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Abstract: Rock physics models are mathematical relations between porosity, composition 

and elastic properties of a rock. Unlike in conventional silisiclastic rocks where seismic-

to-rock properties are predicted successfully by rock physics models, their application in 

unconventional reservoirs such as shale, hydrate and carbonates is not fully understood. 

In light of the vast untapped potential of unconventional resources, their exploration will 

be easier if a suitable rock physics models become available for quantitative 

interpretation of seismic data. In this thesis generic, rock physics models that were 

developed for conventional siliciclastic systems have been used to infer rock properties 

such as porosity, composition, fluid saturation and pore pressure in shale, gas hydrates 

and carbonates. Results indicate that elastic properties of these rocks including shale and 

gas hydrates which can be viewed as grain assemblages can be best predicted by Hashin 

Shtrikman bounds. For rocks with non-spherical pores and a rather unified matrix such as 

carbonates where grain-to-grain contacts are not very clear, the Kuster and Toksoz model 

provide a good description of their dry elastic properties.  
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CHAPTER I 

 

 
 

INTRODUCTION 

Hydrocarbon reservoirs can be generally divided into two categories, ‘conventional’ and 

‘unconventional’ (Zou et al., 2013). The term “unconventional” refers to reservoirs where 

development demands advanced engineering such as gas/steam injection, hydraulic fracturing and 

horizontal and multilateral well placement (Seljom, 2010). The exact definition of an 

unconventional reservoir is lacking but it seems like the categorization is technology dependent 

(Gordon, 2012). It is possible that as the newer technologies become more and more mundane, 

certain reservoirs may move from the unconventionals to the conventional category in the near 

future (McGlade et al., 2013).  Although more than two-third of worldwide hydrocarbon reserves 

can be accredited to unconventionals (Figure 1), extreme caution is required in their development 

due to their high-risk nature (Cipolla et al., 2011). At present, unconventional reservoirs are 

divided into seven main categories: tight-sandstone, coalbed methane, shale, carbonate, 

metamorphic rocks, heavy oil and bitumen, and gas hydrate (Zou, 2012). This classification is 

generic and varies from one company to another.  

Unconventional resources such as the Woodford Shale and the Mississippian limestone are 

greatly sought after in the mid-western United States. Geophysics has not played a strong role in 

development of these reservoirs. The location (depth and spatial extent) of these reservoirs is 

known from decades of developmental work related to other conventional reservoirs in the area. 

Lately operators have started realizing that reservoir heterogeneity significantly effects 
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production economics and a detailed understandings of reservoir conditions is required before 

landing the well. Seismic data can serve the needs (Rich and Ammerman, 2010), their velocities 

contains important information about the petrophysical properties of the rock. However, methods 

to translate seismic velocities into rock and fluid properties in shales and carbonates are not well 

developed.  

Research on development of unconventional gas hydrate reservoirs are being actively pursued by 

many countries including the United States. Gas hydrates are deposits of frozen gas in the near-

seafloor sediments. In oceans, the geothermal gradient and seafloor depth define a zone of 

stability (gas hydrate stability zone; GHSZ), within which gas, mostly methane, can exists with 

water in crystalline arrangements (Buffett, 2000). Growth habits of hydrate within the GHSZ are 

varied: in coarse-grained sediments, they can reside in pore-spaces, support the sediment 

framework as load-bearing grains, or bind the sediment grains as cement; in fine-grained 

sediments, they can create or occupy veins and fractures; on or near the seafloor they can form 

massive mounds (Kvenvolden, 1994; Max, 2003). As a solid, 1m3 of hydrate can contain up to 

164m3 of methane at Surface Temperature and Pressure (STP) (Sloan and Koh, 2007), which is 

viewed as a potent greenhouse gas as well as a source of energy (Svensen et al., 2004), energy 

resources (Collett, 2002), and seafloor stability (Rothwell et al., 1998). The most common way of 

locating a GHSZ is finding high seismic velocity zones that end at a high reflection interface 

(known as the Bottom Simulating Reflection, BSR), which is created when the hydrate becomes 

unstable and changes to the gas phase.  Like other unconventional systems, estimating 

petrophysical properties of hydrate from seismic data is in an exploratory stage. 

1.1 Use of seismic data in unconventional reservoirs 

Beyond using seismic data for time/depth mapping it is not uncommon to design need based 

analysis methods for more quantitative facies identification. Ebrahimi and Jaiswal (2014) used a 
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directional filter on seismic cross-section images of the Fareo-Shetland basin to enhance sub-

basalt dipping stratigraphy. Ebrahimi et al. (2014) integrated different seismic attributes (such as 

curvature, similarity, polar dip, RMS) using Geographic Information Systems (GIS) to highlight 

fracture systems within a sandstone reservoir in Venezuela. Bahorich and Farmer (1995) used the 

coherence attribute to reveal a fault surface where there is not any fault plane reflections within a 

3D seismic data. Lonergan and Cartwright (1999) used the contrast in density of faults within 

different subdomains to explore subtle sandstone targets in mudstone-dominated deep-water 

systems of Alba Field. Barber and Marfurt (2010) used Sobel filter and spectral decomposition to 

highlight otherwise unresolvable depositional sandstone channels in the Anadarko Basin in west-

central Oklahoma.  

Besides mapping and facies classification, seismic data have also been used for extracting 

petrophysical properties of reservoirs. However, examples are mostly of in conventional 

sandstone formations. For example, Ryseth et al. (1998) used 3D seismic data integrated with 

geological well data (thickness and depositional systems of geological formations) to correlate 

elastic velocities and sandstone proportion within the Ness Formation in the Oseberg field. Hamdi 

and Smith (1982) established  a model based on Biot’s equation to predict permeability of a 

seafloor sediment using a wide range of seismic velocities; Biot’s equation describes the change 

in bulk volume by changing pore pressure  (Biot, 1955). Eberhart-Phillips et al. (1989) designed 

laboratory experiments on sandstone rocks and found an empirical relation between seismic 

velocities and rock characteristics such as effective pressure1, porosity and clay content. Although 

their equation cannot exactly describe the sonic velocities of all sandstone samples, the fit is 

reasonable and may help to estimate sonic velocities. Domenico indicated that Poisson’s ratio 

(division of lateral expansion to axial compression under uniaxial compressional stress (Gercek, 

2007), which has direct relation with the ratio of compressional to shear waves (Vp/Vs)) of rocks, 

                                                           
1 difference between confining pressure and pore pressure 
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depends on their mineralogies. Since dominant mineralogy in sandstone and limestone are 

respectively quartz and calcite, he used their Poisson’s ratios to distinguish them. He also found 

an empirical formula to relate sonic velocities to porosity.  

In addition to matrix composition, pore fluid also affects the sonic velocities. Standard condition 

of the reservoir conditions (pressure, temperature, and water salinity) change pore fluids’ elastic 

moduli and eventually vary the elastic moduli and elastic velocities of the whole rock. 

Gassmann’s equations contribute in finding the amount of changes in elastic velocities and  bulk 

density due to fluid saturations under reservoir condition (Gassmann, 1951; Kumar et al., 2006). 

Despite the popularity of Gassmann’s equations in interpretating seismic data, they will not 

provide the exact solution due to their several assumptions including: 1) equilibrated pore 

pressure between pores, 2) isotropic1 porous material with a single solid material 

(monomineralic), 3) homogeneous and well-connected pores which are fully filled with a 

nonviscous fluid, 4) system is undrained or closed, 5) no reaction between fluids and rock frame 

(Adam et al., 2006). Due to the first assumption, his equations are not valid for high frequency2 

(>100 HZ) waves. Because after propagating high frequency waves, the fluid within porous 

media does not have to be relaxed or equilibrated (Mavko et al., 2009).  

 Petrophysical properties and rock composition can be related to their elastic velocities more 

generally using mathematical models collectively known as Rock Physics (Eberli et al., 2003; 

Mavko et al., 2009). Applying appropriate rock physics models in each type of rock enables 

seismologists to quantitatively interpret sonic velocities from seismic surveys and sonic logs 

(Avseth et al., 2005; Dai et al., 2004; Jaiswal et al., 2014). In this project, rock physics models 

that were designed for conventional systems can also be applied to many unconventional systems. 

                                                           
1 Segments showing the same responses when measured 

2 Rate of occurrences of a repeating event per unit time 
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This is demonstrated using data from a) the Woodford Shale in the McNeff 2-28 Well, Grady 

County, Oklahoma; b) gas hydrate deposits from NGHP-01-10, Krishna-Godavari Basin, India; 

and c) Mississippian carbonate reservoirs from the Blackbird 4-33, Osage county, Oklahoma.  
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CHAPTER II 
 

 

BACKGROUND 

The ultimate goal of constructing a mechanistic models of rocks is to be able to replicate their 

field seismic velocities. As opposed to data-based empirical relations, mechanistic models are 

physics-based and have better predictive abilities. The best example is the Wyllie et al. (1958) 

time average equation which was developed for conventional siliciclastic rocks. Sholl and Hart 

(1993), Wood et al. (1994), and  Korenaga et al. (1997) successfully applied Wyllie’s equation to 

estimate gas hydrate saturation in sand. Although Wyllie’s equation was useful, its physical basis 

is weak; it cannot be justified under high or low porosity (Dvorkin and Nur, 1998) or highly 

heterogeneous material with near-zero permeability (Bathellier et al.; Goodway et al., 2010; 

Koesoemadinata et al., 2011).  

2.1 Rock physics basics 

Rock physics refers to a sub-discipline which deals with mathematical expressions that relate 

elastic velocities with composition and petrophysical properties of rocks. The elastic velocities 

have two main dependents – bulk density and elastic moduli (Equation 1). Elastic modulus is a 

measure of resistance that a material offers against deformation by an external force, such as the 

propagating seismic wavefield. Mechanically, two types of moduli can be defined. First is the 

bulk modulus and second is shear modulus, which is also known as the modulus of rigidity. 

Respectively, they are the strength of a material against distortion by uniform pressure and shear 

stress (Fossen, 2010; Price and Cosgrove, 1990). Elastic moduli of a porous rock depend on a 
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number of parameters such as their mineralogical composition, porosity and grain shape and their 

connectivity; of these, porosity is the most dominant property. 
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Eq. 1 

In Equation 1, Vp is compressional velocity, Vs: shear velocity, K: bulk modulus, G: shear 

modulus, 𝜌: density 

From a rock physics perspective, for a multi-mineral rock, the following are needed for 

estimation of their elastic velocities: (1) fractions of different phases (minerals and pore fluids) 

inside the mixture; (2) the elastic moduli (bulk and shear modulus) of individual phases, and (3) 

the arrangement of these phases related to each other (Mavko et al., 2009).  Grain arrangement is 

a critical factor for rock properties. Sometimes, it is the geometric arrangement of the grains 

which can separate an unconventional reservoir from a conventional one even though the 

mineralogy may remain the same. The geometric arrangement, i.e., grain packing also controls 

the porosity. In Figure 2, representative grain arrangement are shown for one conventional and 

three different unconventional rock types considered in this thesis. Figure ‘a’ to ‘d’ respectively 

present homogenous, inhomogeneous, gas hydrate saturated and carbonate rocks and their 

schematic diagrams are shown in the same order from ‘e’ to ‘h’. As depicted in the Figure 2.a, 

within a homogenous rock all grains have almost the same size. However, as shown in the Figure 

2b, the shale rock has minerals with different dimensions. In Figure 2c, the gas hydrate is acting 

like an additional mineral grain in the matrix. In Figure 2d, the carbonate rock appears as having 

a frame (as opposed to grains juxtaposed against each other) with several types of pore shapes. In 

the context of rock physics, it is not possible to incorporate material heterogeneities “as is” in a 

mathematical model. The key is to simplify grain arrangement while honoring the dominant form 

of heterogeneity at the same time. 
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Although there are a number of ways to estimate the elastic moduli of a rock for a given porosity 

(Mavko et al. 2009), in context of this paper the Hashin-Shtrikman (HS) bound are most relevant. 

For a given porosity, depending on how easily the pores can be deformed, i.e., whether they are 

soft or tight, the HS bounds provide the maximum and the minimum possible rock stiffness. 

Application of HS bounds assume that the rock is isotropic and quasi- homogeneous. Isotropy 

implies that deformation (strain) is the same in all directions for the same stress. Quasi-

homogeneous implies an individual element is representative of the group material properties. 

The concept of quasi-homogeneity is best illustrated by assuming that the material is comprised 

of multi-dimensional spheres that pack the space completely. Each sphere consists of an outer 

shell which surrounds an inner sphere is composed of a different material. The volumetric ratio of 

the two material is constant in all spheres (Figure 3). When the outer shell is a softer material, it 

can be shown using the continuum mechanics that the deformation is large for the same stress 

than at higher porosity. This simulates a rock with minimum possible stiffness and the 

deformation corresponds to presence of “soft” pores. The trajectory created in the moduli-

porosity space with this material configuration yields the lower HS bound. Similarly the upper 

HS bound can be conceived (Figure 4).  

HS bounds are used for grain mixing under different types for pore conditions. For example, 

when sediments are uncompacted, such as in the near-surface setting (marine or terrestrial), the 

pores are easily deformable. The lower HS bounds can be used to simulate such rock conditions 

(Helgerud 1999). On the other hand when the sediments are deeply buried and compacted, they 

are lithified and the pores are tight and the upper HS bounds can be used (Mavko et al., 2009). To 

illustrate the application of rock physics on unconventional reservoirs, three well-log datasets are 

being used in this research with the goal of replicating the observed elastic velocities (VP and VS) 

using mechanistic grain and fluid arrangements. The datasets are from a) Woodford Shale 

reservoir, McNeff 2-28 well in Grady County, OK; b) hydrate bearing reservoirs from NGHP-01-
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10, Krishna-Godavari Basin, India; and c) Mississippian carbonate from the Blackbird 4-33, 

Osage County, Oklahoma.   

2.2 Shale Reservoirs: 

Shale could be hydrocarbon-rich fine- to very fine- grained sedimentary rock (Grainger, 1984) 

with extremely low permeability. As in the case of siliciclastic reservoirs, where sonic velocities 

from dipole logs and field surveys can be mapped to their composition and petrophysical 

properties, whether the same can be done in shale is not fully explored (Peebles, 2012). In 

contrast to siliciclastics, experimental studies in shale are not straightforward mainly due to small 

particle size of matrix constituents and ease of reaction with materials which are commonly used 

for lab measurements (Handwerger et al., 2011; Josh et al., 2012; Kuila and Prasad, 2013). 

Predicting shale rock properties with seismic has been a long-standing challenge (Dowdell et al., 

2012; Sukmono, 2010). The key character of the shale reservoir under investigation in this study 

is its heterogeneity and compact nature.  

Most shales are fairly heterogeneous compositionally. They are contain of quartz, clays, 

carbonates, feldspars, apatite, pyrite, and organic matter (OM) in varying proportion. From a rock 

physics perspective, the most peculiar type of heterogeneity is the OM which can appear in many 

styles within the rock.  It can appear as a very thin lamina between grains due to post-depositional 

compaction or as residue from oil migration (Curtis et al., 2012a; Sondergeld et al., 2010). They 

are also found to be encasing small particles of inorganic matter (Curtis et al., 2012b). Recent ion 

beam milling and scanning electron microscopy (SEM) discovered that OM also has internal 

porosity which may or may not be connected to the rock porosity, thus serving as a source of 

secondary porosity (Dahl et al., 2012; Loucks et al., 2009; Reed et al., 2012). Pores within the 

OM can contain free oil and gas (Jarvie, 2012). While other components in a shale rock can be 

clearly classified belonging to the solid matrix or the pore-fluid, it is not very clear from literature 
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how OM needs to be treated. Thus, the key to a successful rock physics modeling in shale is 

being able to appropriately place the OM within the rock (Kleineidam et al., 1999).  

The Woodford Shale investigated in this study is from 10,280ft to 10,450ft. At that depth it is 

expected to be highly compacted, implying that the pores are stiff and that a change in 

overburden pressure may not severely alter the porosity as for the unconsolidated rocks. The 

moduli-porosity relation for compacted rocks can be best approximated by the upper HS bounds, 

also known as the stiff sand model. Till now, the stiff sand model has been generally applied to 

isotropic and consolidated (under confining pressure) sandstones which are expected to comprise 

randomly-packed spheres with well connected pores. The Woodford Shale is siliceous in nature. 

An SEM image of the Woodford Shale from a location near the McNeff well (Caldwell, 2012) 

supports that kind of grain arrangement.  

2.3 Gas Hydrate Reservoirs: 

Gas hydrates are ice-like substances that contain gas molecules held by cages of water molecules 

that are stable within a short range of pressure and temperature. It has been estimated that over 15 

trillion TOE (Tons of Oil Equivalent) of gas hydrate exists on our planet (Makogon and 

Cieslewicz, 1981). The pressure-temperature stability field for hydrate exists in marine and 

permafrost environments (Kvenvolden, 1993; Makogon and Cieslewicz, 1981). Hydrates 

precipitates from an oversaturated solution. Therefore, depending on the availability of space and 

ease of reactions, they have many different forms.  Within coarse-grained sediments, they can be 

suspended in the pore fluid (Kida et al., 2009), hereafter referred to as the pore-filling model, or 

act like an additional mineral grain in the matrix (Winters et al., 2004), referred to as the load-

bearing model. They can also develop as cement at grain contacts (Dvorkin and Nur, 1996). In 

fine grained sediments, hydrate can also create and fill fractures (Daigle and Dugan, 2010b; 

Hutchinson et al., 2008) or develop as nodules (Bohrmann et al., 1998).  
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Regardless of their accommodation style, presence of gas hydrates within a rock increases the 

elastic velocities. The increase depends on both the form of the hydrates and their saturation 

(Jakobsen et al., 2001). In the literature, effects of hydrate in pores and matrix and as cement on 

elastic velocities has been adequately addressed (Dvorkin and Nur, 1996; Dvorkin et al., 1994; 

Helgerud et al., 1999). However, the effect of hydrates in fractures on elastic velocities is 

somewhat less understood although it is found widely in nature. The main reason is difficulty in 

reproducing this growth style in physical scale experiments. In particular, this growth style was 

found in the Krishna Godavari (KG) basin, where one of the biggest hydrate discovery was made. 

The hydrate were found in fractured sediments. Till now, at least three different mechanistic 

models (Cook et al., 2010; Ghosh et al., 2010; Lee and Collett, 2009) have been proposed to 

explain the elastic velocities. None of them could simultaneously match the velocities and the 

saturation. However, using a combination of two rock physics models, loadbearing and HS, it can 

be shown that the elastic velocities and the saturation are appropriately predicted.   

2.4 Carbonate Reservoirs: 

Carbonate rocks are a category of sedimentary rocks which contain carbonate minerals such as 

calcite (CaCO3) and dolomite (CaMg(CO3)2) (Palaz and Marfurt, 1997). More than 50% of oil 

and gas in the world is produced from carbonate reservoirs (Xu and Payne, 2009). Application of 

seismic in quantitative interpretation of carbonate reservoirs is still in an exploratory stage. The 

main reason is because the relation of rock composition to sonic velocity in carbonates is not well 

understood (Xu and Payne, 2009). For example, in siliciclastic rocks, increasing porosity 

decreases sonic velocity (Mavko et al., 2009), but in carbonates the porosity-velocity relationship 

is not linear. Anselmetti (2001) shows that at 40% porosity in naturally occurring  carbonate 

systems, VP can range from 2.5 km/s to 5 km/s. In addition to common rock properties such as 

porosity and fluid saturation, the pore shapes severely affect seismic velocities in carbonate rocks. 
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Carbonate porosity can be generated before, during, or after deposition (Scholle and Foundation, 

1978). In carbonates there are many subgroups of porosities such as moldic, vuggy, intraparticle 

(within particles) and interparticle (between particles) as shown in Figure 5 (Bathurst, 1972; 

Scholle and Foundation, 1978). From rock physics point of view, the major difference of 

porosities is their shape.  

Through many experimental and theoretical research, it has been proven that pore shapes 

(geometry) influence sonic velocities (Anselmetti, 2001; Cheng and Toksöz, 1979; Eberli et al., 

2003; Kuster and Toksöz, 1974a; Sayers, 2008; Toksöz et al., 1976; Wang et al., 1991; Xu and 

Payne, 2009; Xu and White, 1995). Eberli et al. (2003) pointed out that porosity-velocity 

relationship is very different for rocks with different pore spaces such as micro, moldic and 

intercrystal pores. Laboratory experiments show that caves in carbonate rocks do not have any 

contribution to sonic velocity change due to their high rigidity. However, micro-pores or cracks 

significantly decrease sonic velocities due to their low rigidity (Wang et al., 2011). Rocks with 

rounded pores such as moldic and vuggy pores, generally have higher velocities than rocks with 

flat pores such as microcracks or penny shape pores (Xu and Payne, 2009). Most rock physics 

models assume spherical grains and homogeneous pore system for the rocks. The key in 

carbonate petrophysical modeling is to account for the pore shapes. Since pore shapes are more 

complex in carbonate rocks than in clastic rocks, developing an appropriate rock physics model 

for carbonate rocks is extremely difficult (Xu and Payne, 2009).  

Beside the pore shape, as an undeniable factor in interpreting sonic velocities in carbonate, there 

could be some other factors such as: 

1) Type of cementation. There are different types of cements in carbonates such as 1) meniscus 

which is only found at grain contacts, 2) isopachous, which grows along entire grains. The 

presence of different types of cements in the rock has different influences on stiffness of the rocks 
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and their sonic velocities. Thus, the type of cementation, should be considered at the time of 

analyzing sonic velocities (Scholle and Foundation, 1978). 

2) Micrite content. High micrite content (low grain to micrite matrix ratio) typically indicates a 

low energy environment. These rocks are relatively very stiff and impermeable. On the other 

hand, lower percentage of micrite (high grain to micrite matrix ratio) which can be found in the 

rocks due to the higher energy of the depositional systems, or removing it from intergranular 

macropores by progressive leaching of the matrix, will cause increasing porosity and reducing 

rock stiffness. Subsequently, this will decrease sonic velocities. There is a correlation between 

decreasing micrite and increasing macroporosity. As microporosity within micrite does not 

significantly contribute to fluid flow, the permeability of the rocks increases with increasing 

macroporosity. It can be concluded that there should be a connection between sonic velocities and 

the content of the microcrystalline matrix (Vanorio and Mavko, 2011).  

3) There are some isolated micropores within the rock mass and also within insitue OM (Scholle 

and Foundation, 1978; Slatt and O'Brien, 2011). As mentioned earlier one of the assumptions of 

Gassmann’s equations is having well-connected pores which are fully filled with a nonviscous 

fluid. Although Gassmann’s equations are approved and well known for considering effect of 

pore fluids on sonic velocities, they are not completely correct. This problem is not unique to 

carbonate rocks. However, it is more significant in carbonates compared to other siliciclastic 

rocks due to existence of vast variety of pores types in them.  

 

 



14 
 

 

 

 

 

 

CHAPTER III 
 

 

METHODS 

Rock physics combines empirical and theoretical relationships to connect intrinsic rock properties 

such as mineralogy, porosity, pore shape, pore fluid, and pore pressure, to their elastic moduli and 

subsequently elastic velocities (Mavko et al., 2009; Sayers, 2013). For purposes of seismic 

exploration, it is important to compute elastic velocities of saturated rock as a function of their 

porosity, . Through rock physics it can be achieved in two steps. In the first step, the elastic 

moduli of dry/drained rock and pore fluids are estimated separately. In the second step they are 

merged using a substitution method such as Gassmann’s substitution (Mavko et al., 2009).  

3.1 Dry/Drained Rock Moduli 

3.1.1 End Member   

To express dry rock moduli as a function of , first their end member values, i.e., at minimum 

(zero) and maximum (critical1)  are needed to be computed. At zero porosity moduli are 

computed by Hill’s average (Equation 2) (Mavko et al., 2009).  
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In Equation 2, m: number of minerals within solid rock; 𝑓i , 𝐾𝑖 and 𝐺𝑖  are: volumetric fraction, 

bulk modulus and shear modulus of ith mineral, respectively. 

                                                           
1 Porosity at which the mineral grains starts to become suspended within the pore fluid 
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At critical porosity and hydrostatic pressure, elastic moduli are calculated by the Hertz-Mindlin 

method (Mavko et al., 2009) (Equation 3), which expresses the effective bulk and shear moduli of 

random sphere packing through porosity, sphere radius, normal and tangential stiffnesses, and 

coordination number. The average number of contacts per grain, known as coordination number, 

typically varies from 5 to 9 in sedimentary rocks (Mavko et al., 2009). 
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In Equation 3, n: coordination number; P: the hydrostatic pressure; G is the shear modulus of the 

solid phase, and  is the Poisson’s ratio of solid phase defined as: 

𝜈 = 0.5
𝐾−2 3⁄ 𝐺

𝐾+1 3⁄ 𝐺
          4 

3.1.2 Intermediate  

Elastic moduli of the dry rock as a function of  between the two end-member cases vary in a 

variety of ways. In this project, the broad categories of variations are: 1) pore-shape independent, 

and 2) pore shape dependent models. In the first category, as the name suggests, the elastic 

moduli of the rocks are just dependent on the value of  and not their geometry. In the second 

category the shape of the pores matter. 

3.1.2.1 Pore Shape Independent Models 

a) Stiff and Soft Pores 

The generic classification in this category is based on the behavior of pore shapes under external 

pressure. For example, when the material is unconsolidated, small increases in the overburden 

pressure may lead to rather large reductions in pore volume and increase in moduli. This may be 
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true for well-consolidated rocks, where the reduction in porosity is more proportional to the 

overburden pressure. If the pores are easily deform under stress field, the pores are referred to as 

“soft”, otherwise they are referred to as “stiff.”  

The behavior of rock with “stiff” or “soft” pores can be respectively modeled using the upper and 

lower HS bounds, where the rock is assumed as a dense random pack of identical spherical grains 

at critical porosity.  

The generalized elastic moduli for stiff pores for  < c is given by:  
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In Equation 5, Z is:   
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The generalized elastic moduli for soft pores for  < c is given by:  
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For soft pores, the effective  can exceeds c. In such a case, the generalized elastic 

moduli can be expressed as: 
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In equations 7-8, Z is: 
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b) Floating pores 

In special geological cases, such as for hydrate-bearing sediments, both stiff and soft pores can 

simultaneously exist in the rock. For example, when hydrate fills an interconnected set of 

fractures, it can be viewed as forming a stiffer shell which includes the softer, host sediments. 

Similarly, when hydrate fills a set of disconnected fractures, it can be viewed as a stiffer 

inclusion. The elastic behavior of the rock can then be modeled using a combination of lower and 

upper HS bounds. The rock can be assumed to comprise two closed systems: 

 
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑟𝑜𝑐𝑘 
𝑤𝑖𝑡ℎ 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

 

{
 
 

 
 
1. 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑎𝑡𝑟𝑖𝑥                                                           
(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑝𝑜𝑟𝑒 𝑠𝑝𝑎𝑐𝑒𝑠 𝑎𝑛𝑑 𝑓𝑙𝑢𝑖𝑑 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

2. 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚                                                                         

(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑓𝑙𝑢𝑖𝑑 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠)                                   

 

Further, it is assumed that the two closed systems do not interact with each other. The pores 

within the first closed system, the background matrix, could be independently treated as stiff or 

soft depending on the state of their consolidation. Using either of the models, the bulk and shear 

moduli of the saturated background matrix can be estimated. The saturated background matrix 

can then be mixed with the fracture system using the lower or upper HS bound. An additional 

complexity in hydrate-bearing fractures is that they are also saturated partially with fluids. As a 

result, overall, the rock has three components:  
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Components of whole rock 

{
 
 

 
 
1. saturated background matrix 

2. hydrate within the fractures   

3.  brine within the fractures      

 

When the stiffest component of these cases is assumed to form the outer shell for a Hashin type 

assemblage, the pores are in their stiffest possible state. On the other hnad, if the softest 

component of these cases is assumed to form the outer shell for a Hashin type assemblage, the 

pores are in their softest possible state. The formulation is as follows: 
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In Equations 10-12, i is the number of rock components. f, K and G present the volumetric 

fraction, bulk modulus, and shear modulus of each component, respectively. Subscribes ‘min’ and 

‘max’ refers to minimum and maximum elastic modulus of the three above-mentioned 

components.  

3.1.2.2 Pore Shape Dependent  

Experimentally, it has been found that when pore shapes are spherical, the elastic velocities are 

higher compared to when they are oblate (Anselmetti et al., 1997; Eberli et al., 2003; Sayers, 

2008; Xu and Payne, 2009; Zhao et al., 2011). Being able to account for the pore shapes becomes 

important in rocks such as carbonates. Here a set of models proposed by Kuster and Toksöz 
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(1974a) are being tested, mainly due to the models’ flexibility in accounting for pore shapes. 

These models assumed that the rock is isotropic, the porosity is low and pore shapes are idealized 

ellipsoidal. In this model, the spherical pores present almost the same sonic velocities as the 

upper HS model does but it is limited to low porosities (Berryman, 1980; Kuster and Toksöz, 

1974a). Bulk (𝐾𝐾𝑇) and shear (𝐺𝐾𝑇) moduli of Kuster and Toksoz model are expressed by 

Equations 13 and 14.  

(𝐾𝐾𝑇 − 𝐾𝑚)
(𝐾𝑚+

4

3
𝐺𝑚)

(𝐾𝐾𝑇+
4

3
𝐺𝑚)

= ∑ 𝑥𝑖(𝐾𝑖 −𝐾𝑚)𝑃
𝑚𝑖𝑁

𝑖=1       13 

(𝐺𝐾𝑇 − 𝐺𝑚)
(𝐺𝑚+

4

3
𝜁𝑚)

(𝐾𝐾𝑇+
4

3
𝜁𝑚)

= ∑ 𝑥𝑖(𝐺𝑖 − 𝐺𝑚)𝑄
𝑚𝑖𝑁

𝑖=1        14 

In Equations 13 and 14, the subscript m and i represents background and pore fluid materials; The 

summation is over fluid types with volume concentration 𝑥𝑖; 𝜁 is computed by Equation 15.  

𝜁 =
𝜇

6

(9𝐾+8𝐺)

(𝐾+2𝐺)
           15 

In Equation 15, K and G are bulk and shear modulus of the rock at zero porosity, respectively and 

𝑃𝑚𝑖 and 𝑄𝑚𝑖 represents the effect of the ith pore fluids within a background matrix, m (Table 1).  

Table 1. 𝑃𝑚𝑖 and 𝑄𝑚𝑖 for some specific pore types(Berryman, 1995) 

Pore Shape 𝑃𝑚𝑖 𝑄𝑖 

Sphere 
𝐾𝑚 +

4
3
𝐺𝑚

𝐾𝑖 +
4
3
𝐺𝑚

 
𝐺𝑚 + ζ𝑚
𝐺𝑖 + ζ𝑚

 

Needle 
𝐾𝑚 + 𝐺𝑚 +

1
3
𝐺𝑖

𝐾𝑖 + 𝐺𝑚 +
1
3
𝐺𝑖

 
1

5
(

4𝐺𝑚
𝐺𝑚 + 𝐺𝑖

+ 2
𝐺𝑚 + 𝛾𝑚
𝐺𝑖 + 𝛾𝑚

+
𝐾𝑖 +

4
3
𝐺𝑚

𝐾𝑖 + 𝐺𝑚 +
1
3
𝐺𝑚

) 

Penny Shape 
𝐾𝑚 +

4
3
𝐺𝑖

𝐾𝑖 +
4
3
𝐺𝑖 + 𝜋𝛼𝛽𝑚

 
1

5
(1 +

8𝐺𝑚
4𝐺𝑚 + 𝜋𝛼(𝐺𝑚 + 2𝛽𝑚)

+ 2
𝐾𝑖 +

2
3
(𝐺𝑖 + 𝐺𝑚)

𝐾𝑖 +
4
3
𝐺𝑖 + 𝜋𝛼𝛽𝑚

) 

𝛽 = 𝜇
(3𝐾+𝐺)

(3𝐾+4𝐺)
,   𝛾 = 𝜇

(3𝐾+𝐺)

(3𝐾+7𝐺)
,   ζ =

𝐺

6

(9𝐾+8𝐺)

(𝐾+2𝐺)
 

3.2 Fluid Moduli 

The bulk modulus of fluid changes under pressure and temperature gradients which can be 
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computed by Batzle and Wang (1992) empirical formulas. In presence of different pore fluids 

within the pore spaces, the total bulk modulus of fluid (𝐾𝑓) is expressed by:  

1

1

/
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16  

In Equations 16, 𝑆𝑖 and 𝐾𝑖 represents the saturation and bulk modulus of ith fluid component.  

3.3 Saturated Rock Moduli 

Gassmann’s substitution is a tool to compute elastic moduli of saturated rock. Although the 

Gassmann’s substitution is independent of pore geometries, it has several underlying assumptions 

including 1) isotropic rock and homogenous mineral moduli, 2) no interaction between rock and 

fluid, which means diagenetic processes, such as cementation and dissolution, do not increase or 

decrease the porosity of the rocks, 3) connected pores, which cause an equilibrium pressure, a 

uniform distribution of the fluid within pore spaces, and 4) a closed system, which results in no 

fluid movement across the boundaries. Further, Gassmann’s equations are generally valid in the 

low (seismic) frequency range, because low frequency gives enough time for relaxation of the 

disturbed fluid within the pores. Error in Gassmann’s analytical methods is generally thought to 

increase at ultrasonic (logging) frequencies (Al-Khateb, 2013; Avseth et al., 2005; Berryman, 

1999; Kumar et al., 2006; Mavko et al., 2009), however Røgen et al. (2005) and Adam et al. 

(2006) have also shown that it may not be necessarily true unless the rock has a preferential 

fabric. The saturated moduli is expressed as: 
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In Equation 17, KDry and GDry are the dry rock moduli; K is the bulk modulus of the solid phase at 

zero porosity; and 𝐾𝑓 is fluid modulus.  
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3.4 Sonic Velocities  

Estimation of elastic velocities requires estimation of both elastic moduli and bulk density (𝜌𝑏), 

which is expressed as:  

fsb   )1(           18 

In Equation 18,  is porosity, 𝜌𝑠 and 𝜌𝑓 are respectively matrix and fluid densities. 𝜌𝑠 and 𝜌𝑓 are 

expressed by Equations 19 and 20: 
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Batzle and Wang (1992) empirical formulas are used to calculate fluid density under reservoir 

pressure and temperature.  

Here, both saturated and dry rock velocities are being modeled. The saturated rock data is 

acquired in-situ in the field using well logs. The dry rock data are acquired from the outcrop 

samples. For their respective sets, the elastic velocities are expressed as:  

𝑉𝑝 = √
(𝐾𝐷𝑟𝑦 𝑜𝑟 𝑆𝑎𝑡 +

4

3
𝐺𝐷𝑟𝑦 𝑜𝑟 𝑆𝑎𝑡)

𝜌𝑏
⁄

        
21 

𝑉𝑠 = √
𝐺𝐷𝑟𝑦 𝑜𝑟 𝑆𝑎𝑡

𝜌𝑏
⁄  
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CHAPTER IV 
 

 

RESULTS 

In this project, applications of rock physics models in quantitative interpretation of sonic 

velocities are demonstrated in three unconventional reservoirs, 1) Woodford Shale from McNeff 

2-28 Well, Grady County, Oklahoma, 2) gas hydrate from Krishna-Godavari Basin, and 3) 

Mississippian carbonate from the Blackbird 4-33, Osage County, Oklahoma. In this chapter, 

reasons of applying the stiff model, the combined stiff and soft model, and the Kuster and Toksoz 

model, respectively, to the above-mentioned reservoirs are explained.  For the first two reservoirs, 

data have been acquired under saturated conditions. These data includes well logs such as dipole 

sonic, density and porosity logs. For the third reservoir, data have been acquired under dry 

conditions. These data include sonic velocities at ultrasonic frequencies, SEM, XRD, and bulk .  

Parameters such as mineralogy, porosity, and pore shapes are inputs to the rock physics models, 

which output the sonic velocities. To check the validity of the rock physics models, the inputs and 

outputs of the models are compared with the field and laboratory data. 

4.1 Woodford Shale as Stiff Pore System 

a) Data  

The Woodford Shale under investigation is from the McNeff 2-28 well, Grady County, 

Oklahoma. Available logs include dipole sonic and density and neutron porosity. The depth of 

Woodford Shale in the McNeff 2-28 well is from 10,280ft to 10,450ft. Due to the buried depth 

and confining pressure, the Woodford Shale is assumed to be a stiff pore system. Application of 
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the stiff sand model is tested to quantitatively interpret sonic velocities obtained from the dipole 

sonic log.  

b) Rock Physics Context 

Photoelectric factor value, X-ray diffraction and gamma ray information show that quartz, calcite, 

and illite  are the three dominant components of the Woodford Shale (Caldwell, 2011; Jarvie, 

2008). Petroleum industry databases such a production data from the Oklahoma City Geological 

Society Library provide data that indicates gas and brine are the dominant fluids of the formation. 

Further, the Woodford Shale of the McNeff 2-28 well is enriched by OM. Placing the OM as part 

of pore fluid or rock matrix is extensively explored in this study. 

c) Synthetic Model  

To illustrate the effect of different individual factors such as porosity, mineralogy, and fluid 

saturation of the Woodford Shale on sonic velocities, a synthetic model is designed. The synthetic 

model is a base section with thickness of 170ft (52m, equal to the thickness of Woodford Shale in 

McNeff 2-28 well), 100% illite, 5% porosity (), and 100% brine saturated (Figure 6). Figure 6a 

presents the effect of pressure on sonic velocities. The applied temperature for measuring elastic 

moduli of fluid is 76 ℃, which is taken from the McNeff 2-28 Well. Figure 6b illustrates the 

effect of changing, , mineralogy, and fluid saturation on sonic velocities. Separately, illite is 

replaced with calcite and quartz to examine the effect of increasing Calcite and Quartz on sonic 

velocities. Similarly, effect of increasing gas is shown by replacing brine with gas. Unlike other 

reservoirs, in shale, OM plays a vital role in deciding its productivity. To find the effect of 

increasing OM on sonic velocities, one time the OM is assumed to be a ‘mineral’ and another 

time a ‘fluid’. In the case of considering OM as a mineral, OM is replaced with illite (matrix 

component). And in the case of considering OM as a fluid, OM is replaced with brine (fluid 

component).  
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Figure 6b presents that a) increasing  decreases sonic velocities, b) replacing illite with quartz 

and calcite increases sonic velocities, c) increasing OM as a fluid or a mineral decreases sonic 

velocities. However the magnitude of the decrease in sonic velocities in the case of considering 

OM as a mineral is almost twice the case that OM is considered as a fluid, d) increasing gas 

saturation decreases Vp and slightly increase Vs, which follow the Eq.17 and 18, where shear 

modulus of saturated rock remain constant and bulk density decreases. Highest sensitivity of Vp 

to gas saturation occurs when gas saturation changes from 0 to 10%. Figure 6a also suggests that 

effect of pressure on sonic velocities is fairly insignificant in comparison with other above-

mentioned factors. Thus a constant pressure of 61.36 MPa is assumed for the McNeff 2-28 well.  

d) Real Data  

The first step require to use the well log data from the Woodford Shale in McNeff 2-28 well, was 

to construct a cross-plot using Vp and Vs. The presented trend for Vp vs. Vs is the ease of 

comparison between sonic velocities obtained from the log and computed from the stiff-sand 

model. Obtaining seismic velocities at a log interval (0.5 ft) is almost impossible. For the 

Woodford Shale in the McNeff 2-28 well, buried at > 10,000ft and with thickness of 170ft (52m), 

a linear Vp and Vs trend is expected from conventional seismic processing methods. A linear fit 

to the well log data (solid red lines; Figure 7a) can represent the obtained Vp-Vs cross plot from 

seismic survey. Here the mentioned fit is called the “surface seismic trend.”  

It is assumed that seismic data is available and a Vp-Vs trend, similar to surface seismic trend, 

can be obtained from the seismic data. Therefore, introduced surface seismic trend is used instead 

of log data in this case study to reconstruct  and composition depth profiles of the Woodford 

using a rock physics model. Note that, due to ‘random noises’ and ‘seismic processing 

simplifications,’ computed ‘surface seismic trend’ is associated with large standard deviation. On 
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the other words, predicting Vp-Vs trend of seismic data, without any standard deviation, using 

well log data is impossible. It is assumed that the standard deviations of the surface seismic trend 

for the McNeff 2-28 is at least the same as the standard deviation in the log data. In Figure 7b, the 

surface seismic trend is presented in the Vp-Vs space, and with a solid white line. The width of 

solid line is proportional to Vp and Vs standard deviations.  

To generate a unique Vp and Vs depth profile from the stiff-sand model, porosity, composition, 

fluid saturation, reservoirs pressure, etc. can be combined in multiple ways. Now the question is 

“can a unique  and composition be inferred from collocated Vp and Vs depth profiles?” Through 

trial-and-error forward modeling and by changing applied ϕ and composition in the model, it is 

understood that the surface seismic trend can be fitted to the level of its variance for two end-

member compositional scenarios, with OM located in matrix and OM located in pore-fluid. 

Despite the fact that both scenarios generated a perfect match of surface seismic trend and sonic 

velocities obtained from the rock physics model, the inputs of the model (, composition) are 

different for different scenarios (Table 2). It is necessary to determine which end member 

scenario is more realistic.  

Table 2.  Table 3. Stiff-sand parameter depth profiles 

 
OM in matrix OM in pore fluid 

W. Top W. Base W. Top W. Base 

fQ (%)  84±5 60±5 76±5 20±5 

(%) 15±0.1 14±0.1 15±0.1 17±0.1 

fO (%) 0.0±0.01 2.5±0.01 1.5±0.01 4.1±0.01 

fC (%) 0.0 0.0 1.5±0.5 3.9±0.5 

SG (%) 34±5 30±5 16±5 35±5 

By considering OM within the matrix, a perfect (almost zero standard deviation) match of the 

surface seismic trend and outcome of rock physics model is achieved by the following inputs: 

from Woodford top to base, quartz fraction decreases from 84% to 60%; OM increases from 0% 

to 2.5%;  decreases from 15% to 14%; and gas saturation decreased from 34% to 30% (Table 2). 

If OM is assumed as a pore fluid, following inputs are used: from the Woodford top to base 

http://www.sciencedirect.com/science/article/pii/S0926985114000445#t0015
http://www.sciencedirect.com/science/article/pii/S0926985114000445#t0015
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quartz fraction decreases from 76% to 20%;  increases from 14% to 17%; OM saturation within 

the pore spaces increases from 10% to 40% (equivalent to 1.4-6.8% of total volume of the rock); 

gas saturation increases from 16% to 34%; calcite increases from 1.5% to 4% (Table 2). 

The quartz fraction depth profile in both scenarios imply that upper section of the Woodford 

Shale in the McNeff 2-28  has more quartz than its base which is confirmed with general 

knowledge about the study area (Harris et al., 2010 and Watson, 2008). Core analyses from 

Campbell 1–34 well which is located ~ 1 km southeast of McNeff 2–28 well, show high quartz 

content in the upper part of the Woodford Shale (Portas and Slatt, 2010).  

The  and  of the composition as inputs of the model are compared with  and  of log data. The 

 is provided by density-porosity () and neutron-porosity (nlogs. In both scenarios, the input 

 profile is closer to  log than n log (Fig. 6d). By increasing depth, separation between n  

and  increases. This separation can be due to, a combination of increasing illite fraction and/or 

decreasing gas saturation (Asquith and Krygowski, 2004), which is suggested by the first scenario 

(Table 2). 

If OM is part of matrix, the bulk density increases from 2.41 g/cm3 at the Woodford top to 

2.47 g/cm3 at the Woodford base. Considering OM as a fluid, causes increasing from 

2.37 g/cm3 toward the Woodford top to 2.41 g/cm3 toward the Woodford base. As Figure 7c 

depicts, the input  in the second scenario has an overall better match to the log. Thus, the 

second scenario is more realistic. Effective  is subtraction of immobile fluid (OM) from total , 

(total  -OM). In the other word, the portion of which is occupied by mobile components such 

as gas and brine is called effective . Although predicting effective  in the absence of core is 

difficult, increasing the illite construction from the top to the base of the Woodford Shale results 

in decreasing effective  (Morris and Shepperd, 1982). It is important to note that the 

effective  is up to 40% less than the total . 

http://www.sciencedirect.com/science/article/pii/S0926985114000445#t0015
http://www.sciencedirect.com/science/article/pii/S0926985114000445#bb0150
http://www.sciencedirect.com/science/article/pii/S0926985114000445#bb0345
http://www.sciencedirect.com/science/article/pii/S0926985114000445#bb0265
http://www.sciencedirect.com/science/article/pii/S0926985114000445#f0030
http://www.sciencedirect.com/science/article/pii/S0926985114000445#bb0015
http://www.sciencedirect.com/science/article/pii/S0926985114000445#t0015
http://www.sciencedirect.com/science/article/pii/S0926985114000445#bb0245
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4.2 Hydrate Bearing Fracture as Combined Stiff and Soft Pore System 

a) Data  

The gas hydrates under investigation are from the NGHP-01-10, Krishna-Godavari Basin, India 

(east coast). Available logs include dipole sonic,  and core measurements. The depth of gas 

hydrates in the NGHP-01-10 well is from ~26 mbsf (meters below sea floor) to ~156 mbsf. The 

effective pressure of the formation is around 1.2 MPa due to ~1000m of water depth. Due to the 

saturation of gas hydrate within cracks through almost the entire length of the hydrate stability 

zone (HSZ) (Collett et al. 2008), the studied gas hydrates are assumed to be a floating pore 

system (combination of soft and stiff pores). Application of floating pore model is tested to 

quantitatively interpret sonic velocities obtained from dipole sonic log.  

b) Rock Physics Context 

Core analyses, included x-ray and gamma ray log information show that clay and quartz, are two 

dominant components of the gas hydrate in NGHP-01-10. Core measurements from the NGHP-

01-10 well and observations from other wells (from the same basin) such as NGHP-10B-18Y, 

indicate that pore spaces of the formation are mainly filled by brine, and around 20 to 25% of  is 

filled by gas hydrate (Collett et al., 2008).  

c) Synthetic Model  

To illustrate the behavior of the floating pore model in predicting sonic velocities, a synthetic 

model is designed. The synthetic model has 80% clay and 20% quartz and the total  (t) is 55%. 

The rock is filled with 100% brine and it is replaced with 0 to 40% (out of t) gas hydrate. The 

floating pore model, provides upper and lower bounds, Figure 8. It is often applicable and 

adequate to represent the elastic moduli of a mixed mineralogy by either one of the HS bounds 

(upper or lower) or their average, (MHS++MHS−)/2. This is applicable due to the fact that many 
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models (e.g. Gassmann, Kuster-Toksoz, etc.) assume a homogenous mineral modulus (Mavko et 

al., 2009). As explained, upper and lower bounds of the floating pore model are modification of 

HS bounds. Thus, in Figure 8, the average of upper and lower bounds of the floating pore model 

is presented. In addition to the floating pore model, Figure 8 depicts the results of upper and 

lower HS and soft sand model. Since the data is from shallow depth, the sediments are loose and 

unconsolidated. Thus, stiff sand model is not applicable for the gas hydrate study. In HS and soft 

sand model, the gas hydrate is preserved within the void spaces of the rock. Using these models, 

distinguishing pore spaces and fracture systems is not possible. However, in floating pore model, 

thas two parts 1) matrix , 2) fracture f, respectively, 33% and 22% in this synthetic 

model. Although gas hydrate can be preserved within both mentioned porosities (and f), in 

this case study it is assumed that gas hydrate just fills f (not ). As shown in the Figure 8, both 

HS and floating pore models release maximum and minimum possible sonic velocities at each 

specific . Results of the floating pore model is more confined compared to the HS model. For 

example, at hydrate saturation equal to 20%, predicted Vp from HS and floating pore model are 

in the range of 1.6 - 3.1 km/s and 1.7 - 2 km/s, respectively. This example confirms that the range 

of predicted velocity for the fracture model (2-1.7= .3 km/s) is less than the range for the HS 

model (3.1-1.6=1.5 km/s). It is noticeable that though the soft pore model and the average trend 

of the floating pore model present similar sonic velocities at each value, their interpretations 

about the location of gas hydrate preservation in the void spaces of the rocks are different.  

d) Real Data  

To use the well log data from NGHP-01-10, each individual log is presented vs. depth. By 

changing fraction of and f out of t the velocities are predicted through the formation (top to 

bottom of the formation) and compared with obtained sonic velocities from dipole sonic log. If 

there exists a match between predicted and obtained sonic velocities, the validity of the model is 
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checked by comparing applied bulk densities, dry bulk densities and porosities as inputs of the 

model and acquired from core analysis.  

The model outputs, sonic velocities, depend on multiple inputs including saturation of hydrate 

within background matrix (𝑆ℎ𝐵𝑀) and in fractures (𝑆ℎ𝑓). In the floating pore model, t remains 

fairly consistent along the length of the log. Further, core description and seismic profiles show 

that f does not change drastically along the length of the core (Jaiswal et al., 2012a). Here, it is 

assumed that:  

f =X%   Notice: t =f + 

X presents the proportion of f to . Through trial-and-error modeling, it is understood that the 

best match between predicted sonic velocities using floating pore model and well log data is 

achieved at X=50%, 𝑆ℎ𝐵𝑀 = 10%, 𝑆ℎ𝑓 = 80%f. The total hydrate saturation within the rock 

is computed by: 

𝑆ℎ𝑡= 𝑆ℎ𝐵𝑀 𝑆ℎ𝑓f 

For example, if t= 60%, then:  = 40%, f = 20%, 𝑆ℎ𝐵𝑀 = 10%× 40% = 4%, 𝑆ℎ𝑓 =

80%× 20% = 16%, and 𝑆ℎ𝑡 = 4%+ 16% = 20%. Figure 9 depicts the results of the model 

and Figure 10 shows the comparison of applied  and  with the data from cores.  

4. 3 Mississippian Carbonate as a Pore Shape Dependent System 

a) Data  

The Mississippian carbonate under investigation is from Blackbird 4-33 well, Osage County, 

Oklahoma. Available data are core measurements such as sonic velocities, porosity, thin-section, 

SEM, and XRD. Due to variant pore types within the carbonate rocks and their effect on 

controlling sonic velocities, carbonates are categorized as a pore shape dependent system out of 
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explained rock physics systems. Application of Kuster and Toksöz model as a pore shape 

dependent system is tested to interpret sonic velocities (Kuster and Toksöz, 1974a, b).  

b) Rock Physics Context 

XRD analyses and thin section studies show that calcite and quartz, are two dominant 

components of the Mississippian carbonate in the Orion core. The core sample was dried and the 

pores filled by air. The pore shapes vary from nearly spherical to highly elongate. The porosity 

value varied between 1 and 6 %.  

c) Synthetic Model  

To illustrate the behavior of Kuster and Toksöz (1974) model in predicting sonic velocities, a 

synthetic model is designed. The synthetic model has 80% calcite and 20% dolomite and  varies 

from 0 to 20%. The rock is filled with 100% air. The Kuster and Toksöz model, provides sonic 

velocities of variant pore shapes such as spherical pores, needle shape pores, and penny shape 

pores with different  values of 0.15, 0.1, and 0.07 (Figure 11).  

As it is depicted, at the same porosity, the sonic velocity of rock is higher for spherical pores 

compared to ellipsoid pores. For example, at  of 15% the Vp varies between 3.5 and 6.3 km/s, 

which respectively correspond to a penny shaped pore (α=0.07) (3.5 km/s) and a spherical pore 

(6.3 km/s).   

d) Real Data  

All sonic velocities obtained from core data are shown versus  in the Figure 12. As depicted 

here, the sonic velocities are scattered. The composition of each sample is found using XRD 

analyses. Using composition of the rock sample, sonic velocities are predicted from 0 to 6% for 

different pore shapes with different value. If there exists a match between predicted and 
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obtained sonic velocities, the validity of the model is checked by comparing applied pore shape in 

the model and observed ones in thin-section (Figure 13).  
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CHAPTER V 
 

 

DISCUSSION  

Seismic methods are the most popular non-intrusive remote sensing tool for imaging the 

subsurface. They provide data for physical property maps such as elastic velocities and densities. 

These maps can be interpreted for delineating structures and identifying potential reservoirs. This 

interpretation is still qualitative in nature. Rock physics models help in quantifying the 

interpretation, which implies finding a relation between the physical properties maps and rock 

properties such as porosity and composition under in situ condition (i.e. pore pressure and fluid 

saturation). Rock physics models successfully work for conventional reservoirs, but they have not 

been fully explored in unconventional settings. In this thesis, a few standard rock physics models 

have been tested in three unconventional reservoirs, shale, gas hydrate and carbonates. Their 

applicability is discussed below. 

The stiff sand model was applied to relate the elastic properties and rock properties of the 

Woodford Shale in the McNeff 2-28 well. The stiff sand model is for isotropic medium. 

However, shales are almost always anisotropic due to the wave propagation direction and bedding 

alignments (Lucier, 2010). This inconsistency can be reconciled in two ways. First, it is possible 

that the high quartz content in the upper section of the Woodford Shale makes the Woodford 

more isotropic. Second, the behavior of sonic velocities at the log and seismic scale could be 

different. Further, the stiff sand model predictions are within an error bar of 5%, which may 

include effects such as dissolution and precipitation of minerals, as well as counteraction of 

anisotropy by random cracks (Aplin and Macquaker, 2011; Fertl and Chilingarian, 1990). Even if 
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the a typical anisotropic model, such as Bandyopadhyay (2009) or Vernik and Liu (1997), were 

applied these effects may not have been accounted for. Therefore, applying an isotropic model 

such as stiff sand model, can be reasonable with non-zero standard deviation. Storvoll and Brevik 

(2008) found that in presence of huge standard deviation, even empirical relations can work. 

Speculation on the nature of gas (adsorbed versus free or wet versus dry) is not possible with this 

modeling. In shale, significant amounts of gas can exist in the TOC as an adsorbed phase 

(Holmes et al., 2011). In this case study, the TOC has been modeled as part of matrix and gas as a 

part of pore fluid. Gas in the adsorbed phase will not only change the effective shear moduli of 

the TOC, it will also create capillary effects. There is a lack of rock physics models which 

sufficiently address this aspect. Lewis et al. (2004) shows that at pressures higher that ~10 MPa, 

such as in the McNeff 2-28 well, gas may be present dominantly in free phase. The fluid flow 

within the Woodford shale should be unrestricted to be able to use stiff sand model. This is due to 

limitations of Gassmann’s equations which are used in stiff sand model. As gas permeability is 

higher than that of the liquids (e.g, Tanikawa and Shimamoto (2006)), it is likely that stiff sand 

model is better suited for gas shale than oil shale.  

Application of the stiff sand model to the Woodford Shale does not attempt to convey that the 

Woodford can be compared to a clean sandstone. The aim is to say that rock properties of the 

Woodford Shale is predictable using the stiff sand model within acceptable error. This model can 

be applicable in other shale formations, if their reservoir conditions are similar to the Woodford 

Shale in the McNeff 2-28 well. Reservoir conditions here mean gas bearing, highly compacted 

(lithified) and high quartz content.  

The second, floating model, as applied in this paper, is a combination of two isotropic models 

(soft/stiff pore and HS models) and therefore it is only suitable for an isotropic system. However, 

it is applied in this thesis to model the effects of fractures in unconsolidated sediments. As in the 
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previous case study, it does not imply that a system will stay isotropic in presence of fractures, 

but rather that in this system the fractures could be random, It is also notable that in the study 

area, a reasonable velocity estimate has been obtained using isotropic assumptions (Jaiswal et al., 

2012b; Riedel et al., 2011). Further, the floating model can be easily extended into an anisotropic 

domain by applying the introduced methodology by Bandyopadhyay (2009).  

In fine grained sediments, cracks are zones of higher permeability that can provide opportunities 

for focused-fluid flow. Higher permeability fault planes can eventually become hydrate saturated 

in fine grained sediments through diffusion (Bhatnagar et al., 2007). Daigle and Dugan (2010a) 

show that hydrate saturated formations can also create and saturate cracks through occlusion. The 

well NGHP-01-10 was drilled close to the crest of an anticline where gas hydrate distribution 

shows fault control (Jaiswal et al., 2012b). Therefore in the study area, faults due to sediment 

failure are expected. However, tectonic-driven cracks are generally expected to be oriented 

perpendicular to the extensional stress rather than being random. Hydrate distribution is also 

permeability driven, which can be somewhat random in fine-grained media. Randomness of 

cracks could be a result of hydrate occlusion, which is similar to inferences by Rees et al. (2011) 

using micro-CT scanning.  

The floating model can have a wider application, particularly in rocks that are cemented. A 

cemented rock can be viewed as a two component system – 1) background matrix, and 2) cement. 

For example, in the case of carbonate rocks, the cements include meniscus (cementation filling 

grain contacts exemplified by micritic bridging cement) and isopachous (cement grows along 

entire grains as in the case of acicular cement). The meniscus and isopachous, are respectively 

similar to “holding hydrate filled fractures by background matrix” and “holding background 

matrix by hydrate filled fractures” which then can be formulated by HS- and HS+. In this case, 

cement should be consolidated. Otherwise the meniscus cement is always stiffer than isopachous 

within loose sediments when the cement is not firm enough (Eberli et al., 2003). Here the main 



35 
 

objective is to investigate the effects of cement types within carbonate rocks that may object 

elastic properties of the rock and cause variation in elastic moduli and subsequent sonic 

velocities. Results from laboratory measurements (such as porosity from porosimeter and 

composition from XRD), well log and seismic data will be used to validate and examine the 

application of the model.  

The third, Kuster and Toksöz model, provides sonic velocities of the rock by considering its pore 

shapes. Both pore size and shapes vary considerably within a carbonate rock. For a dry sample, 

this model provided very encouraging results. However, this model remains to be the most poorly 

understood and with many potential pitfalls. First, is accounting for cement. Kuster’s model 

assumes that cements are part of uniform mineralogy. This cannot be reconciled with other 

models that place cement (more appropriately) at grain contact locations and show a very non-

linear relation between elastic velocities and cement concentration (Dvorkin et al., 1999; Dvorkin 

et al., 1994; Elata and Dvorkin, 1996). For example, in case of having dolomite or quartz cement 

in a limestone, the model considers the cement as a mineralogy which is mixed with the host rock 

(limestone). Therefore the model will not give an appropriate answer based on the properties of 

the cement. Second, this model also does not account for intrinsic porosity in OM or clay (Mavko 

et al., 2009; Xu and Payne, 2009). The Kuster and Toksöz model is a good fit for dry solid rocks. 

To apply this model to well logs, a fluid substitution mechanism, such as the Gassmann’s method 

has to be applied. However, based on the previous explanation in Sec. 2.4, applying Gassmann’s 

equations will not be completely correct due to the presence of isololated pore systems in 

carbonates. In addition, the model does not consider grain to micrite ratio and its effect on 

changing porosity, permeability, stiffness, and subsequent sonic velocities. In the Kuster and 

Toksöz model, porosity means void spaces. However the void spaces can either be pore spaces or 

fracture. The model cannot distinguish pore spaces from fractures. In general, aspect ratio of most 

fractures are less than pores. However, this does not mean all pores have higher aspect ratio than 
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fractures. Finally, different pores with different aspect ratios can be found in a rock. For example, 

the rock can have 20% spherical pores, 80% penny shape pores. The Kuster and Toksöz model 

does not account for the presence of different pore spaces in a rock.  

Despite their under-explored and poorly understood dependencies, rock physics applications are 

vital. Application of appropriate rock physics models to their respective geological scenarios 

allows for interpretation of seismic velocities in terms of porosity and composition. Developing a 

rock physics model enables an examination of various what-if scenarios by consistently changing 

the inputs, computing the respective elastic properties, and, finally, generating synthetic-seismic 

traces. This approach may help create a field guide to real-seismic-data interpretation for sweet 

spots, particularly in unconventional systems. 
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CHAPTER VI 
 

 

CONCLUSIONS 

This thesis demonstrates that generic rock physics models that were developed for conventional 

siliciclastic systems can be used for predicting elastic properties in unconventional reservoirs 

under restricted reservoir conditions, which include a lack of anisotropy and well developed pore-

connectivity. The choice of the rock physics model to use for respective unconventional systems, 

depends on mechanistic make-up of the unconventional system being targeted in terms of their 

grain geometries, consolidation, and pore shape.  In this thesis, HS bounds for grain mixing and 

the Gassmann method for fluid substitution satisfactorily replicated the elastic velocities under 

saturated conditions in both Woodford Shale and gas hydrate reservoirs. On the other hand, for 

carbonate rocks with non-spherical pores, Kuster and Toksoz model can predict the elastic 

velocities of the dry rocks, but not saturated rocks. However, the Kuster and Toksoz model needs 

to be modified to predict sonic velocities of subsurface carbonates. In future, applying the rock 

physics models to unconventional systems allows for interpretation of seismic velocities in terms 

of porosity and composition. Developing a rock physics model for the shale, hydrate and 

carbonates in general enables an examination of various what-if scenarios by consistently 

changing the inputs, computing the respective elastic properties, and, finally, generating synthetic 

seismic traces.  This approach may help create a field guide to real-seismic-data interpretation for 

sweet spots. 
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Figure 1: Volumetric productivity of hydrocarbon reservoirs. The percentages of unconventional 

resources are more than two third of the total worldwide hydrocarbon resources. Discovering 

unconventional reservoirs is growing intensely. Although production of hydrocarbon reservoirs 

has been growing by employing new technology, it is more challenging in unconventional 

reservoirs compared to the conventional ones. The difficulty of hydrocarbon production from 

unconventional reservoirs is due to inhomogeneity and complexity of grain arrangement (CGG-

Website, 2014).  
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Figure 2: Grain arrangement comparison. Figures ‘a’ to ‘d’ respectively present the SEM images 

of (a) homogeneous reservoir, (b) Woodford Shale, (c) gas hydrate, and (d) carbonate reservoirs. 

(b) SEM image Woodford Shale formation from Canadian County, OK that contains 76% quartz 

and 18% clay (based on XRD data) and intercrystalline porosity. (c) Gas hydrate (darker color) 

coating sand grains (lighter color). (d) SEM photomicrograph showing the diversity of pore 

shapes in carbonate rock (Ernstson et al., 2011). Schematic diagram of grain arrangement for 

each case is shown below each SEM image. A mechanistic replication of grains and pore spaces 

can be achieved by applying a simple rock physics model (figure 3).  
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Figure 3: Model assumptions. In this figure, physical interpretation (schematic model) of grain 

arrangements of two-phase material for Hashin-Shtrikman (HS) model is shown. If the outer shell 

is the stiffer mineral, the model will produce the stiffest possible combination of the minerals. 

Otherwise, the softest possible combination is generated. These introduced maximum and 

minimum are known as the upper and lower boundaries of the model. Of course the upper 

(maximum) and Lower (Minimum) boundaries are dependent to the elastic moduli of the 

minerals (figure 4).  
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Figure 4: Models trajectories. The figure presents the upper and lower boundaries of HS model 

for a two-phase dry mineral. The start and end points of trends are known as end-members. 

Larger differences in elastic properties of the constituents will result in greater distances between 

the upper and lower boundaries (Mavko et al., 2009).  
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Figure 5: Basic porosity types. The figure represents the classification of porosity types 

(Choquette and Pray, 1970)  
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Figure 6: Stiff-Sand model behavior. (a) Sonic velocity (Vs vs. Vp) changes by increasing 

overburden pressure on 170ft thick “Base Section”. The base section is 100 % clay (Illite) with 5 

%  and saturation of oil and gas are 0% out of total .  (b) Effects of increasing calcite, quartz, 

gas, OM and  are shown in this figure. Blue line: Increasing calcite causes increasing elastic 

velocity, Orange line: increasing elastic velocity due to quartz content. With quartz Vs increases 

faster compared to Vp. Brown line: increasing gas gradually increases Vs, but markedly 

decreases Vp. Effect of gas injection into water or oil saturated reservoirs is explained in detail by 

(Cardona et al. (2001)). Red and green lines show effects of increasing  and OM on sonic 

velocities. If OM is assumed to be part of the fluid, it will not dramatically change elastic 

velocities. However, increasing OM as part of matrix significantly decreases both Vp and Vs. In 

other words, elastic velocities are more sensitive to OM changes in the matrix versus OM 

variation in the pore fluid. Elastic velocity changes due to calcite, quartz, OM, and  variations 

are linear, but non-linear due to Gas. Pressure effects on both Vp and Vs are negligible compared 

to effects introduced of a reuslt of changes in   and composition. 
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Figure 7: Application of Stiff-Sand model and its validity in the Woodford Shale. (a) dipole 

sonic velocities in black and gray colors and upscaled gradients (surface seismic trend, figure 6b); 

(b) comparison of predicted Vp-Vs trend and surface seismic trend is presented here. The white 

color presents the surface seismic data and its thickness is proportional to the standard deviations 

in the log data computed over 50ft depth interval and averaged over the entire Woodford. The 

colored overlay, is predicted Vp-Vs by optimal parameters over depth of Woodford Shale. (c) 

depicts comparison of density log with predicted density from the model. (d) displays comparison 

of  and n with predicted porosity from the rock physics model. OM as part of matrix is shown 

by solid blue line. Solid red line describes OM as part of pore fluid. Also depicted is the fluid-

filled  (total  - OM; dashed red). The  and  is predicted from surface seismic and stiff-sand 

model.  
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Figure 8: Floating pore model behavior. Gas hydrate saturation versus Vp. Predicted sonic 

velocities using floating pore model, HS and soft pore models are presented for a synthetic model 

with 20% quartz, 80% clay, 55% t. gas hydrate is replaced with brine (which is the only pore 

fluid) at the t ranging from 0 to 40% of. The upper and lower bounds of the floating pore model 

are closer to each other than HS. Therefore, the velocity will be in a narrower (more confined) 

range using the new model compared to the HS model. Results of soft pore model, is almost the 

same as average of upper and lower floating pore model. The gas hydrate in soft pore model is 

preserved within the void spaces. However in floating pore model, the gas hydrate saturation 

within  f or  M is distinguishable; in this example, gas hydrate is preserved within the f.   
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                     a) b) c) d) 

 

Figure 9: Application of floating pore model. a) applied f and t in the floating pore model is shown versus depth; b and c) sonic velocities 

obtained from dipole sonic log (black line), upper and lower bound and the average of upper and lower bounds of floating pore model (red, pink, 

and blue colors) are presented; d) applied gas hydrate saturation within f, M and t are depicted in pink, blue and black colors, respectively.  
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 a) b) c) 

 

Figure 10: Validity of floating pore model. a) bulk densities vs. depth, b) dry bulk densities vs. 

depth, and c) porosities vs. depth, which are applied in the model. The measured data from core 

are represented by black circles. The predicted values from the model are shown by solid red 

lines.    
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Figure 11:  Kuster and Toksöz model behavior. In this figure, the Kuster-Toksoz model predicts 

Vp and Vs by increasing  for different pore aspect ratio. For example, at the  value of 15%, the 

Vp varies from 3.5 km/s to 6.3 km/s which, respectively corresponds to  around 0.07 (penny 

shape) to 1 (sphere shape).  
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Figure 12: Scatted sonic velocity data. Scatted Vp and Vs of carbonate rocks are respectively 

presented in figure ‘a’ and ‘b’ 
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Figure 13: Application of Kuster and Toksöz model. Comparison of sonic velocities predicted by 

“Kuster and Toksöz” model and measured in the laboratory for one sample. Vs (‘b’) is computed 

in two different directions. Thin section (‘c’) and SEM (‘d’) images confirm validity of the 

predicted pore shape from the model. For this sample, pore aspect ratio is around 0.07. 
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