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Abstract: The cornea is a semi-permeable connective tissue with multiple simultaneous 

functions that include load bearing, hydration regulation via fluid transport, maintaining 

eye ball shape, and transmitting incident light without scattering. Cornea is the 

transparent outer coat of the eyeball that provides 70% of the eyes refractive power. It is 

also a load bearing material that protects the inner ocular contents from accidental 

impacts. From a mechanical standpoint, the cornea is a semipermeable hydrophilic gel 

with a fibrillar components and negatively charged proteoglycans. The cornea’s 

capability to transmit light is dependent on its ability to maintain its unique structure, 

which gives rise to its mechanical properties. In this thesis, mechanical properties of the 

corneal stroma were characterized. Unconfined compression was used to characterize 

compressive properties of the porcine corneal stroma. Using this technique, this research 

study characterized the effects of environmental parameters, e.g temperature, sample 

thickness and diameter. Furthermore, a rheometer was used to conduct the torsional shear 

experiments and measure shear properties of the tissue.  

It was observed that the cornea displayed time dependent behavior. The theoretical 

biphasic model was used to numerically represent the transient compressive behavior 

observed in experimental measurements and predict the material parameters of the 

cornea. The in-plane Young’s modulus, out-of plane Young’s modulus, and permeability 

of the porcine cornea were estimated as a function of tissue thickness and loading rate. In 

the end, a finite element biphasic model of the corneal behavior in construction was 

constructed. The results of the finite element analysis was mesh size dependent but 

converged to the theoretic and experimental measurements using very fine mesh. 

 In summary, this thesis characterized compressive and torsional mechanics of the 

porcine cornea at varying compressive strains. It is expected that the findings of the 

present work would enhance the accuracy of corneal constitutive models, these numerical 

models are necessary for calibrating applanation tonometry devices which are commonly 

used in clinical measurements. In addition, the reported data in this thesis can be used to 

compare the mechanical properties of engineered corneal equivalents with those of the 

native tissue. 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Motivation 

The eye is a complex optical organ that is comprised of three layers namely the outer, middle, and 

inner coat where each coat contributes to our vision
2
. The outer coat is comprised of an opaque 

sclera and a transparent cornea; these structural tissues are responsible for the protection of 

internal ocular contents and shaping the eye globe
3
. Uvea is the eyes middle coat, it regulates 

light entering the eye, alter refractive power, in addition to absorbing light and nutrition. Retina 

(inner coat) is a sensory tissue in the back of the eye that transmits light through the optic nerve to 

the brain, thus generating vision. 

Light entering the eye is refracted at the anterior and posterior surfaces of the cornea and lens 

before it reaches the retina. The cornea is responsible for about 70% of the eyes refractive power
4
, 

thus it can be considered as the primary refractive element of the eye. Corneal disease is the 

secondary leading cause of blindness globally
5
 of which corneal opacity is responsible for 5.1% 

of all global blindness thus the characterization of corneal behavior has generated high level of 

interest
6-13

. Refractive power of the cornea is governed by its anterior and posterior curvature 

while corneal transparency is governed by its complex ultrastructure. Corneal refractive defects 

caused by shape change or loss of rigidity as observed in astigmatism, myopia and keratoconus 

disease results in altered vision and blindness.  



 
 

 

Figure 1.1: Schematic of focused light in (a) healthy cornea (b) astigmatism (c) myopic corneas 

(d) cone shaped cornea. Dotted line represents retina where refracted light should be focused.  

 

Refractive surgical techniques employ alteration of the corneal surface curvature or cross-linking 

to correct refractive errors and corneal rigidity. Photorefractive keratectomy (PRK) and Laser 

assisted sub-epithelial keratectomy (LASEK) are refractive surgical techniques that implements 

photoablation via an excimer laser to alter the anterior surface of the cornea by the removal of 

some anterior corneal stromal tissue
14-16

. When corneal defects are beyond correction by 

refractive surgery, corneal transplantation provides a therapeutic solution for opacification or 

corneal blindness. Corneal transplantation is the most successful tissue transplantation for humans 

where success rate of up to 90% has been reported. Nevertheless, this procedure is limited to the 

availability of healthy donor tissues as only approximately 100,000 corneas are collected by eye 

banks worldwide which are diminutive in comparison to the 4.5 million individuals suffering 

from blindness due to corneal scaring. A solution proposed to the lack of healthy donor cornea is 

the use of tissue engineered corneas for transplant
17, 18

.  

In order to advance the current  therapeutic options for corneal defects, a better understanding of 

the cornea’s mechanical properties is essential to attain the predictive response of refractive a 

surgery, as well as a control for developing engineered corneal equivalents
17, 18

. For instance, the 

ability to predict the alteration of corneal curvature as used in refractive surgery is dependent on 



 
 

corneal mechanical behavior, where corneal mechanical behavior can be characterized 

experimentally. Using constitutive models to evaluate the experimentally attained behavior, the 

cornea’s deformation can be predicted under varying loading conditions thus providing the 

refractive surgeon with a possible outcome of the change in shape of the cornea.  

1.2 Aim of study 

 

The aim of the research work in this thesis includes;  

(a) Experimental characterization of the static and time dependent mechanical properties of 

the cornea and the effect of loading rate on instantaneous and transient mechanics.      

(b) Theoretical analysis of the experimentally observed behavior in order to fully 

characterize the elastic tensile modulus and permeability at varying swelling 

pressures/thicknesses.  

 

1.3 Approach 

 

 Mechanical properties of porcine corneas were investigated using the unconfined compression 

testing technique. This method was implemented to characterize the static, time dependent and 

rate dependent behavior of the corneal stroma. A transversely isotropic biphasic model was curve 

fitted to the experimental results attained in order to determine the mechanical parameters of the 

corneal stroma. Corneal shear mechanics were also investigated by applying static and dynamic 

oscillatory shear loads.  



 
 

CHAPTER II 
 

 

LITERATURE REVIEW 

2.1 Function and structure of the cornea 

The cornea is a semi-permeable connective tissue with multiple simultaneous functions that 

include load bearing, hydration regulation via fluid transport, maintaining the eye ball shape, and 

transmitting incident light without scattering.  The nature of in vivo loads applied to the cornea 

dictates it is always under tensile loads from intraocular pressure
19

 and connection at 

corneoscleral junction. Compressive and shear loads are also applied to the cornea from 

applanation of eye lids, clinical devices, surgical device, eye rubbing or accidental projectiles. 

The cornea possesses a conical geometry
20

 where the nasal-temporal (NT; horizontal) diameter is 

generally larger than the inferior-superior (IS; vertical) diameter
21-23

 (Figure 2.1). Thickness of 

the cornea is also observed to be thinner in the central region in comparison to the peripheral 

region
22, 24

  as seen in human and porcine corneas, however corneas from animal species such as 

rabbit and bovine have been observed to display uniform diameter
25, 26

. Ocular dimensions of 

corneas commonly used in mechanical studies are given in Table 2.1. based on reports of 

previous studies
21-23, 26-28

. The cornea is generally composed of epithelium, Bowman’s layer, 

stroma, Descemet’s membrane and endothelium from its anterior to posterior
3, 9, 29-32

; an extensive 

study of the Bowman’s layer by Merindano et al. (2002) 
33

 observed the Bowman’s layer is 

absent in carnivores, and some herbivores such as equine and porcine.  



 
 

The epithelium is a stratified squamous anterior membrane composed of  up to three distinct cells 

where its anterior cells are flattened squamous cells, wing cells encompass the middle region, and 

the posterior region is composed of basal cells
34

. The epithelial layer is responsible for about 10% 

of the corneal thickness in humans
35, 36

 and ~9% in porcine
22

. The epithelium is composed of 

75%
14

 equivalent water content. It is responsible for the absorption of nutrients and oxygen from 

the tear film
37

, regulation of fluid transport through the cornea, and  it protects the stroma from 

disease
38

. Contribution of the epithelium to corneal mechanics has been reported to be minimal in 

comparison to other components of the cornea
35, 39, 40

.  

 

Figure 2.1: (Left) Schematic of the eye globes cross section showing the refraction of light 

through the cornea and lens before transmission to the sclera. (Right) Front view of the eyes outer 

coat displaying symbols for the ocular dimensions of the cornea used in table 2.1 

 

Table 2.1: Reported corneal dimensions for various species used in mechanical characterization. 

 
A B C D E F G Curvature Reference 

 

mm mm mm mm mm mm Mm mm # 

Human  0.565 0.540  0.566  0.559 0.579  10.5  11.8   7.7-7.8 9,14,13  

Porcine 0.669 0.666 0.657 0.713 0.714 12.4 14.9 8.45 7,8 

Rabbit 0.412  0.407   0.403 0.393  0.406   13.1 13.4 7.1-7.3  12,13  



 
 

Below the epithelium is a relatively thin Bowman’s layer, it is one of the corneal layers that 

contain collagen fibrils. These collagen fibrils are randomly arranged and their diameters have 

been measured to be within 20-30 nm in human corneas
32, 41

. Collagens of types I, III, IV, V, VI 

are reported to be present in the Bowman’s membrane
42-45

. The stroma is responsible for about 

90% of the corneas thickness; it is has been reported to dominate the tensile load bearing
30, 35, 40

, 

fluid imbibition and swelling
31, 46-48

 characteristics of the cornea. 

 

Figure 2.2: Light micrograph of the through thickness corneal cross-section of the cornea 

displaying the epithelium (E), Bowman’s membrane (BW), stroma (S), Descemet’s membrane 

(DM) and endothelium (EN) (with permission from 
49

).  

 

 The Descemet’s membrane is a basement membrane that provides support to endothelial cells
39

, 

it is a laminated structure composed of type II, IV, VI and VII collagen as well as non-

collagenous glycoproteins
42, 50-52

. Previous studies characterizing isolated Descemet’s membrane 

reported its contribution to load bearing capabilities of the cornea
39, 40

 where it was observed that 



 
 

its contribution to bearing tensile loads is minimal. The endothelium is the delicate posterior layer 

of the cornea composed of a single layer of about 400,000 hexagonal endothelial cells
53, 54

, it 

functions as a fluid transport barrier for nutrition and ion fluid pump that regulates the in vivo 

hydration of the cornea
55

. 

 

2.2 Architecture of the corneal stroma 

The stroma is a hydrated matrix composed of collagen, proteoglycans, keratocytes, salts, and 

glycoproteins. At physiological state, the average equivalent water content of the stroma is 

reported to be about 75-83%
14, 56, 57

 for various species which results in a tissue hydration in the 

range of 3.2-3.45 mg H20/mg dry tissue
7, 58, 59

. Furthermore collagen, proteoglycans, and 

keratocytes are reported to account for 15-16%
34

, 1%
34

, 2-5%
37, 60, 61

 of the stromal content at 

physiological hydration.  In dried state, collagen, keratocytes and proteoglycans are reported to be 

responsible for 68%, 10%, and 9% of the stromal dry weight respectively
62

. 

 

2.2.1 Collagen 

Transparency of the stroma and its ability to transmit about 99% of incident light without 

scattering arises from the arrangement of collagen fibrils
63

. It is also responsible for the tensile 

response of the cornea
64-66

. Stromal collagens are reportedly composed of heterotypic collagen 

fibrils rich in type I collagen (58%), type III (10%)  and type V collagen (5%) of the collagen dry 

weight respectively; the distribution of type I and V fibrils within the same fibril is reported to 

regulate collagen fibril diameter
67

. Type III collagen content is reported to increase during 

inflammation and in the process of wound healing. Additional collagens of type VI, IX, XII, XIII, 

and XIV are reported to be present in the cornea; where collagen type VI generate micro fibrillar 

structures, and type XIII are non fibrillar collagen that attach to cell membranes. Type XIV and 



 
 

XII are fibrils associated collagens with interrupted triple helices
68-70

 that are vital in the 

regulation collagen fibrils function and structure
71

. Collagen fibrils in the cornea possess a 

uniform dimension and orientation with uniform fibril diameters, regular interfibrillar spacing, 

where fibrils are stacked parallel to one another in a quasi-regular hexagonal packing 

arrangement that forms a lamellae. There are several hundreds of lamellae in the stroma; through 

the corneal thickness, lamellae lay mostly in parallel arrangements in the posterior stroma while 

the lamellae in the anterior stroma region display interweaving. Fibril diameter and interfibrillar 

spacing are reported to vary between species; in human cornea, collagen fibril diameters are 

30.8±0.8 nm, with an interfibrillar spacing of 55.3±4.0 nm and a lamellae thickness of 0.2-2.5 

µm, width of 10-320µm with about 250-300 lamellae through the corneal depth
63

. Species such as 

porcine, rabbit, and bovine commonly used in experimental studies are reported to possesses 

collagen fibrils of average diameters within the range of 36.9-38.8 nm, and interfibrillar spacing 

in the range of 56.8-65.6 nm
63, 72

. Arrangement of the lamellae in the planar direction is reported 

to vary across species where x-ray scattering studies have reported isotropic and anisotropic 

lamellae orientations. A comprehensive study by Hayes et al.
73

 reported the variation of x ray 

scatter intensity of various mammalian corneas over 360 degree angle of orientation starting at 

the nasal position in a counter clockwise manner using wide angle x-ray diffraction (WAXRD).  

Intensity and alignment of the scatter indicates that most of the collagen fibrils in human cornea 

are oriented in the IS direction as well as the NT direction in the central region while the 

peripheral region displays a circumferential preferential orientation of collagen. Advancement in 

characterization of three dimension orientation of collagen displayed variation of collagen 

preferential orientation through corneal thickness where human corneas were cut in three planar 

pieces from anterior to posterior. The anterior, middle and posterior sections of the cornea were 

observed to display varying preferential orientations where; no consistent preferential direction 

was observed in the anterior section, orthogonal preferential directions of collagen was observed 



 
 

in the middle and posterior regions. Furthermore, preferential arrangement of posterior section 

was similar to the arrangement observed in full corneas.  

 

Figure 2.3: High magnification transmission electron micrographs of (a) through thickness cross 

sectional view of the collagen lamallae (b) planar view of lamellae with varying collagen fibril 

arrangement
32

. X-ray scatter intensity attained from WAXRD for (c) human cornea (d) porcine 

cornea
73

. Vector plot interpretation of collagen orientation in (d) human cornea (e) porcine 

cornea.(with permission taken from
73

) 

 

Table 2.2: Collagen fibril diameter, spacing and orientation for species commonly used in corneal 

studies. Symbol “+” indicate preferential orientation in the NT and IS direction, “I” for IS 

direction and “0” circumferential direction. Multiple symbols indicate the transition from initial 

preferential orientation in the central region to a secondary preferential orientation in the 

peripheral region. 

  

Fibril 

diameter 

(nm) 

Inter fibrillar 

spacing (nm) 

Intermolecular 

spacing (nm) 
Orientation 

 

Reference # 

 

Human 30.8±0.8 55.3±4 1.63 
"+" and" 0"  

63, 73
 

Bovine 38.2 56.8±4.5 1.6 
"I" and "0"  

63, 73
 

Porcine 36.9±3.2 58.6±4.5 1.57±0.01 
"0"  

63, 73
 

Rabbit 38.8 58.8±4.5 1.58±0.06 "0"   
63, 73

 

 



 
 

 

2.2.2 Proteoglycans 

Proteoglycans are reported to dominate the fluid imbibition behavior of the corneal stroma
74

 

which might control interfibrillar spacing of collagen
75, 76

 required for transparency. Alteration of 

proteoglycan synthesis due to disease or wound healing has been reported to muddle stromal 

collagen fibril arrangement
69, 70

. Proteoglycans are composed of a core protein molecule that are 

covalently linked with side chains of repeating disaccharide units known as glycosaminoglycan 

(GAG) 
36

. There are four types of GAGs that are reported to be present in the cornea where 

keratan sulfate, dermatan sulfate, and chondroitin sulfate are responsible for most of the GAG 

content in addition to minor quantities of heparin sulfate
67, 77

. Keratan sulfate is mostly located in 

the posterior stroma where it is linked to lumican, keratocan, and mimecan core proteoglycans 

with atomic weights of 38 kDa, 38 kDa, and 35 kDa respectively
68

. The sulphation of these 

proteoglycans results in the hydrophilic swelling behavior of the stroma. Also, lumican has been 

shown to regulate the thickness and organization of collagen fibrils
78

. 

Chondroitin sulfate and dermatan sulfate are linked to decorin core proteoglycans with an atomic 

weight of 40 kDa
68, 79

. These proteoglycans are more abundant in the anterior portion of the 

cornea where the ratio of keratan sulfate to chondroitin sulfate is about 1.6 at the anterior and 

2.23 at the posterior
34

. This occurrence is reported to be due their strong water retention 

capabilities which are essential at the anterior stroma due to higher levels of evaporation as it is 

closer to the external environment.  A detailed study by Scott and Bosworth (1990)
80

 quantified 

the amount of proteoglycans in various primates using light microscopy, Cupromeronic Blue, 

Alcain Blue staining, as well as chondroitinase ABC, and keratanase enzyme digestion. Their 

reports indicate that keratan sulfate is responsible for about 50% of the total GAGs content while 

the most of the remaining GAGs are from the ratio of chondroitin/dermatan sulfate. Average 

chondroitin sulfate content is reported as 200±25 (mg/g of hydroxyproline) where the mean from 



 
 

various species were within 13% of this value. Dermatan sulfate was reported to amount for 20-

30% of the ratio of chondroitin/dermatan sulfate. Increase in keratan sulfate and decrease in 

dermatan sulfate in various species were reported to coincide with an increase in species corneal 

thickness. Furthermore the percent of keratan sulfate content is greater in porcine (~50%) and 

bovine (~50%) corneas in comparison to rat corneas (~20%).   

 

Figure 2.4:  (a) Light micrographs of the corneal stroma displaying proteoglycans and 

glycosaminoglycan. (b) Reconstruction of collagen and proteoglycans in the corneal stroma (c) 

reconstruction shown through collagen length. White scale bars indicate 50 nm. (with permission 

from
81

) 

 

2.3.3 Keratocytes 

Keratocytes are stellate stromal cells that produced proteoglycans and collagen in the stroma; 

they are also responsible for maintaining the stromal extracellular matrix homeostasis.
34, 82

 These 

stellate cells are reported to occur between collagen lamellar. Keratocytes cells are quiescent 

except in the occurrence of injury where keratocytes undergo apoptosis or shift to repair 

phenotypes for wound healing.
83

 

Keratocyte apoptosis is reported to be a nonthreatening response as the death of keratocytes to 

prevent additional loss of transparency and swelling, moreover it is reported that dead keratocytes 

are replaced by new keratocytes via proliferation and mitosis
83, 84

. Phenotype keratocytes are 

reported to drift to the site of injury where they restock the stroma by producing collagen
82

.  



 
 

 

Figure 2.5:  TEM micrographs (25,000 x) of mouse corneas where arrows indicate (a) Normal 

keratocytes in unwounded cornea (b) keratocytes  observed an hour post epithelial injury where 

apoptosis is observed based on the fragments of keratocytes remaining (with permission from
83

). 

 

2.3 Corneal mechanical testing 

The earliest form of mechanical characterization of corneal behavior was based on characterizing 

pressure required to maintain the cornea at a constant thickness/hydration. Kinsey and Cogan 

(1942)
6
  reported mechanical swelling pressure (SP) tests in cat corneas, this method was later 

modified Hedbys and Dohlman in 1962
85

. Tensile mechanical properties of the cornea were also 

studied by Nyquist in 1968 where uniaxial tension was applied to study corneal mechanics
10

. 

Biaxial tension was employed by Woo and Kobayashi in 1972 where fluid or air pressurization 

was used to conduct tensile tests on the cornea
86

. Less common characterization techniques such 

as indentation and compression have also been employed to characterize corneal mechanics, 

however the use of these techniques are shown to be promising in characterizing corneal 

mechanics at varying degrees of deturgescence and its the local mechanics. 

  



 
 

2.3.1 Swelling pressure and compression 

Swelling pressure is the pressure required to maintain a constant corneal thickness. Kinsey and 

Cogan (1942) performed swelling pressure experiments on pieces of excised cat corneas where 

the excised corneas were placed in a porous aluminum disc inside a hollow brass cylinder after 

which brass weights were placed on the cornea and immersed in fluid. When 1% NaCl was used 

as the immersion fluid, a pressure of about 30 mmHg was required to keep the corneal thickness 

constant. Hedbys and Dohlman (1962)
46, 85

 implemented the use of a manometer and a transducer 

connected to thin aluminum rod attached to a glass filter disc to apply force on circular corneal 

stromas confined within a brass ring. The brass ring was sealed with a glass filter disc at the 

bottom in a submersion dish where 0.9% NaCl was used as the immersion fluid. Applied force 

was recorded by a transducer until the recorded force was steady after which corneal stroma was 

removed from the device and weighed; this procedure was repeated multiple times to attain the 

variation of SP at different hydrations of the corneal stroma. A swelling pressure of 

approximately 60 mmHg was reported for bovine, rabbit and human corneas at a hydration of 3.4 

mg H20/mg dry wt. Ytterborg and Dohlman (1965) utilized the method of and Hedbys and 

Dohlman
9
 to study a larger sample of human corneas where a SP of about 50 mmHg was attained 

at hydration of 3.4 mg H20/mg dry wt. The SP of dogfish corneas were studied by Toplin et al. 

(1965)
87

 where modifications was made to the method used to determine hydration by Hedbys 

and Dohlman; instead of the continuous removal of the corneal stroma after force equilibrium to 

determine its current hydration, hydration was expressed as a function of the displaced volume 

and density of the displaced fluid in and the weight fraction of salt in the immersing solution. 

Friedman et al. (1972)
88

 studied the effect of ionic concentration on rabbit corneal stromas where 

it was concluded from their experimental results that Donnan effect is not solely responsible for 

corneal stromal swelling as negative electrostatic contributions from GAG chains, excluded 

volume effect from the free energy of mixing, and  short range polymer-solvent interactions
89

; a 



 
 

SP of about 60 mmHg was reported at hydrations of approximately 3 mg H20/mg dry wt. when 

immersed in 0.9% NaCl. Fatt (1971)
90

 studied the coefficient of thermal expansion of rabbit 

corneal stromas at a constant SP where circular corneal stromas were compressed between two 

porous stainless steel platens in the absence of radial confinement. Sample thickness at constant 

SP of 53 mmHg for tests when temperature was changed from 1°C to 37°C or 37°C to 10°C were 

used to calculate the coefficient of thermal expansion where coefficient of thermal expansion of -

1.7×10
-3°C

 and -1.9×10
-3°C

 were attained respectively. This technique was also applied by Wiley 

and Fatt (1975)
91

 to determine the effect of varying salt solutes at varying pH on the SP of rabbit 

corneal stroma. Hodson et al. (1981)
92

 also studied the SP of human corneas at hydration levels 

lower than physiological hydration in 0.9% NaCl; corneal stromas were compressed between a 

rigid ram and a Perspex beam connected to a strain gauge, and no radial confinement was applied 

to corneal stroma. Swelling properties of anterior and posterior stroma were studied by Lee and 

Wilson (1981)
47

 where it was observed that at a constant SP the anterior stroma was more 

hydrated than the posterior stroma. Using human corneal stromas, Olsen and Sperling (1987)
58

 

studied the effect of pH, ionic concentration, temperature, as well as the use of dried and hydrated 

corneal stroma on SP. Corneal stromas were dried to about 0.2 mm and constrained between two 

porous steel discs with no radial confinement in an immersion chamber where solute was added 

and the swelling force was measured using an electronic balance until the swelling force 

plateaued, this measurement was continuously repeated by incrementally increasing the corneal 

thickness by 0.1 mm. At a hydration of 3.4 mg H20/mg dry wt.; a corresponding SP of 61.7±17.4 

mmHg was reported. 



 
 

 

Figure 2.6: Schematic of experimental setup used in swelling pressure experiments. Cylindrical 

sample is confined with a porous ring and compressed.   

 

The reported experimental observations from these tests provided vital information required for 

the production of corneal storage mediums for eye banks as SP provided a calibration pressure 

that was implemented osmotically using Dextran to prevent corneal swelling as well as validation 

for constitutive models for corneal swelling behavior
85, 89, 93, 94

. 

Studies by Eisenberg and Grodzinsky
95, 96

 implemented confined compression and poroelastic 

modeling to characterize the confined compressive modulus, permeability, and stress relaxation 

behavior of bovine cornea hence combining corneal mechanics and transport behavior. In 

confined compression the outer edges of the cylindrical cornea is confined to prohibit radial 

displacements hence the loading conditions are purely compressive, the cornea is compressed by 

implementing a desired incremental compressive strain after which the transient behavior is 

observed over time; a confined compressive modulus of 34-58 KPa was reported. Kim et al. 



 
 

studied the static compressive behavior of the cornea at strain rates in the range of accidental 

impacts using unconfined compression in a controlled humidity environment
97

. Strain rates 

ranging from 0.063/s to 50/s were applied to the cornea where rate dependent nonlinear stress-

strain behavior was observed as the slope of the stress strain curve stiffened with increasing strain 

rate. At strain rate of 1/s, an initial tangential modulus of 0.243 MPa is reported. 

 

2.3.2 Tensile, Indentation and Shear Tests   

Uniaxial strip extentiometry tests are conducted on rectangular strips of cornea. Uniaxial strip 

extentiometry is either conducted in air or a submerged environment with corneal storage 

medium. Static instantaneous testing is commonly conducted using a constant displacement rate 

where stress strain behavior is characterized as a function of corneal anisotropy
10, 64, 65

, 

displacement rate
65, 98

, and species
30, 99

. Time dependent stress-strain studies are also conducted 

where the corneas transient response under constant strain or constant stress is characterized
10, 100-

102
. The outcomes from these tests have reported to corneal stress strain behavior as nonlinear, 

viscoelastic, and hyperelastic. Furthermore at experimental stresses within physiological stress 

range, corneal behavior is reported  as linear viscoelastic
100

. At higher levels of experimental 

stresses, corneal Young’s modulus has been reported to be in the range of 40-57 MPa
13, 65, 103

.  

Biaxial inflation tests present a more physiological characterization technique to analyze the 

nonlinear viscoelastic and anisotropic behavior of the cornea. This technique is performed on 

excised corneas with a scleral rim
40, 86, 104-106

 or on an intact corneo-scleral 
107-110

 where controlled 

external fluid is used to pressurize the corneas posterior and digital imagining is used to attain 

deformation of the corneal perimeter (see fig. 2.7). 



 
 

 

Figure 2.7: (Left) Schematic of experimental setup used in biaxial tensile tests. Posterior fluid 

pressure is applied to inflate the cornea and deformation is attained optically (Right) Picture of 

inflated cornea with grapheme particles for deformation analysis (with permission from 
106

).   

 

In biaxial inflation, the reported corneal Young’s modulus ranges from 0.18-0.8 MPa at stresses 

within the physiological range and 3-22 MPa at stresses in the range of 6-77 KPa 
86, 103-105, 107, 109

.  

Indentation techniques are also used to characterize corneal mechanics where an indenter is used 

to attain force displacement behavior for static and transient deformation behavior of the cornea. 

Experimental parameters such as the size of the indentation tip, indentation depth and loading rate 

have resulted in a wide range of reported Young’s Modulus; the reported values range from 1.14 

to 2.63 MPa 
111

 for the whole cornea, 2 to 15 KPa for the anterior basement membrane, 84 to 123 

KPa for Bowman’s layer, 20 to 80 KPa for the Descemet’s membrane and 0.439 to 39 KPa for 

anterior, mid, and posterior stroma, 
39, 112, 113

. 

Shear testing is a seldom method used to characterize corneal mechanics; however this method 

provides additional information on anisotropic corneal mechanics by characterizing shear 

modulus which cannot be attained from compressive, tensile or indentation testing techniques. 



 
 

Soergel et al. (1995)
114

 studied the shear mechanics of human corneas using oscillatory strain 

where the absolute value of shear compliance was observed to increase with parameters such as 

increasing frequency (-4 to 2 Hz), decreasing corneal thickness (1 to 0.2 mm),  interval from post 

mortem to experimentation. Nickerson (2006)
115

 reported storage modulus in the range of 0.6 

KPa for porcine corneas using oscillatory stress (1 to 10 Pa) controlled rheometer at a frequency 

of 1 rad/s. Petsche et al . (2012)
1
 reported shear modulus for anterior, mid, posterior and whole 

human corneas using oscillatory strain (1%) control at a frequency of 0.03 Hz where shear 

modulus was reported to increase with increasing compressive strain. Their reported values of 

storage modulus at initial cornea thickness are 7.7±6.34 Kpa, 1.99±0.45KPa, 1.31±1.01 KPa and 

9.48±2.92 KPa for anterior, mid, posterior and whole corneas respectively.  

 

2.4 Computational models for compressive corneal mechanics 

Microstructural arrangement indicates the cornea is a porous media with liquid, solid, and ionic 

phases. A variety of numerical models have been developed or applied to characterize the 

behavior of the cornea.  

 

2.4.1 Swelling models 

Initial theoretical models applied to characterize the experimentally observed SP at varying 

hydrations/thickness and concentration was reported by Hart and Farrell (1971), as well as Elliot 

(1980)
116

. The model developed by Hart and Farrell described the mechanical SP as a function of 

GAG polymeric chain stretching in the stroma, excluded volume from the free energy of mixing 

based on the possibility of GAG chains colliding or GAG chain colliding with molecules from 

solution, polymeric solvent interaction and electrostatic interaction from the ionized GAGs
89

. 



 
 

Although this model considered the molecular interactions in the corneal stroma it was unable to 

predict the effects of ionic concentration, solvent type and temperature on the SP behavior as 

observed experimentally. Hodson’s
12

 theory of swelling was based on the notion that corneal SP 

observed mechanically is a function; (a) of the osmotic pressure difference between the 

interstromal fluid and the external immersion fluid Δπ (b) the outward tissue pressure Pt . Thus 

the SP observed mechanically is a combination of osmotic pressure and outward tissue pressure  

          (2.1) 

Observations from imbibition pressure experiments where a cannula is inserted into the cornea to 

measure its fluid pressure consequently rendering Pt absent; the measured SP using this method 

correlated with SP attained mechanically when the cornea is near physiological thickness. In this 

range of thickness  Pt was deemed as negligible hence swelling pressure is generated solely from 

the osmotic pressure difference between the interstromal fluid and external immersion fluid; this 

is often referred to as the Donnan theory of corneal swelling. Donnan theory is expressed as a 

function of immersion fluid concentration and the concentration of the fixed charge in the stroma 

Cf; when the stroma is placed in NaCl immersion fluid. Osmotic pressure is expressed as a 

function of gas constant R, temperature T, and concentration of the sodium ions Na0. 

      (√  
      

      ) (2.2) 

 This theory is able to predict the behavior of corneal SP at thickness within physiological range 

however at thicknesses below physiological thickness it is limited
58

. Furthermore, the effect of 

increasing bath concentration by 10 folds from physiological concentration of 0.15 M has not 

been shown to abolish stromal swelling
88

. Additional swelling models based on Poisson-

Boltzmann equation was used to attain the stromal charges with the implementation of volume 

exclusion for the collagen fibrils with the decrease in corneal thickness
117

. In this model SP is 



 
 

expressed as a function of stromal volume Vs, and Helmholtz free energy Γ at fixed temperature 

and pressure; where Γ is divided into electrostatic and chemo-mechanical parts. 

 
    

  

   
|T,P (2.3) 

This model was able to predict corneal SP at all thickness ranges; characterization of the stromal 

charges as function of charges from interfibrillar volume and collagen fibril coating was also 

shown to improve the models prediction. 

 

2.4.2 Biphasic model 

Linear biphasic theory has been implemented to describe cartilages response in compression
118, 

119
. In this theory, the time dependent responses of a tissue with solid (collagen, proteoglycan, and 

cells) and fluid (water) phases are dependent on the dispersion of interstitial fluid drag though the 

porous solid phase; this theory has been implemented to successfully describe transient cartilage 

mechanics under constant stress or strain
118-123

. Similar to the cornea, the cartilage is also 

composed of water, collagen and negatively charged proteoglycans however their structure and 

relative content of these constituents vary. Using linear biphasic theory with the addition of third 

phase, Eisenberg and Grodzinsky
95, 96

 modeled the cornea as porous material composed of solid, 

interstitial fluid and a chemically charged phase that generates chemical stresses (   ). Solid 

phase was assumed as linear elastic, and the interstitial fluid was assumed as intrinsically 

incompressible, and inviscid. Using Darcy’s law with the inclusion of (a) osmotic and hydrostatic 

pressure, (b) equilibrium conditions of no fluid flow inside or across the cornea, (c) the relation 

between fluid velocity, permeability and fluid pressure    . The total stress on the cornea during 

confined compression with the application of uniaxial strain ( ) is given in equation 2.4; where 

confined compressive modulus       and chemical stress material parameters display ionic 



 
 

concentration dependence. When constant stress or strain is applied over time,     dissipates thus 

resulting in an equilibrium response solely dependent on       and    . 

                       (2.4) 

Although this model takes into consideration the multiphasic nature of the cornea, it does not 

account for anisotropy based on the application to confined compression. Similar mixture models 

based on Armstrong et al. (1984)
119

 has been applied to characterize engineered corneal stromal 

equivalent
18

. 

 

  



 
 

CHAPTER III 
 

 

EXPERIMENTAL INVESTIGATION OF THE COMPRESSIVE MECHANICAL 

PROPERTIES OF PORCINE CORNEAL STROMA 

Mechanical properties of the cornea determine its deformation behavior when stress is applied, 

knowledge of corneal mechanics is essential for the development of constitutive models that can 

be possibly applied in surgical reshaping and clinical device applications
124-126

. In post mortem 

conditions when whole or excised corneas are used for mechanical characterization, the cornea 

swells which leads to non-physiological state of hydration/thickness
6, 48, 116

. Thus far, the common 

ex vivo corneal characterization techniques such as uniaxial strip extentiometry, and biaxial 

inflation do not provide the ability to experimentally vary corneal thickness
98, 100, 101, 104, 106

. The 

state of corneal hydration/thickness is reported to alter mechanical properties of the cornea
107, 127, 

128
. Furthermore, loading rates, temperature, experimental immersion fluid, and ionic 

concentration of immersion fluid have also been seen to affect the response of cornea under 

stress. Majority of corneal mechanics studies have been focused on its tensile properties as the 

cornea is always in biaxial tension from internal loading due to IOP. However, external loading 

from atmospheric pressure, closed eyelids, and applanation of external objects results in 

application of compressive loads. Due to the anisotropic nature of the cornea, these compressive 

loads are applied outside the plane of collagen alignment, thus the response of cornea to 

compressive loads differ from its tensile response. Moreover, knowledge of the corneal 

compressive properties could be essential to assessing the effect of disease to the extrafibrillar 

matrix.   



 
 

 A compressive testing technique known as unconfined compression has been applied to 

characterize the mechanics of other soft tissues such as the sclera, cartilage, brain
119, 129, 130

. 

Unconfined compression is generally conducted on a cylindrical sample compressed in uniaxial 

compression between two smooth impermeable platens in a submerged environment where lateral 

(radial) expansion is unconstrained; this results in application of compressive loads in the axial 

(compressive) direction. This technique has been used to characterize compressive modulus and 

rate dependent properties; furthermore analytical and numerical models have been developed 

based on unconfined compression to attain the materials permeability and tensile modulus based 

on anisotropy and radial expansion
121-123, 131, 132

. An additional benefit of unconfined compression 

in characterizing corneal mechanics is the ability to fully control the hydration/thickness of the 

cornea, thus corneal mechanics can be characterized at varying thicknesses. 

In this study, unconfined compression will be employed to study the compressive response of the 

cornea. Effects of experimental conditions such as rate dependent loading, use of freeze-thaw 

samples, testing temperatures as well as the effect of sample diameters will be examined. It is 

noted that the effect of experimental conditions were not fully characterized due to the lack of 

time. Therefore, the pertinent data should only be regarded as preliminary results; future studies 

are required for proper understanding of their possible influence on corneal mechanics. 

 

3.1 Sample preparation 

Porcine eye globes were attained from a local abattoir within 1 to 4 hours and transported in 

plastic bags positioned in a cooled chest. The corneal surface was optically examined for 

scratches and swelling, corneas free of scratches and swelling were excised
25

. Prior to excision 

the thickness of each cornea was measured with a pachymeter (DGH Pachette 3, Pennsylvania). 

An incision below the corneoscleral junction was created with a scalpel, and then micro 



 
 

dissecting scissors (Biomedical Research Instruments, Inc. MD) were used to excise the cornea 

with a scleral rim. The corneal endothelium and epithelium were rubbed off using a dull scalpel 

and Kim wipes
134

 
,133

. Circular trephines of diameters 10 mm, 8 mm, 6 mm and 4 mm were used 

to punch out stroma from the central region.  Trephined stromas were weighed using an analytical 

scale of 0.1 mg accuracy (Torbal Analytical Balance, New Jersey) followed by thickness 

measurements using a pachymeter (DGH Pachette 3, Pennsylvania).  Freshly trephined stromas 

were immediately used for unconfined compression tests, while stromas not in current use were 

wrapped in cling film to preserve its hydration and frozen at -20°c
135

.  

 

3.2 Compressive Mechanical testing 

A DHR-2 Rheometer (TA Instruments, Delaware) equipped with a true position sensor and a 50 

N load cell with sensitivity of 5 mN was used to conduct unconfined compression. Additional 

rheological accessories such as an environmental controlled submersion kit attached to a peltier 

with a parallel surface, and a top stainless steel parallel plate geometry 20 mm in diameter with a 

smooth impermeable were used to conduct all experiments in this study. The rheometer was 

calibrated to attain a zero gap position in the immersion fluid at the desired experimental 

temperature using TRIOS software (TA Instruments, Delaware), furthermore this software was 

also used to collect experimental data at a frequency of 1Hz. 



 
 

 

Figure 3.1:  Experimental setup showing the DHR-2 rheometer connected to TRIOS software 

during unconfined compression. 

 

3.2.1  Strain rate dependent corneal behavior 

Unconfined compression was conducted by immersing corneal stromas (10 mm diameter) in 

0.9% NaCl for 60 minutes in order to reduce the rate of corneal swelling prior to mechanical 

loading. After the 60 minute equilibration period, corneal stromas were placed directly 

underneath the middle of compressive top parallel plate geometry in a submersion chamber of the 

rheometer filled with 0.9% NaCl set at a temperature of 37±0.1° C. In order to attain a reference 

point for all experiments, a tare stress of 1.5 KPa was applied for 30 minutes; thickness of the 

cornea after equilibration at 1.5 KPa was used as the starting thickness for all strain calculations. 

Stress was calculated as the measured force divided by the un-deformed sample area. Once the 

sample thickness at tare stress was attained, infinitesimal compressive strains of 4% was applied 

using a displacement rate of 0.15 µm/s, after which stain was kept constant for 30 minutes to 

observe the corneal time dependent behavior until the transient stress equilibrated. This procedure 

was repeated until 20% stain was attained in five cycles. Additional strain were applied using 

larger strain increments of 10% strain to attain 30%, 40% and 50% compressive strains tailed by 

constant strain period for 30 minutes.  



 
 

To determine the effect of strain rate on corneal mechanics, varying displacement rates were used 

to conduct unconfined compression tests on 10 mm samples. IOP has been reported to vary with 

body position
136

, Linder et al (1988)
137

 reported a 3 fold increase of IOP in vivo when the head is 

inverted against gravity in comparison to an upright position, supine position was also reported to 

increase IOP. In previous work by Mattson et al (2010)
110

, enucleated intact eye globes were 

pressurized to physiological IOP of 22 mmHg, after which the corneal perimeter was monitored 

optically for 15 minute intervals. The average corneal perimeter displacement rates are reported 

as 0.73 µm/s and 0.2 µm/s after 15 and 30 minutes respectively, this provided in vivo corneal 

displacement rates in the event of IOP change. Based on this report displacements of 1 µm/s (n = 

5), and 0.5 µm/s (n = 6) were used to conduct unconfined compression experiments on 10 mm 

samples.   

The total time for a single experiment was within 5 to 6 hours. Due to the length of experimental 

time and the steady availability of corneas, it was of essence to characterize the effect of corneal 

storage by freezing on corneal mechanical behavior. Freshly trephined (n = 5) and frozen (n = 8) 

corneal stromas, all of diameter 10 mm were subjected to the loading conditions described above 

using a displacement rate of 0.15 µm/s, to determine the possible effects on freeze-thaw samples. 

Frozen samples were kept in the freezer for up to 1-2 weeks. Frozen samples were thawed at 

room temperature for 30 minutes, reweighted and thickness measured. This was followed by 

immersion 0.9% NaCl similar to fresh stromas.    

Cylindrical corneal stromas of diameters ranging from 13.5 mm to 5 mm were used to 

characterize corneal behavior in previous works, the effect of sample diameter was considered 

minor as samples of varying diameters produced similar stresses. Nevertheless, these studies only 

reported the effect of varying sample diameter on transient mechanics, thus it was of essence to 

investigate the effect of sample diameter on instantaneous mechanics.  



 
 

To determine the effect of sample diameter on the observed mechanical response attained from 

corneal stromas,  smaller samples of diameter 8 mm (n = 4) were attained from the corneal central 

region. The immersion fluid, soak time, tare stress, applied displacement rate, and strain 

increment used to apply incremental strains from 4% to 50% compression as described previously 

for experiments conducted on 10 mm diameter samples using a displacement rate of 0.15 µm/s.  

 

 

Figure 3.2.1: The transient displacement of corneal stroma during stepwise unconfined 

compression-stress relaxation experiment. 

 

3.2.2  Effect of corneal thickness on corneal behavior 

Stiffness, extensibility, and viscoelasticity of the cornea have been reported to be influenced by 

the level of hydration/thickness of the cornea
107, 127

. Furthermore, diseases such as Funch’s 

dystrophy and Bullous Keratopathy were reported to increase corneal thickness, where up to 10% 

increase in corneal thickness on average were observed. Thus it was of essence to characterize the 



 
 

effect of normal and swollen corneal thickness on corneal mechanics. After the equilibration of 

10 mm trephined stromas in 0.9% NaCl for 30 minutes, unconfined compression tests were 

conducted by applying tare stress for 30 minutes. Two categories of tare stresses were applied to 

attain varying sample thicknesses; a tare stress of 7.2±0.5 KPa was applied to attain stromas in 

the range of physiological thickness, while a tare stress of 1.9±0.18 KPa was applied to attain 

corneas above physiological thickness. Based on the thickness after tare stress 4% compressive 

strain was applied followed by constant strain for 30 to 45 minutes. The effect of viscoelasticity 

as examined by applying varying displacement rates of 0.15 µm/s (n = 5), 0.5 µm/s (n = 5) and 1 

µm/s (n = 5) for each tare stress criteria resulting in a total of 15 tests at each thickness category. 

 

3.2.3  Thermal effects on corneal mechanics 

The possible effects of thermal variation on corneal mechanics was studied by conducting 

unconfined compression tests at temperatures of  25°C (n = 4) and 40°C (n = 4). In the case of 

high fever, the body temperature is reported to increase up to 40°C. Moreover previous 

compressive studies reported a variation in the equilibrium stress with change in temperature
90, 

138
. Fatt (1971), reports a decrease in thickness of up to 100 µm when corneal stromas compressed 

between two porous filters tested at 25ºC were compared to 37°C at equilibrium compressive 

stresses ranging from 1.3 to 13.3 KPa. Hara and Maurice (1972) measured corneal equilibrium 

stress by applying suction to corneas placed between porous surfaces where stabilization in the 

change in volume was used to determine equilibrium; temperature regulated bath was employed 

to determine the effect of temperature on equilibrium stress where decrease in temperature was 

observed to result in an absolute increase in the value of equilibrium stress by 0.27 to 1.3 KPa for 

temperature increase of 10°C.  



 
 

Unconfined compression was conducted on trephined stromas of 10 mm diameter employing 

similar immersion fluid, soak time, tare stress, applied displacement rate, and strain increment 

used to apply incremental strains from 4% to 50% compression as described in section 3.2.1 

where 10 mm samples were tested at 37°C using a displacement rate of 0.15 µm/s; nevertheless 

modifications were made to the thermal settings of the environmental submersion chamber to 

attain experimental temperatures of 40±0.1°C or 25±0.1°C. 

 

3.2.4  Statistical Analysis 

One way or two way ANOVA with replication were employed to assess the effects of freezing, 

compressive strain, sample diameter, displacement rate, temperature, and corneal thickness where 

statistical significance of p<0.05 was applied to all statistical analysis.  

 

3.3 Results and Discussion 

In the constant ramp strain region, corneal stromas displayed a nonlinear transient stress increase 

until strain was kept constant after which the transient stress was observed to relax to an 

equilibrium value. Incremental increase in compressive strain amplified the value of peak stresses 

observed during ramp strains as well as the equilibrium stresses attained after relaxation (See fig. 

3.3.1). The peak and equilibrium stress-strain behavior displayed nonlinearity; a peak tangential 

modulus was calculated based on the incremental increase in strain from 0 to 50% using the 

average peak stress at each strain increment. A similar method was employed to calculate the 

equilibrium compressive modulus using an average equilibrium stress at each strain increment. 



 
 

 

Figure 3.3.1: The average transient stress attained from 10 mm samples unconfined compression 

at displacement rate of 0.15 µm/s. Few points selected for clarity. Error bars indicate (±1 S.D.).  

 

3.3.1 Effect of displacement rate 

Instantaneous response of the cornea during loading with constant displacement rate displayed an 

increase at higher displacement rate as maximum stress attained were amplified by intensifying 

displacement rate from 0.15µm/s to 1µm/s across all compressive strains tested. This variation in 

peak stress was statically significant from 0.15µm/s to 0.5µm/s across all compressive strains 

where the attained peak stress was at least two times greater as seen in table 3:3.1. However; the 

increase in displacement rate from 0.5µm/s to 1 µm/s was not statistically significant for strains 

between 0-20%. Nevertheless a significant variation was observed from 30-50%. Unlike the 

instantaneous response, the time dependent response was not affect by displacement rate as it was 

observed that at each compressive strain increment, equilibrium stresses were similar. 
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Figure 3.3.2: (Top) average peak stress strain relationship attained displaying an increase in peak 

stress with increasing displacement rate (Bottom) effect of displacement on the peak modulus 

behavior attained with varying displacement rate. 

 

Displacement rate has been reported to affect instantaneous response of the cornea in 

compression; Kim et al. (2012) attained stress-strain relationships from bovine corneas using 

strain rates ranging from 0.063/s to 50/s where stiffening behavior was observed with increasing 
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strain rate, this behavior is as also observed in the current study, but the effect of displacement 

rate on the time dependent response were not studied until this work
97

.  In the current study it is 

observed that the time dependent stress response of the cornea dissipates to constant value at the 

same strain increment independent of displacement rate. This indicates the cornea could possibly 

displays flow independent viscoelasticity during the ramp phase of unconfined compression due 

to intrinsic solid viscoelasticity and flow dependent viscoelasticity at constant strain as a result of 

mechanical consolidation from the flow of fluid through the cornea  as observed in the response 

of cartilage and other soft tissues in unconfined compression
119, 123, 139

. Based on this observation, 

it would be beneficial to fit the transient stress to biphasic flow dependent models as well as the 

inclusion of fluid flow to analytical and numerical models used in corneal mechanics
140

.   

 

Table 3:3.1: The effect of displacement on the average peak compressive modulus. 

 

Disp. 
Rate 

(μm/s) 

0-4% 4-8% 8-12% 12-16% 16-20% 20-30% 30-40% 40-50% 

Peak   0.15 0.1±0.00 0.19±0.03 0.09±0.02 0.1±0.02 0.11±0.02 0.19±0.04 0.24±0.06 0.4±0.12 

Modulus 

(MPa) 
0.5 0.25±0.01 0.26±0.09 0.22±0.08 0.25±0.09 0.27±0.09 0.67±0.1 0.7±0.11 1.17±0.18 

  1 0.34±0.01 0.37±0.06 0.38±0.07 0.36±0.08 0.32±0.09 1.19±0.08 1.2±0.15 1.93±0.13 

 

 

A comparison of the stress-strain relationship using freeze-thaw samples and fresh samples 

displayed no significant difference in the equilibrium stress, maximum stress, equilibrium 

modulus and peak modulus attained from fresh and frozen samples (fig. 3.3.2); table 3.3.2 

summarizes the p values of this analysis. In fresh samples it is observed that the change in 

compressive modulus with increasing compressive strain is not statically significant (p=0.08), 

however there is significant increase at 50% strain (p<0.05). A similar trend is observed for the 

peak modulus as it does not vary significantly from 0-40% (p=0.10) after which there is a 



 
 

significant increase at 50% strain (p<0.05). For freeze thaw samples, a comparison on the effect 

of compressive strain on compressive modulus indicates there is no statistical difference (p=0.43) 

for compressive strains less than 30%, however the compressive modulus attained at 40% 

displays a statically significant increase (p<0.05) with respect to values attained from 0-30% 

compressive strain. Further increase in strain to 50% displays a statically significant change 

(p<0.05) in compressive modulus. A similar pattern is also observed in the variation peak 

modulus behavior from 0-50%.  

Previous compressive studies on the cornea where the equilibrium compressive stress behavior 

was studied, reported no variation in the equilibrium stress attained from fresh and freeze-thaw 

samples
46, 47, 58

, this is conjunction with the current observation. In addition, the current work 

shows freezing and thawing did not affect the transient stress behavior during instantaneous 

compression and stress relaxation as the peak stresses or the shape of the transient stress did not 

vary after freeze thaw in comparison to fresh samples. 

 

Table 3.3.2: A comparison of the average peak stress and peak modulus attained using fresh (F) 

and frozen-thaw (F-T) corneal stromas. 

  State 0-4% 4-8% 8-12% 12-16% 16-20% 20-30% 30-40% 
40-

50% 

p 

value 

Inst. 

Stress 
(KPa) 

F 
14.3±2.

6 
18.3±2.5 21.3±2.7 25.2±3.4 29.4±3.9 49±7.4 73±13.4 

114.2±

26.2 
0.06 

F-T 
14.3±2.

6 
18.3±2.5 21.3±2.7 25.2±3.4 29.4±3.9 49±7.4 73±13.4 

114.2±

26.2 
  

Peak 

comp. 
modulus 

(MPa) 

F - 0.17±0.13 0.13±0.04 0.12±0.06 0.1±0.05 
0.22±0.0

5 

0.26±0.0

6 

0.42±0

.13 
0.99 

F-T - 0.12±0.02 0.08±0.01 0.1±0.03 0.11±0.03 0.2±0.04 
0.24±0.0

7 

0.39±0

.14 
  

 



 
 

 

 

Figure 3.3.3: The average (Top) peak stress (Bottom) peak compressive modulus attained at 

varying compressive strain increments for fresh and frozen samples. 

 

A comparison of equilibrium stress attained from 8 mm and 10 mm samples did not display any 

significant variations across all strain increments (p=0.21). Peak stresses achieved from 10 mm 

and 8 mm samples did not vary significantly (p=0.255); there was also no variation in the peak 

modulus calculated between samples of 10 mm and 8 mm diameters (p=0.49).  
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Figure 3.3.4: The average peak modulus relationship attained using varying corneal stroma button 

diameters of 10 mm and 8 mm. 

 

Effect of sample diameter on equilibrium stress response of the cornea has previously reported as 

trivial by previous studies
46, 58

, where Hedbys et al (1963) did reported no appreciable difference 

with sample diameter varying as samples of 6.5 mm, 9.0 mm and 13.5 mm diameters were 

employed in their work. In addition, Olsen and Spearling (1987) also reported identical values of 

equilibrium stress were attained from 7 mm and 5 mm samples.  This behavior is also observed in 
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the current study. The peak stress response was not observed to be affected by sample diameter as 

the peak stress attained from samples of diameters 10 mm and 8 mm were similar. Although 

samples of diameter less than 8 mm were not used in this study, we anticipate a reduction in peak 

stress with the reduction of sample diameter.  

 

3.3.2 Effect of Corneal thickness 

At high and low thicknesses, the corneal stroma displayed viscoelastic behavior during the ramp 

and stress relaxation phase of unconfined compression. In the ramp phase, peak stress increased 

with increasing displacement rate while stress dissipated during constant strain. Instantaneous 

stress-strain response was affected by displacement rate as stiffness increase was attained for 

higher displacement rates.  In the linear region, swollen corneas displayed values of Young’s 

modulus ranging from 0.4 to 1.49 MPa, while the corresponding Young’s modulus range from 

1.42 to 4.89 MPa for corneas at physiological thickness; higher range of Young’s modulus 

corresponds to values attained from experiments conducted at displacement rate of 1 µm/s. The 

maximum stress attained at 4% compression from swollen corneal stromas during instantaneous 

compression using displacement rates of 0.15 µm/s, 0.5 µm/s and 1 µm/s are 19.8±3.46 KPa, 

43.1±6.8 KPA, and 57.4±6.2 KPa respectively. These values are significantly less than the 

corresponding maximum stresses of 74.0±17.4 KPa, 113.2±19.5 KPa, and 140.4±37.6 KPa using 

a tare stresses of 7.2±0.5 KPa where the cornea is in the range of physiological thickness.  



 
 

 

Figure 3.3.5: The effect of displacement rate on the average instantaneous stress-strain 

relationship for corneas of (a) normal thickness (b) swollen thickness. Transient dissipation of 

stress attained from (c) normal thickness (d) swollen thickness.    

 

At a tare stress of 1.9±0.18 KPa where the corneal stroma is swollen, an average equilibrium 

compressive modulus of the corneal stroma is irrespective of strain is 22.3±9.6 KPa, this is 

significantly less than the average equilibrium compressive modulus of 46.1±22.6 KPa attained 

when cornea thickness is close to physiological levels.     

The variation of corneal thickness using two different tare stresses is shown to affect the level of 

axial (out of plane) displacement as at a constant instantaneous stress, the cornea is observed to 

display higher levels of strain for corneas tested at 1.9±0.18 KPa tare stress in comparison to 

7.2±0.5 KPa. The use of 7.2±0.5 KPa to attain corneas at physiological thickness is justified by 

an average thickness of 687±24 µm after tare stress equilibration, which is within the range of 



 
 

physiological thickness reported as 666±68 µm by Faber et al. (2008)
21

. The instantaneous stress-

strain relationship for swollen and normal corneas display non-linear viscoelastic behavior as also 

reported by Kim et al. (2012)
97

 where the slope of the stress-strain curve is given as 0.243 MPa at 

strain rate of 1/s. In the current study the displacement rate of 1µm/s correspond to strain rates of 

8.81×10
-4

/s and 1.43×10
-4

/s for swollen and normal thickness corneas; the initial slope of the 

average stress strain curves are 1.2 MPa and 2.3 MPa respectively. These values are up to 10 

times the magnitude reported by Kim et al (2012), however experimental differences in the 

current study corneas were immersed during experimentation while Kim et al. (2012) used a 

humidity chamber to maintain corneal dehydration during testing thus the possible effect of 

evaporation may have affected the instantaneous response of the cornea. 

Additional differences could also be due to the use of species as Kim et al. (2012) used bovine 

corneas where preferential orientation of collagen fibrils is in IS direction in comparison to the 

circumferential preferential orientation displayed porcine corneas
73

; the preferential 

circumferential arrangement plays a role in restricting the radial expansion thus the preferential 

circumferential orientation may result in higher stress response during compression.         

The equilibrium compressive modulus attained for swollen and normal thickness corneas are 

22.3±9.6 KPa and 46.1±22.6 KPa respectively. The average compressive modulus of corneas at 

physiological thickness are reported to be within 39-40 KPa by previous studies which is within 

the magnitude reported in the current study
1, 58, 95

. 

 

3.3.3 Effect of test temperature  

A comparison of stress strain relationship attained from experiments conducted at 40°C, 37°C 

and 25°C, shows that the average equilibrium stress attained across all strain increments does not 



 
 

vary significantly (p=0.50); a similar trend is also observed from the resultant equilibrium 

compressive modulus (p=0.56).      

Peak stress does not display statistical difference (p=0.92) from 4% to 50% strain for experiments 

conducted at 40°C, 37°C and 25°C; the corresponding peak modulus does not vary significantly 

(p=0.94) within this temperature range. Average peak modulus attained at 4% to 50% strain at 

25°C, 37°C, and 40°C range from 0.09-0.6 MPa, 0.07-0.4 MPa, and 0.08-0.4 MPa respectively, 

where lower regions of peak modulus are attained at lower compressive strains. 

At test temperatures of 25°C to 40°C minute variation in peak and equilibrium stress were 

observed; similar trend was observed for the peak and equilibrium modulus. The effect of 

temperature on equilibrium stress was previously reported by Hedbys et al. (1963)
46

 where 

experiments conducted at room temperature and 4-6°C displayed similar values. Moreover Olsen 

and Sperling (1987)
58

 reported no spastically significant difference between tests conducted at 

room temperature and 37°C. The observations of temperature independence from 25°C to 40°C 

on equilibrium stress are in conjunction with previous reports. 

  



 
 

 

 

Figure 3.3.6: The effect of experimental testing temperature on (Top) peak stress and (Bottom) 

peak modulus across all strain increments. 

 

Limitations in the current experimental study include flattening the native corneal curvature to a 

planar state thus resulting in pre-stressed state before experimentation. A planar sample is 

required to maintain proper contact between the cornea surface and the compressive geometries 

of the rheometer thus this was unavoidable based on the current experimental technique. Due to 
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the length of experiment conducted from 4-50% strains, some evaporation occurred during the 

experiment. This was countered by addition of water at prescribed time intervals to the 

environmental controlled immersion chamber based on the rate of evaporation measured prior to 

experimentation for a given temperature and molarity of NaCl immersion fluid.     

 



 
 

CHAPTER IV 
 

 

BIPHASIC ANALYTIC AND NUMERICAL MODELLING OF THE CORNEAL STROMA 

4.1 Goal 

Mechanical and transport behavior of the cornea can be predicted with a combination of data 

attained experimentally and realistic theoretical models. There are a variety of theoretical models 

that are used to predict the mechanical behavior of the cornea; however these models do not 

consider the corneas multiphasic nature or anisotropy. The cornea is a semi-permeable load 

bearing connective tissue that consists mostly of highly organized fibrillar network, negatively 

charged proteoglycans and water. When mechanical or chemical loads are applied on the cornea, 

stresses are generated in the solid phase, hydrostatic pore pressure in the fluid phase and osmotic 

pressure is generated due to negatively charged proteoglycans.  Most of the current models that 

have been applied to describe corneal mechanical behavior account for structural anisotropy of 

the solid collagen phase; where corneal matrix is modeled as an incompressible solid using a 

combination of hyperelastic strain energies. From a structural standpoint, these models fail to 

account for the semi-permeable nature of the cornea as well as the interaction of its fluid and 

solid phase. Except for models implemented by Boyce et al. (2007)
100

, the experimentally 

observed viscoelasticity is also omitted from these hyperelastic models. Furthermore, in 

compression, corneal mechanical behavior displays fluid flow viscoelasticity, thus it is of essence 

to implement a multiphasic approach to realistically model corneal mechanics when loads in the



 
 

 out of plane direction are applied as seen in applanation of external objects such as clinical, 

surgical devices
141, 142

. Grodinsky and Eisenberg
95, 96

, implemented a multiphasic approach to 

account for the stresses in the solid and fluid phase as well as the chemical stresses generated by 

chemical stresses based  on the linear biphasic theory developed by Kuei, Lai, and Mow (1980)

for the cartilage. This model did not account for corneal anisotropy as the solid phase was 

modeled using isotropic linear elasticity, besides Grodinsky and Eisenberg (1987) employed 

confined compression in their experiments thus loading was only applied in 1-D. Using a similar 

approach, a biphasic model that accounts for anisotropy will be implemented to experimental data 

attained from unconfined compression where the cornea is under compressive conditions. The 

application of biphasic models to unconfined compression was initially implemented by 

Armstrong, Lai, and Mow (1984)
119

 for the cartilage where isotropic linear elasticity was used to 

model the solid phase however this model was unable to reproduce the high peak stresses 

observed in experimentation. This model was later modified by Cohen et al (1998)
121

, by 

implementing transversely isotropy to the solid phase where the transversely isotropic biphasic 

model was able to fit the experimentally observed peak stresses for growth plate and 

chondroepiphysis.  

 

4.2 Experimental data source 

Experimental data for unconfined compression of porcine corneas were attained from chapter 3. 

In this chapter, we hypothesize that the porcine cornea is transversely isotropic material, the plane 

of isotropy is the in-plane direction where the collagen fibrils are circumferentially oriented and 

anisotropy occurs through the thickness. A transversely isotropic biphasic model is implemented 

to describe the transient stress behavior of the cornea during unconfined compression, when 

constant compressive strain rate is applied followed by constant strain rate. The transversely 



 
 

isotropic model will be described and a closed form solution provided. A finite element model of 

the cornea based on transversely isotopic biphasic properties will be created and compared to the 

closed form solution.  

4.3 Transversely Isotropic Biphasic Model 

In biphasic theory, hydrated soft tissues are designated as a binary mixture of a distinct fluid and 

solid phase, these phases are assumed to be homogenous, non-miscible, and incompressible
119

. 

The total stress (      ) of a biphasic material is modeled as a function of stress strain 

relationship in the solid matrix (    ) and interstitial fluid (   ). From Cohen et al (1998) 121
. 

               (4.1) 

          (4.2) 

              (4.3) 

where pressure is p,   is the identity matrix,   and    are the volume fraction of the solid and 

fluid phases respectively. The fluid phase is inviscid while the solid phase is linear elastic 

transversely isotropic defined by the fourth order stress tensor        based on the formulation 

of Cohen et al. (1998)
121

. In cylindrical coordinates the axis of transverse isotropy for the porcine 

corneal stroma is the z direction as reported by previous work by Hayes et al. (2007)
73

 where 

circumferential collagen fibrillar arrangement were observed in porcine corneas. Tensile tests 

conducted by Elsheikh et al. (2009)
65

 on porcine corneal strips of varying orientation also verified 

the findings of planar isotropy. A transversely isotropic stiffness tensor     can be expressed as a 

function of five independent constants; the in-plane Young’s modulus           , and 

Poisson’s ratio    (       ), as well as the out of plane Young’s modulus   , Poisson’s ratio 

   , and shear modulus    . The loading conditions of unconfined compression dictate that shear 

modulus is inapplicable in the current configuration. The continuity equation is expressed as 

  (         )   , where    and     are the velocities for the solid and fluid phases. When 



 
 

the inertia effects are neglected the resultant momentum relationship for the solid phase, fluid 

phase and total stress are given as  
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(4.6) 

where    is the radial permeability attained from the diffusive drag coefficient of relative motion.  

The viscoelastic response of a hydrated soft tissue in a biphasic model is hence governed by 

relative velocity of the solid and fluid phase that occurs when distortion to the tissue induces fluid 

flow and solid deformation.   

In the unconfined compression configuration used in chapter 3, corneal stroma is compressed 

between two impermeable platens, the coefficient of friction between impermeable platens and 

tissue surface is assumed to be negligible
119

; this assumption results in homogeneous deformation 

in the z-axis during unconfined compression hence displacement in the z-axis is a function of  

thickness and applied experimental strain. Extrusion or imbibition of fluid is permitted freely 

across the cylindrical boundary surface of the corneal stroma due to the lack of radial constrains 

on the cylindrical boundary. The solid matrix strain tensor is expressed as a function of radial 

displacements   , and axial displacements   . Due to symmetry, pressure and displacement fields 

are axis symmetric in unconfined compression hence 
 

  
   and     . The assumption of 

negligible coefficient of friction between the impermeable platens and the tissue surface results in 

homogeneous compressive strain in the axial direction hence          where      is the 

experimentally applied strain. The resultant strains are expressed as 
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(4.7) 

where     
   

  
     . Previous work by Armstrong et al.

118
 provided a single governing 

equation for radial displacements and experimentally applied strain history as 

     

   
 

 

 

   

  
 

  

  
 

 

     

   

  
 

    

     

      

  
 

 

(4.8) 

The boundary conditions for unconfined compression indicates that at the cylindrical boundary 

surface (   ), the radial stresses      and fluid pressure    . The resultant stress at the 

compressive platens can be expressed as 
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(4.9) 

where    is the area of the cylindrical sample. Cohen et al
121

 provided a closed form solution to 

the resultant stresses acting on the platen during ramp displacement with a constant strain rate   ̇ 

as 
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(4.10) 

The applied strain history during ramp compression (      ) is expressed as        ̇ . And 

the applied strain history during stress relaxation (      ), is constant hence        ̇  . 

The resultant stresses acting on the platen is expressed as 
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Parameters                and    are functions of the Young’s modulus and Poisson’s ratio in 

the out of plane and in plane directions expressed as  

              
     

   (4.12) 
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Parameter     are the characteristic roots of the Bessel equation given in equation 4.16; where 

  and    are Bessel functions of the first kind. 
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]          

(4.16) 

 

Transient stress attained from unconfined compression was curve fitted to above the closed form 

solution to find the fitting parameters. The Poisson’s ratio for the in-plane direction     was 

assumed as 0.49, this assumption is commonly used in numerical simulations of corneal 

mechanics
105, 124, 143, 144

.  The out-of-plane Poisson’s ratio     was assumed as zero. Parameters 

   and    were attained from the curve fitting procedure; while    was attained directly from the 

experimental result. Curve fits used to attain the theoretical predictions of    and    were 

assessed based on the coefficient of determination r
2
 between the transversely isotropic biphasic 

model and the attained experimental results. 

 

4.4 Model prediction 

The transient stress attained from unconfined compression of physiological thickness (normal) 

and swollen corneas after the application of 4% strain at varying displacement rates proceeded by 



 
 

stress relaxation are fitted to the transversely isotropic biphasic model. Normal corneas at 

physiological thickness were attained from experiments conducted with a pre-stress of 7.2±0.5 

KPa which is in the range of residual swelling pressures applied in vivo by the epithelial and 

endothelial pump transport mechanisms. Lower pre-stress of 1.9±0.18 KPa was applied to attain 

corneas swollen above its physiological thickness.  

The coefficient of fit attained for average experimental stress response conducted using speeds of 

0.15 µm/s, 0.5 µm/s and 1 µm/s are 0.978±0.005, 0.975±0.005, and 0.974±0.003 respectively 

(see. fig. 4.1). This indicates displacement rate did not affect the fitting capabilities of the 

transversely isotropic model to the experimental data.  

The predicted elastic tensile modulus    was higher for normal corneas in comparison to swollen 

corneas; in addition    was amplified with increasing displacement rate. The average value of  

   predicted with increasing displacement rate are 2.10±1.14 MPa, 3.40±0.75 MPa and 

3.81±1.12 MPa for normal corneas in the range of physiological thickness. For swollen corneas 

tested at tare stress of 1.9±0.18 KPa the resultant values of    are 1.36±0.21 MPa, 2.06±0.48 

MPa, and 2.27±0.49 MPa at 0.15 µm/s, 0.5 µm/s and 1 µm/s respectively. 

The predicted radial permeability    was observed to be lower for swollen corneas in comparison 

to corneas in the range of physiological thicknesses. At physiological thickness, the effect of 

displacement rate on    is observed to be independent however a more pronounced effect is 

observed for swollen corneas where slight increase in permeability was observed with increasing 

displacement rates. For swollen corneas,  average values of    attained at 0.15 µm/s, 0.5 µm/s 

and 1 µm/s are 20.6±2.5×10
-15 

m
4
/N.s, 27.0±3.0×10

-15
 m

4
/N.s and 30.8±0.2×10

-15
 m

4
/N.s 

respectively. Radial permeability was observed to decrease with dehydration where average 

values attained with increasing displacement rates are 5.8±0.4×10
-15

 m
4
/N.s, 6.1±0.2×10

-15
 

m
4
/N.s, and 5.9±0.4×10

-15
 m

4
/N.s for normal corneas at physiological thickness. 



 
 

 

Figure 4.1: Transversely isotropic biphasic curve fit to the average transient stress attained at 

varying displacement rates from corneas of physiological thickness. Insert displays a schematic of 

the experimental setup with cylindrical co-ordinates as used in the transversely isotropic model. 

Error bar indicate ±1 standard deviation. 

 

In addition to single compressive ramp and stress relaxation, experiments involving multiple 

compressive and stress relaxation increments from 4-50% strain were also modeled to determine 

transient consolidation properties of the cornea based on experimental observations from tests 

conducted using varying displacement rates and temperature. 

It was observed that the transversely isotropic biphasic model was able to fit the transient 

experimental stress data from 4% to 50% incremental stress strain compression, for the three 

displacement rates applied during experimentation at a constant temperature of 37° C. The model 

fit to the average transient stress attained from the compressive displacement rate of 0.15 µm/s is 

given in figure 4.2. An incremental increase in compressive strain was observed to increase    

linearly up to 20% strain after which non-linear increase was observed while    decreases 

exponentially from 4-50% strain. The average predicted values of    and    are presented in 

figure 4.3-4.4; where the effects of displacement rate are presented. The average predicted values 



 
 

for    are observed to increase with increasing compressive strain. Furthermore increase in 

displacement rate was also observed to amplify its value. Slight increase in    was observed 

when fresh samples were compared to freeze-thaw samples, nevertheless this variation was not 

significant across all strains. It is observed that    displays temperature independent behavior 

between 25°C to 40°C. For instance, at constant strain (50%) and displacement (0.15 µm/s), the 

average values for     are 5.8 MPa, 6.4 MPa and 4.8 MPa for 4°C, 25°C, 37°C and 40°C 

respectively. When sample diameter was reduced to 8 mm,     was observed to be independent 

of sample diameter across all strain increments. At 50% strain, the average values for    are 5.8 

MPa, and 6.4 MPa for 8mm and 10 mm diameter samples respectively.     

 

 

Figure 4.2: Transient fit of the transversely isotropic biphasic model (black line) to average stress 

observed in unconfined compression experiments (green triangle) conducted at displacement rate 

of 0.15µm/s from 0% to 50% strain. 
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Figure 4.3: The variation of in-plane modulus (  ) with displacement rate  

 

Figure 4.4: The variation of radial permeability (  ) with displacement rate. 

 

The predicted values for    is observed to display dependence on displacement rate especially at 

low strain levels, decrease in temperature is also observed to reduce    at strains greater than 8% 

where this effect is observed to be more pronounced at higher strains. No statistical difference 
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was observed for    attained from fresh and freeze-thaw samples. At 50% strain, the average 

values of    are 4.3×10
-15

 m
4
/N.s, 4.1×10

-15
 m

4
/N.s, and 2.3×10

-15
 m

4
/N.s, for 40°C, 37°C, and 

25°C respectively. No difference in    is observed from samples of 8 mm and 10 mm diameter. 

The experimental transient stress behavior of the corneal stroma attained from unconfined 

compression was modeled using a transversely isotropic biphasic model. This model accounts for 

the solid and fluid interactions in the stroma as well as anisotropy. Analytical solution of the 

transversely isotropic model was curve fitted to the experimental data to attain elastic tensile 

modulus and permeability where the model was able to properly fit the experimental data based 

on the goodness of fit. The predicted elastic tensile modulus was observed to increase with 

displacement rate for normal and swollen corneas, this rate dependent behavior for tensile 

modulus has previously been observed in uniaxial tensile tests of corneal stroma. In addition, 

elastic tensile modulus was observed to increase with increasing compressive strain; this is also in 

correlation with previous reports where corneal Young’s modulus increased with decreasing 

thickness/hydration. The ranges of predicted tensile modulus are within the rages of values 

attained from uniaxial tensile stress relaxation test by Pandolfi et al. (2012) as 2.5 to 17.5 MPa
103

. 

At low compressive strains an average of 0.6 MPa is observed , this value increases on average  

to within 2.6 to 3.8 MPa  at physiological thickness based on the applied displacement rate.  At 

high compressive strains tensile modulus of 13 to 14 MPa was also predicted. Although, the 

lower range of predicted elastic tensile modulus is below the reported range, it should be noted 

that Young’s modulus of 0.4 MPa were reported from static tensile tests
65, 145

, thus the lower 

range of elastic tensile modulus could coincide with stress levels below the minimum range of 

stresses tested by Pandolfi et al (2012).   

Radial permeability was observed to decrease with compressive strain and corneal detergence; 

this is in correlation with previous reports by Hedbys et al. (1962)
146

 Furthermore as compressive 

strain exceeds 12%, an increase in temperature is observed to decrease permeability. The increase 



 
 

in corneal permeability with increasing temperature was also reported by Fatt (1971)
90

 and 

Hedbys et al (1963)
147

. At physiological thickness/hydration, the average radial permeability 

predicted in this study at 25°C is 2.3×10
-15

 m
4
/N.s. This is similar to values reported by Hedbys et 

al. (1962) as 1.5 ×10
-15

 m
4
/N.s at physiological thickness/hydration

146
. Further comparison of 

predicted radial permeability and the experimentally reported permeability displays a deviation in 

predicted and experimental values as experimental lay attained permeability are lower than the 

predicted radial permeability. It should also be noted that experimentally attained permeability 

was attained from the axial direction; Hedbys et al. (1962) reported the radial permeability to be 

more dependent on thickness/hydration in comparisons to the axial direction however they were 

not significantly different at physiological thickness/hydration. Additional reports on corneal 

permeability by Stewart et al (2009) reported porcine corneal permeability of 82±15×10
-15

 m
4
/N.s 

at temperature 37°C where corneal thickness was 1.02 mm
148

, within that range the average radial 

permeability is between 19-27×10
-15

 m
4
/N.s. Corneal flow velocity K attained from topical drug 

delivery studies can also be used to attain permeability as        
   where density (   999 

kg/m
3
)

149
, and dynamic viscosity (   0.7 mPa.s)

150
 of 0.9% NaCl at 37°C  and gravity   are used 

in the calculation. The reported values of flow velocity range from 2.5-9.89×10
-5

 cm/s
151

, this 

corresponds to permeability in the range of 1.7-7.1×10
-15

 m
4
/N.s which is in agreement with the 

predicted permeability attained in the current study.  

  



 
 

4.5 Finite element implementation 

When sample geometry vary from the axisymmetric geometries, the analytical solution for the 

transversely isotropic biphasic model turn out to be complex thus numerical finite element 

method is implemented to solve such computational mechanics problems. FEBio
152

 is an open 

source finite element program that offers orthotropic biphasic model that can be used to 

approximate the displacement, fluid pressure, stresses and strains using the virtual work equation.   

FEBio was used to model the cornea in unconfined compression, and the numerical solution was 

compared to the analytical closed form solution. 

Quarter symmetry cylindrical sample was modeled in the current study where radius and height 

of the cylinder were 5 mm and 0.698 mm respectively. Sample height was based on the average 

height of corneas after tare stress of 7.2±0.5 KPa (See chapter 3). Boundary conditions due to 

quarter symmetry results in fixed displacement in the X and Y direction for nodes in the Y-Z 

plane and X-Z plane respectively.  

 

Figure 4.5: Boundary Conditions of quarter symmetry cylindrical mesh. Fluid pressure is set to 

zero for nodes at the radial edge of the cylinder. 

 

Additional boundary conditions from unconfined compression experiment were implemented by 

setting zero fluid pressure at the radial surface for fluid flow through the radial boundary, fixed 

displacement for nodes at the bottom of the Z plane and prescribed displacement for nodes at the 

top of the Z plane. A prescribed displacement of 0.0279 mm in 30.2 seconds was implemented 



 
 

followed by constant displacement for 1500 seconds. Material properties    and    attained from 

the analytical curve fit, and  from unconfined compression experiments conducted at 1µm/s as 

given in section 4.4.  

Hexahedral mesh was implemented with 8 node hexahedral elements with a butterfly center of 

two different densities.  Two mesh densities were generated to determine the effect of mesh 

density on the convergence to the experimental data and closed form solution. Lower density 

mesh possessed 11, 349 nodes and 9,600 elements in 20 by 20 by 8 divisions in the X, Y and Z 

axis. High density mesh had 36,283 nodes, 32,400 elements in 30 by 30 by 12 divisions in X, Y 

and Z axis. Biphasic solver analysis was implemented using a step size of 0.1, and 40 optimal 

quasi-Newton iterations.           

It is observed that the numerical solution for transient stress attained from FEBio using the low 

density mesh does not converge to the close form solution; nevertheless the results attained high 

density mesh is in agreement with the analytical solution as well as the experimental observation. 

A comparison of the fluid pressure attained numerically also converges to the closed form 

solution of the transversely isotropic model. The predicted transient radial displacement from the 

FEA model displays shrinkage in sample diameter during stress relaxation however this cannot be 

verified as radial displacement was not monitored during experimentation.   



 
 

 

Figure 4.6: A comparison of the numerical solution attained from low and high mesh density for 

the transient stress behavior from unconfined compression. The high density mesh converges to 

the analytical closed form solution. Data not shown past 1000 seconds due to convergence. Insert 

shows analytical and numerical fit in the ramp and early stress relaxation for clarity.  

 

 



 
 

 

Figure 4.7: The distribution of stresses predicted by the numerical solution at (a) time = 0 where 

prior to compression (b) time = 3 seconds where stresses at the radial boundary are less than 

stresses at the interior (c) time = 30 seconds; at peak compressive strain where radial 

displacement is maximum (d) time =1000 seconds; contraction of radial displacement as well as 

convergence of stress dissipation. It should be noted that the color map displays stresses in term 

of compression thus colors at the bottom of the map indicate levels of higher compressive 

stresses. Solid wire box indicates the external bounds of the quarter cylinder prior to compression.     

 

Application of the transversely isotropic biphasic model to finite element analysis produced 

transient stress solution that converged to the experimental transient stress as well as the 

analytical solution. This numerical model provides the ability to display transient inhomogeneous 

depth dependent axial and radial displacement, as well as the variation of stress and fluid pressure 

in the radial direction. Validation of the predicted inhomogeneous radial and axial displacements 

could be attained using digital imaging correlation during unconfined compression as performed 

by Gao et al (2012)
153

 where transient imaging and  digital imaging correlation were implemented 



 
 

to determine local strains though the thickness of cartilage specimens in addition to the macro 

deformation measured from platen to platen.        

Limitations of the transversely isotropic model include the assumption of linearity as the cornea 

displays nonlinearity in tis stress-strain behavior in a variety of loading conditions. The inability 

to explicitly model anisotropic collagen fibrils is also a limitation as transversely isotropic 

fibrillar distribution is limited to species of which corneal stromas was attained. In addition, the 

effect of ionic concentration is not explicitly modeled as the effect of Donnan osmosis is lumped 

into the compressive modulus. In the curve fitting procedure, values for parameters    and    

were attained based on the highest value for the goodness of fit, the uniqueness of the parameters 

attained by maximizing the goodness of fit were not analyzed. Nevertheless, the predicted values 

for    and    were in the range of previously reported values. In addition, the decrease in    and 

increase in    with decreasing hydration predicted by maximizing the goodness of fit was also in 

correlation with their experimentally observed behavior. Further limitations rise from the absence 

of intrinsic viscoelasticity in the transversely isotropic biphasic model. This omission can also be 

seen in the prediction of peak stress attained at high displacement rates.              



 
 

CHAPTER V 
 

 

VISCOELASTIC SHEAR PROPERTIES OF THE CORNEA 

5.1 Introduction 

Quantification of corneal viscoelastic behavior is of essence in the development of realistic 

analytical and numerical models for corneal mechanics that can provide support to refractive 

surgical procedures. The ability to accurately predict corneal deformation caused by surgical 

incisions or laser ablation enables the surgeon to attain the desired shape of the post-operative 

cornea required for refractive correction of vision.  Application of numerical models to simulate 

corneal mechanical behavior has generated significant interest; numerical model based on the 

combination of isotropic, and anisotropic hyperelastic deviatoric strain energy formulations have 

been applied to numerical surgery simulations
126, 154

. The isotropic strain energy function 

characterizes the corneal matrix and it is generally a function of shear modulus, a material 

parameter that can be quantified experimentally by testing the cornea under shear loads.   

The cornea is reported to display rate dependent and time dependent viscoelasticity, where 

nonlinear viscoelasticity was also observed at non-physiological stresses. However most of these 

viscoelastic properties were attained from static testing configurations under tensile or 

compressive loads. Dynamic loads are applied to the cornea from contraction and relaxation of 

ocular muscle fibers, as well as the applanation of external objects such as surgical instruments 

that subjects the cornea to shear loads. Initial dynamic shear studies by Soergel et al. (1995)
114

             



 
 

reported corneal shear compliance to vary with corneal thickness, port mortem interval, 

experimental temperature at a constant frequency. In addition the variation in frequency at 

constant thickness or temperature was also observed to affect the measured shear compliance. 

Recently oscillatory stress or strain controlled rheometer were employed to characterize corneal 

shear modulus. Nickerson (2006)
115

 reported the storage modulus of the cornea at varying 

oscillatory strains at a constant frequency in addition to the effect of glyceraldehyde corneal 

stiffening on storage modulus of the cornea at constant strain and frequency. Petsche et al. 

(2012)
1
 studied the variation of storage modulus with varying compressive strains on whole 

corneas and corneal flaps attained from anterior, middle and posterior corneal section where 

storage modulus was observed to increase with an absolute increasing compressive strain or 

stress. Although these studies have highlighted the variation of corneal viscoelastic properties in 

shear, no information was provided on the limit of linear viscoelasticity, shear stress relaxation 

behavior, and the effect of strain rate on the transient shear stress or shear stress strain behavior. 

Thus it is the aim of this chapter to experimentally characterize shear viscoelastic properties of 

the cornea using a rheometer. Due to the lack of time, the data presented in this chapter was 

obtained from a limited number of experiments and should only be regarded as preliminary 

results. Future careful studies are required for full characterization of the corneal shear properties. 

 

5.2 Materials and Methods 

5.2.1  Sample preparation 

Enucleated porcine eye globes were attained from a local slaughterhouse and transported to the 

laboratory on ice. The corneas were observed for  edema and scratches after which  corneas free 

from scratches and edema were enucleated in a similar manner as described in chapter 2 thus a 

brief description is given here. A dulled edge Scalpel was used to debride the corneas epithelium, 



 
 

then an incision was made at the corneo-scleral junction with the scalpel. Scissors were inserted 

in the incision, and a circular cut was made around the sclera to excise the cornea with a scleral 

rim. The endothelial layer was rubbed off using Kim wipes and a trephine was used to attain 8 

mm or 6 mm cylindrical stromas from the central region of the cornea.  

 

5.2.2  Test Protocol 

Measurements of corneal shear viscoelastic properties were conducted using a DHR 2 rheometer 

(TA Instruments, Delaware) with a minimum torque oscillation of 2 nN.m, torque resolution of 

0.1 nN.m, minimum frequency of 10
-7

 Hz, and displacement resolution of 10 nrad. Thermal 

controlled submersion kit was used to implement an experimental temperature of 25±0.1°C for all 

experiments. TRIOS software (TA Instruments, Delaware) was used to record the experimental 

torque, normal force and displacement as well as calculate stress, strain, dynamic and time 

dependent viscoelastic properties. To prevent sample dehydration experiments were conducted in 

submerged conditions where OBSS was employed as the submersion fluid. Prior to mechanical 

testing, samples were immersed in OBSS for 30 minutes to equilibrate. Shear displacement was 

applied to the trephined corneal samples by 8 mm upper parallel plate geometry in a plate to plate 

centered configuration. Shear stress τ and shear strain γ were calculated as a function of torque T 

and radius of parallel plate R, angular displacement θ and height of sample Hi as shown in figure 

5.1. 
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In the linear viscoelastic region, when sinusoidal displacement amplitude of θ0 is applied at a 

given frequency ω, a torque response is generated which is a function of the torque amplitude T0 

and phase shift angle δ.  

 
   

     

   
        

(5.3) 

 
    

     

   
        

(5.4) 

 
       

   

   
 

(5.5) 
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 Viscoelastic material properties such as storage modulus G’, loss modulus G”, phase shift angle 

are calculated as given in equations 4.3 to 4.5. When instantaneous strain is applied and held 

constant over time, the stress relaxation modulus G(t) was calculated using equation 5.6. 

 

Figure 5.1: Experimental schematic displaying the multi loading conditions applied to the cornea 

during shear viscoelastic testing where R is the sample radius and Hi is the sample thickness.  

  

5.2.2.1 Wall Slip 

In order to attain accurate characterization of the corneas shear viscoelastic properties, no slip 

boundary condition is required during experimentation. This condition requires that the velocity 

of the upper rotating parallel plate geometry to be equal to the velocity of the cornea during shear 

while the velocity at the bottom surface of the cornea and lower geometry is zero in order to 



 
 

measure the proper sample deformation. Sand paper is commonly glued to the top and bottom 

parallel plate geometries to prevent slippage when characterizing the rheological properties of 

soft tissues and other materials that violate the no slip boundary condition. Coarse sand paper (80-

150 grit) is generally used to prevent slippage
155-158

, however recent study by Petsche et al 

employed 320 grit fine sand paper. Furthermore, at high strain rates wall slip has been reported to 

occur in the presence of sand paper.  

The effect of surface roughness was characterized by conducting varying oscillatory strain 

experiments at constant frequency and constant shear rate experiments on 8 mm corneal stromas 

using  parallel plates with smooth surface, fine sand paper (320 grit) and coarse sand paper (80 

grit). This was performed by placing corneal samples in OBSS for 30 minutes prior to mechanical 

testing after which corneal stroma is centered underneath the parallel plates and compressed until 

0.1 N of axial force was attained after which axial displacement was kept constant for 

experimentation.  

Visualization technique was employed to determine when no-slip boundary condition was 

violated by drawing a parallel vertical line with a water proof marker from the upper parallel plate 

through the radial sample surface to the lower surface of the parallel plate geometry. Continuous 

marks between the parallel plates and the radial surface of the corneal stroma indicates no-slip 

boundary condition was upheld. Due to the use of visualization technique, a submersion chamber 

was not used in this test instead 3ml of OBSS was used due to the short experimental duration. 

This was done by pipetting OBSS on the bottom sandpaper in a manner that the radial corneal 

surface was engulfed by OBSS. Preconditioning was implemented to attain a reference 

experimental state for corneal stromas by applying constant oscillatory shear strain and frequency 

of 0.2% and 1 Hz respectively; where the attained storage modulus was recorded over time to 

determine if steady state behavior had occurred. Varying amplitude oscillation strains from 0.001 

to 15% at frequency of 1 Hz were conducted after which rest period of 20 seconds was allowed 



 
 

followed by constant strain at 0.5/s. Each study was conducted on parallel plates with smooth 

surface, fine sand paper and coarse sand paper.   

 

5.2.2.2  Validation of shear testing technique 

There are two previous reports of corneal storage modulus in the literature. In order to validate 

the experimental studies of this chapter, 8 mm and 6 mm corneal stromas were tested using 

previously reported shear protocols.  

Petsche et al. (2012), conducted oscillatory shear experiments on 6 mm diameter Human corneas 

of full thickness corneal stromas previously stored in Optisol storage medium, a rheometer with 

320 grit sand paper was used to apply strain. Corneal stromas were compressed to a thickness 

15% below the measured corneal thickness. Optisol was added to their submersion chamber after 

which test temperature of 37°C was set. Sinusoidal oscillatory shear loading was implemented at 

1% strain at constant frequency of 0.03 Hz; this test was conducted for four cycles where the 

initial three cycles are preconditioning cycles after which the fourth cycle is recorded. This cycle 

was repeated after the implementation of 5% compressive strain using axial displacement rate of 

1 µm/s after which the transient compressive strain was allowed to equilibrate for five minutes. 

Further compressive strain increments of 5% were implemented until 40% compressive strain 

was attained. 

In the current study, modifications made to the current testing protocol includes the use of porcine 

corneas as Human corneas were unavailable, corneal storage medium was changed from Optisol 

to OBSS, and an increase of relaxation time from 5 minutes to 30 minutes as the transient 

compressive stress did not equilibrate in 5 minutes.  



 
 

Furthermore, Nickerson (2006) employed an 8 mm diameter parallel plate geometer with 35-40 

cleats, 0.6 mm thick to characterize porcine cornea shear modulus. Corneal stromas attained from 

the central region (8 mm) were compressed until 0.1 N compressive force, this force was allowed 

to dissipate after which oscillatory stress of 1 to 30 Pa was applied at constant frequency of 1 

rad/s where vapor trap was employed to preserved hydration.  

In the current study, a submersion chamber was used to preserve hydration however sample 

diameter, frequency, and oscillatory stress were the same as used by Nickerson.  

 

5.2.2.3 Strain sweep test 

 Compressive tare stress of 6.4±0.6 KPa was applied to the cornea for 30 minutes, this tare stress 

was selected slightly below the range of swelling pressure range of corneal swelling pressure   

(6.6- 7.9 KPa). Thickness of the cornea after equilibration of the tare stress was used as the initial 

thickness for calculating axial compressive strains after which compressive strain of 10% was 

applied with a compressive speed of 1 µm/s and relaxation time of 20 minutes. The limit of linear 

viscoelasticity was determined by applying varying strain amplitudes from 0.01% to 10% strain at 

a constant of 1 Hz frequency on 8 mm corneal stromas (n=5). Based on the pre-test (see section 

4.3) 4 cycles of preconditioning was applied to attain a steady state of corneal shear properties; 

posteriori shear properties were recorded for 3 cycles. 

  



 
 

5.2.2.4 Stress relaxation test  

Stress relaxation tests were performed after the final cycle of strain sweep test by implementing a 

strain rise time of 0.01 s to attain an instantaneous shear strain of 0.1%, after which this strain 

was held for 200 seconds. The effect of shear strain on transient corneal response was conducted 

by applying 3 additional levels of strain (0.2%, 5%, and 10%) where each stain level was held 

constant for 200 seconds. Shear strain was then reversed to zero strain level by applying 

incremental shear strain reversal of -5%, -4.8%, -0.2%, and -0.2% where each strain level was 

kept constant for 200 seconds. The transient stress and stress relaxation modulus was recorded at 

each shear strain increment.     

 

5.2.2.5 Dynamic oscillatory test 

Dynamic shear tests were performed following the cycle of shear stress relaxation tests (zero 

strain) by applying constant shear strain in the region of linear viscoelasticity using varying 

frequencies of 0.03-20 Hz. Conditioning interval of 4 cycles was applied for each test after which 

the storage modulus, and loss modulus were recorded for the next 3 cycles.   

 

5.3 Results and Discussion. 

5.3.1 Wall Slip 

It was observed that the storage modulus attained using 320 grit or 80 grit sand paper did not 

differ at the same equilibrium stress. In the case of constant strain rate experiments where strain 

was implemented at 0.5/s, the stress strain behavior attained from both sand paper were within the 

same range as the rupture point was unaffected. Experiments conducted without sand paper failed 



 
 

to comply with the no-slip boundary condition as slippage was observed visually as well as in the 

recorded stress-strain behavior where rupture point was not observed. 

 

Figure 5.2: Storage modulus and loss modulus attained from corneas tested on 80 and 320 grit 

sand paper after the application of 0.1 N compressive force from two samples.  

 

5.3.1 Validation of shear testing technique 

Experiments conducted using the same shear testing protocol as Nickerson generated an average 

storage modulus in the range of 900 to 817 Pa for oscillatory shear stress varying 1 to 30 Pa, 

while Nickerson attained values in the range of 680 to 580 Pa as extrapolated from tests 

conducted with cleated geometry (See Nickerson figure 9). Although the average shear stress 

values from this current study are higher than previous report, they are within one standard 

deviation.    
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Figure 5.3: Experimental comparison of shear modulus attained from porcine corneas from 

current study and previous report by Nickerson
115

. Nickerson data extrapolated using optical 

analysis. 

 

The variation of storage modulus attained at depth dependent equilibrium stress attained using a 

similar protocol by Petsche et al. generated similar shear modulus at lower equilibrium 

compressive stresses. At higher equilibrium shear stresses the shear modulus reported by Petsche 

et al was higher than the shear stresses observed in this study. Nevertheless, these values were of 

the same magnitude and additional difference due to species of sample could have played a role 

in the observed variation. 
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Figure 5.4: Experimental comparison of shear modulus attained from porcine corneas from 

current study and previous report by Petsche at al
1
. Petsche et al. data extrapolated using optical 

analysis. 

 

5.3.2 Strain sweep test 

It is observed that G’ and G” were steady at strains below 0.3% where the average variation of G’ 

is less than 1.7% thus corneal stroma has a linear viscoelastic limit (LVL) of 0.3%. In the LVL 

the  average value of G’ and G” were 7.1 KPa and  1.19 KPa respectively. 

5.3.3 Strain sweep test 

For dynamic tests conducted at constant strain of 0.3%, it is observed that an increase in 

frequency increased G’ at all frequencies tested. It was also observed that G” was independent of 

frequency less than 0.3 Hz where the incremental change in G” was less than 5%. Frequencies 

above 0.3Hz increased the magnitude of G”, a comparison of G” attained at 0.03 Hz and 20 Hz 

displays an increase in value by 4 to 6 times. 
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Figure 5.5: The average variation of G’ and G” with increasing shear strain at 10% axial 

compressive strain. Linear viscoelastic limit of 0.3% is observed where G’ varies by less than 

1.7% on average. 

 

 

Figure 5.6: The average variation of G’ with increasing frequency (0.03 Hz to 20 Hz) at 0.2% 

shear strain attained at compressive strains from 0% to 40%. 
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4.3.4 Stress Relaxation tests 

It was observed that when instantaneous shear strain was applied and kept constant, the transient 

shear stress decreased to an equilibrium shear stress. Incremental increase of the applied 

instantaneous shear strain resulted in higher equilibrium shear stresses. The calculated G(t) was 

observed to decreases with increasing shear strain thus indicating the nonlinear viscoelastic 

behavior of the cornea.   

The equilibrium stress attained from the shear loading and unloading behavior of the cornea 

displayed hysteresis as the equilibrium stress attained at the same shear strain during the loading 

phase was higher than the value attained while unloading shear strain.   

 

Figure 5.7: The average shear stress attained at varying incremental shear strains.   
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A comparison of the average equilibrium shear modulus with the equilibrium compressive 

modulus attained at the same strain increment indicates that at the same thickness the equilibrium 

compressive properties are 8 to 16 times larger than the equilibrium shear modulus. 

Corneal stromas were tested in either oscillatory shear in static or dynamic frequencies, in 

addition to stress relaxation. Shear stress relaxation as well as oscillatory strain controlled static 

and dynamic frequency tests was conducted at 10% compressive strain after applying a tare stress 

of 6.4 KPa. During oscillatory shear tests, it was observed that G’ and G” were constant for 

strains less than 0.3% thus indicating the corneal shear linear viscoelastic limit.  In other soft 

tissues such as the kidney and brain, linear viscoelastic limit is observed to be within 0.1% to 

1%
155, 157, 158

. As observed in previous reports by Soergel et al
114

, increase in oscillation frequency 

or compressive strain was observed to affect the measured shear properties. 

Time dependent shear properties attained from instantaneous shear strain at varying shear strain 

increments displayed an increase in equilibrium shear stress and decrease in G(t) which is also an 

indication of corneal non-linear shear-stress-strain behavior. Hysteresis loop was attained when 

the incremental shear strain was unloaded with a similar incremental strain used during the 

loading protocol.      

The shear viscoelastic properties attained from this study provides experimental data that can be 

used in validation of mathematical models as well as reduce the number of unknowns in such 

numerical models. Elastic, viscous, viscoelastic, and damping parameters of the cornea can be 

attained based on the calculated modulus given as well as curve fitting the experimental results 

presented. Parameters associated with isotropic hyperelastic strain energies such as the short term 

time and long term time shear modulus are provided in this report at varying states of corneal 

thickness. Time dependent stress relaxation parameters such as the long term elastic modulus and 

zero shear viscosity can be attained from fitting stress relaxation data attained at 0.1% strain in 



 
 

the LVL. In addition the use of reduced relaxation function that include short term τ1 and long 

term τ2 time constant as well as the dimensionless spectrum magnitude C, are related to the ratio 

of instantaneous to equilibrium modulus attained form purely intrinsic viscoelasticity
123

. The low 

shear strain amplitude applied at 0.1% stress relaxation results in only intrinsic viscoelasticity 

thus  the ratio of instantaneous to equilibrium modulus G(1)/G(200) = [1+c ln(τ2/τ1)]. Fitting data 

from constant shear rate tests provide damping parameters related to coefficient of viscosity, 

inception of nonlinearity and yield. 

 



 
 

CHAPTER VI 
 

 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

Mechanical properties of corneal stroma were studied using unconfined compression where the 

instantaneous, transient and equilibrium behavior of porcine corneas were characterized at 

varying displacement rates and compressive strains. Results from these tests indicated the 

instantaneous properties were dependent on displacement rate and compressive strain while the 

equilibrium behavior was independent of  the displacement rate.  

An analytical solution of the transversely isotropic biphasic model was used to analyze the 

transient response of the cornea in unconfined compression where tensile modulus and radial 

permeability were attained numerically. This model was able to fit the equilibrium stress 

response; nevertheless, it underestimated the peak stress especially for experiments conducted at 

high displacement rates. The in-lane Young’s modulus, out of plane Young’s modulus and 

permeability of the porcine cornea were estimated as a function of tissue thickness and loading 

rate. The predicted tensile modulus attained was within the range of reported values attained from 

uniaxial testing. Predicted radial permeability was slightly higher than the reported permeability 

of the porcine cornea. 

The transversely isotropic biphasic model was also implemented in a finite element analysis. The 

material properties attained from the closed form solution was used to numerically simulate the 



 
 

corneal behavior in the unconfined compression experiment. Transient stress attained from the 

finite element solution converged to the analytical solution and experimental observation. Static 

and dynamic oscillatory shear were performed and the linear viscoelastic limit of the corneal 

stroma was determined. Frequency was also observed to affect G’ and G” as both values 

increased with increasing frequencies. The application of instantaneous strains followed by 

constant strain period revealed the dissipation of stress with time until stress approached an 

equilibrium stress. Further increase in shear strain increased the equilibrium shear stress value. 

Hysteresis was observed in loading and unloading of the equilibrium shear stress behavior.  When 

axial compressive strain was applied it was observed that the values of G’ and G” attained from 

static and dynamic oscillatory shear experiments increased. This trend was also observed in the 

equilibrium shear stress as well as stiffening of the hysteresis loop. Application of constant shear 

strain revealed the rupture point of the cornea when loaded with varying strain rates as the shear 

stress-strain behavior stiffened with increasing strain rate. 

 

6.2 Future research 

Preliminary studies were conducted to determine the effects of proteoglycans on corneal 

mechanics however these experiments were not conclusive thus additional work is required to 

quantify the possible contributions of proteoglycans on corneal mechanics.  In the preliminary 

work, healthy corneas, and proteoglycan depleted corneas were tested in unconfined compression 

similar to techniques used in chapter 3. Proteoglycan depleted corneas were attained by 

incubating healthy porcine corneas in 0.1 U/ml of chondroitinase ABC enzyme in a reaction 

buffer at 37°C for two different time period; this was done to determine the effects of incubation 

time on the amount of  proteoglycan depleted
147, 159

.   



 
 

The amount of proteoglycans depleted from enzymatic digestion was assessed in a qualitative and 

quantities manner. Qualitative analysis was conducted by histological analysis where sections of 

fresh and proteoglycan depleted corneas were fixed in formalin
160, 161

, sliced and stained with 

toluidine blue dye
162

. Toluidine blue dye reacts with sulfated proteoglycans to produce purple 

coloration, thus proteoglycan depleted corneas would display lower purple intensity in 

comparison to fresh corneas when observed with a microscope. Quantitative analysis was 

conducted by attaining a standard curve of chondroitin sulfate C and toluidine blue at different 

concentrations
163

. Cyclohexane was used to breakdown the chondroitin sulfate complex, the 

mixture was separated and its intensity measured using a spectrometer thus attaining a standard 

curve.  Healthy and proteoglycan depleted corneas were hydrated in OBSS and the washings of 

OBSS attained from these groups of corneas were mixed with toluidine blue, after which their 

intensities were measured. The measured intensity was converted to chondroitin sulfate 

concentration based on the standard curve.  

Quantitative and qualitative analysis displayed the reduction of proteoglycans with incubation 

time and the addition of chondroitinase ABC enzyme, however the reaction buffer was also 

observed to have an effect on the amount of proteoglycans depleted. Changes in mechanical 

behavior were observed with incubation time and the addition of chondroitinase ABC enzyme 

however the effect of incubation time was also observed to affect its mechanical behavior thus a 

conclusion on the effect of proteoglycans on corneal mechanics could not be solely determined.  

Possible suggestions to advance this pilot study could include the use of higher concentration of 

chondroitinase ABC enzyme in order to reduce the incubation time, addition of Dulbecco PBS at 

the end of enzymatic digestion for rinsing purposes
164

 in order to attain higher levels of 

proteoglycan depletion. In addition, Papain
165-167

 could also be used to determine the amount of 

proteoglycans in the cornea instead of the amounts of proteoglycans extruded from the cornea.  



 
 

In the current study, results attained from static and dynamic oscillatory shear stresses, shear 

stress relaxation and shear viscometry were not modeled, furthermore these results highlights the 

notion of intrinsic viscoelasticity especially for experiments conducted at small amplitude shear 

strain where the flow of fluid does not affect the viscoelastic behavior of the cornea. This 

indicated the need for the addition of intrinsic viscoelasticity to the flow dependent viscoelasticity 

displayed by the transversely isotropic biphasic model.  

The dynamic shear properties attained in this study were confined to the limits of linear 

viscoelasticity while in real world shear stresses applied to the cornea could exceed this limit thus 

large amplitude oscillatory shear studies need to be conducted to characterize dynamic response 

of the cornea to large strains. 
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