index were high, high-medium, 

medium-low and low risk. 

 The Spearman rank correlation between the two indexes was strong and positive 

(rs = 0.88), with a median absolute change in rank of 8 percentiles. Figure 5 shows 

percentile ranks on the original and alternate indexes, ordered by original index rankings. 

There were 26 counties that changed rank by at least 15 percentiles, with an even split 

between the number that increased and decreased in rank. Of these counties, 8 shifted by 

at least 25 percentiles, with 5 decreasing in rank from the original to the alternate index 

while 3 increased. The largest increase was for Johnston County at 30 percentiles, while 

Beaver County experienced the largest decrease at 34 percentiles. With a few exceptions, 

increases in rank on the alternate index occurred for counties with relatively moderate to 

low rankings on the original index, while the opposite was true for counties that 
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decreased in rank. There was relatively little change from the original to the alternate 

index for the state’s four largest counties. Tulsa and Comanche counties increased in risk 

ranking by approximately 9 and 7 percentiles, respectively, while Cleveland and 

Oklahoma counties were virtually unchanged.  

Figure 5 

Comparison of Ranks* on Original and Alternate Indexes for Counties with the Largest 
Shifts 

 
Note: *For counties with shifts in rank of 15 percentiles or more. 
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 Table 24 lists changes in rank for counties that increased or decreased from the 

original to the alternate index by 15 or more percentiles. With the exception of four 

counties, rank changes were large enough to move counties up or down one risk group. 

Tillman County retained its high risk grouping on the alternate index despite a decline of 

22 positions on the alternate index. Both Creek and Cotton counties remained in the 

moderately low risk group with an increase of 18 positions, and Kingfisher County 

continued to be classified as low risk with a decline of 16 positions on the alternate index. 

Six counties with shifts in rank from approximately 14 percentiles down to extremely 

minor shifts of 3 percentiles also experienced changes in risk groupings.  

Table 24 

Changes in Ranks* from Original to Alternate Index 

County 
Rank 

increase 
Quartile 
change 

 
County 

Rank 
decrease 

Quartile 
change 

Johnston +29.9 +1  Beaver -33.8 -1 
Pottawatomie +28.6 +1  Custer -28.6 -1 
Sequoyah +27.3 +1  Coal -26.0 -1 
Beckham +22.1 +1  Harper -26.0 -1 
Blaine +22.1 +1  Love -24.7 -1 
Woodward +22.1 +1  Tillman -22.1  0 
Nowata +20.8 +1  Washington -22.1 -1 
Lincoln +20.8 +1  Adair -22.1 -1 
Creek +18.2   0  Jackson -19.5 -1 
Cotton +18.2   0  Cherokee -19.5 -1 
Jefferson +16.9 +1  Pontotoc -18.2 -1 
Carter +16.9 +1  Marshall -15.6 -1 
Pawnee +15.6 +1  Kingfisher -15.6  0 
Note: * For counties with shifts in rank of 15 percentiles or more. 
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Research Question 4 

 The last question addressed by this study asked, To what extent do changes to the 

indicators and domains affect associations of index rankings with a proxy outcome of 

school readiness risk? To answer this question, Spearman rank correlations were 

computed between percentiles for each full and reduced index and for entering 

kindergartners scoring below proficiency on state-mandated pre-literacy assessments.  

Table 25 

Spearman Correlation Coefficients for Ranks on Literacy Nonproficiency and Full and 
Reduced Indexes 
 Literacy  Literacy 
Original index .20 Alternate index   .21 

Excluded indicator   Excluded indicator 
Maternal age  .18 Maternal age .20 
Maternal education .22 Maternal education .21 
Abuse/neglect .18 Abuse/neglect .19 
Foster care .18 Foster care .21 
Single parent .17 Single parent .15 
Poverty .20 Poverty .18 
ELL .22 ELL .20 
Hispanic .24 Vaccinations .24 
American Indian .19 Birth weight .22 
Migrant .21 Prenatal care .20 
  Tobacco use .22 

  
Excluded domain Excluded domain 

Hispanic Background .26 Ready Families .01 
Family/Economics* .08 Ready Communities .17 
Children in Child Welfare .14 Ready Services - Health .24 

Note: N = 77. *Family Structure/Economic Distress. 

 As shown in Table 25, both the original and alternate indexes were modestly 

correlated with literacy nonproficiency (rs = .20 and rs = .21, respectively), as were the 

various scenarios. For both indexes, the lowest correlations with indicator-reduced 

scenarios were for those that excluded the single parent indicator (rs = .17 and rs = .15, 
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respectively). Regarding domains, the exclusion of the Family Structure/Economic 

Distress domain from the original index resulted in an extremely low correlation (rs = 

.08). This domain included three of the four indicators that resulted in the lowest 

correlations when excluded from the original index. Removing the Ready Families 

domain from the alternate index resulted in virtually no relationship with the proxy 

outcome variable (rs = .01). Of the five indicators included in this domain, two resulted in 

the lowest correlations with literacy nonproficiency when excluded from the alternate 

index one at a time. For the original index, the highest correlation with indicator-reduced 

scenarios was with the index that excluded the Hispanic indicator (rs = .24), while the 

removal of the Hispanic Background domain resulted in the highest correlation (rs = .26) 

among domain-reduced scenarios. For the alternate index, the highest correlation with 

indicator-reduced scenarios was with the index that excluded the vaccinations indicator 

(rs = .24). The exclusion of the Health domain resulted in the same coefficient, which was 

the highest among domain-reduced scenarios. The exclusion of the abuse/neglect and 

foster care indicators from the original index resulted in slightly lower correlations with 

the proxy outcome than the full index, while on the alternate index only the abuse/neglect 

indicator lowered the correlation coefficient.  

Chapter Summary 

 This chapter presented the results of analyses related to the four research 

questions and concludes with a summary of findings. The implications of these findings 

are discussed in Chapter 5. No significance tests were conducted as the dataset 

represented the population of all counties in Oklahoma.  
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With the exception of two indicators that were deemed to be effects of starting 

school unprepared rather than predictors of risk, the same indicators considered for 

inclusion in the original index were also considered for the alternate index. Indicators 

were examined for outliers and descriptive statistics, and zero-order bivariate correlations 

were reviewed for the extent to which they supported including particular indicators. The 

original index contained more indicators that had multiple outlier counties and had more 

moderate to high correlations than the alternate index (see Table 7). On the other hand, 

the alternate index had more negative correlations than the original index. Negative 

correlations between indicators are acceptable if both indicators are meaningful to the 

construct (Diamantopoulos & Winklhofer, 2001). The final indicators included in the 

alternate index were grouped conceptually into three domains, while the indicators 

included in the original index were grouped into three domains on the basis of statistical 

analysis.  

 Correlational and commonality analysis of indicators and domains with overall 

index scores yielded similar information. No indicators appeared to clearly dominate 

either index by themselves. Across both the original and alternate indexes, the indicators 

of young maternal age, low maternal education, poverty and single parent were the most 

important, having the highest correlations with and largest effects on overall scores. 

While both the maternal age and maternal education indicators were highly important to 

both indexes, they traded places to a small extent in terms of impact, with maternal 

education having the largest effect on the original index and young maternal age having 

the largest effect on the alternate index.  
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The abuse/neglect and foster care indicators increased in importance in the 

alternate index, while the impact of the ELL indicator declined. In the original index, all 

three indicators had the same moderate associations and had basically the same small 

effect on overall score. Conversely, in the alternate index, the abuse/neglect and foster 

care indicators increased moderately in terms of correlations with overall score, while the 

association of ELL with overall score declined considerably. In the alternate index, the 

indicators of birth weight and prenatal care were more highly correlated with overall 

score than was ELL. While the relationships of domains and index scores were fairly 

balanced in the original index, the Ready Families domain clearly dominated the alternate 

index. This is unsurprising given this domain includes three of the four most important 

indicators noted above. Both indexes had one domain that had little to no effect on 

overall scores relative to the other domains.  

 The impact of indicators and domains on risk rankings showed that the alternate 

index had more counties notably affected by changes to the indicator set than the original 

index. In both indexes, a few changed rank by at least 25 positions.  Regarding the seven 

indicators that were common to both indexes, there was an increase in the number of 

counties that experienced meaningful changes in rank when these indicators were 

excluded from alternate index score calculations. Four of these indicators, however, had 

lower maximum rank changes on the alternate index. While about half of all counties 

experienced notable changes in rank with the exclusion of domains from the original 

index, nearly two-third had meaningful shifts when a domain was removed from the 

alternate index. Both indexes had one domain causing shifts as extreme as 75 positions 
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when excluded. As expected, removing the Families domain had at least a moderate 

impact on over half the state’s counties. 

 The original and alternate indexes were highly correlated, with the majority of 

counties experiencing relatively low shifts in rank from one to the other. However, of the 

state’s 77 counties, nearly one-third experienced notable shifts, with 10% changing ranks 

significantly between indexes. Of the 23 counties that were outliers on at least one 

indicator in either the original or alternate index, 10 experienced shifts in rank from 15 to 

34 positions, with all but one ranking lower on the alternate index compared to the 

original. Of the nine outlier counties that experienced a notable drop in rank, eight were 

outliers on at least one of the migrant, Hispanic and ELL indicators, with four being 

outliers on two or all three indicators. The only outlier county to have a significant 

increase in rank on the alternate index was an outlier on the prenatal indicator.    

 The analysis of indicator impact concluded by examining the associations of full 

and reduced indexes to a proxy outcome of being unprepared for school. Both the 

original and alternate indexes had modest correlations with ranks (in percentiles) of 

entering kindergartners scoring below proficiency on pre-literacy assessments. Across 

reduced scenarios for both indexes, there were small changes in correlations, with the 

largest decreases associated with the removal of the single parent indicator as well as its 

associated domains, while the largest increases were associated with the removal of the 

vaccinations and Hispanic indicators, as well as their associated domains. 
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CHAPTER V 
 

 

CONCLUSION 

“I have been struck again and again by how important measurement is  
to improving the human condition.” 

-- Bill Gates (2013) 

Starting school unready to learn has serious consequences for a child’s future. A 

considerable body of research has demonstrated that children who start behind often stay 

behind. Opportunities for a full and productive life can become limited before a child 

even steps through the doors of a kindergarten classroom. Several states, including 

Oklahoma, have developed indexes to identify areas where children are at greatest risk 

for starting school without the developmental foundation necessary for academic success. 

These indexes are intended for use by policy makers and early childhood stakeholders in 

efforts to mitigate factors that impede development and address inequities in access to 

quality early education and child care. As such, school readiness risk indexes serve as 

powerful information tools for improving quality of life for children and their families by 

supporting evidence-based decision making.  Given the importance of such indexes and 

the myriad possible indicators that could be used in their construction, an assessment of 

the impact of indicator selection on index rankings was warranted. 
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The purpose of this study was to examine the sensitivity of the Oklahoma School 

Readiness Risk Index (OK SRRI) to changes to the indicator set used in its construction 

and to assess the extent to which various sets affected associations with a proxy measure 

of starting school unready to learn. All analyses were conducted twice, once with the 

original index and again with an alternate index. Initial indicators considered for the 

original index came from a review of the empirical literature on school readiness risk 

factors, with indicators selected for analysis on the basis of data availability. This same 

set was also considered for the alternate index. For the original index, the final set of 

indicators and the domains used to group them were selected on the basis of principal 

components analysis and multiple linear regression. The final set for the alternate index 

was selected based on analysis of descriptive statistics, with domains formed in context 

of a theoretical understanding of child development as the product of interrelated factors, 

the accumulation of which magnifies risk for starting school unprepared.  

Of the 10 indicators used in the original index and the 11 selected for the 

alternate, 7 were common to both indexes. These indicators related to maternal 

characteristics, economics, education and child maltreatment. The primary difference was 

that the original index contained four indicators related to race/ethnicity and none related 

to health, while the alternate index included one indicator related to race/ethnicity and 

four related to health. Further, the domain structures of both indexes differed, with the 

original index containing a Hispanic Background domain and the alternate including a 

Health domain. Both had domains related to family characteristics. The alternate index 

used the same methods of scale transformation (z-scores), weighting (equal) and 

aggregation (arithmetic mean of all scores) as the original index.    
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This study was guided by the following research questions: 

1. What is the relationship among scores on the overall index, the domains and 

individual indicators?  

2. What is the impact of the indicators and domains on the overall index? In 

other words, do one or more indicators or domains dominate the index?  

3. What is the relative effect of individual indicators and domains on outcome 

rankings? In other words, how stable are index rankings when individual 

indicators or domains are removed from the index?  

4. To what extent do changes to the indicators and domains affect associations of 

index rankings with a proxy outcome of school readiness risk?   

Summary of Findings 

 One of the greatest challenges to index construction is that discussion of the 

actual process of selecting indicators is limited, and there is little guidance regarding 

under what circumstances an indicator should be excluded (Diamantopoulos & 

Winklhofer, 2001). While procedures have been recommended for analyzing the 

underlying impact of indicators on index rankings (Nardo et al., 2008; Saisana, 2008; 

Saisana & Munda, 2008), there is ambiguity on what to do when indicators are found to 

have a large impact. The simple solution of excluding them is problematic given that 

indexes follow a formative rather than reflective measurement model, meaning indicators 

define, rather than reflect, the construct being measured, making these indicators causal 

in nature. Thus, if an indicator is found to dominate an index, yet it is an important part of 

the theoretical framework of the phenomenon under consideration, removing it would 

118 
 



change the construct. While increasing attention has been paid to this issue in regard to 

index construction, there seems to be a gap between those who advance methods for 

assessing indicator impact (Nardo et al., 2008; Saisana, 2008) and those who promote the 

concept of indexes as defining a particular construct (Bollen & Lennox, 1991; 

Diamantopoulos & Winklhofer, 2001).  

 Given the above limitation, this study did not aim to produce an absolute 

conclusion regarding which indicators should be used in Oklahoma’s risk index. As 

stressed by Nardo et al. (2008, p. 23), “there may be no single definitive set of indicators” 

for any index. Rather, the purpose of this study was to contribute to the transparency of 

the OK SRRI by conducting an analysis of its sensitivity to changes to the set of 

indicators as well as domains. This section provides a summary of the main findings, 

which are descriptive rather than empirical, and discusses reasons for differential impacts 

of indicators when used in various combinations. Because this study used the population 

of counties in Oklahoma, no statistical significance testing was conducted.  

Synopsis of Major Findings 

 Although there was a strong association between the original and alternate 

indexes, with a Spearman rank order correlation of rs = .88, approximately one-third of 

the state’s counties shifted rank by at least 15 percentiles between the indexes. This 

cutpoint was used to examine the magnitude of shifts in rankings between indexes as well 

as across various reduced scenarios that excluded one indicator or domain at a time from 

score calculations. Shifts between 15 and 19 percentiles were considered moderate, while 

shifts of 20 percentiles or above were considered significant. Eight counties experienced 
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shifts in rankings between the original and alternate indexes of at least 25 percentiles. For 

both indexes, higher percentile rankings represented greater risk. Compared to the 

original index, more counties had moderate to significant shifts in rank on the reduced 

scenarios of the alternate index. The same was true of the exclusion of sets of indicators 

that comprised particular domains. For most counties with at least moderate shifts 

between the two full indexes, risk groupings increased or decreased by one level, with the 

majority of changes occurring between the medium-high and high risk groups. A few 

counties with shifts as small as 3 percentiles also experienced changes in risk groupings, 

while other counties with large shifts remained in the same group.  

 Regarding associations with a proxy outcome of school readiness risk, entering 

kindergartners behind on literacy skills, both indexes had similar correlations of about rs = 

.20, with associations across reduced scenarios increasing or decreasing to a relatively 

small degree. The exceptions were the reduced scenarios for both the original and 

alternate indexes that excluded the family-related domains, which resulted in virtually no 

association with literacy skills. Each of these domains included three of the following 

four indicators – low maternal education, young maternal age, poverty and single parent 

– in different combinations. Among indicator-reduced scenarios, the exclusion of the 

single parent indicator resulted in the largest drop in correlation for both indexes.  

Regarding overall associations of indicators and domains with index scores and 

the extent to which any single indicator or domain dominated an index, similar results 

were found for the two methods used to assess these characteristics. First, scores for 

individual indicators and domains were correlated with overall index scores. This was 
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followed by multiple regression commonality analysis to determine the amount of 

variance in overall index scores uniquely explained by an indicator or domain and the 

amount shared with other indicators or domains. Of indicators common to both the 

original and alternate indexes, the same four indicators noted above related to maternal 

education and age, poverty and family structure emerged as the most important in terms 

of their associations with and effects on overall scores for both indexes. The indicators of 

abuse/neglect and foster care increased in magnitude from the original to the alternate 

index, while the ELL indicator declined considerably in terms of its association with and 

total effect on index scores. The smallest correlations between individual indicators and 

original index scores were for the American Indian and migrant indicators (r < .32), while 

the alternate index had small correlations with ELL, tobacco use and vaccinations (r < 

.20). Of the Health domain indicators in the alternate index, prenatal care had the highest 

correlation with overall score (r = .36), followed by low birth weight. All of the above 

indicators had small effects on their respective full indexes. The vaccinations indicator 

was negatively correlated with alternate index score, and, in addition to tobacco use, was 

negatively associated with other indicators in terms of shared effects. Negative 

commonality coefficients result from suppression or negative associations between 

independent variables used in a regression model, and indicate that one variable 

confounds the effects of other variables (Pedhazur, 1997, Nimon, 2010).  

Regarding the three domains in the original index, none appeared to dominate, 

while of the three domains in the alternate index, the Families domain clearly dominated 

with a near perfect correlation with overall score and an extremely large effect relative to 

the other two domains. For both indexes, the correlations among domains were mostly 
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smaller than correlations between domains and overall scores. This is expected and 

desirable as domains should account for particular dimensions of a multidimensional 

construct, yet there should be some degree of overlap. Both indexes, however, had one 

negative correlation between domains, which is undesirable as it suggests domains work 

against each other. For both indexes, there was at least one domain that had a small effect 

relative to the other domains. In the original index, the two domains (Hispanic 

Background and Children in Child Welfare) had primarily unique effects, while the same 

was true in the alternate index for one domain (Health).  

Understanding differential impact of indicators. Examining the impact of 

indicators common to both indexes at the county level showed these indicators had 

different effects when used with a different set of indicators. The differential performance 

between indexes can be partly explained by the presence of multiple high correlations 

between indicators and the presence of more outliers in the original index compared to 

the alternate. The problem with highly correlated indicators is that they are assumed to 

tap the same or similar dimension, which makes them duplicative; therefore, they 

contribute to double counting a single aspect of a construct when equal weights are used 

(Nardo et al., 2008). Moreover, outliers can make a considerable impact on index 

rankings, especially when associated with highly correlated indicators. The Hispanic and 

ELL indicators, with a correlation of r = .80, had 7 and 10 outliers, respectively, while 

the migrant indicator, which was moderately correlated with Hispanic, had 6. In 

comparison, abuse/neglect and foster care, with basically the same correlation coefficient 

as between Hispanic and ELL, had relatively few outliers and considerably less 

variability than the latter indicators.  
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Two counties, Tillman and Greer, serve as case studies into the impacts of high 

correlations, outliers and variability. Tillman County was ranked at the 99th percentile on 

the original index, compared to the 77th on the alternate index. The county did not 

experience any shifts across reduced scenarios on the original index of more than 15 

percentiles, but had such shifts on six reduced scenarios of the alternate index. The most 

significant shift stemmed from the impact of the single parent indicator, which, when 

excluded, dropped Tillman’s ranking by 27 percentiles on the alternate index. In 

comparison, the exclusion of the single parent indicator from the original index resulted 

in a decline of only 1 percentile. The difference in indicator performance across the 

indexes was due to the varying magnitude of Tillman’s z-scores on the raw variables. A 

z-score indicates how many standard deviations an observation is above or below the 

mean. Tillman had a mean score on the original index of z = 1.22 and a range of scores 

across the index of z = -1.6 for abuse/neglect to z = 6.7 for migrant, far above the next 

highest score. Despite being an extreme outlier and therefore inflating the mean, 

removing the migrant indicator from the calculation of Tillman’s index score resulted in a 

drop of only 11 positions. Across remaining indicator-reduced scenarios, the county’s 

ranking was mostly unchanged. This is explained by the high scores on four other 

indicators: single parent (z = 2.4), Hispanic (z = 2.2) and ELL and poverty (z = 1.8), 

while remaining scores were moderate to low.  

 When the Hispanic Background domain, comprised of Hispanic ethnicity, ELL, 

migrant and low maternal education, was removed from Tillman’s score calculation on 

the original index, it dropped by 42 positions. In contrast, when the Children in Child 

Welfare and/or Family Structure/Economic Distress domains were excluded, Tillman’s 
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ranking was essentially unchanged. Although the latter domain contained two of the 

county’s highest z-scores, single parent and poverty, its remaining two indicators had low 

or negative scores. Therefore, it is clear that the migrant indicator, as well as the strong 

relationship between the Hispanic and ELL indicators, made a considerable impact on 

Tillman’s overall ranking relative to other indicators despite a very small rate of migrant 

children. This example shows why it is important that indicators have sufficient coverage 

across the population of counties in order to be included in an index. Only six counties 

had any reported rates of migrant children, which made all six outliers.   

 In the alternate index, which excluded the Hispanic and migrant indicators, 

Tillman’s z-scores ranged from z = -2.8 for birth weight to z = 2.4 for single parent for a 

mean score of .25. Although still ranked in the high risk group, Tillman’s shifts in 

rankings across reduced scenarios were more illuminating of the county’s major issues. 

In addition to the large impact of the single parent indicator, the county also had 

moderate declines in ranking when poverty and ELL were excluded, pointing to 

Tillman’s relatively high rates on these indicators. In addition, Tillman had a relatively 

large drop with the exclusion of the prenatal care indicator, demonstrating that late or no 

prenatal care is an important issue for this county.  

 Greer County serves as another example of the impact of high correlations, 

outliers and variability. Greer had the 10th highest rate of Hispanic children (26%) but the 

54th highest rate of ELL children (1%), thus the relatively high correlation of these 

indicators was not an issue for this county. In addition to having the highest rate of births 

to teen mothers (22%), Greer also had the highest rates of confirmed cases of 
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abuse/neglect and children placed in foster care at approximately 8% for each. This 

county was the only one to be an outlier on both of the latter indicators, with scores of z = 

5.1 and z = 3.6, respectively. In comparison, its scores for the Hispanic and young 

maternal age indicators were z = 1.4 and z = 2.5, respectively, and z = -.5 for ELL. 

Greer’s average score on the original index was z = .76 (95th percentile). In comparison, 

removing either of the abuse/neglect or foster care indicators but retaining the other 

dropped Greer’s ranking to z = .44 and z = .27, respectively. Moreover, Greer’s ranking 

dropped by 52 positions with the exclusion of the Child Welfare domain from the original 

index.  Despite Greer’s high rates of births to teen mothers, the combined effect of 

abuse/neglect and foster care clearly drove its overall ranking on both the full and 

alternate indexes. These indicators tap the same dimension, child maltreatment, which 

means this dimension implicitly carried twice the weight in the overall score.  

 The difference in magnitude of z-scores relative to the proportions of children for 

the above indicators also exemplifies the impact of variability on county rankings. With 

limited variability, high or low rates can result in extreme z-scores relative to indicators 

with greater variability. The standard deviations and range of observations for the 

Hispanic and ELL indicators were about seven times as large as for the child welfare 

indicators. Therefore, a rate of 8% on one indicator can result in a considerably larger 

score than rates of 25% on another. The reason the impact of both indicators increased in 

general on the alternate index while the ELL indicator declined is because of the issues 

described above. The effect of the ELL indicator was magnified by its correlation with 

the Hispanic indicator in the original index, while excluding this indicator from the 

alternate index implicitly increased the weight of the child maltreatment indicators. 
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Therefore, as Mayer (2008, p. 287) contends, “the simple choice of inclusion affects the 

weighting of data, which can have a large impact on the resulting value of the index.”   

  Of the top five ranked counties in the original and alternate indexes, three were 

common to both indexes. Of the top four counties in the original index, all had the 

highest rates of ELL children, with the three highest ranked also having the highest rates 

of Hispanic children and representing two of the six counties with migrant children. In 

contrast, while Harmon and Texas counties held onto the highest and third highest overall 

rankings on the alternate index, two of the top five counties had among the lowest rates 

for the Hispanic, ELL and migrant indicators. Both counties, however, had among the 

highest rates of births to teen mothers, single parents and children in foster care, while 

one county also ranked near the top in terms of poverty and abuse/neglect rates. Greer 

was the fifth highest ranked county in both indexes.        

  Just as counties with high rates on the Hispanic- or child welfare-related 

indicators were “punished” with high risk rankings, counties with low rates on these 

indicators were just as likely to be “rewarded” with a lower overall risk ranking, despite 

the possibility that they may have high rates on indicators not included in the index. For 

example, Johnston County increased from the 57th percentile on the original index to the 

87th percentile on the alternate index. Its largest z-score was for young maternal age (z = 

1.9), followed by low birth weight (z = 1.4), while its scores on the Hispanic, ELL, 

migrant, American Indian and abuse/neglect indicators were at or below the mean. The 

addition of the low birth weight indicator increased its overall score enough to move it 

from the medium-high to the high risk group. Every county with moderate to significant 
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increases in rank on the alternate index compared to the original followed a similar 

pattern with at least one relatively high score on the health indicators, which were not 

highly associated. In contrast, several counties that had moderate or significant declines 

in rank on the alternate index, such as Tillman, were strongly influenced by the multiple 

use of racial/ethnic-related indicators in the original index. Due to variability issues 

discussed above, there was considerably less impact for the child welfare indicators. For 

counties with moderate to large shifts in rank between the indexes, the meaning of their 

risk rankings changed considerably with the use of a different indicator set.        

Discussion of Findings 

A brief discussion of what these findings mean for indicator selection is in order. 

Although there were a few small associations between indicators, as well as domains, and 

overall index scores, small associations do not necessarily suggest an indicator should be 

removed from an index. An issue known to be related to a construct and problematic 

across a particular area may still warrant inclusion. For example, limited English 

proficiency is a major stumbling block to success in school. The Oklahoma State 

Department of Education (OSDE) reports that approximately 10% of Oklahoma’s pre-

kindergarten and kindergarten children are in ELL programs, which makes this indicator 

important to monitor even if it only contributes a small amount to overall index scores. 

Moreover, according to the Oklahoma State Department of Health (OSDH) and the 

Centers for Disease Control (CDC), the state has close to 10% of infants born without 

appropriate prenatal care, higher than the nation, and just under that born at low birth 

127 
 



weight. Because of these issues, it is important that indicators not be excluded without 

consultation with experts in the field (Saisana, 2008).  

The fact that the vaccinations indicator was both negatively associated with index 

score and confounded the effects of other indicators, however, is an indication that this 

variable may not work well despite its association with child health and therefore school 

readiness. Current issues surrounding vaccinations and parental decisions to not vaccinate 

their children may help explain this. Among Oklahoma counties, vaccination rates in 

some of the poorest counties are higher than counties with lower poverty rates. This may 

be due in part to these families having access to vaccines through Medicaid or the 

federally funded Vaccines for Children program for low-income families (Cosgrove, 

2015, February 12). Lower rates among more affluent counties may be partially 

explained by Oklahoma’s law allowing parents to request an exemption to required 

vaccinations for personal or religious reasons ("Oklahoma Immunization Act," 1970). 

Regarding the reliability of indicator data, not all clinics in Oklahoma are required to 

report to the state’s immunization registry, thus the data likely have some degree of bias.  

Findings related to the association of domains with overall scores suggest that 

domains may need to be re-examined and indicators re-grouped to assess how changes to 

domain sets alter their associations with index scores. For example, the Health domain 

may be improved by replacing the vaccinations indicator with others available at the 

county level. Data related to food insecurity and uninsured children are available from the 

KIDS COUNT data center, while data on preterm births are available from the OSDH 

online data query system. The abuse/neglect and foster care indicators, used in the Ready 
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Families domain, could be moved to the Health domain to account for emotional and 

physical aspects of health and possibly reduce the dominance of the Families domain. 

These indicators comprise their own domain in the original index.  

The effects of the Hispanic Background domain are difficult to interpret given its 

inclusion of the low maternal education indicator. Although approximately one-third of 

the nation’s children whose mothers lack a high school diploma are Hispanic (Child 

Trends, 2014), this issue is certainly not exclusive to the Hispanic community. With three 

of the four indicators in the Hispanic Background domain related to Hispanic ethnicity, 

and thus carrying three-fourths of the weight in this domain, the maternal education 

indicator likely had a small impact on overall domain scores.  

Other child well-being and school readiness risk indexes have grouped maternal 

education with family-related domains. For example, the KIDS COUNT Index (Mather 

& Dupuis, 2012) includes a domain labeled Family and Community, comprised of 

indicators related to undereducated parents, births to teens, single parent families and 

children in high-poverty areas. Pennsylvania’s school readiness risk index places 

maternal education with teen birth rate and children born to young and single mothers in 

the Maternal Risk domain, while Louisiana’s index organizes maternal education with 

teen birth rate and poverty in the Economic Risk domain. Moving the poverty indicator to 

the Families domain in the alternate index would leave the ELL indicator by itself. This 

suggests the need for additional indicators to create a new domain, which could relate to 

education. The KIDS COUNT Index, based on the premise that indicators specific to 

very young children as well as those that indicate future outcomes are important to child 
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well-being, includes such a domain. Considering indicators in the context of a theoretical 

framework that encompasses all dimensions of a particular phenomenon is imperative for 

creating a balanced representation of a multidimensional construct. Further, Mather and 

Dupuis (2012, p. 3) note that domains should be structured in a way that makes them 

“relevant for state-level policy.”   

The fact that some counties with minor shifts in rank between the original and 

alternate indexes changed risk groupings while a few with significant shifts did not 

suggests that the process for risk groupings may need to be re-examined. Groupings 

should be able to capture meaningful shifts in rank, and more variability in groupings 

means that counties on the edge of categories see smaller changes in the interpretation of 

their risk ranking. For example, the use of quintiles over quartiles would put about 15 of 

the state’s 77 counties in each group, corresponding approximately to the cutpoint of 15 

percentiles used in this study to denote meaningful shifts. The Child Opportunity Index 

(COI) used quintiles to categorize communities in terms of very low, low, moderate, high 

and very high opportunity (Acevedo-Garcia et al., 2014).   

Finally, with the exception of the ELL indicator, the alternate index excluded 

indicators related to race and ethnicity. This is not meant to imply that race and ethnicity 

should be excluded from the analysis of school readiness risk, but rather they should take 

on different form, such as examining access by racial/ethnic groups to quality early 

education and child care. As demonstrated by the COI, rankings can be mapped onto 

neighborhoods to better understand the situations of children across diverse racial and 

ethnic groups. Of six indexes, other than the OK SRRI, related to child well-being and 
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school readiness reviewed for this study, only one included an indicator specific to 

race/ethnicity, measured by percent non-white children in a county.   

Implications 

This study demonstrated that changes to the set of indicators used in an index can 

change the meaning of a construct, which has the potential to considerably alter the 

interpretation of a particular ranking. This underscores the significance of the processes 

used to select indicators. The findings from this study support the results of sensitivity 

analyses of other indexes that found at least some significant shifts in rank with the use of 

different indicator sets (Chakraborty et al., 2005; Houweling et al., 2003; Jones & 

Andrey, 2007; Mather & Dupuis, 2012). This raises an important issue related to the 

literature on index construction. One method of examining indicator dominance is to 

exclude indicators and examine changes to rankings. It is recommended that these 

reduced indexes should have little change in rankings (Saisana, 2008). An argument 

could be made, rather, that this merely suggests indicators are interchangeable, and 

therefore may not be measuring distinct dimensions of a multidimensional construct. As 

demonstrated by this and other index-related studies, indicators do not move in relation to 

each other and not all counties are alike. It seems inevitable that rankings for some 

counties will be largely affected by the set of indicators used, while others will remain the 

same regardless. Therefore, it is expected that an index, if it includes indicators that tap 

distinct aspects of a construct, will be at least somewhat sensitive to changes to the 

indicator set.  
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A review of the literature on index construction shows that many 

recommendations regarding index construction and validation efforts fail to consider how 

indexes relate to reflective and formative measurement models. Many approaches to 

index development and validation follow a reflective model, for which the core 

assumption is that indicators reflect, or are the effect of, a particular unidimensional 

construct. Effect indicators, therefore, are considered to be interchangeable, and those 

selected to model a latent (unobserved) variable represent a sample of all possible 

indicators that reflect the construct. As such, indicators are assumed to be highly 

correlated. Indexes developed and purported to be validated using these assumptions risk 

misrepresenting a particular situation. Given the political nature of indexes, this can have 

significant consequences in terms of inadequately distributed resources and erroneous 

policy decisions. 

The choice of indicators used to define a social phenomenon can direct resources 

toward or away from particular issues. For example, excluding health indicators from an 

index related to child well-being means that health-related issues will be ignored when it 

comes to distributing resources or setting policy on the basis of index rankings. Of the 

four state indexes of school readiness risk examined for this study, as well as the national 

KIDS COUNT Index, Oklahoma’s is the only index that lacks any indicators directly 

related to health. The KIDS COUNT Index measures child well-being across states, with 

higher rankings representing a better situation for children. Of the index’s four domains 

of Economic Well-Being, Education, Health, and Family and Community Context, 

Oklahoma’s worst ranking was on the Health domain, with only five states ranked lower 

on this domain.  
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Indicator selection can also drive resources toward or away from particular 

counties. This has considerable implications for several counties in Oklahoma, as the 

primary purpose of its risk index is to compare risk levels with the reach of early 

education and child care programs. The intention is to identify counties where risk is high 

but availability of quality programs is low. If resources were to be allocated based on this 

information, several counties would be treated differently depending on whether the 

original or alternate index was used. For example, Adair County ranked as a high risk 

county in the original index, but dropped to the medium-high risk group in the alternate 

index. Conversely, Sequoyah ranked as medium-high risk in the original index, but 

increased to the high risk group in the alternate index. Based on six indicators of child 

care access and quality, these counties were in the lower reach groups (Lazarte Alcalá & 

Schumacher, 2014). If high risk counties of low to moderate child care reach were 

selected for resource allocation, then Sequoyah, with high rates of infants born to mothers 

with inadequate prenatal care, would be excluded from consideration with the use of the 

original index. In contrast, Adair, with the highest rate of American Indian children in the 

state, would be excluded from consideration using the alternate index.  

The issue of where to direct resources is also relevant to decisions regarding how 

to group counties according to risk, as well as the need for a participatory approach to 

index development. It may be that smaller groupings that create more variability in terms 

of number of groups would be more informative than larger groups, especially if 

resources are tight. Moreover, whether either of the indicators noted above would be 

agreed upon by stakeholders as being part of the construct of school readiness risk in 

Oklahoma is not known.  
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While Oklahoma’s index aims to inform decisions related to early care and 

education, such an index can also be useful for addressing the causes of being at risk for 

starting school unprepared. One issue that must be kept in mind when considering index 

rankings is that a high overall ranking does not imply high rates on all indicators. 

Understanding indicator impact can provide information regarding which risk factors are 

more problematic for one area over another, which informs resource allocation. For 

example, if a county has similarly high rates on ELL and limited prenatal care, and it is 

ranked at extremely high risk, how do the resources get distributed in a climate of limited 

funds? If larger shifts in rankings occur with the exclusion of the ELL indicator, then, 

relative to other counties, ELL is a more pressing issue than prenatal care, while prenatal 

care might emerge as the more critical issue for another county. Therefore, sensitivity to 

changes to the indicator set may not necessarily be a mark against the quality of an index. 

An important caveat, though, is that the degree to which indicator sensitivity 

meaningfully informs decision making depends on the set of indicators used.  

In proposing an index to measure disaster preparedness, Simpson (2006, p. 5) 

argues that “the act of deciding what to count is value oriented and subjective in nature.” 

This is particularly salient with a construct such as school readiness risk that lacks a 

universally accepted definition in terms of what, exactly, constitutes risk. What 

constitutes risk in one community may be different from what constitutes risk in another. 

Instead of relying on statistical analysis alone, indicators should follow a theoretical 

framework, and decisions regarding which indicators to keep and which to exclude 

should be informed by those with a stake in the outcomes (Simpson, 2006). For example, 

involving leaders in early childhood programs as well as representatives of programs 
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designed to mitigate school readiness risk factors can result in an index that has 

community buy-in.  

Several indexes related to various social issues, including child well-being, have 

used a participatory approach to selecting indicators that involved community members 

and experts in the field (Diamantopoulos & Winklhofer, 2001; Freebairn & King, 2003; 

Mather & Dupuis, 2012; Roy, Chan, & Rainis, 2014; Thivierge et al., 2014). These 

approaches have taken several forms, including surveys, focus groups, interviews and Q-

methodology (Doody, Kearney, Barry, Moles, & O’Regan, 2009), a method that 

combines qualitative and quantitative approaches to studying individual viewpoints. 

Boyd and Charles (2006) set forth a framework for a community-level indicator 

development process that includes creating a common vision, establishing a theoretical 

framework to reflect the vision, and identifying relevant characteristics of the proposed 

social issue.  

Limitations 

An overarching limitation in regard to indicator selection is data availability at the 

desired spatial level and timeframe, particularly if indexes are to be used to track trends 

over time. This study used only the set of indicators examined for the original index as 

well as the same data, although there are other indicators related to school readiness risk 

with data available at the county level and more recent data available for the indicators 

that were used. There is also one indicator, tobacco use during pregnancy, no longer 

publicly available at the county level. Given that Oklahoma was the only state among 40 
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where rates of pre-pregnancy smoking increased from 2000 to 2010 (Tong et al., 2013), 

this is unfortunate and highlights the problems of limited data availability.   

Restricting the study to a particular set of indicators limited the organization of 

domains in the alternate index, which followed, to the extent possible, the domain 

structure of NSRII’s recommended school readiness indicators. These indicators did not 

include ELL, however, so this indicator was somewhat arbitrarily grouped with poverty 

under the Ready Communities domain with the idea that community readiness means 

being ready to provide English-language instruction to children who need it. However, 

this makes for a somewhat obscure domain. As domains are useful for pinpointing areas 

of concern and promoting appropriate responses, there should be no ambiguity to their 

interpretation (Mather & Dupuis, 2012). Data are further limited by reliability issues. A 

few indicators used administrative data, which Rouse and Fantuzzo (2009, p. 11) 

maintain lack the “scientific checks and balances to ensure the information is reliable and 

valid.” Data for other indicators came from the American Community Survey of the U.S. 

Census Bureau, which has long acknowledged issues with data collection that result in 

undercounts, particularly among young children (Tate, 2012; U.S. Census Bureau, 2014).   

This study was further limited in that it used the same methods of normalization, 

weighting and aggregation applied to the original index, limiting the examination of 

sensitivity to only one aspect of index construction. While the equal weighting scheme is 

the most transparent and is widely used, it is also likely to introduce bias and, as 

demonstrated earlier, can strongly influence final rankings (Mayer, 2008). Moreover, 

when the arithmetic mean is used as the overall index score, negatively correlated 
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indicators can result in indicator scores essentially cancelling each other out. This is 

particularly problematic when indicators are expected to be at least somewhat associated 

and relates to the problem of ecological fallacy.  

An issue for this study as well as the field of index construction in general, 

although rarely addressed (Schmidtlein et al., 2008), ecological fallacy occurs when 

aggregated (ecological) data are used to make inferences regarding individuals. Although 

the explicit purpose of a school readiness risk index is not to make inferences about 

individual children, to a certain extent this is exactly what it does. It is not counties 

themselves that are of interest, but rather the children who live in those counties. To say 

that children in a particular county are at greater risk for starting school unprepared than 

children in another county assumes that all children in each county have the same level of 

risk. This is an individual-level inference and the crux of the ecological fallacy problem 

because indicators influential at the individual level may not have the same magnitude or 

direction of relationship at the population level. For example, there was a nearly perfect 

positive correlation between the raw number of infants born at low birth weight and the 

number born to mothers with late or no prenatal care. However, the correlation between 

the percentages was moderately small and negative. Ecological correlations rely on the 

sum (marginal frequency) of individuals with particular characteristics for categories, 

e.g., late or no prenatal care and low birth weight, as well as the sum of all individuals in 

those categories (e.g., all live births). The sums could result from any number of sets of 

internal frequencies. For example, if 50% of infants were born to mothers with late or no 

prenatal care, and 50% of infants were born at low birth weight, then at the population 

level there is a perfect association between these indicators. There is no reason to assume, 
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however that such a one-to-one association exists at the individual level. Infants with 

limited prenatal care may or may not be the same infants born at low birth weight. In 

other words, marginal frequencies do not “fix” the individual data points used for an 

individual-level correlation, meaning a single correlation could have associated with it 

several different individual-level correlations (Robinson, 2009, p. 339).  

As this research was essentially a case study, using data for one state to examine 

sensitivity to changes to the indicator set, specific results regarding indicator performance 

cannot be generalized to other indexes of school readiness risk. Moreover, as the findings 

demonstrate, indicators perform differently when used in conjunction with different 

indicator sets, so no absolute judgments can be made regarding the “best” set of 

indicators. Related to this is the decision to set a cutpoint for meaningful shifts in rank 

across reduced scenarios of 15 percentiles. There is some consensus in the literature that 

shifts of about 20 percentiles or more are at least moderately significant, but there are no 

hard and fast rules from which to make judgements. The cutpoint used for this study was 

selected to provide for a more in-depth examination of indicator impact on county 

rankings, but the degree to which shifts of 15 percentiles are meaningful is up for debate. 

Moreover, with quartiles used to group counties into risk categories, there were counties 

that shifted by 15 percentiles or more that failed to move into another risk category. 

Therefore, the extent to which shifts in rankings affected risk groupings is in part an 

artifact of the method used to create groups.     

Finally, validation is a prominent limitation of indexes, as classic validation 

efforts apply to the reflective measurement model used to develop scales as opposed to 
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the formative model that underlies index construction. Recommendations to overcome 

this obstacle include linking rankings with a latent variable theorized to be a consequence 

or antecedent of the index score, or composite variable (Bollen & Bauldry, 2011; 

Diamantopoulos & Winklhofer, 2001). The latent variable should consist of several effect 

indicators believed to reflect the composite variable and hence are expected to be 

correlated. Ideally, for a school readiness risk index, this would consist of several 

measures of development, from cognitive to social-emotional domains. As there is only 

one state-mandated assessment for entering kindergartners, this study was restricted to 

linking index scores with only one indicator, the percent of kindergartners scoring below 

proficient on a literacy assessment. As discussed in Chapter 1, literacy is only one aspect 

of what makes a child prepared for school. A firm conclusion regarding associations 

between this outcome and reduced and full indexes is further limited by problems with 

interpreting effect sizes (e.g., correlation coefficients) as the extent to which a judgment 

can be made about their magnitude is debatable. Cohen (1988) provided conventions for 

interpreting effect sizes. A correlation coefficient of .10 is considered small, .30 is 

medium and .50 as large. However, Cohen stressed that these are general guidelines and 

the true meaning of an effect size varies depending on the topic and design of a study.  

Directions for Future Research 

 There is considerable room for further research in the field of index construction, 

particularly concerning indexes related to school readiness risk and child well-being in 

general. As there are other possible indicators that could be used in Oklahoma’s index, an 

examination of the impact of various other combinations of indicators and domains could 
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greatly inform efforts to select an optimal (as opposed to a definitive) set for the state. 

Before additional indicators are considered, however, analysis of the effects of using a 

participatory approach to indicator selection on the index is warranted. Such an approach 

would ideally involve community leaders, policy makers, educators, program directors, 

parents, clinicians and other stakeholders and could inform a variety of questions. For 

example, does a participatory approach result in a particular conceptualization of school 

readiness? If so, do different indicators emerge that were not initially considered in 

constructing the index, and does this change the domain structure? Another question 

could consider the impacts of using different types of participatory approaches. For 

example, the use of surveys or focus groups could be compared to Q methodology, 

provided enough indicators were available at the county level and regularly updated. 

Questions that could be answered through such a study include the extent to which 

different approaches: 1) changed participants’ understanding of school readiness risk; 2) 

facilitated a consensus regarding a definition of risk for the state of Oklahoma; and 3) 

increased awareness and use of the index by policy makers and other stakeholders. 

A participatory approach could also be used to investigate which factors 

stakeholders perceive to be the most salient for their communities, thus identifying how 

risk manifests in particular areas. These perceptions could be compared with county risk 

rankings, using a particular set of indicators, to determine the extent to which there is 

congruence with community perceptions. In light of limitations on validation efforts, 

local knowledge is important for ensuring the most appropriate indicators are used 

(Schmidtlein et al., 2008; Simpson, 2006). A participatory approach could also be used to 
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examine the extent to which results are presented in a format that is useful to policy 

makers and others.   

Another avenue for future research includes validation efforts using approaches 

recommended specifically for indexes, such as linking outcomes to construct antecedents 

and/or consequences. A latent variable comprised of multiple reflective indicators could 

be modeled, given availability of data, to represent being unprepared at the start of 

school. Reflective indicators could also be used to estimate a multiple indicators multiple 

causes (MIMIC) model that would account for the interrelationships among indicators 

used to model such a variable and those used to construct the index.   

As several other states have developed indexes to measure school readiness risk, 

the present study could be replicated with these indexes. The sensitivity of Oklahoma’s 

index to different methodological approaches, such as the use of different weights or 

aggregation methods, would also contribute to a more thorough understanding of how 

choices made during different stages of index construction affect index rankings. This 

would also inform the extent to which different methodological approaches could 

overcome some of the problems related to highly correlated indicators or those with 

limited variability as well as outliers. Another direction for research is to carry out 

commonality analyses on domains in an effort to determine whether domains themselves 

are dominated by particular indicators and the extent to which different domain structures 

result in differential impact of indicators on scores. This is particularly relevant if scores 

on domains, rather than individual indicators, were used to derive overall index scores. 

Even when an equal weighting scheme is used for all indicators, an implicit weighting 
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occurs when different numbers of indicators are used in domains. Therefore, 

understanding which indicators contribute the most to domain scores and which 

contribute the least can inform understanding of how domains impact overall index 

scores. Moreover, as domains should represent distinct aspects of a construct, knowing 

whether some indicators confound the effects of other indicators in a single domain can 

be useful for determining the extent to which domains follow a multidimensional 

framework as theorized.  

Concluding Remarks 

 Indexes have the potential to be powerful tools in raising awareness of important 

societal problems and to inform policy and resource decisions in response to these issues. 

As such, the processes of defining and measuring a problem are crucial if an index is to 

be widely accepted as a trusted source of information. However, unlike the field of scale 

development, there is little agreement on a “best” method of index development. This 

limitation is compounded by the fact that much of the guidance on assessing index 

validity and reliability derives from psychometric theory, which is used to assess the 

extent to which scales tap latent psychological traits. Social issues, however, are not 

psychological constructs. The same methods used to measure a psychological construct 

and ensure confidence in the outcomes are not applicable to the measurement of a social 

issue. One ramification of this is that rather than sampling a group of indicators from a 

domain of all possible indicators, as is the process for scale development, indexes require 

a census of indicators that cover the entire scope of an issue (Bollen & Lennox, 1991). As 

error cannot be accounted for in indexes as it can in scales, excluding some indicators 
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that comprise part of the construct introduces a large degree of error, the ramifications of 

which cannot be clearly known. Grace and Bollen (2008, p. 201) contend that if an index 

represents only part of its associated construct, then it must be “recognize[d] that it is an 

imperfect measure of that construct.”  

 The final set of indicators selected, and how they are selected, matters for 

community buy-in. Several studies on the indicator selection process have found that in 

addition to resulting in a holistic collection of indicators valuable for decision making, 

“the process of engaging people to select indicators also provides an opportunity for 

community empowerment that conventional development approaches have failed to 

provide” (Fraser, Dougill, Mabee, Reed, & McAlpine, 2006, p. 114). Acceptance of an 

index as a trusted source of information cannot occur in the absence of negotiation among 

policy makers and other stakeholders. (Gaye, 2007).  

The only way to truly assess the extent to which a school readiness risk index 

relates to school readiness is through the use of individual-level data on children that can 

be matched between schools and social service agencies. For example, the Kids 

Integrated Data System (KIDS) in Philadelphia matches data on individual children 

across the Philadelphia school district with the city’s human services, health, and housing 

agencies (Fantuzzo & Perlman, 2007). Unfortunately, such a system is not available in 

Oklahoma or in many other states. Although the Oklahoma Department of Human 

Services received funding to investigate the validity of the index as a measure of risk 

using individual-level data, accessing data has proven problematic, with matching data 

across education and social services even more challenging. Until such studies are 

possible, Oklahoma’s index is the only means of identifying where children are at 
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greatest risk. Therefore, it is critical that there be general agreement on the definition of 

risk and its various dimensions. Statistical techniques of indicator selection are inherently 

flawed if the indicators examined fail to represent a social construct in its totality. 

Without a strong theoretical foundation, indexes run the risk of being purely “exercises in 

measurement” rather than meaningful contributors to understanding a particular social 

construct (Freudenberg, 2003, p. 29).   

The findings from this study make a significant contribution to the field of index 

construction, particularly in terms of measuring risk for poor school readiness, by 

demonstrating that changes to the indicator set change the construct. This study supported 

findings from other research that “type of risk matters,” as different risk factors have 

different impacts (Rouse & Fantuzzo, 2009). In light of the sensitivity of the index to 

changes to the indicator set, the Oklahoma index should proceed with caution and be 

coupled with stakeholder and expert guidance to ensure representations of school 

readiness risk are reasonable and consistent with local knowledge. Collaborations with 

organizations dedicated to child well-being, such as the Oklahoma Institute for Child 

Advocacy, the state grantee for the KIDS COUNT data center, and Smart Start 

Oklahoma, dedicated to the issue of school readiness, could greatly inform continued 

index development.  There are a considerable number of other organizations and 

stakeholders that should be consulted as well.  

As a sensitivity analysis, this study contributed to increasing the transparency of 

Oklahoma’s risk index. Of all index considerations, transparency is perhaps the most 

important and most demanded by policy makers (Nardo et al., 2005; Saisana, 2008; 
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Sharpe & Andrews, 2012). Therefore, understanding the strengths and weaknesses of an 

index, as well as its biases, is critical to ensuring policy-related decisions rest on a solid 

foundation (Mayer, 2008). In discussing the primary failures of sustainability indexes, 

Mayer (2008, p. 288) notes that first and foremost, indexes fail when there is “a lack of 

consensus on what sustainability is in a quantitative sense.” This leads to the three 

overarching conclusions to this study. First, the choice of indicators has a considerable 

impact on the exact construct being measured. Second, the process of identifying and 

selecting indicators should include those with a stake in the outcomes. Finally, in the 

process of deciding which indicators to ultimately use, “indicator elimination – by 

whatever means – should not be divorced from conceptual considerations” 

(Diamantopoulos & Winklhofer, 2001, p. 273). 
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