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ABSTRACT:  

 

 Groundwater supplies a large portion of water used in Oklahoma, and accurate 

and current information regarding groundwater recharge rates is essential for long-term, 

sustainable groundwater management. The Oklahoma Mesonet has provided soil 

moisture data at 120 monitoring stations for nearly two decades. Using these data in 

conjunction with site-specific soil hydraulic properties, we have estimated potential 

groundwater recharge, hereafter called drainage, at a depth of 60 cm for 78 Mesonet sites. 

Our working hypothesis is that these drainage rates are greater than or equal to the 

amount of groundwater recharge at each location. Calculated mean drainage rates from 

1996-2012 ranged from 4 mm yr
-1

 at Hinton to 275 mm yr
-1

 at Bristow, with a state-wide 

median of 61 mm yr
-1

. To clarify the relationship between these site-specific drainage 

rates and actual, independently-estimated groundwater recharge rates, three techniques 

were used. For site-specific recharge estimates, the unsaturated zone chloride mass 

balance method (CMBuz) was applied to soil cores taken at eight Mesonet sites in western 

Oklahoma. Secondly, HYDRUS 1-D was used to model the effects of root water uptake 

below 60 cm at these eight sites. Third, to compare aquifer-wide Mesonet drainage rates 

to independently-estimated regional recharge rates, the saturated zone chloride mass 

balance method (CMBsz) was applied to groundwater chloride data. CMBuz analysis 

estimated recharge rates ranging from 0.12 mm yr
-1

 at Boise City to 2.5 mm yr
-1

 at 

Arnett, values much lower than Mesonet-based drainage rates. Modeled water flux at the 

60-cm depth was generally higher than Mesonet-based drainage, ranging from 7.5 mm yr
-

1
 at Goodwell to 145 mm yr

-1
 at Fort Cobb. Simulations also showed that a significant 

portion of water passing the 60-cm depth may be lost to root water uptake before 

reaching the 3-m depth. CMBsz calculations yielded recharge rates ranging from 4.8 to 

25mm yr
-1

 for five aquifers in western and central Oklahoma, giving values similar to or 

less than median Mesonet-based drainage rates. Overall, Mesonet-based drainage 

estimates seem to provide a reasonable upper limit for recharge rates at a regional scale, 

but may substantially overestimate recharge at sites with deep soil in western Oklahoma. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 Access to accurate, up-to-date information regarding Oklahoma’s groundwater 

resources is necessary in order for water resource managers, both governmental and 

private, to effectively plan for the future, as well as to reduce the number of groundwater-

related conflicts in the state. In 2007, groundwater use in Oklahoma was approximately 

800,000 acre-feet, with 73% of all irrigation water in the state coming from groundwater 

sources (Oklahoma Water Resources Board, 2015).  One of the earliest instances of 

groundwater conflict in the state was the 1936 case of Canada v. City of Shawnee, where 

the City of Shawnee pumped groundwater from the Garber-Wellington aquifer (Figure 1) 

at such a high rate that groundwater beneath certain citizens’ property was also used 

(Ashley and Smith, 1999). This case established the rule of “reasonable use,” meaning 

that a land owner has a right to use as much groundwater as he pleases from his own 

land, even if it adversely affects surrounding citizens, so long as he has a reasonable use 

for that water.  
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Figure 1.  Major and minor bedrock aquifers of Oklahoma (Oklahoma Water Resources 

Board).  

 

 In 1979, the Oklahoma Water Resources Board et al. v. Texas County Irrigation 

and Water Resources Association, Inc. case was considered by the Oklahoma Supreme 

Court. In this case, the Texas County district court had previously granted Mobil Oil 

Company the right to groundwater use in the Ogallala aquifer (Figure 1), but the 

Oklahoma Supreme Court found that though water use for oil production could be 

considered a “beneficial use,” landowners and agricultural producers were also in need of 

the groundwater (Ashley and Smith, 1999).  

More recently, a study was conducted on the Arbuckle-Simpson aquifer (Figure 

1) to determine the suitability of the aquifer for increased withdrawals. In 2002, the 

Central Oklahoma Water Authority (COWA) sought to transport water from the 

Arbuckle-Simpson to the center of the state. At the same time, residents of the cities of 

Ada and Sulphur, who depend on water from the aquifer for their drinking water, sought 

to protect it from outside use. It was decided that there was not enough information 



3 
 

available to make an informed decision regarding the effects of a large increase in 

withdrawal of water from the aquifer, and the resulting study was an attempt to provide 

such information (Christenson et al., 2011). These conflicts over scarce groundwater 

resources are only a few of the cases that have occurred in Oklahoma, and groundwater 

conflicts continue today as landowners, agriculturalists, industry, and municipalities 

continue to struggle for their right to use this increasingly limited resource.  

Increased use of groundwater resources in the state of Oklahoma has led to 

declining aquifer levels across the state (Figure 2), which in turn has resulted in a 

growing number of conflicts over groundwater withdrawal rights (Oklahoma Water 

Resources Board, 2012). To reduce the number of conflicts related to groundwater use, 

and to understand the sustainability of our state’s groundwater resources, it is necessary 

to have accurate groundwater recharge information. Groundwater recharge is the portion 

of water introduced to an area, either by rainfall or by irrigation, which percolates 

through the unsaturated (vadose) zone and reaches the water table. Recharge rates can be 

highly variable and are dependent upon factors such as topography, soil type, soil texture, 

and climatic factors (Nolan et al., 2007). 

While the depletion of groundwater reservoirs is an obvious problem to those who 

study and utilize these resources, the solutions to this challenge are less obvious and 

require the utilization of novel techniques and approaches. Currently, there is no 

groundwater recharge monitoring network in place in Oklahoma, and the most recently 

published map of state-wide recharge rates was produced in 1983 using stream baseflow 

data from the 1970’s (Oklahoma Water Survey, 2014; Pettyjohn et al., 1983). The 
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Figure 2. Decline in groundwater wells from 2001-2006, which also indicate declines in 

aquifer levels (Oklahoma Water Resources Board).  

 

Oklahoma Mesonet (Figure 3) has provided data, including soil moisture data, at over 

100 hydro-meteorological monitoring sites throughout the state since 1994 (soil moisture 

sensors were added in 1996) (McPherson et al., 2007). Soil hydraulic properties were 

recently determined at the 5, 25, 45, 60, and 75 cm depths for every Mesonet site by Scott 

et al. (2013). When soil moisture data are accompanied by these soil hydraulic property 

data, drainage rates from soil profiles can be calculated using a unit-gradient assumption 

(Nolan et al., 2007). This assumption has been widely applied in multiple research studies 

(Chong et al., 1981; Gardner, 1964; Sisson, 1987). Nimmo et al. (2003) stated that under 

this unit-gradient assumption, long-term average recharge rates can be indicated even by 

a single hydraulic conductivity measurement under certain conditions. In addition to site-

specific recharge rates, the spatial distribution of recharge may be estimated given an 

adequate number of reliable recharge rates over an area (Nolan et al., 2007). 
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Figure 3. Oklahoma Mesonet sites labelled with four-character abbreviated name. From 

mesonet.org website. 

 

Because we have nearly two decades of daily soil moisture measurements that 

may be used to derive unsaturated hydraulic conductivity estimates, these Mesonet-based 

drainage rates may provide a reliable indicator of the amount of water potentially 

returned to groundwater aquifers beneath the Mesonet sites. The term ‘drainage’ in this 

thesis refers to the amount of water percolating below the 60 cm soil depth as found by 

calculations using Mesonet soil moisture data. This water will eventually reach any 

underlying unconfined aquifer and become recharge if not taken up by roots below that 

depth or redirected by an impermeable layer. These assumptions may be inapplicable in 

some areas throughout the state, and may lead to an overestimation of recharge for 

certain sites. Thus, it is important to exercise caution in considering drainage rates to be 

equal to recharge rates at every Mesonet site and to take into account factors such as 

possible impermeable layers, perched water tables, and whether or not the aquifer 

underlying a site is confined or unconfined. Drainage rates at a Mesonet site with a 
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confined underlying aquifer are likely not indicative of the recharge that actually occurs 

in that aquifer. However, these calculated drainage rates may provide land owners and 

policy makers helpful information related to long-term and yearly fluctuations in 

groundwater recharge rates throughout the state.  

The overall objective of this study is to evaluate the relationship between 

Mesonet-based drainage rates and independent estimates of groundwater recharge across 

the state of Oklahoma. First, Mesonet-based drainage rates will be compared to 

previously published recharge rates. Additionally, Mesonet drainage rates will be 

compared to recharge rates estimated by the unsaturated zone chloride mass balance 

(CMBuz) method, which was applied to soil cores taken at eight focus Mesonet sites 

chosen based on their deep unsaturated zones. Soil water samples from these cores were 

extracted and analyzed for chloride content. These chloride concentrations are indirectly 

proportional to recharge rates (i.e., high chloride concentrations indicate low recharge 

rates). HYDRUS 1-D was used to simulated water flow and root water uptake at these 

eight Mesonet focus sites in order to determine the effects of root water uptake beneath 

the 60 cm depth. The chloride mass balance method was also applied in the saturated 

zone (CMBsz) in order to determine aquifer-scale recharge rates. Chloride concentrations 

in groundwater, like those in soil pore water, are indirectly proportional to recharge rates 

(Scanlon et al., 2010). 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

 

 Significant prior research has been conducted in Oklahoma regarding the state’s 

groundwater resources, and an understanding of previous research findings is essential 

when trying to develop an even greater understanding of the sustainability of our 

groundwater resources. Previous studies of Oklahoma’s aquifers give a wide range of 

recharge rates, but spatial and temporal variability in soil and climatic factors makes 

consistent and accurate measurements of recharge rates difficult to collect. Reported 

recharge rates throughout the state of Oklahoma are highly variable, ranging from  

0.8 to 333 mm yr
-1

 (Table 1). A significant amount of this variation is likely explained by 

the spatial variations in precipitation and soil type that occur throughout the state. The 

methods by which previous recharge estimates have been made also vary, with different 

information, data, and assumptions being used for each study. Additionally, there are 

generally only three to four studies that have been done on each aquifer within the state, 

and many of these studies were done in the 1960-1980s. The low number of studies 

completed on these aquifers, the generally small amount of data per study, the small 

temporal scale of most studies, and the amount of time between studies are all factors 
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which lead to uncertainty regarding the accuracy of recharge estimates. Additionally, 

because of decadal-scale climate variability, many of the recharge rates found in past 

studies could not be considered applicable today, as variability in climatic factors has a 

strong effect on recharge rates (Nolan et al., 2007). 

 The following is a summary of previously published recharge rates for the three 

largest Oklahoma aquifers: the Ogallala, Rush Springs, and Garber-Wellington aquifers 

(Figure 1). A summary is also included for the Arbuckle-Simpson aquifer, the only sole 

source aquifer in Oklahoma. Additional information regarding previously published 

recharge rates for these and other Oklahoma aquifers is given in Table 1. 

 

Ogallala Aquifer 

 The Ogallala aquifer, also called the High Plains Aquifer, spans a large area of the 

Midwestern United States, underlying Nebraska, Colorado, Kansas, Oklahoma, Texas, 

Wyoming, and South Dakota (Guru and Horne, 2000). This aquifer underlies the majority 

of the Oklahoma panhandle (Figure 1) and is the state’s largest aquifer in terms of 

storage, with an in-state storage of over 90 million acre feet (Oklahoma Water Resources 

Board, 2015). The aquifer consists of Tertiary-Age alluvial sediments deposited by 

streams from the Rocky Mountains (Nativ and Smith, 1987). Saturated thickness in the 

Ogallala ranges from zero to nearly 430 ft (0 to 131 m) and the depth to water ranges 

from shallow (less than 10 ft) to deep (over 300 ft). Recharge to the aquifer is mainly 

from precipitation, with local high recharge rates occurring under seasonal playa lakes 

(Hart et al., 1976; Osterkamp and Wood, 1987). Discharge from the Ogallala ranges from 
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500 to 1000 gallons per minute (gpm), with certain areas reaching discharge rates up to 

2,000 gpm (Oklahoma Water Resources Board, 2012). 

 The majority of water withdrawn from the Ogallala is used for agriculture, 

specifically irrigation by center pivot, with Texas County accounting for over half of all 

water withdrawals. In the years 1996 and 1997, 389,000 acre feet of water were 

withdrawn from the aquifer, while only 175,000 acre feet (45% of the amount 

withdrawn) were replenished by recharge (Oklahoma Water Resources Board, 2012). 

Groundwater level declines due to excessive pumping have been reported by many, and it 

is well understood that the high pumping rates common in the panhandle are in excess of 

what is capable of being recharged by precipitation (Guru and Horne, 2000; Gutentag et 

al., 1984; McGuire, 2011). In the 2012 Oklahoma Comprehensive Water Plan, the 

Oklahoma Water Resources Board (OWRB) stated that a continued decrease in the level 

of groundwater reservoirs in the majority of the state panhandle is likely if pumping rates 

for agricultural production do not decrease. However, this scenario was based on current 

groundwater use rates and may be changed if water use from this portion of the aquifer is 

reduced. Several studies conducted on the Oklahoma portion of the Ogallala have shown 

that a decrease in water extraction may lead to an increase of groundwater levels in some 

areas (Guru and Horne, 2000; Yang et al., 2010). 

 Due to the importance of groundwater from the Ogallala for agriculture and land 

owners, many studies have been conducted to determine the rate of recharge to the 

aquifer. Hart et al. (1976) used a water budget method using groundwater monitoring 

well data to estimate recharge and found that recharge to the Ogallala ranged from 6.4 to 

25 mm yr
-1

. Similar recharge estimates have been found in other studies regarding 
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recharge to the Ogallala. Recharge rates ranging from 5.1 to 56 mm yr
-1

 were found by 

Morton (1980), who used a digital model to predict aquifer storage. Pettyjohn et al. 

(1983) published a state-wide recharge map that shows a recharge rate of 2.5 mm yr
-1

 for 

most of the Oklahoma panhandle, and a rate of 5.1 mm yr
-1

 in the portion of the Ogallala 

east and southeast of the panhandle. This study used a stream baseflow method to 

estimate recharge. This method may underestimate recharge due to the lack of 

consideration of evapotranspiration and possible upstream pumping from the alluvial 

aquifer (Scanlon et al., 2002). Recharge for the Ogallala was estimated using the 

MODFLOW model by Luckey and Becker (1999), who estimated that recharge ranged 

from 1.5 to 23 mm yr
-1

. The OWRB published a Water Supply Availability Report in 

2011 that gave a recharge range of 2.5 to 56 mm yr
-1

 (Oklahoma Water Resources Board, 

2011). The most recently published recharge value for the Oklahoma portion of the 

Ogallala was by the Oklahoma Water Resources Board, who reported a recharge rate of 

13 to 23 mm yr
-1

 in the 2012 Oklahoma Comprehensive Water Plan. 

Rush Springs Aquifer 

 The Rush Springs aquifer, located in west-central Oklahoma (Figure 1), underlies 

2400 mi
2
 of land and consists of two geologic formations: the Rush Springs and Marlow 

formations (Runkle et al., 1997). The Rush Springs formation is made of poorly 

cemented Permian-age sediments, while the underlying Marlow formation consists of 

interbedded sandstones, siltstones, mudstones, gypsum-anhydrite, and dolomite. The 

Marlow formation acts as a confining unit and does not allow downward flow of water. 

(Oklahoma Water Resources Board, 2012). A portion of the western side of the aquifer is 

capped by the Chief Eagle formation, which has a very low hydraulic conductivity and 
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likely restricts recharge in that area. The aquifer tends to produce water that has a high 

total dissolved solids (TDS) content. Where water quality allows, water from the aquifer 

is used for irrigation, domestic, and municipal water supplies, with the largest amount of 

water being withdrawn from the central portion of the aquifer in Caddo County. In some 

areas, use of groundwater from the aquifer is limited by concentrations of sulfate, nitrate, 

and arsenic dissolved from the parent material that exceed drinking water standards. The 

Rush Springs aquifer has a saturated thickness ranging from less than 200 ft in the 

southern portion of the formation to nearly 350 ft in the northern portion (Oklahoma 

Water Resources Board, 2015). Estimated groundwater withdrawal from the aquifer was 

estimated in 1990 to be approximately 61,272 acre feet per year, 78% of which was used 

for irrigation (Becker and Runkle, 1998).   

 Recharge to the aquifer occurs primarily from precipitation, though small portions 

of recharge occur due to gains from losing streams and from irrigation water applied to 

the land surface (Tanaka and Davis, 1963). It was estimated by Tanaka and Davis (1963) 

that recharge to the Rush Springs aquifer averaged 61 mm yr
-1

 for the years 1953-1956. 

This rate was determined by analysis of well hydrographs for four monitoring wells 

across the aquifer. Runkle et al. (1997) published recharge values ranging from 2.3 to 81 

mm yr
-1

 that were later used as input values for their groundwater vulnerability 

simulation of water flow in the Rush Springs. According to Pettyjohn et al.’s (1983) 

state-wide recharge map, mean annual recharge for the Rush Springs ranged from 

approximately 5.1 mm in the northwest portion of the aquifer to approximately 25 mm in 

the southernmost portion. The OWRB published a recharge range of 5.1 to 89 mm yr
-1

 

for the Rush Springs in 2011, while an average recharge rate of 46 mm yr
-1

 was given for 
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the Rush Springs aquifer in the 2012 Oklahoma Comprehensive Water Plan (Oklahoma 

Water Resources Board, 2011; Oklahoma Water Resources Board, 2012). 

Garber-Wellington 

 The Garber-Wellington aquifer (also known as the Central Oklahoma aquifer), 

located in central Oklahoma, underlies approximately 3,000 mi
2
 of the state (Figure 1). 

Water from this aquifer is used for public, agricultural, industrial, and commercial water 

supplies. Except for Oklahoma City itself, every community surrounding the state capitol 

depends upon water from the Garber-Wellington for part of its water supply, and in some 

cases, all of its water supply. The aquifer is composed of Quaternary-age alluvium and 

terrace deposits, as well as the Permian-age Garber Sandstone, Wellington Formation, 

and Chase, Council Grove, and Admiral groups. Mean groundwater use from 1967-2008 

was estimated to be over 37,000 acre feet, 63% of which was used for public water 

supplies (Mashburn et al., 2014).  

 Mashburn et al. (2014) compared well water levels from 1986-1987 with 

measurements taken in 2009, and observed a decrease in median depth-to-water 

measurements of 1.1 m. This same study used three different methods to estimate 

groundwater recharge to the Garber-Wellington. The first approach utilized the Soil-

Water Balance code to estimate recharge, and was chosen because it allows for the 

determination of the spatial distribution of recharge over an area. This code incorporates 

climatic, soil, and land use data to estimate evapotranspiration, runoff, infiltration rates, 

and runoff. Because this method estimates potential recharge and not actual recharge, a 

scaling factor of 0.4 was applied to the results of the simulation during calibration. After 
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this scaling factor was applied to the results, this method produced recharge rates ranging 

from 19 to 86 mm yr
-1

, with a mean annual recharge rate of 47 mm yr
-1

.  

 The second recharge estimation method applied by Mashburn et al. (2014) was 

the Rorabaugh method, a recession-curve displacement method (Rorabaugh, 1964). 

However, this method estimates recharge of the subsurface drainage basin, which was a 

different size than the surface drainage basin in this case. The Rorabaugh method was 

applied to streamflow measurements made in three locations: the Deep Fork River near 

Arcadia, OK, the Deep Fork near Warwick, OK, and at the Little River near Tecumseh, 

OK. Data for the site near Arcadia was collected from 1969-1983, with an estimated 

mean annual recharge rate of 104 mm yr
-1

. Data collected near Warwick was collected 

only for the years 1984 and 1985 (before Arcadia Lake Dam was built), with an estimated 

mean annual recharge rate of 89 mm yr
-1

. Data from the third site at Tecumseh was from 

the years 1943-1961, and gave a mean annual recharge rate of 33 mm yr
-1

.  

 The third method of recharge estimation used by Mashburn et al. (2014) was 

estimation from baseflow data, with analysis being done on two sets of data: the first 

from the years 1987-1989 and the second from 2009 data. Data from 1987 to 1989 

yielded recharge estimates ranging from 4.8 mm yr
-1

 to 81 mm yr
-1

, while data from 2009 

gave recharge rates ranging from 5.1 to 51 mm yr
-1

. 

 Parkhurst et al. (1996) published recharge rates for the Garber-Wellington aquifer 

ranging from 4.8 to 104 mm yr
-1

, with a median recharge rate of 41 mm yr
-1

. This study 

used stream baseflow data from the years 1987-1989 to estimate recharge. Pettyjohn and 

Miller (1982) estimated from baseflow data that the recharge rate of the aquifer ranges 

from 0.8 to 211 mm yr
-1

. A Water Supply Availability Report published by the OWRB in 
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2011 gave a recharge range of 28 to 41 mm yr
-1

. The 2012 Oklahoma Comprehensive 

Water Plan gave a recharge value of 41 mm yr
-1

 for the aquifer. 

Arbuckle-Simpson 

 The Arbuckle-Simpson aquifer is a karstic system located in south central 

Oklahoma (Figure 1), and is the only designated sole source aquifer in the state, meaning 

that water from the aquifer is the only source of water for a particular city. In this case, 

there are a number of cities which receives their water supply from the aquifer: Ada, 

Sulphur, Mill Creek, and Roff. The aquifer is composed of clastic and carbonate rocks 

and covers an area of approximately 500 mi
2
. The karstic nature and geological fractures 

in this area allow for rapid transmission and high storage capacity for groundwater. 

Byrd’s Mill spring, which flows from the aquifer, has been the primary water source for 

the nearby city of Ada, Oklahoma since 1911 (Savoka and Bergman, 1994). Generally, 

groundwater produced from the aquifer is chemically suitable for any use, with dissolved 

solids content below 400 ppm (Christenson et al., 2009). While spring flow generally 

meets municipal needs, three wells have been installed to allow the city to pump water 

during times of low precipitation. A hydrologic study was conducted in 1992, and the 

study showed that even high levels of pumping from the aquifer over several days had 

little effect on the saturated thickness of the aquifer (Savoka and Bergman, 1994). A 

second study conducted in 2005, which projected future groundwater levels in the aquifer 

based on current use rates, found similar results (Kumar, 2005). 

 Recharge to the Arbuckle-Simpson is generally from precipitation, which the area 

receives at an average rate of 1041 mm yr
-1

, but can be from losing streams in some 

places (Christenson et al., 2009; Savoca and Bergman, 1994). Recharge was estimated by 
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Fairchild et al. (1990), using the baseflow method, to average 119 mm yr
-1

. A more 

recent study using a water balance equation estimated mean annual recharge for the years 

1994-2006 to be 188 mm at Connerville, a city located above the Arbuckle-Simpson 

(Vieux and Moreno, 2008). Additionally, this study gave a range of recharge rates from 

56 to 333 mm yr
-1

. The MODFLOW model was used to estimate recharge by Christenson 

et al. (2011), who found an average annual recharge range of 66 to 295 mm yr
-1

, with the 

mean recharge rate being 142 mm yr
-1

. The recharge rate published by the OWRB in their 

2011 Water Supply Availability report was 119 mm yr
-1

, while the recharge rate 

published in the OWRB’s 2012 Comprehensive Water Plan for the Arbuckle-Simpson 

was 142 mm yr
-1

. 

 

 A greater level of knowledge regarding recharge rates to key aquifers is essential 

if we are to sustainably manage Oklahoma’s groundwater resources. The relationship 

between soil moisture-based drainage estimates and groundwater recharge rates is not 

currently known, nor has this relationship been studied in the past. An understanding of 

this relationship may allow for soil moisture data to be used to estimate the amount of 

groundwater recharge that is occurring at a location. Similarly, the use of long-term soil 

moisture data may be able to provide an accurate estimate of long-term average recharge, 

as well as provide previously unknown information regarding changes in recharge rates 

over time. The ability to know and study fluctuations in groundwater recharge rates using 

soil moisture data over long time periods, as opposed to recharge rates found by short-

term studies, could provide invaluable information to water planners seeking to increase 

the sustainability of our state’s groundwater resources.  
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Table 1. Summary of previously published recharge rates for the aquifers of Oklahoma. Aquifer abbreviations include AS (Arbuckle-

Simpson), ATH (Arbuckle-Timbered Hills), EIT (Enid Isolated Terrace), GW (Garber-Wellington), NCR (North Canadian River), TT 

(Tillman Terrace), and VA (Vamoosa-Ada). Shading is used to differentiate between aquifers. 

  Data Year Recharge (mm yr
-1

)   
Year Author(s) Aquifer First Last Min Max Mean Recharge method 

2012 OWRB Antlers 
  

7.6 43 
 

Computer Model 

1990 Fairchild et al. AS 1969 1979 - - 119 Baseflow 

2011 Christenson et al. AS 2004 2008 66 305 142 MODFLOW model 

2012 OWRB AS - - - - 142 - 

2008 Vieux & Moreno AS 1994 2006 56 333 188 Water Balance 

2012 OWRB AS - - - - 119 Baseflow 

2012 OWRB ATH - - 7.6 15 - Percent of Precipitation 

2012 OWRB Arkansas R. - - - - 127 - 

2012 OWRB Blaine - - - - 38 - 

1986 
Dugan & 

Peckenpaugh 
Boone - - - - 254 - 

1994 Imes & Emmett Boone - - 267 305 - Finite Difference Model 

2012 OWRB Boone - - - - 267 - 

2012 OWRB Canadian R. - - - - 51 - 

2012 OWRB Cimarron R. - - - - 58 - 

2012 OWRB Elk City - - - - 71 - 

2011 OWRB Elk City - - 51 102 -  

2012 OWRB EIT - - - - 58 - 

2014 Mashburn et al. GW 1987 2009 19
1
 86

1
 46

1
 Soil-Water balance 

1996 Parkhurst et al. GW 1987 1989 4.8 81 - Baseflow 

2014 Mashburn et al. GW - 2009 5.1 51 - Baseflow 
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2014 Mashburn et al. GW 1969 1983 - - 104 Rorabough Method 

2014 Mashburn et al. GW 1984 1985 - - 89 Rorabough Method 

2014 Mashburn et al. GW 1943 1961 - - 33 Rorabough Method 

2014 Mashburn et al. GW - 1987 - - 86 Soil-Water balance 

1993 Parkhurst et al. GW 1987 1989 4.8 103 41
2
  Baseflow 

1982 Pettyjohn & Miller GW 1973 1979 0.8 211 53 Baseflow 

2012 OWRB GW - - - - 41 - 

2011 OWRB GW - - 28 41 - Baseflow 

2012 OWRB Gerty Sand - - - - 25 - 

2012 OWRB NCR - - 25 127 - - 

1989 Havens NCR - - 43 178 84 FDM 

1999 Luckey & Becker Ogalalla 1961 1990 1.5 23 4.6 MODFLOW model 

1976 Hart et al. Ogalalla 1938 1969 6.4 25 6.4-13 Water-budget 

1980 Morton Ogalalla - - 5.1 56 - Computer Model 

2012 OWRB Ogalalla - - 13 23 - - 

2011 OWRB Ogallala - - 2.5 56 - Computer Model 

2012 OWRB Roubidoux - - - - 64 - 

2011 OWRB Roubidoux - - 64 305 - 
Computer Model & Percent 

of Precipitation 

2012 OWRB Rush Springs - - - - 46 - 

1998 Becker & Runkle Rush Springs 1989 1991 5.1 51 46 Baseflow 

1963 Tanaka & Davis Rush Springs 1953 1956 38 89 61 Well hydrograph 

1983 Pettyjohn et al. Rush Springs 1970 1979 >5.1 25 - Baseflow 

2011 OWRB Rush Springs - - 5.1 89 - Baseflow 

2012 OWRB TT - - - - 74 - 

1978 Al-Sumait TT - - - - 74 - 

2012 OWRB VA - - 18 36 - - 

2011 OWRB VA - - 13 39 - Baseflow 
1
Recharge values after scaling modelled values by a factor of 0.4. 

2
Median recharge value, not mean.
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CHAPTER III 
 

 

METHODOLOGY 

 

 

Soil Moisture-Based Drainage Estimates 

Drainage rates were calculated using daily soil moisture data at a depth of 60 cm 

obtained from 78 Oklahoma Mesonet sites for the years 1996 to 2012, excluding site-

years with 30 or more consecutive missing data points (Figure 4). Heat dissipation 

sensors (CS 229, Campbell Scientific, Logan, Utah) are installed at each of these 

Mesonet sites at depths of 5, 25, and 60 cm. These small sensors have a cylinder-shaped 

body 60 mm in length, with a ceramic matrix that makes up 32 mm of the total sensor 

length. This ceramic matrix, which has water-absorbing qualities similar to a silt loam 

soil, surrounds a hypodermic needle that contains a thermocouple (Illston et al., 2008). 

Also located inside the ceramic matrix is a resistance heater. The thermocouple measures 

and records the temperature within the sensor’s porous ceramic matrix before and after a 

21-s heat pulse is generated by the heater inside the needle. Data are output as the 

temperature difference between the initial and final thermocouple readings. These 

temperature differences are normalized to account for sensor-to-sensor variability, and 
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the daily mean normalized temperature rise data were converted to matric potential using 

the equation given by Illston et al. (2008): 

   )exp( refm Tac           (1) 

where Ψm is matric potential (kPa), c and a are calibration constants (0.717 kPa and 

1.788°C
-1

, respectively), and ΔTref is the reference (i.e., normalized) temperature 

differential recorded by the sensors (°C). These matric potential values were then 

converted to soil volumetric water content using the van Genuchten equation (van 

Genuchten, 1980): 

(2) 

where θ is the volumetric water content, θs is the volumetric water content at 

saturation, θr is the residual water content, α and n are shape parameters estimated 

from the soil water retention curve, and m = 1- 1/n. Values for θr, θs, α, and n for each 

Mesonet site and each sensor depth were determined by Scott et al. (2013) using the 

best available sub-model within the Rosetta pedotransfer function (Schaap et al., 

2001) (Tables 2 and 3).  

  

  mn

mrsr


 )(1)( 
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Table 2. Rosetta input data at the 60-cm depth for eight Mesonet focus sites. Data include 

sand, silt, and clay percentages, bulk density, water contents at -33 and -1500 kPa, 

residual water content, and water content at saturation (Scott et al., 2013).  

Site Sand Silt Clay ρb θ33 θ1500 θr θs 

 
% % % g cm

-3
 cm

3
 cm

-3
 

cm
3
 cm

-3
 

cm
3
 cm

-3
 

cm
3
 cm

-3
 

Arnett 39 31 31 1.43 0.205 0.111 0.055 0.406 

Boise City 10 43 47 1.59 0.358 0.265 0.081 0.42 

Fort Cobb 77 4 19 1.73 0.159 0.076 0.036 0.343 

Freedom 18 51 32 1.31 0.214 0.137 0.078 0.431 

Goodwell 39 28 33 1.53 0.214 0.144 0.078 0.388 

Hooker 11 47 42 1.50 0.327 0.216 0.08 0.431 

Slapout 78 4 18 1.75 0.137 0.06 0.033 0.333 

Woodward 39 36 25 1.30 0.158 0.079 0.042 0.421 

 

Table 3. Rosetta output parameters used to calculate Mesonet drainage rates at the 60-cm 

depth for the eight Mesonet focus sites (Scott et al., 2013). 

Site Alpha N Ks K0 L 

 
kPa

-1
 No units cm d

-1
 cm d

-1
 No units 

Arnett 0.332 1.36 36.2 15.6 -1.34 

Boise City 0.254 1.17 2.7 5.3 -4.04 

Fort Cobb 0.360 1.35 70.1 17.0 -1.45 

Freedom 0.447 1.40 18.0 20.9 -1.56 

Goodwell 0.042 1.364 1.5 1.2 -1.80 

Hooker 0.203 1.24 6.8 5.1 -1.97 

Slapout 0.401 1.37 93.4 20.5 -1.42 

Woodward 0.479 1.43 39.6 36.8 -1.19 

 

 Daily volumetric water content data at the 60 cm depth were used to determine 

hydraulic conductivity using  

(3) 2/11)1/(

0 }]1[1{)( nnn

e

L

ee SSKSK 
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where effective saturation, Se, is calculated by Se = (θ-θr)/(θs-θr). K0 is a matching point 

conductivity (cm d
-1

) and L is an empirical coefficient (Schaap et al., 2001). Values for 

K0 and L for each Mesonet site and sensor depth were also determined by Scott et al. 

(2013) using Rosetta. Assuming unit-gradient conditions (i.e. gravity-driven flow), the 

resulting daily hydraulic conductivity was set equal to the drainage rate, or potential 

recharge, for that day. This unit-gradient assumption has been applied in multiple 

previous studies using Darcian flow methods to estimate water flux in the soil (Chong et 

al., 1981; Gardner, 1964; Sisson, 1987; Nolan et al., 2006).  

Unsaturated zone chloride mass balance (CMBuz) recharge  

Independent recharge estimates were obtained for the following eight Mesonet 

sites in western Oklahoma: Arnett, Boise City, Fort Cobb, Freedom, Goodwell, Hooker, 

Slapout, and Woodward (Figure 3; site descriptions begin on page 23). These focus sites 

were chosen based on their location (above the Ogallala and Rush Springs aquifers), and 

based on the suitability of the surrounding soil for coring. Soil cores were collected in the 

field using either a Geoprobe (Geoprobe Systems, Salina, KS) or Giddings probe 

(Giddings Machine Company, Inc., Windsor, CO), with sampling depths ranging from 1 

m to 8.2 m. Cores were cut into segments in the field and bagged, or collected inside a 

plastic core liner, to prevent evaporation. After being returned to the lab, subsamples 

were taken every 0.5 m or every 0.2 m from the cores collected, depending on the type of 

core. These subsamples were oven dried for 24 hours at 105°C to determine gravimetric 

water content. Subsamples (25 g) were then mixed with 50 mL of reverse osmosis water, 

shaken for 4 hours on a reciprocal shaker, and filtered using 0.45 µm filters 

(HAWP04700, Merck Millipore). Leachate was sent to Oklahoma State University’s 
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Soil, Water, and Forage Analytical Laboratory for chloride analysis by flow injection 

auto-analyzer (QuikChem 8000, Lachat Instruments, Loveland, CO). The reverse 

osmosis water used to perform the extractions had a mean chloride concentration of 3.84 

mg L
-1

. In order to minimize the effect of this contamination, chloride results were 

corrected by subtracting the mean concentration of chloride in the reverse osmosis water 

used from CMBuz results. Recharge rates (RCMB) were then calculated by the mass 

balance equation: 

  𝑃 𝑥 𝐶𝑙𝑃 =  𝑅𝐶𝑀𝐵 𝑥 𝐶𝑙𝑢𝑧 ;     𝑅𝐶𝑀𝐵 =  
𝑃 x 𝐶𝑙𝑃

𝐶𝑙𝑢𝑧
         (4) 

where P is precipitation, and ClP and Cluz are chloride concentrations in precipitation 

and soil water in the unsaturated zone, respectively (Scanlon et al., 2010). This 

steady-state equation assumes that chloride deposited by precipitation is removed 

from the unsaturated zone only by drainage and is thus able to be used as an indicator 

of percolation throughout the soil profile. Therefore, high chloride concentrations in 

soil water indicate areas of low drainage (and recharge), while low concentrations of 

chloride in soil water indicate high drainage rates.  

 Mean annual precipitation at each site was calculated using Mesonet rainfall 

records from January 1994-May 2014. Chloride concentrations in precipitation were 

obtained from the National Atmospheric Deposition Program, and chloride 

concentrations were doubled to account for dry fallout (National Atmospheric Deposition 

Program, 2014; Scanlon et al., 2010). 
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CMBuz site descriptions: 

 

Arnett: This site is located in western Ellis County, Oklahoma on an Enterprise 

very fine sandy loam soil (coarse-silty, mixed, superactive, thermic Typic Haplustepts) 

with a 3 to 5% slope. This soil is classified as being well drained, non-saline, and having 

a water table deeper than 80 in (>200 cm) (NRCS Web Soil Survey). The site receives an 

average of 558 mm yr
-1 

of rainfall, with mean annual maximum and minimum 

temperatures of 22° and 7.8° C, respectively. 

Boise City: This site is located in central Cimarron County, Oklahoma. The 

dominant soil series is Sherm clay loam (fine, mixed, superactive, mesic Torrertic 

Paleustolls) with 0 to 1% slopes. This soil is classified as being well drained, non-saline, 

and having a water table deeper than 80 in (>200 cm) (NRCS Web Soil Survey). The site 

receives an average of 387 mm yr
-1 

of rainfall, with mean annual maximum and minimum 

temperatures of 21° and 4.2° C, respectively. 

Fort Cobb: This site is located in Caddo County, Oklahoma. The dominant soil 

series is Binger fine sandy loam (fine-loamy, mixed, active, thermic Udic Rhodustalfs) 

with 1 to 3% slopes, comprised of loamy residuum weathered from sandstone. This soil is 

classified as being well drained, and has a water table depth greater than 80 in (>200 cm) 

(NRCS Web Soil Survey). The site receives an average of 710 mm yr
-1

 of rainfall, with 

mean annual maximum and minimum temperatures of 23° and 9.6° C, respectively. 

Goodwell: This site is located in southern Texas County, Oklahoma. The 

dominant soil series is Ulysses clay loam (fine-silty, mixed, superactive, mesic Aridic 

Haplustolls), which is derived from calcareous loess. This soil has a maximum calcium 

carbonate content of 15%, is classified as being well drained, and has a water table depth 
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greater than 80 in (>200 cm) (NRCS Web Soil Survey). The site receives an average of 

414 mm yr
-1

 of rainfall, with mean annual maximum and minimum temperatures of 22° 

and 5.7° C, respectively. 

Hooker: This site is located in north Texas County, Oklahoma. The dominant soil 

series is Gruver clay loam (fine, mixed, superactive, mesic Aridic Paleustolls), which is 

derived from calcareous loamy and clay aeolian deposits. This soil has a maximum 

carbonate content of 35%, is classified as being well drained, and has a water table depth 

greater than 80 in (>200 cm) (NRCS Web Soil Survey). The site receives an average of 

432 mm yr
-1

 of rainfall, with mean annual maximum and minimum temperatures of 22° 

and 5.7° C, respectively. This Mesonet station is located in a drainage ditch (Figure 4), 

where pooling of water during and after rain events may lead to unrealistically high and 

non-representative calculated drainage rates. 

 

 

Figure 4. Panoramic photo of the Hooker Mesonet site, which is located near a drainage 

ditch. Photo from mesonet.org website. 

 

Slapout: This site is located in south Beaver County, Oklahoma. The dominant 

soil series is a Mansic-Mobeetie complex (fine-loamy, mixed, superactive, thermic Aridic 

Calciustolls), which is derived from calcareous loamy alluvium. This soil has a maximum 
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carbonate content of 40%, is classified as being well drained, and has a water table depth 

greater than 80 in (>200 cm) (NRCS Web Soil Survey). The site receives an average of 

521 mm yr
-1

 of rainfall, with mean annual maximum and minimum temperatures of 22° 

and 7.0° C, respectively. Due to a thick caliche (carbonate) layer adjacent to the Mesonet 

site, only one sample was taken near the site and is hereafter called the ‘first’ core sample 

taken at Slapout. The second core sample taken at this location was taken approximately 

150 m from the Mesonet station at a higher elevation. This core is referred to as the 

‘second’ core for this site. 

Woodward: This site is located in south Woodward County, Oklahoma. The 

dominant soil series is an eroded Carey silt loam (fine-silty, mixed, superactive, thermic 

Typic Argiustolls), which is comprised of sandy and silty residuum weathered from 

sandstone and siltstone. This soil is non-saline, has a maximum carbonate content of 

20%, a maximum sodium absorption ratio (SAR) of 4.0, is classified as being well 

drained, and has a water table depth greater than 80 in (>200 cm) (NRCS Web Soil 

Survey). The site receives an average of 618 mm yr
-1

 of rainfall, with mean annual 

maximum and minimum temperatures of 22° and 8.5° C, respectively. 

Modeled recharge rates  

Modelled recharge rates were obtained for these same eight sites using HYDRUS 

1-D (PC-Progress, Prague, Czech Republic), which solves the Richards equation for 

saturated-unsaturated water flow. The main processes evaluated in the model were water 

flow and root water uptake in the unsaturated zone. Upper boundary conditions were 

defined as atmospheric conditions with surface runoff, meaning that precipitation rates in 

excess of soil hydraulic conductivity did not increase the pressure head at the upper 
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boundary. Upper boundary condition inputs included daily precipitation values for the 

years 1994-2014, potential evaporation, and potential transpiration values.  

The FAO Penman-Monteith method (also referred to as the FAO-56 method) was 

used to estimate potential evapotranspiration at each site. The FAO-56 method uses daily 

maximum and minimum air temperature, maximum and minimum relative humidity, 

precipitation, wind speed, incoming solar radiation, and average vapor pressure deficit 

data to estimate potential evapotranspiration (Allen et al., 1998). All climatic input data 

were collected from the Oklahoma Mesonet for the years 1994-2014. The HYDRUS 

model requires the partitioning of potential evapotranspiration input data into its potential 

evaporation and potential transpiration components, which can be done in a number of 

ways. However, each of these methods relies on a quantitative measurement of the leaf 

area index (LAI) at the studied site. Because information regarding the time-varying leaf 

area index at the Mesonet sites is unavailable, sensitivity analysis was done to determine 

the effect of varying evaporation and transpiration partitioning within the model. This 

was done for the Arnett site by considering evaporation and transpiration to be varying 

percentages of the total estimated potential evapotranspiration (e.g., Run 1: evaporation = 

20% of ETo, transpiration = 80% of ETo; Run 2: evaporation = 25% of ETo, transpiration 

= 75% of ETo, etc.). The HYDRUS model was then run and the resulting flux rates at 60 

cm and 3 m were recorded and compared. This sensitivity analysis was conducted only 

for the simulation of the Arnett site because it is likely that other sites would show similar 

results to the same type of analysis. 

Additional upper boundary inputs included a factor termed hCritA, which is the 

minimum allowed pressure head at the soil surface. This value only comes into effect 



27 
 

when the pressure head at the soil surface is less than the defined hCritA value. When the 

pressure head at the surface drops below the hCritA value, evaporation is decreased from 

the given potential evaporation rate. An hCritA value of -100,000 cm was used in our 

simulations, with the exception of less than 30 days at the Fort Cobb site, where the 

hCritA value was reduced to -10,000 cm in order to allow for the convergence of the 

model. This value was within the range of values suggested in the HYDRUS 1-D 

documentation. 

The van Genuchten-Mualem single porosity model was used to model water flow 

throughout the soil profile, with an air entry suction value of -2 cm. Soil profiles at each 

site were characterized by either 4 or 5 soil layers to a depth of 3 m. This depth was 

chosen because it is the same depth used for soil core collected, and because it is unlikely 

that the root zone extends to 3 m. Soil layer depths, residual water content (θr), saturated 

water content (θs), saturated hydraulic conductivity (Ks), α, n, and L values for each site 

and depth were taken from Scott et al. (2013). Lower boundary conditions were defined 

as free drainage at 3 m. 

Root water uptake was simulated using the model of Feddes et al. (1978). Critical 

pressure head values in the water stress response function were determined by values for 

pasture from Wesseling (1991), with the exception of the wilting point, which was 

adjusted to -1500 kPa. Root density values were estimated using values published by Sun 

et al. (1997), who used detailed tracings of grass roots from the central grasslands of 

North America to estimate densities among various types of root systems. Because these 

root density values were found using images of plant roots and not actual soil profiles, 

root densities were reported as cm root/cm soil (in depth). For our purposes, the 



28 
 

assumption that reported root densities are uniform in three-dimensional space was made. 

This approach was considered appropriate because HYDRUS normalizes the potential 

root water uptake function before each simulation.  

Sensitivity analysis was conducted for the simulation at the Arnett site to 

determine the effects of different rooting depths and density distributions on water flux to 

the 3-m depth. This sensitivity analysis was done using root distributions and maximum 

rooting depths for grasses given by Sun et al. (1997). To determine the effect of shallow 

root systems on water uptake, the HYDRUS model was run using the root density 

distribution and maximum rooting depth of shallow-rooted grasses species. To determine 

the effects of deeper rooting systems on water uptake, the model was run using the root 

density distribution of medium-rooted grasses.  

Because rooting types were not known for the simulated sites, the mean root 

densities of shallow and medium-rooted grasses were used for modeling at all sites (Sun 

et al., 2007). The maximum rooting depth at all sites was considered to be 163 cm, which 

is the mean maximum rooting depth for grasses given by Sun et al. (1997). This approach 

is reasonable given that in most grasslands the greatest root densities are seen at depths of 

less than 20 cm (Sun et al., 1997). Additionally, a global analysis of root zone 

distributions done by Jackson et al. (1996) shows that 83% of all roots in grasses are 

located within the top 30 cm of soil.  

HYDRUS outputs included, along with many other factors, estimations of 

pressure head, water content, and water flow at 10 observation nodes placed at 30-cm 

intervals throughout each profile with the exception of the 270-cm depth. This depth was 

excluded because HYDRUS only allows the use of 10 observation nodes. Water flow 
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estimates were imported into MATLAB, where analysis was done to determine mean 

annual flux, total annual flux, and long-term average flux at each depth where an 

observation node was located. The first two years of simulation, 1998 and 1999, were 

considered a “warm up” period and thus were excluded from these calculations.  

Regional-scale recharge rates  

 Regional recharge rates were estimated by applying the saturated zone chloride 

mass balance (CMBsz) method to groundwater chloride data from the Oklahoma Water 

Resources Board’s Groundwater Monitoring and Assessment Program (GMAP).  For the 

2013 portion of this program, samples were collected from 156 groundwater monitoring 

wells located across five Oklahoma aquifers: Ogallala, Rush Springs, Gerty Sand, Elk 

City, and Canadian River. Samples were analyzed to determine the concentration of 

certain chemicals present, with a detection limit of 10 mg L
-1

. Concentrations below 

detection limit were reported as being zero, but for our purposes we assumed an average 

concentration of 5 mg L
-1

 for all samples below this detection limit. Reported chloride 

concentrations in these samples were used to calculate recharge rates, again following 

methods by Scanlon et al. (2010), according to equation 4, except that the chloride 

concentration in groundwater (Clgw), rather than the chloride concentration from soil, is 

the term in the denominator. Because chloride may also be derived by upward migration 

from underlying saline aquifers, Cl:SO4 ratios greater than one were used to distinguish 

chlorine from precipitation from chlorine derived from upward flow and were excluded 

from subsequent analysis (Scanlon et al., 2010).   
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CHAPTER IV 
 

 

RESULTS & DISCUSSION 

 

 

Soil Moisture Based Drainage Estimates  

Calculated mean drainage rates across the state ranged from 4 mm yr
-1

 at the 

Hinton, OK Mesonet site to 275 mm yr
-1 at Bristow (Figure 5). The state-wide median 

Mesonet-based drainage rate was found to be 61 mm yr
-1

, which is approximately 7% of 

the median state-wide rainfall. A similar percentage was found by Kim and Jackson 

(2011), who observed that 8% of rainfall became recharge under grassland systems in 

their global analysis. Generally, Mesonet drainage rates decrease as you move from the 

southeastern portion of Oklahoma to the panhandle, following the precipitation gradient 

of the state (Figure 5). This state-wide drainage map agrees somewhat with a similar map 

published by Pettyjohn et al. (1983), in that drainage follows the pattern described above. 

However, there are some differences between the two maps. For instance, our calculated 

drainage rates in the panhandle range from 7 to 30 mm yr
-1

 and are slightly higher than 

recharge rate of 2.5 mm yr
-1

 estimated for the panhandle by Pettyjohn et al (1983). 

Additionally, a lack of data in the southeastern part of the state makes a comparison 

between the two maps difficult for that area. 
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Figure 5. Calculated mean annual drainage rates (mm yr
-1

) and four-character site ID codes at Mesonet sites across Oklahoma for the 

years 1996-2012. For sites where no information is given, the corresponding Mesonet station did not have adequate soil moisture data 

to yield a reliable drainage rate. 



32 
 

Quality control was done using a box plot in order to determine drainage rate 

outliers (Figure 6), and resulted in the exclusion of the Washington, Bixby, Lane, and 

Foraker sites from subsequent analyses. These sites had the four highest calculated 

drainage rates, which were 654, 383, 372, and 356 mm yr
-1

, respectively.  

 

Figure 6. Boxplot used to determine outliers among mean calculated drainage rates for 

the years 1996-2012. The line in the center of the box is the median drainage rate, the 

lower and upper edges of the box are the 25
th

 and 75
th

 percentiles, and the whiskers 

extend to the most extreme data points not considered outliers. The four red crosses 

correspond to the four highest calculated drainage rates, which are considered outliers. 

These occurred at the Washington, Bixby, Lane, and Foraker sites. 

 

 

A reasonable explanation was found for the high drainage rates each of these 

sites. At the Washington site, shallow bedrock (59-72 in) may prevent the downward 

flow of water, leading to non-representative high soil moisture values at that site (NRCS 

Web Soil Survey). This explanation is supported somewhat by soil property data reported 
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by Scott et al. (2013) for this site, which shows a high bulk density of 1.95 g cm
3
 at the 

55 cm sensor depth. At Bixby it was determined that soil from nearby agricultural fields 

has blown onto the Mesonet site, adding up to 10 cm of loose soil to the soil surface and 

thus creating incorrect soil moisture sensor reading depths. Additionally, it is thought that 

irrigation water from those same agricultural fields may reach the Mesonet site, also 

creating unrealistic soil moisture values. The Lane site is located on eroded soils, and 

Scott et al. (2013) reported both an increase in bulk density and a sharp decrease in the 

saturated hydraulic conductivity at the 70-cm depth, indicating that there may be a 

limiting layer at that depth which restricts downward water movement. At Foraker, 

shallow bedrock (20-40 in) likely creates a shallow saturated zone, leading to high soil 

moisture values and drainage rates (NRCS Web Soil Survey). 

Even after removing statistical outliers, some sites, such as the Mangum, Hinton, 

Norman, Bristow, Stigler, and Paul’s Valley stations, have a calculated drainage rate that 

is noticeably higher than the surrounding sites. At the Mangum site, very sandy soils 

(>85% sand) and a shallow, possibly perched water table (20-40 in) may lead to 

overestimations of drainage (NRCS Web Soil Survey; Scott et al., 2013). At Hinton, 

despite having sandy soils (>75% sand), the soil is characterized as having a high runoff 

class and a very low ability to store water in the profile (NRCS Web Soil Survey; Scott et 

al., 2013). At the Norman site, bulk density increases at the 55 cm sensor depth, resulting 

in a significantly lower saturated hydraulic conductivity than the soil above that depth 

(Scott et al., 2013). This could lead to water flow being restricted at the 55 cm depth and 

an overestimation of drainage. The reason for high drainage rates at the Bristow site is 

difficult to pinpoint. Irrigation may be occurring near the site, but here are not any 
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obvious problems that would cause an incorrect drainage rate calculation. The Stigler 

Mesonet site is located very close to the floodplain of a creek. The location of the site 

may lead to non-representative high soil moisture readings at certain times, thus leading 

to an overestimation of drainage. The Paul’s Valley site is located near an area with 

several homes and paved roads, and is bounded on the other side by a small creek. It may 

be possible that the soil moisture sensors at this site are being influenced by increased 

runoff from these roads and by ephemeral stream flow. Additional quality control 

measures likely need to be taken to ensure reliable, representative soil moisture readings 

at all sites across the state. For example, the Hooker site, though it does not seem to have 

an unusually high mean drainage rate, is located in a drainage ditch (Figure 5). It is 

probable that this site is not the only one that is being impacted by poor site location 

leading to non-representative drainage rates, and a greater knowledge of the sites affected 

by poor station placement could be helpful in determining which sites’ drainage rates are 

realistic. 

The median Mesonet-based drainage rate from the eight focus sites was found to 

be 19 mm yr
-1

 (Table 4). The percentage of long-term mean precipitation that becomes 

drainage ranged from 1 to 8% at these eight Mesonet sites, with a mean value of 4% 

(Table 4). This mean value is lower than the estimate of 8% made by Kim and Jackson 

(2011), but is not unreasonable. Wood and Sanford (1995) estimated recharge to be only 

2% of precipitation in the Southern High Plains of Texas and New Mexico, both of which 

are very near the sites located in the Oklahoma Panhandle. These sites are all located in 

the western portion of the state, where high temperatures coupled with high wind speeds 

may increase evaporation from the soil as well as transpiration by plants, reducing the 
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amount of precipitation that is able to percolate to the deeper soil depths. It is worth 

noting, however, that six of the seven sites overlying the Ogallala aquifer (Arnett, Boise 

City, Goodwell, Hooker, Goodwell, and Woodward) have Mesonet-based drainage rates 

that fall within the 5 to 56 mm yr
-1 

range of recharge rates given by previous studies 

(Table 4). The Freedom site, located above the Cimarron River alluvial aquifer, has a 

calculated drainage rate of 9.3 mm yr
-1

, which is significantly lower than the 58 mm yr
-1

 

recharge rate given for that aquifer in the 2012 Oklahoma Comprehensive Water Plan. 

The 57 mm yr
-1

 drainage rate at the Fort Cobb site compares fairly well with previous 

recharge estimates that range from 5 to 264 mm yr
-1

 for the Rush Springs aquifer. 

Table 4. Site name, mean annual precipitation, mean annual Mesonet drainage rate, and 

the ratio of drainage to precipitation. 

Mesonet Site Precipitation Drainage D/P 

  mm yr
-1

 mm yr
-1

   

Arnett 561 21 0.04 

Boise City 386 7.3 0.02 

Fort Cobb 712 57 0.08 

Freedom 655 9.3 0.01 

Goodwell 410 18 0.04 

Hooker 436 14 0.03 

Slapout 530 30 0.06 

Woodward 630 24 0.04 

 

 Yearly calculated drainage rates vary quite a bit by year, and generally follow the 

pattern of annual precipitation at some sites, such as at the Woodward site (Figure 7). 

This figure shows the variability that may be seen in drainage by year, and shows that 

drainage may not fluctuate according to changes in yearly precipitation alone. Regression 

analysis for this site showed no observable correlation between yearly precipitation and 
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yearly drainage rates. This is likely because there are a number of other factors that 

influence drainage rates, such a temperature and plant cover type and amount. There is a 

large decrease in drainage from the year 1999 to the year 2000, despite an increase in 

annual precipitation. The reason for this is not clear, and this drastic decrease in drainage 

seems to mark the beginning of a trend that lasts over a decade. It is possible that water 

that was previously reaching the site (perhaps as runoff) was redirected beginning in the 

year 2000, or that an increase or change in vegetation led to a decrease in drainage.  It is 

interesting to note the increase from nearly zero drainage in 2006 (the year with the 

lowest annual precipitation and drainage rates of the 2000-2010 decade) to approximately 

35 mm yr
-1

 of drainage in 2007 (the year with the highest annual drainage rate and second 

highest annual precipitation level of the 2000-2010 decade).  

Figure 7. Total precipitation and drainage at the 60-cm depth by year from 1996-2012 at 

the Woodward Mesonet site. 
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Unsaturated zone chloride mass balance (CMBuz) recharge  

Measured mean chloride concentrations found by CMBuz analysis of soil cores 

taken at the eight focus sites ranged from 39 mg L
-1

 at the Goodwell site to 1529 mg L
-1

 

at the Freedom site (Table 5). These chloride concentrations led to estimated recharge 

rates ranging from 0.12 mm yr
-1

 at Boise City to 2.5 mm yr
-1

 at the Arnett site. CMBuz 

analysis of soil cores taken at the eight focus sites gave a median recharge rate of 0.3 mm 

yr
-1

, a significantly lower value than the 19 mm yr
-1

 median estimate made from Mesonet 

soil moisture data. The reasons for this discrepancy between Mesonet drainage rates and 

CMBuz recharge values are not clear. One possibility is that the unit-gradient assumption 

made in our analysis of Mesonet drainage rates does not reflect actual conditions at these 

sites. Another possibility is that chloride inputs not reflected in the NADP data could 

have affected chloride concentrations in the soil, leading to an underestimation of 

recharge from the CMBuz analyses. A third possibility is that significant root water 

uptake may occur beneath the 60 cm depth such that the Mesonet-based drainage rates 

overestimate recharge. 

Previous studies have shown chloride concentrations with a similar range of 

chloride concentrations. Scanlon et al. (2010) reported chloride concentrations ranging 

from 6.9 to 1600 mg L
-1

 for soils under rain-fed systems in the Texas High Plains. 

However, this paper reports recharge rates only for medium-course grained rain-fed 

systems, whose chloride concentrations have a much smaller range of 6.9 to 83 mg L
-1

. 

The resulting recharge rates range from 2.8 to 36 mm yr
-1

, with a median recharge rate of 

9.3 mm yr
-1

. This value is two orders of magnitude higher than the median CMBuz-

estimated recharge rate (0.3 mm yr
-1

) for our focus sites. One reason for this difference 
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may be the difference in the concentration of chloride in precipitation between studies, 

which is often considered to be the factor with the greatest level uncertainty (Wood and 

Sanford, 1995). Scanlon et al. (2010) report precipitation chloride concentrations of 0.22 

to 0.26 mg L
-1

, which would lead to slightly higher recharge rates than the 0.10 to 0.19 

mg L
-1

 concentrations used in our study. 

Table 5. Site name, mean annual precipitation, mean chloride concentrations in 

precipitation, depth-weighted mean chloride concentration beneath the root zone from 

soil cores, and CMBuz recharge estimates for the eight Mesonet focus sites. 

Mesonet Site Precipitation ClP Chloride Recharge 

  mm yr
-1

 mg L
-1

 mg L
-1

 mm yr
-1

 

Arnett 561 0.19 81 2.5 

Boise City 386 0.1 624 0.12 

Fort Cobb 712 0.19 961 0.27 

Freedom 655 0.19 1529 0.16 

Goodwell 410 0.1 39 2.0 

Hooker 436 0.1 687 0.13 

Slapout 530 0.1 516/76 0.20/1.4 

Woodward 630 0.19 127 1.8 

 

A study done by McMahon et al. (2003) in Southwestern Kansas reported 

chloride concentrations from one soil sample ranging from 13 to 253 mg L
-1

. These 

chloride concentrations are comparable to many of the mean chloride concentrations 

found at our eight focus sites. The mean precipitation reported in this previous study was 

452 mm yr
-1

, which is also comparable to the rates of precipitation at many of our study 

sites. Calculated recharge rates for this study were found to range from 2.4 to 10 mm yr
-1

, 

with a mean value of 5.2 mm yr
-1

. These numbers are higher than our estimated recharge 

rates. This is likely because, again, the estimated chloride concentrations in precipitation 
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were higher for the McMahon et al. (2003) study than for our sites. It may be possible 

that low reported chloride concentrations in precipitation in Oklahoma are leading to 

recharge rates lower than previous studies have observed in other regions. 

The chloride profile for the Goodwell site (Figure 8) shows a chloride peak near 

the 1-m depth. This figure shows how chloride is typically inversely related to the 

amount of water at that point in the soil profile (i.e., high chloride concentration, low 

water content and low recharge). Chloride concentrations beneath the 1.5-m depth 

stabilized near a concentration of approximately 40 mg L
-1

, which suggests that chloride 

beneath that depth is not being collected, but rather is being flushed through the profile 

by moving soil water. Also, this profile demonstrates how concentrations in soil pore 

water are capable of varying considerably by depth.  

 

Figure 8. Chloride concentration and gravimetric water content versus depth for the soil 

cores collected at Goodwell, Oklahoma. 
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Modeled recharge rates   

The results of the root density and root distribution sensitivity analysis done in 

HYDRUS 1-D showed that the amount of water the reaches the 3-m depth did not vary 

between root densities and maximum rooting depths (Table 5). However, there was a 

significant effect on the amount of water that passes the 60 cm depth. Shallow root 

systems showed a conductivity of 41 mm yr
-1

 at the 60 cm depth, while medium root 

systems allowed 68 mm yr
-1

 at the same depth. These results are the opposite of what one 

would expect to see. Normally, a deeper root system would lead to a decrease in the 

amount of water reaching deeper soil depths. However, because the root density of 

shallow-rooted plants is highest near the surface of the soil, where the greatest density of 

roots occurs at the 30- 60 cm depth for medium-rooted plants, it may be that high rates of 

root water uptake near the surface in shallow-rooted plants are restricting water flow to 

deeper depths. These results show that the different root densities and depths simulated 

have little effect on the amount of water reaching the 3-m depth, but do significantly 

affect the amount of water that flows past the 60 cm depth. 

 

Table 6. Results of rooting depth and root density sensitivity analysis done in HYDRUS 

for the Arnett Mesonet site. Plant root types, root densities by depth, and maximum 

rooting depths (RD) from Sun et al. (2007), and the resulting HYDRUS flux rates at 60 

and 300 cm. 

Root type 0-30 cm 30-60 cm 60-100 cm 100+ cm Max. RD Flux 

60 cm 

Flux 

300 cm 
  cm cm

-1
 cm mm yr

-1
 

Shallow 43 24 12 5 128 41 0.20 

Medium 25 34 32 13 207 68 0.20 

Average 34 29 22 9 163 54 0.20 
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The results of potential evapotranspiration partitioning sensitivity analysis show 

that varying the amounts of potential evapotranspiration partitioned to the evaporation 

and transpiration components has a moderate effect on the amount of water that reaches 

the 60 cm depth, but no effect on the amount of water that reaches the 3-m depth (Table 

6). Increasing the evaporative component led to lower flux rates at the 60 cm depth, but 

was not found to affect the amount of water that percolates to the 3-m depth. Because we 

believe that evaporation at the modelled sites may be relatively high and that the sparse 

vegetation of the panhandle limits the amount of transpiration that may occur in this 

region, 50% of potential evaporation was allotted to both the evaporation and 

transpiration components. 

Table 7. Results of potential evapotranspiration partitioning sensitivity analysis done in 

HYDRUS for the Arnett Mesonet site. Evaporation and transpiration (fractions), the 

resulting flux rates at 60 cm and 300 cm, and the amount of water from the 60 cm depth 

that reaches the 3-m depth. 

E T Flux 60 cm Flux 300 cm 300:60 

    mm yr
-1

 mm yr
-1

   

0.2 0.8 68.0 0.2 0.002 

0.25 0.75 64.7 0.2 0.002 

0.4 0.6 57.5 0.2 0.003 

0.5 0.5 54.4 0.2 0.004 

0.6 0.4 52.5 0.2 0.005 

0.75 0.25 51.4 0.4 0.008 

0.8 0.2 50.8 0.6 0.012 

 

The Mesonet-based drainage estimates from the 60 cm soil moisture sensor depth 

were evaluated using HYDRUS 1-D (Table 7). Water fluxes at the 60 cm depth were 

estimated by the model to range from 7.5 mm yr
-1

 at Goodwell to 145 mm yr
-1

 at Fort 
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Cobb. For all but two sites, Hooker and Goodwell, the HYDRUS-estimated flux at 60 cm 

was higher than Mesonet-based drainage estimates at the 60 cm depth. Interestingly, 

water contents beneath the root zone from soil samples taken in the field are generally 

higher than those simulated by HYDRUS, which would indicate that the model-generated 

water flow and root uptake values may not reflect actual conditions at these sites (Table 

8). However, these HYDRUS results compare fairly well with previous studies conducted 

on the aquifers underlying the sites. All but the Freedom and Fort Cobb sites lie above 

the Ogallala aquifer, for which previous studies have estimated a recharge range of 5 to 

56 mm yr
-1

 (Table 1). Of the seven sites located over the Ogallala, only the Slapout site 

has a HYDRUS-estimated recharge rate that falls outside this range, with a 60-cm flux 

rate of 90 mm yr
-1

. 

HYDRUS-estimated flux rates at the 3-m depth ranged from 0.1 mm yr
-1

 at 

Goodwell to 21 mm yr
-1

 at Fort Cobb, and are substantially lower than both HYDRUS-

estimated and Mesonet-based drainage rates at all sites. These flux rates at the 3-m depth 

are similar to those found by Wang et al. (2009), who used HYDRUS 1-D to simulate 

recharge on sandy soils in Nebraska. This study modeled soil profiles to a depth of 5 m 

and used a unit gradient assumption. Recharge rates for sand and loamy sand were 

estimated to range from 0.06 to 32.8 cm yr
-1

 and 0.02 to 25.7 cm yr
-1

, respectively. These 

results show the high level of variability of recharge estimates, even within a single study 

and location. Additionally, these results give evidence that our HYDRUS-estimated 3-m 

flux rates for Oklahoma, which range from 0.1 to 21 mm yr
-1

, are likely acceptable. 

Though our HYDRUS-estimated flux rates, with the exception of the Fort Cobb site, are 

on the low end of the range found by Wang et al. (2009), this is to be expected when it is 
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considered that the Nebraska study site received an average of 57.6 inches of rain per 

year, while the simulated sites in Oklahoma receive a median value of only 21.5 in yr
-1

. 

 

Table 8. Mean annual Mesonet-based drainage at 60 cm and mean annual flux values at 

60 and 300 cm found using HYDRUS 1-D. 

Mesonet Site Mesonet Drainage 

60 cm 

HYDRUS flux HYDRUS flux 

 60 cm 60 cm 300 cm 

 
mm yr

-1
 mm yr

-1
 mm yr

-1
 

Arnett 21 54 0.2 

 
Boise City 7.3 15 0.3 

 
Fort Cobb 57 145 21 

Freedom 9.3 64 0.8 

Goodwell 18 7.5 0.1 

Hooker 14 9.9 1.3 

Slapout 30 90 0.5 

 
Woodward 24 55 0.7 

 

Table 9. Mean volumetric water content beneath the root zone (beneath 163 cm) for soil 

cores taken in the field and for HYDRUS simulations. Actual water content beneath the 

root zone is not available for the Woodward site because a sample was not able to be 

collected beneath the root zone. 

Site θv actual θv simulated 

 cm
3
 cm

-3
 cm

3
 cm

-3
 

Arnett 0.15 0.11 

Boise City 0.14 0.14 

Fort Cobb 0.12 0.08 

Freedom 0.20 0.13 

Goodwell 0.13 0.09 

Hooker 0.22 0.33 

Slapout 0.03/0.33 0.10 

Woodward NA 0.09 
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Similar results were also found by Keese et al. (2005), who used UNSAT-H (a 

model very similar to HYDRUS) to estimate recharge in Texas. This model, like 

HYDRUS, solves the Richards equation for variable saturated soils and applies the 

Feddes et al. (1978) model for plant water uptake. Simulations were done using 30-year 

climatic data from the years 1961-1990. The resulting recharge estimates for vegetated, 

variable-textured soils were found to range from 0.2 to 117.7 mm yr
-1

, or 1 to 10% of 

annual precipitation. These results compare favorably with our modelling results, 

especially with respect to the percentage of annual precipitation that becomes recharge. 

Again, our estimates fall toward the low end of the range given by Keese et al. (2005), 

but this is likely because areas with precipitation of up to 1783 mm yr
-1

 were considered 

in their study, where our greatest modelled mean annual precipitation rate was only 712 

mm yr
-1

. 

Overall, our modelling results suggest that root water uptake may be significant 

below 60 cm for these sites and that Mesonet drainage rates may overestimate recharge 

for these and similar sites in western Oklahoma. However, these sites have deep soils and 

dry climates and these findings may not apply to shallower soils or wetter locations. 

While Mesonet-based drainage rates and HYDRUS-estimated water flux at the 60-cm 

depth do not agree, HYDRUS-estimated water flux at the 3-m depth actually compares 

fairly well with values given by previous studies.  

Regional-scale recharge rates 

Aquifer-scale median precipitation and drainage rates were found for aquifers 

with three or more Mesonet sites located above them (Table 9) and were compared to 

previously published recharge rates for those aquifers. This includes the Boone, Arkansas 
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River alluvial aquifer, Garber-Wellington, Rush Springs, Antlers, and Ogallala aquifers. 

Median annual drainage to these aquifers ranged from 21 mm yr
-1

 for the Ogallala to 235 

mm yr
-1

 for the Boone aquifer. These results generally follow the precipitation gradient of 

the state, with decreasing drainage rates as you move from the east to the west. With the 

exception of the Arkansas River alluvial aquifer, for which only one previous recharge 

study was found, median annual calculated drainage rates fall within the range of 

recharge rates given by previous studies. This relationship between drainage rates and 

results of previous studies suggests that Mesonet drainage estimates may be capable of 

providing reliable recharge estimates at a regional scale. 

Table 10. Summary of median precipitation and annual drainage at 60 cm for Mesonet 

sites above selected Oklahoma aquifers from 1996 through 2012.  For comparison, prior 

published estimates of groundwater recharge for these aquifers are also shown. 

 

Analysis of groundwater data from the OWRB’s GMAP program by the CMBsz 

method yielded aquifer-scale recharge rates for five Oklahoma reservoirs (Table 10). A 

total of 54 groundwater samples from the GMAP program had chloride concentrations 

below the detection limit of 10 mg L
-1

, while 19 samples had sulfate concentrations 

beneath this limit. These samples were assumed to have chloride and sulfate 

concentrations of 5 mg L
-1

, which would also create an upper limit on recharge rates. For 

Aquifer Sites Precipitation Drainage Recharge No. Sources 

    mm yr
-1

 mm yr
-1

 mm yr
-1

 
 

Boone 3 1076 235 2.3-254 4 

Arkansas River 5 1006 171 127 1 

Garber-Wellington 3 893 121 7.6-203 4 

Rush Springs 5 735 74 4.9-99 4 

Antlers 4 936 70 8.1-152 4 

Ogallala 8 497 21 1.5-54 4 
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the Ogallala aquifer, this assumed concentration results in the highest recharge rate 

possible being 18.9 mm yr
-1

. The removal of samples with a Cl:SO4 ratio greater than one 

led to the exclusion of 32 of the 155 groundwater samples taken.  

Recharge rates from this analysis ranged from 4.8 mm yr
-1

 for the Canadian River 

alluvial aquifer to 25.4 mm yr
-1

 for both the Elk City and Gerty Sand aquifers. Because 

groundwater samples are representative of a large area and not specific to a certain 

location, recharge estimates found by the CMBsz method are only comparable to 

Mesonet-based drainage rates summarized by aquifer (Table 10). The only aquifers that 

were tested under the GMAP program which also have an adequate number of Mesonet 

sites located above them to produce a reliable aquifer- scale median drainage rate are the 

Ogallala and Rush Springs aquifers. Aquifer-scale median Mesonet estimates of drainage 

and recharge estimated by CMBsz show a high level agreement for the Ogallala aquifer, 

with rates of 21 and 17.8 mm yr
-1

, respectively. However, the median Mesonet-based 

drainage rate and CMBsz -estimated recharge rate for the Rush Springs aquifer vary by an 

order of magnitude, with rates of 74 mm yr
-1

 and 7.6 mm yr
-1

, respectively. The cause of 

this discrepancy between the CMBsz and Mesonet-based estimates for the Rush Springs 

aquifer is unclear. One reason could be that groundwater samples used in the CMBsz 

calculations reflect chloride concentrations over only one year of sampling, while 

drainage estimates calculated using Mesonet data are given as the median of mean 

drainage rates for sites above the aquifer for the years 1996-2012. Recharge estimates 

from this analysis of groundwater chloride seem to be intermediate between the Mesonet-

based drainage rates, which are slightly higher, and the CMBuz recharge rates, which are 

much lower. 
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Table 11.  Mean annual precipitation, number of samples, mean groundwater chloride 

concentrations, and recharge estimates calculated by the CMBsz method for select 

Oklahoma aquifers sampled in the 2013 portion of the GMAP program. 

 

Aquifer Precipitation No. Samples GW chloride Recharge 

 
mm yr

-1
  ppm mm yr

-1
 

Gerty Sand 894 5 11 25.4 

Canadian River 770 34 52 4.8 

Rush Springs 714 64 31 7.6 

Elk City 683 13 9 25.4 

Ogallala NW 587 39 11 17.8 

 

A previous study that applied the CMBsz method to groundwater in Texas and 

New Mexico gave groundwater chloride concentrations that ranged from 20 to 1110 mg 

L
-1

 and resulting recharge rates that averaged 11 mm yr
-1

 (Wood and Sanford, 1995). 

However, chloride concentrations in precipitation for this study ranged from 0.18 to 3.58 

mg L
-1

, with an average concentration of nearly 8 mg L
-1

, which would lead to higher 

recharge rates than the concentrations below 1 mg L
-1

 found for our study area, given that 

precipitation levels were comparable between the studies.  
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CHAPTER V 
 

 

CONCLUSION 

 

 

This study represents the first known use of data from a meso-scale soil moisture 

monitoring network for estimation of groundwater recharge. Our preliminary results 

show that these soil moisture-based drainage estimates are greater than or equal to 

recharge estimates found by independent methods in central and western Oklahoma. 

Modeling water flux and root water uptake at depth has provided some useful 

information regarding this relationship, with Mesonet drainage rates falling between 

HYDRUS 1-D simulated fluxes at 60 cm and 300 cm in most cases. Recharge estimation 

using the CMBsz method provided an aquifer-scale recharge value close to the median 

drainage values for the Mesonet sites in the Ogallala aquifer.  

As with all recharge estimation methods, there are several weaknesses inherent to 

the drainage estimation method used here. Because the Mesonet system was originally 

created for weather monitoring, the suitability of site locations for soil moisture data 

collection was not taken into account. This led to the placement of stations in areas where 

soil moisture measurements may be adversely affected by nearby streams, ditches, 

irrigation systems, or simply by the natural soil and geological features of the area. It is 
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also possible that measurement errors may lead to inaccurate soil moisture readings, or 

prevent readings from being taken at all. Additionally, the unit-gradient assumption 

applied in this method may not be realistic at all sites at all times. There is a need to 

develop additional quality control procedures to reduce the occurrence of anomalous 

drainage estimates. Despite these uncertainties, Mesonet-based drainage rates seem to 

provide reasonable drainage rates at most sites. 

Using soil moisture data to estimate drainage has a number of benefits that are 

unique to this method. The first is that the monitoring system necessary for such 

measurements is already in place, so there is no start-up cost.  A second strength is that 

this method provides the ability to estimating drainage throughout the entire state, which 

hasn’t been done since the 1980s (Pettyjohn et al, 1983). Another strength is that the 

Mesonet system has been recording the necessary soil moisture data for nearly twenty 

years, allowing for the calculation of drainage rates at a long-term scale that is difficult 

for shorter research studies to encompass.  Possibly the greatest strength of this method is 

that it allows for the calculation of drainage rates at a yearly (or even daily) time step, as 

opposed to other studies which merely estimate an average recharge rate for the duration 

of the study. This yearly drainage data may be useful for scientists, policy makers, or the 

general public in the context of drought and water management. An increase in the 

general understanding of how drainage rates vary according to climatic factors could lead 

to more informed decision making by land owners, policy makers, and citizens, each who 

value the sustainability of the limited groundwater resources of our state. 
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APPENDICES 

 

 

Table A1. Mesonet site ID, mean annual drainage rate, mean annual precipitation, and 

the ratio of drainage to precipitation for each Mesonet site for which a drainage rate could 

be calculated. 

Site Drainage Precipitation D/P 

  mm yr
-1

 mm yr
-1

 % 

'ACME' 80 781 0.10 

'ALV2' 13 1030 0.01 

'ANT2' 225 1139 0.20 

'APAC' 73 771 0.09 

'ARD2' 57 839 0.07 

'ARNE' 21 561 0.04 

'BEAV' 24 483 0.05 

'BIXB' 383 991 0.39 

'BLAC' 87 925 0.09 

'BOIS' 7 386 0.02 

'BOWL' 79 968 0.08 

'BREC' 23 802 0.03 

'BRIS' 275 951 0.29 

'BUFF' 43 555 0.08 

'BURN' 72 854 0.08 

'BUTL' 34 699 0.05 
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'BYAR' 63 904 0.07 

'CARL' 58 811 0.07 

'CENT' 254 989 0.26 

'CHER' 19 755 0.03 

'CHEY' 37 712 0.05 

'COPA' 197 947 0.21 

'DURA' 55 1035 0.05 

'ELRE' 58 819 0.07 

'ERIC' 20 620 0.03 

'EUFA' 41 1060 0.04 

'FAIR' 52 720 0.07 

'FITT' 76 910 0.08 

'FORA' 356 958 0.37 

'FREE' 9 655 0.01 

'FTCB' 57 712 0.08 

'GOOD' 18 410 0.04 

'GRA2' 34 680 0.05 

'HASK' 24 1050 0.02 

'HECT' 112 990 0.11 

'HINT' 4 763 0.01 

'HOBA' 22 738 0.03 

'HOLD' 145 815 0.18 

'HOLL' 29 616 0.05 

'HOOK' 14 436 0.03 

'INOL' 188 1029 0.18 

'KETC' 77 857 0.09 

'KIN2' 17 705 0.02 

'LAHO' 49 762 0.06 

'LANE' 372 1077 0.35 

'MANG' 125 671 0.19 

'MARE' 8 887 0.01 

'MAYR' 35 677 0.05 

'MIAM' 226 1081 0.21 

'NEWK' 152 945 0.16 

'NOWA' 174 1017 0.17 

'NRMN' 192 815 0.24 

'OILT' 102 983 0.10 

'OKCE' 68 971 0.07 
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'OKCW' 90 913 0.10 

'PAUL' 244 894 0.27 

'PAWN' 85 949 0.09 

'PERK' 89 873 0.10 

'PORT' 149 1024 0.15 

'PUTN' 75 666 0.11 

'REDR' 45 896 0.05 

'SALL' 71 1097 0.06 

'SEIL' 25 699 0.04 

'SHAW' 28 860 0.03 

'SKIA' 133 1011 0.13 

'SLAP' 30 530 0.06 

'SPEN' 14 882 0.02 

'STIG' 253 1065 0.24 

'STIL' 218 874 0.25 

'TIPT' 29 631 0.05 

'VINI' 68 1082 0.06 

'WASH' 654 855 0.76 

'WATO' 88 755 0.12 

'WAUR' 128 797 0.16 

'WEBR' 73 995 0.07 

'WILB' 83 1102 0.08 

'WIST' 59 1118 0.05 

'WOOD' 24 630 0.04 
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 Figure A1. Mean state-wide drainage rates for the year 2006. 

  

  



62 
 

 

Figure A2. Boxplot of calculated drainage rates for the year 2006. The line in the center of the 

box is the median drainage rate, the lower and upper edges of the box are the 25
th

 and 75
th

 

percentiles, and the whiskers extend to the most extreme data points not considered outliers. The 

red crosses correspond to the four highest calculated drainage rates, which are considered 

outliers. These sites included the Sallisaw, Washington, Lane, Paul’s Valley, Centrahoma, 

Mangum, and Stigler Mesonet sites.
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 Figure A3. Mean state-wide drainage rates for the year 2007. 
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Figure A4. Boxplot of calculated drainage rates for the year 2007. The line in the center of the 

box is the median drainage rate, the lower and upper edges of the box are the 25
th

 and 75
th

 

percentiles, and the whiskers extend to the most extreme data points not considered outliers. The 

red crosses correspond to the four highest calculated drainage rates, which are considered 

outliers. These sites included the Sallisaw, Washington, Lane, Bristow, Foraker, Centrahoma, 

Paul’s Valley, Stigler, and Norman Mesonet sites. 
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Figure A5. Total precipitation and drainage at the 60 cm depth by year from 1996-2012 

at the Arnett Mesonet site. 
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Figure A6. Total precipitation and drainage at the 60 cm depth by year from 1996-2012 

at the Boise City Mesonet site. 
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Figure A7. Total precipitation and drainage at the 60 cm depth by year from 1996-2012 

at the Fort Cobb Mesonet site. 
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Figure A8. Total precipitation and drainage at the 60 cm depth by year from 1996-2012 

at the Freedom Mesonet site. 

 

 

  



69 
 

 

Figure A9. Total precipitation and drainage at the 60 cm depth by year from 1996-2012 

at the Goodwell Mesonet site. 
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Figure A10. Total precipitation and drainage at the 60 cm depth by year from 1996-2012 

at the Hooker Mesonet site. 

 

  



71 
 

 

Figure A11. Total precipitation and drainage at the 60 cm depth by year from 1996-2012 

at the Slapout Mesonet site. 
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Figure A12. Chloride concentration and gravimetric water content versus depth for the 

soil cores collected at Arnett, Oklahoma. 
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Figure A13. Chloride concentration and gravimetric water content versus depth for the 

soil cores collected at Boise City, Oklahoma. 
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Figure A14. Chloride concentration and gravimetric water content versus depth for the 

soil cores collected at Fort Cobb, Oklahoma. 
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Figure A15. Chloride concentration and gravimetric water content versus depth for the 

soil cores collected at Freedom, Oklahoma. 
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Figure A16. Chloride concentration and gravimetric water content versus depth for the 

soil cores collected at Hooker, Oklahoma. 
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Figure A17. Chloride concentration and gravimetric water content versus depth for the 

first of two soil cores collected at Slapout, Oklahoma.  
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Figure A18. Chloride concentration and gravimetric water content versus depth for the 

second of two soil cores collected at at Slapout, Oklahoma.  
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Figure A19. Chloride concentration and gravimetric water content versus depth for the 

soil cores collected at Woodward, Oklahoma. 
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