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Abstract:  
Streambank erosion may be one pathway for sediment and nutrient loading to streams but 
insufficient data exists on the magnitude. Riparian protection can significantly decrease 
streambank erosion in some locations, but estimates of actual sediment load reductions are 
limited. Objectives of this research include (i) reviewing current knowledge on streambanks as P 
loading sources and identifying future research needs, (ii) quantifying the amount of streambank 
erosion throughout a sensitive watershed in eastern Oklahoma, (iii) estimating the benefit of 
vegetation on reducing streambank erosion, (iv) determining the importance of mass wasting in 
this system,  (v) analyzing the appropriateness of limited monitoring points to determine 
watershed sediment load, (vi) quantifying the magnitude of and spatial distribution of streambank 
phosphorus concentrations along a stream system in a watershed with historical poultry litter 
application, (vii) quantifying the amount of water soluble phosphorus (WSP) and total 
phosphorus (TP) entering the stream from streambanks, and (viii) comparing streambank P 
concentrations and loading between two unique streams in the same ecoregion. For Spavinaw 
Creek, it was estimated that the total soil mass eroded from 2003 to 2013 was 727 x106 kg, 
average bank retreat was 2.5 m yr-1, and 1.5 x 103 kg WSP and 1.4 x 105 kg TP loaded. Statistical 
analysis showed that sites with riparian vegetation had on average three times less bank retreat 
than unprotected banks. Bank retreat was somewhat positively correlated with stream discharge, 
suggesting that mass wasting plays a role in streambank erosion within this watershed. Selection 
of random sites and scaling up to watershed scale greatly underestimated the actual erosion and 
loading rates. Comparison of P loading between the two systems showed that WSP in one was an 
order of magnitude higher while TP was on the same order of magnitude. Streambank P loading 
rates are dependent on the stream system; therefore each stream needs to be individually studied 
in order to gain a better understanding of the specific loadings from streambanks. Future research 
is needed on dynamics between different P pools and the integrated streambank erosion 
processes.  
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CHAPTER I 

 

 

PHOSPHORUS LOADS FROM STREAMBANK EROSION: A SOURCE OF LEGACY 

PHOSPHORUS IN WATERSHEDS 

1.1 Abstract 

Nutrients and excess sediment are two of the primary pollutants of surface waters in the United 

States. Many studies have investigated loadings from upland runoff or sediment transported in the 

channel, both bed and suspended sediments, but in many cases, limited to no data exist to 

determine sediment and nutrient loading from streambanks on a watershed scale (Wilson et al., 

2008). The objectives of this paper are to review the current knowledge base on streambanks as 

phosphorus (P) loading sources and to identify future research needs. In many watersheds, long-

term loading of nutrients to stream systems has created a legacy source of nutrients that can be 

mobilized during streambank erosion and failure. Streambank erosion and failure is reported to 

account for 17 to 92% of the suspended sediment load within a channel and 10 to 93% of P, 

showing the large impact this process can have on a stream system. Research is needed on the 

integrated processes of fluvial erosion, mass wasting, and subaerial erosion to better understand 

the impact of restoration/rehabilitation efforts on reducing sediment and P loading. Currently no 

mechanistic or empirical approaches are available for modifying erodibility parameters of soil 

due to subaerial processes or vegetation. Soil research needs to be driven by the goal of soil 

sustainability, which can be obtained through quantitative principles and measurements of soil 
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erosion and production, and soil nutrient loss and release. An improved understanding is needed 

on the dynamic processes between different P pools, and sorption or desorption processes under 

varying hydraulic and stream chemistry conditions that might be experienced during runoff 

events. Finally, research is needed on the transport rates of dissolved and sediment-bound P 

through the entire stream system of a watershed.  

 

1.2 Introduction 

 Phosphorus (P) is often the limiting nutrient, and its increased concentration is linked 

with accelerated eutrophication of fresh waters (Sharpley and Rekolainen, 1997). An increase of 

P in surface water can lead to algae blooms. As these blooms die and decompose, dissolved 

oxygen in the water decreases, which can negatively impact the aquatic ecosystem (Pierzynski et 

al., 2000). Advanced eutrophication impacts recreation, industrial water usage, and drinking 

water quality due to unwanted algae and decreased oxygen levels (Sharpley and Rekolainen, 

1997). 

 Kotak et al. (1993) reported that drinking water supplies throughout the world have 

experienced large, periodic cyanobacterial blooms. Such blooms contribute to many problems 

including fish kills, the unpalatability of drinking water, and the formation of trihalomethane 

during chlorination (Palmstrom et al., 1988; Kotak et al., 1994). Consuming water containing 

cyanobacteria or water-soluble neuro- and hepatoxins, which are released when the blooms die, 

can kill livestock and pose a serious health risk to humans (Lawton and Codd, 1991; Martin and 

Cooke, 1994). Since the 1960s, point sources of water pollution have reduced their loading. 

However, many water quality issues remain, showing the importance of non-point source loading. 

Research is beginning to focus on agricultural non-point sources as they generally show higher 

levels of P than other land uses. 
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 Many studies have investigated loadings from runoff or sediment already in a channel, 

both from bed and suspended sediments, but in many cases, data does not exist to determine 

sediment and nutrient loading from streambanks on a watershed scale (Wilson et al., 2008). 

Streambank erosion and failure may be a significant pathway for P loading to streams, but 

insufficient data exists on streambank sediment concentrations and P loading for watersheds. 

Understanding soil conditions and quantifying P loading is necessary for determining the need for 

and justifying the use of protective measures, such as riparian vegetation (Sekely et al., 2002; 

Laubel et al., 2003; Kronvang et al., 2012). Triplett et al. (2009) found P loading in the St. Croix 

River to have increased eight-fold from 1850 to the 1950s and noted that the increase in loading 

had a close correlation to the sediment load. Zaimes et al. (2008) compared the soil and P losses 

to surface waters from various land practices and found that land with riparian forest buffers had 

the lowest contribution.  

 Natural soil production processes can replace lost nutrients, including P, but are much 

slower than anthropogenic usage. This deficiency can lead to reduced production (Jones et al., 

2013), but also increases the reliance on mining of P (Cordell et al., 2009). However, the United 

States contains only 2% of global P reserves (USGS, 2015). Amsundson et al. (2015) state that an 

integrated program to understand nutrient cycling and the potential for recycling is greatly needed 

to reduce the dependency upon nutrient imports. Gaining an understanding of streambank P 

concentrations, spatial distribution, and P dynamics within a system is complex and important, 

but must go hand-in-hand with studying fluvial processes and erosion behavior. Each individual 

study can show important characteristics, and combining them can help show a more complete 

picture. P loading estimations have major implications for evaluating the effectiveness of 

different management practices and the need for water treatment. This research can also be 

valuable for integrated approaches for P recycling. The objectives of this paper are to review the 
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current knowledge base on P dynamics in soils as it relates to streambanks, summarize current 

literature on streambanks as P loading sources, and identify future research needs.  

 

1.3 Phosphorus Pools 

 Streambanks may act as a major nonpoint P sources. Although P is an abundant nutrient 

in the environment, it is never found in its elemental form. In general, soil P can be split into three 

pools: solution P, active P, and fixed P. The solution P pool is a small fraction, but is very 

important as it is the pool where plants uptake P. This is also the only pool in which mobility of P 

can be measured. Solution P is usually in the orthophosphate form, but may contain small 

amounts of organic P. This pool can be easily reduced if there is plant growth, but no 

replenishment (Busman et al., 2009).  

 The active pool is composed of solid P, which can be easily released into the water 

solution within the soil. As the P concentration in the solution pool is reduced through plant 

uptake, the active pool P will replenish it to maintain P availability to plants. Soil fertility is based 

on the ability of the active P pool to replenish phosphate to the solution pool. This pool is 

composed of inorganic phosphate sorbed to small soil particles, phosphate which has reacted with 

elements (e.g., Ca or Al) to form slightly soluble solids, and easily mineralized organic P. Soil 

particles associated with the active pool can act as a sink or a pool. Therefore, soil eroded into 

surface water can adsorb excess phosphate or release excess P to the water (Busman et al., 2009). 

The fixed P pool is made up of highly insoluble inorganic phosphate compounds and organic 

compounds that are resistant to microorganism mineralization. Phosphate in this pool has been 

known to remain for several years without becoming plant available, meaning this pool has little 

impact on soil fertility. There can be small amounts of fixed P being converted to join the active P 

pool, but the process is very slow (Busman et al., 2009). Each pool behaves differently, but a 
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deeper understanding of their interaction is needed to better target potential sources of P loading 

and long-term P pools.  

Fertilizer and manure, both large sources of P, are regularly added to land in order to 

improve fertility and promote plant growth. Phosphate fertilizer is typically pre-treated with acid 

to make it more soluble, and manure contains soluble, organic, and inorganic phosphates. 

Initially, moisture from the soil will dissolve the fertilizer or manure particle, which increases the 

concentration of soluble phosphate in the soil solution. This soluble P is then free to begin 

moving from the initial particle. Movement will increase the potential for a reaction as the 

phosphate is likely to pass by and combine with elements including aluminum, calcium, iron, and 

magnesium to form solid compounds. The soluble phosphate can also adsorb onto soil particles. 

These two forms of phosphate are then plant available. However, over time other reactions will 

occur, making these phosphates insoluble and no longer plant available and decreasing soil test P 

(Busman et al., 2009). The ability for soluble phosphate to sorb onto soil particles is building up 

the P pool for plants, but also building up a reserve that could be loaded into surface waters 

through streambank erosion. Once in contact with the water there is an increased potential for the 

P to desorb from the soil particle and move through the water, where it could be used by algae or 

bacterial, sorbed to another soil particle, or remain in the water column. There are many fates of P 

once applied to the soil, and understanding these dynamics is important for estimating potential P 

pools within streambanks and loading during erosion events.  

 

1.4 Phosphorus Bioavailability  

Although there may be large P pools within streambanks, it is not all considered a 

potential environmental concern. Bioavailable P is that which is immediately available and P that 

can be transformed to become available through physical, chemical, and biological processes. It 
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has been found that orthophosphate (H2PO4
-, HPO4

2-, or PO4
3-) is generally the only bioavailable 

P that will be taken up by bacteria and planktonic algae (Boström et al., 1988). The 

bioavailability of P is a key component when determining the potentially negative effects of P 

loading in surface waters. Bioavailability of P is controlled by the time in which the particle is 

accessible to algae or bacteria and the potential for mobilized sedimentary P to reach the site of 

algae or bacteria requiring P for production. It is also heavily dependent on the chemical 

environment: mobilization is greatly affected by environmental factors including pH, redox 

potential, occurrence of chelators, and degree of dilution (Boström et al., 1988). Another aspect 

of understanding P bioavailability is in gaining a better understanding of the time perspective in 

which a P source could remain. Many studies have used the term ‘bioavailable P’ where their 

results indicated the minimum P available and did not detect P compounds with slower 

availability (Nürnberg and Peters, 1984). Results from these studies are beneficial in 

understanding P dynamics of the system, but are not as helpful in determining management 

practices, as it does not incorporate the full P available for algae uptake (Boström et al., 1988).  

Many studies have carried out different extraction methods in order to estimate the 

bioavailability of P. However, Boström et al. (1988) points out that many of these routine 

methods are carried out in a method-specific chemical environment that may not favor certain P 

mobilization processes. It should also be noted that the algal species plays a large role in which 

forms of P are considered bioavailable. For example, it was found that pyrophosphate is utilized 

by Chlorella sp. (Galloway and Krauss, 1963) and Selenastrum sp. (Fitzgerald, 1970), but not by 

Scenedesmus quatriqauda (Overbeck, 1962). Each of these bioavailability studies has tried to 

create a method in which to limit the dependent variables, such as Lee et al. (1980) who 

suggested a batch algal culture test where all conditions for algal growth were optimized and only 

the P concentration was changed. Although such bioassay tests may show the direct effect of P on 

algae, the optimized conditions for algae are not always the optimized conditions for P 
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mobilization. An increase in pH causes an increase in P mobilization from sediments (Boström et 

al., 1988), but test algae has maximum growth at a neutral pH (Golterman, 1977). Many bioassay 

systems maintain oxic and aerobic respiration conditions, which may prevent mobilization of P 

from bacterial cells (Shapiro, 1967; Fleischer, 1983) and certain iron compounds in the sediment 

(Boström et al., 1988). Common assay systems used to estimate bioavailable P in particulate 

matter include batch systems where algae and particulates are mixed (Lee et al., 1980), two-

chambered vessels where algae and particulates are separated by a membrane filter (e.g., Hosomi 

et al., 1981; Young and DePinto, 1982; Premazzi and Zanon, 1984; Marengo and Premazzi, 

1985), general bioassay, and batch systems without algae (Furumai and Ohgaki, 1982; Boström, 

1984).  

 Total dissolved P (TDP) generally encompasses any P compound that passes through a 

0.45 μm membrane filter, which means a portion of colloids is included in TDP (Broberg and 

Persson, 1988). TDP is split into dissolved reactive P (DRP) and dissolved unreactive P (DUP). It 

is assumed that DRP is equivalent to orthophosphate, making it completely and uniformly 

biologically utilized by algae and bacteria. DUP is considered to be mostly inert (Lee et al., 

1980). However, recent studies have reported that DRP may not be as available as orthophosphate 

or taken up in the same way (Boström et al., 1988). Cembella et al. (1984) reported that some P 

esters generally placed in the DUP pool are actually utilized by algae. Therefore, the bioavailable 

P may not always correspond with the DRP. It was found that there are 17 defined compounds, 

dominated by phosphatemonoesters, which are successfully utilized by a large number of algal 

species (Cembella et al., 1984). Some esterified P in large, complex molecules or inorganic 

condensed phosphates were found to be utilized, but with a lower occurrence (Chu, 1946; 

Overbeck, 1962). The statement of bioavailable dissolved P being equal to the DRP pool has been 

found to generally apply for the long-term availability (Walton and Lee, 1972; Lee et al., 1980; 

Logan, 1982; Sonzogni et al., 1982). However, short-term availability is more dependent on the 
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relationship between the immediately available P pool and DRP (Nürnberg and Peters, 1984). 

Boström et al. (1988) states that the main drawback to bioassay studies is that each study uses 

their own particular assay method and there is an urgent need for comparative tests between the 

methods to determine the limits of their use.  

 As previously mentioned, environmental conditions play a large role in how P behaves 

and therefore how much will be bioavailable. Hydraulic processes within the system will 

determine particulate residence time in the water column before sedimentation that will impact 

the time available to be taken up from the water column (Williams et al., 1980; Sonzogni et al., 

1982). Some bioavailable P may be considered unavailable if it is associated with rapidly settling 

particles (Sonzogni et al., 1982). There could be the potential for resuspension and future 

availability, but it is dependent on the particle and hydraulic processes. Desorption of 

orthophosphates is generally governed by the orthophosphate concentration in the solution. 

Sonzogni et al. (1982) showed that a lower orthophosphate concentration in lake water compared 

to tributary water favored desorption when the two waters mixed. However, Staffored-Glase and 

Barlow (1984) reported an enhanced adsorption when stream water with a higher DRP 

concentration mixed with lake water. It was explained that this was due to differences in the 

cation composition of the water mediums and different concentrations of dissolved organic 

material that were in competition for sorption sites. The differences in these studies emphasize 

that each system will have varying conditions that will lead to differing behaviors, making it 

difficult to accurately predict adsorption and desorption.  

A very influential environmental condition is the pH. At a high pH the P-binding capacity 

of iron and aluminum compounds decreases due to ligand exchange reactions (Boström et al., 

1982). Lijklema (1977) found that at a high pH recently formed hydrated iron hydroxides have a 

lower capacity to sorb orthophosphate. This implies that when iron (II) and orthophosphates are 

released from surface sediments under an anaerobic environment into aerobic lake water with a 
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high pH, only part of the released P will become bound to iron (III) compounds. Therefore, 

certain external P loads that are associated with iron and aluminum will have different effects in 

water due to the trophic level (Boström et al., 1988). The ability of sediment to bind P will also 

play a role in P release. Sediment with a low P-binding capacity will lead to an increased 

concentration of P remaining in the water column that can contribute to eutrophication (Stauffer, 

1985).  

 It can be difficult to accurately predict and model P behavior within a system as there are 

a high number of variables including algae species, trophic state, pH, sediment composition, and 

fluvial processes. However, gaining an understanding of the potential for movement of P is vital 

for predicting P loading and transport.  

 

1.5 Streambank Erosion Mechanisms 

Streambank erosion is a cyclical process that includes subaerial processes, fluvial 

erosion, and mass wasting (Simon et al., 2000; Couper and Maddock, 2001; Couper, 2003; Fox 

and Wilson, 2010). Fluvial erosion is dependent on the applied shear stress, sinuosity, and stream 

discharge and/or stream power and the ability of the bank’s soil to resist the force (Thorne, 1981; 

Morisawa, 1985). Fluvial erosion is a continuous process when the soil’s critical shear stress is 

exceeded (Daly et al., 2015). When the shear force of the discharge is greater than the resistance 

of the bank, then particles may be removed and loaded into the channel (Thorne, 1982). Mass 

movement is due to gravity (Bowie, 1982; Thorne, 1982) and is caused by a decrease in the upper 

bank’s internal strength, resulting in saturation, undermining, or foundation deterioration from 

seepage (Harmel et al., 1999). Unlike fluvial erosion, mass wasting is episodic. Subaerial erosion 

is linked with climate and occurs when the soil strength is reduced due to subaerial processes that 

will then lead to direct erosion or an increased risk for erosion (Daly et al., 2015). These three 
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processes are all dependent on each other. Subaerial erosion can initially weaken a bank, making 

it more susceptible to erosion. Fluvial erosion can then more easily undercut the bank or scour the 

bed leading to increased instability, eventually resulting in mass wasting (Fox and Wilson, 2010; 

Midgley et al., 2012).  

One or two of these processes may dominate for some streambanks, but further analysis 

of the system may be needed to understand the dynamic among the three. In many cases, it is 

assumed that fluvial erosion is the dominant mechanism controlling erosion. Currently, many 

erosion models, including the Soil and Water Assessment Tool (SWAT), assume that bank retreat 

is solely dependent on fluvial erosion (Narasimhan et al., 2007). Understanding the importance 

and impact of mass wasting and subaerial erosion is necessary to better design and implement 

streambank stabilization techniques for these rapidly eroding streams (Heeren et al., 2012).  

Generally, in the field, channel cross-sections and the implementation of bank pins are 

the most widely used and accepted methods for measuring bank erosion (Lawler, 1993). Cross-

sections allow for the measurement of erosion and deposition, but do require a permanent base 

point, take more time, and show the changes only at the specified site. Bank pins have accurate 

measurements (± 3 mm) in alluvial material and allow for quick readings, but may be limited in 

the amount of erosion that can be detected (Lawler, 1993; Hooke, 1979). Systems with significant 

episodic retreat events can be difficult to assess with bank pins (Miller et al., 2014). Recently, 

studies including those by Brice (1982), Odgaard (1987), Beeson and Doyle (1995), Harmel et al. 

(1999), Heeren et al. (2012), and Miller et al. (2014) have used aerial imagery to estimate bank 

erosion. Aerial images allow for the long-term analysis of a channel and the rapid evaluation of 

changes over a large area. Aerial imagery analyses are generally faster than in situ methods, but 

do have an increased error. Harmel et al. (1999) reported that due to the scale of the aerial 

images, areas having less than 2 m of lateral erosion or deposition over the study period were not 
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detected. Heeren et al. (2012) reported a maximum error of 3 m in bank retreat based on the 

georeferencing and identification of the banks. 

Billions of dollars have been spent on streambank stabilization to help slow bank retreat 

and reduce sediment loading (Lavendel, 2002; Berhnhardt et al., 2005). Riparian buffers are 

common conservation practices with established cost-share programs. Vegetation can drastically 

reduce streambank erosion, but estimates of actual decreases in sediment and sediment-bound 

nutrients are limited (Beeson and Doyle, 1995; Burkhardt and Todd, 1998; Harmel et al., 1999; 

Miller et al., 2014). The presence of established vegetation is a preventive measure as the intricate 

root system helps to stabilize the soil and ultimately reduce the impact of fluvial forces on the 

streambank (Harmel et al., 1999; Simon et al., 2011). Previous studies report relationships 

between the presence of vegetation and bank retreat. Beeson and Doyle (1995) reported non-

vegetated bends to be five times more likely to have notable erosion. Harmel et al. (1999) found 

grassed banks to be four times more likely to experience notable erosion compared to tree 

vegetated banks. Miller et al. (2014) reported banks with historical riparian protection to have 

three times less bank retreat than those with no protection. A recent study looked at the U.S. 

erosion rates prior to the introduction of European cultivation techniques and estimated that the 

average rate was 21 m My-1 (My, million years). However, present day estimated rates for the 

central U.S. can exceed 2000 m My-1. In comparison, parts of the loess plateau in China may see 

close to 10,000 m My-1. These increased erosion rates are linked with the removal of plant cover 

and agricultural expansion, which disrupt soil sustainability. Estimated natural rates of soil 

production range from 50 to 200 m My-1 depending on the environment, showing the 

unsustainability of current land practices (Amundson et al., 2015). Further understanding the 

effects of riparian protection on sediment loading to streams due to streambank erosion can 

justify the use and demonstrate the effectiveness of such management practices.  
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In many watersheds, long-term application of nutrients to stream systems has created a 

legacy source of nutrients that can be mobilized during streambank erosion and failure. Although 

vast research efforts have been made evaluating legacy P stores in a channel, most are focused on 

the bed sediment and water column. However, streambanks can represent a major source of 

legacy P.  

 

1.6 Legacy Phosphorus  

 Many questions have arisen about the effectiveness of current conservation practices and 

whether they are correctly located and implemented and at a scale and intensity to accurately 

represent the watershed. One main issue growing from these questions is understanding the 

legacy of management practices, in particular the sinks and pools of P in a watershed (Sharpley et 

al., 2009). Previous studies have shown that current conservation practices may not be accounting 

for legacy P adequately (Kleinman et al., 2011; Sharpley et al., 2011). Legacy P is accumulated P 

which can be remobilized and serve as a continuing source downstream for years to centuries 

after deposition (McDowell and Sharpley, 2002; Kleinman et al., 2011). Research into legacy P 

behavior has been increasing to gain a better understanding of the lasting impacts of land 

practices, the changing of P forms, and how this continuing source can impact watersheds.  

 One area of focus is surface runoff. P can build up over time, creating a legacy pool, due 

to P sources being added to the land faster than crops can uptake. These pools have been known 

to take up to decades to decline if a large reserve has been formed (Cox et al., 1981; Sharpley et 

al., 2009). In particular, agriculture land can have total P concentrations two- to ten-fold greater 

than the geologic concentrations found in forests (Syers et al., 2008; Vitousek et al., 2009; Nash 

and Hannah, 2011; Sattari et al., 2012). However, even when legacy pools are smaller, they have 
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been known to show large contributions due to runoff, particularly in areas that are hydrologically 

active or hotspots (Gburek and Sharpley, 1998; Gburek et al., 2007).  

 Studies have also found that legacy P can reach water systems through shallow 

groundwater contributions (Holman et al., 2008; Domagalski and Johnson, 2011). Generally, 

groundwater P transfers are considered to be negligible due to high soil P adsorption (Addiscott 

and Thomas, 2000), but Vadas et al. (2007) found that areas with high concentrations can be a 

source that needs to be taken into account. Heeren et al. (2010) reported that preferential flow 

pathways positioned above a shallow groundwater system may only become hydrologically 

active under high flow events, which is when high contamination loads usually occur. It was also 

found that flow pathways may become active during recharge between the surface and 

subsurface, which will affect the nutrient concentration in the groundwater. Recent studies found 

that subsurface P transport rates were significant when compared to surface runoff rates at low 

intensity agricultural sites (Mittelstet et al., 2011; Heeren et al, 2012).  

 Much of the research has been focused on the storage of legacy P already within in a 

river system, with little attention to potential sources. Stores within a surface water system 

include deposition of particulate P as fluvial bed sediments (Svendsen and Kronvang, 1993; 

Ballantine et al., 2009; Rawlins, 2011), sorption of dissolved P onto channel bed sediment 

(Haggard et al., 2001; 2005; Jarvie et al., 2005; Stutter et al., 2010), sorption onto suspended 

sediments that may be later deposited on the bed (Owens and Walling, 2002), or water-column P 

being taken up by plant or microbial biomass (Aldridge et al., 2010; Schade et al., 2011; Drake et 

al., 2012).  
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1.7 Streambanks as a Sediment and Legacy P Source 

Eroded sediments can be transported downstream and deposited, with excessive 

deposition leading to the formation of new banks. These banks could be composed of either 

sediment eroded from a streambank or from the channel bed, both having the potential to 

transport particulate P. Previous research studies report that streambank erosion and channel 

scour accounted for 17% to 92% of the suspended sediment load within a channel, demonstrating 

the large impact this process can have on a stream and receiving reservoir (Table 1.1).  

 
Table 1.1. Previous study estimates on suspended sediment load from streambanks. 

Author Location Channel 
Channel 
Length 
(km) 

Drainage 
Area  
(km2) 

Soil Type 

Suspended 
Sediment Load 

from 
Streambanks  

(%) 
USACE  
(1983) 

Western United 
States (California) Sacramento River 7.2x102 7.1x104 Loam and Silt 

loam 59 

Simon and 
Hupp (1986) 

Southeast United 
States (Tennessee) 

Obion Forked 
Deer River NA 2x103 Loam 81 

Odgaard  
(1987) 

Central United 
States (Iowa) 

East Nishnabotna 
River/Des Moines 

River 

2.6x101/ 
8.5x102 

2.3x103/ 
4.1x104 Silt loam 30-40 

Ashbridge 
(1995) 

Southwestern 
England River Culm 2.7x101 2.8x102 Loamy 19 

Bull  
(1997) 

Southwestern 
England River Severn 3.5x101 9x100 Silty clay loam 17 

Kronvang et 
al. (1997) Denmark Gelbæk Stream NA 1.2x102 Sandly loam 

and Sandy clay 92 

Walling et al. 
(1999) Northeast England River Ouse 8.4x101 3.3x103 Loamy and 

clayey 37 

Rondeau et a. 
(2000) 

East-central North 
America 

St. Lawrence 
River 4x103 1x106 Loamy 65 

Simon et al. 
(2002) 

Southeast United 
States 

(Mississippi) 
James Creek 2x101 7.4x101 Silt loam 78 

Simon and 
Thomas  
(2002) 

Southeast United 
States 

(Mississippi) 
Yalobusha River 2.7x102 4x103 Clay and loam 90 

Simon et al. 
(2004) 

Southeast United 
States (Alabama) Shades Creek 8.8x101 1.9x102 Loam 71-82 

Wilson et al. 
(2008) 

Central United 
States (Oklahoma) 

Fort Cobb 
Reservoir NA 8x102 Sandy loam 46 
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Streambank erosion is a growing concern for P loading (Table 1.2), as some soils have 

the capacity to store large amounts of legacy P. Most P in soils is associated with soil particles, 

meaning that when sediment is loaded into surface water, the P will also be loaded into the water. 

Depending on the soil P concentration and water P concentration, the sediment may act as a sink 

or a source of P, meaning P could readily be released into the system (Busman et al., 2009). 

Studies report links between increased sediment loading and increases in P (Engstrom and 

Almendinger, 1997; Kroening and Andrews, 1997). Understanding fluvial processes allows for 

more accurate modeling and predictions of sediment loading from streambank erosion and thus 

an estimate for nutrient loading from these banks.  

 

Table 1.2. Previous study estimates on phosphorus load from streambanks. 

Author Location Channel 
Channel 
Length  
(km) 

Drainage 
Area  
(km2) 

Soil Type 
Phosphorus Load 
from Streambanks  

(%) 

Boynton et al. 
(1995) 

Northeast 
United States 

(Maryland and 
Virginia) 

Chesapeake 
Bay 

1.1x104 
(shoreline) 1.7x104 Sandy loam 

and Clay loam 10 

Kronvang et al. 
(1997) Denmark Gelbæk 

Stream NA 1.2x102 Sandly loam 
and Sandy clay 93 

Sekely et al.  
(2002) 

Northern 
United States 
(Minnesota) 

Blue Earth 
River 1.7x102 9x103 Silty clay loam 

and Loam 7-10 

Kronvang et al. 
(2012) Denmark River Odense 6x101 4.9x102 Fine clayey 

sand 17-25 

Miller et al.  
(2014) 

South-central 
United States 
(Oklahoma) 

Barren Fork 
Creek 5.6x101 8x102 Gravelly silt 

loam 10 
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1.8 Future Research Needs 

1.8.1 Quantifying Streambank P Concentrations 

 Only limited studies exist in the literature at this time regarding streambank sediment and 

P loading to streams (Tables 1.1 and 1.2). Additional research is needed to quantify streambank P 

concentrations, both water soluble phosphorus (WSP) and total phosphorus (TP) concentrations. 

At the same time, studies should consider differences in soil chemistry between the streambank 

materials and surrounding upland soils. For example, Miller et al. (2014) reported significantly 

different soil pH values for streambank sediment compared to upland fields, noting the potential 

for transported sediment influenced by agricultural fertilization to alter soil chemical properties. 

Additional data are needed on streambank P loading rates and the fate and transport of P in 

stream channels. 

1.8.2 Soil and Phosphorus Dynamics 

 Future research needs to look at gaining a deeper understanding of how in-stream and 

streambank P will behave in a channel. Previous research has focused on understanding P 

sorption and desorption on soil particles, but needs to be expanded to determine if the behavior 

will change when the process is taking place in a channel under variable hydrological conditions. 

Streambank chemistry and nutrient concentrations can be highly dynamic during an event. 

Understanding what happens to a P once reaching the channel is very important in determining 

the lasting impact of sediment loading and P loading. Comparing concentrations over time and 

distance can help in determining the concentrations of P being moved downstream. Programs like 

LOADEST (Runkel et al., 2004) use water quality data and measured stream discharge from the 

United States Geological Services (USGS) to predict the P loading over time. However, the 

question arises as to how to track sediment from banks that have been eroded and how to better 

understand their fate and transport. Many scenarios arise that make it difficult to get an accurate 
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loading. Once a particle is eroded from a streambank into a channel, it could be moved as 

suspended sediment through the entire system and deposited at the mouth of the channel. Once 

deposited, any P on the particle could be released under the correct conditions or the P could 

remain on the particle for an extended period, creating a source of legacy P. This legacy P could 

be released within a few days or decades, all depending on the environmental conditions. 

However, the relationship with these conditions is also not entirely understood.  

Another scenario involves the particle being eroded and quickly deposited within the system, 

leading to the creation of a point bar or eventually a new streambank or floodplain before passing 

a gauge station. P released from this particle may be sorbed onto sediment along the streambank 

or bed and increase the P reserve there, become incorporated into the water column, or taken up 

by biotic life, such as algae, which could then lead to eutrophication as discussed earlier. Not all 

of these potential pathways will be detected with water quality samples, but are all potential P 

sources that could affect the system and need to be accounted for and modeled. There could be 

large pools of P attaching to sediment or being used by microorganisms before a water sampling 

station that could be neglected and therefore will not be a focus for loading prevention measures.  

Research questions include determining the ability of P to sorb or desorb from streambank soils 

with high concentrations, what happens to a particle with P once it is eroded, and how long will it 

take a particle to move through a channel system. As previously mentioned, there are many 

variables that affect the dynamics of sorption and desorption. A growing area of interest is 

understanding the dynamic between the different P pools and determining which has the greatest 

impact, either by sorption or desorption. This is commonly studied using isotopic labelling, a 

technique that tracks the passage of an isotope. Discussions have also suggested future work 

looking into sorption/desorption dynamics under anoxic conditions and at what depth below a 

channel or lake particulate P will no longer be a source to overlying water. One major focal point 

is how each of the discussed variables will behave under different soil mineralogy compositions. 
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Research has seen similar trends in P behavior across differences in soil mineralogy, but the 

question arises about changes in magnitude of P transfer. Mineralogy will have a major impact on 

soil and P chemistry that will control sorption and desorption dynamics and research on the 

influence will help in determining which soils may be a greater risk for release.  

 

1.8.3 Streambank Erosion Mechanisms and Protection 

Studies have shown that streambank erosion can be a major source of sediment loading 

into a system and potentially a significant source of P. Although research needs to be conducted 

to determine the impact of sediment and nutrient loading, research also needs to evaluate ways in 

which streambank erosion can be reduced. Riparian vegetation protects streambanks as it 

decreases the water velocity and therefore its erosive force, creates a physical barrier between the 

water and bank, and the root system binds the banks soil (Cooper et al., 1990). Riparian buffers 

also trap upland sediment, nutrients, and pesticides before reaching streams. Established riparian 

vegetation lowers flows in associated flood plains during high flows, reducing the detachment 

capability and flow transport capacity (Hickin, 1984). Miller et al. (2014) reported a three times 

reduction in bank retreat on banks with riparian vegetation. Harmel et al. (1999) found that 

grassed banks were two times as likely to experience detectable erosion compared to mixed 

vegetation banks and four times more likely when compared to forested banks. Beeson and Doyle 

(1995) found that non-vegetated banks were two times as likely to experience detectable erosion 

compared to semi-vegetated banks and five times more likely than vegetated banks.  

Fluvial processes within a channel are key to its changes, including erosion and 

deposition. Understanding these processes and their impact within a specific channel is important 

for determining loading sources. Future research is needed to predict the influence of vegetation 

on the shear stress applied to streambanks and the impact of roots on the soil erodibility 
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parameters in order to be able to better model streambanks. Previous research has found that the 

commonly ignored subaerial erosion processes can have a major impact on the resistance of 

cohesive streambanks leading to fluvial erosion (Couper and Maddock, 2001; Clark and Wynn, 

2007; Grabowski et al., 2011). There are still many factors that influence cohesive soil erodibility, 

including soil texture, structure, unit weight, and water content (Grabowski et al., 2011). One 

common method for measuring erodibility and estimating erodibility parameters is the Jet Erosion 

Test (JET), which can be used both in the laboratory and in-situ (Hanson, 1990; Hanson and 

Cook, 1997; Hanson and Simon, 2001). However, further research is needed on the derivation of 

erodibility parameters from the JET data and the effects of subaerial processes on the parameters 

(Daly et al., 2015). Research needs to look at how the technical processes of fluvial erosion, mass 

wasting, and subaerial erosion interact and affect the bank stability and erodibility. Currently, no 

mechanistic or empirical approaches are available for modifying erodibility parameters of soil 

due to vegetation. Research should also consider the integrated functions of a riparian buffer as a 

filter, stabilization mechanisms, and its ecological and aquatic habitat benefits.  

1.8.4 Linking Watershed-Scale and In-Stream Process-Based Models 

Process-based models are available for watershed processes (e.g., SWAT, AnnAGNPs) 

and also for in-stream flow and sediment transport (e.g., CONCEPTS). However, a need still 

exists for research on the linkage between upland sediment/P transport to streams and then the 

corresponding in-stream processes. Research is also needed on improving our ability to predict 

long-term P dynamics in a watershed or upland soils, streambeds, and streambank sediment. As 

noted earlier, significant effort and funding have been invested recently in stream 

restoration/rehabilitation, which commonly focuses on streambank stabilization. Typically, these 

projects are focused on specific reaches of a stream within an entire watershed and most 

commonly utilize analog or classification based systems as part of the design process. However, 

questions exist regarding the benefit of this limited restoration on total sediment and nutrient 
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loads within an entire watershed. What is the benefit of an isolated stream 

restoration/rehabilitation project compared to investment in other management practices? 

Research is needed to quantify the benefit of restoration on sediment and nutrient load reduction.  

 

1.9 Conclusions 

There are a large number of variables in a stream system. Gaining a better understanding 

of P chemistry, P dynamics with soil and water, quantifying and monitoring erosion, evaluating 

erosion prevention practices, the importance of fluvial erosion, mass wasting, and subaerial 

erosion, and the various pathways of P within a channel system will be vital to improving water 

quality. Databases for sediment and P loading from streambanks need to be expanded beyond the 

studies reported herein. A primary variable that influences all P mechanisms is the soil 

mineralogy. Future research on how changes in mineralogy affects P dynamics is needed to allow 

for better modeling and estimating associated risks. Using techniques such as JETs to determine 

erodibility parameters can help in estimating and modeling streambank erosion, but additional 

research advances are still required. Isotopic labeling can assist in determining the dynamics and 

movement of P between sediment and water. Linking together streambank erosion processes and 

P dynamics can allow for improved loading models, management practices, and improved water 

quality. 
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CHAPTER II 
 

 

STREAMBANK SEDIMENT LOADING RATES AT THE WATERSHED SCALE: AN 

ARCGIS APPROACH 

 

2.1 Abstract 

Streambank erosion may be one pathway for sediment and nutrient loading to streams, but 

insufficient data exists on the magnitude of this source. Riparian protection can significantly 

decrease streambank erosion in some locations, but estimates of actual sediment load reductions 

are limited. Objectives of this research included (i) quantifying the amount of streambank erosion 

and failure throughout a sensitive watershed in eastern Oklahoma, (ii) estimating the benefit of 

riparian management practices on reducing streambank erosion and failure, (iii) determining the 

importance of mass wasting in this system, and (iv) analyzing the appropriateness of selecting a 

few monitoring points to determine an entire stream sediment load from streambanks. The 

research focused on Spavinaw Creek within the Eucha-Spavinaw watershed in eastern Oklahoma, 

where composite streambanks consist of a small cohesive topsoil layer underlain by noncohesive 

gravel. Erosion from 2003-2013 was derived using aerial photography and processed in ArcMap 

to quantify eroded area. ArcMap was also utilized in determining the bank retreat rate at various 

locations in relation to the riparian vegetation buffer width. Statistical analysis showed that sites 

with riparian vegetation had on average three times less bank retreat than unprotected banks. The 

total soil mass eroded from 2003 to 2013 was estimated at 7.27 x107 kg yr-1 and the average bank 

retreat was 2.5 m yr-1. Many current erosion models assume that fluvial erosion is the dominant 
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stream erosion process. Bank retreat was positively correlated with stream discharge and/or 

stream power, but with considerable variability, suggesting that mass wasting may play a role in 

streambank erosion within this watershed. Finally, watershed monitoring programs only 

characterize erosion at a few sites and may scale results to the entire watershed. Selection of 

random sites and scaling to the watershed scale greatly underestimated the actual erosion and 

loading rates.  

 

2.2 Introduction 

Streambank erosion is a cyclical process that includes subaerial processes, fluvial 

erosion, and mass wasting (Couper and Maddock, 2001; Couper, 2003; Simon et al., 2000; Fox 

and Wilson, 2010). One of these processes may dominate for some streambanks, but further 

analysis of the system is needed to determine which one. In many cases, it is assumed that fluvial 

erosion is the dominant mechanism controlling erosion. Fluvial erosion is dependent on the 

applied shear stress, sinuosity, and stream discharge and/or stream power. Currently, many 

erosion models, including the Soil and Water Assessment Tool (SWAT), assume that bank retreat 

is solely dependent on fluvial erosion (Narasimhan et al., 2007). Composite streambanks, such as 

those found in the Eucha-Spavinaw watershed would commonly be assumed to erode due to 

fluvial erosion (Midgley et al., 2012; Miller et al., 2014). However, there is currently little data 

showing how important mass wasting is in the system. Understanding its importance and impact 

is necessary to better design and implement streambank stabilization techniques for these rapidly 

eroding streams (Heeren et al., 2012).  

In many cases, insufficient data exists to determine sediment loading from streambanks 

on a watershed level (Wilson et al., 2008), but previous studies have found that streambanks can 

have large contributions to suspended sediment. For example, streambanks in the United 

Kingdom found that streambank erosion contributed 17% of the suspended sediment load in the 

23 
 



River Severn (Bull, 1997), 19% for the River Culm (Ashbridge, 1995), and 37% for the 

River Ouse (Walling et al., 1999). A study in Denmark estimated that 92% of the 

suspended sediment load was from a combination of streambank erosion and channel 

scour (Kronvang et al., 1997). The United States Army Corps of Engineers (1983) 

estimated that 59% of the sediment flux into the Sacramento River was from streambank 

erosion. Rondeau et al. (2000) estimated that streambank erosion and channel scour along 

parts of the St. Lawrence River contributed 65% of the suspended sediment load. 

Streambank erosion from the East Nishnabota and Des Moines Rivers in Iowa 

contributed 30-40% of the load (Odgaard, 1987). Simon et al. (2002) estimated that in 

James Creek, 78% of the total sediment load was from streambank erosion. It was 

reported in Shades Creek streambank contributions ranged from 71-82% (Simon et al., 

2004). Yalobusha River streambanks were estimated to contribute 90% to the suspended 

sediment load (Simon and Thomas, 2002). Simon and Hupp (1986) reported that 81% of 

suspended load in Obion Forked Deer River were from streambanks. Eroded surface soil 

was estimated to account for 46% of suspended sediment in the Fort Cobb Reservoir 

(Wilson et al., 2008). Overall these studies found that streambank erosion and channel 

scour accounted for 17% to 92% of the suspended sediment load within a channel, 

showing the large impact this process can have on a system 

Also, in many watersheds long-term application of nutrients to stream systems 

has created a legacy source of nutrients that can be mobilized during streambank erosion 

and failure. Billions of dollars have been spent in the United States on streambank 

stabilization to help slow bank retreat and reduce sediment loading (Lavendel, 2002; 

Berhnhardt et al., 2005). Riparian buffers are common conservation practices with 

established cost-share programs. Vegetation can drastically reduce streambank erosion, 

but estimates of actual decreases in sediment and sediment-bound nutrients are limited 

(Beeson and Doyle, 1995; Burkhardt and Todd, 1998; Harmel et al., 1999; Miller et al., 
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2014). The presence of established vegetation is a preventive measure as the intricate root system 

helps to stabilize the soil and ultimately reduce the impact of fluvial forces on the streambank 

(Harmel et al., 1999; Simon et al., 2011). Previous studies have found relationships between the 

presence of vegetation and bank retreat. Beeson and Doyle (1995) reported non-vegetated bends 

to be five times more likely to have notable erosion. Harmel et al. (1999) found grassed banks to 

be four times more likely to experience notable erosion compared to tree vegetated banks.  Miller 

et al. (2014) reported banks with historical riparian protection to have three times less bank retreat 

than those with no protection. Further understanding the effects of riparian protection on sediment 

loading to streams due to streambank erosion can justify the use and demonstrate the 

effectiveness of such management practices.  

Current monitoring procedures for streambank erosion and failure typically select a few 

sites along a stream to monitor for erosion rates (Rosgen, 2001). These selected sites may be 

those known to having large erosion events, but they may also be limited to those that are easily 

accessible. In many cases these few sites are scaled up to represent the streambank retreat rates 

and soil loading rates for a whole watershed, such as in Simon et al. (2009) and Miller et al. 

(2014). The scaled up representation is then used to help determine how many erosion reduction 

practices need to be implemented. However, the scaling up of these few sites may not provide an 

accurate representation of the erosion behavior that the stream may actually be experiencing. 

More data on the accuracy of using a few sites for predicting erosion of an entire watershed is 

needed to determine if this procedure is effective. 

Therefore, the research objectives were four-fold: (i) quantify the amount of streambank 

erosion and failure throughout a sensitive watershed in eastern Oklahoma, (ii) estimate the benefit 

of riparian management practices on reducing streambank erosion and failure, (iii) determine the 

importance of mass wasting in this system, and (iv) analyze the appropriateness of selecting a few 

monitoring points to determine an entire stream sediment from streambanks.  
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2.3 Materials and Methods 

2.3.1 Eucha-Spavinaw Watershed Description 

The Eucha-Spavinaw watershed spans the Oklahoma-Arkansas border, with 60% 

in Oklahoma. Lake Eucha and Lake Spavinaw are reservoirs that supply water for one 

million people (OCC, 2007). The Eucha-Spavinaw watershed has many reaches listed on 

the EPA 303(d) impaired waters list for nutrient related impairments, which has led to 

eutrophication of Lake Eucha and compromised drinking water and increased treatment 

costs (OCC, 2007). This research focused on Spavinaw Creek, a fourth order stream 

originating in northwestern Arkansas, adjacent to land with long-term poultry litter 

application, which flows west into Oklahoma. Spavinaw Creek continues further west 

from Lake Eucha into Lake Spavinaw (Figure 2.1) and contributes 57% of total runoff 

within the watershed (OCC, 2007). Streams in this watershed are characterized as rapidly 

eroding and consisting of cherty soils and gravel streambeds (Heeren et al., 2012). The 

topsoil is typically a silt loam material. Based on a study in 2007, at least 48% of 

streambanks in this watershed are classified as unstable due to underlying unconsolidated 

gravel being undercut by fluvial forces (OCC, 2007). 

Storm et al. (2002) reported land use for the watershed in the following 

categories: row crop (2.6%), forested (51.3%), hayed pastures (13.3%), well managed 

pastures (23.1%), poorly managed pastures (6.5%), brushy rangeland (0.1%), urban 

(1.3%), and water (1.7%). A large portion of the pastures are used for poultry production. 

The Oklahoma Department of Agriculture, Food, and Forestry (ODAFF) and the 

Arkansas Soil and Water Conservation Commission (ASWCC) reported that the 

watershed has an industry large enough to annually support 77 million birds, leading to 
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an annual production of 73,000 metric tons of litter, which contains over 1,300 metric tons of 

phosphorus (Everett, 2004).  

 
 

 
 

Figure 2.1. Eucha-Spavinaw watershed in northeastern Oklahoma and northwestern Arkansas. 
 

2.3.2 Spavinaw Creek Discharge 

One major factor for streambank erosion is stream discharge and the resulting stream 

power. Spavinaw Creek daily flow data over a 10-yr period (2003-2013) was collected from 

United States Geological Services (USGS) gauge 07191220 near Sycamore, OK (Figure 2.2).  

Stream discharge was then used to calculate the stream power: 

Ω = 𝜌𝜌𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔 (1) 

where Ω is the stream power (W), ρw is the water density (kg m-3), g is gravitational acceleration 

(m s-2), Q is the stream discharge (m3 s-1), and S is the channel bed slope. Note that stream power 

is directly proportional to the stream discharge (Figure 2.2).  
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Figure 2.2. Daily discharge (USGS) and stream power for Spavinaw Creek from 2003-2013. 
 

The Weibull (1939) relationship (Haan et al., 1991) was used to estimate the 

discharge associated with the following storm event return periods: 1, 1.5, 2, 5, 10, and 

greater than 10 years. The number of storm events less than each return period and total 

stream power per study period were calculated (Table 2.1) for comparison to measured 

erosion rates during the same time periods as the available aerial imagery, as discussed 

below. 

 

Table 2.1. Number of storm events per time period and cumulative stream power. 

Period Number of Storm Events less than each Return Period Power (W) 
<1 yr <1.5 yr <2 yr <5 yr <10 yr >10 yr 

2003-2008 749 72 12 2 3 1 85,569 
2008-2010 563 36 2 1 0 0 43,545 
2010-2013 377 22 11 3 1 1 44,340 
2003-2013 1,689 130 25 6 4 2 173,454 

 

2.3.3 Aerial Imagery Analysis 

 Generally, in the field, channel cross-sections and the implementation of bank pins are 

the most widely used and accepted methods for measuring bank erosion (Lawler, 1993). Cross-
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section surveys allow for the measurement of erosion and deposition, but do require a permanent 

base point, take more time, and only show the changes at the specified site. Bank pins have 

accurate measurements (± 3 mm) in alluvial material and allow for quick readings, but may be 

limited in the amount of erosion that can be detected (Hooke, 1979; Lawler, 1993). Systems with 

significant episodic retreat events can be difficult to assess with bank pins (Miller et al., 2014). 

Recently, studies including those by Brice (1982), Odgaard (1987), Beeson and Doyle (1995), 

Harmel et al. (1999), Micheli and Kirchner (2002), Heeren et al. (2012), and Miller et al. (2014) 

have used aerial imagery to estimate bank erosion. Aerial images allow for the long-term analysis 

of a channel and the rapid evaluation of changes over a large area. Aerial imagery analyses are 

generally faster than in situ methods, but do have an increased error. Due to the episodic nature of 

this watershed, it was decided to use aerial imagery for the erosion analysis.  

Aerial images of Delaware County, OK for 2003 (September 23), 2008 (July 2), 2010 

(October 21), and 2013 (October 15) were obtained from the National Agricultural Imagery 

Program (NAIP), each with 1 m horizontal resolution. Each image was georeferenced in ArcMap 

10 (ESRI, 2014) and then used to estimate bank erosion. The first step in quantifying erosion was 

to trace both sides of the streambank on each image (Figure 2.3). The traced streambank line 

followed the line of the established streambank, neglecting the formation of gravel bars. Left and 

right bank polylines were created and georeferenced in ArcMap 10 by manually tracing the 

streambanks of Spavinaw Creek for the four images.  
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Figure 2.3. Left and right bank (green lines) for Spavinaw Creek on the 2003 NAIP aerial image 

(left), and creation of polygons (shaded blue area) to determine erosion from 2003-2008 along 
Spavinaw Creek (right) using ArcGIS. 

 

 The ‘join’ function was used in ArcMap to combine the banks from the beginning and 

end of the specific study period. For example, in order to determine erosion between 2003 and 

2008, the 2003 bank line was compared to the 2008 bank line to identify erosion areas. After 

connecting the bank lines, the new feature was converted into a polygon (Figure 2.3). The 

purpose of this step was to find the area between the lines as polylines cannot have an area. 

Through the attribute table of the polygon, the area of each segment along the streambank was 

calculated. All polygons were analyzed individually to determine if it was erosion or the 

deposition of a gravel bar. Each polygon that represented erosion was noted, giving a total area of 

erosion along the streambank. It was noted that the eroded bank retreat using aerial imagery is not 

as accurate as in situ procedures, with an estimated error on the order of 1 m in retreat based on 

the georeferencing and identification of banks (Heeren et al., 2012).  

2.3.4 Calculating Eroded Area 

 The total eroded area (m2) during each period was determined. Then creek-averaged 

lateral retreat was calculated as the eroded area divided by the creek length. Total sediment 

loading (SL, kg or kg yr-1) into the stream was obtained using the following formula: 

𝑆𝑆𝑆𝑆 = (𝐶𝐶𝐶𝐶)(𝐷𝐷𝑡𝑡𝑡𝑡)(𝜌𝜌𝑏𝑏)  (2) 
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where CR is the creek-averaged lateral retreat (m), Dts is the average depth of the topsoil derived 

based on measurements at five sites along Spavinaw Creek (m), and ρb is the average bulk density 

of the soil (kg m-3). The Dts and ρb were derived from measurements at five sites along the stream. 

This method was carried out for three time periods corresponding to the aerial imagery dates: 

2003-2008, 2008-2010, and 2010-2013. 

2.3.5 Riparian Vegetation 

One key component of streambank erosion and failure has been suggested to be the 

absence of established riparian vegetation. Vegetation analysis was conducted using the 

processed NAIP images at randomly selected points (n=100) along the creek. At each point, the 

width of the eroded polygon area was collected and the near-stream buffer width was estimated. 

Near-stream buffer was considered to be established trees along the edge of the streambank. Sand 

or grasses had a buffer width of zero. The eroded width, or retreat length (RL), was divided by 

the number of years in the specific time period to determine RL per year. The yearly RL was 

plotted versus the buffer width to analyze for trends for the three time periods: 2003-2008, 2008-

2010, and 2010-2013.  

2.3.6 Influence of Meandering 

Another aspect that may influence erosion rates is sinuosity or meandering. Streambanks 

along the outside of a meander bend experience higher shear stress (Leopold and Langbein, 

1960), which can lead to increased erosion. The aerial images were used again, but focused on 

measuring bank retreat at meanders. First, a circle was visually fit to each bend along the 

previously traced streambank line in ArcGIS. This circle was originally placed within the 

meander and enlarged until it touched both sides of the bend (Figure 2.4). The radius of the circle 

was then obtained from the object properties as the site’s radius of curvature (ROC). The 

‘measure’ tool in ArcMap was then utilized to estimate the bank retreat length from one study 
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period bank to the later bank. All measurements for erosion were taken at the 

approximate centerline of the bend. Retreat length and corresponding ROC were 

compared with erosion rate. 

 
Figure 2.4. Measuring the meander radius of curvature and retreat length using ArcGIS. 

 

2.3.7 Random Site Sampling Analysis 

 Current stream monitoring procedures usually select a few sites to continuously monitor 

in order to determine erosion rates and stream behavior for the entire length of a stream (Rosgen, 

2001). However, scaling from a couple of sites to a watershed may not be represent the actual 

bank retreat. For each time period, a total of 1, 2, 3, 5, and 10 random sites were selected along 

the creek. In order to select the sites, the total number of erosion polygons was noted and a 

random number generator was used to select which polygon(s) would serve as the study site(s). 

At each selected site the eroded area and bank length was estimated. From this eroded area the 

following data were calculated: yearly eroded area, average bank retreat, and the total and yearly 

eroded soil mass and volume. The ratio of sampled streambank length to total streambank length 
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was calculated and used to scale up the eroded area from the random sites to represent the amount 

of erosion expected along the entire stream.   

 

2.4 Results and Discussion 

2.4.1 Overall Erosion 

 Analysis of the NAIP imagery from 2003, 2008, 2010, and 2013 showed varying bank 

retreat and soil loading rates during each study period. For each time frame, the average bank 

retreat rate, eroded soil per year per meter of bank, eroded soil mass per year, and total eroded 

soil mass were calculated based on the erosion polygons (Table 2.2). The 2008-2010 period had 

the lowest retreat and loading, and 2010-2013 had the highest. In order to better understand the 

trends, the stream discharge (Figure 2.2) was analyzed. Erosion and retreat during each analysis 

period was highly correlated (α=0.05) with the discharge rates. In the 2008-2010 period, there 

were primarily 1-yr storm events (Table 2.1), resulting in low stream power acting on the 

streambanks. Under high flow events, the streambanks can become easily saturated and less 

stable. As previously mentioned, the alluvial floodplain watershed has an underlying gravel layer. 

High stream power erodes this gravel toe over time, causing the overlying soil to become 

geotechnically unstable and collapse into the stream. The high bank retreat and soil loading in 

2010-2013 corresponded to large storm events and the associated stream power.  

Table 2.2. Bank retreat, and volume and mass of eroded soil during the three study periods for 
Spavinaw Creek. 

Period Average Bank 
Retreat (m yr-1) 

Eroded soil per yr per 
m of bank  

(kg x 103 m-1 yr-1) 

Eroded soil mass per 
year (kg x 106 yr-1) 

Total eroded soil 
mass (kg x 106) 

2003-2008 2.4 3.3 66 328 
2008-2010 0.7 1.0 21 41 
2010-2013 4.3 5.9 119 358 
2003-2013 2.5 3.4 68 727 
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 The behavior between the overall stream power and average bank retreat is important to 

better understand the erosion mechanisms. A positive relationship between stream power and 

bank retreat was not present during the 2010-2013 period (Figure 2.5). This period did have the 

most bank retreat and soil loadings, but it had less cumulative power compared to the 2003-2008 

period. This period had a few large flow events within a few days that may have caused the large-

scale erosion events (Figure 2.2). Fluvial erosion may play a dominate role in this system, as 

shown from analysis of the 2003-2008 and 2008-2010 time periods; however other mechanisms, 

such as mass wasting, may also have a major impact on streambank erosion along Spavinaw 

Creek.  

 

Figure 2.5. Relationship between average bank retreat and cumulative power for 
the three study periods. 

 

2.4.2 Influence of Riparian Vegetation 

 A statistical analysis using SigmaPlot (v12.5) (SPSS, 2011) was performed to test 

significant differences between the annual and total retreat on vegetated banks versus those 

without vegetation. Box and whisker plots were created for each time period for the average 

annual retreat and the total bank retreat with and without a buffer (Figure 2.6). P-values were 
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calculated for average retreat and annual retreat during the three time periods using the Mann-

Whitney Rank Sum Test. This nonparametric test was used since the annual retreat rate and total 

retreat data were not normally distributed. There was a statistically significant difference 

(p<0.001) in bank retreat between vegetated and unprotected banks for 2003-2008 and 2010-

2013, but not for 2008-2010 (p>0.050). Referring back to the stream discharge (Figure 2.2), this 

time period had the least number of large storm events, and therefore the least individual and total 

stream power. Therefore, this insignificance may be linked to the lower applied shear stress 

and/or less mass wasting. A two-way ANOVA (Appendix B) was performed in Minitab v16 

(Golden Software, 2002) to analyze the influence of two independent variables. For this study the 

independent variables compared were the presence of a buffer and the time period. It was found 

that the presence or absence of a buffer (p=0.000), the time period (p=0.000), and the interaction 

between the two (p=0.004) were significant in the estimated bank retreat. A Tukey’s Multiple 

Comparison Test (Appendix B) was performed and showed that the 2010-2013 period was 

statistically different to the other periods. This may be attributed to the difference seen for the 

trend been bank retreat and stream power during this time period. 
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Figure 2.6. Box and whisker plots of average and total retreat lengths for streambanks with and 

without a vegetated cover during 2003-2013. 
 

 The vegetated banks during the time periods 2003-2008 and 2010-2013 had 

approximately three times less bank retreat compared to those with no vegetation. This three 

times reduction in bank retreat with riparian vegetation is similar to a study conducted by Miller 

et al. (2014) for similar composite streambanks in the Illinois River Watershed in eastern 

Oklahoma. These reductions are also comparable to those found in Beeson and Doyle (1995), 

Harmel et al. (1999), and Simon et al. (2009).  
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 Corroborating Daly et al. (2015), these data and the results of the two-way ANOVA 

demonstrate the need to consider the monitoring period when assessing bank retreat rates. For 

example, based on monitoring data from 2008-2010, no clear difference would be observed due 

to the presence or absence of a riparian buffer; both conditions had approximately 2 m yr-1 retreat 

rates. However, this retreat rate is comparable to that seen on streambanks with a riparian buffer 

during 2003-2008 and 2010-2013, while streambanks without riparian vegetation experienced 

greater than 4 m yr-1 of bank retreat in 2003-2008 and more than 7 m yr-1 of bank retreat in 2010-

2013. Therefore, the presence of established riparian vegetation can have three times less bank 

retreat along composite banks characteristic of the Eucha-Spavinaw Watershed, but may also be 

dependent on the study period as stream power and mass wasting vary temporally. 

2.4.3 Influence of Meandering 

 As mentioned earlier, streambanks along a meander tend to experience higher power and 

shear stress compared to the inside of a bend. A subset of meanders present during each time 

period were analyzed for their ROC, and the bank retreat and ROC were negatively correlated 

(α=0.05) (Figure 2.7). A small radius of curvature was representative of a tighter bend in the 

creek, which experienced higher shear stress along the banks as the energy could not be 

dissipated over a longer stretch of bank. Therefore, a meander with a lower ROC should 

experience a higher bank retreat. Analysis of meanders along Spavinaw Creek over the 10-yr 

period agreed with this hypothesis showing an exponentially declining relationship between ROC 

and bank retreat. However, considerable variability was still present in these data, once again 

suggesting there are multiple processes occurring that contribute to the overall bank retreat.  
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Figure 2.7. Radius of curvature and corresponding annual and total bank retreat for creek meanders 
during 2003-2013. 

 

2.4.4 Influence of Sampling Location 

 Scaled up estimates from a few sampling or monitoring points to a watershed were 

compared to the estimated total load from the ArcMap analysis for different numbers of random 

sites for all three periods. Almost all instances of random sampling monitoring provided estimates 

that predicted 80% or less of the total measured erosion (Figure 2.8). Only one of fifteen trials 

overestimated total erosion, but it predicted almost two times more soil loading than was 

measured.  
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 Currently, many stream monitoring plans consist of only measuring erosion at a few sites 

along the entire stream, and then those measurements are used to estimate sediment loading for 

the entire stream system (Miller et al., 2014). From this research, only monitoring a few sites can 

lead to large underestimation of actual erosion loads. If stream restoration and erosion mitigation 

is being implemented on a per site basis only, then individual monitoring will be representative. 

However, if determining loads for a creek or watershed to aid in the implementation of reduction 

measures, it is clear that a small number of sites was not effective in representing true behavior. 

Other methods should be considered, such as more monitoring sites or using aerial imagery and 

discharge data to determine historical trends.  

 
Figure 2.8. Percent of total yearly eroded soil mass per m per year from 2003-2013 as a function of 

the number of randomly selected monitoring locations. 
 

 

2.5 Conclusions 

 In the Spavinaw Creek watershed, total streambank erosion was estimated from 2003 to 

2013 was 727 x 106 kg and the average bank retreat was 2.5 m yr-1. Numerous processes come 

into play that control streambank erosion and failure. The relationship between stream power and 

bank retreat showed that fluvial erosion does play an important role within the Eucha-Spavinaw 
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watershed, but also that mass wasting may contribute to large erosion events. The presence of 

riparian vegetation along a streambank reduced the annual bank retreat by approximately three 

times compared to an unprotected bank. This observation is comparable to other stream systems, 

such as the Barren Fork Creek in the Illinois River Watershed. Monitoring only a few sites to 

determine erosion rates would be effective if determining the behavior at a singular location, but 

was usually not representative when scaled up for an entire creek. The use of aerial imagery and 

historic flow data has shown to be an acceptable method to estimate erosion along an entire creek, 

but may be limited by the ability to accurately identify the bank locations, making its use more 

appropriate in larger order streams. Current numerical models that focus solely on fluvial erosion 

may not accurately predict streambank erosion. This calls for the use of process-based models 

that incorporate fluvial erosion, mass wasting, and subaerial erosion. The ability to better 

understand the behavior and effects of different variables, such as buffer width and radius of 

curvature, within a system provides improved stream management and the design of effective 

conservation practices.  
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CHAPTER III 
 

 

ESTIMATING STREAMBANK PHOSPHORUS LOADS: HOW MUCH PHOSPHORUS DO 

STREAMBANKS CONTRIBUTE AT THE WATERSHED SCALE? 

 

3.1 Abstract 

Nutrient and sediment loading from streambanks are a growing concern within many watersheds. 

However, there are only a few studies on streambank phosphorus (P) concentrations and spatial 

distributions in watersheds. The objectives of this research included (i) quantifying the magnitude 

of and spatial distribution of streambank phosphorus concentrations along a stream system in a 

watershed with historical poultry litter application, (ii) quantifying the amount of water soluble 

phosphorus (WSP) and total phosphorus (TP) entering the stream from streambanks, and (iii) 

comparing streambank P concentrations and loading between two unique streams in the same 

ecoregion. Standard soil sampling methods were used at five sites along Spavinaw Creek in 

eastern Oklahoma, and samples were processed to measure pH, electrical conductivity (EC), 

WSP, and TP. There was no clear longitudinal trend in WSP, TP, pH, and EC. Using estimated 

sediment loading (727 x 106 kg) from aerial images, it was estimated from 2003-2013 there was 

1.5 x 103 kg WSP and 1.4 x 105 kg TP loaded into Spavinaw Creek from streambanks in 

Oklahoma. LOADEST, a nutrient load estimator created by the United States Geological Services 

(USGS), was used to estimate in-stream phosphorus loads. In-stream estimates were an order of 

magnitude larger for WSP and comparable for TP. LOADEST estimates loads from multiple 
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sources, both point and nonpoint, not only streambank erosion. A previous study performed a 

similar analysis along Barren Fork Creek (BFC) in the Illinois River watershed. Both Spavinaw 

Creek and BFC flow through the Ozark ecoregion and have cherty topsoil with an underlying 

gravel layer. WSP loading in BFC was an order of magnitude higher than in Spavinaw, while TP 

loadings were on the same order of magnitude. Streambank P loading rates are dependent on the 

stream and watershed; therefore each stream needs to be individually studied in order to gain a 

better understanding of the specific loadings from streambanks. 

 

3.2 Introduction 

 Nutrient and excess sediment are two of the primary pollutants of surface waters in the 

United States. An increase of phosphorus in surface water can lead to algae blooms. As these 

blooms die and decompose, dissolved oxygen in the water decreases, which can negatively 

impact the aquatic ecosystem (Pierzynski et al., 2000). For example, in recent years the Tulsa 

Metropolitan Utility Authority has seen an increase in Spavinaw Lake water treatment costs. 

Their consumers have also complained about the taste and odor (Tortorelli, 2006). These changes 

have been linked with an increase in nutrient levels within the lake (Tulsa Metropolitan Utility 

Authority, 2001).  

 Storm et al. (2002) found that the total mass of nutrient sources in the catchment, in 

decreasing order, were land application of poultry litter, rural municipal wastewater treatment 

plants, agricultural row crops, and naturally occurring sources. However, in many cases, there are 

insufficient data to determine sediment and nutrient loading from streambanks on a watershed 

scale. Streambank erosion and failure may be a significant pathway for P loading to streams but 

insufficient data exists on streambank sediment concentrations and P loading for this and many 

other watersheds. The objectives of this research included quantifying the magnitude of and 
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spatial distribution of streambank phosphorus concentrations along a stream system in a 

watershed with historical litter application and to then use these concentrations to quantify the 

amount of water soluble phosphorus (WSP) and total phosphorus (TP) entering the stream from 

streambanks.  

 Understanding soil conditions and quantifying phosphorus loading is necessary for 

determining the need for and justifying the use of protective measures, such as riparian vegetation 

(Sekely et al., 2002; Laubel et al., 2003; Kronvang et al., 2012). Triplett et al. (2009) found P 

loading in the St. Croix River to have increased eight-fold from 1850 to the 1950s and noted that 

the increase in loading had a close correlation to the sediment. Zaimes et al. (2008) compared the 

soil and P losses to surface waters from various land practices and found that land with riparian 

forest buffers had the lowest contribution. However, a question arises as to whether one study on 

streambank P loading in one area can be applied to other similar stream systems. Are P loads to 

streams in the same ecoregion and with similar streambank characteristics comparable and 

applicable to others in the region?  

 Gaining an understanding of streambank P concentrations and spatial distribution within 

a system is complex and important, but must go hand-in-hand with studying fluvial processes and 

erosion behavior. Each individual study can show important characteristics and combining them 

will help show a more complete picture. For example, Miller et al. (2014) quantified erosion and 

sediment loading at ten sites along the Barren Fork Creek and reported P concentrations within 

these ten streambanks. By relating the two the TP loading to the surface water was determined. 

Phosphorus loading estimations have major implications for evaluating the effectiveness of 

different management practices. Therefore, one of the objectives of this study was to compare 

streambank P concentrations and loading between two unique streams in the same ecoregion. 
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3.3 Materials and Methods 

3.3.1 Soil Sampling and Processing 

 Soil samples were taken at five points along Spavinaw Creek to quantify phosphorous 

concentrations within the streambank (Figure 3.1). Following Miller et al. (2014), at each site 

samples were taken at three transects per bank at three vertical depths: near the bank surface 

(typically 12 cm below ground surface), middle of the topsoil depth (typically 30 cm below 

ground surface), and at the streambank toe (typically 70 cm below ground surface). At each depth 

a core was taken horizontally into the streambank. The core was then divided into five lateral 

depths: 0-5 cm, 5-10 cm, 10-20 cm, 20-50 cm, and 50-100 cm. Site characteristics can be found 

in Table 3.1.  

 

Figure 3.1. Eucha-Spavinaw watershed showing soil sampling and USGS gauge station locations. 
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Table 3.1. Sample characteristics for the five soil sampling points along Spavinaw Creek.  

Site 

Sample 
Date Soil Type 

Distance from 
Confluence 

(km) 

Topsoil 
Depth  
(cm) 

Bulk 
Density 
(kg/m3) 

Land Use 

K June 2013 Gravelly 
silt loam 20 70 1450 Pasture/Riparian 

Woodland 

L June 2013 Gravelly 
silt loam 19 70 1430 Pasture/Riparian 

Woodland 

M June 2013 Gravelly 
silt loam 1 60 1500 Riparian Woodland 

N 
November 

2014 
Gravelly 
silt loam 9 25 1450 Pasture/Riparian 

Woodland 

P 
November 

2014 
Gravelly 
silt loam 12 30 1450 Pasture/Riparian 

Woodland 
 

 Samples were characterized for WSP, TP, degree of phosphorous saturation (DPS), and 

general soil properties (e.g., pH and EC). Soil pH was measured by adding 5 g of soil and 15 mL 

of deionized water (DI water) to a vial in order to obtain the 1:3 (soil:water) ratio required for the 

test. Samples were shaken for 60 s to ensure that the soil was thoroughly wet. Then they were left 

for 20 min to equilibrate and then shaken for another 60 s. After another 20 min period of 

equilibration the calibrated pH probe was placed in the mixture. After the probe stabilized, the 

reading was taken to the nearest 0.01. Between each sample the probe was rinsed with DI water. 

The same sample preparation procedure was used for electric conductivity (EC), using a 

calibrated EC meter (Smith and Doran, 1996).  The EC is associated with the salt content of 

fertilizer application, where an increase in associated fertilizer salts increases soil EC (Miller et 

al., 2014).  

 WSP is an index of the amount of phosphorous associated with the soil that will enter a 

dissolved state should the soil be eroded into the stream (Pote et al., 1996; Fuhrman et al., 2005). 

WSP was measured by adding 1 g of soil and 10 mL of DI water in a 50 mL centrifuge tube to 

obtain the 1:10 (soil:water) ratio required for the test. Samples were placed on a shaker table for 

one hour on the low setting. Then, samples were centrifuged for 5 min at 2000 rpm. Following 

this samples were put through a vacuum filtration system. The collected extract was sent to the 
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Oklahoma State University Soil, Water, and Forage Analytical Laboratory for an inductively 

coupled plasma mass spectrometry (ICP-MS) analysis on P.  

 TP is a measure of all forms of P in the soil. TP was measured using the US EPA method 

3050b (US EPA, 1996), in which 2 g of soil subsample is heated in a solution of HCl and nitric 

acids. The solution is then filtered through Whatman #40 filter paper. Extracts were sent for ICP-

MS analysis for P. 

 DPS (%) is an index of the potential for soils to sorb or desorb P. DPS expresses the P 

concentration relative to the concentrations of the aluminum (Al) and iron (Fe) oxides that serve 

to bind P in soil. The P sorption capacity is controlled by the presence of amorphous Al and Fe 

oxides (van der Zee and van Riemsdijk, 1988; Lookman et al., 1995; Guo and Yost, 1999).  

Previous studies have found the potential for soils to release P to runoff or by leaching to surface 

water by erosion can be indicated through the DPS value (Sharpley, 1995; Leinweber et al., 1999; 

Pautler and Sims, 2000; Maguire and Sims, 2002; Sims et al., 2002). An increase of soil DPS 

shows an increased desorption of P to water. DPS was calculated using the following equation: 

𝐷𝐷𝐷𝐷𝐷𝐷 = � 𝑃𝑃𝑜𝑜𝑜𝑜
𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜+𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜

�100%  (1) 

where Pox is the oxalate-extractable P (mol kg-1 soil) , Alox is the oxalate-extractable Al (mol kg-1 

soil), and Feox is the oxalate-extractable Fe (mol kg-1). These values are determined by adding 1 g 

of soil and 40 mL of ammonium oxalate extracting solution in a 50 mL centrifuge tube. Samples 

were then placed on a shaker table in the dark for two hours on the low setting. Then, samples 

were then centrifuged for 13 min at 2000 rpm. Following this extracts were filtered through 

Whatman #42 filter paper. Extracts were sent for ICP-MS analysis for P, Al, and Fe as outlined 

by Schoumans (2000).   
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 The mean and standard deviation were calculated for pH, EC, WSP, and TP for each of 

the five sampling sites. Box plots were created showing the variation between sites relative to 

their distance from the Spavinaw-Beaty confluence. The two-dimensional spatial distribution of 

WSP and TP were plotted using the depth below ground surface and depth into the streambank as 

the spatial coordinates. Data from each of the three transects were combined to create one plot per 

sample site. Contour plots were created using the Kriging gridding method in Surfer 8 (Golden 

Software, 2002). These plots were used to investigate intra- and inter-site variability.   

 Particle size analysis (ASTM 422, 2002), carried out on composited samples from each 

site, found that the streambanks are composed of silt loam. Size class fractions ranged from 25-

38% sand, 50-70% silt, and 5-11% clay. These findings are consistent with the United States 

Department of Agriculture Natural Resources Conservation Service (USDA-NRCS, 2013) Web 

Soil Survey, which showed that soil along the Spavinaw Creek streambanks was a Clarksville 

series, which is a gravelly silt loam.  

3.3.2 Estimating Streambank P Loading  

Aerial images of Delaware County, OK for 2003 (September 23), 2008 (July 2), 2010 

(October 21), and 2013 (October 15) were obtained from the National Agricultural Imagery 

Program (NAIP), each with 1 m horizontal resolution. Erosion from 2003-2013 was derived using 

aerial photography and processed in ArcMap to quantify eroded area. The total area (m2) of 

streambank erosion during each period was calculated. The creek-averaged lateral retreat (CR, m) 

was calculated as the eroded area divided by the creek length. Total sediment loading (SL, kg or 

kg yr-1) into the stream was calculated: 

𝑆𝑆𝑆𝑆 = (𝐶𝐶𝐶𝐶)(𝐷𝐷𝑡𝑡𝑡𝑡)(𝜌𝜌𝑏𝑏)  (2) 

where CR is the creek-averaged lateral retreat (m), Dts is the average depth of the topsoil derived 

based on measurements at five sites along Spavinaw Creek (m), and ρb is the average bulk density 
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of the soil also derived from measurements at five sites (kg m-3). This method was carried out for 

three time periods: 2003-2008, 2008-2010, and 2010-2013. It was estimated that the total soil 

mass eroded from 2003 to 2013 was 727 x106 kg and the average bank retreat was 2.5 m yr-1.  

One key component of streambank erosion and failure has been suggested to be the 

presence of established riparian vegetation. Vegetation analysis used the processed NAIP images. 

Random points (n=100) were selected along the creek. At each point, the width of the eroded 

polygon area was collected and the near-stream buffer width was estimated. Sand or grasses had a 

buffer width of zero. The eroded width, or retreat length (RL), was divided by the number of 

years in the specific time period to determine RL per year. It was estimated that banks with 

riparian vegetation had approximately three times less bank retreat than unprotected banks from 

2003-2013.  

The WSP and TP loads were calculated by multiplying the total mass of eroded topsoil 

(SL, kg or kg/yr) and the average WSP (WSPavg, mg WSP/kg soil) or TP (TPavg, mg TP/kg soil): 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑆𝑆𝑆𝑆 (3) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑆𝑆𝑆𝑆 (4) 

 A Monte Carlo simulation was performed to estimate the variation in estimated WSP and 

TP loads by accounting for parameter uncertainty. A Monte Carlo simulation is a statistical 

method that uses sample means to estimate population means (Dunn and Shultis, 2012). Each 

independent variable has a range of potential scenarios that are not represented in a single 

estimated value. Evaluating the data involves determining the statistical distribution model, 

creating probability distributions on the input parameter, and obtaining a final output distribution. 

The Monte Carlo method uses multiple simulations, each with different estimated data to draw a 

statistical conclusion (Sabbagh and Fox, 1999). A Monte Carlo simulation shows where the 
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measured sample mean falls within many scenarios, quantifying the uncertainty. Four 

independent variables were analyzed: WSP or TP in streambank soil, soil bulk density, top soil 

depth, and eroded area. For each variable, the measured data were analyzed in Minitab 16 

(Minitab, 2009), where a goodness-of-fit test was performed to determine which distribution best 

fit the observed data. Based on the null hypothesis, H0 : the model adequately described the data, 

a model was considered an acceptable fit if the p-value was greater than 0.05 (95% confidence) 

and had the lowest Anderson-Darling (AD) statistic compared to the other distributions. The 

parameters of the probability density function (PDF) and cumulative density function (CDF) for 

quantifying parameter uncertainty were obtained for the best fit distribution.  

 According to Driels and Shin (2004), a total of 1000 simulations are required to achieve a 

95% confidence level. For each variable 1000 random numbers between 0 and 1 were generated. 

The random number was set equal to the CDF, or F(X), in the corresponding distribution 

equation, which was used to calculate the estimated independent variable (WSP, TP, EA, Dts, ρb) 

for each individual simulation. The 1000 Monte Carlo simulation estimates for each variable were 

used to calculate the potential WSP loading using equation (3). The same procedure was carried 

out for TP loading using equation (4).  

3.3.3 Estimating In-stream P Loads  

 LOAD ESTimator (LOADEST) (Runkel et al., 2004) is a FORTRAN program created by 

the USGS that is used to estimate constituent loading in surface water. LOADEST requires the 

discharge and constituent concentration over time in order to derive a regression model for 

estimating potential loading. Historical discharge and P in the unfiltered water, which is split into 

dissolved P (DP) and total P, was obtained for the 10 yr study period from the Water Quality 

Portal (USGS, EPA, and NWQMC) and input into LOADEST. Data were collected from the 

USGS gauge on Spavinaw Creek near Cherokee City, AR (USGS 07191179), located near the 
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Arkansas-Oklahoma border, the gauge on Spavinaw Creek near Colcord, OK (USGS 

071912213), halfway along Spavinaw Creek in Oklahoma, and the gauge on Spavinaw Creek on 

Sycamore (USGS 07191220), which is between the other two gauges (Figure 3.1). TP and DP 

loads from the three gauges and their distance from the confluence were used to extrapolate and 

estimate the concentrations at the confluence. The difference between the confluence estimate 

and the estimate at the Arkansas-Oklahoma border providesd an estimate in the loading 

contributed by all sources in Oklahoma. Estimated in-stream DP and TP loads were compared to 

the estimated ranges from the in-streambank WSP and TP Monte Carlo simulations. 

 

3.4 Results and Discussion 

3.4.1 Environmentally Sensitive Phosphorous Concentrations 

 As previously stated, excess P can pose an environmental threat to the quality of the 

water and streambanks can act as a potential source. Soil thresholds have been suggested that 

represent an increased potential for releasing P into water. Suggested thresholds are soils with 

DPS values greater than 25% (Breeuwsma et al., 1995) and/or greater than 8.2 mg WSP kg-1 soil 

(Sims, 1993). These thresholds were obtained for specific soil types, focused on upland soils, and 

will vary with soil chemistry. Therefore, they are implemented for a general comparison, but may 

change with each study. Analysis of measured WSP and calculated DPS shows that only 5% of 

sampled streambank points are considered to currently be a potential risk with WSP over 8.2 mg 

WSP   kg-1, but DPS lower than 25% (Figure 3.2). The top right quadrant (region above both 

thresholds) is considered the region of environmentally sensitive soil P concentrations that will 

pose an immediate threat to water quality. There was no clear trend in this data, which may be 

due to differences in variables including soil mineralogy, sampling depth, and pH. Miller et al. 

(2014) reported that in the Barren Fork 14% of samples were above the WSP threshold, 25% 
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above the DPS threshold, and 13% were above both of the thresholds. These streambanks were 

also characterized by gravelly silt loam, showing that soil type was not the only factor in 

determining the potential for P sorption and release. For example, soil pH, cation concentration, 

soil organic matter, and temperature could all affect the P concentrations.  

 

Figure 3.2. Environmental sensitivity of streambank soil samples from all five sampling sites along 
Spavinaw Creek. 

 

3.4.2 WSP and TP Streambank Spatial Distributions 

 Contour analysis of the WSP concentrations (Figure 3.3) suggested no consistent visual 

pattern in WSP concentrations between the five sites. Site K had WSP levels less than 2.6 mg  kg-

1 throughout the cross-section, while site L, just downstream, had much higher levels, especially 

near the surface. Site M had higher concentrations of WSP just in a strip below the surface, 

possibly due to WSP leaching from the surface further upstream and moving through the lower 

topsoil layers or from high flow events where WSP could leave the creek and sorb onto soil 

particles. Another potential cause could be the historical movement of sediment. Sediment of 

different characteristics could have been deposited as a bank was forming, creating a layer of 
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different texture that has the potential to better sorb P. Site N had a hot spot of WSP where the 

topsoil met the underlying alluvial gravel layer. This was most likely caused by the saturation of 

the gravel layer, allowing for transfer of WSP within the creek onto the bottom layer of topsoil 

through subsurface preferential flow paths (Heeren et al., 2011; Miller et al., 2014). This hotspot 

could also be due to the movement of sediment with legacy P that has been deposited over time 

and created a bank high in WSP. Site P had no particular trends or peaks. 

 TP was also spatially analyzed (Figure 3.4). Site L and M had similar trends for TP as 

they did with WSP, with the higher concentrations at the top and just below the surface, 

respectively. These high concentrations may be due to anthropogenic activities as high 

concentrations were seen near the surface, or could be the deposition of sediment over time that 

was high in TP. Site K had higher TP values around 40 cm below the ground surface, but 

comparison to the WSP plot showed that another form of P, such as plant available, was 

dominating. Site N had high TP towards the streambank face, which generally followed the WSP 

behavior. Site P had a peak of TP at the interface between the topsoil and underlying gravel, 

possibly due to P in the creek sorbing onto this exposed topsoil layer. Generally TP will not leach 

and be mobile like WSP, so streambank concentrations were typically hypothesized to be a result 

of sediment deposition or anthropogenic activities. 
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Figure 3.3. Water soluble P spatial distributions for five sampled sites: (a) Site K, (b) Site L, (c) Site M, (d) Site N, and (e) Site P. 
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Figure 3.4. Total P spatial distributions for five sampled sites: (a) Site K, (b) Site L, (c) Site M, (d) Site N, and (e) Site P.
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 The contour plots suggested no clear visual relationship between WSP and TP 

concentrations, which was supported by comparing all of the streambank WSP and TP data 

together (Figure 3.5). Therefore, areas with high TP did not always have high WSP, showing that 

other forms of P, including other inorganic pools and organic pools, may be dominating the 

streambank P concentrations.  

 
Figure 3.5. Comparison of streambank water soluble P and total P concentrations. 

 

3.4.3. Longitudinal Distributions of Streambank Chemistry 

 From the spatial analysis of the streambank cross-sections, each site displayed a different 

visual trend in WSP and TP concentrations. Was there a trend present along the length of 

Spavinaw Creek? The average and standard deviation of pH, EC, WSP, and TP were assessed 

from each site and plotted using SigmaPlot v12.5 (SPSS, 2011) based on their distance from the 

confluence with Beaty Creek.  

 No general trend in pH was observed relative to the distance from the confluence 

(p=0.685) (Figure 3.6). The magnitude of the pH change over the 20 km length of the stream was 
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approximately 7.3 to 7.0. However, median values for soil pH in this region is 5.5 (Zhang, 2001). 

The addition of phosphorus-rich litter raises the pH of the soil. Eroded sediments from upstream, 

upland sources may be transported downstream and forming these banks in Oklahoma. No 

longitudinal trend was observed for average EC (p=0.821) (Figure 3.6). No general trend was 

observed for average WSP (p=0.57) or average TP (p=0.57) across the five sites (Figure 3.6). 

Spatial differences may be more linked to differences in land use and management such as 

fertilizer type and application.   

 

Figure 3.6. Longitudinal spatial distribution of (a) average pH, (b) average EC, (c) average water 
soluble P, and (d) total P at Sites M, N, P, K, and L along Spavinaw Creek.  
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3.4.4 Sediment and Phosphorous Loading 

 Measured WSP and TP concentrations were multiplied by the eroded soil mass to 

quantify the WSP and TP loading. From 2003-2013, Spavinaw Creek received 2.4 x 103 kg of 

WSP (2.4 x 102 kg WSP yr-1) and 1.5 x 105 kg of TP (1.5 x 104 TP yr-1) from streambanks (Table 

3.2). This loading estimate was representative only of predicted streambank loading, not other 

potential P sources. 

 
Table 3.2. Estimated streambank sediment and phosphorus loads along Spavinaw Creek from 2003-

2013. 

Study 
Period 

Average 
Bank 

Retreat 
(m yr-1) 

Eroded soil per yr 
per m of bank 
(kg m-1 yr-1) 

Eroded soil mass 
per year 
(kg yr-1) 

Total eroded 
soil mass 

(kg) 

Total WSP 
Loading mass 

(kg) 

Total TP 
Loading 

mass 
(kg) 

2003-2008 2.4 3.2 x 103 6.6 x 107 3.3 x 108 1.1 x 103 6.7 x 104 

2008-2010 0.7 1.0 x 103 2.1 x 107 4.1 x 107 1.4 x 102 8.4 x 103 

2010-2013 4.3 5.9 x 103 11.9 x 107 3.6 x 108 1.2 x103 7.3 x 104 

2003-2013 2.5 3.4 x 103 6.8 x 107 7.3 x 108 2.4 x 103 1.5 x 105 

 
  

 A three parameter Weibull distribution was the best fit distribution for WSP, TP, bulk 

density, and eroded area:  

𝑓𝑓(𝑋𝑋) = 𝛼𝛼
𝛽𝛽
�𝑋𝑋−𝛾𝛾

𝛽𝛽
�
𝛼𝛼−1

𝑒𝑒𝑒𝑒𝑒𝑒−�
𝑋𝑋−𝛾𝛾
𝛽𝛽 �

𝛼𝛼

         (5) 

where X is the measured variable (WSP, TP, ρb, or EA), α is the shape, β is the scale, and γ is the 

threshold. Topsoil depth was best fit by a normal distribution: 

𝑓𝑓(𝑋𝑋) = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒−
(𝑋𝑋−𝜇𝜇)2

2𝜎𝜎2                 (6) 

where X is the measured variable (Dts), μ is the location, and σ is the scale. These parameters were 

obtained from Minitab 16 (Minitab, 2009) from the original measured data (Table 3.3).  
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Table 3.3. Minitab distributions and Monte Carlo inputs for water soluble P, total P, bulk density, 

eroded area, and topsoil depth based on Spavinaw Creek measurements. 
Variable Distribution  Data Set Inputs for Monte Carlo* p value AD value 
WSP 3 parameter Weibull Original α = 1.25; β = 2.97; γ = 0.52 0.071 0.706 

  
Simulated α = 1.21; β = 2.86; γ = 0.53 0.340 0.425 

TP 3 parameter Weibull Original α = 2.08; β = 111.4; γ = 174.6 0.112 0.612 
  Simulated α = 2.08; β = 112.0; γ = 174.9 0.108 0.616 
Bulk Density 3 parameter Weibull Original α = 2.51; β = 62.4; γ = 1401 0.095 0.610 

  
Simulated α = 2.46; β = 61.7; γ = 1401 0.313 0.419 

Eroded Area 3 parameter Weibull Original α = 0.48; β = 303,019; γ = 201 0.044 0.788 

  
Simulated α = 0.49; β = 292,857; γ = 202 0.384 0.402 

Topsoil Depth Normal Original μ = 49.6; σ = 21.9 0.068 0.660 
    Simulated μ = 49.5; σ = 22.2 0.015 0.960 

*α = shape; β = scale; γ = threshold; μ = location; σ = scale. 
  

 These distribution parameters were then used to create the CDF necessary to run the 

Monte Carlo simulation. The three parameter weibull distribution CDF and the normal 

distribution CDF are given by the following equations, respectively: 

𝐹𝐹(𝑋𝑋) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒−�
𝑋𝑋−𝛾𝛾
𝛽𝛽 �

𝛼𝛼

  (7) 

𝐹𝐹(𝑋𝑋) = 1
2
�1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑋𝑋−𝜇𝜇

𝜎𝜎√2
��  (8) 

 The average WSP loading from the Monte Carlo analysis was 1.5 x 103 kg over the 10 yr 

period, which was equivalent to the 1.5 x 103 kg calculated from averages (Table 3.3).  The PDF 

of the WSP load estimates from the Monte Carlo simulation showed that approximately 80% of 

loads were less than the estimate of 1.5 x 103 kg of WSP. The average TP loading from the Monte 

Carlo analysis was 1.4 x 105 kg from 2003-2013, which is slightly larger than the 1.2 x 105 kg 

estimated from averages (Table 3.4). The PDF of the Monte Carlo loading suggested that 78% of 

the TP loads were less than the average estimate, showing that this average estimate is also on the 

high end of the range in potential loading rates. 
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Table 3.4. Water soluble P and Total P averages and estimates from Monte Carlo analysis. 
 WSP Calculated based on Averages Calculated from Monte Carlo Analysis 
Average WSP (mg WSP kg-1 soil) 3.5 3.2 
Average Topsoil Depth (cm) 47 50 

Bulk Density (kg m-3) 1,450 1,456 

Eroded Area (m2) 6.3 x 105 5.9 x 105 
Average WSP Loading (kg) 1.5 x 103 1.5 x 103 
 TP Calculated based on Averages Calculated from Monte Carlo Analysis 
Average TP (mg TP kg-1 soil) 273 274 
Average Topsoil Depth (cm) 47 50 

Bulk Density (kg m-3) 1,450 1,456 

Eroded Area (m2) 6.3 x 105 6.9 x 105 
Average TP Loading (kg) 1.2 x 105 1.4 x 105 

  

3.4.5 LOADEST Comparison 

 The LOADEST performance relative to observed in-stream P concentrations from all 

three gauges were comparable, based on the Nash-Sutcliffe Model Efficiency Value (NSE), with 

the LOADEST DP estimate better than TP (Table 3.5). Although the coefficient of determination 

(R2), NSE, and plots (Figure 3.7) indicated a positive correlation (α=0.05) between the observed 

and LOADEST estimates, there was high variability. 

 

Table 3.5. LOADEST model fit statistics for the USGS gauges at Colcord, OK, Sycamore, OK, and 
Cherokee City, AR. 

Station Fit Statistic TP  
(mg L-1) 

DP   
(mg L-1) 

Spavinaw Creek at 
Colcord, OK 

R2 0.57 0.65 
NSE 0.56 0.64 

Spavinaw Creek at 
Sycamore, OK 

R2 0.46 0.70 

NSE 0.45 0.70 

Spavinaw Creek at 
Cherokee City, AR 

R2 0.55 0.68 

NSE 0.55 0.68 
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Figure 3.7. Plots of observed and LOADEST predicted concentrations for total P at (a) Colcord, (c) 
Sycamore, and (e) Cherokee City, and dissolved P at (b) Colcord, (d) Sycamore, and (f) Cherokee 

City.  
 

 The TP and DP loads from the three gauge stations (Table 3.6) were plotted relative to 

their distance from the confluence with Beaty (Figure 3.8). Extending the best-fit line on graphs 

estimated that the loads reaching the confluence were 5.9 x 104 kg TP yr-1 and 2.4 x 104 kg DP  

yr-1. The difference between these estimates and those from LOADEST at the Cherokee City 

gauge were 3.9 x 104 kg TP yr-1 and 1.4 x 104 kg DP yr-1, which represent the P loading into 

Spavinaw Creek from Oklahoma.  Streambanks represented a much lower contribution of 

dissolved P per year than LOADEST predicted DP based on in-stream water quality data. 
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Streambank WSP was only 1% of the dissolved P estimated by LOADEST. TP estimates from 

streambank samples correlated to 31% of the LOADEST estimate. LOADEST accounted for 

phosphorus reaching the surface water from many sources: overgrazing, cattle/pasture, point 

sources, litter, crops, urban, baseflow, elevated STP, hay to forest, and other non-point sources 

(Storm and Mittelstet, 2015). This large difference between the WSP and DP estimates can be 

attributed to the many other sources of P within the watershed. The LOADEST estimates were 

plotted on the CDF for the Monte Carlo estimated loads (Figure 3.9). The LOADEST DP 

estimate corresponded to 98% of the streambank WSP load distribution, and the LOADEST TP 

corresponded to 57% of the TP load distribution (Figure 3.9). 

 

Table 3.6. Dissolved P, Water soluble P, and Total P estimates from soil samples and LOADEST 
estimates at the three gauge stations and Oklahoma contribution. 

Method Dissolved P (kg yr-1) WSP (kg yr-1) Total P (kg yr-1) 
Streambanks - 1.4 x 102 1.2 x 104 

Colcord 
LOADEST 1.7 x 104 - 3.9 x 104 

Sycamore 
LOADEST 1.2 x 104 - 2.6 x 104 

Cherokee City 
LOADEST 9.7 x 103 - 2.0 x 104 

Confluence 
Estimate 2.4 x 104 - 5.9 x 104 

Oklahoma 
Contribution 1.4 x 104 - 3.9 x 104 
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Figure 3.8. LOADEST estimates relative to the distance from the Spavinaw-Beaty confluence and 

extrapolation to estimate load reaching confluence.  
 

 
Figure 3.9. Cumulative Density Function plots of the Monte Carlo estimated for (a) Water soluble P 

and (b)Total P loads and the corresponding load estimate from the LOADEST model. 
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3.4.6 Comparison to Other Ecoregion-Specific Watersheds 

 Miller et al. (2014) carried out a study along Barren Fork Creek (BFC) and estimating 

sediment and P loading from streambanks with and without riparian vegetation from 2003-2010. 

Barren Fork Creek is a fourth-order stream within the Illinois River Watershed that originates in 

northwest Arkansas and joins with the Illinois River at Lake Tenkiller in eastern Oklahoma. The 

Illinois River Watershed, like the Eucha-Spavinaw watershed, has many areas listed on the EPA’s 

303(d) list for nutrient related impairments. BFC flows through the Ozark ecoregion and is 

characterized by cherty topsoil with underlying gravel layers (Fuchs et al., 2009; Fox et al., 

2011).  

 The study looked at three sites considered to be historically unprotected by riparian 

vegetation (HUP) and seven sites that were historically protected (HP). Similar techniques as 

those discussed previously in this paper were implemented in order to determine streambank 

erosion and WSP and TP concentrations were used. Average topsoil depth was 1 m. It was found 

that HUP sites had on average 49 m of bank retreat, while HP sites had 18 m during the 7-year 

study period (2003-2010).  

 Phosphorus testing and analysis showed that of their 253 samples, 14% had a WSP 

concentration greater than the threshold (8.2 mg WSP kg-1 soil), 25% had a DPS value greater 

than the threshold (25% DPS), and 13% were above both thresholds. In total, the ten study sites 

contributed 2.2 x 102 kg WSP (3.1 kg WSP yr-1) and 1.7 x 103 kg TP (2.5 x 102 kg TP yr-1) from 

2003-2010. A helicopter survey was carried out and found that of the 55 km reach of BFC in 

Oklahoma, 11 to 55% (36% average) of 2 km reaches were considered unstable and eroding. 

Annual WSP and TP load estimates from the ten sites were scaled up to represent all of the 

reaches considered to be unstable. This led to an estimate of 1.2 x 103 kg WSP yr-1 and 9.3 x 104 
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kg TP yr-1 for all of BFC during the seven years LOADEST predicted 1.38 x 104 kg DP yr-1 of 

and 4.6 x 104 kg TP yr-1.  

 Both Barren Fork Creek and Spavinaw Creek flow through the Ozark ecoregion, have 

cherty topsoil with underlying gravel layers, and surrounding land has historic litter application. 

However, there are very clear differences between the results along the two creeks (Table 3.7). 

The average WSP estimated from streambanks in Spavinaw was only 1% of the DP estimated 

from LOADEST; in Barren Fork it was 8.7%.  LOADEST estimates of DP for both creeks are 

much higher than those predicted from streambanks, which is due to LOADEST taking into 

account point and non-point sources as discussed previously. Average TP estimates from 

streambanks and LOADEST are on the same order of magnitude for both creeks. BFC receives 

almost an order of magnitude higher WSP and TP from streambanks compared to Spavinaw 

Creek.  

 

Table 3.7. Comparison of Dissolved P, Water soluble P, and Total P estimates at Spavianw Creek 
and Barren Fork Creek. 

Location Method Dissolved P  
(kg yr-1 ha-1) 

WSP  
(kg yr-1 ha-1) 

Total P  
(kg yr-1 ha-1) 

Spavinaw Streambanks - 1.5 x 10-3 1.3 x 10-1 

 
LOADEST 1.5 x 10-2 - 4.1 x 10-1 

   
 

 Barren Fork Streambanks -  1.5 x 10-2 1.2 x 100 
  LOADEST 1.7 x 10-1 - 5.7 x 10-1 

 

 Although Barren Fork Creek and Spavinaw Creek flow through the same ecoregion and 

have similar land use and streambank characteristics, they are an order of magnitude different in 

terms of their WSP loading. Therefore, estimates from one creek, whether it be BFC or Spavinaw 

Creek, cannot accurately be used to predict P loading along another system. Each creek has 

unique differences in surrounding land management, discharge, topsoil depth, and other variables 

that affect sediment and P loading. When estimating loading rates, each creek should be assessed 

64 
 



individually. These individual studies can then be linked together to gain a better understanding 

of the system as a whole.  

 

3.4.7. Influence of Vegetation on Phosphorus Loading 

 Longitudinal analysis of WSP and TP found that concentrations remained relatively 

constant along Spavinaw Creek, showing that there is no significant difference in the 

concentrations at locations with or without riparian vegetation. However, the presence of 

established vegetation along streambanks was estimated to reduce bank retreat by three times. 

Therefore, the potential reduction in P loading with riparian protection was more related to the 

presence of vegetation limiting erosion than affecting the concentration of P. Based on the aerial 

imagery, approximately one-third of the streambanks are unprotected. In order to determine the P 

load reduction due to the addition of riparian vegetation, the loading under the current conditions 

must first be calculated. The current conditions assumed an average WSP concentration of 3.5 mg 

WSP kg-1 soil, two-thirds of the streambanks were vegetated and bank retreat of 2.5 m yr-1, while 

the remaining one-third was non-vegetated and had three times more bank retreat (7.5 m yr-1). 

This calculation estimated the original P load to be 14.6 mg WSP kg-1 soil m yr-1. The new P 

loading assumed a situation in which all of the streambanks were vegetated, had a retreat of 2.5 m 

yr-1, and a WSP concentration of 3.5 mg WSP kg-1 soil. The new loading was estimated as 8.8 mg 

WSP kg-1 soil m yr-1. Based on these estimates there would be a two-fifths reduction in P loading 

if established riparian vegetation was implemented on the non-vegetated reaches.  
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3.5 Conclusions 

 In Spavinaw Creek watershed it was estimated that from 2003 to 2013 the WSP load was 

2.4 x 103 kg and the TP load was 1.5 x 105 kg. Streambank P load estimates were comparable to 

LOADEST in-stream estimates for TP, but LOADEST predicted an order of magnitude higher 

DP loads than the WSP load estimated from banks. Sources other than streambank P were 

contributing to the DP observed in the stream. The implementation of vegetation along 

unprotected banks could potentially result in a two-fifths reduction in P loads. Spavinaw Creek 

streambank P load estimates were compared to those reported for Barren Fork Creek, which was 

in the same ecoregion and had similar streambank characteristics. Spavinaw Creek had an order 

of magnitude lower WSP loading per year. Therefore, although both creeks were similar, there 

were other differences such as land use, litter application, and hydrology that made it difficult to 

use one study to predict the behavior of another creek. In order to gain an understanding of 

nutrient loading into surface water, individual streams systems should be studied to account for 

this variability.  
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APPENDIX A 
 
2-way ANOVA for retreat with and without a buffer (Figure 2.6) 
 
General Linear Model: Retreat (m/y versus Buffer Width, Period_1_1  
 
Factor            Type   Levels  Values 
Buffer Width_1_1  fixed       2  0, 1 
Period_1_1        fixed       3  1, 2, 3 
 
 
Analysis of Variance for Retreat (m/yr)_1_1, using Adjusted SS for Tests 
 
Source                        DF   Seq SS   Adj SS  Adj MS      F      P 
Buffer Width_1_1               1   640.38   638.07  638.07  33.37  0.000 
Period_1_1                     2   333.46   462.07  231.04  12.08  0.000 
Buffer Width_1_1*Period_1_1    2   218.39   218.39  109.19   5.71  0.004 
Error                        299  5717.22  5717.22   19.12 
Total                        304  6909.45 
 
 
S = 4.37277   R-Sq = 17.26%   R-Sq(adj) = 15.87% 
 
 
Unusual Observations for Retreat (m/yr)_1_1 
 
        Retreat 
Obs  (m/yr)_1_1     Fit  SE Fit  Residual  St Resid 
 27     15.3800  5.2312  0.8415   10.1488      2.37 R 
 60     17.9320  2.7612  0.5553   15.1708      3.50 R 
 73     30.0000  2.7612  0.5553   27.2388      6.28 R 
129     13.2800  3.4500  0.6747    9.8300      2.28 R 
130     13.3050  3.4500  0.6747    9.8550      2.28 R 
131     16.0400  3.4500  0.6747   12.5900      2.91 R 
237     34.9800  8.5079  0.7094   26.4721      6.14 R 
268     12.9333  3.1038  0.5303    9.8295      2.26 R 
280     46.5867  3.1038  0.5303   43.4828     10.02 R 
 
R denotes an observation with a large standardized residual. 
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Grouping Information Using Tukey Method and 95.0% Confidence 
 
Buffer 
Width_1_1    N   Mean  Grouping 
0          107  5.730  A 
1          198  2.662    B 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Period_1_1    N   Mean  Grouping 
3           106  5.806  A 
1            89  3.996    B 
2           110  2.786    B 
 
Means that do not share a letter are significantly different. 
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APPENDIX B 
 

 

Minitab probability plots for Observed WSP 
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Observed WSP 3 Parameter Weibull Probability Plot 
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Minitab probability plots for Monte Carlo WSP 
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Monte Carlo WSP 3 Parameter Weibull probability plot 
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Minitab probability plots for Observed TP 
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Observed TP 3 Parameter Weibull probability plot 

 

Observed TP PDF 

 

Observed TP CDF 
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Minitab probability plots for Monte Carlo TP 
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Monte Carlo TP 3 Parameter Weibull probability plot 

 

Monte Carlo TP PDF 

 

Monte Carlo TP CDF 
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Minitab probability plots for Observed Bulk Density 

 

 

 

1560150014401380

99

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

0.50.0-0.5

99

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

1560150014401380

99

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

100010010

99

90

50

10

1

BD (kg/m3) - T hreshold

P
e

rc
e

n
t

Lognormal
A D = 0.634 
P-V alue = 0.042

3-Parameter Lognormal
A D = 0.519 
P-V alue = *

Goodness of F it Test

Normal
A D = 0.641 
P-V alue = 0.040

Box-C ox Transformation
A D = 0.599 
P-V alue = 0.053

A fter Box-C ox transformation (lambda = -5)

Probability Plot for BD (kg/m3)
Normal - 95% C I Normal - 95% C I

Lognormal - 95% C I 3-Parameter Lognormal - 95% C I

150014001300

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

1550150014501400

99

90

50

10

BD (kg/m3)

P
e

rc
e

n
t

1550150014501400

99

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

500450400350

99

90

50

10

1

BD (kg/m3) - T hreshold

P
e

rc
e

n
t

Gamma
A D = 0.698 
P-V alue = 0.072

3-Parameter Gamma
A D = 0.667 
P-V alue = *

Goodness of F it Test

Smallest Extreme V alue
A D = 0.774 
P-V alue = 0.032

Largest Extreme V alue
A D = 0.573 
P-V alue = 0.112

Probability Plot for BD (kg/m3)
Smallest Extreme V alue - 95% C I Largest Extreme V alue - 95% C I

Gamma - 95% C I 3-Parameter Gamma - 95% C I

94 
 



 

 

 

 

 

 

 

 

 

 

10000100010010

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

10001001010.10.01

90

50

10

1

BD (kg/m3) - T hreshold

P
e

rc
e

n
t

150014001300

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

10050

90

50

10

1

BD (kg/m3) - T hreshold

P
e

rc
e

n
t

Weibull
A D = 0.767 
P-V alue = 0.034

3-Parameter Weibull
A D = 0.610 
P-V alue = 0.095

Goodness of F it Test

Exponential
A D = 2.233 
P-V alue = 0.003

2-Parameter Exponential
A D = 0.551 
P-V alue = 0.157

Probability Plot for BD (kg/m3)
Exponential - 95% C I 2-Parameter Exponential - 95% C I

Weibull - 95% C I 3-Parameter Weibull - 95% C I

1560150014401380

99

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

1560150014401380

99

90

50

10

1

BD (kg/m3)

P
e

rc
e

n
t

100010010

99

90

50

10

1

BD (kg/m3) - T hreshold

P
e

rc
e

n
t

3-Parameter Loglogistic
A D = 0.521 
P-V alue = *

Goodness of F it Test

Logistic
A D = 0.661 
P-V alue = 0.042

Loglogistic
A D = 0.654 
P-V alue = 0.044

Probability Plot for BD (kg/m3)
Logistic - 95% C I Loglogistic - 95% C I

3-Parameter Loglogistic - 95% C I

95 
 



Observed Bulk Density 3 Parameter Weibull probability plot 

 

Observed Bulk Density PDF 

 

Observed Bulk Density CDF 
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Minitab probability plots for Monte Carlo Bulk Density 
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Monte Carlo Bulk Density 3 Parameter Weibull probability plot 

 

Monte Carlo Bulk Density PDF 

 

Monte Carlo Bulk Density CDF 
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Minitab probability plots for Observed Eroded Area 
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Observed Eroded Area 3 Parameter Weibull probability plot 

 

Observed Eroded Area PDF 

 

Observed Eroded Area CDF 
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Minitab probability plots for Monte Carlo Eroded Area 
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Monte Carlo Eroded Area 3 Parameter Weibull probability plot 

 

Monte Carlo Eroded Area PDF 

 

Monte Carlo Eroded Area CDF 
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Minitab probability plots for Observed Topsoil Depth 
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Observed Topsoil Depth Normal probability plot 

 

Observed Topsoil Depth PDF 

 

Observed Topsoil Depth CDF 
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Minitab probability plots for Monte Carlo Topsoil Depth 
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Monte Carlo Topsoil Depth Normal probability plot 

 

Monte Carlo Topsoil PDF 
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Monte Carlo Topsoil CDF 
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