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ABSTRACT

A generalized equation of state correlation has been developed for pre­

diction of fluid thermodynamic properties and phase behavior from the ef­

fective use of recent advances in equation of state development methods.

The generalized parameters in the correlation were determined using simul­

taneously data for the normal paraffin hydrocarbons methane through n- 

octane in the multiproperty regression analysis of PVT, enthalpy and vapor 

pressure data. Multiproperty analysis was used to ensure consistent pre­

diction of all thermodynamic properties.

A parameter sensitivity study was made to determine the effects of each 

generalized parameter on saturated properties. This sensitivity study helped 

to provide a guide for selection of parameters which should be modified for 

improved prediction in a given temperature region.

The correlation makes use of an interaction parameter for binary pairs 

in the applications of the generalized correlation to mixtures, values of 

interaction parameters determined principally from vapor-liquid equilibrium 

data of binary systems are tabulated.

The generalized correlation is readily adaptable to computer use. Be­

cause minimization of computing time for repetitious calculations is very 

important for practical use of the correlation, a new efficient density 

search program has been developed. The new density search program, which 

uses a false-position method, is faster than the Newton-Raphson method in

iv



■most regions of density and is orders of magnitude faster than the trial- 

and-error method.

Computational procedures for using the generalized correlation for pre­

diction of thermodynamic behavior including fluid density, enthalpy, vapor 

pressure, entropy and vapor-liquid equilibrium are described.

The use of critical constraints in determining equation of state 

parameters is shown to improve predictions of thermodynamic behavior in the 

critical region, including prediction of the critical point.

Comparisons of predicted thermodynamic properties and K-values with 

experimental data were made for broad ranges of systems and conditions to 

prove the generalized correlation is capable of describing virtually all 

conditions encountered industrially. The pure fluids used in comparison 

calculations include polar and nonpolar compounds, paraffin, olefin, naph- 

thene and aromatic hydrocarbons and nonhydrocarbons. In mixture properties 

comparison calculations, predicted mixture densities, enthalpies and en­

tropies were compared with experimental or derived data for 38 mixtures at 

more than 1400 points. The mixtures considered include natural gas, LPG 

and LNG mixtures containing as many as 10 components. Phase equilibrium 

data for 42 systems were used to evaluate the generalized correlation for 

vapor-liquid equilibrium predictions.

Finally, the comparison calculations are discussed in terms of partic­

ular processing situations to emphasize the industrial applications of the 

correlation.
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A GENERALIZED CORRELATION FOR PREDICTION OF FLUID 

THERMODYNAMIC PROPERTIES AND PHASE BEHAVIOR AND 

ITS INDUSTRIAL APPLICATIONS

CHAPTER I

INTRODUCTION

The objective of the research discussed in this dissertation was to

develop a generalized correlation for prediction of all fluid thermodynamic

properties as well as pure fluid and multicomponent phase behavior.

At the present time, the two-fluid model of corresponding states

is the most accurate generalized method for predicting the bulk thermo-
22 31 42dynamic properties of nonpolar fluids ’ ’ . The success of this method

for predicting bulk properties cannot be disputed. However, for the pre­

diction of partial molar properties and phase behavior, the two-fluid 
32model , as well as other similar corresponding states methods, have met 

with less success than achieved in prediction of bulk properties. On the 

other hand, modifications^^’ of the BWR^ and Redlich-Kwong^^ equations 

have been used with considerable success recently for predictions of phase 

behavior. In both the corresponding states and equation of state methods, 

accurate prediction of partial molar properties and phase behavior requires 

accurate dependence of properties on composition. By either approach, 

composition dependence occurs through the composition dependence of the 

parameters which characterize the fluid, e.g., pseudocritical constants,

1



2
pseudoacentric factor, etc. in the corresponding states method, and equa­

tion parameters in the equation of state method. Although theories such 

as conformai solution theory in the corresponding states approach and the 

mixture virial equation in the equation of state approach can be used as 

starting points in defining composition dependence, one must ultimately 

resort to empirical methods for all but the simplest mixtures. Thus, the 

choice of methods for correlation would seem to be almost arbitrary, the 

corresponding states method having been generally more successful for 

bulk properties and the equation of state method having been generally 

more successful for partial molar properties and phase behavior.

The decision to use the equation of state method of correlation in 

the present work was based on choosing among various possibilities the 

combination which seemed most likely to achieve the ultimate goal of 

accurate prediction phase behavior as well as bulk properties.

Recent advances in equation of state development methods at University 

of Oklahoma include the development of the mathematical framework and com-
21 96 97puter programs for multiproperty regression analysis ’ ’ . The most

advanced multiproperty analysis can simultaneously utilize PVT, enthalpy, 

and vapor pressure and multicomponent vapor-liquid equilibrium data to 

determine optimal values of equation of state parameters'^. The temperature 

and density dependence of the equation of state used in this work was de­

veloped using multiproperty analysis. This equation is capable of accurate 

predictions of fluid behavior at reduced temperatures as low as 0.3 and 

reduced densities as great as 3.2. Effective use of these recent advances 

in equation of state development methods has been made to develop the 

generalized equation of state correlation presented here.



CHAPTER II

DEVELOPMENT OF GENERALIZED EQUATION 

OF STATE CORRELATION

98The equation of state for pressure used in this work is the follow­

ing function of temperature and molar density;

P = pRT + (B RT - A - C + D - E )o o _o _o _o
T^ T^ T^

+ (bRT - a - |) p^ + a(a + |) p^ (II-l)

2
+ (1 + yp^) exp (->p^)

T
21 57The development of Equation (II-l) has been discussed elsewhere ’ . The

eleven parameters in Equation (II-l) have been determined individually for 

the normal paraffin hydrocarbons methane through n-octane as well as iso­

butane, isopentane, ethylene, propylene, nitrogen, carbon dioxide and 
98hydrogen sulfide

Methods for Generalization of an 

Equation of State

To extend the usefulness of an equation of state for which parameters 

have been determined only for a limited number of fluids, it is desirable



4
to have available a practical means for generating parameters for other 

fluids of interest. One simple method of generalization is to rewrite 

the equation of state in reduced form based on the two-parameter cor­

responding states principle. Su and Viswanath^^^ have used this approach 

for the BWR equation. Pseudo-critical volume was defined in terms of 

critical temperature and pressure to eliminate the use of experimental 

critical volumes. To improve the accuracy of predictions, some investi­

gators have expressed reduced parameters as functions of acentric factor
28or critical compressibility factor . These generalizations based on the

corresponding states principle have been applied with satisfactory results

to predict the volumetric behavior of the vapor phase, but they become un-
46reliable near the two phase region

Another way to generalize an equation of state is to directly cor­

relate equation of state parameters rather than reduced parameters, as 

functions of physical constants such as acentric factor, the critical con­

stants and other characteristics of the fluids involved. For example,
13Canjar and co-workers have correlated the BWR constants for the hydro­

carbon series in terms of critical temperature and carbon number, and 

Starling^^^ has correlated the normal paraffin BWR constants as functions 

of carbon number alone.

Application of the Corresponding States 

Principle to the Equation of State

To study the possibility of a corresponding states generalization of 

Equation (II-l), the corresponding relation for the compressibility factor 

Z was converted to the following reduced form.



A ' C ' D * E ' 

r r r

+ (b* - - ^ )  p /  + a- (|^ + p /

C'P/ 2 2
+ ---3 - (1 + r'P^ )exp(-y'p^ )

3
B a' - a p c

(II-2)

- ÿ
‘•' ■ s  "•' ■ sc c

2y» = 7P d* = -%
 ̂ RTc

b' .bp  ̂ E ' =
° RT :

C

RTc

98Utilizing the parameters in Equation (II-l) which previously had been deter­

mined individually for the eight normal paraffin hydrocarbons, the resultant 

reduced equation of state parameters in Equation (II-3) were plotted versus 

acentric factor (Figure II-l). It can be seen in Figure II-l that the
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scattering of the data points diminishes the possibility of determining 

from the individual component parameters the exact functionality between 

the reduced parameters and acentric factor. The scatter in reduced 

parameter values in Figure II-l is due in part to the relatively large co- 

variances among the eleven parameters in Equation (II-l). In a multi­

parameter equation of state, it is inherent that some of the parameters 

will have large variances, which are measures of uncertainties, and large 

covariances, which are measures of statistical dependence between parameter 

pairs. By transforming the parameters into reduced form, these uncertainties 

and covariance effects tend to be magnified when plotted, as in Figure II-l. 

Ihis finding does not repudiate the validity of the corresponding states 

principle. Rather, it points out the inappropriateness of applying the 

corresponding states principle directly to the equation of state parameters 

determined for individual materials. If appropriate functional forms can 

be determined for the reduced parameters, it is far better to simultaneously 

use data for many fluids to determine the resultant generalized parameters 

in these functional forms. This approach was used in the present research.

Correlation of Reduced Parameters as 

Generalized Functions of 

Acentric Factor

The relatively well behaved functionality between the reduced parameters

and acentric factors for several of the parameters in Figure II-l suggests

the linear relations in Equations (II-4)-(11-14) can be used to correlate

the reduced parameters in terms of the component acentric factor,

critical temperatures, T , and critical density, p . The need for the
^i "̂i
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nonlinear relation in Equation (11-14) will be discussed subsequently.

ĉi®oi = 4 + V i (II-4)

p .A .
^ = A + BJS) (H-5)RT . 2 ̂  "2 1

C l

p̂ j.C .
3 ^  ' *3 + V i  ("- 6 )RT .

C l

-RTT ' \  + V i (11-9)
C l

( 11- 10)

—3----- *8 + V i (11-11)
r  i

P .D .
■ ■ " V ’ = 4  + V i  (11-12)RT  ̂  ̂^ci

■~ 3  4 o  + ®10“i (11-13)
ci

P .Ê .
“ " ^ 5  = exp (-3.8U)̂ ) (11-14)

ci
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The high interdependence among the reduced parameters for a given 

fluid suggests the feasibility of determining an aggregate set of general­

ized parameters (A. and B. j = 1,2, ... 11) using data for several fluids,J J >
such that the reduced parameters conform to the assumed functionality with 

acentric factor. In addition, by using multiproperty analysis for their 

determination, the set of generalized parameters may be used to predict 

all thermodynamic properties rather than PVT behavior only, as has been 

the case traditionally^^. To this end, multiproperty regression analysis 

was used to determine the generalized parameters in Equations (II-4)-(11-14) 

To minimize computer core storage and execution time, only the normal paraf­

fins methane through n-octane were used to generate the coefficients in the 

parameter expressions in Equations (II-4)-(11-14). Nevertheless, almost 

400 carefully selected PVT, enthalpy and vapor pressure data points were 

used in the computation.

The following function was minimized in the multiproperty regression 

calculations^^.

Q = E  T "  [ 1 -

i j ^exp,ij (11-15)

+ 2 ^ ? ^ ^  [i NC(OT)i

In Equation (11-15), NC is the number of pure components used in the re­

gression and (NP)^ is the number of data points of the i^^ component for 

each property. Descriptions of computational procedures and computer pro­

grams for multiproperty analysis have been discussed in a number of litera- 
t„re sources.l“>l®-21>«,57.65.96.97.99
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The parameters and (j = 1,2, 11) in Equations (II-4)-(11-14)

determined in the regression calculations are given in Table II-l. The 

value of is negative for values of the acentric factor

larger than 0.29. Since the use of negative parameter values for indivi­

dual fluids is inconvenient in calculations of mixture parameters, multi­

plication of B^^ by the correction factor "exp(-3.8 w^)" was necessary.
I

The correction term for B^^ was determined by searching for optimum 

values for each of the eight pure fluids, using a trial-and-error method,
t

followed by correlation of the optimum values found, using Equation (11-14). 

The values of critical temperature, T^^, critical density, and acentric

factor, used in these calculations are given in Table 11-2. For con­

sistency in thermodynamic property prediction calculations, the values of 

T ., p . and w. given in Table 11-2 should be used with the correlation.
C l  C l  1

In particular, the values of in Table 11-2 should be used, since there 

is considerable disagreement in acentric factor values reported in standard 

references. Because of the noted disagreement in reported acentric factors, 

values of the characterization parameter consistent with the present 

correlation have been determined and are given in Table 11-2 for twenty- 

six fluids. The determination of the characterization parameter also 

can be carried out using a trial-and-error method. Comparison of calculated 

saturated fugacity values of liquid (f̂ ) and vapor (f̂ ) can make this step 

a lot easier.

If f^ > f^ along the vapor pressure curve, the pressures chosen (i.e. 

experimental vapor pressures) are lower than the vapor pressures predicted 

by the equation of state, therefore the value used should be increased 

in order to reduce f̂ , and conversely if f^ < f̂ , the uu value should be
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TABLE II-1

VALUES OF GENERALIZED PARAMETERS A. AND B. FOR 
USE WITH GENERALIZED EQUATION ÔF STAtI

Parameter 
Subscript(j)

Parameter Value

1 0.443690 0.115449

2 1.28438 -0.920731

3 0.356306 1.70871

4 0.544979 -0.270896

5 0.528629 0.349261

6 0.484011 0.754130

7 0.0705233 -0.044448

8 0.504087 1.32245

9 0.0307452 0.179433

1 0 0.0732828 0.463492

1 1 0.006450 -0.022143
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TABLE II-2

PHYSICAL PROPERTIES OF PURE MATERIALS USED WITH 
GENERALIZED EQUATION OF STATE

Critical 
Temp., 
F

Critical
Density
Ib-mole/
cu.ft.

Molecular
Weight

Acentric
Factor

Methane -116.43 0.6274 16.042 0.013
Ethane 90.03 0.4218 30.068 0.1018
Propane 206.13 0.3121 44.094 0.157
i-Butane 274.96 0.2373 58.12 0.183
n-Butane 305.67 0.2448 58.12 0.197
i-Pentane 369. 0.2027 72.146 0.226
n-Pentane 385.42 0.2007 72.146 0.252
n-Hexane 453.45 0.1696 86.172 0.302
n-Heptane 512.85 0.1465 100.198 0.353
n-Octane 563.79 0.1284 114.224 0.412
n-Nonane 610.5 0.1150 128.25 0.475
N-Decane 651.9 0.1037 142.276 0.54
n-Undecane 692.31 0.0946 156.30 0 . 6
Ethylene 49.82 0.5035 28.05 0 . 1 0 1
Propylene 197.4 0.3449 42.08 0.15
Nitrogen -232.6 0.6929 28.016 0.035
Carbon Dioxide 87.8 0.6641 44.01 0 . 2 1
Hydrogen Sulfide 212.7 0.6571 34.076 0.105
Cyclohexane 535.6 0.2027 84.156 0 . 2 1 0
Benzene 552. 0.2401 78.108 0.215
Nitrous Oxide 97.77 0.6483 44.02 0.155
Nitric Oxide -135.69 1.0764 30.01 0.600
Toluene 605.5 0.1924 92.134 0.260
Sulfur Dioxide 315.5 0.5118 64.06 0.273
Methyl Chloride 289.65 0.4366 50.49 0.17
Ethylene Oxide 382.71 0.4524 44.05 0.157
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reduced. Generally, the resultant optimum value of w is near the values 

of acentric factors reported in the literature.

Sensitivities of Saturated Properties 

to Reduced Parameters

The parameter sensitivity study presented here has played a signifi­

cant role in the determination of the optimal parameter values through re­

gression analysis. Because the sensitivities of thermodynamic properties 

to each reduced parameter are different, the study helps to provide a guide 

or basis for selection of parameters which should be modified for improved 

predictions in a given temperature (or density) region.

The measure of sensitivity used was the percent change in the thermo­

dynamic properties at saturated conditions for a one percent change in 

the reduced parameter being considered. The property which is most sensi­

tive to parameter variation is the liquid fugacity. This sensitivity is 

shown in Figure II-2 for propane. Figure II-2 demonstrates clearly that
I

modification of the reduced parameter can significantly affect liquid 

fugacity calculations below T^ = 0.4, while making only small changes at 

higher reduced temperatures.

Application of the Generalized 

Correlation to Mixtures

Correlation of mixture behavior using the generalized equation of 

state requires characterization of the mixture on the basis of the character­

istics and amounts of the components in the mixture. The method most common­

ly used in the past has been to treat the mixture parameters as functions
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of composition, the pure component parameters, and unlike interaction 

parameters. This is the method used by Benedict, Webb, and Rubin^ in 

their work with the BWR equation.
g

Quite recently, Bishnoi and Robinson have developed very successful 

new mixing rules for the BWR equation. These new mixture parameter equa­

tions have been quite useful for the prediction of high temperature K- 

values for systems containing hydrogen sulfide, carbon dioxide, and nitro­

gen. Since the generalized equation presented here has the same density 

dependence as the BWR equation it was anticipated that the type of mixing 

rule proposed by Robinson could be used successfully in Equation (II-l). 

Calculations for a large number of systems have shown that this new 

formulation for mixing rules is a viable approach for predicting mixture 

behavior. However, use of the mixing rules proposed by Bishnoi and Robin­

son requires excessive amounts of computing time in vapor-liquid equili­

brium calculations for systems of more than three components. This is due 

to the need for repetitious calculations of triple summations involved 

in the expressions for a, c and d.

The following relations can be written for the eleven mixture para­

meters in the new equation of state, using nomenclature analogous to that
g

of Bishnoi and Robinson .

n n
B^ = S L x.x.B . . (11-16)
° i=l j=l 1 J

A = S L XX.A . .  (11-17)

n n
C = S S x.x.C . . (11-18)
° i=l j=l 1 j oij
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n n

y = S S X.x.y. . (11-19)
1 = 1 j=l  ̂j j

b = L S S X X V (b b b (1 1 -2 0 )
1 = 1 j=l k=l ^  ^  ^

n n n -,
a = S S L x.x.x^ (a. .a., a,, ) (1 1 -2 1 )

1

n n n
“ • L  f.x <“ ij“jk“ik>'''

' - i  j!l k l  (II.23)

n n
D = S S x.x.D .. (11-24)
° 1 = 1 j=l 1 J

n n n
d = S S S x.x x (d d. d ) / (11-25)

iti A  k.x

n n
E = S S x.x.E .. (11-26)
° 1 = 1 j=l 1 j

In Equations (Il-16)-(II-26), x^ Is the mole fraction of the 1*"̂  component

and n Is the total number of components. In the present work, the binary

Interaction parameters A^^j, etc. have been treated as the following

functions of the pure component parameters B A etc. and the Inter-ox ox
action parameter k , which will be discussed subsequently.

ij

»oij - (11-27)

\lj - (1 -kij) (11-28)

C.ij ' (1-klj)^ (17-29)
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’'ij

b. . =
1 ] /b.b. 

1 ]

“ij'

/a.a. 
1 J

'a.a.
1 J

ij
/c.c. 1 J

(11-30)

(11-31)

(11-32)

(11-33)

(11-34)

- \j>

B.ij ■ "  - kij)

(11-35)

(11-36)

(11-37)

Equations (11-16) through (11-37) can be reduced to Equations (11-38)- 

(11-48) for practical computation.

B = Sx.B . o X ox

n n
A =

1 = 1 j=l 1 J 0 1  °3

C =

y =

S  Z; x/x, 1/2(1

(12
i=l j=l 1 3 °3

k..)-

n

n
b . [ Z x  b 

i=l  ̂1

(11-38)

(11-39)

(11-40)

(11-41)

(11-42)
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a = [Sx.a.^^^]^ (11-43)
i=l  ̂^

a = [ S x.a.l/3]3 (11-44)
i=l  ̂^

c = [ 2x.c.l/3]3 (11-45)
i=l  ̂^

D = L S x.x.D .1/2 D 1/2 (1 _ k.,)4 (11-46)
° i=l j=l 1 j 3̂

d = [ S x.d.l/3]3 (11-47)
i=l  ̂^

^ 1/2 1/2 5E = S L  x.x. E E . ' (1 - k. .)̂  (11-48)
° i=l j=l 1

Use of exact analogs of the expressions presented by Bisnoi and Robinson 

would require the following expressions for B^^j, a^^, and d^^.

»oij -

a^j = (1 - k.j) (11-50)

c _  = (1 - k..)3 (11-51)

dfj = / d ] T  (1 - k. .)" (11-52)

Use of these Equations (11-49)-(11-52) leads to the following expressions 

for B^, a, c and d.
n n

B = S Sx.x. /B ,B . (11-53)
° i=l j=l  ̂J



/.u

a = s s r \  a 1/3 a^l/3 (1 - k J^/^
i=l j=l k=l J J ^

1/3 1/3 (11-54)(1 - kj,; (1 _ k,ajl/3

(1 - kj%) (1 - ^1%) 

d = S  S  Sx.,:.d.l/3<i.l/3 1/3 2/3
1 = 1 j- 1 k-1 1 =• 3 ''

(1 - (1 -

(11-55)

(11-56)

It is the use of triple sunmations in Equations (11-54)-(11-56) that leads 

to excessive computer time in multicomponent vapor-liquid equilibrium cal­

culations. For example, for a fifteen component system (such as normally
3encountered in absorber calculations), there are (15) = 3375 terms involved

in the expression for c used by Bishnoi and Robinson, Equation (11-55), 

while there are only 15 terms in the expression for c used in present work. 

Equation (11-45). Thus, for economic reasons alone, the use of triple 

summations in expression for mixture parameters must be prohibited in com­

puter programs. Fortunately, mixing rules (Equations (11-38)-(11-48)) 

used in the present work not only shorten computing time significantly 

compared to the Bishnoi and Robinson rules but also (for the equation of 

state used here) predict thermodynamic properties more accurately than the 

rules involving triple summations.

The interaction parameter k.. is a measure of deviations from idealij
solution behavior for interactions between the i*"̂  and components^’̂ ®. 

Thus, k^j is zero when i equals j (pure fluid interaction) and k^^ is near 

zero for component pairs which form nearly ideal solutions (for example.
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paraffin hydrocarbon pairs heavier than propane). The numerical value of

k^j differs considerable from zero when the component pair forms highly

nonideal solutions. Thus, accurate values of are required when i or 

j is a light hydrocarbon or a nonhydrocarbon. Compared to vapor-liquid 

equilibrium predictions, the sensitivity of predicted bulk mixture proper­

ties such as density and enthalpy to the value of k^^ is small. Therefore, 

binary vapor-liquid equilibrium data have been relied on principally for 

determining k^^ values. Tabulations of k^^ values for component pairs

encountered in the hydrocarbon processing industry are presented in

Table II-3.

Figure VI-3 illustrates the effect of variation in the interaction

parameter k^^ on K-values for the methane-hydrogen sulfide system. Hie

improvement in methane K-values using k,. = 0.05 over the use of k.. = 0.00ij ij
is significant. On the other hand, hydrogen sulfide K-values are virtually 

unaffected by this variation in k^j. It has been noted in general that 

K-values of components occurring in larger percentages in the vapor phase 

are affected by variations in k^^ to a greater extent than components 

. occurring in smaller percentages in the vapor phase.



TABLE I1-3

VALUES OF INTERACTION PARAMETERS k FOR USE 
IN GENERALIZED CORRELATION^

(k^j X  100)

0> ! 0} (U
0) 0 0) <u Pi Pi d d

<u 0 0) <U pi p i (0 « <u d <u 0) 0) (U
çi <D 0) Pi 0) t8 .w 4J (U c <u 0) g (tf M d  nc 60 ’X}
CÜ t—< (3 % rt 0 Pi pi rt Pi Pi d u O O - r j OCO A PL PJ 3 0) 0) « 4-1 nJ to flj (U l- i f  X Pi 64
u •C O o PP m Pi P i X PL 4J Pi u •PI 4J Ü o •d  '-4
a 4-1 M k 1 1 1 1 (U 0) u o <u d ■ri (fl " r i

% Ph P i •H Pi •H Pi PC PC O IS A P3 IS U  A PC CP

1 . 0 1 . 0 2 . 1 2.3 2.75 3.1 3.6 4.1 5.0
0 . 0 0 . 0 0.3 0.31 0.4 0.45 0.5 0 . 6 0.7

0 . 0 0.3 0.31 0.4 0.45 0.5 0 . 6 0.7
0 . 0 0 . 0 0.3 0.35 0.4 0.45 0.5

0 . 0 0.3 0.35 0.4 0.45 0.5
0 . 0 0 . 0

0 . 0
0.08
0.08
0 . 0

0 . 1
0 . 1
0 . 0
0 . 0

0.15
0.15
0 . 0
0 . 0
0 . 0

0.0 6,0
0.85
0.85
0.65
0.65
0.18
0.18
0.0
0.0
0.0
0.0

7.0
1.0 
1.0 
0.8 
0.8 
0.2 
0.2 
0.0 
0.0 
0.0 
0.0 
0.0

8.1
1.2
1.2
1.0
1.0
0.25
0.25
0.0
0.0
0.0
0.0
0.0
0.0

9.2
1.3
1.3 
1.1 
1.1 
0.3 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0

10.1
1.5
1.5
1.3
1.3 
0.3 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0

2.5
7.0
7.0 
10.0 
10.0 
11.0 
12.0
13.4
14.8
17.2 
20.0
22.8
26.4
29.4
32.2 
0.0

5.0 5.0 Methane
4.8 4.5 Ethylene
4.8 4.5 Ethane
4.5 4.0 Propylene
4.5 4.0 Propane
5.0 3.6 i-Butane
5.0 3.4 n-Butane
5.0 2 . 8 i-Pentane
5.0 2 . 0 n-Pentane
5.0 0 . 0 Hexane
5.0 0 . 0 Heptane
5.0 0 . 0 Octane
5.0 0 . 0 Nonane
5.0 0 . 0 Decane
5.0 0 . 0 Undecane
0 . 0 0 . 0 Nitrogen
0 . 0 3.5 Carbon

Dioxide
0 . 0 Hydrogen

Sulfide

N>N>



CHAPTER III 

AN EFFICIENT DENSITY SEARCH METHOD

For practical applications using the generalized correlation, it is 

very important that computing time for repetitious calculations be mini­

mized. For this reason, efficient computer programming is mandatory for 

all calculations which utilize search techniques. Density calculation is 

the most frequently called search calculation, because in estimating other 

thermodynamic properties (enthalpy, entropy and fugacity) density must be 

determined for a given temperature and pressure before the other properties 

can be calculated. Various density search methods are briefly discussed 

here and a new density search method is presented.

Since the equation of state (Equation II-l) is implicit in density, an 

iterative scheme is required for density calculation. Three iterative 

methods, the false-position method, Newton-Raphson method and trial-and- 

error method, were considered for use in density calculations. To test 

the speed of convergence, comparison calculations of the three methods 

were made.

Equation II-l can possess three or more density roots at all tempera­

tures below the critical temperature. Only the smallest and largest roots 

have physical significance, corresponding to vapor and liquid densities, 

respectively.

23
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43In the trial-and-error method of density calculation , for the vapor 

phase, an initial density estimate of zero was used, with equal increments 

(e.g., the smaller of 0.1 P/RT and 0.01 Ib-moles/cu.ft.) added to the 

density in the iterative procedure until the calculated pressure exceeded 

the actual pressure. The density was then reduced by the final increment, 

the increment was reduced through division by ten and then the new incre­

ment was added to the density iteratively until the calculated pressure 

again exceeded the actual pressure. This procedure was continued until 

the density increment size reached a specified small value (e.g., 0 . 0 0 0 0 0 1  

Ib.-mole/cu.ft.). For the liquid phase, the procedure for solving for the 

density is similar except that the initial density estimate was chosen to 

be larger than ever actually encountered and increments are subtracted 

rather than added in the iterative procedure. The initial liquid density 

estimate of 2.0 Ib.-moles/cu.ft. and initial increment size of 0.05 Ib.- 

mole/cu.ft. were used,
58In the Newton-Raphson method , the first derivative of pressure with 

respect to density was calculated analytically at each iteration step. The 

density increment was the ratio of the difference in the desired pressure 

and the calculated pressure, divided by the derivative of pressure with 

respect to density. The initial density estimates used in the Newton-Raphson

method were identical to those used in the trial-and-error method.
58The false-position method is similar to the Newton-Raphson method. 

However, each iteration is faster because the derivative is merely esti­

mated as the ratio of the pressure increment to the density increment from 

the previous iteration, rather than being calculated analytically.
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In comparison tests of the three iterative density search methods using 

the generalized equation, the false-position method was found to be slightly 

faster than the Newton-Raphson method in most regions of density. Both the 

false position and Newton-Raphson methods were orders of magnitude faster 

than the trial-and-error method. However, the trial-and-error method is 

more commonly used for industrial calculations because most programs written 

using the two faster methods fail in certain cases. Therefore, use of the 

false-position method in the generalized correlation required for fail­

safe, self-protective density search subroutine. A careful study of iso­

thermal pressure-density behavior led to the construction of a simple 

scheme and program for this purpose. Although the scheme lacks a rigorous 

convergence proof, the actual use of the program without failure proved 

the scheme to be truly workable.

A self-explanatory flow sheet for the fail-safe false-position density 

search program is presented in Figure 111-1. Pressure (P), temperature (T), 

acentric factor (U)) and the density key (MD=0 if vapor, and MD=-1 if liquid) 

are needed in the density search program. FN(i) is defined to be the cal­

culated pressure using Equation 11-1 for the density value at the i^^ itera­

tion minus the given pressure. In Figure 111-1, the blocks enclosed by 

dotted lines were added as safety precautions against internal loopings, 

etc., although the use of those blocks never occurred. If internal loop­

ing (KK“2) should occur, the trial-and-error density search method (DENTE) 

is called.
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P,T,œ,MD given

r * ^ " W 6o"i 

11.
NL6=MDr M D

‘='̂ KK > 2Z> — Call dente"]

I KK=KK+1 !

NLG=-1

P(1)=0,P(2)=P/RT 
Calculate FN(1),FN(2)

p=p(i-l)

V ^ fcirri

P(i-2) FN(i-l)-;P(i-l) FN(i.p(i)^.r,.—  .....

1 Calculate!FN(1 ) r

p=p(l)

1= 1+1

Figure III-l. Flow Sheet for Density Search Program Using 
False-Position Method
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p(l)=l.l, p(2 )=1 . 0p(l)=2.0, P(2)=1.9

Calculate
FN(1),FN(2)NLG=0

i  I

>0

Return nono (i-1) FN(i-

i-i --►I DENTE I 
I______Imax

4 0 %,
yes

. . p(i-2) FN(l-l)-p(i-l) FN(i-2) 
FN(i-l)-FN(i-2) ___

i=i+l

(i)- p(i-l)^ 
sO.0 0 0 0 0 1 ?%^

Calculate
FN(i)

JUL

yes

letum)

Figure III-l. (Continued)



CHAPTER IV

USE OF CRITICAL CONSTRAINTS IN DETERMINATIONS 

OF GENERALIZED PARAMETERS

Accurate prediction of thermodynamic behavior near the critical region 

is often necessary in engineering design calculations. The generalized 

correlation predicts the critical temperatures of the light paraffins methane 

through n-butane within a few degrees. However, the predicted critical 

temperatures of fluids heavier than pentane are in error by more than 10°F 

in some cases. The purpose of the material presented here is to show 

that an exact fit of critical conditions can be obtained by the use of 

critical constraints.

At the critical point, the following three conditions must be satis­

fied.

^c (IV-1)

^  = 0 (IV-2 )

(— ?) = 0 (IV-3)

^  L ’Po

Application of these three conditions to the generalized correlation 

yields the following relations.

28
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P

H r  ' 1 + <®o - - <=0 - ”1 - V  + - a' - d')C c
+ a'(a* + d') + c' (1 + y') exp (-y) (IV-4)

t I I I I
0 = 1 + 2 (B - A - C + D - E) + o o o o o

+ 3(b'-a'-d') + 6a ’(a'+d') (IV-5)

+ d'(3+3y'-2y^) exp (-y')

0  = 2 (b'-a'-c'+d'-e') + 6 (b'-a*-d')o o o o o 
+ 30a'(a'+d') + 2c' (3f3y'-9y'%2y'^) (IV-6 )

exp (-y')
I

Rearranging the Equations (IV-4)-(IV-6 ) for B^, b' and c' results in 

the following three non-trivial simultaneous equations.

I ' 'B + b' + c'(l+y')exp(-y') = - _ - 1 + (A+C -O fJ Ki O Oc c
dVe^) + a' + d' - a'(a'4d') (IV-7)

2B^ + 3b' + C  (3+3y'-2y'^)exp(-y') =

-l + 2 ( A X - W + 3 ( a ' + d ' ) _

60!'(a'+d')

2B^ + 6b' + o' (6+6y'-18y'^+4)/'^)exp(-y') = (IV-9)

2(A^+C^-D^+E^) + 6(a'+d')-30a'(a'+d')

I
The three reduced parameters B^, b ' and c' are expressed in terms of the 

remaining eight reduced parameters in these critical constraint relations
I

Equations (IV-7)-(IV-9), The values of B̂ , b' and c' for methane and normal 

pentane determined from solving the three critical constraint equations are 

compared with the previous nonconstrained values determined in Table IV-1.
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Inspection of Table IV-1 indicates that the disagreement between two 

sets of values is not great. Thermodynamic property calculations using
I

b' and c' determined with critical constraints yield excellent pre­

dictions between the reduced temperature 0.83 and the critical temperature. 

For lower temperatures, predictions rapidly become very poor. This is due 

principally to the fact that thermodynamic properties are very sensitive 

to the parameter c' at lower temperatures.

If one desires an exact fit of critical conditions as well as

accurate thermodynamic property predictions down to reduced temperature
I

as low as 0.3 using the generalized correlation, values of B^, b' and c'

determined from the critical constraints can be used above the reduced

temperature 0.83.
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TABLE IV-1

COMPARISONS OF VALUES OF THE REDUCED PARAMETERS 
B', b' AND c' DETERMINED WITH AND 
“without CRITICAL CONSTRAINTS

Without Critical 
Constraints

With Critical 
Constraints

B'o 0.445191 0.430481

Methane b' 0.533168 0.525201

c' 0.521279 0.549144

B'o 0.472783 0.480424

n-Pentane b' 0.616643 0.564495

c' 0.837344 0.877458



CHAPTER V

COMPUTATIONAL PROCEDURES FOR PREDICTING FLUID 

THERMODYNAMIC BEHAVIOR USING THE 

GENERALIZED CORRELATION

Methods for predicting fluid thermodynamic properties and vapor-liquid 

equilibria using the generalized correlation are presented here along with 

the necessary equations.

The basic equations for use of the generalized correlation in pre­

diction of thermodynamic properties are Equation II-l and Equations (II-4)- 

(11-14). Equations for calculation of all thermodynamic properties can be 

derived from these basic equations with the use of fundamental thermodynamic 

relationships.

Density

Calculation procedures for density are presented in Chapter III.

Enthalpy

The enthalpy of a compound is calculated using the equation

H = (H - H°) + (H° - H°) + H° (V-1)

H° is the standard enthalpy of formation of the compound from the elements

at 0 psia and 0°R, and is obtained from API^^. (H° - H°) is the difference

in the enthalpy of the compound in the ideal gas state at the temperature of

interest and the reference state of 0°R. The ideal gas enthalpy difference

32



33

(H° - H°) also is obtained from API^^. (H - H°), the enthalpy departure, 

is the difference in the enthalpy of the compound at the temperature- 

pressure condition of interest and the enthalpy of the compound in the 

ideal gas state at the same temperature.

The enthalpy departure is related to the equation of state by the
38following equation

(H - H°) = P/p - RT + [P - T(^) ] ^  (V-2)
P P

When the new equation of state given in Equation II-l is used in Equation 

V-2, the equation of state expression for the enthalpy departure has the 

form
4C 5D 6E

(H - H°) = (B RT - 2A - P
o ° T T"̂ T^

+ \  (2bRT - 3a - 1^) i a (6 a + p^ (V-3)

[3 - (3 + - yV)exp(-')IO^)]

For self-consistency, the density value used in Equation V-3 for calculation 

of the enthalpy departure must be determined by the solution of Equation 

II-l for the temperature-pressure condition of interest. The computer pro­

gramming necessary for the calculation of enthalpy is straightforward. The

procedure has been discussed in detail for the BWR equation by Johnson and 
43Colver .

Entropy

The entropy of a compound is calculated using the equation

S = (S - S°) + S° (V-4)

+  I : ' -  ^
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This equation is entirely analogous to Equation V-1 for the enthalpy except

that the entropy of formation at 0 °R, S°, is zero by virtue of the third law

of thermodynamics^**. S° is the entropy of the compound in the ideal gas

state at unit pressure^^ and is obtained from API^®. The entropy departure

(S - S°) is the difference in the entropy of the compound at the temperature-

pressure condition of interest and the entropy of the compound in the ideal

gas state at the same temperature and unit pressure. The entropy departure
38is related to the equation of state by the following equation

(S - S°) = -R ̂ n OORT) f /  [pR - (||) ] ^  (V-5)
0 / p

When the new equation of state given in Equation II-l is used in Equation

V-5, the equation of state expression for the entropy departure has the form

2C 3D 4E
(S - S°) = -R in (pRT) - (B R + + -^) p

T T T

T 5T

+ ^  [ 1 - (1 + k y p ^ )  exp (->p^)] 
yi ^

The density value used in Equation V- 6 should be determined by solution of

Equation II-l. Computer calculations of entropy departures can be made

easily, following the procedure utilized by Johnson and Colver for enthalpy 
43departures

Fugacity

The fugacity may be expressed in terms of the enthalpy departure and 

entropy departure by the thermodynamic relation

RT J0n f = (H - H°) - T(S - S°) (V-7)
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Thus, using Equations V-2 and V- 6 in Equation V-7, the equation of state 

expression for the fugacity has the form

C D E
RT Xn f = RT Xn pRT)-\- 2(B^RT " P

-h I (bRT - a - |) ^  (a + |) p^ (V-8 )

+ ~  [l - (1 - - y P ) exp (-7P )]
yT

As was also noted for enthalpy and entropy, the density value used in Equa­

tion V-8 for computing the fugacity should be determined by solving Equation 

II-l.

Vapor Pressure

Determination of the vapor pressure at a given temperature requires 

the simultaneous solution of the following condition equations for vapor- 

liquid equilibrium^,

= p (V-9)s

f^ = f^ (V-10)

where L and V refer to liquid and vapor, respectively. The following trial-

and-error procedure can be carried out easily by computer. To start the

procedure, an initial estimate of the vapor pressure P is made. Then P^
Vand P are set equal to P^ to satisfy Equation V-9. Liquid and vapor 

densities (p^ and p^) are then calculated by solving for the largest and

smallest roots satisfying Equation II-l, with P = P^. These liquid and

vapor densities are then used to calculate the liquid and vapor fugacities 

f^ and f̂ . A new estimate of the vapor pressure is then obtained by
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multiplying the initial estimate of by the ratio This procedure

is continued iteratively until Equation V-10 is satisfied within a speci­

fied tolerance or | 1 - f^Vf^j approaches a specified small value (e.g., 

0.001). The final pressure is the calculated vapor pressure.

Mixture Thermodynamic Properties 

The method for calculating mixture thermodynanic properties, such as 

density, enthalpy departure and entropy departure is virtually identical 

to the pure component method described above. The only difference is that 

mixture parameters (Equations (11-38)-(11-48)) rather than pure component 

parameters are used in the equation of state. Molar enthalpies for ideal 

gas mixtures must be calculated as mole fraction weighted averages of the 

component ideal gas molar enthalpies. The expression for molar entropy of 

ideal gas mixtures must include the entropy of mixing in addition to mole 

fraction weighted average of the component ideal gas molar entropies.

H L x.M. = S x.HTM. (V-11)X 1 1 1 1

S S x.M. = S  x.S.M, - R L X .  A n  X .  (V-12)
X I  X X X  X X

In Equations V-11 and V-12, H° and H° have the units Btu/lb and and

S? have the unit Btu/lb °R; and and S° are the ideal gas mixture enthalpy 

and entropy, while H° and S? are the ideal gas enthalpy and entropy of the 

pure i*"̂  component. The mixture average molecular weight is the sum of the 

products of mole fractions, x^, and the component molecular weights, M^.

Vapor-liquid Equilibrium Prediction 

Mixture vapor-liquid equilibrium predictions are more complicated than 

pure component vapor-liquid equilibrium predictions. However, mixture cal­

culations can be carried out easily by computer.



37

The following condition equations for mixture vapor-liquid equili­

brium can be derived from classical thermodynamics,

(V-13)

(V-14)

fY = f^ (V-15)

where the superscripts V and L refer to the vapor and liquid phases, 

respectively. To satisfy these condition equations it is necessary to 

calculate the fugacity of the i^^ component, f^, in both vapor and liquid

phases.

The fugacity of the i^^ component in a fluid mixture, f̂ , is related

to the equation of state by the following relation

f. /x.
:] ' I [P

jfi

In Equation V-16, x^ is the mole fraction of the i^^ component in the mix­

ture, which may be either liquid or vapor, V is the volume of the phase. 

When the mixture equation of state is used in Equation V-16, the expression 

for component fugacity given below results. .

RTgnfĵ  = RT£n(jORTx^) +p(B^+B^ )RT

n
+ 2 p  Xj (1-k.,) - (C„C^

^ (Do°o.) (1-k. - (E E (1-k. .)5]
IJ ° °i IJ

t"
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+ [3(bV)l/3 RT - 3(a2a.)l/3 - - ■ ].f . 4 ^ 1

+ ̂  (a + |) (V-17)

.,2 1/3 2 2 2
'  r  P r l-exp (-M ) ) expC-IP )i 

/  ' ^ 2  - 2 ■>

• ^&^Cl-exp(-yp^ [l+yp̂  + |yV]5 
yi ^

In Equation V-17, is the mole fraction of the i^^ component in the vapor 

phase if fY is calculated; x^ is the mole fraction of the i*"̂  component in 

the liquid phase if fY is calculated.

All normally encountered types of mixture vapor-liquid equilibrium pre­

dictions can be carried out by searching for the appropriate value of V in 

the following relation

z (1-K )
f(T.f.v) = O T T m )

In this relation is the mole fraction of the i*"̂  component in the feed 

■mixture. At vapor-liquid equilibrium, one lb-mo le of the feed mixture 

splits into V lb-moles of vapor and (1-V)=L lb-moles of liquid. The 

equilibrium vaporization ratio or K-value for the i*"̂  component, K^, is 

the ratio of ŷ  ̂and x^, the equilibrium mole fractions of the i^^ component 

in the vapor and liquid phases respectively,

Yi
K, = (— ) equilibrium (V-19)

1  X .

For one lb-mole of feed mixture, the number of Ib-moles of the i*"̂  component 

in the feed, vapor and liquid are z^,y^V and x^(l-V), respectively, that is
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= y^V + (1-V) (V-20)

When ẑ j and V have been determined and x^ can be solved for using 

Equations V-19 and V-20.

In virtually all vapor-liquid equilibrium predictions, two of the three 

quantities, T, P and V, are specified and the third is searched for. In 

the so-called flash calculation, T and P are specified and V is sought. In 

dew point calculations, V = 1 is specified and either P or T is sought. 

Similarly, in bubble point calculations, V = 0 is specified and P or T is 

sought. Other problems may specify values of V between 0 and 1. In all 

cases, the solution for the unknown (whether T, P or V) is that value of 

the unknown for which F(T,P,V) = 0 in Equation V-18. Trial-and-error 

search methods, including the Newton-Raphson method are applicable.

When the equation of state method is used for mixture vapor-liquid 

equilibrium predictions, the condition equation fY = f̂ , imposes an 

additional requirement which must be satisfied. The method for satisfy­

ing Equatibn V-15 for the case of a flash calculation (T and P specified) 

is shown in Figure V-1. Other types of calculations, such as dew and 

bubble point calculations, can be performed using analogous procedures.

The first step in the procedure in Figure V-1 is to perform a flash cal­

culation for the feed mixture composition using first estimates of the 

K-values, denoted by R^. So-called ideal K-values (the ratio of vapor 

pressure to system pressure) are conveniently used as first estimates for 

the ratios R̂ . The flash calculation yields the vapor-liquid split (V 

and L) and the component mole fractions, y^ for the vapor phase and x^ 

for the liquid phase. This allows calculation of the densities of the 

vapor (p - dy) and liquid (jO = d^) phases using the equation of state.
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The compositions and densities are then used to calculate component 

fugacities in each phase, using Equation V-17. If the vapor fugacity 

of any component is different from its liquid fugacity, the ratio in 

Equation V-21 can be used as a new estimate for the K-value of the i^^ 

component in a new flash calculation,

£^/*l
\  = J —  (V-21)

This cycle is repeated until the thermodynamic condition for equilibrium 

(equality of component fugacities in each phase) is satisfied, for then 

in Equation V-21 equals the equilibrium ratio, in Equation V-19. By 

this method, with the convergence criterion 1 - f^/fY < 0 .0 0 0 0 1 , i = 1 ,2 , 

—  n, convergence usually is obtained within five iterations using the new 

equation of state.
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CHAPTER VI

EVALUATIONS OF PREDICTIONS OF FLUID THERMODYNAMIC 

BEHAVIOR USING THE GENERALIZED CORRELATION

Predicted thermodynamic properties and K-values are compared with 

experimental data for broad ranges of systems and conditions to prove 

the generalized equation of state correlation is capable of describing 

virtually all conditions encountered industrially. The results of these 

comparisons are presented here for pure component properties, the mixture 

properties density, enthalpy and entropy and mixture vapor-liquid equilibria.

Pure Component Property Comparisons 

Table VI-1 summarizes the results of using the generalized correlation 

for predicting the thermodynamic behavior of twenty-six pure fluids. These 

fluids include polar and nonpolar compounds, paraffin, olefin, naphthene 

and aromatic hydrocarbons and nonhydrocarbons. Densities are predicted 

with an average absolute deviation from experimental values of 1.53% for 

1147 data points. Enthalpy departures are predicted with an average ab­

solute deviation from experimental values of 1.74 Btu/lb for 620 data 

points. Vapor pressure also is predicted quite accurately, since saturated 

liquid fugacities along the vapor pressure curve are predicted with an 

average absolute deviation from saturated vapor fugacities of 1.08% for 663 

points.
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TABLE VI-1

PREDICTION OF PURE FLUID THERMODYNAMIC PROPERTIES USING 
GENERALIZED EQUATION OF STATE

(p = density, H-H° = enthalpy departure, 
f = fugacity at vapor pressure)

Fluid Property References
No.

Data Pts.
Temp^ Range Pressure Range 

psia
Abs. Dev., 

Avg.*

Methane P
H-H°
f

26,108,109,
44,116

70

41
35
29

-253-662
-250-50
-259-C-116)

129-2325
250-2000
14.7-669

1 . 0 1
1.59
0.81

Ethane
P
H-H°
f

14.90
78.91 
14,90

50
42
38

-250-310
-258-310
-220-90

14.7-10000
249-3000
0.27-709

1 . 2 2
2.34
1,52

Propane
P
H-H°
f

40,90,91
116

14,90,105

41
37
39

-250-527
-250-250
-260-206

14.7_3910
500-2000
0.001-617

1.40
1.33
1.43

n-Butane
p
H-H°
f

90,91
91

14,90

41
39
39

-220-430
100-430

-110-305

41.7-7000
200-5000
0.18-550

0.53
1.43
0.62

n-Pentane hV
f

90,91
91
14,90

41
39
37

-200-460
100-460
-50-386

14.7-10000
2 0 0 - 1 0 0 0 0
0.27-489

0.55
1 . 1 2
0.71

n-Hexane p
f

90,101
14,90

41
40

-140-340
-10-454

14.7-4000
0.22-439

0.42
0.75

n-Heptane
p
H-H°
f

90,103
35

90,47

41
17
29

-90-460
512-706
70-497

14.7-3100
79-2363
0.73-350

0.51
0.97
0.72



TABLE VI-1 (Continued)

Fluid Property References
No. 

Data Pts.
Temp^ Range Pressure Range 

psia
Abs. Dev., 

Avg.*

P - 90,30 54 -70-510 14.7-240 0.99
n-Octane H-H 60,74 70 75-600 200-1400 2.55

f 74,90 50 70-560 0.22-350 1.15

n-Nonane f 90 15 100-355 0 .18 -30 0.86

n-Decane P 91 32 100-460 200-6000 1.47
f 90 19 135-400 0 .19 -30 0.84

n-Undecane f 90 19 165-440 0 .18 -30 1.36
i-Butane P 90,91 73 -110-480 14.7-3000 1.74

f 90,105 28 -136-275 0 .1 -394 2.52

i-Pentane P 26,90 ,94 41 -60-392 14.7-882 1.49
f 3,90 31 -122-370 0.01-394 1.47

P „ 14,72,90 41 -250-260 14.7-2000 2.63
Ethylene H-H 14 38 -120-260 100-2000 1.91

f 14,90,105 35 -220-49 0.88-742 0.96

Propylene P 14 ,29 ,73 ,90 61 -50-450 14.7-2940 2 .0
f 14,90,105 28 -195-197 0 .04-670 1.72

P „ 77 26 60-536 1.2-592 1.45
Cyclohexane H-H 59 113 300-680 200-1400 2.20

f 77,90 48- 50-520 0 .92-530 0.95
Benzene P 76 65 464—644 375-923 1.75

f 76,90 37 45-553 0.76-715 1.19

Toluene H-H° 115 103 50-650 50-2500 2.89
f 90 26 45-280 0 .2 -3 0 0.96



TABLE VI-1 (Continued)

Fluid Property References
No. 

Data Pts
Temp.^Range Pressure Range 

psia
Abs. Dev., 

Avg.*

Nitrogen P o 14,102 41 -321-240 14.7-9000 0.52
H-H 66 48 -250-50 200-2000 0.35
f 33 19 -309— 233 29-492 1.07

Hydrogen P 63,82 41 40-340 100-2000 2.33
sulfide f 48,111 24 -76-212 14.7-1306 0.68

P n 24 41 -22-284 294-5580 1.00
Carbon dioxide H-H 24 39 -22-284 441-7350 2.23

f 14 33 -70-88 75-1070 0.29
Nitrous oxide P 20,69 126 -22-302 88-3233 1.83

Nitric oxide P 75 33 -80-220 14.7-2000 2.77
Sulfur dioxide P 109,110 62 -60-482 1.5-4408 1.88
Methyl chloride P 61,111 60 -80-437 2.0-4408 2.98

Ethylene oxide P 113 54 70-370 22-936 3.29

^Deviation functions are: V L
X 100% at vapor pressure for data temperature %.

£:

p -p 1 X 100%
^exp

- » - “°>calc, Btu/lb.
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The consistent accuracy of predictions for wide classes of fluids 

(Table VI-1) indicates that the properties of other fluids can be pre­

dicted with confidence. In addition, the equation of state is thermo­

dynamically consistent, since density, enthalpy and vapor pressure are 

predicted accurately. Thus, entropy, heat capacity and other thermo­

dynamic properties can be predicted with confidence of accuracy. The re­

sults are conclusive, since over 2,400 data points are compared, the ranges 

of conditions are large and the fluids considered have wide variations in 

characteristics,

Mixture Property Comparisons 

In all mixture comparison calculations, the generalized correlation 

has been adhered to faithfully. Predicted mixture densities, enthalpies 

and entropies are compared with experimental or derived data for 38 mixtures 

at more than 1,400 data points. The mixtures considered include natural 

gas, LPG and LNG mixtures containing as many as 10 components. For mix­

tures such as light naphthas and lean oils, whose compositions are de­

fined in terms of hydrocarbon fractions rather than specific components, 

the characterization parameters T D . and U). must be determined from
C l  C l  1

the available characteristics reported for the mixture. Methods for esti­

mating these characterization parameters for hydrocarbon fractions en­

countered with light naphthas and lean oils will be discussed in Chapter 

VII.

Mixture Density Comparisons 

Table VI-2 summarizes the results of using the generalized equation of 

state for density predictions for fourteen mixtures at temperatures from
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TABLE VI-2

PREDICTION OF MIXTURE DENSITIES USING GENERALIZED 
EQUATION OF STATE

System Composition, 
Mole 7o

Ref.
Data Temperature, 
points F

Min. Max.

Max 
press., 
psia

Abs. 
Dev. 
Avg. %

75.3% CH^-24.7% C^Hg 41 24 -238 32 5,000 1.06
50.0% CH^-50.0% CgHg 41 27 -184 32 5,000 2.31
22.1% CH^-77.9% CgHg 41 25 -184 32 5,000- 0.86
80.0% CgHg- 20.0%CgHg 91 6 100 220 1,500 1.78
60.0% CgHg-40.0% C^Hg 91 6 100 220 1,500 0.95
40.0% CgHg-60.0% CgHg 91 ■6 100 220 1,500 0.73
20.0% CgHg-80.0% CgHg 
5.3% CH,-47.3% C^H^q

91 6 100 220 1,500 0.95

-47.4% C^qH2 2  
7.7% CH^-23.1% C^H^o

91 5 100 460 4,000 0.99

-69.2% CioH,,
7.7% CH^-69.2% C^H^q

91 4 100 460 4,000 2.58

-23.1% 0 1 0 * 2 2
20.0% CH^-60.0% C^Hio

91 5 100 460 4,000 1.25

-20.0% 0^0*22 91 4 100 460 4,000 0.52
LNG Mixture No. 1* 54 4 -283 -256 14.7 0.96
LNG Mixture No. 2* 54 4 -283 -256 14.7 0.80
LNG Mixture No. 3* 54 4 -283 -256 14.7 0.53

*LNG Mixture No. 1: 4.2% Ng-88 .3% CH.-4.7% C„ 4 ^Hg-1.4% CgHg-1. 3%
*LNG Mixture No. 2: 5.7% N -87 .6% CH,-3.0% C-H,-2.0%6 C_Hg-l. 8%
*LNG Mixture No. 3: 4.8% Ng-84.8% CH^-7.8% C^Hg-1.8% CgHg-0. 8% C4 H1 0
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-283°F to 460°F and pressures from 14.7 psia to 5000 psia. The average 

absolute deviation of predicted densities from experimental values is 

1.16%. This deviation is within twice the reported experimental uncer­

tainty for most of the mixtures studied. These results indicate that for 

many situations, the generalized equation of state can quite adequately 

predict densities of industrial mixtures, including LNG and LPG.

Mixture Enthalpy Comparisons 

Table VI-3 summarizes the results of using the generalized equation 

of state for enthalpy departure predictions for twenty-four mixtures at 

temperatures from -250°F to 680°F and pressures from 50 psia to 2500 psia. 

The average absolute deviation of predicted enthalpy departures from experi­

mental values is 2,20 Btu/lb, which is within three times the experimental 

uncertainty for most of the mixtures studied. Many different types of mix­

tures are included in Table VI-3, including not only mixtures having the 

characteristics of LPG, but a ten component natural gas-LNG mixture and a 

fifteen component rich absorber oil mixture. The accurate predictions of 

enthalpy for these widely varying mixtures show the generalized equation 

of state can be used for enthalpy predictions needed in many situations 

in the natural gas and petroleum processing industries.

Mixture Entropy Comparisons 

The ability of the generalized equation of state to predict mixture 

entropies was tested using entropy values presented by Bhirud and Powers^ 

for a nominal 94.8 mole percent methane and 5.2 mole percent propane mix­

ture. Sixty-two points were compared, covering a temperature range from 

-250°F to 300°F and a pressure range from 250 psia to 2000 psia. The
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TABLE VI-3

PREDICTION OF MIXTURE ENTHALPIES USING 
GENERALIZED EQUATION OF STATE

System Composition, 
Mole %

Ref.
Data
points

Temperature, 
F

Min. Max.

Max. 
press., 
psia

Abs.
Dev.
Avg.
Btu/lb

43.47= Ng-se.ea ch^ 6 8 54 -250 250 2 , 0 0 0 1.03
94.8% CH^-5.2% CgHg 6,67 25 -250 250 2 , 0 0 0 1.31
88.37= CH^-11.7% CgHg 6 8 47 -250 250 2 , 0 0 0 1.44
72,07= CH^-28.07, C^Hg 6 8 45 -250 250 2 , 0 0 0 2.25
49.47= CH^-50.6% C^Hg 116 45 -250 250 2 , 0 0 0 3.48
23.47= CH^-76.6% CgHg 116 50 -250 250 2 , 0 0 0 2.74
76.3% C2Hg-23.77= C^Hg 78 29 -240 240 2 , 0 0 0 1.80
49.87= C2Hg-50.27= C^Hg 78 28 -240 240 2 , 0 0 0 1.37
27.67= C2Hg-72.4% C^Hg 78 17 -240 240 2 , 0 0 0 1.92
36.67= CH^-31.1% C2Hg 

-32.37= CgHg 34 31 -240 240 2 , 0 0 0 1.74
79.37= CsH^2-20.7% CgH^2 59 115 280 680 1,400 1.15
61.2% CgH^2-38.8% CgH^2 59 118 280 680 1,400 1.40
38.57= C^Hj2-61.5% CgH^2 59 1 1 2 300 680 1,400 1.17
19.77= C2H^2-80.3% CgH^2 59 103 400 680 1,400 3.91
80.9% C2H^2-19.1% CgH^g 60 6 6 75 600 1;40C 3.36
59.77= C^H^2-40.3% CgH^g 60 6 6 75 600 1,400 3.59
39.2% CcH^2-60.8% CgH^g 60 47 75 600 1,400 4.32
21.87= C 5^2-78.2% CgH^g 60 60 75 600 1,400 3.03
50.07= CH^-50.0% Toluene 115 44 - 1 0 0 600 2,500 2.04
20.07= C^H^2-20.2% CgH^2 

-59.87= Benzene 61 43 380 600 1,400 2.26
33.3% CgH^2-33.4% CgH^2 

-33,37= Benzene 61 40 340 600 1,400 2.35
60.17= C^H^2-20.0% CgH^2 

-19.97= Benzene 61 59 320 600 1,400 2.32
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TABLE VI-3 (Continued)

Data Temperature, Max. Abs.
System Composition, 

Mole %
Ref. points F

Min. Max.
press.
psia

, Dev. 
Avg. 
Btu/lb

Natural gas-LNG mixture* 36 12 -200 200 1,000 1.66**
Rich Absorber Oil 61 68 -100 600 2,500 3.3

*Nat. gas-LNG mixture composition: 
0.6% N. 95.79% CĤ  - 3.0% - 0.39% Ĉ Hg

0.03%
- 0.01% CgH^2 - 0.025% 3-methyl pentane
- 0.015% 2-methylhexane.

**Isobaric enthalpy difference data were used. The deviation function
for this case is - (H_-H,) - where 1 and 2 are inlet and2 1 exp 2 1 calc
outlet conditions in calorimeter.
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average absolute deviation of predicted entropy departures from the re­

ported values was 0.0042 Btu/lb-°R. The results of this study show the 

generalized equation of state can be used for accurate predictions of 

entropies for both gas and liquid mixtures.

Mixture K-value Comparisons

Conditions for mixture K-value comparisons are summarized in Table 

VI-4. Because of the well-known problem of evaluating the accuracy of 

experimental K-value data, average absolute deviations for K-values are 

not reported in Table VI-4. Instead, direct comparisons of experimental 

and calculated phase compositions and K-values for numerous systems are 

shown either graphically or numerically, in Figures (VI-1)-(VI-13) and 

Tables (VI-5)-(VI-10). Inspection of these comparisons of predicted and 

experimental phase compositions and K-values shows that not only the magni­

tudes but trends of the predicted phase compositions are in good agreement 

with experimental results. For most points, the generalized correlation 

predicts phase compositions within the larger of 5% or 0.0005 of experimental 

mole fractions. For convenience of presentation, the results are discussed 

for particular types of interactions. The interaction types included are:

(1) nonhydrocarbon-nonhydrocarbon, (2) nonhydrocarbon-hydrocarbon, (3) 

paraffin-paraffin, (4) paraffin-naphthene, and (5) paraffin-aromatic.

Monhydrocarbon-nonhydrocarbon interactions in natural gas systems occur 

principally between nitrogen, carbon dioxide and hydrogen sulfide. Figure 

VI-1 compares predicted vapor and liquid compositions with experimental data 

for the carbon dioxide-hydrogen sulfide system. The generalized correlation 

predicts phase compositions in agreement with experimental behavior over the 

temperature range from 40°F to 200°F at pressures from 588 psia to 1176 psia.
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TABLE VI-4

PHASE EQUILIBRIUM DATA USED FOR EVALUATION 
OF GENERALIZED CORRELATION

System components Ref.
Lowest
temp.
(°F)

Highest
temp.
( F)

Highest
pressure
psia

CH^-CgHa 112 -200 -100 740

CH4 -C3H8
79,112 -200 50 1100

CB4 -C6B 1 4
53 -58 212 1470

CH4 -C7H1 6
17,51 -60 40 1000

^^4"^8^18 52 -58 212 1029

^^4"^10®22 91 40 280 3000
CH,-Toluene 4 16 -60 0 1500
CH,-Methyl Cyclohexane 15 -60 0 1500

2 2*6 -2 5 * 1 2 86 40 160 900

2 2*6 -2 7 * 1 6 71 250 250 800

22*6"2io*22 85 40 160 400

2 3*8 -2 5 * 1 2 92 220 220 300

2 3*8 -2 1 0 * 2 2 88 40 280 300
C^Hg-Benzene 91 100 220 500

2 4*1 0 -2 7 * 1 6 49 200 350 200

2 4*1 0 -2 1 0 * 2 2 87 100 220 200

^2-2*4 9 -238 -180 500

*2-22*6 27 -140 -180 700

*2 -2 4 * 1 0 1 100 100 4020

*2“2s*12 55 -200 0 4047

*2 -2 7 * 1 6 1 90 175 4027

*2 -2 * 2 117 -40 32 2015

**2-2*4 25 -65 29 1000

2*2 -2 2 * 6 55 -60 60 783

**2 -2 3 ^ 8 142,84 -40 160 900

**2 -2 4 * 1 0 84 100 220 900
COg-HgS 7 23 176 1176
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TABLE VI-4 (Continued)

System components Ref.
Lowes t 
temp. 
(°F)

Highest
temp.
(°F)

Highest
pressure
psia

H2 S-CH4 50,83 0 160 1900
11 -68 160 400

H2S-CH 93 40 160 700

H 2 - % 113 -100 0 2000
He-Ng 12 -320.7 -320.7 1000
CH^-CzHô-C^Hg 112 -150 -75 800

0=4 -02* 6 -2 7 * 1 6 107 -60 -40 1000

0*4 -0 3*8 -0 7 * 1 6 107 -60 -20 1000

*2-0=4 -0 2 * 6 19 -200 -100 1000

=2 -0*4 -0 2 * 6 19 -200 -100 1000

0*4 -0 2*6 -0 3*8 -
0 4 = 1 0

23 -60 -60 204

0*4 -0 2*6 -0 3=8 -
0 4=1 0 -0 5 = 1 2 23,37 -20 100 1736

0=4 -02* 6 -0 3=8 -
0 6=1 4 -0 7=1 6 "
0l0=22 106 150 250 3000

Natural Gas System 
(10 components) 36 -195 -120 500

Absorber System 
(15 components) 114 -40 40 1500
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Thus, although the generalized correlation parameters were developed from 

normal paraffin hydrocarbon data, the correlation is sufficiently general 

and the mixing rules are adequate to predict nonhydrocarbon system behavior.

Nonhydrocarbon-hydrocarbon interactions occur in several of the systems 

studied. Direct comparisons of predicted and experimental phase composi­

tions or K-values are made for several systems in Figures (VI-2)-(VI-5).

For the methane-nitrogen system the temperature-composition diagram in 

Figure VI-2 shows that predicted compositions for both methane and nitrogen 

agree with experimental data down to temperatures as low as -240°F. In 

addition, enthalpies for the methane-nitrogen system also are predicted 

accurately. For the methane-hydrogen sulfide system, isotherms of K-values 

plotted versus pressure in Figure VI-3 show good agreement with experi­

mental behavior. For the propane-carbon dioxide system, the plot of K- 

values versus pressure in Figure VI-4 for 40°F and 130°F indicates that 

K-values for this system are predicted quite accurately, even near the cri- 

condenbar pressure. For the propane-hydrogen sulfide system, the temperature- 

composition plot in Figure VI-5 shows that predicted phase compositions are 

accurate for propane mole fractions greater than azeotrope compositions at 

pressures from 20 psia to 300 psia. From the direct comparisons for the 

above systems it can be concluded that the generalized equation adequately 

describes nonhydrocarbon-hydrocarbon interactions.

Paraffin-paraffin hydrocarbon interactions occur in a large number of 

the systems studied. Densities and enthalpies for these systems are both 

accurately predicted. Direct comparisons of predicted and experimental 

phase behavior for systems having only paraffin-paraffin interactions are 

made in Figures (VI-6)-(VI-9) and Tables (VI-5)-(VI-7). Based on the
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expected uncertainties in the data, all of these comparisons indicate 

paraffin-paraffin hydrocarbon interactions are adequately described by the 

generalized correlation. The accuracy of predicted phase compositions for 

the methane-propane system can be realized from Figures VI-6 and VI-7, 

which, respectively, show pressure composition diagrams for temperatures 

above and below 0°F. For the full range of conditions, including tempera­

tures down to -200°F, predicted phase compositions and K-values are within 

a few standard deviations of the experimental values. The high accuracy of 

predicted phase compositions for the methane-ethane system can be seen in 

Figure VI-8, which shows pressure-composition diagrans for -99.8°F and -150°F. 

A similar plot. Figure VI-9, for the ethane-normal pentane system at 160°F 

shows good agreement between predicted and experimental phase compositions 

from 100 psia to 900 psia. Ternary system phase composition comparisons 

in Tables (VI-5)-(VI-7), for three systems, methane-ethane-propane, methane- 

ethane -normal heptane and me thane-propane-normal heptane show the high 

accuracy of phase predictions.

Paraffin-naphthene hydrocarbon interactions can be studied directly 

utilizing enthalpy data for the normal pentane-cyclohexane system (k^^ = 

0.00) and phase behavior data for the methane-methyl cyclohexane system 

(k_j = 0.085). The average deviation of predicted enthalpies from the 

experimental values for four normal pentane-cyclohexane mixtures is 1.37 

Btu/lb, which is less than the reported experimental uncertainty, indicat­

ing a very reasonable description of paraffin-naphthene interactions by the 

generalized correlation. Further, vapor-liquid equilibrium for the methane- 

methyl cyclohexane system is predicted accurately, since methane K-values 

are in good agreement with experimental data, as shown in Figure VI-10.
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Paraffin-aromatic hydrocarbon interactions can be studied with respect 

to enthalpy and phase behavior for the methane-toluene system = 0.135)

and with respect to density and phase behavior for the propane-benzene 

system (k̂ ĵ = 0.02). The average absolute deviation of predicted enthalpies 

from experimental data for the methane-toluene system is 2.04 Btu/lb, indi­

cating a good description of this system by the generalized correlation. 

Methane K-values also are predicted accurately, as shown in Figure VI-10. 

Densities are predicted with extreme accuracy for the propane-benzene system. 

The overall average deviation for densities of four propane-benzene mix­

tures is very low, 0.97%. For K-values, the plot in Figure VI-11 of phase 

equilibrium for the propane-benzene system shows that the generalized cor­

relation provides an adequate representation of paraffin-aromatic hydrocarbon 

interactions.

In summary, it is obvious from the many tests which have been made, that 

the generalized equation of state correlation accurately predicts thermo­

dynamic properties and vapor-liquid equilibrium for virtually all mixtures 

and conditions encountered in the hydrocarbon processing industry. No 

previous general correlation has been capable of accurate and self consistent 

predictions of all thermodynamic properties, including densities, enthalpies, 

entropies, vapor pressures and K-values for such wide classes of fluids over 

such wide ranges of conditions.
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TABLE VI-5

COMPARISON OF PREDICTED AND EXPERIMENTAL PHASE 
COMPOSITIONS FOR THE METHANE-ETHANE- 

PROPANE SYSTEM
(Component Indices; l=Methane, 2=Ethane, 3=Propane)

Component Feed Liquid Mole % Vapor Mole %
Index Mole % Exptl. Calc. Exptl. Calc.

(T = -150.0°F, P = 32.0 ]
1 44.48
2 47.50
3 8.02

psia)
7.15
77.01
15.84

7.74
76.57
15.69

81.80
17.99
0.21

81.77
17.99
0.24

(T = -150°F, P = 100.0 psia)
1 60.49 23.59
2 13.24 24.16
3 26.27 52.25

25.46
23.69
50.86

97.39
2.32
0.29

97.52
2.20
0.28

(T =. -150.0°F, P = 200.0
1 76.19
2 20.36
3 3.45

psia)
54.87
38.26
6.87

54.59
38.53
6.88

97.51
2.46
0.03

97.64
2.32
0.04

(T = -150.0°F, P = 300.0
1 92.60
2 2.49
3 4.91

psia)
85.65
4.62
9.73

82.35
5.63
12.02

99.55
0.35
0.10

99.54
0.36
0.10

(T = -75.0°F, P = 100.0
1 44.95
2 16.56
3 38.49

psia)
8.13
20.52
71.35

8.45
20.53
71.02

81.76
12.61
5.63

81.96
12.54
5.49

(T = -75.0°F, P = 200.0
1 54.07
2 12.39
3 33.54

psia)
17.77
18.34
63.89

17.91
18.36
63.73

90.36
6.45
3.19

90.59
6.37
3.04

(T = -75.0°F, P = 400.0
1 61.99
2 32.31
3 5.70

psia)
37.25
51.93
10.82

36.35
52.67
10.98

86.73
12.70
0.57

87.10
12.38
0.53

(T = -75.0°F, P = 600.0
1 74.34
2 21.65
3 4.01

psia)
58.26
34.27 
7.47

55.16
36.75
8.09

90.42
9.03
0.55

90.70
8.77
0.53
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TABLE VI-5 (Continued)

Component Feed Liquid Mole % Vapor Mole %
Index Mole ?'c Exptl. Calc. Exptl. Calc.

(T = -75.0° 
1

F, P = 
84.50

800.0 psia)
78.40 74.96 90.60 90.60

2 14.76 20.37 23.57 ■ 9.14 9.12
3 0.74 1.23 1.47 0.25 0.28
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TABLE VI-6

COMPARISON OF PREDICTED AND EXPERIMENTAL PHASE 
COMPOSITIONS FOR THE METHANE-ETHANE- 

n-HEPTANE SYSTEM 
(Component Indices; l=Methane, 2=Ethane, 3= n-Heptane)

Component Feed Liquid Mole % Vapor Mole %
Index Mole 7o Exptl. Calc. Exptl. Calc.

(T = -40°F, 
1

P = 800 psia) 
66.28 38.00 36.77 94.65 94.25

2 10.87 16.30 16.29 5.44 5.74
3 22.85 45.70 46.94 0.00 0.01

(T = -60°F, 
1

P = 800 psia) 
69.28 44.00 40.84 95.56 93.97

2 12.57 19.70 20.11 5.44 6.02
3 18.15 36.30 39.05 0.00 0.01
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TABLE VI-7

COMPARISON OF PREDICTED AND EXPERIMENTAL PHASE 
COMPOSITIONS FOR THE METHANE-PROPANE- 

n-HEPTANE SYSTEM
(Component Indices: l=Methane, 2=Propane, 3 = n-Heptane)

Component Feed Liquid Mole % Vapor Mole %
Index Mole % Exptl. Calc. Exptl. Calc.

(T = -20°F, 
1

P = 600 psia) 
61.63 27.30 28.07 95.95 95.75

2 22.22 40.40 39.91 4.05 4.24
3 16.15 32.30 32.02 0.00 0.01

(T = -20°F, 
1

P = 1000 psia) 
70.22 42.60 39.29 97.84 97.69

2 9.68 17.20 18.01 2.16 2.28
3 20.10 40.20 42.70 0.00 0.03

(T = -60°F, 
1

P = 800 psia) 
72.42 45.90 43.73 98.94 98.86

2 8.33 15.60 16.14 1.06 1.13
3 19.25 38.50 40.13 0.00 0.01
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TABLE VI-8

COMPARISON OF PREDICTED AND EXPERIMENTAL PHASE 
COMPOSITIONS FOR THE HYDROGEN-METHANE- 

ETHANE SYSTEM
(Component Indices: l=Hydrogen, 2=Methane, 3=Ethane)

Component Feed 
Index Mole %

Liquid Mole % Vapor Mole %
Exptl. Calc. Exptl. Calc.

(T = -100°F, P = 500 psia)
1 23.78 1.33 1.28 46.23 46.17
2 37.64 29.42 28.81 45.86 46.42
3 38.58 69.25 69.91 7.91 7.41

(T = -100°F, P = 1000 psia)
1 24.78 3.76 2.99 45.79 46.92
2 49.09 49.57 49.65 48.62 48.53
3 26.13 46.67 47.36 5.59 4.55

(T = -200°F, P = 500 psia)
1 36.21 3.27 2.58 69.15 71.70
2 61.42 92.03 92.83 30.80 28.27
3 2.37 4.70 4.59 0.05 0.03
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TABLE VI-9

COMPARISON OF PREDICTED AND EXPERIMENTAL PHASE 
COMPOSITIONS FOR A NATURAL GAS - LNG MIXTURE

(Component Indices: l=Nitrogen, 2=Methane, 3=Ethane,
4=Propane, 5=Isobutane, 6 = n-Butane, 7=Isopentane, 
8=n-Pentane, 9=3-Methylpentane, 10=2-MethyIhexane)

Component Feed 
Index Mole %

Liquid Mole % Vapor Mole %
Exptl. Calc. Exptl. Calc.

(T = -195.0°F, P = 100.0 psia)
1 0.60 0.06 0.05 0.67 0.67
2 95.79 70.01 71.09 98.98 98.92
3 3.00 24.17 23.46 0.38 0.40
4 0.39 3.47 3.44 9x10-3 3x10-3
5 0.07 0.63 0.62 7x10-4 7x10-5
6 0.07 0.63 0.62 4x10-4 3x10-5
7 0.03 0.27 0.27 0.00 2x10-6
8 0.01 0.09 0.09 0.00 4x10-7
9 0.025 0.23 0.22 0.00 1x10-7
10 0.015 0.14 0.13 0.00 2x10-8

(T = -120.0°F, P = 498.5 psia)
1 0.60 0.14 0.16 0.65 0.65
2 95.79 80.69 82.05 97.33 97.41
3 3.00 14.03 12.99 1.89 1.82
4 0.39 2.92 2.84 0.11 0.10
5 0.07 0.68 0.60 9x10-3 8x10-3
6 0.07 0.71 0.62 8x10-3 6x10-3
7 0.03 0.31 0.28 1x10-3 1x10-3
8 0.01 0.11 0.09 2x10-4 3x10-4
9 0.025 0.24 0.23 5x10-4 3x10-4
10 0.015 0.14 0.14 3x10-4 1x10-4
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TABLE VI-10

COMPARISON OF PREDICTED AND EXPERIMENTAL PHASE 
COMPOSITIONS FOR A 103 MOLECULAR WEIGHT 

LEAN OIL ABSORBER SYSTEM AT -40°F 
AND 1000 psia

(Component Indices: l=Nitrogen, 2=Carbon Dioxide, 3=Methane,
4=Ethane, 5=Propane, 6=i-Butane, 7=n-Butane, 

8=i-Pentane, 9=n-Pentane, 10=n-Hexane, 
ll=n-Heptane, 12=n-0ctane, 13=n-Nonane, 

14=n-Decane, 15=n-Undecane)

Component
Index

Feed 
Mole %

Liquid Mole % Vapor Mole %
Exptl. Calc. Exptl. Calc.

1 0.531 0.065 0.081 0.570 0.583
2 0.816 0.818 0.650 0.770 0.835
3 90.620 42.92 42.34 96.16 96.17
4 2.600 6.49 6.24 2.25 2.18
5 0.313 1.70 1.45 0.179 0.182
6 0.024 0.155 0.170 0.0073 0.0072
7 0.055 0.395 0.417 0.0110 0.0130
8 0.090 0.704 0.788 0.0084 0.0097
9 0.069 0.602 0.620 0.0051 0.0056
10 0.192 1.77 1.81 0.0058 0.0057
11 1.110 10.43 10.70 0.0090 0.0074
12 2.450 22.61 23.74 0.0160 0.0030
13 0.943 9.31 9.14 0.0041 0.0006
14 0.142 1.50 1.38 0.0001 3,8x10-5
15 0.049 0.539 0.475 0.0000 4.6x10-6
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CHAPTER VII

INDUSTRIAL APPLICATIONS OF THE 

GENERALIZED CORRELATION

The generalized equation of state correlation can be used for many 

practical calculations encountered in the hydrocarbon processing industry. 

A number of these industrial applications of the correlation are dis­

cussed here to demonstrate the practical value of the correlation through 

direct comparisons of predicted and experimental data. The presentation 

for each process discusses important features of the process for which 

calculations can be made effectively using the generalized correlation.

Nitrogen separation from natural gas by conventional low temperature 

flash and distillation methods generally involves processing of mixtures 

which are principally nitrogen and methane. For example, in helium re­

covery processes, the major constituents of the mixtures involved are 

methane and nitrogen over a wide range of the temperatures involved in 

the process. Thus, for design calculations for nitrogen separation from 

natural gas, the ability to accurately predict enthalpies and K-values for 

the methane-nitrogen system is quite important. The enthalpy of the 

methane-nitrogen system is predicted within 1.03 Btu/lb of the experi­

mental data, down to -250°F. Vapor and liquid compositions in Figure 

(VI-2) are in close agreement with experimental data at 300 and 500 psia 

down to -240°F. Thus, the generalized equation of state obviously is

77
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suitable for design of processes for nitrogen separation from natural

gas and related processes involving mixtures whose major constituents

are methane and nitrogen.

Helium-nitrogen separation by low temperature flash methods require

high purity helium in the vapor phase and small loss of helium in the

liquid phase in the final separation step. Vapor-liquid equilibrium data
12for the helium-nitrogen system obtained by Buzyna at temperatures from

-320.7°F to -238.6°F indicate that high concentrations of helium in the

vapor phase can be obtained only at the lower temperatures. For this

reason, only the data of Buzyna^^ at -320.7°F were used for determination

of the value of the interaction parameter, = 0.24. The characterization

parameters used for helium are u) = 0, = 1.0861 Ib-moles/cu. ft. and =

-450.33°F. A plot of predicted vapor and liquid compositions is shown in

Figure VI-12 for -320.7°F at pressures from 328 psia to 1000 psia. The

predicted phase compositions are in good agreement with experimental data

at -320.7°F. For temperatures above -320.7°F, there is reduction in the

accuracy of vapor-liquid equilibrium predictions, although bulk property

predictions should be adequate for engineering calculations.

Processing of systems containing hydrogen poses many problems from

the standpoint of thermodynamic predictions. No correlation has yet been

capable of totally general predictions of the behavior of systems contain-
81ing hydrogen. To describe gas mixtures, Prausnitz and Gunn utilized 

critical constants for hydrogen differing from the true critical constants.

A similar approach has proved feasible in the present correlation. Character­

ization parameters used here for hydrogen are U) = 0 and = 1.2486 Ib-moles/ 

cu. ft. at all conditions and T^ = -375.°F (T > 0°F), T^ = -395°F (0°F > T >
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-100°F), and T = -410°F (-100°F > T). With the use of these characteri- c —
zation parameters, predicted densities for hydrogen-methane and hydrogen-

95ethane mixtures agree with the experimental data of Solbrig with average 

absolute deviations of 1.5% and 2.0%, respectively. Vapor-liquid equili­

brium predictions for the hydrogen-ethane system at -100°F, -50°F and 0°F 

are predicted with good accuracy, as shown in Figure VI-13. The values of

k.. used in these calculations were k.. = 0.01 for hydrogen-methane and ij ij
k^j = 0.02 for hydrogen-ethane. Phase compositions for the hydrogen-methane- 

ethane system are also accurate, Table VI-8.

Hydrogen sulfide-hydrocarbon system process calculations can be made 

using the generalized correlation. Comparison calculations for vapor- 

liquid equilibrium show good accuracy of predictions for me thane-hydrogen 

sulfide and propane-hydrogen sulfide systems, Figures VI-3 and VI-5. Also, 

comparisons with methane-hydrogen sulfide density data indicate that den­

sities of natural gases containing even large amounts of hydrogen sulfide 

should be predicted accurately.

Carbon dioxide-hydrocarbon system calculations also can be made using 

the correlation. As shown in Figure VI-4, quite accurate K-values are ob­

tained for the propane-carbon dioxide system. In addition, carbon dioxide 

K-values even in fifteen component absorber systems are predicted with the 

accuracy required for engineering design calculations, as shown in Table 

VI-10.

LNG processing requires the calculation of densities, enthalpies and 

vapor-liquid equilibrium of the LNG (liquefied natural gas)„ The densities 

of three simulated LNG mixtures are predicted within 1% of the experimental 

data, for which the reported uncertainty is 1%. The enthalpy of the natural 

gas mixture discussed previously is predicted within 2 Btu/lb of experimental
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enthalpies, for which the probable uncertainty is roughly 2 Btu/lb. The 

vapor and liquid compositions of the natural gas mixture in Table Vl-9 are 

predicted within roughly two to three times the experimental uncertainty, 

with the predicted K-values of the major constituent of natural gas, methane, 

differing from the experimental value by less than 2% at -120°F and -195.0°F. 

It should be noted that LNG mixture data are generally less accurate than 

most of the binary and ternary data for the lighter systems. Therefore, 

these LNG property predictions must be considered quite adequate for LNG 

processing calculations.

Natural gas liquefaction using mixed refrigerants requires accurate 

prediction of mixed refrigerant enthalpy and K-values. Some of the mixtures 

studied have compositions and characteristics approaching mixed refrigerants. 

The enthalpy of the methane-ethane-propane system is predicted within 1.74 

Btu/lb of experimental data, indicating the generalized correlation can be 

used for mixed refrigerant enthalpy calculations. Vapor and liquid com­

positions for the methane-ethane-propane system in Table IV-5 generally are 

predicted within 5% or 0.0005 mole fraction, whichever is larger, indicating 

the correlation can be used successfully for mixed refrigerant vapor-liquid 

equilibrium calculations.

Cryogenic processing of natural gas by turbine expansion requires the 

accurate prediction of natural gas entropy from the high temperature, high 

pressure gas phase to the low temperature, moderate pressure two-phase region. 

Use of the generalized technique to predict the entropy of natural gas and 

LNG was tested using entropy values for a nominal 94.8 mole percent methane 

and 5.2 mole percent propane mixture. For the temperature range from -250 

to +300°F and pressure range from 250 to 2000 psia, entropies are predicted 

with an uncertainty of only 0.0042 Btu/lb-°F. These results indicate the
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generalized correlation can be used with confidence for entropy calculations 

in cryogenic processing design.

Low temperature separations of light hydrocarbons require accurate 

predictions of enthalpies and K-values for system types exampled by a 

number of the mixtures studied. When lower processing temperatures are 

reached, very little butane or heavier components remain in process streams. 

Thus, the various mixtures of methane, ethane and propane are useful for 

evaluating the generalized correlation for low temperature hydrocarbon 

separation calculations. For the several mixtures of methane, ethane or 

propane, predicted enthalpies generally are within 2 to 4 Btu/lb of ex­

perimental data, which is adequate for most process calculations. For 

the binary and ternary systems composed of methane, ethane or propane, 

predicted vapor and liquid compositions are within the larger of 5% or

0.0005 of the experimental mole fraction at most points. Direct compari­

sons with experimental data are given in Figures VI-6, VI-7 and VI-8 and 

Table VI-5.

Low temperature processing using absorbers requires accurate enthalpies

and K-values for the complex multicomponent systems encountered in this type
114of processing, xne NGPA absorber system vapor-liquid equilibrium data 

for a 103 molecular weight (MW) lean oil were used in testing the generalized 

correlation. The information reported for the lean oil heavier fractions 

consisted of boiling range, average molecular weight, density and lean oil 

P-N-A (paraffin-naphthene-aromatic) analysis. The following correlation 

for the critical temperature, critical density and acentric factor of lean 

oil fractions was used,

T = (P + F.N + G,A) T (VII-1)c 1 1 ' cp ' ^
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Pc = (P + FgN 4- GgA) Pcp (VII-2)

Cü = (P + F3N -(- GjA) (iUp (VII-3)

In these relations T ,p , and uu are the critical temperature, criticalcp cp p
density and acentric factor of the normal paraffin having the same carbon 

number as the lean oil fraction. P, N and A are the mole fractions of 

paraffins, napthenes and aromatics in the lean oil. F^, F^ and F^, re­

spectively, are constants defined as the ratios of cyclohexane to n-hexane 

critical temperatures, critical densities, and acentric factors. G^, G^ 

and G^ are defined similarly as the ratios of benzene to n-hexane character­

ization parameters. Calculations using these characterization parameters, 

yield absorber system vapor and liquid compositions which are in good agree­

ment with the experimental data. In addition, the enthalpy for a rich ab­

sorber oil mixture is predicted within 3.3 Btu/lb of experimental data^^^ 

in the range from -100°F to 600°F and 50 psia to 2500 psia. These studies 

indicate the generalized correlation can be utilized for low temperature 

absorber calculations.

Processing of light naphthas requires accurate information regarding
62the properties of the naphthas. Lenoir and Hipkin recently have measured 

the enthalpy of a light naphtha in the temperature range from 300°F to 600°^ 

at pressures up to 1400 psia. Comparison calculations at eighteen data 

points show the generalized equation of state correlation predicts the 

enthalpy of this light naphtha with an average absolute deviation of 1 . 6  

Btu/lb, which approaches the reported experimental uncertainty of 1.5 Btu/ 

lb. In performing these calculations, the reported characteristics of the 

light naphtha heavier fractions were used to determine an equivalent P-N-A 

analysis, allowing the methods discussed for calculating lean oil fraction 

characterization parameters to be used for the naphtha heavier fractions.
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The processing situations discussed above by no means exhausts the list 

of potential industrial applications of the generalized correlation pre­

sented here. The discussion does demonstrate clearly that the correlation 

can be used for widely varying systems and processing conditions.



CHAPTER VIII

CONCLUSIONS

It is obvious from the many comparison tests which have been made, 

that the generalized equation of state correlation presented here accurate­

ly predicts densities, enthalpies, entropies and vapor-liquid equilibria 

of mixtures as well as pure fluids.

Use of ,multiproperty regression analysis in determining the general­

ized parameters has ensured the thermodynamic consistency of the correlation. 

Because of the thermodynamic consistency of the generalized correlation, 

other bulk properties such as heat capacities, Joule-Thomson coefficients, 

etc., not utilized in the regression calculations, can be calculated with 

confidence of accuracy. No previous generalized correlation has been 

capable of accurate and self consistent predictions of all thermodynamic 

properties and vapor-liquid equilibria for such wide classes of fluids over 

such broad ranges of conditions.

From the standpoint of use for industrial calculations, a very im­

portant feature of the generalized correlation is the nature of its 

generality. Only the pure fluid characteristics critical temperature, 

critical density and acentric factor, and interaction parameters for 

binary pairs are required for prediction calculations of fluid thermodynamic 

behavior. Values of the acentric factor reported in the literature yield 

good accuracy for most fluids. If greater accuracy of predictions is desired,

84
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the characterization factor tu for use in the generalized correlation 

can be determined from vapor pressure data using the technique described 

in Chapter II.

Predictions of thermodynamic behavior in the regions between = 0.83 

and = 1.0, including prediction of the critical point, are very accurate 

using values for the reduced parameters B ', b* and c‘ determined from criti-
I

cal constraints. Generation of the values of B^, b' and c' for use in the 

critical region involves simply solving the three simultaneous critical 

constraint equations.

Parameter mixing rules which utilize the interaction parameter . in

characterizing terms corrrsponding to the second virial coefficient Ĉ ,

and E^) have been used in this work. These mixing rules have been found 

to be of greater practical value for industrial applications than the rules
g

used by Bishnoi and Robinson for the BWR equation, which include k^^ in

characterizing terms corresponding to the third virial coefficient. Use

of k^j in only second virial coefficient terms shortens vapor-liquid

equilibrium computing time significantly compared to using k.. also inij
third virial coefficient terms and in addition, yields more accurate pre­

dictions for the correlation used here.

Development of a versatile and industrially practical computer pro­

gram using the new generalized correlation is feasible because one calcula­

tion procedure accurately predicts fluid thermodynamic properties and phase 

equilibria for any mixture or pure compound.
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NOMENCLATURE

A and B generalized equation of state parameters 

equation of state parameters
Dp,E_,b,a, 
c,
B'jA'jC', reduced equation of state parameters

a',c',d',
a ',y

F function minimized in vapor-liquid equilibrium predictions

F^.FgiFg, heavy oil fraction characterization correlation parameters
Gi'Gz'Gg
FN(i) calculated pressure using Equation II-1 for the density

value at i*"̂  iteration minus the given pressure 

f fugacity

f^ fugacity of i^^ component in a mixture

H enthalpy, Btu/lb

enthalpy for the real gas less the enthalpy for the ideal 

gas at the same temperature, Btu/lb 

H° enthalpy of ideal gas, Btu/lb

K-value for i^^ component

interaction parameter for i*"̂  and components 

L moles of liquid per mole of feed

M molecular weight

MD density key
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NC number of pure components

(NP)^ number of data points of the 1*"̂  component for each property

n total number of components

n^ number of moles of component in a mixture

P absolute pressure, psia

P,N,A mole fractions of paraffins, naphthenes and aromatics in

a mixture 

P^ critical pressure, psia

Q function to be minimized in the multiproperty regression cal­

culation 

R gas constant

estimate of K-value for i^^ component 

S entropy, Btu/lb°R

(S-S°) entropy for the real gas less the entropy for the ideal gas

at the same temperate, Btu/lb,°R 

S° entropy of ideal gas at unit pressure, Btu/lb°R

T temperature, °R

critical temperature, °R 

V volume of phase, also moles of vapor per mole of feed

x^ mole fraction of i^^ component in liquid

mole fraction of i^^ component in vapor 

Z compressibility factor

z^ mole fraction of i^^ component in feed

Greek Letters

p molar density, Ib-moles/cu.ft.

p molar critical density, Ib-moles/cu.ft.
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L  summation operator

Cl) acentric

Subscripts

c critical property

i,j,k component index or data point index

o zt 0°R

P paraffin

r reduced property

s saturated

Superscripts

L liquid phase

V vapor phase

o ideal gas state

_ indicating partial molar quantity

Abbreviations

Abs. Dev. absolute deviation average 
Avg.
Btu British thermal unit

calc. calculated

cu.ft. cubic foot

% Dev percent deviation

exp exponential function or experimental

exptl experimental

°F degree Fahrenheit

lb pound

An natural logarithm function

press pressure

psia absolute pound-force per square inch
°R degree Rankine


