
 DEVELOPMENT OF A VIRTUAL FACTORY

ENVIRONMENT TO STUDY, SIMULATE AND

IMPROVE THE MATERIAL FLOW BETWEEN

MULTIPLE MICRO ASSEMBLY WORK CELLS

 By

 ABRAHAM ROBLEDO GALLEGOS

 Bachelor of Science in Industrial Engineering

 Universidad de las Américas

 Puebla, Puebla

 2007

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 May, 2015

ii

 DEVELOPMENT OF A VIRTUAL FACTORY

ENVIRONMENT TO STUDY, SIMULATE AND

IMPROVE THE MATERIAL FLOW BETWEEN

MULTIPLE MICRO ASSEMBLY WORK CELLS

 Thesis Approved:

 Dr. Terry Collins

 Thesis Adviser

 Dr. Camille DeYong

Dr. Jennifer Glenn

iii

Acknowledgements reflect the views of the author and are not endorsed by committee

members or Oklahoma State University.

ACKNOWLEDGEMENTS

To God, who blesses me with access to knowledge that helps me to become a wiser man.

To my mother, Olivia Gallegos, who taught me, through her example, that love, faith and
perseverance can make anything happen, no matter the circumstances.

To my father, Teodoro Robledo, whose words full of a working man’s wisdom taught me
that wise men are quiet and observe thoroughly before giving an intelligent opinion.

To my wife, Luana, my daughter Luiza and upcoming baby Gabriel, who inspire me with
love every single day and who had patience during all those long nights and weekends
that were dedicated to fulfill my academic objectives.

To my sister Olivia, who has been a loyal friend, companion, teammate, counselor and
counselee since we used to play as little children in the guest bedroom upstairs.

To my company and professional mentors who have been fundamental in my
development as an engineer, manager and leader. Rob LaRosa, Keith White, Robert
Landi, Randy Walker, Rafael Colon, John Zeigle, Larry Golen and Victor Mora are
among those who have made a difference in my professional life.

To Dr. José Pablo Nuño from UPAEP who inspired me to continue my education.

To Dr. Terry Collins, Dr. Camille DeYoung, Dr. Jeniffer Gleen, Dr. Sunderesh Heragu,
Ms. Megan Rose Hughes and Mrs. Laura Lee Brown, from OSU, who supported me and
gave me hope during the most difficult time in my academic life. They are an example of
those who do the right thing regardless of what may come ahead.

Significant quotes that inspired me along the way:

“The greatest accomplishment is not in never falling, but in rising again after you fall” –
Vince Lombardi

“The supreme quality for leadership is unquestionably integrity. Without it, no real
success is possible, no matter whether it is on a section gang, a football field, in an army,
or in an office” – Dwight D. Eisenhower

iv

Name: ABRAHAM ROBLEDO GALLEGOS

Date of Degree: MAY 2015

Title of Study: DEVELOPMENT OF A VIRTUAL FACTORY ENVIRONMENT TO

STUDY, SIMULATE AND IMPROVE THE MATERIAL FLOW
BETWEEN MULTIPLE MICRO ASSEMBLY WORK CELLS

Major Field: INDUSTRIAL ENGINEERING & MANAGEMENT

Abstract: This thesis focuses on the creation of a virtual factory environment and its use to

improve material flow between micro assembly work cells. The idea is to create a methodology
that enables users to study the improvement of micro factory layouts and compare them based on
their performance in the virtual environment. The main objectives for this project are to create a
virtual factory environment using Unity® software, a game engine, and use it to simulate near
optimal routing sequences between work cells.

Programming in Unity® creates user interfaces that accept inputs with near optimal sequences
that visit all the micro assembly cells in the simulated factory. Near optimal sequences are
obtained using genetic algorithms within the Global Optimization tool from MatLab. This tool
calls pre - programed functions that repeatedly apply genetic operators, like crossovers and
mutations, to a given sequence in order to find a near optimal one. MatLab feeds from external
data that consists of the distances between the work cells. These distances are calculated and
stored in an Excel file which is read directly from the MatLab environment.

All thesis objectives are fulfilled and the proposed methodology is used successfully to create a
virtual micro factory in Unity®. The model is used to simulate several sequences for different
circumstances:

• Material distribution for a twenty four cell layout connected by conveyors.

• Material distribution for only twelve of the twenty four available stations.

• Design of material distribution sequence to supply twenty four work cells that are not
limited by conveyor connections.

In all situations the cumulative travel distances calculated in the Unity® model matched the
objective function value estimated in MatLab. This validated the ability of the model to
accurately represent the motion of materials within a micro assembly factory.

This methodology can be used not only to study and improve existing micro factory systems but
to also design future micro factories to be more efficient. The flexibility of the Unity®
environment enables the users not to only simulate the movement of materials along near optimal
sequences but to also reposition objects to quickly create different layout options.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Introduction to Micro-assembly and virtual prototyping1
 1.2 Problem statement and motivation...1
 1.3 Goals and objectives ..2
 1.4 Overview of proposed approach ..3
 1.5 Remarks ..4

II. REVIEW OF LITERATURE..5

 2.1 Introduction ..5
 2.2 Literature related to micro assembly ..5
 2.3 Literature related to virtual reality ...9
 2.4 Literature related to the application of virtual reality in the field of micro
 assembly ...11

III. PROPOSED METHODOLOGY ...13

 3.1 Introduction ..13
 3.2 Interaction of Unity, Excel and MatLab ..13
 3.3 Unity and Virtual Reality Modeling ..14
 3.4 User Interface ...15
 3.5 Excel and MatLab coordinates input ...17
 3.6 MatLab sequence generation with Genetic Algorithms30
 3.7 Micro Assembly Factory Model in Unity® and Simulation of the near
 optimal sequence ..42
 3.7.1 Micro Assembly Factory Model ...42
 3.7.2 Simulation of near optimal sequence ..44
 3.8 Alternative Layouts ..48
 3.9 Methodology Conclusion ...53

vi

Chapter Page

IV. DETAILS OF MODELING IN UNITY..54

 4.1 Introduction ..54
 4.2 Object Importing from External Sources ...54
 4.3 Object Creation with Unity Resources ..57
 4.4 Positioning ...60
 4.5 Nesting ...63
 4.6 Scripting ...67
 4.7 Unity Modeling Conclusion ...71

V. RESULTS SUMMARY AND CONCLUSION ..72

 5.1 Introduction ..72
 5.2 Results summary ..73
 5.3 Results discussion ..75
 5.4 Importance of virtual environments and prototypes ..75
 5.5 Future work and research opportunities ...76
 5.6 Overall conclusion ...77

REFERENCES ..79

APPENDICES ...85

Appendix A: MathWorks Permission ..85
Appendix B: MatLab’s Create Permutations script ...87
Appendix C: Create Permutations custom script ...88
Appendix D: MatLab’s Mutate Permutations script ..89
Appendix E: Mutate Permutations custom script ..90
Appendix F: MatLab’s Crossover Permutations script ..91
Appendix G: Crossover Permutations custom script ...92
Appendix H: MatLab’s Traveling Salesman Fitness script93
Appendix I: Script created in Unity® to simulate near optimal sequences
 in the virtual environment ..94

VITA

vii

LIST OF TABLES

Table Page

 Table 1. Position to Position distance matrix..17

 Table 2. Position to Rotator Distance Matrix ...19

 Table 3. Rotator to Rotator Distance Matrix ..19

 Table 4. Binary Position-to-Position Matrix for user input20

 Table 5. Binary Position-to-Rotator Matrix for user input20

 Table 6. Binary Rotator-to-Rotator Matrix for user input ..21

 Table 7. Connection with Rotators user input – Section 122

 Table 8. Connection with Rotators user input – Section 222

 Table 9. Connection with Rotators user input – Section 323

 Table 10. Connection with Rotators user input – Section 423

 Table 11. Connection with Rotators Excel formulas ..24
 Table 12. One rotator only ..25

 Table 13. Two rotators ..25

 Table 14. Three rotators if needed ..25

 Table 15. Offset Formula results for work cell 1 ..26

 Table 16. Excel INDIRECT() formula reference values ...27

 Table 17. Excel INDIRECT() formula results ...27

 Table 18. Final distance matrix ...28

 Table 19. Final distance matrix ready for MatLab use ...29

 Table 20. 70X70 distance matrix use for hypothetical example33

 Table 21. Distance Matrix for only twelve Stations ...48

 Table 22. Distance Matrix for layout without conveyors ...50

 Table 23. Simulation Results Summary..74

viii

LIST OF FIGURES

Figure Page

 Figure 1. Hierarchy and Inspector windows ..15

 Figure 2. Adding Sequence Stations to Pin Pallet object..16

 Figure 3. Sequence script is attached to Pin Pallet object...16

 Figure 4. MatLab’s Standard command window ..30

 Figure 5. MatLab’s Global Optimization Tool Box ...31

 Figure 6. Fitness value plot for 70X70 cell hypothetical example33

 Figure 7. Fitness plot for the 24 work cell layout ...34

 Figure 8. Global Optimization Tool: problem setup and results section39

 Figure 9. Global Optimization Tool: options section ...39

 Figure 10. Global Optimization Tool: reproduction section40

 Figure 11. Global Optimization Tool: results section ...41

 Figure 12. Global Optimization Tool: Export to Workspace window......................41

 Figure 13. MatLab’s variable editor with near optimal sequence displayed41

 Figure 14. Twenty four work cell layout in Unity® ...43

 Figure 15. Zoom in to see small pin in Unity® ..44

 Figure 16. Sequence object list used for user input ..46

 Figure 17. Simulation prints with segment and cumulative distances47

 Figure 18. MatLab’s near optimal fitness value for the twelve station layout49

 Figure 19. Near optimal sequence for twelve station layout validated in Unity®....49

 Figure 20. MatLab’s near optimal fitness value for the layout without conveyors ..51

 Figure 21. Near optimal sequence for no-conveyor layout-validated in Unity®51

 Figure 22. Twenty four stations rearranged after potential improvement analysis ..52

 Figure 23. Solid Edge Part to be imported into Unity® ...55

 Figure 24. Solid Edge Part opened with 3DTool to be converted to ‘.3ds’ format ..56

 Figure 25. Converted ‘.3ds’ part imported into Unity ..56

 Figure 26. Converted ‘.3ds’ part used in Unity ..57

 Figure 27. Creating Objects with Unity® resources ...58

 Figure 28. Modifying Objects Inside Unity ..59

 Figure 29. Transforming gizmos and tools inside Unity®59

 Figure 30. Prefabs and Unity® asset store ..60

 Figure 31. Three dimensional coordinate system ...61

ix

Figure Page

 Figure 32. Vertex Snapping Process ...62

 Figure 33. Nesting Process ...63

 Figure 34. Station sphere used for nesting ..64

 Figure 35. Nesting sphere in reference to the overall space65

 Figure 36. Nested Rotator Assembly and Nesting Sphere ..65

 Figure 37. Pin pallet travels to open space towards sphere that is not nested66

 Figure 38. Pin pallet travels to open space towards sphere that has been nested66

 Figure 39. Attachment of Script and Select Transform Pop-Up List68

 Figure 40. TransformMove Script as seen in the MonoDevelop editor68

1

CHAPTER I

INTRODUCTION

1.1 Introduction to Micro-assembly and virtual prototyping.

Micro assembly is an emerging field that refers to assembling structures with micron-sized

components. These small components are manipulated by micro grippers and micro position

manipulators that are integrated to a micro assembly work cell. Virtual Reality technology has

been successfully used to create prototypes of micro assembly work cells [1]. These prototypes

enable researchers and users to better understand the characteristics of the micro devices that are

assembled with the work cells. The prototypes also help to better comprehend the structure and

functions of the micro assembly cell. The sequence of micro assembly steps, the material

handling moves, and the anti-collision path planning are some examples of concepts that can be

better seen and studied using a virtual prototype.

1.2 Problem statement and motivation

Although a lot of work and research has been conducted at a micro work cell level; there are still

needs and opportunities to study micro assembly processes at a factory level. In a factory setting,

several cells work sequentially to assemble a micro product; the material flows from one cell to

the other with the assistance of a conveyance system.

2

If a virtual factory prototype with multiple micro assembly work cells is created, the relationship

between the work cells, the flow of parts between them, and the overall factory performance can

be more easily explored and improved. With such virtual factory environment, the following can

be studied and/or improved:

• Time and distance that is consumed by the routes that parts use to flow between cells.

• Micro assembly factory balancing including both, work cell processing times and

material flow times.

• Material path planning to avoid collisions.

• Use of genetic algorithms and other methods to improve the micro assembly process.

This thesis focuses on the creation of the virtual factory environment and the use of genetic

algorithms and other methods to improve material flow between micro assembly work cells. The

idea is to create a methodology that allows for improvement and comparison of micro factory

layouts based on efficiency and performance.

1.3 Goals and objectives

The main objective for this project is to create a virtual factory environment and use it to study

and improve micro assembly processes. The following objectives derive from the main one:

• Create a virtual factory environment using computer graphics (UNITY® software).

• Explore the potential use of genetic algorithms and other methods to improve the routing

between work cells.

3

1.4 Overview of proposed approach

This project uses virtual reality and genetic algorithms to study and improve a micro assembly

factory. In this section we explain the concepts of virtual reality and genetic algorithms and how

they are applied to complete the objectives listed in previous sections.

Virtual reality relies on computers to create virtual prototypes or models in simulated scenarios

that enable humans to study, analyze, interact, and experiment with them in order to infer possible

behaviors of real-world systems. Computer-aided design (CAD) and simulation software are good

examples of the technology that companies use nowadays to have more efficient design

processes. Virtual reality technology can be used along with CAD and simulation principles to

even immerse the users in a computer simulated environment. This enables users to detect and

solve issues earlier in design stages. Similarly, this technology allows for better studying and

understanding of structures that are difficult to be perceived by human senses. For instance,

Virtual Reality is used to create virtual prototypes of Micro Assembly environments and devices

that would never be easily seen by the human eye. The simulated environment enables users to

see and interact with micron sized parts and equipment.

Genetic algorithms use an initial randomly generated arrangement of characters and transforms it

through the application of genetic operators. The application of such operators may help the

initial arrangement to evolve towards something better. Among the most commonly known

operators we find the crossover, the mutation and the inversion. When the initial arrangement of

characters represents an assembly or routing sequence, the genetic algorithms can be used to

continuously search for a better sequence or route. In a Micro assembly factory a better route

would be the one that reduces the time and/or amount of distance traveled by the material

between work cells.

4

1.5 Remarks

Studies in the Micro Assembly world have mostly focused at the work cell level; however, there

have not been a lot of studies done at the factory level. This study proposes to use virtual reality

and genetic algorithms to create a virtual factory prototype where the flow of materials between

cells can be studied and improved by applying genetic operators to obtain material distribution

sequences that enhance micro assembly layout performance.

5

CHAPTER II

LITERATURE REVIEW

2.1. Introduction

This chapter is a literature review of work that has been done in micro assembly and virtual

reality domains. Information related to micro assembly papers is presented first followed by

information related to virtual reality papers. Finally, a summary of papers related to the

application of virtual reality in the field of micro assembly is provided.

2.2. Literature related to micro assembly

In [2], Shet et. al. review several micro assembly techniques used for the integration of

microelectromecanical structures (MEMS) including selective area growth, flip-chip bonding,

epitaxial lift-off, electrostatic alignment, fluidic self-assembly (FSA), and magnetically assisted

statistical assembly (MASA); however, they also recognize the fact that these techniques have

some limitations and that there is still need for further development in this field. The authors

propose the magnetic field assisted assembly process (MFAA) which prepares substrates and

micro components separately and uses a magnetic field to assist with the integration of the micro

components.

6

In [3], Cecil et. al. provide a review micro gripping and manipulation techniques, micro assembly

systems, and computer and information technology –based approaches including the use of

virtual reality for micro assembly. The authors recognize that MEMS technology involves little

assembly tasks and see the need to develop techniques to efficiently and rapidly assemble micro

devices that are composed of different materials or complex geometries. They define Micro-

Assembly as the field that focuses on the assembly of tiny, micron-sized parts that need to be

handled in order to be attached to the final micro product. The authors summarize three current

challenges in the field of micro assembly: the design of high-speed assembly techniques and

mechanisms, the development of high-fidelity virtual reality-based simulation environments, and

the need to develop technology that enable users in distributed systems to support micro assembly

technology from geographically dispersed locations.

In [4], Ohba et. al. an observational sensor system for tele-micro-operation is proposed. The

authors use this smart sensor system and the concept of ‘depth in focus’ to simultaneously

reconstruct 3D virtual reality micro environments with all-in-focus images captured by dynamic

focusing lens and smart camera systems.

In [5], Beltrami et. al. use flexures and joints to create a multi degree of freedom micro machine.

The authors state that flexures have advantages that are helpful for the design of precision robots.

They explain that a flexure joint links two solids permitting motion in one direction but not in

others; which enables them to perform high precision tasks.

In [6], Qin discusses micro forming operations and miniature manufacturing systems. The author

summarizes current developments in the field around the world and recognized the need to reduce

the scale of the equipment used to manufacture miniature products. The author summarizes

scientific, technological, social, and economical issues associated to the development of micro-

factories. One of the conclusions is that while the micro factories and machines developed to-date

7

have been focused on the demonstration of capabilities, further developments should consider the

practicability of the machines/systems and take the industrial application into account.

In [7], Wang et. al. issues with the visual controllers used in visual serving are discussed. The

authors propose a proportional differential (PD) visual controller to improve the dynamic

performance of visual servoing in micro assembly. Genetic algorithms are used to obtain near

optimal controller parameters. The concept is integrated to a micro assembly cell that inserts a

micro peg into a hole using micro grippers.

In [8], Feddema et. al. discuss the roll of van der Waals forces in micro assembly planning. The

authors report that with micron-sized parts the effect of interactive forces, such as van de Waals,

electrostatic and adhesive forces, is significant. Because of this phenomenon, micro assembly

plans are not reversible; meaning that motions required to pick up a part are not the reverse

motions to release a part. In the micro world gravity is negligible and interactive forces dominate.

Authors recommend that the influence of these forces is considered when planning micro

assembly tasks. Authors also recognize the need for further research that helps computing these

forces between different micro component shapes.

In [9], Hollis et. al. propose a platform technology for micro assembly and name it Agile

Assembly Architecture (AAA). The authors define platform technologies as those that serve as

springboards for other technologies and are essential for progress in multiple fields. Agile

Assembly Architecture has two components: a distributed system of tightly integrated

mechanical/computational agents which consist of a collection of modular robots, feeders and

fastening/assembly equipment, and an unified Interface Tool that allows a user to select among

the available agents, to order them in the assembly system and to operate them in both, a virtual

environment and in the real world. The authors visualize a highly modular and scalable robotic

pipeline approach to design micro assembly systems that are able to assembly micro products of

8

different sizes, to integrate diverse fastening technologies, to use parallel assembly stations, and

to assembly complex products that require a large number of process steps.

In [10], Hollies et. al. present a mini-factory that was created the Microdynamic Systems

Laboratory at Carnegie Mellon University applying the Agile Assembly Architecture discussed in

the previous paragraph. The first mini-factory successfully integrated various precision

manufacturing processes to assemble capacitors at a rate of one finished product every twenty-

five seconds. A second mini-factory was improved to increase throughput by adding parallel

processes. The rate of production after the improvements completed one capacitor every nine

seconds.

In [11], Gaugel et. al. present the MiniProd system which uses compact process and assembly

modules that are mounted on a platform using standardized interfaces. The core element of each

micro assembly segment is a planar motor that has been designed for miniaturized applications

and is responsible for feeding the parts and controlling the flow of materials between individual

stations. The authors propose the use of a virtual module kit system to operate and configure the

system. When users use this kit, they are able to select the required assembly modules and to

integrate them in the virtual environment to form a mini-factory. The authors state that by

simulating the system, the amount of time to bring it into operation is significantly reduced.

Some conveyance systems for micro assembly have also been proposed. For example, in [12],

Ferreira proposes planar piezoelectric micro conveyers to move micro objects relying on the

cooperation of arrayed direct-drive standing wave ultrasonic motors. Also in [13], Li et. al.

propose an omni-directional mobile micro robot for material handling within a micro factory. The

micro robot is capable to move linearly and to steer in order to position its micro gripper in the

required positions.

9

Efforts to improve micro assembly system performance have been reported. For example, in [14],

Subramaniyam et. al. use a methodology to improve efficiency of micro assembly systems by

analyzing alternative layouts. Also, in [15], Shuang et. al. discuss the micro assembly sequence

planning problem and propose the use of a modified particle swarm/ant colony optimization

algorithm (hybrid PS-ACO algorithm) to solve it. Authors compare the optimization results with

those obtained with genetic algorithms (GA) and the regular ant colony optimization algorithm

(ACO).

2.3. Literature related to virtual reality

In [16], Cecil et. al. define a virtual prototype (VP) as a three-dimensional virtual reality based

model that mimics a target object, system or environment. The authors define virtual prototyping

as the process to create and use a VP. The authors define the characteristics of a virtual prototype:

a VP must possess accurate geometry, topology, and appearance; should be capable of simulate

object or environment characteristics, including real-time responses; is a computer based

representation; and must possess the ability to interface with VR technology and support

immersive applications. The authors present a summary of different applications of virtual

prototyping for product and process design. They also suggest that the use of VPs facilitates

concurrent engineering and the earlier identification of problems and solutions in product and

process design projects.

In [17], Jayaram et. al. propose and implement a Virtual Assembly Design Environment (VADE)

prototype to enable engineers to detect assembly issues earlier in the design stage. Authors state

that the use of VR can benefit companies by reducing product development and fabrication time,

introducing technology and design methods faster, improving product quality and reliability, and

reducing cost.

10

In [18], Gomes de Sá et. al. explain the application of virtual reality technology in the automotive

industry to assist product development and present examples of projects implemented for

verification of assembly and maintenance processes.

In [19], Wang et. al. propose a dynamic data model for visualization of industrial assemblies.

Their model integrates spatial and dynamic data to accurately represent the changes and

movements of assembly structures. In this model, the assembly structure does not contain a real

geometry; it only contains references to part geometries. This reference information is what

defines the assembly structures. The authors state that a virtual assembly system not only allows

for visualization and manipulation of assembly structures, but also enables simulation,

verification, evaluation of assembly processes, construction of virtual prototypes and training.

In [20], Weidlich et. al. summarize several examples of virtual reality approaches for immersive

design. The authors state that researchers have implemented three prototypical ways of immersive

design: linking a VR system and a CAD core, linking a VR system and a CAD system, and using

voxel models for geometry description. Examples of each of these methods are presented in the

paper.

In [21], Lin et. al. propose a virtual factory that provides an efficient prototyping test bed. The

authors model their virtual factory with multiple processes and libraries that work together. Their

approach considers a physical domain that refers to the real assembly cells, and a pseudo domain

that refers to models of the real cells. The system is capable of virtual automation and it is

provided with libraries and specification tools.

In [22], Wenbin et. al. propose a production engineering-oriented virtual factory (PEOVF) to

assist with the design of processes and reduce the amount of changes that are necessary due to the

lack of systemic and concurrent approaches when designing processes.

11

In [23], Renard et. al. present a really innovative approach to interact with virtual environments

through the use of brain-computer interfaces (BCIs). BCIs are communication systems that

enable users to interact with computers solely by brain activity. In this research, users manipulate

virtual environments by imagining hand or foot motions.

2.4. Literature related to the application of virtual reality in the field of micro assembly

In [24], Gobinath et. al. propose an Integrated Physical and Virtual Reality (VR) environment to

aid in the assembly of micro devices. The approach considers three functional areas: creation of

simulated environments using virtual reality (VR) technology, development of a VR-linked

physical environment to support the rapid assembly of micro devices, and the development of an

information oriented model that enables the accomplishment of the other two functional areas.

The proposed virtual micro assembly work cell consists of a user interface module (UIM), a

visualization manager (VM), a part initialization module (PIM), a navigation module, an

assembly manager, an immersive part handling module, and a collision detection module. The

authors also apply generic algorithms to near optimal generation of micro assembly cell

sequences.

In [25], Ferreira et. al. propose an automated micro manipulation work cell that is operated with

the assistance of vision servoing and virtual reality. The authors present a pushing-based

micromanipulation strategy and a micro handling strategy which are supported by vision

feedback and virtual environments. The proposed cell positions, handles and assembles the

components thanks to a collection of micromanipulators and grippers that interact during the

assembly process.

In [26], Cecil et. al. further discuss the development of a virtual and physical work cell to

assemble micro devices and explain in detail the application of genetic algorithms to generate

12

near optimal assembly sequences. The algorithm generates initial sequences randomly, checks for

uniqueness in each sequence, performs hybrid crossover operations, checks for precedence

constraints, performs mutation operations for sequences, checks for precedence constraints again,

selects new sequences and repeats the process until a near optimal solution is identified.

In [27], Ferreira et. al. propose a micro assembly desktop station that is supervised by virtual

reality to perform micro positioning, handling and assembly tasks. The micro factory concept is

integrated by two motion micro manipulators equipped with a micro tool holder, and a coarse

motion worktable. This constitutes a multi degree of freedom fine positioning system. The system

is overseen by an Optical Microscope. The proposed system enables the operator to determine the

tasks to be performed by using a virtual reality guiding-system interface. The detailed scenario is

built with CAD-CAM databases which enables the system to perform the tasks while avoiding

collisions.

Finally, in [28], Cecil et. al. discuss the need to develop an advanced virtual reality environment

to support the study of factory and work cell level assembly alternatives. The design of a Virtual

Factory Environment (VFE) should be able to compare factory level alternatives and determine

feasible ways to assemble a given design. The authors implemented a VFE using Coin 3D and

C++ tools. The factory analysis module is capable of generating assembly sequence and path

plans. This VFE can be used to enable comparison of factory and work cell assembly alternatives.

13

CHAPTER III

PROPOSED METHODOLOGY

3.1 Introduction

This project uses Unity software, a game engine, to create a virtual environment of a micro

assembly factory with multiple cells. This environment simulates the motion of raw material from

cell to cell. The User Interface is integrated in Unity and only requires inputting a sequence of

steps to simulate a path that delivers material to each one of the assembly cells. Excel and

MatLab are used along with Unity to make this simulation possible.

3.2 Interaction of Unity, Excel and MatLab

Using programming in Unity allows us to create a user interface that accepts a near optimal

sequence to visit all the micro assembly cells in the simulated factory. This sequence is obtained

from the results of a MatLab exercise. MatLab has a Global Optimization tool that can be used

with Genetic Algorithms to solve problems. The Global Optimization tool works by calling

several pre - programed functions that apply genetic operators, such as crossovers and mutations

to a given initial sequence. The outcome of this exercise is a near optimal sequence that can be

simulated in the virtual environment.

14

The MatLab algorithm solver tool feeds from external data before being able to find a near

optimal sequence. This external data consists of the distances between coordinates of the work

cell platforms in the unity environment. These distances can be calculated and stored in an Excel

file which is read directly from the MatLab environment.

3.3 Unity and Virtual Reality Modeling

Environments and objects in Unity can be built with resources provided by the game engine or

can be exported from files created with CAD software that are converted to a ‘.3ds’ extension.

Once the micro assembly cell models are created or imported into Unity, the simulation part is

accomplished with scripting. The behavior of objects and responses to user inputs are possible

thanks to the scripts that are attached to objects within the virtual environment [29].

“Unity supports three programing languages natively:

• C# (pronounced C-sharp), an industry-standard language similar to Java or C++;

• UnityScript, a language designed specifically for use with Unity and modelled after

JavaScript.”[29]

This project uses UnityScript to create an interphase that enables users to input near optimal

material distribution sequences and to simulate the material movement throughout the micro

factory.

This project uses UnityScript to enable users to input near optimal material distribution

sequences, to control the movement and positioning of the objects, and to simulate the near

optimal material traveling path between micro assembly cells.

15

3.4 User Interface

In Unity, scripts are attached to objects. The objects are listed in the Hierarchy window. If an

object is selected or highlighted in this window, the associated scripts and user required inputs are

listed in the Inspector window under the script section [29]. See Figure 1.

To input sequences the user needs to highlight the object that represents the pin pallet in the

Hierarchy window which is named “Sphere Pallet.” Once the object is selected, the Inspector

window displays the fields that store the order of coordinates that will be visited by the pallet.

The users only have to drag the objects that represent each micro-assembly cell into each one of

the sequence fields and the scripting will visit those cells one by one in the order that the user

dragged them into the fields. See Figures 2 and 3 below. More details on the specific techniques

used to build the model in Unity will be given in Chapter IV.

Figure 1. Hierarchy and Inspector windows

16

Figure 2. Adding Sequence Stations to Pin Pallet object

Figure 3. Sequence script is attached to Pin Pallet object

17

3.5 Excel and MatLab coordinates input

The sequence that is input into Unity is obtained from a genetic algorithm solver exercise

performed by the Global Optimization Tool in MatLab [30, 31]. The data needed to run the solver

is extracted from Excel where a file stores all the distances between micro-assembly cells

coordinates. This file processes the different cell positions to create a distance matrix that can be

read by MatLab scripting when running its solver.

Two Excel files have been created to support the process in MatLab. The first file calculates all

the distances based on cell coordinates and the second file is only to import the distance Matrix

into MatLab.

The “Positions” tab and the “Rotators-Positions” tab in the first Excel file contain the coordinates

where material is delivered to each micro-assembly cell and the coordinates of the rotators where

the material pallet could change direction in order to continue its path. See Table 1 below.

Table 1. Position to Position distance matrix

18

Distances between cells are calculated in Excel using the Euclidean distance, Pythagoras

Theorem, or commonly known coordinates distance formula [32-34]. For those cells connected

by a straight path, the distance between them is simply the result of applying the distance formula

with their coordinates. On the other hand, for those cells that are connected with paths that

involve corners or rotators, the calculation is broken down in sections so that the straight segment

distances are added regardless of the turns or changes of direction. For example, in the proposed

layout, the path between cell 1 and cell 7 includes a 90 degree turn; the distance between them is

calculated by adding the distances between cell 1 and the 90 degree turn and between cell 7 and

the 90 degree turn.

The formula to calculate distances in Excel follows [34]:

=SQRT((($B6-F$2)^2)+(($C6-F$3)^2)+(($D6-F$4)^2))

The same formula is expressed for general use with two points (xi,yi,zi) as [35]:

 .

Similarly to the “Positions” tab, the “Rotators-Positions” tab calculates the distances between the

work cells and rotators that are connected through a straight path. Furthermore, there is a

“Rotators-Rotators” tab that calculates the distances between the rotators that are connected

through a straight path. See Tables 2 and 3 below.

19

 Table 2. Position to Rotator Distance Matrix

Table 3. Rotator to Rotator Distance Matrix

In order to accurately calculate all the distances of a given work cell layout the Excel file uses

different tabs that are interconnected by formulas to come up with the final distances matrix. The

tabs use a binary input method for the user to define which work cells directly connect with

others with a straight path, which ones connect with others through rotators, and which ones do

not connect at all without going through others. In Tables 4, 5 and 6 below it can be seen how a

one (1) is input by the user when there is a straight path between two cells, between a cell and a

rotator or between two rotators. These inputs (ones) are later multiplied by the values on the

20

distance matrices to assign an actual distance value to the matrix that is later exported to MatLab.

If a one is input by the user, the final matrix will have a value coming from the distances

matrices. If a zero is input by the user, no value will be added to the final matrix for MatLab.

Table 4. Binary Position-to-Position Matrix for user input

Table 5. Binary Position-to-Rotator Matrix for user input

21

Table 6. Binary Rotator-to-Rotator Matrix for user input

A different methodology is used to add the values that come from the cells that are linked through

paths that have rotators in them. A tab named “Connections-W-Rotators” captures the rotators

that connect two different cells (up to 3 rotators per link) and calculates the distances from each

cell to the rotators and the distances between rotators as well. The user is required to input the

identifying number of the first, last and in-between rotators that are part of the path from one

work cell to another. In Tables 7 to 10 below, for example, work cell 1 is connected to work cell

6 through rotator 2; in this case rotator 2 is identified as the first rotator and also as the last one.

Similarly, work cell 7 is connected to work cell 24 through rotators 1 and 11; rotator 1 is

identified as the first one and rotator 11 is identified as the last one. The rest of the input values

are displayed in the following tables.

22

Table 7. Connection with Rotators user input – Section 1

Table 8. Connection with Rotators user input – Section 2

23

Table 9. Connection with Rotators user input – Section 3

Table 10. Connection with Rotators user input – Section 4

The formulas involved in the “Connections-W-Rotators” tab are important to accurately calculate

the distances between two work cells that are connected through rotators. If there are rotators

listed between two cells, the Excel formulas can calculate the distances between the work cells

and between up to three rotators that may be in the path from one cell to another. The formulas

used to calculate the distances are displayed in Table 11 below [36-39].

24

Table 11. Connection with Rotators Excel formulas [36-39]

 Legend Associated Excel Formula

1st 1st Rotator? =IF(C3<>0,(INDEX('Rotators-

Positions'!F6:Q29,$A3,C3)*INDEX('Rotators-Positions-

Binary'!F6:Q29,$A3,C3)),0)

2nd Last Rotator? =IF(C4<>0,(INDEX('Rotators-

Positions'!F6:Q29,D$2,C4)*INDEX('Rotators-Positions-

Binary'!F6:Q29,D$2,C4)),0)

3rd Dist.Between =IF(AND(C3<>0,C4<>0),(IF(C6=0,(INDEX('Rotators-

Rotators'!F6:Q29,C3,C4)*INDEX('Rotators-Rotators-

Binary'!F6:Q29,C3,C4)),(INDEX('Rotators-

Rotators'!F6:Q29,C3,C6)*INDEX('Rotators-Rotators-

Binary'!F6:Q29,C3,C6)))),0)

4th 3rd Rotator? =IF(C6=0,0,(INDEX('Rotators-

Rotators'!F6:Q29,C4,C6)*INDEX('Rotators-Rotators-

Binary'!F6:Q29,C4,C6)))

5th Total =SUM(D3:D6)

If there is only one rotator between two cells like displayed in Table 12, the first Excel formula in

Table 11 looks for the distance value listed in the “Rotators-Positions” tab between the first work

cell and the rotator. Once it obtains this value, the formula multiplies it by the zero or one that has

been assigned in the “Rotators-Positions-Binary” tab. At the same time, the second formula in

Table 11 finds the distance and binary values between the rotator and the second work cell in the

“Rotators-Positions” and the “Rotators-Positions-Binary” tabs.

If there are two rotators between two cells like displayed in Table 13, the first Excel formula in

Table 11 looks for the distance between the first cell and the first rotator. The second Excel

formula looks for the distance between the second work cell and the last rotator. Meanwhile, the

third Excel formula listed in Table 11 calculates the distance between the two rotators involved.

25

The formula searches the distance value listed in the “Rotators-Rotators” tab between the two

rotators. Then, it multiplies that value by the zero or one that has been assigned in the “Rotators-

Rotators-Binary” tab.

 Table 12. One rotator only Table 13. Two rotators

Although, the layout used for this project does not have three rotators connecting two different

work cells, the templates are designed to consider a third rotator if needed. Table 14 below

displays a hypothetical example with a third rotator between work cells 7 and 24. With this

scenario, the fourth Excel formula in Table 11 calculates the distance between the third rotator

and the last rotator (rotator 11 and 12) while the third formula calculates the distance between the

first and third rotator (rotator 1 and 12). Simultaneously, the first and second formulas in Table 11

calculate the distances between the first work cell (7) and the first rotator (1) and between the last

rotator (11) and the second work cell (24) respectively. Finally, the fifth formula sums up all the

calculated values. The total distance between work cells 7 and 24 in this hypothetical example is

25 units.

Table 14. Three rotators if needed

26

In this same tab, the totals are consolidated in a work cell-to-work cell matrix by using offset

formulas and indirect references. The offset formula consolidates all the totals in a given row in

the “Connections-W-Rotators” table. For example, the total values for the row associated with

work cell 1 are calculated by a series of formulas like the following: “=OFFSET(BX7,0,BX$6)”

[40]. This formula extracts the distance value with rotators between work cell 1 and work cell 24.

Table 15 below shows the results of the offset formula for work cell 1. Notice that the second row

displays several negative numbers; these numbers are the column pointers to the position from

which the value must be extracted. In the OFFSET formula above, the first value in the

parenthesis is the cell where the reference will be started from. In this case, the cell is the same

one that houses the formula and gets the result: BX7. The second value in the parenthesis is the

number of rows up or down where the offset must go; in this case, zero rows are offset. Finally,

the third value in the parenthesis is the number of columns to the left or the right where the offset

must go; in this case, -26 indicate an offset of 26 columns to the left of the formula cell. The

result of this formula example is 17 which is the distance with rotators between work cells 1 and

24. See last column in Table 15.

Table 15. Offset Formula results for work cell 1

The “=INDIRECT(reference)” formula [41] uses a Excel reference name to extract its value and

display it in the cell where the indirect formula is used. To display how this formula works, Table

16 below shows the reference values and Table 17 contains the formula results. The value

between work cell 1 and work cell 24 is calculated in Table 17 by using the following formula:

“=INDIRECT(CY7).” CY7 is the Excel cell that houses the reference name of BX7 in Table 16.

27

BX7 is the cell that stores the distance between work cells 1 and 7 that results from the OFFSET

formula explained before (Table 15).

Table 16. Excel INDIRECT() formula reference values

Table 17. Excel INDIRECT() formula results

Thanks to these formulas and tables working together, a matrix of 24 by 24 (number of work

cells) is created with distances for feasible rotator paths. This matrix can be added to the position-

to-position matrix containing distances between cells connected by straight paths. The end result

28

is a distance matrix that represents all the possible connections in the multi work cell layout and

that can be used to find the near optimal route that connects all work cells with Mat Lab. The

“Final-Matrix” tab in Excel consolidates and displays this end result. See Table 18 below.

Table 18. Final distance matrix

Lastly, for MatLab algorithm running purposes, the zeros in the Final Distance Matrix are

replaced for a larger number, such as 1,000, so that the algorithm does not consider an inexistent

link (zeros) as a potential route. The 1,000 is a value significantly higher than the distance value

between cells that are connected. This helps MatLab to ignore that value while running its solver.

Table 19 below displays the Final Distance Matrix ready for MatLab use.

29

Table 19. Final distance matrix ready for MatLab use

30

3.6 MatLab sequence generation with Genetic Algorithms

The near optimal sequence to be simulated in Unity is found by using two MatLab environments:

the Standard Command Window, displayed in Figure 4, and the Global Optimization Tool Box,

displayed in Figure 5.

Figure 4. MatLab’s Standard command window

31

Figure 5. MatLab’s Global Optimization Tool Box

In the Standard Command Window, the user must define the number of micro assembly cells that

will be used in the simulated virtual reality environment and also must read the distance matrix

from the Excel file described in the previous section. The code to accomplish these two things

reads as [42]:

EDU>> stations = 24;

EDU>> distances = xlsread('Distances-Import.xlsx');

Once these two parameters are known by MatLab, the Global Optimization tool can be used to

find near optimal sequences using genetic algorithms. But before proceeding to present the results

for our proposed layout, let me further explain the method that the Global Optimization Tool uses

to solve problems with genetic algorithms. The script grabs a sample of permutation sequences

and compares them based on the value that they yield to the objective function (fitness value);

then, it keeps the top best performers (elite count), applies mutation and crossover operations to

them to create a different sample of the population and test it again against the objective function.

32

Over time, only the best performing individuals (sequences) remain in the group that is being

tested for fitness (objective function). When the algorithm stops, the near optimal solution is the

sequence that yields the lowest fitness value when tested against the objective function [43].

Our proposed layout has 24 cells; however, let’s assume that we have a system that is composed

of 70 cells instead and that we still need to supply all of the cells with material. If we modify the

Excel distance Matrix to have a size of 70X70 and we upload it to MatLab we can run the genetic

algorithm solver for the 70 cell system. See Table 20 below with the hypothetical matrix. When

the Global Optimization Tool applies genetic algorithms to find the best individual a plot that

displays how the fitness of the generations improves over time can be generated. The plot for the

70 cell layout is shown in Figure 6 below. As it can be seen, the first samples of the population

yield fitness values around 280. However, newer and newer generations started displaying better

and better fitness values until they reached the near optimal function value of 146.5. The black

line in the plot represents the best sequence fitness value that is found over time by the generic

algorithm. The blue dots represent fitness values for sequences that are tested by the genetic

algorithm. Notice how the blue dots range, which depends on the values in the matrix, decreases

and stabilizes when the algorithm approaches the best fitness values.

33

Table 20. 70X70 distance matrix use for hypothetical example

Figure 6. Fitness value plot for 70X70 cell hypothetical example

0 100 200 300 400 500 600 700 800 900 1000
140

160

180

200

220

240

260

280

300

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 146.509 Mean: 150.569

Best f itness

Mean f itness

34

Returning to our example, the near optimal fitness value for our layout is 184.5829 from the

sequence 1 24 23 22 21 20 13 14 15 16 17

 18 19 12 11 10 9 8 7 6 5 4

 3 2 1. The fitness plot for 1000 generations is displayed in Figure 7 below.

Figure 7. Fitness plot for the 24 work cell layout

At this point in time, we understand how it is that the near optimal sequence is displayed in

MatLab once the genetic algorithms are applied; however, you may be still wondering what is

used by the Global Optimization Tool to apply the genetic algorithms to the sequence population.

The answer is simple: more programming. A permutation generation program is used to create

the population of sequences; another program mutates the sequences in the samples being

compared; other program applies crossover operators to them. Finally, a program is linked to the

Global Optimization Tool to calculate the objective function fitness values. All of these programs

and their functions are explained in the following paragraphs.

0 100 200 300 400 500 600 700 800 900 1000
100

200

300

400

500

600

700

800

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 184.583 Mean: 316.049

Best f itness

Mean fitness

35

Since the main objective of this work is the development of a virtual factory environment in

Unity to simulate the sequences of material flow in micro assembly factory environments and not

the creation of new optimization techniques or programming codes, the scripts used for this

project have been based on the programs that MatLab originally uses to solve the salesman

traveling problem with genetic algorithms. However, some modifications in the logic had to be

applied in order to solve the problem of distributing materials to all the assembly cells in a given

micro factory layout.

The “Create_Permutations” script available in [44] and in the appendix is the MatLab code used

to generate permutations for the traveling salesman problem. The script generates random

sequences (permutations) of “cities” or positions that are visited while an objective function, part

of other script, cumulatively adds the distances between the positions that are in the sequence.

The permutations created by this script are opened ended and may start and finish their sequence

at any random available position. For example, the permutation may start at position one and

finish at position ten, twenty or Xi, where “X” is the final position and “i” is the total number of

positions. These positions are the work cells or stations in the micro factory context.

In this project it is necessary that the pin pallet starts and stops at the same station. Thus, different

script lines are required to fulfill this need. The script code provided below generates

permutations that always start and end on the defined initial station (closed loop permutation).

The comments after the “%” symbol provide details of what each code line does. Script lines are

also available in the appendix.

36

• pop = cell(totalPopulationSize,1);%array with size equal to population size

• pop2 = cell(totalPopulationSize,1);%array with size equal to population size

• for i = 1:totalPopulationSize %cycle from 1 to population size
o pop2{i} = randperm(n-1)+1; %fills permutations with all stations but

station # 1; in an example with 7 cells-it goes from 2 to 7
o for j= 1:(n-1) %cycle from 1 to number of stations(n)-1

� pop{i}(1,j+1)=pop2{i}(1,j); %starting in position 2 (j=1+1) pop
fills with all stations (stored in pop2) except #1

o end
o pop{i,1}(1,1)=1 ; % all positions #1 are equal to station #1
o pop{i,1}(1,n+1)=pop{i,1}(1,1); % added last position equal to the first

position (1)

• end

The “Mutate_permutation” script available in [44] and in the appendix is the MatLab code used

to mutate, previously created, permutations while the genetic algorithm solver is running. The

script randomly changes any positions within the permutation. These random changes do not

respect the initial position of the sequence and any of the Xi available positions may end up in the

first and last step of the sequence.

Mutations, in the context of this project, are only needed for the positions that are between the

first and last steps of the sequence. The value in the first and last positions in the closed loop

sequence must be respected to ensure that the material will always start moving from the

designated initial work cell and will finish its path there as well. Since the custom “create

permutations” script lines described above define an initial station and add it as the last station in

the closed loop permutation as well, a code line to remove the last position on each parent that is

mutated is needed before the mutation operations are performed. Then, a script line is needed to

perform mutation while respecting the first position. Lastly, another script line is needed to

reinsert the last position, which is equal to the initial one, after mutation has been applied to

generate children sequences. These script lines can be seen below; the comment after the “%”

symbol provides details of what the code line does. Script is also available in the appendix.

37

• parent(:,n+1)=[];% removes the added last position (by
create_permutations_mod) that moves the target back to the initial position at
the end of the sequence

• p = ceil((length(parent)) * ((1-(1/length(parent)))*rand
(1,2)+(1/length(parent))));%ensures that first station stays at beginning and end.
Selects a position (station, other than the first one (and last one) to cross
over/mutate. Based on the formula to generate values from the uniform
distribution on the interval [a, b]:: r = a + (b-a).*rand().

• mutationChildren{i,1}(1,n+1)= mutationChildren{i,1}(1,1);% adds to each child
sequence one last position with the initial station (1)where the target returns at
the end of the sequence

The “((1-(1/length(parent)))*rand(1,2)+(1/length(parent)))”) expression is based on the formula

to generate values from the uniform distribution on the interval [a,b] where random number “r” is

generated by the following expression: r = a + (b-a).*rand; where b=1 and a=(1/length(parent))

which would skip the very first position in a sequence of the parent to be mutated [45, 46].

The “Crossover_permutation” script available at [44] and in the appendix is the MatLab

code used to apply crossover operations to the, previously created, permutations while the genetic

algorithm solver is running. The script randomly changes any positions within the permutation.

These random changes do not respect the initial position of the sequence and any of the Xi

available positions may end up in the first and last step of the sequence.

However, just like we discussed above for the mutation script, the crossover operations are only

needed for the positions that are between the first and last steps of the sequence. Likewise, a

script line to remove the last position on each parent before crossover is needed. Then, a script

line is needed to perform crossover while respecting the first position. Finally, a third script line is

needed to reinsert the last position in the sequence after crossover operations have been applied to

generate children sequences. These script lines can be seen below; the comment after the “%”

symbol provides details of what the code line does. Script is also available in the appendix.

38

• parent(:,n+1)=[];% removes the added last position (by
create_permutations_mod) that moves the target back to the initial position at
the end of the sequence

• p1 = ceil((length(parent) -1) * ((1-(1/(length(parent)-1)))*rand+
(1/(length(parent)-1)))); %ensures that first station stays at beginning and end.
Selects a position (station, other than the first one (and last one) to cross
over/mutate. %Based on the formula to generate values from the uniform
distribution on the interval [a,b]:: r = a + (b-a).*rand().

• xoverKids{i,1}(1,n+1)= xoverKids{i,1}(1,1);% adds to each child sequence one
last position with the initial station (1) where the target returns at the end of the
sequence

The second line in the code above is also based on the formula to generate values from the

uniform distribution on the interval [a,b] as explained for the mutation script lines above [45, 46].

Finally, the script in MatLab that estimates the objective function value or fitness value is also

available at [44] and in the appendix. In this case, however, the script to solve the micro assembly

problem is essentially the same but applied in a different context and with different terminology.

The only difference is that the distance counting variable “f” must be initialized with a zero (f =

0;)which ensures that the only values cumulatively added are the ones of those segments travelled

by the target once the sequence is started.

 Each one of these scripts are called from the Global Optimization Tool in MatLab before running

the Genetic Algorithms. In the following paragraphs we explain each of the Global Optimization

Tool sections and the inputs used to call for the appropriate scripts when running the genetic

algorithm solver.

In the Problem Setup and Results section the “ga-Genetic Algorithm” is selected as the Solver.

Similarly, under the Problem heading, the Fitness Function is selected as

“@(x)traveling_salesman_fitness_mod(x,distances)” with number of variables as “stations” [44].

These inputs are displayed in the Figure 8 below.

39

Figure 8. Global Optimization Tool: problem setup and results section

In the Options section, under the Population heading, the creation function is defined as the

modified-create-permutations function that is previously discussed:

“@create_permutations_mod_2.” The initial range is defined as follows: “[1;stations]” [44].

Figure 9 displays these inputs below.

Figure 9. Global Optimization Tool: options section

Under the Reproduction heading, the default value of 2 is used for the elite count and the default

value of 0.8 is used for the crossover fraction. The custom function “@mutate_permutation_mod”

is called under the Mutation heading and the “@crossover_permutation_mod” function is called

under the Crossover heading [44]. These inputs are displayed in Figure 10 below.

40

Figure 10. Global Optimization Tool: reproduction section

Finally, under the Stopping criteria heading, the number of generations are set to the desired

number and the Best Fitness plot is selected under the Plot functions heading if a fitness value

plot is needed.

Once all the sections have the appropriate inputs, the user must use the “Start” button to run the

solver. The bottom of the Problem Setup and Results section will automatically display the status

of the MatLab run and a pop up window will start creating an fitness value plot that shows the

progression of the solutions found by the genetic algorithms as explain earlier in this section.

When the algorithm run is complete, the results section displays the near optimal fitness value

and the near optimal sequence is made available to be downloaded into the Standard Command

Window. Figure 11 displays the outcome section below.

41

Figure 11. Global Optimization Tool: results section

The user must go to the File menu and then select Export. A pop up window will ask the user

what to download. At minimum, as displayed in Figure 12 below, the near optimal sequence

values must be downloaded.

Figure 12. Global Optimization Tool: Export to Workspace window

Once the download is complete, the user double clicks an item under the Workspace window to

open the Variable Editor which displays the values of the near optimal sequence as seen in Figure

13 below. This is the sequence that will be simulated in the Virtual Unity environment. The

simulation process is explained in the following section.

Figure 13. MatLab’s variable editor with near optimal sequence displayed

42

3.7 Micro Assembly Factory Model in Unity ® and Simulation of the near optimal

sequence.

3.7.1 Micro Assembly Factory Model

Before being able to simulate near optimal material movement sequences in the micro factory

environment it is necessary to build a model in the computer. This project built such a model

using software called Unity ® that is commonly used to construct video games.

More detailed Unity model construction information will be provided in next chapter. In this

section there will be discussion only on the configuration of the layout used for this project and

how Unity can be used or modified to simulate different scenarios that display distribution

sequences within the micro assembly factories that are created.

A micro assembly factory with twenty four (24) stations is created to work on this project. See

Figure 14. The intention of this project is to use virtual reality software to represent and improve

environments that are difficult to work with in the real world due to diverse restrictions such as

size or accessibility. Unity enables the user to zoom into the smallest access areas and it also

enables the user to animate or simulate motion with scripts. See Figure 15. This micro assembly

factory environment was created with help of the resources and full support made available by the

Center for Information Centric Engineering and its staff which pertain to the Industrial

Engineering and Management department at Oklahoma State University [47].

In our model, there is a pallet that is used to distribute material (pins) throughout the micro

factory. The pallet Unity object contains a script that houses the near optimal sequence that it

must follow to deliver material to all stations. In the main model conveyors are used to distribute

the material; however, different scenarios can be explored. For example, if the stations could be

linked after the near optimal routes are found, the Unity model can be used to simulate a sequence

43

that is not restricted by conveyors. This approach can be used to design micro factories that are

more efficient even before they are constructed. This scenario will be further discussed in the

alternative layouts section below.

Another scenario would be the one where not all stations need to be serviced. For example, if out

of twenty four stations only twelve are in use, our methodology can be used to find the near

optimal sequence for twelve stations and to simulate it in the Unity environment.

The most valuable contributions from this project is the creation of the Unity environment and an

improvement procedure that enables designers of new micro factories to test different options and

select the most convenient while also allows for studying and simulating different scenarios of

existing factories.

Figure 14. Twenty four work cell layout in Unity®

44

Figure 15. Zoom in to see small pin in Unity®

3.7.2 Simulation of near optimal sequence

In Unity, all items used to represent an environment are known as assets or objects. In our

scenario we are using a semi cubic shaped “pallet” to deliver pins to each of the micro assembly

stations [29].

In order to simulate the motion of this object within the factory environment, a script needs to be

created and attached to the object itself. The script that is attached to our “pallet” in Unity is the

one below. Script is also provided in the appendix.

1. import System; //Initializing code
2. import System.IO; //Initializing code
3. var target : Transform; //object to be moved
4. var Initial: Transform; //object to be the initial place from where the target object starts

moving
5. var Sequence: Transform[]= new Transform[31]; // array that represents the sequence of

stations where target moves
6. var speed : float; //Variable that defines how fast the target moves
7. var i = 0; //Counter for the "for" cycle that moves the target from one station to another
8. var vect: Vector3; //vector definition

45

9. private var dist : float; //Variable used to calculate the distance traveled on each
sequence segment

10. private var Totdist : float;//Variable used to calculate the overall cumulative distance
11. target.position = Initial.position; //Moves target to the initial position
12. print("Initial coordinates: "+Initial.position);//Prints initial position coordinates in the

Console window
1. for (i=0; i < Sequence.Length; i++)//cycle that moves target until sequence is completed
2. {
3. dist = Vector3.Distance(Sequence[i].position,target.position);//Calculates segment

distance traveled by target
4. Totdist=Totdist+dist;//Calculates cumulative traveled distance
5. vect = Sequence[i].position; //Redefines vect as next (i) sequence position
6. yield WaitForSeconds((dist/speed)+1);//Introduces a pause for target to stop at each

station in sequence
7. print("New coordinates: "+target.position); //Prints coordinates for each station where

the target stops by
8. print("Segment distance: "+dist); //Prints segment distance value
9. print("Cumulative distance: "+Totdist);//Prints cumulative distance value
10. print(vect);//Prints coordinates of sequence object where target arrives into
11. }
12. function FixedUpdate() {//Function that constantly updates the status of the model (and

target)
13. target.position = //New position of target equals:
14. Vector3(Mathf.MoveTowards(target.position.x,vect.x,speed*Time.deltaTime),//moving in

X at speed rate
15. Mathf.MoveTowards(target.position.y,vect.y,speed*Time.deltaTime), //moving in Y at a

speed rate
16. Mathf.MoveTowards(target.position.z,vect.z,speed*Time.deltaTime));//moving in Z at a

speed rate
17. }

The details of how the script works will be given in next chapter. For now, we will only highlight

that this script calls for a sequence input from the user for the pallet to move from place to place.

The sequence is input by dragging or listing the other objects (stations) where the pallet must visit

next. The sequences input for our project are those ones obtained from the genetic algorithm ran

in MatLab. Earlier in this chapter, the User Interface section (3.3.1) discussed how the user inputs

the sequence into the pallet script. Figure 16 displays how the script creates a sequence list to be

input in the Inspector window when the pallet object is highlighted in the Hierarchy window. The

same script also enables the user to define which will be the initial station and how many steps

the sequence list has (size field).

46

Once the sequence objects are listed, the initial station is selected and the number of moves has

been defined, the user can simulate the sequence by using the “play” button. The Game screen is

displayed immediately and the pallet moves from station to station. Simultaneously, under the

console tab the script prints the last segment distance and the cumulative distance travelled by the

pallet during the simulation. Figure 17 below displays these prints.

Figure 16. Sequence object list used for user input

47

 Figure 17. Simulation prints with segment and cumulative distances

The model simulates the pallet visit to the stations 1 24 23 22 21 20 13

 14 15 16 17 18 19 12 11 10 9 8 7

 6 5 4 3 2 1. The cumulative distance displayed at the end

of the sequence is 184.5829 just like it is calculated in the MatLab results. This validates the

solution found in MatLab and the accuracy of the methodology proposed by this project to

simulate micro assembly factory scenarios.

When different layouts are tested, the cumulative distances calculated by Unity go along with the

near optimal sequences generated by the MatLab genetic algorithm. This is further explained in

the following section where other layouts and scenarios are explored.

48

3.8 Alternative Layouts

As previously discussed, the Unity environment can be used to simulate different micro assembly

cell scenarios to either better operate existing systems or design future micro factories.

One scenario that can be simulated following the methodology proposed by this project is the

replenishment of material to only a portion of the 24 available micro assembly stations. For

example, if only 12 stations are supplied, the distance matrix can look like the one below, where

the stations available will be only: 1 2 3 4 5 6 7 20

 21 22 23 24.

Table 21. Distance Matrix for only twelve Stations

When the proposed methodology is applied for this scenario, the MatLab near optimal sequence

is: 1 24 23 22 21 20 7 6 5 4 3 2 1.

This sequence yields a cumulative pallet travel distance of 100.4798 as shown in Figure 18

below.

49

Figure 18. MatLab’s near optimal fitness value for the twelve station layout

This sequence is simulated in the Unity environment and the near optimal cumulative value is

validated as displayed in Figure 19 below. The twelve station sequence can be seen to the right of

the figure while the final cumulative distance value can be seen in the lower left corner. Notice

that this value is 100.479 which matches the value obtained in MatLab.

Figure 19. Near optimal sequence for twelve station layout - validated in Unity®

50

Another scenario is when there are coordinates available for a group of micro assembly stations

but they have not been connected by any conveyors. This scenario applies to the early stages of

the micro factory design because the engineers could find near optimal distribution paths prior to

linking the stations in any way. For example, if we take the coordinates of the 24 stations used in

our original model and assume that they are not connected by any conveyors, the distance matrix

would be composed of straight paths between all the stations. See Table 22 below.

Table 22. Distance Matrix for layout without conveyors

When this scenario is solved, MatLab yields the following near optimal sequence: 1 2

 8 9 10 11 12 13 14 15 16 17 18

 19 20 21 22 23 24 5 4 3 6 7 1. This

sequence results in a cumulative distance of 160.869 as displayed in Figure 20 below.

51

Figure 20. MatLab’s near optimal fitness value for the layout without conveyors

This sequence is simulated in the Unity environment and the near optimal cumulative value is

also validated as displayed in Figure 21 below. The twenty four station sequence can be seen to

the right of the figure while the final cumulative distance value can be seen in the lower left

corner. Notice that this value is 160.869 which matches the value obtained in MatLab. This value

represents an improvement over the 184.5829 value that is obtained with the layout that connects

the same twenty four stations with conveyors.

Figure 21. Near optimal sequence for no-conveyor layout - validated in Unity®

52

This information can be used by a micro assembly factory designer to select a better arrangement

of conveyors or other devices to connect the stations. As a matter of fact, the twenty four micro

assembly station layout would change significantly reducing the number of conveyors and

rotators used to connect them all if the stations are rearranged to be connected following this last

near optimal sequence. Figure 22 shows how the layout that yields a cumulative distance of

160.869 would look like. Unity is very flexible to move and reposition objects. This helps to

quickly recreate different layout options that derive from the improvement efforts. Notice how

different this layout is if compared to the original layout (Figure 14) that is connected by

conveyors [47].

Figure 22. Twenty four stations rearranged after potential improvement analysis

53

3.9 Methodology Conclusion

The proposed methodology is used successfully to create a micro factory virtual reality

environment in Unity ® with 24 work cells. The model is successfully used to simulate several

sequences for different circumstances:

• Material distribution for a twenty four cell layout connected by conveyors and rotators.

• Material distribution for only twelve of the twenty four available stations.

• Design of material distribution sequence to supply twenty four work cells that are not

limited by conveyor connections.

For all of these scenarios, Excel, MatLab and Unity are used in unison to create distance matrices,

find near optimal distribution sequences by applying genetic algorithm techniques and simulate

the movement of materials along the near optimal sequences with a virtual reality model.

In all situations the cumulative travel distances calculated in the Unity model matched the

objective function value estimated in MatLab. This validated the ability of the model to

accurately represent the motion of materials within a micro assembly factory.

Finally, this methodology can be used not only to study and improve existing micro factory

systems but to also design future micro factories to be more efficient. The flexibility of the Unity

environment enables the users not to only simulate the movement of materials along near optimal

sequences but to also reposition objects to quickly create different layout options.

54

CHAPTER IV

DETAILS OF MODELING IN UNITY

4.1 Introduction

The most important element of this project is the model constructed with Unity ®. The model

enables us to simulate different scenarios associated with Micro Assembly factories and to

validate near optimal material distribution sequences found with genetic algorithms using

MatLab.

This chapter describes the details and techniques used to build the model used for this project.

Game object importing, creation, positioning, nesting, and scripting are discussed with the

intention to provide a guideline to produce similar models.

4.2 Object Importing from External Sources

Objects used to build a Layout in Unity® can be imported from external sources such as CAD

software when they are converted to a ‘.3ds’ format [48]. Not all CAD software can save a model

directly with a ‘.3ds’ extension; therefore, conversion software may be needed. A good option for

converting models to this extension is to use the 3D-Tool and the 3D-NativeCAD Converter

software available at http://www.3d-tool.com/ [49].

55

In order to display the process to import objects from external sources Figures 23, 24 and 25

below show screenshots from a rod imported from a SolidEdge model [50]. The rod is converted

in the 3D-Tool environment and then may be used in Unity as an object to construct a material

pin that travels from station to station throughout the micro factory. The model from SolidEdge is

opened with 3D-Tool software and then saved as a ‘3ds’ model in the Unity assets folder. Once

this is done, the newly converted model is available for use inside Unity. Figure 26 below

displays the final use of a rod as a section of a travelling pin [47].

Figure 23. Solid Edge Part to be imported into Unity®

56

Figure 24. Solid Edge Part opened with 3DTool to be converted to ‘.3ds’ format

Figure 25. Converted ‘.3ds’ part imported into Unity®

57

Figure 26. Converted ‘.3ds’ part used in Unity®

4.3 Object Creation with Unity Resources

Unity also has resources to create objects. One of the first routes to create objects is to use the

‘Create Other’ menu drop down list as displayed in Figure 27 below [51-53]. A cube is created in

the Unity Scene view and it can be seen to the right of the drop down menu.

58

Figure 27. Creating Objects with Unity® resources

Once the object that is needed is created, it can be shaped with the transform options inside the

Inspector view or with the transform tools displayed on the upper left corner of the main Unity

screen. These tools enable users to change the scale, orientation and the position of the object by

either entering different values into the inspector transform fields or by clicking and dragging the

translation, rotation and/or scaling gizmos directly in the scene view. Figure 28 below displays

two cubes that are identical prior to scaling and rotating one of them. Notice that the X, Y and Z

scale values in the Inspector view have been changed to 0.5 each which scales the cube down to

50% of its size in all dimensions. Similarly, the cube is rotated 45 degrees in both, X and Y axis

which positions it angled in reference to the first original cube [53].

59

Figure 28. Modifying Objects Inside Unity®

Another way to modify the shape and position of the objects is to use the gizmos and

transformation tools as displayed in Figure 29 below. These tools are used directly by clicking

and dragging with the mouse. When the axis of interest is clicked on it changes to yellow. Once

the axis is yellow it can be dragged to change the characteristics of the object. In Figure 29, from

left to right, the effect of scaling is displayed first followed by the effects of rotation and

translation [53, 54].

Figure 29. Transforming gizmos and tools inside Unity®

60

By using these tools, game (layout) objects can be created directly inside Unity®. This is a useful

resource especially when used in combination with imported objects that have been created to

scale using CAD software. Unity objects can be created to match the scale of the imported items.

Unity also has an additional way to create objects that are pre-fabricated and/or available through

a Unity® Asset Store. As displayed in Figure 30, these prefabs can be accessed through the

Project View and they may be dragged into the scene. The Unity Asset Store also enables the

users to search and download for a variety of assets and prefabs that may be useful for a given

project. This method is not used to create objects for this particular project; however, it is worth

to mention its availability [55, 56].

Figure 30. Prefabs and Unity® asset store.

4.4 Positioning

Although the previous section introduced concepts related to the positioning of an object created

inside Unity®, it is still important to discuss the coordinate systems that are used to position all

objects within the game (layout) and other useful positioning techniques such as vertex snapping.

61

In Unity® there is a three dimensional coordinate system that is used to place game objects

within the space. All objects have a coordinate value for each of the three axes (X, Y, Z) that

reference to the object’s position within the overall coordinate system. For example, in Figure 31

below, the cube has the following coordinates: X = 10.69041; Y = -3.94778; Z = 11.48382.

Each object also has a local coordinate system that is represented by the, previously discussed,

gizmos. Understanding the concept of local coordinates is particularly important when two

objects are nested and one becomes the parent of the other. In this situation, the child

transformations will be relative to the parent’s transformations [53].

Figure 31. Three dimensional coordinate system

A tool that is particularly important while building the model used for this project is the vertex

snapping tool. Vertex snapping enables the user to quickly connect objects by joining their

vertices. In order to use vertex snapping, the user must press and hold the “V” key and left-click

with the mouse to select the vertex by which the object will be dragged to the desired destination.

Once the vertex has been selected, the user must hold the mouse and the “V” key down while

moving the object to the target location. When the cursor is over the destination object, each of

the destination vertices will be highlighted as the dragged object is brought nearby. The user

places the dragged object by releasing the mouse and “V” key as the desired destination vertex is

highlighted. Figure 32 below shows this process [57].

62

Unity also has other snapping capabilities that are not used for this project but that may be useful

for other projects. These capabilities include unit snapping, surface snapping, and Look-At

Rotation. More details on these capabilities can be found in the references provided in this project

[57].

Figure 32. Vertex Snapping Process

63

4.5 Nesting

The technique used to create the micro assembly stations from several independent objects and

make them all behave as one whole item is called nesting [58]. The cubes that we have been

using as examples throughout this chapter can help us to understand and see how nesting works.

In Figure 33 below, both cubes are independent first; then, cube-2 is nested into the first cube by

dragging it in the hierarchy window. Lastly, both cubes are displayed as one object after being

nested.

Figure 33. Nesting Process

64

This technique is particularly important to this project because all the stations have been created

and nested under a network of spherical objects that serve as coordinate references for the micro

assembly stations. These references act like ‘addresses’ that enable us to accurately send moving

materials (pin pallet) to each of the stations when running the Unity simulation. When objects are

nested, one of them becomes the parent while the rest of them become children. In the micro

assembly stations the parent object is a small spherical object that is named with the word

“Station” and a number. Similarly, the rotators used for this project are nested under a small

sphere named with the word “Rotator” and a number.

Figure 34 below displays the station sphere as an independent object before anything is nested

under it. As it can be seen, the sphere has been named “Rotator7-Example.” Figure 35 displays

the same sphere but in reference to the overall space. In this image, it can be appreciated how tiny

the sphere really is. These spheres could almost represent any coordinate point within the overall

layout and that is precisely why they are used as references to assist the distribution of materials

when the simulation is running. Finally, Figure 36 displays the “Rotator7-Example” as a nested

whole assembly [47]. All micro – assembly stations in this project are created using the same

technique explained here. Next section will explain how simulation scripting takes advantage of

this.

Figure 34. Station sphere used for nesting

65

Figure 35. Nesting sphere in reference to the overall space

Figure 36. Nested Rotator Assembly and Nesting Sphere

To illustrate the effects that the nesting sphere has over the simulation, the example rotator used

in the previous images is placed nearby the actual Rotator7. In Figure 37 a sphere is purposely

placed nearby but the station is not nested under it. When the simulation runs, the pin pallet

travels directly to the sphere which is in open space. In Figure 38, the sphere is located

66

appropriately above the micro assembly station and nesting is performed. As it can be seen, the

pin pallet travels directly to the nested station in this figure [47].

Figure 37. Pin pallet travels to open space towards sphere that is not nested

Figure 38. Pin pallet travels to open space towards sphere that has been nested

Next section will explain the scripting that has been used to simulate the motion of materials from

one place to another and that is used to create the examples that we have used to explain the

important concept of nesting.

67

4.6 Scripting

This project uses java scripting within Unity® to simulate a controlled sequence of movements of

materials (target object) throughout the Micro-Assembly factory.

The scripting code for this project is attached to the Unity® object that represents the pin pallet

that moves from station to station in the layout. The code tells the pin pallet where to move next

based on a sequence input by the user. The code also gives the user the ability to define the initial

station from where the pin pallet will start moving.

The user inputs the information by selecting a transform from the pop up list that opens when

clicking on the sequence field or by dragging the object that represents the station to the input

fields displayed in the inspector window as seen in Figure 39 below. Once the user input is ready,

the script will move the pallet from station to station using a “for” cycle that also calculates the

distance traveled by the pin pallet for each segment in the sequence and cumulatively. Such

information can be seen in the Console window each time the pin pallet travels one segment from

station to station and at the end of the simulation. The distance travelled matches the distance

calculated by the algorithm in MatLab where the simulated near optimal sequence is obtained

from.

The script used is named “TransformMove” In Unity ® and is displayed in Figure 40 below as it

looks when the scripting editor (MonoDevelop) is opened. We can use this figure as a reference

as we proceed to explain each code line in the following paragraphs. Script is also provided in the

Appendix.

68

Figure 39. Attachment of Script and Select Transform Pop-Up List

Figure 40. TransformMove Script as seen in the MonoDevelop editor

The first two lines of code displayed below initialize the script and reference file or directory

paths [59].

1. import System; //Initializing code
2. import System.IO; //Initializing code

69

The next few code lines define all the classes (variables) used by the Script. There are different

types of classes listed. The “target” and “Initial” classes are Transforms which means that they

can be objects that represent or do something in the scene [60]. The “Sequence” class is an array

of Transforms which represent the arrangement of stations where the target will stop by; its size is

defined inside the brackets of the “new Transform[--size here--]” expression [61]. The “speed”,

“dist” and “Totdist” variables are float type which means that they are numbers with decimal

values when needed. The “i” value is an integer variable that is used as a counter for the “for”

cycle that moves the target from station to station. Finally, the “vect” variable is of the Vector3

type which is used as a directional vector that helps the target to move from one location to

another with help of the “FixedUpdate” function discussed further below [62].

3. var target : Transform; //object to be moved
4. var Initial: Transform; //object to be the initial place from where the target object starts

moving
5. var Sequence: Transform[]= new Transform[31]; // array that represents the sequence of

stations where target moves
6. var speed : float; //Variable that defines how fast the target moves
7. var i = 0; //Counter for the "for" cycle that moves the target from one station to another
8. var vect: Vector3; //vector definition
9. private var dist : float; //Variable used to calculate the distance traveled on each

sequence segment
10. private var Totdist : float;//Variable used to calculate the overall cumulative distance

The next lines initialize the position of the target at the position of the initial station and print the

initial coordinates in the console window.

11. target.position = Initial.position; //Moves target to the initial position
12. print("Initial coordinates: "+Initial.position);//Prints initial position coordinates in the

Console window

The next few lines run the “for” cycle that moves the target to all the stations listed in the

sequence. The “for” cycle increases the value of the variable “i” until the length of the

“Sequence” array has been covered. Both variables, “dist” and “Totdist” are calculated and

updated for each “i” value; the “dist” variable is calculated by using the “Vector3.Distance”

function [62] while the “Totdist” variable is updated by cumulatively adding “dist.” The “yield

70

WaitForSeconds((dist/speed)+1)” introduces a pause for the target to stop at each station that is

visited in the sequence; this way the pin pallet arrives, stops, then it continues its path [63].

Finally, the “for” cycle prints information in the console window including the new coordinates

that the target obtains at each step of the sequence, the segment distance, the cumulative distance

and the coordinates of the “vect” variable which represent the last vector used in the cycle.

18. for (i=0; i < Sequence.Length; i++)//cycle that moves target until sequence is completed
19. {
20. dist = Vector3.Distance(Sequence[i].position,target.position);//Calculates segment

distance traveled by target
21. Totdist=Totdist+dist;//Calculates cumulative traveled distance
22. vect = Sequence[i].position; //Redefines vect as next (i) sequence position
23. yield WaitForSeconds((dist/speed)+1);//Introduces a pause for target to stop at each

station in sequence
24. print("New coordinates: "+target.position); //Prints coordinates for each station where

the target stops by
25. print("Segment distance: "+dist); //Prints segment distance value
26. print("Cumulative distance: "+Totdist);//Prints cumulative distance value
27. print(vect);//Prints coordinates of sequence object where target arrives into
28. }

Lastly, the following lines conform the Update function [64] which is constantly (every frame)

updating the condition of the elements in the simulated scenario. It can be seen that the new

position of target (target.position) equals the moving X, Y and Z values of the vector (vect) that

change thanks to the “Mathf.MoveTowards” function [65] at a speed ratio affected by

“Time.deltaTime” [66] in the Vector3 class.

29. function FixedUpdate() {//Function that constantly updates the status of the model (and
target)

30. target.position = //New position of target equals:
31. Vector3(Mathf.MoveTowards(target.position.x,vect.x,speed*Time.deltaTime),//moving in

X at speed rate
32. Mathf.MoveTowards(target.position.y,vect.y,speed*Time.deltaTime), //moving in Y at a

speed rate
33. Mathf.MoveTowards(target.position.z,vect.z,speed*Time.deltaTime));//moving in Z at a

speed rate
34. }

71

4.7 Unity Modeling Conclusion

This chapter helped us to further understand how environments and objects in Unity can be built

with resources provided by the game engine or can be exported from files created with CAD

software that are converted to a ‘.3ds’ extension. We discussed how positioning and nesting can

be used to modify and group objects in the simulated scene. We also have seen how, once the

micro assembly cell models are created or imported into Unity, the simulation part is

accomplished with scripting. The behavior of objects and responses to user inputs are possible

thanks to the scripts that are attached to objects within the virtual environment [29].

72

CHAPTER V

RESULTS SUMMARY AND CONCLUSION

5.1 Introduction

This project has given us a very powerful tool to simulate Micro Assembly Factories and study

the improvement of material flow within them in a virtual and computerized environment. The

methodology proposed in this project yielded several results that are summarized in the next

section in an effort to consolidate important observations and assist with the generation of

conclusions.

In chapter 1, creating a virtual factory environment with Unity® and using it to explore ways to

improve micro assembly processes are introduced as the two main components of the main

objective for this project. It is further explained that the model created for this thesis would be

used along with genetic algorithms to study and improve the flow of materials between micro

assembly cells with the intention to improve overall layout design and/or performance.

Chapter 2 included a literature review of work that has been done in micro assembly and virtual

reality domains. Information related to micro assembly papers is presented first followed by

information related to virtual reality papers. Finally, a summary of papers related to the

application of virtual reality in the field of micro assembly is provided.

73

Chapter 3 introduced the proposed methodology to fulfill the objectives of this thesis where

Excel, MatLab and Unity® are used in unison to create distance matrices, find near optimal

distribution sequences using genetic algorithm techniques, and simulate the movement of

materials along the near optimal sequences with a virtual reality model. As explained further

below in this chapter, the proposed methodology is used successfully to fulfill the project

objectives while all the fitness values generated by MatLab for near optimal sequences are

validated with the simulation in the Unity® environment.

Chapter 4 highlighted how the most important element of this project is the model constructed

with Unity ® because it is capable to simulate different scenarios associated with Micro

Assembly factories and to validate near optimal material distribution sequences found with

genetic algorithms using MatLab. Chapter 4 described the details and techniques used to build the

model in Unity® and concepts like game object importing, creation, positioning, nesting, and

scripting are discussed with the intention to provide a guideline to produce similar models in the

future.

Finally, this chapter focuses on providing a results summary, future work opportunities and

overall project conclusions.

5.2 Results summary

The proposed methodology is used successfully to create a micro factory virtual reality

environment in Unity ®. The model is successfully used to simulate several sequences for

different scenarios:

• Material distribution for a twenty four cell layout connected by conveyors and rotators.

• Material distribution for only twelve of the twenty four available stations.

74

• Design of material distribution sequence to supply twenty four work cells that are not

limited by conveyor connections.

Table 23 below shows a summary of the results associated to these scenarios. Results obtained by

MatLab algorithms and the cumulative value calculated by the simulation in Unity® are

displayed next to each other. The near optimal sequence that is obtained by the genetic algorithm

and simulated in Unity is provided as well.

It is important to understand that different near optimal sequences could be obtained and

simulated; however, the important observation here is that the model constructed in Unity® using

the methodology proposed by this project is replicating the values estimated by the MatLab

algorithms. This validation is very important because it means that the Unity ® environment can

be used to design new or improve existing layouts with high level of confidence.

Table 23. Simulation Results Summary

Scenario MatLab Result Unity-Simulated

Result

Near Optimal

Sequence

Twenty four stations

WITH conveyors &

rotators

184.5829 184.5829

1, 24, 23, 22, 21, 20,

13, 14, 15, 16, 17, 18,

19, 12, 11, 10, 9, 8, 7,

6, 5, 4, 3, 2, 1

Twelve station (only)

from the twenty four

available

100.47989 100.4799

1, 24, 23, 22, 21, 20,

7, 6, 5, 4, 3, 2, 1

Twenty four stations

WITHOUT conveyors

& rotators

160.8690 160.8690

1, 2, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24,

5, 4, 3, 6, 7, 1

75

5.3 Results discussion

The scenarios summarized in Table 23 cover a variety of circumstances that can be recreated in

the virtual environment to assist the user with different goals:

• The first model with twenty four stations could be an existing layout with a given number

of work stations and conveyors. The objective could be to find alternatives to re layout

the stations or simply to find the best route to distribute materials within it.

• The second scenario deals with the partial utilization of a given group of work stations

and the search for the near optimal sequence route to supply the active stations with

material.

• The third listed model assumes that the design of a work station layout is started from

scratch but a set of coordinates is given for the work stations. This scenario can be used

by the designer to test different layouts and it could even be used to propose moving

work stations to different locations if needed.

All these scenarios are proof of the flexibility that Unity® provides to the user to experiment with

different options as layouts are designed or continuously improved. As it can be seen, the

simulated results matched the MatLab results each and every time.

5.4 Importance of virtual environments and prototypes

Nowadays, virtual reality environments are getting importance and its use is starting to get

popularity as the future of manufacturing. This popularity comes from the broad collection of

advantages that using a virtual prototype has for manufacturing companies and designers during

the earliest stages of new product development and process improvement.

Take for example the Ford Motor Company where the technology started to be used a few years

back to design production lines more ergonomically and where virtual, immersive models have

76

proven to add value by reducing quality, assembly and other performance issues during the

earliest stages of manufacturing processes and cars design. At Ford, virtual assembly lines and

products are constructed and tested before any assembly line is put together to launch a car. This

approach enables engineers to solve most of the potential problems that the new production line

could have during the earliest stages of the project. Overtime, this fact not only eliminates

ergonomic, quality and assembly issues but saves significant amount of resources that, otherwise,

would be spent in fixing the issues after they are in place [67-74].

The virtual production line and car prototypes help Ford to experiment earlier and be proactive

cross functionally. Virtual prototypes help the company to meet cross functional goals and

improve different metrics at a lower cost since changes that are needed can be done quickly in the

computerized environment rather than in a physical prototype where rework and additional

materials would be likely needed. The advantages obtained from the use of virtual prototypes

benefit several functional metrics including quality, productivity, safety and ergonomics [67-74].

5.5 Future work and research opportunities

This project presented an approach to build virtual prototypes in Unity® and use them to support

continuous process improvement or better process design. The capabilities that this technology

has are still far away from being fully explored. The methodology presented here is just one step

forward into the future of manufacturing process and new product design. Future work and

research opportunities related to this project include:

• The development of a methodology to take models created by this methodology into a

semi-immersive environment.

• Taking advantage of the flexibility and software availability that Unity® has to better

connect cross functional teams that are involved in design projects even remotely. Since

77

Unity® is a gaming engine we could almost say that the engineers in a given team could

“play” their project’s video game on-line, in the cloud, or any other communication

enabling technology that may evolve in the future.

• Expanding this methodology to macro assembly environments where it could be used to

study the effect that different assembly processes and product designs have on

performance. Quality, productivity, safety and ergonomic factors could be explored

within several virtual scenarios that can be easily tweaked within the gaming engine

environment that Unity® makes available.

Using virtual reality approaches and technology will continue to gain importance in the

design world. Working on projects that explore the utilization of approaches similar to the

one proposed by this thesis will

5.6 Overall conclusion

The main objective for this project is to create a virtual factory environment and use it to improve

micro assembly processes. The following objectives derived from the main one:

• Create a virtual factory environment using computer graphics (UNITY® software).

• Explore the potential use of genetic algorithms and other methods to improve the routing

between work cells.

All of these objectives have been successfully fulfilled by this project where a virtual micro

assembly factory is created in Unity to simulate different scenarios that could be improved with

the use of MatLab methods. For all of these scenarios, Excel, MatLab and Unity are used in

unison to create distance matrices, find near optimal distribution sequences applying genetic

algorithm techniques and simulate the movement of materials along the near optimal sequences

with a virtual reality model.

78

In all situations the cumulative travel distances calculated in the Unity model matched the

objective function value estimated by the MatLab algorithms. This validated the ability of the

model to accurately represent the motion of materials within a micro assembly factory.

Finally, this methodology can be used not only to study and improve existing micro factory

systems but to also design future micro factories to be more efficient. The flexibility of the Unity

environment enables the users not to only simulate the movement of materials along near optimal

sequences but to also reposition objects to quickly create different layout options.

79

REFERENCES

[1] Cecil, J., 2010. Virtual Engineering. Momentum Press, New York, USA.

[2] Shet, S., Revero, R.D., Booty, M. R., Fiory, A. T., Lepselter, M. P., and Ravindra,
N.M., 2006. “Microassembly Techniques: A Review.” Materials Science and Technology,
1, pp. 451-470.

[3] Cecil, J. J., Vasquez, D. D., and Powell, D. D., 2005. “A review of gripping and
manipulation techniques for micro-assembly applications.” International Journal Of
Production Research, 43(4), pp. 819-828.

[4] Ohba, K., Ortega, J.C., Tanie, K., Rin, G., Dangi, R., Takei, Y., Kaneko, T., and
Kawahara, N., 2001. “Micro-observation Technique for Tele-micro-operation.”
Advanced Robotics, 15(8), pp. 781-798.

[5] Beltrami, I., Joseph, C., Clavel, R., Bacher, J., and Bottinelli, S., 2004. “Micro- and
Nanoelectric-discharge Machining.” Journal of Materials Processing Technology, 149(1–
3), pp. 263-265.

[6] Qin, Y., 2006. “Micro-Forming and Miniature Manufacturing Systems —
Development Needs and Perspectives.” Journal of Materials Processing Technology,
177(1–3), pp. 8-18.

[7] Wang, J., Tao, X., and Cho, H., 2008. “Microassembly of micro peg and hole using
an optimal visual proportional differential controller.” Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(9), pp. 1171-
1180.

[8] Feddema, J. T., Xavier, P., and Brown, R., 2001. “Micro-assembly Planning With
Van der Waals Force.” Journal Of Micromechatronics, 1(2), pp. 139-153.

[9] Hollis, R. L., and Rizzi, A. A., 2004. ”Agile Assembly Architecture: A Platform
Technology for Microassembly.” Advances, 2004.

[10] Hollis, R., and Gowdy, J., 1998. “Miniature Factories for Precision Assembly.”
International Workshop on Microfactories. pp.9-14. The Robotics Institute, Carnegie
Mellon University.

[11] Gaugel, T., Bengel, M., and Malthan, D., 2004. “Building a Mini-assembly System
from a Technology Construction Kit.” Assembly Automation, 24(1), pp. 43–48.

80

[12] Ferreira, A., 2000. “Design of a Flexible Conveyer Microrobot with Electromagnetic
Field-based Friction Drive Control for Microfactory Stations.” Journal Of
Micromechatronics, 1(1), pp. 49-66.

 [13] Li, J., Li, Z., and Chen, J., 2007. “An Omni-directional Mobile Millimeter-sized
Microrobot with 3-mm Electromagnetic Micromotors for a Micro-factory.” Advanced
Robotics, 21(12), pp. 1369-1391.

 [14] Subramaniyam, M., Park, S., & Park, J., 2010. “Analysis of five- and six-machine
micro-factory layouts for micro-pump productivity improvement.” Journal of Mechanical
Science and Technology, 24(11), pp. 2269-2273.

[15] Shuang, B., Chen, J., and Li, Z., 2008. “Microrobot based micro-assembly sequence
planning with hybrid ant colony algorithm.” The International Journal of Advanced
Manufacturing Technology, 38(11), pp. 1227-1235.

[16] Cecil, J., and Kanchanapiboon, A., 2006. “Virtual engineering approaches in product
and process design.” The International Journal of Advanced Manufacturing Technology,
31(9), pp. 846-856.

[17] Jayaram, S., Connacher, H., and Lyons, K., 1997. “Virtual assembly using virtual
reality techniques.” Computer-Aided Design, 29(8), pp. 575-584.

[18] Gomes de Sá, A., and Zachmann, G., 1999. “Virtual reality as a tool for verification
of assembly and maintenance processes.” Computers & Graphics, 23(3), pp. 389-403.

[19] Wang, Q., & Li, J., 2006. “Interactive visualization of complex dynamic virtual
environments for industrial assemblies.” Computers in Industry, 57(4), pp. 366-377.

[20] Weidlich, D., Cser, L., Polzin, T., Cristiano, D., and Zickner, H., 2007. “Virtual
Reality Approaches for Immersive Design.” CIRP Annals - Manufacturing Technology,
56(1), pp. 139-142.

[21] Lin, M., Fu, L., and Shih, T., 1999. “Virtual Factory- A Novel Testbed for an
Advanced Flexible Manufacturing System.” International Conference on Robotics &
Automation. 1999.

[22] Wenbin, Z., Juanqi, Y., Dengzhe, M., Ye, J., and Xiumin, F., 2006. “Production
engineering-oriented virtual factory: a planning cell-based approach to manufacturing
systems design.” The International Journal of Advanced Manufacturing Technology.
28(9), pp. 957-965.

[23] Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., and
Lécuyer, A., 2010. “OpenViBE: An Open-Source Software Platform to Design, Test, and
Use Brain-Computer Interfaces in Real and Virtual Environments.” Presence:
Teleoperators & Virtual Environments, 19(1), pp. 35-53.

[24] Gobinath, N., Cecil, J., and Powell, D., 2007. “Micro devices assembly using virtual
environments.” Journal of Intelligent Manufacturing, 18(3), pp. 361-369.

[25] Ferreira, A., Cassier, C., and Hirai, S., 2004. “Automatic microassembly system
assisted by vision servoing and virtual reality.” IEEE/ASME Transactions on
Mechatronics, 9(2), pp. 321-333.

81

[26] Cecil, J., and Gobinath, N., 2005. “Development of a virtual and physical work cell
to assemble micro-devices”, Robotics and Computer-Integrated Manufacturing, 21(4–5).

[27] Ferreira, A., Fontaine, J., and Hirai, S., 2002. “Automation of a Teleported
Microassembly Desktop Station Supervised by Virtual Reality.” Transactions on Control,
Automation, and Systems Engineering. 4(1), pp. 23-30.

[28] Cecil, J., Huber, J., Gobinath, N., and Jacques, J., 2011. “A Virtual Factory
Environment to support Process Design in Micro Assembly Domains.” Computer-Aided
Design & Applications, 8(1), pp. 119-127.

[29] Unity Technologies, 2015, “Creating and Using Scripts”, from
http://docs.unity3d.com/Documentation/Manual/CreatingAndUsingScripts.html.

[30] The MathWorks Inc., 2012, “Global Optimization Toolbox User’s Guide”, from
http://www.mathworks.com/help/releases/R2012a/pdf_doc/gads/gads_tb.pdf.

[31] The MathWorks Inc., 2015, “Global Optimization Toolbox” from
http://www.mathworks.com/help/gads/index.html?searchHighlight=Global%20Optimizat
ion%20Toolbox.

[32] Wikipedia, 2015, “Euclidean distance” from
http://en.wikipedia.org/wiki/Euclidean_distance.

[33] Massey University, 2012, “Pythagoras Theorem”, from
http://mathsfirst.massey.ac.nz/Algebra/PythagorasTheorem/pythapp.htm.

[34] Microsoft Office Support, 2015, “SQRT Function”, from
https://support.office.com/en-NZ/article/SQRT-function-654975c2-05c4-4831-9a24-
2c65e4040fdf.

[35] Furey, Edward., 2015, “3D Distance Calculator”, from
http://www.calculatorsoup.com/calculators/geometry-solids/distance-two-points.php.

[36] Microsoft Office Support, 2015, “INDEX Function”, from
https://support.office.com/en-NZ/article/INDEX-function-0ee99cef-a811-4762-8cfb-
a222dd31368a.

[37] Microsoft Office Support, 2015, “IF Function”, from https://support.office.com/en-
NZ/article/if-function-0f1a0f81-f6e1-46e4-9cd4-9e65445fc3ab.

[38] Microsoft Office Support, 2015, “SUM Function”, from
https://support.office.com/en-NZ/article/sum-function-a1fe8ecc-2c5a-4d5a-8db0-
80b9f7fcbd6b.

[39] Microsoft Office Support, 2015, “AND Function”, from
https://support.office.com/en-NZ/article/and-function-c192b0d8-0eeb-4768-a674-
f84e6df9aefb.

82

[40] Microsoft Office Support, 2015, “OFFSET Function”, from
https://support.office.com/en-NZ/article/offset-function-c8de19ae-dd79-4b9b-a14e-
b4d906d11b66.

[41] Microsoft Office Support, 2015, “INDIRECT Function”, from
https://support.office.com/en-nz/article/INDIRECT-function-21f8bcfc-b174-4a50-9dc6-
4dfb5b3361cd?ui=en-US&rs=en-NZ&ad=NZ.

[42] The MathWorks Inc., 2006, “xlsread”, from
http://www.mathworks.com/help/matlab/ref/xlsread.html?searchHighlight=xlsread.

[43] The MathWorks Inc., 2015, “What is the Genetic Algorithm?”, from
http://www.mathworks.com/help/gads/what-is-the-genetic-
algorithm.html?searchHighlight=What%20is%20the%20Genetic%20Algorithm%3F.

[44] The MathWorks Inc., 2007, “Custom Data Type Optimization Using the Genetic
Algorithm”, from http://www.mathworks.com/help/gads/examples/custom-data-type-
optimization-using-the-genetic-algorithm.html.

[45] The MathWorks Inc., 2006, “rand”, from
http://www.mathworks.com/help/matlab/ref/rand.html?searchHighlight=rand.

[46] University of California, Irvine – OpenCourseWare., 2011, “Generating random
numbers: The rand() function”, from
http://ocw.uci.edu/upload/files/mae10_w2011_lecture13.pdf.

[47] Industrial Engineering & Management department, 2012-2015, “Center for
Information Centric Engineering”, Oklahoma State University, from
http://vrice.okstate.edu/.

[48] Unity Technologies, 2015, “3D Formats”, from http://docs.unity3d.com/Manual/3D-
formats.html.

[49] 3D-Tool GmbH & Co. KG, 2015, “3D-Tool”, from http://www.3d-tool.com.

[50] Siemens, 2015, “Solid Edge”, from
https://www.plm.automation.siemens.com/en_us/products/solid-edge/index.shtml.

[51] Unity Technologies, 2015, “Creating Scenes”, from
http://docs.unity3d.com/Manual/CreatingScenes.html.

[52] Unity Technologies, 2015, “GameObjects”, from
http://docs.unity3d.com/Manual/GameObjects.html.

[53] Geig, M., 2013. “Unity® Game Development.” Sams Publishing, USA, Chap. 2.

[54] Unity Technologies, 2015, “Transforms”, from
http://docs.unity3d.com/Manual/Transforms.html.

83

[55] Geig, M., 2013. “Unity® Game Development.” Sams Publishing, USA, pp. 41-42.

[56] Unity Technologies, 2015, “Asset Store”, from
http://docs.unity3d.com/Manual/AssetStore.html.

[57] Unity Technologies, 2015, “Positioning Game Objects”, from
http://docs.unity3d.com/Manual/PositioningGameObjects.html.

[58] Geig, M., 2013. “Unity® Game Development.” Sams Publishing, USA, pp. 11, 33-
34.

[59] Unity Technologies, 2015, “Path”, from
http://docs.unity3d.com/ScriptReference/Path.html.

[60] Unity Technologies, 2015, “Transform”, from
http://docs.unity3d.com/ScriptReference/Transform.html.

[61] Unity Technologies, 2015, “Array”, from
http://docs.unity3d.com/ScriptReference/Array.html.

[62] Unity Technologies, 2015, “Vector3”, from
http://docs.unity3d.com/ScriptReference/Vector3.html.

[63] Unity Technologies, 2015, “WaitForSeconds”, from
http://docs.unity3d.com/ScriptReference/WaitForSeconds.html.

[64] Unity Technologies, 2015, “MonoBehaviour.FixedUpdate()”, from
http://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html.

[65] Unity Technologies, 2015, “Mathf.MoveTowards”, from
http://docs.unity3d.com/ScriptReference/Mathf.MoveTowards.html.

[66] Unity Technologies, 2015, “Time.deltaTime”, from
http://docs.unity3d.com/ScriptReference/Time-deltaTime.html.

[67] Press Release, 2008, “Virtual manufacturing technology a big factor behind ford's
continually improving quality”, Ford Motor Company, from
http://ophelia.sdsu.edu:8080/ford/01-24-2009/about-ford/news-announcements/press-
releases/press-releases-detail/pr-virtual-manufacturing-technology-a-27948.html.

[68] Unknown, 2012, “Ford creates virtual factory to simulate assembly-line process”,
The Engineer, from http://www.theengineer.co.uk/channels/design-
engineering/news/ford-creates-virtual-factory-to-simulate-assembly-line-
process/1013377.article.

[69] Luft, A., 2013, “Ford Begins Testing New Plant Virtualization Software From
Siemens (With Video)”, Motrolix, from http://motrolix.com/2013/12/ford-begins-testing-
new-virtual-plant-software-from-siemens-with-video/.

[70] Burg, N., 2014, “Ford Pilots A New Virtual Assembly Plant To Build Its Cars”,
Forbes, from http://www.forbes.com/sites/unify/2014/03/31/ford-pilots-a-new-virtual-
assembly-plant-to-build-its-cars/.

84

[71] Thornton, J., 2009, “At Ford, Ergonomics Meets Immersive Engineering”, EHS
Today, from http://ehstoday.com/health/ergonomics/ford-ergonomics-simulation-0409.

[72] Institute of Industrial Engineers, 2015 “Applied Ergonomics Conference”, from
http://www.iienet2.org/Ergo/Conference/.

[73] FordLightingLab, 2011, “Ford’s Virtual Assembly Lines”, from
https://www.youtube.com/watch?v=ORuPe7r8IAI.

[74] FORD Car Center, 2011, “Ford Plans Virtual Factory for Ultimate Assembly Line
Efficiency”, from https://www.youtube.com/watch?v=3E4hv9qQU7w.

85

APPENDICES

Appendix A: MathWorks Permission

Authorization to use the MatLab codes from MathWorks in this thesis was requested on

4/24/2015 as follows:

Robledo Gallegos, Abraham <arobled@ostatemail.okstate.edu>

Apr 24 (4 days ago)

to MathWorks, arobled

Hello,

 Thank you for receiving my call. As I explained I am a Master’s Degree student presenting my

work and Graduating this semester (May 2015) and before I upload my final report to the system

on the deadline next week (April 30th-May 1st) I want to know how to correctly cite or refer to

the following information you have available in your product help:

 http://www.mathworks.com/help/gads/examples/custom-data-type-optimization-using-the-

genetic-algorithm.html

 I would also like to see if I may have your permission to place the codes that you make available

in the link in my final report. I would like to explain that they were the starting point for me to be

able to work on my specific project needs where I generated another custom type data for

optimization as well. The scripts I refer to are the "Create_permutations", "Mutate_permutation" ,

"Crossover_permutation" and "Traveling_Salesman_Fitness".

 Your script generates an open and random position sequence for the "cities" and I could not use

them directly for my problem; however, they pointed me in the right direction to be able to use

the Global Optimization Tool with the genetic algorithm solver to generate sequences

(permutations) that I needed.

My thesis project is not related to MatLab; however, I use MatLab as a significant tool during my
project. My thesis related to the construction of a virtual environment using a gaming engine. I
use the sequence I get from MatLab to help validate the accuracy of my virtual environment.

86

I appreciate your guidance to appropriately report the material reference in the link above and I
also will appreciate if you grant permission for me to use your codes as I explain the role of
MatLab in my project.

Please submit your recommendations at your earliest convenience.

Best regards,

 Abraham Robledo Gallegos

Oklahoma State University
Master's Degree Student, Industrial Engineering

Additional note,

I am already referencing the website regardless on my document:

http://www.mathworks.com/help/gads/examples/custom-data-type-optimization-using-the-
genetic-algorithm.html

However, I wanted to reach out to you to see if I may have your permission to place the codes
that you make available in the link in my final report.

Thanks again,

Abraham Robledo Gallegos

MathWorks response with Authorization to use the MatLab codes in this thesis was received on

4/27/2015 as follows:

MathWorks Customer Service via p2ihi0866lc2.i-

ha1ueac.na15.bnc.salesforce.com

to me

4:19 PM (9
hours ago)

Hello Abraham,

The General Counsel of MathWorks put his matter on the top of his list today and said to say
“Used with the permission of MathWorks.” He wanted me also to let you know that he

really appreciates that you asked for permission.

If you need further assistance regarding this request, please reply to this email preserving the
Reference ID listed below. If you have a new Customer Support question, please submit a request
here: http://www.mathworks.com/support/servicerequests/create.html

Thank you,

Simonne Bonfatti
MathWorks Customer Service
01336553
ref:_00Di0Ha1u._500i0OUwtn:ref

87

Appendix B: MatLab’s Create Permutations script [44]

1. function pop = create_permutations(NVARS,FitnessFcn,options)
2. %CREATE_PERMUTATIONS Creates a population of permutations.
3. % POP = CREATE_PERMUTATION(NVARS,FITNESSFCN,OPTIONS)

creates a population
4. % of permutations POP each with a length of NVARS.
5. %
6. % The arguments to the function are
7. % NVARS: Number of variables
8. % FITNESSFCN: Fitness function
9. % OPTIONS: Options structure used by the GA

10. % Copyright 2004-2007 The MathWorks, Inc.
11. % $Revision: 1.1.6.1 $ $Date: 2009/08/29 08:27:32 $

12. totalPopulationSize = sum(options.PopulationSize);
13. n = NVARS;
14. pop = cell(totalPopulationSize,1);
15. for i = 1:totalPopulationSize
16. pop{i} = randperm(n);
17. end

88

Appendix C: Create Permutations [44] custom script

• function pop = create_permutations_mod_2(NVARS,FitnessFcn,options)
%function calling similar to [44]

• totalPopulationSize = sum(options.PopulationSize); %Population size definition
similar to [44]

• n = NVARS; %number of variables definition similar to [44]

• pop = cell(totalPopulationSize,1);%CUSTOM -array with size equal to
population size

• pop2 = cell(totalPopulationSize,1);%CUSTOM - array with size equal to
population size

• for i = 1:totalPopulationSize %cycle from 1 to population size
o pop2{i} = randperm(n-1)+1; %CUSTOM - fills permutations with all

stations but station # 1; in an example with 7 cells-it goes from 2 to 7
o for j= 1:(n-1) %CUSTOM - cycle from 1 to number of stations(n)-1

� pop{i}(1,j+1)=pop2{i}(1,j); %CUSTOM - starting in position 2
(j=1+1) pop fills with all stations (stored in pop2) except #1

o end
o pop{i,1}(1,1)=1 ; % CUSTOM - all positions #1 are equal to station #1
o pop{i,1}(1,n+1)=pop{i,1}(1,1); %CUSTOM - added last position

equal to the first position (1)

• end

89

Appendix D: MatLab’s Mutate Permutations script [44]

1. function mutationChildren = mutate_permutation(parents ,options,NVARS, ...
2. FitnessFcn, state, thisScore,thisPopulation,mutationRate)
3. % MUTATE_PERMUTATION Custom mutation function for traveling

salesman.
4. % MUTATIONCHILDREN =

MUTATE_PERMUTATION(PARENTS,OPTIONS,NVARS, ...
5. % FITNESSFCN,STATE,THISSCORE,THISPOPULATION,MUTATIONRATE)

mutate the
6. % PARENTS to produce mutated children MUTATIONCHILDREN.
7. %
8. % The arguments to the function are
9. % PARENTS: Parents chosen by the selection function
10. % OPTIONS: Options structure created from GAOPTIMSET
11. % NVARS: Number of variables
12. % FITNESSFCN: Fitness function
13. % STATE: State structure used by the GA solver
14. % THISSCORE: Vector of scores of the current population
15. % THISPOPULATION: Matrix of individuals in the current population
16. % MUTATIONRATE: Rate of mutation

17. % Copyright 2004 The MathWorks, Inc.
18. % $Revision: 1.1.6.1 $ $Date: 2009/08/29 08:28:05 $

19. % Here we swap two elements of the permutation
20. mutationChildren = cell(length(parents),1);% Normally

zeros(length(parents),NVARS);
21. for i=1:length(parents)
22. parent = thisPopulation{parents(i)}; % Normally thisPopulation(parents(i),:)
23. p = ceil(length(parent) * rand(1,2));
24. child = parent;
25. child(p(1)) = parent(p(2));
26. child(p(2)) = parent(p(1));
27. mutationChildren{i} = child; % Normally mutationChildren(i,:)
28. end

90

Appendix E: Mutate Permutations [44] custom script

• function mutationChildren = mutate_permutation_mod(parents ,options,NVARS,
FitnessFcn, state, thisScore,thisPopulation,mutationRate) %function calling
similar to [44]

• n = NVARS; %number of variables definition similar to [44]

• mutationChildren = cell(length(parents),1 %Children group definition similar to
[44]

• for i=1:length(parents) % For cycle similar to [44]
o parent = thisPopulation{parents(i)}; % For cycle similar to [44]
o parent(:,n+1)=[];% CUSTOM -removes the added last position (by

create_permutations_mod) that moves the target back to the initial
position at the end of the sequence

o p = ceil((length(parent)) * ((1-(1/length(parent)))*rand
(1,2)+(1/length(parent))));%CUSTOM - ensures that first station stays at
beginning and end. Selects a position (station, other than the first one
(and last one) to cross over/mutate. Based on the formula to generate
values from the uniform distribution on the interval [a, b]:: r = a + (b-
a).*rand().

o child = parent; % Performs mutation [44]
o child(p(1)) = parent(p(2)); % Performs mutation [44]
o child(p(2)) = parent(p(1)); % Performs mutation [44]
o mutationChildren{i} = child; % Performs mutation [44]
o mutationChildren{i,1}(1,n+1)= mutationChildren{i,1}(1,1);%CUSTOM-

adds to each child sequence one last position with the initial station
(1)where the target returns at the end of the sequence

• end

91

Appendix F: MatLab’s Crossover Permutations script [44]

1. function xoverKids = crossover_permutation(parents,options,NVARS, ...
2. FitnessFcn,thisScore,thisPopulation)
3. % CROSSOVER_PERMUTATION Custom crossover function for traveling

salesman.
4. % XOVERKIDS =

CROSSOVER_PERMUTATION(PARENTS,OPTIONS,NVARS, ...
5. % FITNESSFCN,THISSCORE,THISPOPULATION) crossovers PARENTS to

produce
6. % the children XOVERKIDS.
7. %
8. % The arguments to the function are
9. % PARENTS: Parents chosen by the selection function
10. % OPTIONS: Options structure created from GAOPTIMSET
11. % NVARS: Number of variables
12. % FITNESSFCN: Fitness function
13. % STATE: State structure used by the GA solver
14. % THISSCORE: Vector of scores of the current population
15. % THISPOPULATION: Matrix of individuals in the current population

16. % Copyright 2004 The MathWorks, Inc.
17. % $Revision: 1.1.6.1 $ $Date: 2009/08/29 08:27:33 $

18. nKids = length(parents)/2;
19. xoverKids = cell(nKids,1); % Normally zeros(nKids,NVARS);
20. index = 1;

21. for i=1:nKids
22. % here is where the special knowledge that the population is a cell
23. % array is used. Normally, this would be thisPopulation(parents(index),:);
24. parent = thisPopulation{parents(index)};
25. index = index + 2;

26. % Flip a section of parent1.
27. p1 = ceil((length(parent) -1) * rand);
28. p2 = p1 + ceil((length(parent) - p1- 1) * rand);
29. child = parent;
30. child(p1:p2) = fliplr(child(p1:p2));
31. xoverKids{i} = child; % Normally, xoverKids(i,:);
32. end

92

Appendix G: Crossover Permutations [44] custom script

• function xoverKids = crossover_permutation_mod(parents,options,NVARS,
FitnessFcn,thisScore,thisPopulation) %function calling similar to [44]

• n = NVARS; %number of variables definition similar to [44]

• nKids = length(parents)/2; %Children length definition similar to [44]

• xoverKids = cell(nKids,1); %Children group definition similar to [44]

• index = 1; %For cycle similar to [44]

• for i=1:nKids %For cycle similar to [44]

• parent = thisPopulation{parents(index)}; %For cycle similar to [44]

• index = index + 2; %For cycle similar to [44]

• parent(:,n+1)=[];%CUSTOM- removes the added last position (by
create_permutations_mod) that moves the target back to the initial position at the end of
the sequence

• p1 = ceil((length(parent) -1) * ((1-(1/(length(parent)-1)))*rand+ (1/(length(parent)-
1)))); %CUSTOM - ensures that first station stays at beginning and end. Selects a
position (station, other than the first one (and last one) to cross over/mutate. %Based on
the formula to generate values from the uniform distribution on the interval [a,b]:: r = a
+ (b-a).*rand().

• p2 = p1 + ceil((length(parent) - p1- 1) * rand); % Performs crossover [44]

• child = parent; % Performs crossover [44]

• child(p1:p2) = fliplr(child(p1:p2)); % Performs crossover [44]

• xoverKids{i} = child; % Performs crossover [44]

• xoverKids{i,1}(1,n+1)= xoverKids{i,1}(1,1);% CUSTOM - adds to each child sequence
one last position with the initial station (1) where the target returns at the end of the
sequence

• end

93

Appendix H: MatLab’s Traveling Salesman Fitness script [44]

1. function scores = traveling_salesman_fitness(x,distances)
2. %TRAVELING_SALESMAN_FITNESS Custom fitness function for TSP.
3. % SCORES = TRAVELING_SALESMAN_FITNESS(X,DISTANCES) Calculate

the fitness
4. % of an individual. The fitness is the total distance traveled for an
5. % ordered set of cities in X. DISTANCE(A,B) is the distance from the city
6. % A to the city B.

7. % Copyright 2004-2007 The MathWorks, Inc.
8. % $Revision: 1.1.6.1 $ $Date: 2009/08/29 08:28:36 $

9. scores = zeros(size(x,1),1);
10. for j = 1:size(x,1)
11. % here is where the special knowledge that the population is a cell
12. % array is used. Normally, this would be pop(j,:);
13. p = x{j};
14. f = distances(p(end),p(1));
15. for i = 2:length(p)
16. f = f + distances(p(i-1),p(i));
17. end
18. scores(j) = f;
19. end

94

Appendix I: Script created in Unity® to simulate near optimal sequences in the virtual

environment

1. import System; //Initializing code
2. import System.IO; //Initializing code
3. var target : Transform; //object to be moved
4. var Initial: Transform; //object to be the initial place from where the target object starts

moving
5. var Sequence: Transform[]= new Transform[31]; // array that represents the sequence of

stations where target moves
6. var speed : float; //Variable that defines how fast the target moves
7. var i = 0; //Counter for the "for" cycle that moves the target from one station to another
8. var vect: Vector3; //vector definition
9. private var dist : float; //Variable used to calculate the distance traveled on each

sequence segment
10. private var Totdist : float;//Variable used to calculate the overall cumulative distance
11. target.position = Initial.position; //Moves target to the initial position
12. print("Initial coordinates: "+Initial.position);//Prints initial position coordinates in the

Console window
35. for (i=0; i < Sequence.Length; i++)//cycle that moves target until sequence is completed
36. {
37. dist = Vector3.Distance(Sequence[i].position,target.position);//Calculates segment

distance traveled by target
38. Totdist=Totdist+dist;//Calculates cumulative traveled distance
39. vect = Sequence[i].position; //Redefines vect as next (i) sequence position
40. yield WaitForSeconds((dist/speed)+1);//Introduces a pause for target to stop at each

station in sequence
41. print("New coordinates: "+target.position); //Prints coordinates for each station where

the target stops by
42. print("Segment distance: "+dist); //Prints segment distance value
43. print("Cumulative distance: "+Totdist);//Prints cumulative distance value
44. print(vect);//Prints coordinates of sequence object where target arrives into
45. }
46. function FixedUpdate() {//Function that constantly updates the status of the model (and

target)
47. target.position = //New position of target equals:
48. Vector3(Mathf.MoveTowards(target.position.x,vect.x,speed*Time.deltaTime),//moving in

X at speed rate
49. Mathf.MoveTowards(target.position.y,vect.y,speed*Time.deltaTime), //moving in Y at a

speed rate
50. Mathf.MoveTowards(target.position.z,vect.z,speed*Time.deltaTime));//moving in Z at a

speed rate
51. }

VITA

Abraham Robledo Gallegos

Candidate for the Degree of

Master of Science

Thesis: DEVELOPMENT OF A VIRTUAL FACTORY ENVIRONMENT TO

STUDY, SIMULATE AND IMPROVE THE MATERIAL FLOW BETWEEN
MULTIPLE MICRO ASSEMBLY WORK CELLS

Major Field: Industrial Engineering & Management

Biographical:

Education:

Completed the requirements for the Master of Science in Industrial Engineering
& Management at Oklahoma State University, Stillwater, Oklahoma in May,
2015
Completed the requirements for the Bachelor of Science in Industrial
Engineering at Universidad de las Americas, Puebla, Puebla / Mexico in 2007.

Experience:

Lennox International- Heatcraft Worldwide Refrigeration Columbus, GA
 Environmental, Health and Safety Manager Dec 11 –Current

� Awards & Achievements:

• LII Safety Pacesetter Award winning facility 2014 & 2015

• LII Mentoring for Diversity Leadership Program Graduate Mar 2014

• Heatcraft Emerging Leader Development Program Graduate Mar 2015
Lennox International- Heatcraft Worldwide Refrigeration Tifton, GA
 Manufacturing Engineer Jul 07 - Dec 11

Cadbury ADAMS Puebla, Mexico

Thesis on simulation & improvement of production lines Aug 06- May 07

Lennox International- Allied Air Enterprises Blackville, SC
 Engineering Ergonomics Intern May 06 - Aug 06

Professional Memberships:

IIE Applied Ergonomics Conference program committee member, speaker and
attendant from 2007 to 2015.

