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There is a growing need for economical disposal of spent horizontal directional drilling 

(HDD) fluid, or HDD residuals.  This study was conducted to physically and chemically 

characterize HDD residuals from a wide geographic area, and determine if land 

application is a viable option for disposal.  Fifty-eight HDD residuals were received from 

throughout the U.S.  Residuals were analyzed for potential nutrients, trace metals, and 

salts.  Two separate field studies were conducted to study the effects of six application 

rates of HDD residuals on soil properties and plants.  Residuals were applied to 

established grass plots and to bare soil plots. Forage yield and percent cover were 

measured respectively.  Soil samples were taken at 7, 30, and 90 days after application, 

and analyzed for potential nutrients, salts, and water soluble metals. After chemical and 

physical characterization of 58 samples, no trace metals concentrations exceeded EPA 

Part 503 ceiling for exceptional quality biosolids.  Nutrient concentrations were 

negligible. Salt concentrations were variable.  In the established grass field study, there 

was no significant difference in yield over all treatments.  For the bare soil field study, 

there was no significant difference in percent cover at day 30.  At day 63 percent cover at 

the lowest application rate was significantly higher than the control and all other 

treatments while percent cover at the highest application rate was significantly lower than 

the control.  Electrical conductivity, pH, SAR, and Mehlich-3 Ca were significant over 

application rates.  Of the 58 residual samples received, nothing was chemically limiting 

land application.  Total solids was the most limiting factor. Land applying HDD residuals 

at the lowest rate possibly promotes seed germination and application at the highest rate 

potentially hinders it.  Results suggest that land application is a viable option for disposal. 

However, soil and/or cuttings from the borehole are a large portion of HDD residuals; so 

boring through a contaminated site could result in a contaminated residual, possibly 

limiting its potential to be land applied. In this scenario, testing the residual prior to 

application is recommended.  Tillage is advised when applying a residual with a high EC 

and/or SAR to a bare soil.
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CHAPTER I 
 

 

INTRODUCTION 

Humans have been land applying a wide variety of waste residuals, in many forms, as soil 

amendments to supplement and improve the soil for over 2000 years (Lederer and Rechberger, 

2010).  Many residuals are applied for the purpose of waste disposal.  Often the sources of these 

residuals are agricultural, municipal, and industrial wastes or by-products.  These residuals, in 

their broadest sense, vary widely in terms of their overall beneficial and environmental impacts.  

Information acquired over years of research suggests that sustainable land application systems 

can be established and maintained under a wide range of conditions (Bastian, 2005).  Because of 

environmental concerns and economic restraints in regards to land-filling and incineration, public 

interest in land application of wastes is continuing to grow (O'Connor et al., 2005).  Probably the 

most important factor in regards to the land application of agricultural, municipal, and industrial 

by-products is earning the public’s trust with regard to safety.  Gaining the public’s trust will 

require waste management in such a way that protects human and animal health, safeguards soil 

and water resources, and maintains a quality ecosystem for the long term (Larney et al., 2000). 

In the last three decades there have been many scientific studies generating a great deal of 

information on the benefits and environmental impacts associated with the land application of 

many types of residuals (O'Connor et al., 2005).  There are typically two criteria used to assess a 



2 
 

residuals “suitability” for land application and whether or not the intended use will be beneficial:  

(i) the by-product’s ability to enhance, or have no negative impact, on the productivity of the soil 

and plant growth (ii) a lack of negative environmental impacts (Whalen et al., 2000).  Because 

residuals differ so much in their physical, chemical, and biological properties (Whalen et al., 

2000), each material should be examined independently for potential beneficial or negative 

impact.
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LITERATURE REVIEW 

Regulations and Legislation Regarding the Land Application of By-Products 

Because land applying by-products can potentially have a negative impact on human health 

and/or the environment, regulations and legislation govern the rates at which they may be applied 

to soils.  The U.S. Environmental Protection Agency (EPA) regulates the disposal of solid wastes 

under the Resource Conservation Recovery Act (RCRA).  Solid wastes are defined by the EPA as 

“any garbage or refuse; sludge from a wastewater treatment plant, water supply treatment plant, 

or air pollution control facility; and other discarded material, including solid, liquid, semisolid, or 

contained gaseous material resulting from industrial, commercial, mining, and agricultural 

operations, and from community activities.  Solid wastes include both hazardous and 

nonhazardous waste.” (EPA 1984).  Hazardous wastes are defined by the EPA in 40 CFR Part 

261.  The disposal of hazardous waste is treated different from non-hazardous waste. 

The EPA has a list of hazardous wastes found in 40 CFR Part 261.30.  If a waste is not considered 

exempt from RCRA under 40 CFR Part 261.4 or listed on the hazardous waste list, the waste’s 

potential to be hazardous must be determined.  In order for a waste to be considered hazardous, it 

must exhibit one of four characteristics defined in 40 CFR Part 261 subpart C.  The four 

characteristics include ignitability, corrosivity, reactivity, and toxicity.  A waste is ignitable if it 

creates fire under certain conditions, is spontaneously combustible or has a flash point below 

60°C.  A waste is considered corrosive if it has a pH ≤ 2 or ≥12.5 and/or is capable of corroding a 

metal container.  In order to be considered reactive, a waste must be unstable under ‘normal’ 

conditions i.e. can cause explosions, result in violent reactions or generate toxic gases, fumes, 

vapors or explosive mixtures when they are heated, compressed or mixed with water.  Toxic
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 wastes are harmful or fatal when absorbed or ingested i.e. contain high levels of heavy metals 

such as lead, mercury, arsenic etc. (EPA 2009).  The toxicity of a waste is defined through a 

laboratory procedure called the Toxicity Characteristic Leaching Procedure (TCLP).  The TCLP 

helps to identify if a waste has the potential to leach high concentrations of contaminants that can 

be harmful to the environment or to human health. 

Sometimes special legislation is adopted for land application of a single waste, such as biosolids.  

Guidelines for land applying biosolids can be found in CFR 40 Part 503 Subpart B of the 

National Sewage Sludge Rule.  This rule was released by the EPA under the Clean Water Act 

(CWA) in 1992.  Different provisions within the Part 503 rule apply to the entity that produces 

the biosolids and the entity applying them.  Part 503 sets ceiling concentration limits for 10 

“heavy metals”:  arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury 

(Hg), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn).  There are also requirements 

for pathogens as well as site restrictions for the land receiving the biosolids.  Biosolids are 

categorized into one of four groups.  These groups are Exceptional Quality (EQ), Pollutant 

Concentration (PC), Cumulative Pollutant Loading Rate (CPLR) and Annual Pollutant Loading 

Rate (APLR).  All groups are safe for land application.  Safety is ensured by the combination of 

management practices and pollutant limits imposed by each group (EPA 2014). 

Types of Residuals used for Land Application 

Animal manure 

The most common ‘agricultural’ by-product used as a residual for land application is animal 

manure.  In fact, at more than 100 million dry Mg annually, manure is the most widely land 

applied residual. (O'Connor et al., 2005).  Several types of manure can be used, but beef and 

poultry are the most common.  The land applied manure can be slurry, solid, or liquid, each 

requiring different management practices (Eghball and Power, 1994). 
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Manure is a valuable residual because it provides organic matter and nutrients to the soil (Eghball 

and Power, 1994).  It is an excellent source of nitrogen, phosphorous, potassium, and secondary 

nutrients (Risse et al., 2006).  The added soil organic matter acts as an ion exchange material, 

buffering material, chelating agent, and can play a vital role in soil structure (Eghball and Power, 

1994).  Soil organic matter helps to form aggregates thus improves soil drainage.  Manure can 

also raise or maintain the soil pH, in turn, lowering the bioavailability of harmful metals to plants, 

this is true especially for poultry littler (Risse et al., 2006).  Many studies have shown that crop 

yields on land where manure has been applied are equivalent or superior to those using inorganic 

fertilizers (Edmeades, 2003) (Risse et al., 2006) (Penn et al., 2014a).  Unlike commercial 

fertilizers the nutrients in manure take longer to become plant available.  This is due to the 

microbial decomposition that is needed to mineralize the organic forms of nitrogen (N) into 

ammonium (NH4) and nitrate (NO3).  This process is highly variable and relies heavily on the 

carbon (C) to nitrogen ratio (C:N) within the manure, soil moisture and temperature (Eghball et 

al., 2002).  When the C:N ratio of organic matter is above 20:1, microbes actually use or 

immobilize plant available NO3 as excess C is consumed.  When the ratio falls below 20:1, 

microbes begin to mineralize the N as NH4, making it plant available (Havlin et al., 2005).  

Depending on the type of manure being applied, the C:N ratio varies.  A study done in Ithaca, NY 

showed the C:N ratio for laying hens, beef cattle, dairy cattle and swine were 6, 19, 16 and 14, 

respectively (Rynk, 1992).  This makes determining application rates more difficult, however, the 

slower release helps improve plant utilization and lessens the nutrient loss to surface and ground 

waters (Risse et al., 2006). 

Manure must be properly managed, similar to inorganic fertilizers.  When the nutrients become 

available, they are subject to loss and can be transported to ground water or into surface waters 

where eutrophication becomes a problem.  The EPA considers agriculture to be the leading cause 
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of pollution to lakes and streams (EPA 1998).  This has led to many best management practices 

(BMP’s) initiatives in the agriculture sector.             

Biosolids 

Another common residual that is land applied is treated sewage sludge, also known as biosolids.  

Biosolids are a by-product of the municipal waste water or sewage treatment process.  This makes 

biosolids a ‘municipal’ by-product.  The waste water treatment process reduces the amount of 

easily degradable organic matter (biological oxygen demand; BOD).  It is the insoluble solid 

residue  remaining after this process that is coined sewage sludge, biosolids, or domestic 

wastewater residuals (Singh and Agrawal, 2008).   It is estimated that approximately 7.5 million 

Mg of biosolids are produced each year in the United States (Basta, 2000).  Disposal options 

include landfilling, incineration, land application and dumping at sea (Bright and Healey, 2003).  

It is suggested that landfilling and land application are the most economical methods of biosolids 

disposal (Metcalf and Eddy, 2003).   

Waste water treatment plants receive domestic sewage as well as industrial effluents and storm 

water runoff.  Industrial effluents and storm water runoff can contain many toxic substances 

ranging from detergents to pesticides (Singh and Agrawal, 2008). However, like manure, 

biosolids contain both organic and inorganic plant available nutrients as well as soil conditioning 

properties, giving incentive for its use as a source of fertilizer (Singh and Agrawal, 2008).  A 

study done by Sommers (1977) showed the median N, phosphorus (P) and potassium (K) 

percentages in biosolids were 3.3, 2.3 and 0.3 respectively.  The same study showed median 

levels of Pb, Zn, Cu, Ni, Cd and Cr to be 500, 1740, 850, 82, 16 and 890 mg/kg respectively. 

Because biosolids have the potential to be both beneficial and detrimental to the environment, 

there is need for regulation.  The land application of biosolids is federally regulated by the EPA 

under 40 CFR Part 503 (EPA 2007).  This law governs the use of biosolids for land application 
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by putting limits on heavy metal concentration, pathogens present, and site and harvesting 

restrictions in order to minimize threats to public health and environmental degradation (Guo, 

2012).  Biosolids are also regulated on the state level; these regulations vary by state.        

Fly ash 

Another common land applied residual is fly ash.  Fly ash is the by-product that is formed during 

the process of coal combustion, thus it is coined an ‘industrial’ waste. Over half of the energy 

produced in the United States comes from the combustion of coal, and consumption is only 

expected to increase as we strive to be an energy independent nation (Sajwan et al., 2003).  This 

will only increase the need for viable disposal options for the waste materials from energy 

production.   

Fly ash generally contains an amorphous ferroaluminosilicate mineral that’s chemical and 

physical properties are dependent on the parent coal, combustion temperature, type of emission 

control device being used, and methods of storing and handling (Adriano and Weber, 2001).  

According to the American Coal Ash Association there were nearly 52 million tons of fly ash 

produced in the United States in 2012 (American Coal Ash Association, 2012).  The most 

common methods of disposal for this by-product are storage in settling ponds, stockpiling, 

landfilling, and applying to open land  (Adriano and Weber, 2001); (Jala and Goyal, 2006).   

In the past fly ash was considered solely as a waste material but, thanks to numerous detailed 

studies conducted in the latter half of the 20th century, we now know its nature and composition.  

Due to the abundance of basic mineral elements resembling the Earth’s crust, fly ash is an 

excellent replacement for natural materials (Jala and Goyal, 2006).  The United States utilizes 

roughly 44% of its annual production of fly ash (American Coal Ash Association, 2012).  It can 

be used as a partial substitute for Portland cement, road fills and bases, in asphalt, and for waste 

solidification and stabilization (Adriano and Weber, 2001). 
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The application of fly ash to agricultural land cannot supply crops with the macronutrients 

nitrogen N or P,  but it could supply crops with a sufficient amount of other nutrients such as 

potassium (K), sulfur (S), Mo, calcium (Ca), boron (B), as well as others such as Zn (Sajwan et 

al., 2003).  Fly ash varies in pH  which is largely dependent on the amount of sulfur in the parent 

coal (Jala and Goyal, 2006).  Land application of alkaline fly ash can reduce the acidity of a soil, 

making certain toxic metals unavailable for plant uptake.  Unfortunately, fly ash can also contain 

different amounts of trace metals such as Cu, Ni, Pb, and Cr which does put a limit on its 

potential use as a soil amendment.  Analysis of fly ash from three coal based thermal power 

plants in India showed average levels of Cu, Ni, Pb and Cr to be 66, 43, 37 and 93 mg/kg 

respectively (Sushil and Batra, 2006).  Currently, individual states regulate the disposal of fly ash, 

but the EPA is proposing two federal regulatory options, Subtitle C and Subtitle D, under the 

nation’s primary law for regulating solid waste, RCRA (EPA 2013).  Each option will better 

protect the environment and allow both federal and state enforcement. 

Oil & gas drilling mud 

Another ‘industrial’ by-product with a growing need for disposal is the spent drilling fluid from 

the oil and natural gas industry.  The United State is the world’s leading producer of oil and 

natural gas with 1,043,101 oil and gas wells operating onshore and 4,625 oil and natural gas 

platforms operating offshore, producing 2.4 billion barrels of oil and approximately 29.8 trillion 

cubic feet of natural gas annually (American Petroleum Institute 2013).  The exploration and 

production of this oil and natural gas generates large volumes of waste in the form of drilling mud 

(Clements et al., 2010), second only to return water in total volume (Onwukwe and Nwakaudu, 

2012).  In 1995 the American Petroleum Institute estimated about 150 million barrels of drilling 

mud was produced from onshore wells located in the U.S. alone (Veil, 2002).  As the oil and 

natural gas industry continue to grow, so will the amount of this by-product and the need for 

proper disposal. 
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Current disposal methods for oil and gas drilling mud include landfilling, land application, and 

slurry injection (Onwukwe and Nwakaudu, 2012).  Land application is the most attractive option 

to the industry due to the minimization of hauling distances to disposal sites (Clements et al., 

2010). It is the chemical makeup and physical properties of drilling mud that influence its 

hazardous characteristics and its ability to impact the environment (Onwukwe and Nwakaudu, 

2012).   Drilling muds generally contain bentonite clays, synthetic organic polymers, production 

water, barite, formation cuttings, and salts (Bauder et al., 2005), but may have other constituents 

such as petroleum hydrocarbons, heavy metals and patent protected ingredients.  Drilling mud is 

classified depending on the base fluid.  If the base fluid is water then the mud is called “water 

based mud” and if the base fluid is diesel then it is called “oil based mud” (Penn et al., 2014b).   

Federally, oil and natural gas drilling muds are subject to regulation under the EPA RCRA 

Subtitle D.  Each state also has regulating authority.  In Oklahoma, the Oklahoma Corporation 

Commission (OCC) regulates disposal of drilling wastes including the practice of land applying 

oil and gas drilling mud.  Restrictions vary based on the type of mud, the mud constituents and 

the chemical and physical characteristics of the soil and landscape receiving the mud (Oklahoma 

Register Title 165:10-7-9).  Adverse environmental impacts to both soil and plant growth after 

the land application of oil and gas drilling fluid may occur due to soluble salts, which are found 

primarily in water based mud, as well as high levels of plant available trace metals, which are 

found primarily in oil based mud (Bauder et al., 2005; Miller et al., 1980; Nelson et al., 1984).  

Analysis of the water based drilling mud used in a study in Colorado indicated that sodium (Na), 

Cd and Mo were the only constituents found in higher concentrations than a typical soil.  Ranges 

for Na, Cd and Mo were 9900-20000, 1.1-4.7 and 0.2-9.3 mg/kg respectively. However, 

following the guidelines set by the OCC, land application can be a sustainable solution for the 

disposal of oil and natural gas drilling muds, with minimal long term impact to the receiving soil.      
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Potential Constituents of Concern in By-Products 

Trace Metals 

The term ‘trace metals’ identifies the fact that they are metals found in the soil in minute 

amounts.  These metals occur naturally in the soil at various concentrations and are derived from 

the soil’s parent material or lithogenic source (Alloway and Alloway, 1995).  In a study by 

(Richards et al., 2012), naturally occurring concentrations of trace metals were quantified in order 

to establish a  background or baseline level.  In this experiment, 28 Oklahoma benchmark soils 

were digested and analyzed for concentrations of the trace metals As, Cd, Cr, Cu, manganese 

(Mn), Mo, Ni, Se, Pb and Zn.  The concentrations of trace metals found were (mg kg-1): As (0.75-

33.6), Cd (0.13-0.80), Cr (4.30-69.7), Cu (1.94-32.7), Mn (27.4-2165), Mo (0.18-1.80), Ni (2.41-

57.3), Pb (2.60-31.7), Se (BDL) and Zn (15.3-142).  It should be noted that As and Se are actually 

metalloids rather than metals (Pierzynski et al., 2005), but will be referred to as trace metals 

throughout this document.    

Anthropogenic sources of trace metals may also be found in the soil.  Urban areas generally have 

higher levels of Pb, Zn, Cd and Cu due to concentrated automobile use (Alloway and Alloway, 

1995).  Due to regulation, concentrated contamination from a single anthropogenic source is not 

as common as it was in the past.  Research on historical trace metal contamination and 

accumulation of the urbanized region of the Lake Champlain watershed in Burlington, Vermont 

examined anthropogenic sources of metals over a 350 year period.  The research showed metal 

concentrations above background levels beginning in the early to mid-1800’s and maximum 

concentrations and accumulation rates were seen in the late 1960’s.  Decreases in concentration 

and accumulation rates were seen for almost all metals from 1970-present (Mecray et al., 2001). 

Regulations set by the EPA and various state agencies limit the addition of trace metals to the 
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soil.  Municipal and industrial by-products must meet certain criteria (nontoxic) before being land 

applied. 

Trace metals are found in different forms in the soil.  Cationic metals such as Cd2+ and Pb2+ are 

predominately found as cations in soils and soil solutions.  Trace metals that bond with oxygen 

are called oxyanions, and have an overall negative charge.  Arsenate (AsO4
3-) and chromate 

(CrO4
2-) are examples of oxyanions.  It is the soil’s chemical conditions that determines the 

chemical species present; and it’s the species present that dictate the element’s behavior in 

regards to leachability, bioavailability, and risk to human health (Pierzynski et al., 2005). 

There are several chemical processes that govern the speciation of any given trace metal.  These 

processes include precipitation-dissolution, complexation-dissociation, and adsorption-

desorption; all of which are affected by pH (He et al., 2005).  It is the type of bond formed in the 

solid-solution interface of the soil that determines the retention of a trace metal. 

Precipitation can be defined as a phase-distribution process within a solution where insoluble 

solids are formed and then separate from a solution.  Dissolution is the changing from a gaseous 

or solid phase into the aqueous phase (Boulding and Ginn, 2003).  Both processes rely heavily on 

a soil solution’s chemical properties, predominately ionic activity and pH (Essington, 2004).  

When a trace metal is in solid form or precipitated it is not plant available or leachable.  However 

soil consumption is a pathway to consider regarding human health.  In regards to environmental 

and human health, dissolution and transport to drinking water is a more viable pathway.  When in 

solution, free ions are available for plant uptake, but sometimes the dissolved ions will form 

complexes that remain in solution and may or may not be plant available depending on the plant 

and complex.  A complex consists of one central cation with one or many anions, or ligands, 

attached.  Ligands can be organic or inorganic.  There are two types of complexes, inner sphere 

and outer sphere.  Inner sphere complexes are the direct bonding of a central cation to a ligand(s).  
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These are covalent bonds and are very strong.  Simple complexes (monodentate) and chelates 

(polydentate) are both inner sphere complexes.  Certain chelates have the ability to remove 

various metals from contaminated soil via phytoremediation or soil washing (Leštan et al., 2008).  

Sometimes chelating agents in conjunction with lowering pH can be even more effective.  A 

study in New Jersey demonstrated that the application of EDTA and acetic acid led to a two-fold 

accumulation of Pb in Indian mustard shoots compared with the application of EDTA alone 

(Blaylock et al., 1997).  Outer sphere complexes usually consist of ion pairs bonded 

electrostatically, with water molecules separating the two.  Outer sphere complexes are very weak 

and easily broken.         

Adsorption is a general term that can be divided into two categories, specific and non-specific 

adsorption.  Divalent cations such as Cu and Pb are commonly associated with specific 

adsorption.  Specific adsorption occurs when a cation forms a covalent bond(s) with an oxygen 

atom(s) on the surface of a variable charged soil mineral or humus, forming an inner sphere 

surface complex (Essington, 2004).  This is a very strong bond and complete desorption is highly 

unlikely.  Specific adsorption is pH dependent and increases as pH rises.  A trace metal that is 

specifically absorbed is not bioavailable or leachable.    Non-specific or outer sphere adsorption 

relies on electrostatic forces or cation exchange sites.  This is a much weaker bond associated 

mostly with permanently charged soil minerals and is easily reversible making it more likely to 

become plant available or leachable under varying conditions.   

 

Total concentration of any given trace metal in a soil is equal to:   

CTotoal  = CFixed + CAdsorbed  + Cwater  

Where: 
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 CFixed = the concentration of a trace metal that is fixed within the structure of a clay 

mineral. 

CAdsorbed = the concentration of a trace metal adsorbed to the surface of a soil mineral and 

onto the exchange sites of soil organic matter. 

CWater = the concentration of a trace metal in the water fraction of the soil in equilibrium 

with CAdsorbed. 

The CFixed portion is the immobile fraction, and the sum of CAdsorbed and CWater is the potentially 

mobile portion and CWater is the plant available portion (Dragun, 1988). 

Soluble Salts 

Salts that naturally occur in soils or soil solution are derived from many sources, including 

weathered parent material, saline water bodies, and atmospheric deposition.  There are many 

anthropogenic sources as well, such as long term irrigation, leaking of saline waste storage pits, 

and the land application of byproducts such as water based drilling mud and fly ash among 

others.  The salts that are commonly found in soil consist of the basic cations Na+, K+, Mg2+ and 

Ca2+, and the anions Cl-, CO3
2-, SO4

2-, NO3
1- and HCO3

- (Essington, 2004). 

There is a classification system for soils with excessive salt.  These classifications are based on 

values of the sodium adsorption ration (SAR) and the electrical conductivity (EC) of the soil 

solution as well as pH.  A soil can be considered sodic, saline or saline-sodic.  The condition or 

quality of a soil also vary by classification. SAR is the ratio of cationic charge from Na to the 

cationic charge from Ca and Mg.  SAR is calculated using the equation Na / √ (Ca + Mg) / 2 

where values for Na, Ca and Mg are in meq/L.  EC is the measurement of the soils solution's 

ability to conduct electricity which is directly correlated to the concentration of ions in solution.  

EC is usually measured using a standard EC probe.  Both SAR and EC are quantified using the 

analyte, or water portion, of a saturated paste extraction (Havlin et al., 2005). 

Sodicity can have profound effects on a soil’s physical structure.  Na ions have a very large 

hydraulic radius.  Therefore, high Na concentrations lead to the increased swelling of Smectitic 
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2:1 clay minerals within a soil. This decreases a soil’s overall porosity which, in turn leads to 

poor soil structure and increased erosion, poor permeability, low infiltration rate, and a reduction 

in hydraulic conductivity (Pierzynski et al., 2005).  Sodicity and Salinity can also effect plant 

growth, however tolerance varies by plant species.  In one study, tomatoes grown in soils with 

EC’s of 1.6, 3.8, 6.0 and 10.2 mmhos/cm, yield of tomatoes were 59.5, 55.2, 50.7 and 43.9 

kg/plot respectively.  In the same study, overall fruit weight also declined with an increase in EC 

at 68.5, 59.5, 55.8 and 51.9 g/unit respectively (Shalhevet and Yaron, 1973).  Poor plant growth 

may be a result of the soils poor structure or could be a result of a decrease in osmotic potential, 

reduction of plant available nutrients and elemental toxicities; all of which are possible in a sodic 

or saline sodic soil (Corwin et al., 2003; Pierzynski et al., 2005).  

Due to the soluble nature of salts, leaching occurs rapidly with precipitation or irrigation (unless 

irrigating with saline water).  This can be a concern when a large salt plume of anthropogenic 

source threatens a ground water source.  However, on a smaller scale, this make remediation 

fairly easy.  A sodic soil is usually remediated with the addition of water and gypsum (CaSO4). 

The process can take many years, but the Ca ion concentration eventually exceeds the 

concentration of Na ions as they leach through the soil profile (Davis et al., 2003).  CEC sites 

within the soil have a greater affinity for divalent Ca ions than monovalent Na ions as seen in the 

lyotropic series:  Al3+ > Ca2+ > Mg2+ > K+ = NH4
+ > Na+ (Havlin et al., 2005) 

.Nutrients 

There are sixteen elements that are essential to plant growth.  Three of them, C, H and O are 

obtained from the atmosphere and water.  The remaining thirteen consist of the primary nutrients 

N, P and K; secondary nutrients Ca, Mg and S; and the micronutrients iron (Fe), Mn, Zn, Cu, B, 

Mo and Cl.  These remaining thirteen are mineral nutrients and are supplied to the plant by the 

soil and/or fertilizers (Zhang and Raun, 2006).  In a natural ecosystem, the plants that are present 
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is ultimately dictated by weather and available nutrients that naturally occur in the soil.  The 

origin of these nutrients are primarily from the parent material in which the soil was formed, 

animal waste as well as atmospheric deposition. 

Approximately 10,000 years ago, or the Neolithic age, humans began cultivating plants, marking 

the dawn of agriculture.  When the addition of fertilizers to the soil by man began is not known, 

but was written about by Homer in his poem the Odyssey around 800 B.C.  Homer mentioned the 

manuring of vineyards, and references a manure heap, suggesting manure was stored for this 

purpose (Havlin et al., 2005).  Approximately 2800 years later, man has certainly come a long 

way in terms of fertilization, but by-products such as manure and biosolids are still used as 

fertilizers to this day. 

It is understood that the primary nutrients N, P and K are the most important mineral nutrients 

needed for plant growth.  Of these, N is the most important and the most limiting due to its 

mobility in the soil.  NO3 and NH4sw are the two forms of N taken up by plants.  Sources of these 

forms of N originate from symbiotic and non-symbiotic N2 fixation by plants and microbes, 

atmospheric deposition via lightening and rainfall, the microbial decomposition of plant and 

animal residues (nitrification) and industrial fixation.  Due to its negative charge, NO3 is easily 

repelled by the overall negatively charged soil (CEC), and in conjunction with precipitation or 

irrigation, it is lost due to leaching.  Another loss of N occurs via volatilization after the 

aminization and ammonification processes in which bacteria and/or fungi transform the amine 

functional groups of soil organic matter to NH4. Volatilization can occur when plants are stressed 

and release gaseous NH3.  Under anaerobic conditions denitrification occurs and N is lost to the 

atmosphere as N2O, NO and N2 (Havlin et al., 2005; Pierzynski et al., 2005; Sylvia et al., 2005; 

Vu Tran, 2008). 
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As previously stated, the EPA considers agriculture to be the leading cause of pollution to lakes 

and streams, therefore fertilization rates and manure application must be properly managed.  

Nitrogen based manure applications can lead to an increase in soil test P beyond what plants 

need.  The over-enrichment of mineral nutrients, such as N and P, is subject to loss via water 

transport to ground waters and surface waters.  The discharge of N and P to surface waters from 

cropland are estimated to be approximately 3,204,000 and 615,000 Mg/yr respectively (Carpenter 

et al., 1998).  In surface waters these nutrients are often chemically limiting to algal growth 

(Correll, 1999), so once they become readily available algae thrive .  As the algae die 

decomposition occurs.  This decomposition process uses the dissolved oxygen in the water 

eventually making it anoxic.  Anoxic conditions can result in fish kills among other various 

detriments to the ecosystem.              

 

INTRODUCTION TO THE HORIZONTAL DIRECTIONAL DRILLING INDUSTRY 

The horizontal directional drilling (HDD) industry is certainly on the rise worldwide.  In North 

America alone, the number of drilling units grew from 12 units in 1984 to more than 2,000 units 

in 1995 (Kirby et al., 1996).  HDD is a trenchless technology and its popularity is likely a direct 

result of its noninvasive nature and the reduced project cost that is a result thereof (Allouche et 

al., 2000).  It is usually used for the installation of underground utilities for municipalities ranging 

from 50 mm utility conduits to 900 mm sewer lines (Allouche et al., 2000).   

Spent HDD mud is an ‘industrial’ by-product resulting from the drilling or boring process, which 

utilizes drilling fluid. Drilling fluid is used in the boring process as a means to stabilize the bore 

hole, float cuttings to the surface, and keep the bit cool.  Once the drilling fluid’s density reaches 

9-10 lbs/gallon it is no longer viable and needs to be disposed of (Ariaratnam and Eng, 2001).  At 

this point, the by-product is known as “mud”. HDD drilling fluid constituents are usually water, 
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bentonite (montmorillinite) and/or polymers (Ariaratnam and Eng, 2001) as well as surfactants 

and soda ash when needed. These additives may or may not be added to aid in the drilling 

process, depending on the type of formation that is being drilled through. These additives and 

their potential uses are listed below: 

 Bentonite clay (2:1 soil mineral), which is used for sealing the bore wall (prevent seepage 

of drilling fluid).  Bentonite is also used for increasing fluid viscosity in order to make 

the fluid more “flowable” with regard to carrying the suspended cuttings back out of the 

hole to the surface.  Bentonite is a clay mineral with a high cation exchange capacity, 

which can improve the ability of a soil to retain nutrients after land application.    

 Polymers such as polyacrylamide (PAM) may be used as a substitute or in addition to 

bentonite for the same purpose.  Polyacrylamide is a common soil conditioner used to 

stabilize soil on road construction sites and also to prevent erosion on furrow irrigated 

soils. 

 Soda ash (sodium carbonate) used for pH control.  Soda ash is used in the production of 

certain foods, toothpaste, and as a water softening agent in laundry and boilers.  

 Surfactants (a.k.a. wetting agents), used to disperse clay particles during the drilling 

process. This prevents heavy clays from “balling up” at the drill bit, and allows clay 

particles to flow back toward the surface. Surfactants reduce the surface tension between 

two liquids or between a liquid and a solid.  While some surfactants are synthesized 

naturally by living cells, manufactured surfactants are commonly used in shampoos, 

soaps, pharmaceuticals, and foods. 

The regulations and bylaws for the proper disposal of the spent HDD mud vary by municipality 

as well as by state and are not federally regulated.  In Oklahoma the OCC has the regulating 
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authority for disposal however, there are no regulations or guidelines currently available.  HDD 

mud containment and disposal is a growing issue as the number of directional drilling rigs is on 

the rise (Allouche et al. 2000) paired with the stigma of its association to spent oil and gas drilling 

mud.  Disposal can substantially increase the cost of the project, particularly when large diameter 

products are installed (Allouche et al. 2000).  Current disposal methods include hauling to a 

landfill, leaving onsite, and land application.  The majority of contractors in a survey conducted 

in conjunction with this study, stated that they had to haul their spent drilling fluid to a landfill, 

which is both costly and time consuming.  Others stated that some landfills will not accept the 

mud due to unfamiliarity.  When asked to rank how big of an issue mud disposal is, 47% of those 

surveyed considered it a major issue and 30% considered it a moderate concern.     

Today there is growing speculation about HDD mud and the safety of its constituents or chemical 

makeup.  As stated above, it is often mistaken for oil and gas drilling mud even though the two 

by-products are very different.  There is a need to separate the public’s perception of the spent 

drilling mud from the HDD industry from that of the oil and gas industry.   To date, there is no 

published research on the chemical and physical makeup of spent HDD mud or its environmental 

impact as a residual for land application.  This research is a first step to examine the safety of land 

application of HDD drilling residuals.   

         The overall objective of this project is to characterize the physical and chemical makeup of 

spent directional drilling fluid and to determine any possible environmental and agronomic 

impact of its use as a residual for land application. 

Specific Objectives 

1. Collect and characterize random HDD mud samples representing a large geographic 

area, for various chemical and physical parameters that could either inhibit land 

application through environmental degradation, or benefit growing plants.  
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2. Conduct a land application study of HDD mud representing potential agricultural and 

urban scenarios in order to assess potential impacts on plants. 
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CHAPTER II 
 

 

THE CHEMICAL AND PHYSICAL CHARATERIZATION OF HORIZONTAL 

DIRECTIONAL DRILLING RESIDUALS 

 

ABSTRACT 

 

Horizontal directional drilling (HDD) is a trenchless technology used for the installation of gas 

lines, sewer lines, fiber optic cable, and many other common utilities.  Spent HDD fluid is a by-

product of the boring process.  However, little is known of its constituency.  Currently, the most 

common method of disposal is landfilling.  Land application of spent HDD residuals would be a 

more economical and less time consuming method of disposal.  A chemical and physical analysis 

of spent HDD residuals from a broad geographic range was conducted in order to determine if 

land application would be an environmentally safe option for disposal.  Fifty eight samples were 

received from 26 states from throughout the United States.  After separation of the liquid and 

solid portion, the materials were assessed for plant nutrients by Mehlich-3, soluble and total trace 

metals, potential “leachable metals” by the synthetic precipitation leaching procedure (SPLP), 

total dissolved solids and sodium absorption ratio (SAR).  Calcium was the only nutrient in 

abundance. All trace metal concentration in the digested soil portion were well below the limits 

for biosolids set by the EPA 40 Part 503 rule for land application.  Metal concentrations in the 

analytes of the SPLP were compared to drinking water standards, no sample exceeded these 

limits.  Because there was nothing chemically limiting found in the samples, total solids appeared 

to be the most limiting factor for the land application of spent HDD residuals.   However, when 

boring though a soil with suspected contamination, testing the residual prior to application is 

recommended.       
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INTRODUCTION 

 

Humans have been land applying a wide variety of waste materials and by-products, in many 

forms, as soil amendments to supplement and improve the soil for over 2000 years (Lederer and 

Rechberger, 2010).  Many by-products are applied for the purpose of waste disposal.  Often the 

sources of these waste residuals are agricultural, municipal, and industrial wastes or by-products.  

These materials, in their broadest sense, vary widely in terms of their overall beneficial and 

environmental impacts.  Information acquired over years of research suggests that sustainable 

land application systems can be established and maintained under a wide range of conditions 

(Bastian, 2005).  Because of environmental concerns and economic restraints in regards to land-

filling and incineration, public interest in land application of wastes is continuing to grow 

(O'Connor et al., 2005).  As the interest in land application increases so does speculation of the 

public as to what potential contaminants could possibly in the residuals being land applied.  

Probably the most important factor in regards to the land application of agricultural, municipal, 

and industrial by-products is earning the public’s trust with regard to safety.  Gaining the public’s 

trust will require waste management in such a way that protects human and animal health, 

safeguards soil and water resources, and maintains a quality ecosystem for the long term (Larney 

et al., 2000). 

The agricultural by-product most commonly land applied is manure.  In fact, application of more 

than 100 million dry Mg annually makes it the most widely land applied residual.  The benefits of 

land applying manure are numerous.  Manure is an excellent source of nitrogen (N), phosphorus 

(P), potassium (K), and secondary nutrients (Risse et al., 2003).  It is also a good source of 

organic matter.  Organic matter acts as a buffering material, chelating agent, and can play a vital 
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role in soil physical properties.  There is one major drawback that may occur with mis-application 

of manure: nutrient loss to surface waters that can lead to eutrophication. This is a major problem 

especially in concentrated animal feeding operations (CAFOs). 

Another common residual that is land applied is treated sewage sludge, also known as 

biosolids.  Biosolids are a by-product of the municipal waste water or sewage treatment 

process.  Like manure, biosolids can be an excellent source of nutrients as well as organic 

matter.  Unfortunately, biosolids may contain heavy metals as well as pathogens.  For this 

reason the land application of biosolids is heavily regulated by the EPA under Part 503.  

The EPA has set strict concentration limits for metals and pathogens for biosolids to be 

land applied. 

An industrial by-product with a growing need for disposal, especially in Oklahoma, is the 

spent drilling fluid from the oil and natural gas industry.  It is the chemical makeup and 

physical properties of drilling mud that influence its hazardous characteristics and its 

ability to impact the environment (Onwukwe and Nwakaudu, 2012).   Drilling muds 

generally contain bentonite clays, synthetic organic polymers, production water, barite, 

formation cuttings, and salts (Bauder et al., 2005), but may have other constituents such 

as petroleum hydrocarbons, heavy metals and high salt or sodium concentrations.  The 

land application of spent drilling fluid is regulated by the Oklahoma Corporation 

Commission (OCC).   

The horizontal directional drilling (HDD) industry is certainly on the rise worldwide.  In North 

America alone, the number of drilling units grew from 12 units in 1984 to more than 2,000 units 

in 1995 (Kirby et al., 1996) and this number has only continued to grow over the last twenty 

years.  HDD is a trenchless technology and its popularity is likely a direct result of its 
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noninvasive nature and the reduced project cost that is a result thereof (Allouche et al., 2000).  It 

is usually used for the installation of underground utilities for municipalities ranging from 50 mm 

utility conduits to 900 mm sewer lines (Allouche et al., 2000).  Spent HDD residuals are an 

‘industrial’ by-product resulting from the drilling or boring process, which utilizes drilling fluid. 

Drilling fluids are used in the boring process as a means to stabilize the bore hole, float cuttings 

to the surface, and keep the bit cool.  Once the drilling fluid’s density reaches 9-10 lbs/gallon it is 

no longer viable and needs to be disposed of (Ariaratnam and Eng, 2001).  At that point, the by-

product is known as “mud” or “residual”.  HDD fluid constituents are usually water, bentonite 

(montmorillinite) and/or polymers (Ariaratnam and Eng, 2001) as well as surfactants and soda 

ash when needed. These additives may or may not be added to aid in the drilling process, 

depending on the type of formation that is being drilled through. 

The regulations and bylaws for the proper disposal of the spent HDD residuals vary by 

municipality as well as by state and are not federally regulated.  In Oklahoma the OCC has the 

regulating authority for disposal.  However, there are no regulations or guidelines currently 

available.  HDD residual containment and disposal is a growing issue as the number of directional 

drilling rigs is on the rise (Allouche et al. 2000) paired with the stigma of its association to spent 

oil and gas drilling mud.  Disposal can substantially increase the cost of the project, particularly 

when large diameter products are installed (Allouche et al. 2000).  Current disposal methods 

include hauling to a landfill, leaving onsite, and land application.  The majority of contractors in a 

survey conducted in conjunction with this study, stated that they had to haul their spent drilling 

residuals to a landfill, which is both costly and time consuming.  Others stated that some landfills 

will not accept the residuals due to unfamiliarity.  When asked to rank how big of an issue 

residual disposal is, 47% of those surveyed considered it a major issue and 30% considered it a 

moderate concern.     
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Today there is a growing speculation about HDD residuals and the safety of their constituents or 

chemical makeup.  As stated above, it is often mistaken for oil and gas drilling mud even though 

the two by-products are very different.  There is a need to separate the public’s perception of the 

spent HDD drilling residuals from that of the oil and gas industry.   To date, there is no published 

research on the chemical and physical makeup of spent HDD residuals or their environmental 

impact as a media for land application.  Thus, the objective of this research was to collect and 

characterize many residuals from throughout the United States in order to make and overall 

assessment of their physical and chemical makeup in terms of their suitability for land 

application.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

MATERIALS AND METHODS 

 

In order to obtain a broad overall characterization of HDD residuals it was necessary to obtain 

samples from throughout the United States.  To do this, packages were sent to contractors 

throughout the country.  These packages contained sample bottles, instructions on how to obtain a 

representative sample and a written survey (Appendix A). A total of 58 samples were received 

representing 26 different states.  Chemical analyses of all residuals were evaluated in terms of 

their safety regarding land application.    

Solids content (gravimetric) was determined by shaking samples for 20 minutes followed by 

subsampling and placement in an oven at 65°C for 24 hours.  In order to conduct several 

analyses, the solids portion was separated from the liquid by centrifugation at 5000 rpm for 10 

minutes followed by filtration with a Whatman No 41 paper.   

For the solids portion, samples were extracted via total soil digestion using EPA 3050 method 

(EPA 1996) using two grams of solid residual, trace metal grade nitric acid (HNO3) and trace 

metal grade hydrochloric acid (HCl), and a 30% hydrogen peroxide solution, in conjunction with 

heat.  Following digestion, analytes were filtered using 41 Whatman paper and brought to volume 

with deionized (DI) water in 50 mL volumetric flasks.  Samples were then analyzed for various 

elements including aluminum (Al), sodium (Na), sulfur as sulfate (SO4-S), calcium (Ca), 

magnesium (Mg), P, boron (B), barium (Ba), K, chromium (Cr), manganese (Mn), iron (Fe), 

cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), arsenic (As), and lead (Pb).  

Analytes were quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy 
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(ICP).  The results were compared to the EPA Regional Residential Screening Levels (EPA 2013) 

as well as EPA 40 CFR 503 Criteria for Exceptional Quality Biosolids (EPA 2007).   

A modified version of the synthetic precipitation leaching procedure (SPLP) was also performed 

on the solids portion in order to simulate potential leachability to groundwater (Hageman et al., 

2000).  Extraction fluid was made using DI water acidified to a pH of 4.2 using a 60/40 ratio 

solution of trace metal grade nitric acid (HNO3) to reagent grade sulfuric acid (H2SO4).  Solids 

were extracted at a 1:20 solid:solution ratio for 18 hours followed by centrifugation at 5000 RPM 

for 10 minutes and filtration through .45 µm glass fiber filters using vacuum filtration.  Extracts 

were analyzed for Mo, Al, B, Na, SO4-S, Ca, Mg, P, K, Cr, Mn, Fe, Co, Cu, Zn, Cd, As, and Pb 

by ICP.   

The water portion was separated using a centrifuge at 5000 RPM’s for a minimum of 10 minutes.  

The separated water portion was then filtered using 42 Whatman paper.  Samples were then 

analyzed for Mo, Al, B, Na, SO4-S, Ca, Mg, P, K, Cr, Mn, Fe, Co, Cu, Zn, Cd, As, and Pb by  

ICP.  This will be referred to as “water soluble”. Results were compared to EPA Aquatic Life 

Criteria Table (EPA 2013). Sodium adsorption ratio was calculated for each sample: 

  

Where Na, Ca, and Mg are in units of meq L-1.  Electrical Conductivity (EC) and pH were tested 

on both the solid residuals (prior to solid/liquid separation) and their separated water portion 

using standard EC and pH meters.  Plant available nutrients that were analyzed included P, K, 

Mg, Ca, Mn, Na, Fe, SO4-S, Zn, Cu, and B.  Of those, Mehlich-3 extraction was used for K, P, 

Mg, Ca, Mn, and Fe.  Mehlich 3 nutrients were extracted at a ratio of 1:10 solids:solution for five 
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minutes, followed by filtration with Whatman #42 filter paper and analysis by ICP (Mehlich, 

1984).  Total N and C were quantified using LECO TruSpec Analyzer (Leco Corporation, St. 

Joseph, MI). 

Statistical Analysis 

Descriptive statistical analysis was performed using Microsoft Excel (2013).  Mean, median, 

minimum, maximum, and standard deviation were calculated for all elements of interest from the 

extraction methods listed above.  The same parameters were also calculated for pH, EC, and total 

C and N.    
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RESULTS AND DISCUSSION 

Chemical Properties of HDD Residuals 

Overall, the residuals were low in total carbon, as percent C range was 0.09 to 6.61 with a mean 

of 1.42 and median of 0.51.  Percent N ranged from 0.01 to 0.26 with a mean and median of 0.04 

(Table 1).  Low percentages of C and N were expected as the majority of the residual is smectitic 

clay and subsurface (deeper than 1 meter) soil and cuttings.  The lack of C and N in the residual 

makes it of little value as a potential C or N source.  Solids content had a broad range of 0.04 – 

0.72 grams solid grams slurry-1 with mean and median values of 0.35 and 0.34 grams solid grams 

slurry-1, respectively (Table 2).  This wide range is likely due to the variability of the original 

drilling fluid used and the various formations or sub-soils being bored through; for example, 

sometimes only water is used without bentonite clay.  Values for EC of the residuals ranged from 

a low of 118 µS cm-1 to a high of 3950 µS cm-1 with mean and median values of 1198 and 1124 

µS cm-1, respectively (Table 2).   All samples were under the threshold of 4000 µS cm-1 for saline 

sensitive plants (Pierzynski et al., 2005).  EC and density were used to calculate loading rates for 

all samples.  Using an application rate of 112 metric tons ha-1, the largest loading rate was 3723 

kg ha-1.  This is well below the limit of 6724 kg total dissolved solids ha-1 set by the OCC for the 

land application of water-base drilling mud from oil and gas exploration.  The rules for WBM 

application are stated in the Oklahoma administrative code and register, Title 165:10-7-19.  The 

majority of samples had pH values similar to that of a typical subsoil ranging from 4.7-9.9 with a 

mean of 7.5 and median of 7.6 (Table 2).  The high pH samples are likely indicative of free 

carbonates, which could occur naturally in the subsoils, or from bicarbonate additives in the 

original drilling fluid
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Separated Water Portion 

Sodium absorption ratio (SAR) was measured on the separated water portion of every sample.  

The mean SAR was 13 with a median of 12.5.  SAR ranged from 0.5-90.2 (Table 3).  A soil with 

an SAR ≥ 13 is considered sodic at a pH > 8.5 and an EC < 4000 µS cm-1.  High concentrations 

of Na can negatively impact soil structure, and compete with the Ca and Mg for plant uptake 

(Davis et al., 2003).  Thus, depending on the residual, land application could cause some 

problems if the residual was surface applied with no incorporation.  If a residual with high SAR 

and potential for dispersion was surface applied with no incorporation, it could possibly seal the 

surface causing it to be physically dispersed.  However, depending on land application rates, the 

incorporation of such a residual would prevent this problem from occurring.  

Elemental concentrations were also measured on the separated water portion (Table 3).  Sample 

concentrations were compared to the EPA Surface Water Quality Criteria for Aquatic Life.  

Eleven samples exceeded this criteria.  Eight samples exceeded the criteria for Zn and three for 

Cd.  It is important to note that the maximum concentration for Cd in this criteria is 2 µg L-1 

which is less than the detection limit of the ICP used for quantification.  Based on the results of 

the metals measured in the liquid portion of the residuals, there is no risk of causing aquatic 

toxicity if the material was accidentally disposed directly into a surface water body, except for Zn 

and Cd in a few cases.  However, such a toxicity is unlikely or negligible when the residual is 

used properly as a soil amendment.     

Solids Analysis: Nutrients  

Mehlich-3 extractions were performed on the solids portion of all the residuals in order to 

determine concentrations of K, P, Mg, and Ca potentially available for plant uptake (Table 4).  

When compared to the agronomic optimum (Zhang and Raun, 2006), mean concentrations for K, 

Mg, and Ca were sufficient, however P would be slightly limiting if the residual was solely used 
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as a medium for plant growth instead of as a soil amendment.  A mean Ca level of 5660 mg kg-1 

suggests that a residual could be a source of that nutrient among soils that are limited in Ca.            

Metals 

The solids portion of all the residuals were digested using method EPA 3050 and analyzed for the 

trace metals Mn, Ba, Cu, Zn, Cr, Ni, Pb, Co, As and Cd (Table 5).  Metal concentrations were 

compared to EPA Part 503 which regulates the concentrations and loading of metals for land 

application of biosolids.  The strictest of standards set by EPA Part 503 are for ‘Exceptional 

Quality’ (EQ) biosolids (EPA 1994).  Land application of EQ biosolids requires no permit and 

can be applied based on the N and P contents of the material only.  Metals concentrations in every 

residual were considerably less than the ceiling for EQ biosolids (Table 5).  However, it must be 

considered that the threshold metal EQ limits were determined based on expected bioavailability 

in the background matrix of organic matter. This is an important difference from the matrix of the 

residual samples, which are not rich in organic matter, and will therefore have an impact on the 

bioavailability of the metals.  It is likely that the metal bioavailability of the residual samples will 

highly vary as a function of the mineralogy of the material.  This difference should be taken into 

consideration when calculating loading rates for land applying HDD residuals.   If all residuals 

examined in this study were land applied at 50 tons solid acre-1 and compared to the EPA 

cumulative loading rates for biosolids, no samples would exceed the thresholds (Table 7).  One 

sample would exceed the EPA annual loading rate for Cu.   

Sample concentrations of metals were also compared to the background concentrations found in 

Oklahoma soils (Richards et al., 2012).  Fifteen samples exceeded these background 

concentrations, twelve were for Cu.  Sample concentrations were also compared to typical levels 

found in soils throughout the United States (McBride, 1994).  Only seven samples were above 

these levels, of which five were for Cu (Table 5).  When compared to the EPA Soil Screening 
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Levels for residential soils (Table 5), concentrations of two samples exceed the maximum level 

for As but are far lower than levels found in Oklahoma soils (Richards, et al., 2012).      

The modified Synthetic Precipitation Leaching Procedure was also performed on the solids 

portion of all samples (Table 6).  This procedure is used as a means to estimate the leachability of 

the constituents in a material.  Sample concentrations were compared to Maximum Contaminant 

Levels (MCLs) set by the EPA for drinking water.  No samples exceeded the MCLs. 
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RECOMMENDATIONS AND IMPLICATIONS 

 

There are typically two criteria used to assess a residuals “suitability” for land application:  (i) the 

by-product’s ability to enhance, or have no negative impact, on the productivity of the soil and 

plant growth, and (ii) a lack of negative environmental impacts (Whalen et al., 2000).  Before 

land applying HDD residuals, one must consider the in situ soil or formation being bored through, 

from which the residuals originated.  If boring through a site with known contamination, 

performing an analysis for contaminants, such as heavy metals, is suggested.  This could 

potentially be a problem when boring through ground with a historic industrial use.  For example, 

during the industrial revolution, industrial processes such as Cd plating and Cu smelting were 

commonly conducted outside of the major metropolitan areas.  These areas are now referred to as 

‘suburbs.’  This is especially true for areas along the east coast.  If boring took place in an area 

where Cu smelting once occurred, drilling residuals would potentially contain high concentrations 

of Cu.       

The EPA Part 503 criteria for metals with regard to land application of biosolids can be used as a 

guide for maximum allowable metals in a residual to be land applied.  One key difference 

between biosolids and HDD residuals is the organic matter content.  Because of the residuals low 

organic content, the bioavailability of metals is something to take into consideration.  Because 

bioavailability differs with plant species (Kabata-Pendias, 2004), having an estimate of free metal 

concentration may be more useful.  Separation by diffusion using the Donnan membrane 

technique is one method suggested to measure inorganic contaminants, or free metal 

concentrations, available for plant uptake (Harmsen, 2007).  Other methods include using the 
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chelating agents diethylenetriaminepentaacetic acid (DTPA) or ethylenediamine tetraacetic acid 

(EDTA) to extract potentially bioavailable metals (Lindsay and Norvell, 1978; Wear and Evans, 

1968).  A study in China used the rhizosphere method, which uses low molecular weight organic 

acids to extract bioavailable metals, and compared results to the DTPA and EDTA methods.  

Their results showed the rhizosphere method to be the most robust in predicting the 

bioavailability of Cr, Cu, Zn, and Cd in soils to barely (Feng et al., 2005).  However, this study 

showed that the metals contained in the residuals were poorly soluble in water, thus potentially 

indicating that bioavailability and mobility would also be minimal. 

A residual with a high SAR and/or salt concentration could be a problem, especially if the 

receiving soil is borderline saline and/or sodic.  Unlike oil and gas drilling mud, HDD residuals 

aren’t going to contain geologic salts or return water from deep formations.  However, this does 

not mean that HDD residuals don’t have the potential to have a negative impact.  Measuring the 

EC of a residual before it is land applied would be beneficial in determining whether or not it 

could have a negative impact on the soil that is receiving it.  If the SAR of a residual is known to 

be above 13, incorporating the residual is recommended.      

It is not recommended to use HDD residuals solely as a planting medium, although nothing was 

chemically limiting among the survey residual samples that would limit its use as a soil 

amendment.  Total solids was found to be the most limiting factor.  Because of the residuals high 

clay content, applying too much of a residual could smother the receiving soil and plants, 

resulting in poor plant growth and minimal water infiltration.  If applied at a proper rate, the high 

clay content could improve a sandy soils ability to retain water and nutrients.  In order to 

minimize environmental impact to the receiving soil and plant life, acceptable HDD residuals (i.e. 

low metals and salt concentrations) should be applied at a rate ≤ 112 metric tons solid ha-1 on 

ground with a slope ≤ 8% in order to minimize erosion and loss to surface water. 
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TABLES AND FIGURES 

Table 1.  Descriptive statistics for percent carbon (C) and nitrogen (N) and the carbon:nitrogen 

ratio of the solids portion of the residuals. n=57 

 
Mean Median Min Max Std Dev 

Carbon 1.42 0.51 0.09 6.61 1.75 

Nitrogen 0.04 0.04 0.01 0.26 0.04 

C:N 42.89 14.04 2.97 276.39 62.62 

 



40 
 

Table 2.  Descriptive statistics for the electrical conductivity (EC) in µS cm-1and pH for the 

separated water portion (water) and the “as is” sample (residual).  Solids content expressed as 

gram solid gram total-1. n=58 

  
Mean Median Min Max Std Dev 

Residual EC 1198 1124 118 3950 772 

 
pH 7.5 7.6 4.7 9.9 1.2 

 
Solids Content 0.35 0.34 0.04 0.72 0.20 

Water EC 1439 1334 241 4296 848 

 
pH 7.7 8.0 4.2 10.1 1.0 
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Table 3.  Descriptive statistics for the elemental concentrations in mg L-1 and sodium adsorption 

ratio (SAR) of the water portion of residual samples with ceiling concentrations for the EPA 

Aquatic Life Criteria.  n=58 

Element Mean Median Min Max Std Dev 
EPA Aquatic 

Life Criteria† 

S 326.8 248.2 5.2 2708.3 400.8 NA 

Na 285.5 272.7 18.0 856.2 191.2 NA 

Ca 47.0 27.2 0.8 584.7 80.9 NA 

Fe 16.9 0.4 BD 183.1 40.8 NA 

Mg 16.4 10.9 BD 74.9 17.6 NA 

K 8.4 5.2 0.7 78.2 11.4 NA 

Mn 1.1 BD BD 23.4 3.3 NA 

P 0.6 0.1 BD 26.6 3.5 NA 

B 0.2 0.1 BD 1.5 0.3 NA 

Mo 0.1 BD BD 0.6 0.1 NA 

Zn 0.1 BD BD 0.3 0.1 0.12 

Cr BD‡ BD BD 0.5 0.1 0.57 

Cu BD BD BD 0.3 0.1 NA 

Cd BD BD BD 0.2 NA§ 0.002 

Co BD BD BD 0.1 NA NA 

As BD BD BD BD NA 0.34 

Pb BD BD BD BD NA 0.065 

SAR 13.0 12.5 0.5 90.2 12.8 NA 

†USEPA 2014.   National Recommended Water Quality Criteria 

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm#altable 

‡ Below Detection Limit 

§ Not Applicable 
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Table 4.  Descriptive statistics for Mehlich-3 extractable element concentrations in mg kg-1 from 

the solids portion of residual samples. n=56 

Element Mean Median Minimum Maximum Std Dev 

K 156.5 121.0 9.2 658.4 130.0 

P 23.1 8.6 BD† 274.6 50.9 

Mg 438.8 436.3 12.7 1318.4 310.7 

Ca 5660.0 3569.4 181.8 39320.2 9060.8 

Na 2198.3 844.0 41.7 17150.6 3496.1 

Mn 142.0 71.0 2.2 1443.7 240.7 

Fe 222.3 175.8 5.9 760.7 166.2 

Al 512.3 341.1 10.1 1967.0 499.9 

† Below Detection Limit         
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Table 5.  Descriptive statistics for total elemental concentrations measured in solid residual samples, in mg kg-1,  as determined by EPA 

3050 solids digestion.  Values shown in comparison to typical levels found in all soils, Oklahoma soils, EPA 503 ceiling concentrations 

for exceptional quality (EQ) biosolids, and EPA Soil Screening Levels for Residential Soils.  n=58 

Element Mean Median Min Max Std Dev 

Typical 

Levels in 

Soil† 

Typical 

Levels in 

Oklahoma 

Soils‡ 

EPA Ceiling 

Concentration for 

EQ  biosolids§ 

EPA SSL for 

Residential 

Soils¶ 

Ca 23835.6 5751 192 223986 40309.9 NA NA NA NA 

Fe 16971.6 14361.5 570 51185 11299.1 NA NA NA NA 

Al 12814.1 10763.5 2454 42668 8960.3 NA NA NA NA 

Mg 5564.9 3641 102 34074 7333.5 NA NA NA NA 

Na 2157.7 829 51 16221 3313.7 NA NA NA NA 

K 1341.5 1087.5 85 6614 1209.1 NA NA NA NA 

S 971.8 549 19 6236 1186.5 NA NA NA NA 

P 460.6 287 30 5753 826.2 NA NA NA NA 

Mn 301 238 BD 1606 306 80-1300 27-2165 NA NA 

Ba 105.9 57.6 9.2 974.1 142.9 NA NA NA 5500 

Cu 66.1 11 BD 1863 252.2 6-80 2-33 4300 NA 

Zn 39.9 30.5 BD 341 46.4 17-125 15-142 7500 23000 

B 37 31.2 BD 194.6 31.7 NA NA NA NA 

Cr 16.8 13.4 1.9 100.1 15.3 7-221 4-70 3000 230 

Ni 11 8.5 BD 43.3 9.4 4-55 2-57 420 1600 

Pb 2.4 BD BD 58.4 8.3 10-84 3-32 840 NA 

Co 2.3 BD BD 15.6 4.1 1-22 NA NA NA 

As BD# BD BD 1.6 0.2 4-9 1-34 75 0.4 

Cd BD BD BD BD NA†† 0.06-1.10 0.13-0.80 85 70 

† McBride, 1994 

‡ Richards, et al., 2012. 

§ USEPA 1994. Land Application of Biosolids. USEPA. 

   http://water.epa.gov/scitech/wastetech/biosolids/upload/2002_06_28_mtb_biosolids_503pe_503pe_2.pdf 

¶USEPA 2002.  GENERIC SSLs FOR THE RESIDENTIAL AND COMMERCIAL/INDUSTRIAL SCENARIOS 

  http://www.epa.gov/superfund/health/conmedia/soil/pdfs/ssg_appa-c.pdf 

# Below Detection Limit 

†† Not Applicapable 
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Table 6.  Descriptive statistics for the elemental concentrations (mg L-1) for analytes from the 

modified synthetic precipitation leaching procedure (SPLP) performed on the solids portion of 

residuals. Values compared to maximum levels allowed by EPA Drinking Water Criteria. n=61 

Element Mean Median Min Max Std Dev 

EPA Drinking 

Water 

Criteria† 

S 75.3 30.3 3.4 527.7 98.6 NA 

Na 63.5 38.4 1.9 386.9 74.5 NA 

Al 38.7 21.6 BD 204.1 51.0 NA 

Fe 15.4 9.0 BD 105.0 20.6 NA 

Ca 12.7 7.4 0.1 239.6 30.3 NA 

Mg 6.3 4.1 BD 42.1 8.4 NA 

K 4.1 3.6 BD 21.5 5.1 NA 

B 0.6 0.7 0.1 1.6 0.4 NA 

P 0.3 0.1 BD 5.5 0.8 NA 

Mn 0.1 BD BD 2.3 0.3 NA 

Ba 0.1 0.1 BD 0.3 0.1 2.0 

Cu BD‡ BD BD 2.1 0.3 1.3# 

Zn BD BD BD 0.2 0.1 NA 

Cr BD BD BD 0.1 NA¶ 0.1 

Ni BD BD BD 0.2 NA NA 

Mo BD BD BD 0.1 NA NA 

Co BD BD BD 0.1 NA NA 

As BD BD BD BD NA 0.01 

Cd BD BD BD BD NA 0.005 

Pb BD BD BD BD NA BD 

† USEPA 2014. Drinking Water Contaminants 

   http://water.epa.gov/drink/contaminants/ 

‡ Below Detection Limit 

¶ Not Applicable 

# At Tap 
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Table 7. Calculated metal loading rates (kg ha-1)for each residual sample tested in the study, 

assuming application rates of 112 metric tons solid ha-1 Metal loading rates are compared to EPA 

Cumulative and Annual Pollutant loading rates for biosolids. 

Sample Zn Cu Ni As Cd Cr Pb 

1 0.9 0.2 0.3 BD† BD 3.1 BD 

2 8.2 53.6 2.2 BD BD 4.5 BD 

3 3.7 1.1 1.1 BD BD 1.5 BD 

4 2.5 0.9 1.2 BD BD 2.0 0.1 

5 7.8 5.5 3.3 BD BD 2.8 0.1 

6 5.5 3.2 2.6 BD BD 1.9 BD 

7 2.0 1.3 0.9 BD BD 1.0 BD 

8 2.4 1.5 0.8 BD BD 1.8 0.5 

9 1.6 16.8 0.9 BD BD 3.8 BD 

10 0.7 11.5 0.4 BD BD 2.9 BD 

11 4.8 1.6 1.8 BD BD 1.5 0.1 

12 4.6 1.6 1.8 BD BD 1.8 BD 

13 1.8 2.3 0.7 BD BD 0.7 BD 

14 3.8 1.4 1.2 BD BD 2.6 BD 

15 7.1 2.6 3.2 BD BD 2.7 BD 

16 4.3 2.1 1.3 BD BD 1.3 BD 

17 1.3 0.1 0.3 BD BD 1.0 0.9 

18 1.4 0.9 0.3 BD BD 0.9 0.4 

19 2.3 0.9 1.3 BD BD 1.2 BD 

20 2.5 1.0 1.0 BD BD 1.0 BD 

21 8.4 49.7 1.8 BD BD 1.8 2.1 

22 7.9 230.2 1.7 BD BD 1.9 2.1 

23 8.0 4.2 0.3 BD BD 0.9 BD 

24 2.3 3.7 0.2 BD BD 5.4 BD 

25 3.6 2.7 1.3 BD BD 1.4 BD 

26 42.2 4.7 2.4 0.2 BD 2.2 7.2 

27 3.8 BD 2.2 BD BD 12.4 BD 

28 BD BD 0.1 BD BD 0.7 0.3 

29 4.0 4.0 1.6 BD BD 2.3 BD 

30 1.9 1.2 0.9 BD BD 2.3 BD 

EPA Cumulative 

Pollutant Loading 

Rate§ 

2800 1500 420 41 39 3000 300 

EPA Annual 

Pollutant Loading 

Rate§ 

140 75 21 2 1.9 150 15 

† Below Detection Limit 

§ USEPA 1994. Land Application of Biosolids. USEPA. 

http://water.epa.gov/scitech/wastetech/biosolids/upload/2002_06_28_mtb_biosolids_503pe_503p

e_2.pdf 
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Table 7. Continued 

Sample Zn Cu Ni As Cd Cr Pb 

31 1.4 0.2 0.5 BD† BD 0.7 BD 

32 8.6 1.2 0.8 BD BD 1.1 BD 

33 1.6 1.3 0.5 BD BD 0.5 0.5 

34 12.3 4.1 0.6 BD BD 0.7 1.1 

35 0.6 0.1 0.3 BD BD 0.6 0.2 

36 0.6 3.1 0.3 BD BD 0.8 0.9 

37 6.8 4.8 5.3 BD BD 6.1 BD 

38 5.7 1.4 1.3 BD BD 2.0 BD 

39 4.3 1.2 2.4 BD BD 1.8 0.8 

40 8.1 3.0 3.6 BD BD 3.5 BD 

41 10.6 6.9 4.7 BD BD 4.6 BD 

42 2.1 0.7 0.3 BD BD 0.4 BD 

43 5.9 1.4 2.2 BD BD 2.4 BD 

44 2.1 1.0 0.3 BD BD 0.9 BD 

45 6.7 0.8 1.8 BD BD 0.8 BD 

46 4.7 0.3 0.5 BD BD 0.2 BD 

47 2.9 1.3 0.5 BD BD 0.5 BD 

48 4.5 0.4 0.9 BD BD 1.0 BD 

49 3.1 0.1 2.8 BD BD 3.6 BD 

50 1.7 0.8 0.6 BD BD 1.1 BD 

51 2.5 1.0 0.4 BD BD 3.0 BD 

52 3.3 4.6 2.1 BD BD 1.6 BD 

53 3.6 1.4 1.7 BD BD 1.3 BD 

54 2.7 0.3 0.4 BD BD 0.3 BD 

55 4.9 2.0 2.2 BD BD 2.3 BD 

56 5.3 2.8 2.9 BD BD 1.5 BD 

57 7.1 9.9 BD BD BD 1.7 BD 

58 11.4 6.8 BD BD BD 4.3 BD 

EPA Cumulative 

Pollutant Loading 

Rate 

2800 1500 420 41 39 3000 300 

EPA Annual 

Pollutant Loading 

Rate 

140 75 21 2 1.9 150 15 

† Below Detection Limit 
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CHAPTER III 

 

 

LAND APPLICATION OF HORIZONTAL DIRECTIONAL DRILLING RESIDUALS TO 

ESTABLISHED AND BARE SOILS 

 

ABSTRACT 

 

Horizontal directional drilling (HDD) is a non-invasive alternative to trenching used for the 

installation of many common utilities.  The process involves drilling fluid used to stabilize the 

borehole, lubricate the bit, and float cuttings to the surface. Currently, landfilling is the most 

popular method of disposal for the spent drilling fluid.  A more economical method of disposal to 

consider is land application.  A recent study found total solids to be the most limiting factor for 

the land application of most HDD residuals.  Two field studies were conducted in order to 

determine the optimum application rate of HDD residuals.  Residuals were applied at six rates to 

both established grass and bare soils that received broadcast bermudagrass application prior to 

application of residuals.  Soils were sampled 7, 30, and 90 days after application.  Saturated paste 

and Mehlich-3 extractions were performed on all samples.  No significant nutrients or trace 

metals were found in the treated soils.  All samples fell in the range for a typical soil. However, 

TDS and sodium absorption ratio increased with application rate.  Forage was harvested on the 

established grass plots 110 days after application.  There was no significant difference in forage 

yield.  Percent cover was measured on the bare soils that received bermudagrass seed at 

approximately 30 and 60 days after application.  At day 60 plots that received the lowest rate had 

percent cover significantly higher than the control, and plots that received the highest rate had 

significantly less cover.   
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INTRODUCTION 

 

In the last three decades there have been many scientific studies generating a great deal of 

information on the benefits and environmental impacts associated with the land application of 

many types of residuals (O'Connor et al., 2005).  There are typically two criteria used to assess a 

residuals “suitability” for land application and whether or not the intended use will be beneficial:  

(i) the by-product’s ability to enhance, or have no negative impact, on the productivity of the soil 

and plant growth (ii) a lack of negative environmental impacts (Whalen et al., 2000).  Because 

residuals differ so much in their physical, chemical, and biological properties (Whalen et al., 

2000), each material should be examined independently for potential beneficial or negative 

impact 

There are many by-products that are currently being land applied.  With the recent boom in oil 

and gas activity in Oklahoma, the land application of spent oil and gas drilling mud has become a 

very popular method of disposal.  Land application is the most attractive option to the industry 

due to the minimization of hauling distances to disposal sites (Clements et al., 2010).  Adverse 

environmental impacts to both soil and plant growth after the land application of oil and gas 

drilling fluid may occur due to the high concentrations of soluble salts, which are found primarily 

in water based mud.  Analysis of the water based drilling mud used in a study in Colorado 

indicated that sodium (Na), Cd and Mo were the only constituents found in higher concentrations 

than a typical soil.  Ranges for Na, Cd and Mo were 9900-20000, 1.1-4.7 and 0.2-9.3 mg/kg 

respectively (Bauder et al., 2005). However, by adhering to the guidelines set by the Oklahoma 

Corporation Commission (OCC), land application can be a sustainable solution for the disposal of 

oil and natural gas drilling muds, with minimal long term impact to the receiving soil.
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Biosolids are another by-product commonly land applied.  Waste water treatment plants receive 

domestic sewage as well as industrial effluents and storm water runoff.  Industrial effluents and 

storm water runoff can contain many toxic substances ranging from detergents to pesticides 

(Singh and Agrawal, 2008). However, biosolids contain both organic and inorganic plant 

available nutrients as well as soil conditioning properties, giving incentive for its use as a source 

of fertilizer (Singh and Agrawal, 2008).  The range of N, phosphorus (P) and potassium (K) 

percentage in biosolids are 1.5-5.0, 0.5-2.8, and 0.0-1.0 respectively and median levels of Pb, Zn, 

Cu, Ni, Cd and Cr to be 500, 1740, 800, 80, 10 and 500 mg/kg respectively (Girovich, 1996). 

Because biosolids have the potential to be both beneficial and detrimental to the environment, 

there is need for regulation.  The land application of biosolids is federally regulated by the EPA 

under 40 CFR Part 503 (EPA 2007).  This law governs the use of biosolids for land application 

by putting limits on heavy metal concentration, pathogens present, and site and harvesting 

restrictions in order to minimize threats to public health and environmental degradation (Guo, 

2012).        

Another industrial by-product commonly land applied is fly ash.  In the past fly ash was 

considered solely as a waste material but, thanks to numerous detailed studies conducted in the 

latter half of the 20th century, we now know its nature and composition.  Due to the abundance of 

basic mineral elements resembling the Earth’s crust, fly ash is an excellent replacement for 

natural materials (Jala and Goyal, 2006).  The United States utilizes roughly 44% of its annual 

production of fly ash (American Coal Ash Association, 2012).  It can be used as a partial 

substitute for Portland cement, road fills and bases, in asphalt, and for waste solidification and 

stabilization (Adriano and Weber, 2001).  The application of fly ash to agricultural land cannot 

supply crops with the macronutrients nitrogen N or P,  but it could supply crops with a sufficient 

amount of nutrients such as potassium (K), sulfur (S), Mo, calcium (Ca), boron (B), as well as 

others such as Zn (Sajwan et al., 2003).  Land application of alkaline fly ash can reduce the 
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acidity of a soil, making certain toxic metals unavailable for plant uptake.  Unfortunately, fly ash 

can also contain different amounts of trace metals such as Cu, Ni, Pb, and Cr which does put a 

limit on its potential use as a soil amendment.  Analysis of fly ash from a coal based thermal 

power plant in the U.S. showed levels of As, Cr, Pb, Cu, and Zn to be 157, 154, 553, 214 and 

3327 mg/kg respectively (Jegadeesan et al., 2008).  Currently, individual states regulate the 

disposal of fly ash, but the EPA is proposing two federal regulatory options, Subtitle C and 

Subtitle D, under the nation’s primary law for regulating solid waste, RCRA (EPA 2013).  Each 

option will better protect the environment and allow both federal and state enforcement. 

In contrast to animal manure, biosolids, and fly ash, there is much less known about the 

composition and potential impact of land application of urban horizontal directional drilling 

(HDD) residuals.   Today there is growing speculation about HDD residuals and the safety of 

their constituents and chemical makeup.   They are often confused with “drilling mud” from the 

oil and gas industry even though the two by-products are very different.  There is a need to 

separate the public’s perception of the spent HDD drilling residuals from that of the oil and gas 

industry.  The cost of hauling spent residuals (sometimes long distances) to landfills costs a lot of 

money and takes a lot of time.  In a survey conducted with the research mentioned above, some 

contractors reported the need to dispose of over 200,000 L of spent HDD residuals every week.  

To date, there is no published research on the use of spent HDD residuals or their environmental 

impact as a media for land application. 

In a previous study, 58 different HDD residuals from 26 different states were characterized in 

terms of their physical and chemical makeup.  Analysis included:  solids content, EC and pH of 

the “as is” residual portion, total soluble salts and pH of the separated water portion, total metals 

in the separated solids portion, water soluble constituents of the separated water portion, sodium 

absorption ratio (SAR), Mehlich-3 extractable elements from the separated solids portion, 

Synthetic Precipitation Leaching Procedure (SPLP) of the separated solids portion, and total 
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carbon:total nitrogen of the separated solids portion.  Results of all the analysis were compared to 

many different standards for soils, surface waters, and groundwater in order to determine if land 

application would be a safe method of disposal for the spent HDD residuals.  That study found 

that there was low potential for the residuals to contain anything that would be chemically 

limiting to land application of residuals, although some samples had elevated levels of total 

dissolved solids and sodium.  The sodium and total dissolved solids may have originated from 

some of the ingredients in the drilling fluid or the subsoil that was being drilled at the site.  Total 

solids was found to potentially be the most limiting factor. 

For land application to be a viable option for the disposal of spent HDD residuals, more research 

is needed in order to determine any impacts these residuals might have on the soil and vegetation 

receiving them.  With solids potentially being the most limiting factor for land application, proper 

application rates need to be determined in order to minimize any potential negative environmental 

impact.  There are two likely scenarios to consider when deciding where HDD residuals might be 

land applied.  HDD is typically used in a municipal setting or at a construction site.  In a 

municipal setting a contractor would likely find the nearest pasture or field to land apply his/her 

spent residual.  In a situation where boring is done on a construction site the contractor will likely 

want to leave onsite because the soil is typically already bare. Thus, the objective of this research 

was to determine proper application rates at which HDD residuals may be applied with minimal 

environmental and agronomic impact to the soil and vegetation, for both established grass plots 

and bare soils. 



52 
 

MATERIALS AND METHODS 

 

The field studies were conducted on pasture land approximately 5 km northwest of Stillwater, OK 

(USA).  The soil was a Zaneis clay loam (fine-loamy, siliceous, active, thrermic Udic 

Argiustolls), a well-drained soil found on slopes ranging from 0-8%. The dominant forage is 

bermudagrass (Cynodon dactylon).  Mean annual precipitation is 86.36 cm.  The field study 

included the establishment and monitoring of two field trials upon which HDD residuals were 

applied to both established grass and bare soils at six different application rates. 

Residuals were obtained from a local contractor and transported to the site using a Ditch Witch 

MV800 vacuum excavator and then transferred into a 3785 L mixing tank.  Residuals were mixed 

for approximately 20 minutes prior to acquiring a sub-sample for all analysis to be performed. 

Solids content (gravimetric) was determined by shaking samples for 20 minutes followed by 

subsampling and placement in an oven at 30°C for 24 hours.  In order to conduct several 

analyses, the solids portion was separated from the liquid by centrifugation at 5000 rpm for 10 

minutes followed by filtration with a 41 Whatman paper.   

For the solids portion, samples were extracted via total soil digestion using EPA 3050 method 

(EPA 1996) using two grams of solid residual, trace metal grade nitric acid (HNO3) and trace 

metal grade hydrochloric acid (HCl), and a 30% sodium hydroxide solution, in conjunction with 

heat.  Following digestion, analytes were filtered using 41 Whatman paper and brought to volume 

with deionized (DI) water in 50 mL volumetric flasks.  Samples were then analyzed for various 

metals including aluminum (Al), sodium (Na), sulfur as sulfate (SO4-S), calcium (Ca), 

magnesium (Mg), phosphorus (P), boron (B), barium (Ba), potassium (K), chromium (Cr), 



53 
 

manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), 

arsenic (As), and lead (Pb).  Analytes were quantified using Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP).   

A modified version of the synthetic precipitation leaching procedure (SPLP) was also performed 

on the solids portion in order to simulate potential leachability to groundwater (Hageman et al., 

2000).  Extraction fluid was made using DI water acidified to a pH of 4.2 using a 60/40 ratio 

solution of trace metal grade nitric acid (HNO3) to reagent grade sulfuric acid (H2SO4) .  Solids 

were extracted at a 1:20 solid:solution ratio for 18 hours followed by centrifugation at 5000 RPM 

for 10 minutes and filtration through .45 µm glass fiber filters using vacuum filtration.  Extracts 

were analyzed for Mo, Al, B, Na, SO4-S, Ca, Mg, P, K, Cr, Mn, Fe, Co, Cu, Zn, Cd, As, and Pb 

by ICP.   

The water portion was separated using a centrifuge at 5000 RPM’s for a minimum of 10 minutes.  

The separated water portion was then filtered using 42 Whatman paper.  Samples were then 

analyzed for Mo, Al, B, Na, SO4-S, Ca, Mg, P, K, Cr, Mn, Fe, Co, Cu, Zn, Cd, As, and Pb by  

ICP.  This will be referred to as “water soluble”. Results were compared to EPA Aquatic Life 

Criteria Table (EPA 2013). Sodium adsorption ratio was calculated for each sample: 

  

Where Na, Ca, and Mg are in units of meq L-1.  Electrical Conductivity (EC) and pH were tested 

on both the solid residuals (prior to solid/liquid separation) and their separated water portion 

using standard EC and pH meters.  Plant available nutrients that were analyzed included P, K, 

Mg, Ca, Mn, Na, Fe, SO4-S, Zn, Cu, and B.  Of those, Mehlich-3 extraction was used for K, P, 
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Mg, Ca, Mn, and Fe (values from the saturated paste extractions were used for the nutrients 

Na, SO4-S, Zn, Cu and B).   Mehlich 3 nutrients were extracted at a ratio of 1:10 

solids:solution for five minutes, followed by filtration with Whatman #42 filter paper and analysis 

by ICP (Mehlich, 1984).  Total N and C were quantified using LECO TruSpec Analyzer (Leco 

Corporation, St. Joseph, MI). 

Individual plot dimensions were 3.05 X 3.05 m with 4.6 m alleys.  Each plot received residuals 

representing 0, 22, 45, 67, 90 or 112 metric tons of solid ha-1.  Each application rate was 

replicated three times resulting in 18 experimental units for each study.  Residual application 

rates were achieved by applying the slurry, which had a known solids content, through a hose for 

various calculated time periods as a function of the calibrated and pre-determined flow rate. 

For the established grass field study, plots were sampled 0, 7, 30 and 93 days after application.  

For the bare soil field study, plots were sampled 0, 7, 29, and 96 day after application.  Samples 

were separated by depth, 0-5cm and 5-15 cm.  Samples were then dried in an oven for 

approximately 48 hours then ground using a Bico Soil Pulverizer.   

Saturated paste extractions were performed on every sample using 150 grams of dried sample and 

deionized (DI) water.  After mixing, samples sat for one hour prior to extraction.  Samples were 

extracted using a Baroid pneumatic soil press.  Analytes were measured for Na, Ca, Mg, K, S, B, 

P, Fe, Zn, Cu, Mn, Al, Ni, Mo, As, Ba, Cd, Co, Cr and Pb via inductively coupled plasma atomic 

spectroscopy (ICP).  EC and pH were also measured on each extract using standard EC and pH 

meters.   

Mehlich-3 extractions were used to measure plant available K, P, Mg, Ca, Mn, and Fe.  Two 

grams of sample were used in conjunction with 20 mL of Mehlich 3.  Samples were reacted for 

five minutes then filtered using 42 Whatman paper.  Extracts were quantified using ICP.  

Established Grass Plots 
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In order to simulate a typical hay pasture, plots were only mowed prior to residuals application. A 

Carter harvester was used to harvest forage in order to determine biomass approximately 120 

days after residual application.  Forage was then dried in an oven for approximately 48 hours then 

ground using a Fritsch Pulverisette 19.  Forage was then digested using concentrated HNO3 and a 

heating block.  Digests were analyzed for Ca, P, Na, Mg, K, S, Mn, Cu, Fe and Zn, quantified 

using ICP. 

Bare Soil Plots 

For the bare soil field study, the vegetation and first layer of top soil were removed with a skid 

steer loader in order to simulate a typical construction site that has exposed subsoil.  Prior to 

residual application, every plot was seeded with Sta-Green bermudagrass seed (Spectrum Brands 

Middleton, WI).  A rotary spreader was used to spread the seed at the application rate of 1.15 kg 

of pure live seed per 93 m2.  Percent cover was calculated at day 29 and 63 using a digital camera 

and SamplePoint software.  Three pictures were randomly taken within each plot.  In order to 

standardize the photos, pictures were taken using a pole with a camera mount approximately 100 

cm up from the ground.  One hundred evenly spaced pixels on every picture were determined to 

either have cover or no cover.  Values for all three pictures were then averaged to get an overall 

percent cover for the entire plot. 

Statistics 

Soil chemical data, forage biomass, and percent cover were analyzed using SAS (SAS Institute, 

2002).  An ANOVA model of the response variables we created using PROC GLM routine.  The 

ANOVA model used application rate, time, depth, and replications as treatment effects.  Type III 

least square means from the PROC GLM routine were used for mean separation tests using the 

PDIFF option.  Mean separation for all treatments were considered significant at the P < 0.05 

level. 



56 
 

RESULTS AND DISCUSSION 

Background Soil Properties 

Background soil tests for the established grass plots indicated P was 99 to 75% sufficient for 

bermudagrass with concentrations ranging from 8 to 30 mg kg-1 at depths of 0-5 and 5-15 cm.  

Soil tests for K indicated 100 to 92% sufficient for bermudagrass with concentrations of 96 to186 

mg kg-1 at the two depths.  Soil tests for the bare soil plots indicated P was 99 to 100% sufficient 

for bermudagrass with concentrations ranging from 31 to 38 mg kg-1 at the two depths.  Soil tests 

for K indicated 83 to 90% sufficiency for bermudagrass with concentrations 73 to 91 mg kg-1 for 

the two depths.   

The residuals applied to the established grass plots had a solids content of 39%, and an EC, pH, 

and SAR of 1049 µS cm-1, 8.2, and 16 respectively.  In the separated water portion, Na was the 

most abundant constituent at 334.2 mg L-1.  In separated solids portion, Mn was found to have the 

highest concentration at 1444 mg kg-1.  Mehlich 3 extractable Ca was very high at 28526 mg kg-1 

(Mehlich 1984).  

Residuals applied to the bare soil plots had a solids content of 28% and an EC, pH, and SAR of 

5417 µS cm-1, 8.0, and 19 respectively.  Like the residual applied to the established grass plots, 

Na was the most abundant constituent in the separated water portion at 1224.6 mg L-1.  In the 

separated solids portion, Mn was found to have the highest concentration at 92 mg kg-1.  Of the 

Mehlich 3 extractable elements Ca was the highest, however much lower than in the residuals 

applied to the established grass plot, with a concentration of 3766 mg kg-1 (Mehlich 1984).  All 

chemical and physical properties of the residuals applied to the established grass and bare soil 

plots can be seen in Tables 1 and 2 respectively.   
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Established Grass Plots 

Considering all sample times, mean pH ranged from 6.3-8.0 in the top 5 cm of soil and 6.7-7.9 at 

the 5-15 cm depth (Table 3).  Application rate, time, and depth were all significant with an 

interaction between depth and time at P=0.05.  The residuals applied to each plot had a pH of 8.2 

so an increase in pH in the 0-5 cm soil with an increase in application rate was plausible, but was 

only statistically significant at day 93.   

As expected, the addition of residuals to the established grass increased the EC of the receiving 

soil as application rate increased, with a mean EC range of 463-748 µS cm-1 averaged over depth 

and time.  Application rate, time, and depth were all statistically significant. The application rates 

of 67, 90, and 112 metric tons solid ha-1 averaged across depth and sample time, were 

significantly higher than the control (Table 4). Soil EC was also significantly different between 

depths with a mean EC of 887 µS cm-1 in the 0-5 cm depth and 420 µS cm-1 at the 5-15 cm depth 

(Table 5).  The EC of the residual applied was 1049 µS cm-1 so an increase in EC in the 0-5 cm 

layer with an increase in application rate was expected.  Over the 93 day sampling period 23.6 cm 

of precipitation was received, however no significant leaching of salts was observed.  This could 

be a result of the extreme heat coupled with transpiration of soil moisture between rain events, 

wicking salts back up in the profile.   

Copper, Zn, and Ba were the only trace metals detected in the saturated paste extracts, with no 

values exceeding 1.1 mg L-1.  This suggests that the trace metals applied with the residuals were 

not water soluble and therefore relatively low bioavailability.  There was no statistical difference 

between application rate, depth, and time for trace metals.  Soil SAR was also not statistically 

different between application rate, depth or time, with a maximum value of 3.1.  Loading rate for 

total dissolved solids at the maximum application rate of 112 metric tons solid ha-1 was 145 kg ha-

1.  This is well below the limit of 6724 kg total dissolved solids ha-1 set by the OCC for the land 

application of water-base drilling mud from oil and gas exploration.  The rules for water-base 
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drilling mud application are stated in the Oklahoma administrative code and register, Title 

165:10-7-19.  It is highly unlikely that 145 kg salts ha-1 would have a negative impact on 

vegetation.  If the loading rate were considerably higher, it could possibly have a negative impact 

on some of the more salt sensitive species depending on the concentration of salts already present 

in the receiving soil.     

The residual applied to the plots contained appreciable concentration of Mehlich-3 extractable Ca 

at 28,526 mg kg-1 (Table 1). Application rate and depth were both significant for Ca with an 

interaction between application rate and depth (Table 6).  In the top 0-5 cm of soil, concentrations 

of Mehlich-3 Ca increased with application rate with mean concentrations ranging from 1459 mg 

kg-1 for the control and 7672 mg kg-1 at the highest application rate of 112 metric tons solid ha-1.  

This particular residual would be a good soil amendment if applied to a Ca deficient soil, 

however Ca deficient soils are uncommon in Oklahoma (Zhang and Raun, 2006).     

At 110 days after HDD residuals application, there was no significant difference in forage yield, 

by weight, for all application rates of residuals applied when compared to the control.  Forage 

yield had a range of 7.4 – 12.8 metric tons ha-1.  Forage was also digested and analyzed for the 

trace metals Cu, Zn, Ni, As, Cd, Cr, Ba, Pb, and Co.  The control had higher concentrations of 

metals compared to forage samples from treated plots, except for Ni and Cr.  Results were highly 

variable with no statistical significance among application rates.  

Bare Soil Plots 

Mean pH ranged from 7.8 to 7.9 in the top 0-5 cm and from 7.4 to 7.8 at the 5-15 cm depth  

(Table 7).  Time of sampling and depth were statistically significant with an interaction between 

application rate and depth at P=0.05.  With pH values for both residuals applied to the field plots 

≥ 8.0, their application to an acidic soil could be beneficial.  For both plot studies (established 
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grass and bare soil), the pH for the majority of treated-plots in the top 0-5 cm was slightly higher 

than the 5-15 depth for both the established grass and bare soil plots (Tables 3 and 7).   

The applied residuals increased the EC of the receiving soil as a function of application rate.  

Application rate and depth were statistically significant with a two way interaction between 

application rate and depth and a two way interaction between depth and sampling time.  There 

was also a three way interaction between application rate, sampling time, and depth at P=0.05.  

Table 8 shows that soil EC increased with residuals application rate, at each sampling time.  This 

was expected since the residuals applied (Table 2) up to 1214 kg TDS ha-1, at the highest residual 

application rate.  The highest EC value, 3545 µS cm-1, was measured at day 7 for the highest 

application rate.  An EC of this magnitude is approaching the 4000 µS cm-1 limit for a saline soil, 

and could possibly adversely affect salt sensitive plants.  Because of this high EC value 

incorporation would be recommended if applying a similar residual at the 112 metric tons ha-1 

application rate.  Table 9 illustrates the leaching of the applied salts, as evident by a general trend 

of decreasing EC values with time in the surface 0-5 cm depth, concurrent with an increasing 

trend at the subsurface 5-15 cm depth.  This was expected because of the ample amount of 

precipitation received; 10.14 cm rainfall within a 22 day time period combined with the lack of 

transpiration since the plant was just beginning to become established..  This trend was not as 

obvious between days 29 and 96.  EC actually increased in the top 0-5 cm layer in the control and 

at the application rates of 22 and 112 metric tons solid ha-1, although not significantly (Table 9).  

During this 67 day time period, only16.03 cm was received with an average temperature well into 

the 90’s, so this is likely a result of wicking salts up through the soil profile as soil moisture was 

evaporated and transpired as the plant developed. 

There was no statistical difference between application rates, depth, or sample time, with regard 

to trace metals measured in soil saturated paste extracts.  Concentrations for Ba were all less than 

1.0 mg L-1 and all other metal concentrations were ≤ 0.05 mg L-1.  Maximum mean value for SAR 
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was 7.8 at the 5-15 cm depth for the control.  Application rate and depth were both significant for 

SAR with an interaction between application rate and depth (Table 10).  As expected, increasing 

application rate resulted in a greater SAR at the 0-5 cm depth.  Notice  that the SAR was greater 

for bare soil plots that received residuals compared to the established grass plots; this was due to 

the higher SAR content in the residuals applied to the bare soil plots (Tables 1 and 2).  SAR 

values observed in this field study are of little concern with a loading rate of only 429 kg ha-1 Na 

when applied at the highest application rate of 112 metric tons solid ha-1.  However, applying the 

same residual with a SAR of 19, to a soil that already has a high SAR would likely have negative 

implications.  A soil is considered ‘sodic’ when the SAR ≥ 13, the EC < 4000 µS cm-1, and the 

pH > 8.5.  A ‘saline-sodic’ soil has a SAR ≥ 13, an EC > 4000 µS cm-1, and a pH < 8.5.  Sodic 

soils typically have poor structure and have a tendency to crust, restricting water infiltration 

(Davis et al., 2003).  High concentrations of Na compete with plant available Ca and Mg which 

can limit plant growth.  Application of a high SAR residual to a bare soil with no incorporation 

could create a thin dispersed layer at the surface, which could possibly inhibit germination of seed 

and also inhibit the infiltration of water. 

When applied at the maximum application rate of 112 metric tons solid ha-1, loading rates for 

TDS was 1214 kg   ha-1.  This is much higher than the residuals applied to the established grass 

plots, but still well below the OCC threshold of 6724 kg ha-1 for the land application of water-

base oil and gas drilling mud.  This loading rate could potentially have a negative impact on 

species of plants that are salt sensitive.  This loading rate would be of even more concern if the 

receiving soil had high concentrations of salt prior to application.  If the receiving soil had high 

salt concentrations and a pH ≤ 8.5 prior to application, this loading rate could have the potential 

to make the receiving soil ‘saline’, if EC levels were driven above 4000 µS cm-1.  
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Compared to the residual applied to the established grass plots, there was less Mehlich-3 

extractable Ca in the residual applied to the bare soil plots.  Due to the lack of base cations 

applied, there was no significant difference between application rates, depth, or sampling time.   

Twenty-nine days after residuals application to bare soil plots seeded with bermudagrass, percent 

cover was not significantly different from the un-amended control compared to any treatment.  At 

day 63, mean percent cover for plots receiving the lowest application rate of residual applied, 22 

metric tons solid ha-1, was 75% and was significantly higher than the control at 57% (Figure 1).  

Mean percent cover for plots receiving the highest application rate, 112 metric tons solid ha-1, was 

44% and was significantly lower than the control.  Growth in all plots was much faster between 

days 30 and 63 than days 0 and 30 (Figure 2). The measurement of cover at day 63 suggests two 

things.  First, at a lower application rate of residuals at 22 metric tons solid ha-1, might aid in the 

germination of bermudagrass seed.  Second, at the highest application rate of 112 metric tons 

solid ha-1, applied residuals possibly hinder germination.   All other application rates were not 

significantly different from the control.  Cover consisted of nearly 100 % bermudagrass.  One 

explanation for the increase in germination at the lowest application rate is that the residuals 

applied some cover to the applied seed under it.  By applying a small amount of residual to 

exposed surface seed, the seed is essentially being buried or incorporated, unlike the control.  The 

seed is also receiving a source of water with residual application, unlike the control.  It is possible 

that low application rates of the residual may have improved water retention in the thin layer 

where the seed was located.  Low germination at the highest application rate could possibly be a 

result of the seed being excessively buried at too great a depth.  After drying, a layer of clay from 

the residual application, could be difficult for a germinating seed to penetrate if it is excessively 

deep.    
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RECOMMENDATIONS AND IMPLICATIONS 

 

The land application of any by-product needs to be conducted in a manner that is sustainable and 

not harmful to the environment or human health.  In order to do this properly the physical or 

chemical limiting factor should be known, which may be specific to each individual HDD 

residual material.  For the two HDD residuals used in these field studies the most limiting factor 

was total solids, which supports the results of the survey-characterization study conducted on 

residual samples from around the U.S. (Chapter 2).  However, the limiting factor for land 

application of HDD residuals could vary depending on where the boring is taking place.  If boring 

through a site with historic heavy metal contamination, metal concentrations would likely be the 

most limiting factor for land application.  For this reason, testing the residual when boring 

through a known contaminated site is highly recommended. 

An increase in soil pH in the top 0-5 cm was observed in both field studies.   Soda ash (sodium 

carbonate) is a common additive used to increase the pH of HDD residuals when necessary.  

However, not all residuals are alkaline as observed in the survey study.  In the survey study, pH 

ranged from 4.7 to 10.0.  Thus, any potential to raise pH in the top 0-5 cm of soil with the 

application of HDD residuals would vary depending on the residual being applied, and any long 

term effect would depend on the receiving soil’s buffering capacity and organic matter content. 

In both field studies EC increased in the top 0-5 cm as application rate increased. Therefore a 

residuals EC could potentially be a limiting factor.  This is especially true if the receiving soil’s 

EC is already high. Application rates exceeding the rate of 112 metric tons solid ha-1 could 
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potentially be harmful to salt sensitive plants depending on the residual’s initial EC as well as the 

EC of the soil receiving the amendment.   

If a residual with a high concentration of water soluble metals, in the context of aquatic life or 

drinking water criteria, were applied, it does not necessarily mean that they would remain water 

soluble after application to the soil. Depending on the mineralogy, organic matter content, and pH 

of the receiving soil, the constituents would be retained by the soil through several processes such 

as ligand exchange/chemisorption, precipitation, or ion exchange (Essington, 2004), thus making 

them mostly unavailable for plant uptake.  Results from the digestion of forage from the 

established grass plots implies nothing added was bioavailable because concentrations of almost 

all metals were higher in the control than any other sample.   

As observed for the Mehlich-3 extracts from the residuals applied to the established grass plots, 

HDD residuals have the potential to be a source of secondary nutrients.  This will vary depending 

on the source of the residual.  If boring through a soil or formation that is rich in nutrients, the 

residual will likely contain a higher concentration of nutrients.  Possible nutrients include the 

macro nutrients P and K, and almost all the other secondary and micronutrients with the 

exception of Cl and B.  The addition of any N is highly unlikely.     

For this study, application rates up to 112 metric tons solid ha-1 had no significant impact on 

forage yield from the established grass plots.  Applying at rates higher than 112 metric tons solid 

ha-1 to plants that have low height could possibly retard forage and turf yield as a result of 

smothering the plant.  This was not observed for the established grass plots in this study since the 

grass was already at a height of around 15 cm.  Another possible problem with over application of 

solids is that a thick clay layer could seal off the soil causing poor water infiltration and crusting, 

both of which will hinder plant growth.  For the scenario of a bare receiving soil where seed 

germination is desired, the solids application rates becomes more critical since a germinating seed 

is much more sensitive than an established plant.  For this study, application of solids at 112 
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metric tons solid ha-1 significantly reduced percent germination compared to the un-amended 

control.  As a result, exceeding application rates of 112 metric tons solid ha-1 is not recommended 

on bare soils where seed germination is desired.  However, based on the results of this study, a 

low application rate of solids (22 metric tons solid ha-1) can be beneficial to germination of 

bermudagrass seed, thus making the HDD residuals valuable for such purposes. Recommended 

application rates, based only on solids, should be ≤ 90 metric tons solid ha-1 for bare soils 

receiving HDD residuals.  Similarly, the SAR of the HDD residual applied is also an important 

consideration along with the type of cover, and this may dictate management and application 

rates.  For example, a residual with an excessive SAR is not likely to cause a problem when 

applied to an established forage.  However, a high SAR residual could cause problems for bare 

soils as previously described, even at low application rates; this problematic situation could be 

prevented by incorporating the residual.  For this study, application of a residual with a SAR of 

19 to bare soil was not a problem for seed germination until application rates reached 112 metric 

tons solid ha-1.



65 
 

REFERENCES 

 

 

ACCA, Coal combustion by-product-production and use.  American Coal Ash Association, Inc.,        

Alexandria, VA, 2012. 

 

Adriano D.C., Weber J.T. (2001) Influence of Fly Ash on Soil Physical Properties and Turfgrass 

Establishment. J. Environ. Qual. 30:596-601. DOI: 10.2134/jeq2001.302596x. 

 

Bauder T.A., Barbarick K.A., Ippolito J.A., Shanahan J.F., Ayers P.D. (2005) Soil Properties 

Affecting Wheat Yields following Drilling-Fluid Application. Journal of Environmental 

Quality 34:1687-96. 

Clements K., Veil J.A., Leuterman A.J.J. (2010) Global Practices and Regulations for Land 

application and Disposal of Drill Cuttings and Fluids, Society of Petroleum Engineers. 

   

Davis J.G., Waskom R., Bauder T., Cardon G. (2003) Managing sodic soils Colorado State 

University Cooperative Extension. 

 

Essington M.E. (2004) Soil and water chemistry: An integrative approach CRC press. 

 

Girovich M.J. (1996) Biosolids treatment and management: Processes for beneficial use 

crc Press. 

Guo M. (2012) Disposal of Biosolids through Land Application: Concerns and Opportunities. 

Hydrology : Current Research 3:1-3. 

 

Jala S., Goyal D. (2006) Fly ash as a soil ameliorant for improving crop production—a review. 

Bioresource Technology 97:1136-1147. DOI: 

http://dx.doi.org/10.1016/j.biortech.2004.09.004. 

 

Jegadeesan G., Al-Abed S.R., Pinto P. (2008) Influence of trace metal distribution on its 

leachability from coal fly ash. Fuel 87:1887-1893. DOI: 

http://dx.doi.org/10.1016/j.fuel.2007.12.007. 

Mehlich A. (1984) Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. 

Communications in Soil Science and Plant Analysis 15:1409-1416. DOI: 

10.1080/00103628409367568. 

O'Connor G., Elliott H., Basta N., Bastian R., Pierzynski G., Sims R., Smith J. (2005) Sustainable 

land application. Journal of Environmental Quality 34:7-17. 

 

Sajwan K.S., Paramasivam S., Alva A.K., Adriano D.C., Hooda P.S. (2003) Assessing the 

feasibility of land application of fly ash, sewage sludge and their mixtures. Advances in 



66 
 

Environmental Research 8:77-91. DOI: http://dx.doi.org/10.1016/S1093-0191(02)00137-5. 

 

SAS. 2012. SAS Institute Inc. Cary, NC. 

 

Singh R.P., Agrawal M. (2008) Potential benefits and risks of land application of sewage sludge. 

Waste Management 28:347-358. DOI: 

http://dx.doi.org/10.1016/j.wasman.2006.12.010.Sommers L.E. (1977) Chemical 

Composition of Sewage Sludges and Analysis of Their Potential Use as Fertilizers1. J. 

Environ. Qual. 6:225-232. DOI: 10.2134/jeq1977.00472425000600020026x. 

Sushil S., Batra V.S. (2006) Analysis of fly ash heavy metal content and disposal in three thermal 

power plants in India. Fuel 85:2676-2679. DOI: 

http://dx.doi.org/10.1016/j.fuel.2006.04.031. 

 

USEPA 1994. Land Application of Biosolids. USEPA. 

http://water.epa.gov/scitech/wastetech/biosolids/upload/2002_06_28_mtb_biosolids_503

pe_503pe_2.pdf 

 

Whalen J.K., Chang C., Clayton G.W., Carefoot J.P. (2000) Cattle Manure Amendments Can 

Increase the pH of Acid Soils T4L 1W1.LRC Contribution No. 387–9953. Soil Sci. Soc. 

Am. J. 64:962-966. DOI: 10.2136/sssaj2000.643962x. 

Zhang H., Raun B. (2006) Oklahoma soil fertility handbook Department of Plant and Soil 

Sciences, Oklahoma Agricultural Experiment Station, Oklahoma Cooperative Extention 

Service, Division of Agricultural Sciences and Natural Resources, Oklahoma State 

University. 

 

 

 

 

 

 

http://dx.doi.org/10.1016/S1093-0191(02)00137-5
http://dx.doi.org/10.1016/j.wasman.2006.12.010
http://dx.doi.org/10.1016/j.fuel.2006.04.031


67 
 

TABLES AND FIGURES 

 

Table 1. Chemical and physical characterization of “as is”, separated water portion, and separated 

solids portion of HDD residuals applied to established grass plots. 

  
Value Unit 

“As is” sample 

EC 
 

1049 µS cm-1 

pH 
 

8.2 
 

Solids Content 39 % 

    
Separated Water Portion 

EC 
 

1474 µS cm-1 

pH 
 

8.4 
 

SAR 
 

16 
 

Na  334.2 mg L-1 

Ca  22.0 mg L-1 

Mg  6.1 mg L-1 

Cu 
 

BD† mg L-1 

Zn 
 

BD mg L-1 

Mo 
 

0.06 mg L-1 

As 
 

0.03 mg L-1 

Cd 
 

BD mg L-1 

Co 
 

BD mg L-1 

Cr 
 

0.02 mg L-1 

Pb 
 

BD mg L-1 

    
Separated Solids Portion – total digestion 

Cu 
 

8 mg kg-1 

Zn 
 

13 mg kg-1 

Mn 
 

1444 mg kg-1 

Ni 
 

6 mg kg-1 

As 
 

BD mg kg-1 

Cd 
 

BD mg kg-1 

Cr 
 

7 mg kg-1 

Ba 
 

34 mg kg-1 

Pb 
 

BD mg kg-1 

Co 
 

2 mg kg-1 
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Table 1. Continued 

 

Separated Solids Portion – Mehlich-3 

K 
 

81 mg kg-1 

P 
 

BD mg kg-1 

Mg 
 

367 mg kg-1 

Ca 
 

28526 mg kg-1 

Mn 
 

221 mg kg-1 

† Below detection limit 
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Table 2. Chemical and physical characterization of “as is”, separated water portion, and separated 

solids portion of HDD residuals applied to bare soil plots. 

 

 
Value Unit 

“As is” Sample 

EC 
 

5417 µS cm-1 

pH 
 

8.0 
 

Solids Content 28 % 

    
Separated Water Portion 

EC  6775 µS cm-1 

pH  8.0  

SAR  19  

Na  1224.6 mg L-1 

Ca  193.5 mg L-1 

Mg  6.1 mg L-1 

Cu  BD† mg L-1 

Zn  BD mg L-1 

Mo  0.04 mg L-1 

As  BD mg L-1 

Cd  BD mg L-1 

Co  BD mg L-1 

Cr  0.01 mg L-1 

Pb  BD mg L-1 

    
Separated Solids Portion – total digestion 

Cu  7 mg kg-1 

Zn  18 mg kg-1 

Mn  92 mg kg-1 

Ni  5 mg kg-1 

As  BD mg kg-1 

Cd  BD mg kg-1 

Cr  7 mg kg-1 

Ba  84 mg kg-1 

Pb  BD mg kg-1 

Co  3 mg kg-1 

    
Separated Solids Portion – Mehlich-3 

K  149 mg kg-1 

P  4 mg kg-1 

Mg  599 mg kg-1 

Ca  3766 mg kg-1 

Mn  71 mg kg-1 

† Below detection limit 
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Table 3.Mean pH at 7, 30, and 93 days after application of HDD residuals (Table 1) to established 

grass plots as a function of application rate, soil depth, and sampling time.  Comparison between 

application rates of 0, 22, 45, 67, 90, and 112 metric tons solid ha-1.and also between sampling 

time. Uppercase letters represent mean separation between application rates within depth.  Lower 

case letters represent mean separation between depths within application rate. P=0.05 

 
                                   Depth 0-5 cm 

 Application rate Day 7 Day 30 Day 93 

0 7.5 Aa 6.3 Ab 7.0 Ba 

22 7.8 Aa 6.4 Aa 7.5 Aa 

45 7.6 Aa 6.6 Ab 7.5 Aa 

67 7.7 Aa 6.4 Ab 7.4 Aa 

90 7.9 Aa 6.5 Ab 7.5 Aa 

112 8.0 Aa 6.9 Aa 7.6 Aa 

    

 

                                Depth 5-15 cm 

 Application rate Day 7 Day 30 Day 93  

0 7.1 Aa 7.1 Ca 6.7 Ca 

22 7.9 Aa 7.2 BCa 7.6 Aa 

45 7.7 Aa 7.1 Ca 7.3 ABa 

67 7.9 Aa 7.3 BC 7.2 Ba 

90 7.8 Aa 7.8 Aa 7.2 Ba 

112 7.7 Aa 7.6 ABa 7.7 Aa 
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Table 4.Mean soil electrical conductivity (EC;µS cm-1) after application of HDD residuals (Table 

1) to established grass at HDD residual application rates equivalent to 0, 22, 45, 67, 90, and 112 

metric tons solid ha-1.  Soil EC averaged across depth and sampling time, uppercase letters 

represent mean separation between application rates. P=0.05 

Application Rate of HDD Residuals (metric tons solid ha-1) 

0 22 45 67 90 112 

463 B 594 BA 625 BA 721 A 748 A 745 A 
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Table 5. From saturated paste extraction:  Electrical conductivity (EC) in µS cm-1 by depth, at 

HDD residual application rates equivalent to 0, 22, 45, 67, 90, and 112 metric tons solid ha-1 to 

established grass. Sampled 7, 30, and 93 days after application. Values are averaged across time 

and application rates. P=0.05 

 

 

 

 

 

 

Depth EC (µS cm-1) 

0-5 cm 887 A 

5-15 cm 420 B 
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Table 6. Mehlich 3 extractable Ca in mg kg-1 for established grass plots at depths 0-5 cm and 5-15 

cm for each HDD residual application rate in metric tons solid ha-1, averaged over time.  

Uppercase letters represent mean separation between application rates.  Lowercase letters 

represent mean separation between depths. P=0.05 

 Application Rate of HDD Residuals (metric tons solid ha-1) 

Depth 0 22 45 67 90 112 

0-5 1459 Ca 4181 Ba 4303 Ba 5141 Ba 6677 BAa 7672 Aa 

5-15 1012 Bb 2421 Ab 1216 Bb 1175 Bb 1301 Bb 1341 Bb 
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Table 7.  From saturated paste extraction:  Mean pH at HDD residual application rates equivalent 

to 0, 22, 45, 67, 90, and 112 metric tons solid ha-1on bare soil at depths 0-5 cm and 5-15 cm 

averaged across sampling.  Uppercase letters represent mean separation between application rates 

within depth.  Lowercase letters represent mean separation between depths within application 

rate. P=0.05 

 Application Rate of HDD Residuals (metric tons solid ha-1) 

Depth (cm) 0 22 45 67 90 112 

0-5 7.8 Aa 7.9 Aa 7.8 Aa 7.8 Aa 7.8 Aa 7.9 Aa 

5-15 7.8 Aa 7.6 BAb 7.6 BAa 7.6 BAa 7.4 Bb 7.6 BAa 
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Table 8.  From soil saturated paste extraction: Electrical conductivity (EC; µS cm-1) as a function 

of soil depth (0-5 cm and 5-15 cm), residual application rates equivalent to  0, 22, 45, 67, 90, and 

112 metric tons solid ha-1 , and time after days after application of residuals (7, 29, and 96) to bare 

soil.  Uppercase letters represent mean separation between application rates within depth.  

Lowercase letters represent mean separation between depths within application rate. P=0.05 

   
Day 7 

   

 
Application Rate of HDD Residuals (metric tons solid ha-1) 

Depth (cm) 0 22 45 67 90 112 

0-5 599 Ca 1295 CBa 1810 Ba 3064 Aa 2940 Aa 3545 Aa 

5-15 658 Aa 326 Ab 431 Ab 766 Ab 602 Ab 475 Ab 

       

       

   
Day 29 

   

 
Application Rate of HDD Residuals (metric tons solid ha-1) 

Depth (cm) 0 22 45 67 90 112 

0-5 513 Ca 573 Ca 1190 Ba 1899 Aa 2008 Aa 1242 Ba 

5-15 581 Ba 489 Ba 1041 BAa 1553 Aa 1602 Aa 1130 BAa 

       

       

   
Day 96 

   

 
Application Rate of HDD Residuals (metric tons solid ha-1) 

Depth (cm) 0 22 45 67 90 112 

0-5 914 Ba 870 Ba 836 Ba 1649 Aa 1469 Aa 1346 Aa 

5-15 892 Ba 656 Bb 900 Ba 2059 Aa 1237 BAa 1260 BAa 
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Table 9.  From soil saturated pasted extraction:  Comparison of electrical conductivity (EC; µS 

cm-1) between 7, 29, and 96 days after HDD residual application to bare soil at application rates 

equivalent to 0, 22, 45, 67, 90, and 112 metric tons solid ha-1 , for soil depths 0-5 cm and 5-15 cm.  

Uppercase letters represent mean separation between days within application rate and depth. 

P=0.05 

 
Depth 0-5 cm 

 

    
Application rate Day 7 Day 29 Day 96 

0 599 B 513 B 914 B 

22 1295 A 573 B 870 BA 

45 1810 A 1190 B 836 C 

67 3064 A 1899 B 1649 B 

90 2940 A 2008 B 1469 B 

112 3545 A 1242 B 1346 B 

    

    

 
Depth 5-15 cm 

 

    
Application rate Day 7 Day 29 Day 96 

0 658 A 581 A 892 A 

22 326 B 489 BA 656 A 

45 431 A 1041 A 900 A 

67 766 B 1553 BA 2059 A 

90 602 A 1602 A 1237 A 

112 475 B 1130 A 1260 A 
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Table 10. Mean sodium absorption ratio (SAR, by saturated pasted extract) values on soils treated 

with HDD residuals at application rates equivalent to 0, 22, 45, 67, 90, and 112 metric tons solid 

ha-1.  Soil SAR values averaged across sampling time.  Uppercase letters represent mean 

separation between application rates and lowercase letters represent mean separation between 

depths. P=0.05 

 Application Rate of HDD Residuals (metric tons solid ha-1) 

Depth (cm) 0 22 45 67 90 112 

0-5 3.8 CBb 2.0 Ca 4.2 Ba 7.3 Aa 7.7 Aa 6.3 Aa 

5-15 7.8 Aa 0.8 Cb 2.1 BCb 6.1 BAa 5.0 BACa 1.4 Cb 
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Figure 1.  Mean percent cover of bare soil plots 63 days after residual application. Upper case 

letters represent mean separation between application rates.  Bare soil was seeded with 

bermudagrass seed prior to residual application.  
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Figure 2.  Mean percent cover for HDD residual application rates of 0, 22, 45, 67, 90, and 112 

metric tons solid ha-1 to bare soil plots.  Measured at days 30 and 63. 
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Appendix A 

 

Instructions for Mud Survey 
 

1. Box and Contents: Keep box and packing contents in good condition as it will be 

re-used to return samples.   Contents of each box include:  1 pen; 1 return mailing 

label; 2 sample bottles, 1 roll duct tape; 1 sample ladle; 2 gallon zip-lock bag, 

packing materials, these instructions and written survey.     
 

2. Written Survey: Please complete the included written survey, attached as page 3 

and 4.   If samples are obtained from jobsites for different HDD companies; 

complete one survey for each company.   Include a note on the survey indicating 

company name and which sample (1 or 2) goes with which survey. 
 

3. Two Locations: If possible, please plan to obtain two different mud samples 

(from different locations) for us to analyze as part of this nation-wide survey.  
 

4. Label: before the bottle is filled with mud, complete the label attached with 

permanent marker.   The more information that you provide, the more useful it 

will be to us.  Note, we understand that some drillers may be reluctant, specific 

information regarding the drilling company is optional and will not be maintained 

long term.   Only the basic address (nearest cross streets) where sample is 

obtained will be kept to allow us to correlate the information with known soils 

type maps for each location.   Also, label the sample by circling either sample 

number (1 or 2), and circle the corresponding number on the survey.  
 

5. Sample: Completely fill each bottle with mud.  The goal of the sampling is to 

obtain a representative sample of the mud for that entire job.   There are two 

possible methods to do this using the 32 oz. plastic bottle provided.  Please choose 

one of the methods below.   Note: depending on your time available to take the 

sample, a mixture of methods A & B are fine to obtain the most representative 

sample.      
 

Method A: Completely fill the sample bottle with mud over an extended period of 

time as it flows out of the borehole throughout the drilling job.   

 Depending on the time required to complete the job, take several “grab 

samples” spread out evenly over the boring portion; or at least a 2-4 hour 

period during the boring process, enough to fill the bottle.   

o Obtain each of the grab samples with the ladle provided as the mud is 

actively flowing out of the borehole, near the exit point where mud is 

flowing.  Danger! To prevent entanglement and injury, make sure not 

to get close to the rotating drill rod. 
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o For Example, if drilling is projected to require 4 hours, then take one 

grab sample of one ladle-full every 30 minutes to one hour and pour 

into the 32 oz. plastic bottle until it is full.    
 

Method B: Take samples directly from the ditch or “pit” shortly after job is 

complete. 

 After drilling is complete and all mud is in the pit or ditch. 

 Remove a grab sample from several different locations and depths within the 

pit or ditch and pour into the 32 oz. plastic bottle until the bottle is completely 

full.    
 

6. Packing and Shipping: After the plastic container is completely filled with mud: 

 Clean threads with clean paper towel or rag and secure the lid tightly.   Then 

wipe or wash off the container with clean water and dry.   Tape lid securely 

with the duct tape provided.   

 If possible, please keep samples refrigerated if they cannot be immediately 

returned.  

 Place both containers in the Zip-lock bag to contain accidental spillage during 

shipping.   

 Place the two samples in the original shipping container and cushion with 

packing material. 

 Place the written survey into the box.  No need to return tape, ladle or pen. 

 Tape the box shut with duct tape.  Attach the pre-paid shipping label to the 

outside of the box and ship as soon as possible. 
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Company Name: 

____________________________________________________________________ 
 

Circle Sample #  (  1 )  or (  2  )   corresponding with a number circled for specific sample 

bottle. 

 

1. Which of the following best describes your position with your company? (Choose one) 
 

  Purchasing        General management        Equipment user or job-site Supervisor      

Other__________________ 

 

Primary State where HDD Company is Located:  _____________________________ 

 

2.   Which market do you primarily work in?   
  

  Municipal/ Govt     Utility Co.     Utility Contractor     Oil & Gas     

Other______________________________ 

 

3.   Approximately how many drills of the following sizes do you own? (at locations you are 

involved with) 

 

 

 

 

4.  How long have you worked in the industry?_________________ 

 

5.  Please describe what your usual “fluid disposal” activity looks 

like:__________________________________________________________________________

______________________________________________________________________________

______________ 

 

6.  Please rank how big of an issue mud disposal is for you on a scale of 1-10, with 10 being a 

major issue: (please circle) 

                                                       1     2     3     4     5     6     7     8     9     10 

 

Why?_________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

____________________ 

 

8.  Do you utilize a reclaimer?                 Yes    No 

 

 8a.  If no, do you anticipate needing a reclaimer in the future?                 Yes    No 
 

9.  Has mud/fluid disposal changed for you over the past 10 years?                Yes    No 

 

 9a.  If yes, in what 

way?_____________________________________________________________ 

______________________________________________________________________________

_______ 
 

10.  Thinking of mud disposal, how much mud did you dispose of per 

week?_________________________________ 
      

0-50K  

50-100K  

Over 100K  
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11.  About how many dollars would you estimate were spent on mud disposal in the past 

year?  
       (please mark which one or all that you know ) 

     
Not Sure          $____________           % of job costs   _________________ 

% of revenue__________________ 
                             

12.  Please mark what contributes to your top two costs: 

 
    Additives     Travel to dump     $ paid to farmers    $ paid to landfill  

   Other____________  Not incurring cost today   

 

13.  Any other comments/needs regarding fluid/mud 

disposal:__________________________________________________________________

__________________________________________________________________________

_________________________________________________________________________________

____________________________________________________________________________

_____________________________________ 
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APPENDIX B 

Table B1. EC in µS cm-1 and pH of the mud and the separated water portion with solids content 

and Total Dissolved Solids (TDS) in lbs. acre-1 applied at 112 metric tons ha-1. 

Sample # E.C. mud pH mud EC Water pH Water Solids Content 

1 267 5.8 343 5.1 0.45 

2 440 6.3 978 6.6 0.61 

3 1625 7.6 1686 8.3 0.29 

4 905 7.9 1008 8.3 0.23 

5 1967 7.5 1857 7.8 0.16 

6 846 7.6 1191 8.0 0.35 

7 571 7.6 655 7.9 0.57 

8 587 7.6 533 7.6 0.11 

9 372 6.1 441 6.2 0.31 

10 305 6.0 331 6.1 0.34 

11 1271 7.4 1491 8.2 0.28 

12 1235 7.4 1532 8.1 0.29 

13 1409 8.1 1650 8.6 0.17 

14 185 5.9 300 6.8 0.36 

15 885 7.5 1312 8.0 0.53 

16 720 7.7 996 8.1 0.42 

17 1385 6.8 1630 7.8 0.34 

18 926 7.8 1356 8.2 0.49 

19 2064 7.9 3172 8.6 0.50 

20 2928 9.9 3526 10.1 0.27 

21 1684 9.1 1763 8.8 0.04 

22 1698 9.1 1942 9.0 0.05 

23 943 6.6 1055 6.8 0.24 

24 143 5.8 259 6.0 0.57 

25 1438 7.3 1714 7.8 0.32 

26 848 7.3 1270 7.5 0.54 

27 416 4.7 592 4.2 0.36 

28 473 5.9 611 6.0 0.67 

29 354 6.1 572 6.8 0.49 

30 118 5.2 241 5.4 0.53 

31 1168 10.0 2017 6.9 0.46 

32 1277 9.4 1661 8.8 0.13 

33 2075 8.1 2252 8.4 0.13 

34 2826 8.3 3093 8.6 0.14 

35 818 7.3 1688 8.0 0.62 
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Table B1. Continued 

Sample # E.C. mud pH mud EC Water pH Water Solids Content 

36 1775 6.9 2042 7.7 0.40 

37 3950 8.1 4296 8.1 0.41 

38 2460 8.6 3251 8.2 0.41 

39 720 7.7 980 7.3 0.72 

40 1041 7.2 1037 7.4 0.10 

41 1088 7.0 962 7.2 0.06 

42 1962 8.6 1913 8.3 0.32 

43 703 7.7 780 7.9 0.47 

44 558 7.7 1180 7.9 0.56 

45 2009 8.3 1918 8.9 0.04 

46 1317 8.6 1696 8.8 0.30 

47 1492 8.6 1424 8.1 0.09 

48 1279 9.5 1044 8.2 0.08 

49 715 7.1 1149 8.2 0.72 

50 230 6.5 406 7.5 0.68 

51 1160 6.7 1179 8.0 0.69 

52 1781 9.5 1734 8.9 0.13 

53 756 8.0 1287 8.2 0.52 

54 2036 8.4 2183 8.7 0.12 

55 1195 7.0 1784 8.0 0.51 

56 1708 7.7 1656 8.4 0.14 
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Table B2. Primary constituent concentrations in mg kg-1 of digested separated solids portion of mud. EPA 3050 

Sample Na Ca Mg K S P Fe Zn Cu Mn Al 

1 193 477 332 240 268 110 33150 7 2 BD 30806 

2 90 1511 4294 1357 131 338 39501 66 434 296 26910 

3 1588 5624 2855 1552 265 114 9704 30 9 75 10679 

4 1247 1569 2028 1821 198 43 13627 20 7 204 12840 

5 2624 4856 2662 1103 780 294 26289 63 45 1606 14779 

6 759 59347 31588 2027 587 285 21453 45 26 386 10621 

7 168 32247 2734 1236 298 161 7765 16 10 102 7939 

8 465 3504 1469 672 156 30 11475 19 12 BD† 18752 

9 534 393 365 240 229 102 34368 13 136 BD 37080 

10 329 349 194 113 216 80 25730 6 93 BD 21460 

11 928 5789 3693 1032 1689 582 20280 39 13 273 7434 

12 892 5713 3876 1538 1629 587 21234 37 13 269 9403 

13 2361 93706 8222 1526 6236 3061 9488 14 19 688 5749 

14 111 610 478 943 78 212 29049 31 11 710 8621 

15 482 52321 14246 4423 870 503 28851 58 21 391 19236 

16 401 29668 7379 1141 431 442 12756 35 17 242 7584 

17 1088 1522 556 444 217 57 3400 10 1 78 11899 

18 434 4317 600 282 446 85 4312 11 7 41 3022 

19 1352 75311 25027 1703 1590 199 9325 18 7 150 6888 

20 4119 41873 13718 708 678 157 7299 20 8 137 4254 

21 13455 7042 3736 1449 1521 283 13703 68 402 463 14041 

22 12927 11518 3589 1348 1604 334 13106 64 1863 417 13383 

23 677 1950 5743 6614 373 281 24660 65 34 393 23209 

† Below Detection Limit 
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Table B2. Continued 

Sample Na Ca Mg K S P Fe Zn Cu Mn Al 

24 51 445 310 408 243 290 51185 19 30 190 33104 

25 1266 18562 7180 849 2012 289 11392 30 22 334 7255 

26 406 30789 3447 1797 838 700 21096 341 38 493 12039 

27 327 5171 2206 1524 141 5753 36491 31 BD† BD 42668 

28 138 339 102 88 174 544 570 BD BD BD 4275 

29 263 1282 1690 1028 83 196 22247 33 32 234 19487 

30 196 192 707 503 46 73 17417 15 10 13 20938 

31 363 104773 4766 951 1102 80 5096 11 1 44 5118 

32 3392 8736 6041 3800 685 819 25613 69 10 452 12951 

33 3443 5257 1408 823 1340 183 7623 13 10 455 4153 

34 5488 3719 1796 812 1509 195 5362 100 34 95 5311 

35 244 603 230 85 86 702 1016 5 1 BD 3852 

36 766 1666 334 135 245 224 1833 5 25 80 5654 

37 1394 9648 7347 2127 1692 444 22616 55 39 231 17704 

38 1866 19420 7430 4519 792 791 21073 46 11 259 17876 

39 177 36006 5592 665 547 351 14893 35 9 359 6714 

40 2641 8085 6953 1072 551 548 25445 65 24 513 20389 

41 4402 8705 8445 1483 1232 666 31464 85 56 690 24119 

42 2107 1831 984 347 525 88 3025 17 5 48 2505 

43 220 3031 3742 1199 43 489 20305 47 11 657 13789 

44 331 618 193 153 44 54 4888 17 8 16 5066 

45 16221 9703 5572 1833 2021 584 14411 54 7 475 15530 

46 2003 1357 989 922 181 110 5934 38 3 232 4092 

† Below Detection Limit 
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Table B2.  Continued 

Sample Na Ca Mg K S P Fe Zn Cu Mn Al 

47 3488 122638 3883 1690 2289 356 9224 23 11 468 7491 

48 7085 6106 3424 2346 1107 311 13139 36 4 562 10848 

49 289 7892 4113 1679 132 554 34320 25 1 558 12095 

50 109 472 462 310 19 100 4961 14 6 BD† 11069 

51 2390 1451 631 1031 461 171 27171 20 8 22 8109 

52 6455 2526 1087 743 1067 105 8539 27 37 41 4832 

53 436 100412 34074 764 3253 174 4861 29 11 185 2454 

54 4646 223986 11582 671 4262 111 3940 22 2 72 3838 

55 352 25137 8481 1165 274 318 14312 39 17 438 8578 

56 3849 62623 25512 1185 1068 401 18769 43 23 1236 7541 

57 959 36583 6199 1659 1380 547 23383 57 80 445 11989 

58 159 71482 6470 3927 4433 1051 30213 92 55 641 23196 

† Below Detection Limit 
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Table B3. Secondary constituent concentrations in mg kg-1 of digested separated solids portion of 

mud. EPA 3050 

Sample Ni B As Cd Cr Ba Pb Co 

1 2.3 56.9 BD† BD 25.1 15.5 BD BD 

2 17.7 64.4 BD BD 36.0 47.5 BD BD 

3 8.6 21.6 BD BD 11.9 54.2 BD BD 

4 9.9 29.7 BD BD 15.9 82.4 0.5 BD 

5 27.0 49.5 BD BD 22.7 218.7 0.6 5.5 

6 21.2 40.7 BD BD 15.4 62.7 BD BD 

7 7.5 17.4 BD BD 8.1 51.6 BD BD 

8 6.8 22.7 BD BD 14.6 69.8 4.4 BD 

9 7.3 58.8 BD BD 30.6 20.2 BD BD 

10 3.4 43.7 BD BD 23.5 14.1 BD BD 

11 14.5 36.4 BD BD 12.5 27.2 1.1 BD 

12 14.8 40.2 BD BD 14.8 31.1 BD BD 

13 5.7 23.4 BD BD 5.8 44.4 BD BD 

14 9.6 49.8 BD BD 21.1 37.9 BD 3.9 

15 25.8 60.8 BD BD 22.0 113.8 BD BD 

16 10.2 26.5 BD BD 10.4 37.0 BD BD 

17 2.3 8.0 BD BD 8.1 46.7 7.4 BD 

18 2.6 10.1 BD BD 7.3 20.9 2.9 BD 

19 10.7 25.2 BD BD 9.6 41.9 BD BD 

20 8.3 17.7 BD BD 7.9 27.8 BD BD 

21 14.6 32.2 BD BD 14.5 125.2 16.9 BD 

22 13.5 31.4 BD BD 15.6 112.5 16.9 BD 

23 2.6 41.7 BD BD 7.5 117.9 BD BD 

24 1.8 89.6 BD BD 43.4 28.6 BD BD 

25 10.3 24.2 BD BD 11.3 86.4 BD BD 

26 19.7 44.0 1.6 BD 18.2 178.1 58.4 BD 

27 18.2 63.3 BD BD 100.1 230.0 BD BD 

28 0.6 BD BD BD 5.6 9.2 2.1 BD 

29 12.7 41.3 BD BD 18.7 65.9 BD BD 

30 7.5 32.3 BD BD 18.2 46.8 BD BD 

31 3.9 14.4 BD BD 5.3 392.8 BD BD 

32 6.2 46.7 BD BD 8.9 108.7 BD BD 

33 3.8 17.7 BD BD 4.2 71.3 3.7 BD 

34 5.1 16.2 BD BD 5.7 60.9 9.0 BD 

35 2.5 3.7 BD BD 4.7 32.2 1.4 BD 

36 2.0 5.4 BD BD 6.8 41.9 7.7 BD 

37 43.3 49.3 BD BD 49.3 230.4 BD BD 

† Below Detection Limit 
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Table B3. Continued 

Sample Ni B As Cd Cr Ba Pb Co 

38 10.3 52.7 BD† BD 15.9 128.0 BD BD 

39 19.3 27.0 BD BD 14.9 25.3 6.8 BD 

40 28.8 42.8 BD BD 28.2 138.9 BD 10.3 

41 38.3 53.5 BD BD 37.2 163.3 BD 14.8 

42 2.2 10.0 0.1 BD 3.5 19.0 BD 1.2 

43 17.8 36.5 BD BD 19.6 211.9 BD 7.6 

44 2.4 9.6 BD BD 7.5 21.7 BD 1.4 

45 14.3 31.0 BD BD 6.8 157.6 BD 6.9 

46 3.8 13.1 BD BD 1.9 51.5 BD 1.6 

47 3.8 20.2 BD BD 3.8 974.1 BD 4.3 

48 7.1 27.4 BD BD 8.2 146.4 BD 4.2 

49 22.9 57.5 BD BD 28.8 114.3 BD 15.6 

50 5.0 10.4 BD BD 9.1 35.5 BD 2.0 

51 3.6 46.9 BD BD 24.6 49.9 BD 3.6 

52 16.7 21.4 BD BD 12.9 34.9 BD 4.0 

53 14.0 11.9 0.2 BD 10.2 35.2 BD 4.8 

54 3.3 11.9 0.1 BD 2.2 24.8 BD 1.2 

55 17.4 30.7 0.1 BD 18.6 107.1 BD 5.9 

56 23.7 36.4 0.1 BD 12.5 107.0 BD 10.3 

57 BD 145.2 BD BD 13.9 397.8 BD 9.7 

58 BD 194.6 BD BD 35.1 195.9 BD 15.3 

† Below Detection Limit 
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Table B4.  Concentration in mg L-1 of the major constituents in the separated water portion of mud and the sodium adsorption ratio. 

Sample Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

1 62.3 2.8 0.5 3.2 99.3 BD† 0.1 BD BD BD 0.1 BD 9 

2 29.5 201.4 15.3 3.8 160.6 BD 0.1 BD BD 0.1 23.4 BD 1 

3 396.1 15.0 5.4 1.8 340.0 0.1 0.1 0.1 BD BD BD 0.1 22 

4 234.7 25.3 50.7 78.2 166.5 0.8 BD 125.6 0.3 BD BD 273.8 6 

5 403.8 41.9 18.0 3.5 411.9 0.1 0.1 0.3 BD BD 7.3 0.5 13 

6 230.3 33.1 15.4 3.1 147.7 0.1 0.1 0.1 0.1 0.1 0.4 0.1 8 

7 77.3 53.9 11.3 1.5 53.9 0.1 BD BD BD BD BD BD 2 

8 52.2 48.8 10.9 2.6 63.6 0.1 BD BD BD BD BD BD 2 

9 98.8 1.2 0.1 2.3 129.5 BD BD 0.1 BD BD BD BD 23 

10 67.4 0.8 BD 1.1 103.8 BD 0.1 BD BD BD BD BD 21 

11 315.6 30.3 8.0 10.7 203.6 0.1 0.1 1.4 BD BD 0.4 4.5 13 

12 308.8 31.0 8.2 10.1 199.8 0.1 0.1 1.3 BD BD 0.4 4.1 13 

13 374.6 26.9 11.3 13.3 484.1 0.2 0.3 8.7 BD BD BD 31.7 15 

14 37.8 18.3 2.0 3.5 69.3 BD 0.1 BD 0.1 BD 1.7 BD 2 

15 191.6 78.6 35.5 4.6 387.5 0.4 BD BD BD BD 0.2 BD 5 

16 172.4 49.5 9.9 4.7 198.2 0.1 0.1 0.1 BD BD 0.2 BD 6 

17 383.7 44.1 5.9 6.6 38.3 BD 0.1 0.4 BD BD 2.9 0.4 14 

18 277.9 38.5 7.1 4.5 193.9 0.2 0.1 1.3 BD BD 0.2 3.1 11 

19 804.8 44.9 47.0 40.4 447.4 0.5 0.4 133.3 0.2 BD BD 326.0 20 

20 856.2 1.4 3.3 6.5 355.7 0.1 0.2 0.8 BD BD BD 2.8 90 

21 435.1 10.9 16.3 5.0 386.0 0.3 0.1 31.2 0.1 0.3 BD 105.0 20 

22 462.2 9.4 5.8 4.3 434.0 0.3 0.1 8.7 BD 0.3 BD 33.9 29 

23 165.8 44.0 16.2 2.1 469.4 BD BD BD BD BD 0.5 BD 5 

† Below Detection Limit 
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Table B4. Continued 

Sample Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

24 18.0 25.0 3.4 1.4 77.6 BD† BD BD BD BD 2.0 BD 1 

25 381.1 49.5 12.4 6.6 327.8 BD 0.2 1.2 BD BD 1.0 2.0 13 

26 163.2 131.9 10.7 18.6 183.1 0.3 0.4 0.2 BD BD 3.5 0.2 4 

27 67.8 25.0 1.1 0.6 92.1 BD 0.1 0.3 BD BD BD 0.4 4 

28 115.2 41.0 31.3 6.5 162.3 0.5 26.6 80.6 0.2 BD BD 472.0 3 

29 88.9 16.0 4.3 1.2 65.3 0.1 BD 0.1 BD BD 2.1 BD 5 

30 45.6 0.8 0.4 1.3 5.2 BD BD 0.2 BD BD 0.1 0.3 11 

31 219.0 138.5 18.4 10.3 561.5 0.3 BD BD BD BD BD BD 5 

32 309.0 4.9 2.6 5.2 405.9 0.1 0.2 1.9 BD BD BD 9.0 28 

33 385.6 40.3 16.3 10.6 468.8 0.1 0.2 22.2 BD BD BD 94.0 13 

34 379.2 15.3 11.7 9.2 417.1 0.1 0.1 7.9 0.2 BD BD 43.4 18 

35 290.6 20.2 4.2 5.6 468.1 0.1 0.4 0.2 BD BD BD 0.8 15 

36 389.1 54.8 11.1 5.7 350.4 0.1 0.1 4.4 BD BD 2.6 0.3 13 

37 642.0 584.7 65.1 12.7 2708.3 0.8 BD BD BD BD 0.9 BD 7 

38 667.9 71.0 14.6 3.7 1395.5 1.5 BD BD BD BD BD BD 19 

39 157.4 37.5 3.2 4.0 161.2 BD 0.1 0.2 BD BD BD 0.4 7 

40 268.4 24.1 5.1 4.8 24.7 0.1 0.1 4.9 BD BD 1.2 11.0 13 

41 272.6 35.7 41.2 10.7 107.4 0.4 0.4 75.0 0.2 0.1 2.3 732.0 7 

42 577.2 27.2 19.8 17.6 860.5 0.2 0.3 17.3 0.1 BD BD 130.3 21 

43 81.8 64.2 35.1 1.2 15.8 BD BD BD BD BD 2.7 BD 2 

44 262.6 12.5 0.4 2.6 75.4 0.1 BD 0.2 BD BD BD 0.5 20 

45 525.4 19.6 19.0 9.2 274.2 0.2 0.6 37.7 0.2 BD 0.8 254.9 20 

46 419.5 21.0 4.5 13.8 255.4 0.2 2.4 3.3 BD BD BD 13.0 22 

† Below Detection Limit 
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Table B4. Continued 

Sample Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

47 320.7 19.0 4.6 6.0 464.3 BD† BD 0.7 BD BD BD 2.5 17 

48 286.3 4.2 5.3 6.5 342.5 0.1 0.1 11.1 BD BD BD 61.5 22 

49 193.2 63.9 22.3 13.2 248.2 0.1 0.1 BD BD BD BD BD 5 

50 72.2 17.8 2.3 3.9 26.6 0.1 0.1 0.6 BD BD 0.2 1.5 4 

51 315.3 25.9 52.2 14.4 328.0 0.6 0.4 161.8 0.2 BD BD 1185.9 8 

52 235.8 3.1 9.8 4.3 214.3 0.5 0.2 17.1 0.1 0.1 BD 102.5 15 

53 247.9 39.2 43.8 19.9 463.0 0.2 BD BD BD BD 0.2 0.1 6 

54 537.1 21.0 16.4 10.1 802.3 0.1 BD 14.6 BD BD BD 107.6 21 

55 154.3 95.5 54.3 6.1 68.4 0.1 BD BD BD BD 1.1 BD 3 

56 407.6 57.1 74.9 9.9 270.9 0.7 0.3 183.0 0.3 0.2 5.9 1030.9 8 

† Below Detection Limit 
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Table B5. Concentration in mg L-1 of the minor constituents in the separated water portion of the 

mud. † Below Detection Limit 

Sample # Mo As Cd Co Cr Pb 

1 BD† BD 0.01 BD 0.02 BD 

2 0.01 BD 0.01 0.07 0.02 0.02 

3 0.12 BD 0.01 BD 0.02 BD 

4 BD BD 0.12 0.08 0.40 BD 

5 0.03 BD 0.01 0.03 0.02 BD 

6 0.03 BD 0.02 0.10 0.02 0.04 

7 0.01 BD 0.01 BD 0.02 BD 

8 0.02 BD BD BD 0.02 0.02 

9 BD BD 0.01 BD 0.02 BD 

10 BD BD 0.01 0.01 0.02 BD 

11 0.15 BD 0.01 0.01 0.02 BD 

12 0.14 BD 0.01 0.01 0.02 BD 

13 0.10 BD 0.01 0.01 0.02 BD 

14 BD BD 0.01 0.02 0.02 BD 

15 0.02 BD 0.01 BD 0.02 BD 

16 0.06 BD 0.01 BD 0.01 0.02 

17 0.01 BD 0.01 BD 0.02 BD 

18 0.09 BD 0.01 BD 0.02 BD 

19 0.06 BD 0.01 BD 0.12 BD 

20 0.11 BD 0.01 0.01 0.02 BD 

21 0.10 BD 0.01 BD 0.02 BD 

22 0.13 BD 0.01 BD 0.02 BD 

23 BD BD 0.01 BD 0.02 0.02 

24 BD BD 0.01 0.01 0.02 BD 

25 0.05 BD 0.01 BD 0.02 BD 

26 0.18 BD BD 0.01 0.02 0.02 

27 BD BD 0.02 BD 0.02 BD 

28 BD BD 0.11 0.10 0.51 BD 

29 BD BD 0.01 0.01 0.02 BD 

30 BD BD 0.16 0.01 0.02 BD 

31 0.06 BD 0.02 0.01 0.02 BD 

32 0.10 BD 0.01 0.01 0.02 BD 

33 0.05 BD BD BD 0.03 BD 

34 0.04 BD BD BD 0.02 BD 

35 0.06 BD BD BD BD BD 

36 0.11 BD BD BD 0.02 BD 

37 0.63 BD BD BD BD BD 
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Table B5. Continued 

Sample # Mo As Cd Co Cr Pb 

38 0.37 BD† BD BD 0.03 BD 

39 0.03 BD BD BD 0.02 BD 

40 0.03 BD BD BD 0.02 BD 

41 BD BD BD 0.01 0.04 BD 

42 0.12 BD BD BD 0.01 BD 

43 0.02 BD BD 0.02 0.01 0.03 

44 0.07 BD BD BD 0.02 BD 

45 0.02 BD BD 0.08 0.02 BD 

46 0.04 BD BD BD 0.02 BD 

47 0.06 BD BD BD 0.02 BD 

48 0.07 BD BD BD 0.02 BD 

49 BD BD BD BD 0.02 BD 

50 BD BD BD BD BD BD 

51 BD BD BD 0.02 0.13 BD 

52 0.04 BD BD BD 0.02 BD 

53 0.38 BD BD BD 0.01 0.02 

54 0.06 BD BD BD BD BD 

55 0.06 BD BD BD 0.01 BD 

56 BD BD BD 0.07 0.06 BD 

† Below Detection Limit 
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Table B6. Mehlich 3 extractable elemental concentrations in mg kg-1 of the separated solids 

portion of mud. 

Sample K P Mg Ca Na Mn Fe Al 

1 58 2 92 504 185 12 35 908 

2 60 9 59 740 53 84 303 736 

3 141 7 496 4486 1590 41 65 112 

4 148 2 509 1575 1225 102 76 616 

5 134 12 954 3955 2665 1444 223 263 

6 117 2 632 5231 682 172 113 163 

7 70 2 282 8630 117 36 37 93 

8 119 6 621 3479 458 14 110 856 

9 77 2 127 411 568 8 87 867 

10 36 2 94 370 350 13 68 855 

11 110 3 302 2216 959 58 761 330 

12 106 5 300 2286 882 57 727 333 

13 170 1 362 37320 2200 130 92 42 

14 61 2 75 689 99 191 152 598 

15 158 3 521 12080 317 126 272 138 

16 60 10 163 5350 306 117 245 885 

17 113 8 162 1588 1110 80 278 855 

18 44 8 133 2670 438 22 297 227 

19 139 7 293 6600 1435 58 275 95 

20 123 3 460 5860 4128 58 232 87 

21 469 9 1001 3246 15689 98 287 118 

22 401 22 856 3801 14125 73 210 83 

23 73 10 380 1444 672 61 171 505 

24 40 1 45 390 49 33 33 1061 

25 123 17 435 4250 1219 149 484 91 

26 291 102 226 5790 326 242 282 209 

27 48 210 135 3660 317 5 479 1967 

28 16 275 13 196 136 2 13 1894 

29 90 4 249 1269 236 149 166 995 

30 55 3 223 182 185 39 99 899 

31 81 1 594 36690 277 2 6 47 

32 291 16 696 4476 3588 90 252 86 

33 195 14 483 3913 3456 131 305 61 

34 281 12 796 2971 5353 50 146 298 

35 31 217 76 418 321 6 176 903 

36 63 52 207 1590 806 69 433 507 

37 245 34 481 6180 1167 85 279 111 
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Table B6. Continued 

Sample K P Mg Ca Na Mn Fe Al 

38 152 51 438 5280 1480 73 68 79 

39 27 17 67 4233 165 62 102 20 

40 208 19 549 4119 2818 513 491 1574 

41 340 20 855 4590 4259 653 383 1506 

42 117 20 448 1577 2034 16 156 295 

43 57 10 862 2110 183 305 67 604 

44 24 5 47 629 350 14 127 350 

39 9 4 31 2097 42 16 50 13 

40 223 21 554 4110 2708 258 478 1621 

41 386 21 857 4660 4189 319 397 1536 

42 148 21 539 1802 2304 19 176 325 

43 87 10 864 2078 190 185 82 674 

44 24 5 48 654 363 14 118 359 

45 658 43 1318 3977 17151 303 436 345 

46 384 14 215 978 1579 54 81 361 

47 276 BD† 822 37889 3707 84 107 24 

48 462 5 638 3853 6679 134 266 442 

49 197 10 319 4364 251 218 177 439 

50 51 20 59 449 91 11 159 1117 

51 146 3 320 1540 2567 23 392 571 

52 261 9 644 2263 6336 20 432 337 

53 106 2 885 19926 334 76 114 10 

54 198 BD 822 39320 4886 14 20 22 

55 175 6 616 5795 302 240 319 190 

56 151 4 854 6121 3640 1075 315 60 

† Below Detection Limit 
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Table B7.  Percent C and N and C:N ratio for the separated solids portion of mud. 

Sample TC % TN % C/N Ratio 

1 0.43 0.04 11.72 

2 1.25 0.04 28.13 

3 0.26 0.03 7.62 

4 0.14 0.02 5.91 

5 0.76 0.06 11.79 

6 3.65 0.05 72.48 

7 1.01 0.02 54.35 

8 0.17 0.03 6.11 

9 0.39 0.02 16.25 

10 0.31 0.02 20.13 

11 0.53 0.04 13.55 

12 0.53 0.04 12.45 

13 5.97 0.02 276.39 

14 0.24 0.04 5.81 

15 2.26 0.05 43.42 

16 1.49 0.02 83.24 

17 0.32 0.04 7.24 

18 0.23 0.03 8.05 

19 3.59 0.02 213.87 

20 2.13 0.01 212.80 

21 1.48 0.03 45.02 

22 4.75 0.03 154.85 

23 0.21 0.03 7.97 

24 0.35 0.04 9.70 

25 1.54 0.04 35.90 

26 6.61 0.21 31.35 

27 0.27 0.05 5.45 

28 1.27 0.02 66.25 

29 0.43 0.04 11.34 

30 0.30 0.04 8.01 

31 2.27 0.03 82.77 

32 0.23 0.02 10.83 

33 0.50 0.03 14.53 

34 0.57 0.04 14.92 

35 0.11 0.01 9.48 

36 0.50 0.04 13.43 

37 0.36 0.04 9.75 
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Table B7. Continued 

Sample TC % TN % C/N Ratio 

38 0.52 0.04 14.79 

39 1.76 0.02 89.39 

40 2.11 0.10 20.24 

41 4.35 0.26 16.95 

42 0.20 0.02 12.54 

43 0.18 0.05 3.92 

44 0.18 0.03 6.47 

45 1.09 0.05 20.55 

46 0.09 0.03 2.97 

47 4.39 0.06 69.41 

48 0.19 0.04 5.17 

49 0.25 0.06 4.21 

50 0.18 0.03 5.90 

51 0.33 0.10 3.36 

52 0.37 0.04 9.42 

53 5.17 0.04 125.77 

54 6.06 0.03 225.13 

55 1.52 0.06 26.08 

56 3.40 0.04 96.62 
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Table B8.  Primary elemental concentrations in mg L-1 of leachate from the Synthetic Precipitation Leaching Procedure performed on the 

separated solids portion of mud. 

Sample Na Ca Mg K S B P Fe Zn Cu Mn Al 

1 8.8 0.8 BD† BD 13.5 0.2 BD BD BD BD BD BD 

2 3.1 7.5 0.4 BD 10.2 0.2 BD BD BD BD 0.6 0.1 

3 61.6 4.0 5.2 3.9 37.6 0.3 BD 14.8 BD BD BD 29.1 

4 41.5 6.7 14.9 21.5 27.5 0.7 0.1 54.7 0.1 BD BD 110.8 

5 105.8 5.4 1.4 BD 109.6 0.2 0.2 0.8 BD BD 0.1 1.5 

6 31.7 7.2 5.9 10.0 15.8 0.3 0.1 18.8 BD BD BD 25.3 

7 6.8 10.4 3.6 BD 5.4 0.2 BD 8.8 BD BD BD 14.5 

8 20.8 14.7 3.1 BD 22.1 0.2 BD 4.4 BD BD BD 12.0 

9 15.4 0.2 BD BD 19.1 0.5 BD BD BD BD BD BD 

10 12.6 0.3 BD BD 16.7 0.5 BD BD BD BD BD BD 

11 45.8 5.5 4.9 15.7 34.2 0.7 0.1 18.2 BD BD BD 41.0 

12 43.9 6.5 4.7 16.0 32.5 0.6 0.1 18.2 BD BD BD 39.3 

13 105.0 21.8 14.6 14.3 160.8 0.7 1.3 26.4 BD BD BD 79.3 

14 5.4 1.6 BD BD 8.1 0.2 BD 0.1 BD BD 0.2 0.2 

15 15.7 12.3 3.1 4.1 25.0 0.2 BD 2.0 BD BD BD 5.5 

16 16.8 12.8 1.9 3.9 16.8 0.7 0.1 7.3 BD BD 0.1 9.7 

17 39.0 9.0 9.5 8.2 18.0 0.5 0.2 43.6 0.1 BD 0.1 179.7 

18 20.3 7.3 1.6 BD 15.3 0.6 0.2 8.9 BD BD BD 15.9 

19 62.2 24.7 17.4 20.4 30.5 0.7 0.5 39.1 BD BD 0.1 74.2 

20 154.0 5.2 6.1 4.3 52.4 0.2 0.2 13.2 BD BD BD 36.0 

21 266.6 12.2 32.4 5.5 262.2 1.5 BD 72.2 0.2 0.5 BD 192.3 

22 265.9 13.6 36.4 6.3 247.0 1.4 0.2 83.0 0.2 2.1 BD 204.1 

23 29.5 4.3 2.0 BD 63.8 0.1 BD 4.9 BD BD 0.1 13.3 

† Below Detection Limit 
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Table B8. Continued 

Sample Na mg/l Ca Mg K S B P Fe Zn Cu Mn Al 

24 3.5 2.4 BD† BD 7.9 0.5 BD BD BD BD 0.2 BD 

25 52.2 11.4 9.0 3.8 42.7 0.7 0.4 27.9 BD BD 0.2 56.0 

26 16.0 17.0 2.0 6.7 15.7 0.7 0.7 7.8 0.1 BD 0.2 10.8 

27 11.4 2.1 0.2 BD 12.2 0.6 1.3 3.0 BD BD BD 7.5 

28 6.9 0.6 BD BD 4.8 0.3 0.5 0.9 BD BD BD 5.2 

29 9.7 2.1 2.5 3.4 7.7 0.8 0.2 26.2 BD BD 0.1 41.8 

30 6.8 0.1 BD BD 3.8 0.7 BD 0.9 BD BD BD 2.2 

31 16.5 15.9 2.5 BD 39.0 0.7 BD BD BD BD BD BD 

32 107.1 13.1 22.4 4.8 91.5 1.1 0.2 43.1 0.1 BD BD 123.4 

33 126.0 10.8 8.1 4.2 165.5 0.8 0.3 17.8 BD BD BD 44.1 

34 108.8 5.0 6.4 4.3 212.9 1.0 0.1 10.7 0.1 BD BD 40.1 

35 15.1 5.2 4.0 BD 15.3 0.7 5.5 12.3 BD BD BD 51.2 

36 34.9 11.6 6.0 BD 27.1 0.7 1.8 23.8 BD BD 0.1 117.4 

37 52.1 46.7 4.0 BD 189.9 0.6 BD 0.1 BD BD BD 0.3 

38 62.2 7.8 6.0 BD 84.7 0.9 0.4 12.4 BD BD BD 24.5 

39 8.5 9.6 0.5 BD 7.6 0.6 BD 1.7 BD BD 0.1 2.5 

40 73.3 9.5 5.7 BD 36.7 0.8 0.4 13.4 BD BD 0.3 35.0 

41 119.8 6.5 1.6 3.5 158.9 0.8 0.4 2.1 BD BD 0.3 6.2 

42 68.0 3.6 4.2 BD 77.7 0.7 0.4 7.3 BD BD BD 28.0 

43 9.2 3.9 2.4 BD 3.6 0.5 BD 4.4 BD BD BD 5.4 

44 17.8 5.5 1.8 BD 5.9 0.7 0.1 21.1 0.1 BD BD 43.0 

45 386.9 5.9 1.0 6.5 334.5 1.4 1.7 1.5 BD BD 0.1 4.5 

46 52.7 2.8 2.4 5.4 28.7 0.7 0.4 5.6 BD BD BD 18.6 

† Below Detection Limit 
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Table B8. Continued 

Sample Na Ca Mg K S B P Fe Zn Cu Mn Al 

47 150.7 7.4 3.0 6.2 223.2 0.8 BD† 4.0 BD BD BD 13.4 

48 143.9 3.9 6.9 4.0 162.2 1.6 0.1 13.6 BD BD BD 46.7 

49 12.2 8.9 1.9 7.7 11.9 0.5 BD 4.7 BD BD BD 10.0 

50 5.5 2.5 1.8 BD 3.4 0.6 0.5 24.5 BD BD BD 64.6 

51 58.5 1.7 2.3 BD 63.5 0.7 BD 11.2 BD BD BD 26.9 

52 154.0 3.9 6.8 3.3 156.4 1.3 0.3 13.5 BD BD BD 47.1 

53 15.6 9.8 5.3 3.7 27.4 0.4 BD 1.1 BD BD BD 3.3 

54 164.5 12.2 19.8 7.6 236.5 0.9 0.1 32.1 0.1 BD BD 112.3 

55 13.8 13.3 4.2 BD 6.4 0.4 0.1 9.0 BD BD 0.1 10.0 

56 124.5 23.2 42.1 5.7 84.5 1.0 0.3 105.0 0.2 0.1 2.3 192.0 

57 40.1 14.7 7.4 4.5 62.2 0.2 BD 1.0 BD BD 0.1 1.8 

58 6.3 239.6 4.5 9.8 527.7 0.2 BD BD BD BD 0.3 BD 

† Below Detection Limit 
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Table B9. Secondary elemental concentrations in mg L-1 of leachate from the Synthetic 

Precipitation Leaching Procedure performed on the separated solids portion of the mud. 

Sample Ni Mo As Ba Cd Co Cr Pb 

1 BD† BD BD BD BD BD 0.01 BD 

2 BD BD BD 0.02 BD BD 0.01 BD 

3 BD 0.02 BD 0.06 BD BD 0.02 BD 

4 BD BD BD 0.34 BD 0.01 0.09 BD 

5 BD 0.05 BD 0.04 BD BD 0.01 BD 

6 BD 0.03 BD 0.09 BD 0.02 0.03 BD 

7 BD 0.01 BD 0.06 BD BD 0.02 BD 

8 BD BD BD 0.08 BD 0.01 0.01 BD 

9 BD BD BD BD BD BD BD BD 

10 BD BD BD BD BD BD 0.01 BD 

11 BD 0.02 BD 0.10 BD 0.01 0.04 BD 

12 BD 0.02 BD 0.09 BD 0.01 0.03 BD 

13 BD 0.03 BD 0.13 BD 0.02 0.02 BD 

14 BD BD BD BD BD BD 0.01 BD 

15 BD 0.02 BD 0.05 BD BD 0.01 BD 

16 BD BD BD 0.06 BD BD 0.02 BD 

17 0.03 BD BD 0.24 BD 0.02 0.12 BD 

18 BD BD BD 0.05 BD BD 0.02 BD 

19 BD BD BD 0.33 BD 0.02 0.06 BD 

20 BD 0.02 BD 0.05 BD BD 0.01 BD 

21 BD 0.05 BD 0.12 BD BD BD BD 

22 BD 0.05 BD 0.14 BD BD BD BD 

23 BD BD BD 0.04 BD BD 0.01 BD 

24 BD BD BD 0.01 BD BD 0.01 BD 

25 BD 0.03 BD 0.13 BD 0.01 0.03 BD 

26 BD 0.02 BD 0.07 BD 0.01 0.02 BD 

27 BD BD BD 0.06 BD BD 0.02 BD 

28 BD BD BD BD BD BD 0.01 BD 

29 BD BD BD 0.08 BD 0.01 0.03 BD 

30 BD BD BD BD BD BD BD BD 

31 BD BD BD 0.07 BD BD BD BD 

32 BD 0.02 BD 0.12 BD BD BD BD 

33 BD 0.03 BD 0.04 BD BD 0.01 BD 

34 BD 0.02 BD 0.04 BD BD BD BD 

35 BD BD BD 0.20 BD BD 0.04 BD 

36 BD 0.02 BD 0.24 BD BD 0.10 BD 

37 BD 0.04 BD 0.04 BD BD 0.01 BD 

† Below Detection Limit 
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Table B9. Continued 

Sample Ni Mo As Ba Cd Co Cr Pb 

39 BD† BD BD 0.02 BD 0.01 0.01 BD 

40 BD 0.02 BD 0.06 BD BD 0.01 BD 

41 0.04 0.05 BD 0.03 BD BD 0.01 BD 

42 BD 0.03 BD 0.02 BD 0.01 BD BD 

43 BD BD BD 0.04 BD BD 0.01 BD 

44 BD 0.01 BD 0.05 BD BD 0.03 BD 

45 0.16 0.05 BD 0.04 BD 0.06 0.01 BD 

46 BD BD BD 0.04 BD BD BD BD 

47 BD 0.04 BD 0.05 BD BD BD BD 

48 BD 0.04 BD 0.03 BD BD BD BD 

49 BD BD BD 0.06 BD BD 0.02 BD 

50 BD BD BD 0.13 BD 0.01 0.05 BD 

51 BD BD BD 0.07 BD BD 0.03 BD 

52 BD 0.03 BD 0.03 BD 0.01 0.01 BD 

53 BD 0.02 BD 0.02 BD BD 0.01 BD 

54 BD 0.02 BD 0.05 BD BD BD BD 

55 BD 0.03 BD 0.06 BD BD 0.02 BD 

56 0.08 0.01 BD 0.23 BD 0.05 0.03 BD 

57 BD BD BD 0.09 BD BD 0.01 BD 

58 BD BD BD 0.06 BD BD 0.01 BD 

† Below Detection Limit 
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Table B10.  Loading rates in kg ha-1 of trace metals in the solids portion and Total Dissolved 

Solids in kg ha-1 of mud if applied at 112 metric tons solid ha-1. 

Sample Ni B As Cd Cr Ba Pb Co TDS 

1 0.3 7.0 BD† BD 3.1 1.9 BD BD 31 

2 2.2 8.0 BD BD 4.5 5.9 BD BD 32 

3 1.1 2.7 BD BD 1.5 6.7 BD BD 324 

4 1.2 3.7 BD BD 2.0 10.2 0.1 BD 236 

5 3.3 6.1 BD BD 2.8 27.0 0.1 0.7 782 

6 2.6 5.0 BD BD 1.9 7.7 BD BD 136 

7 0.9 2.1 BD BD 1.0 6.4 BD BD 47 

8 0.8 2.8 BD BD 1.8 8.6 0.5 BD 355 

9 0.9 7.3 BD BD 3.8 2.5 BD BD 69 

10 0.4 5.4 BD BD 2.9 1.7 BD BD 51 

11 1.8 4.5 BD BD 1.5 3.4 0.1 BD 273 

12 1.8 5.0 BD BD 1.8 3.8 BD BD 254 

13 0.7 2.9 BD BD 0.7 5.5 BD BD 547 

14 1.2 6.1 BD BD 2.6 4.7 BD 0.5 28 

15 3.2 7.5 BD BD 2.7 14.1 BD BD 80 

16 1.3 3.3 BD BD 1.3 4.6 BD BD 90 

17 0.3 1.0 BD BD 1.0 5.8 0.9 BD 231 

18 0.3 1.3 BD BD 0.9 2.6 0.4 BD 93 

19 1.3 3.1 BD BD 1.2 5.2 BD BD 202 

20 1.0 2.2 BD BD 1.0 3.4 BD BD 646 

21 1.8 4.0 BD BD 1.8 15.5 2.1 BD 2614 

22 1.7 3.9 BD BD 1.9 13.9 2.1 BD 2582 

23 0.3 5.2 BD BD 0.9 14.6 BD BD 241 

24 0.2 11.1 BD BD 5.4 3.5 BD BD 12 

25 1.3 3.0 BD BD 1.4 10.7 BD BD 258 

26 2.4 5.4 0.2 BD 2.2 22.0 7.2 BD 74 

27 2.2 7.8 BD BD 12.4 28.4 BD BD 64 

28 0.1 BD BD BD 0.7 1.1 0.3 BD 30 

29 1.6 5.1 BD BD 2.3 8.1 BD BD 35 

30 0.9 4.0 BD BD 2.3 5.8 BD BD 11 

31 0.5 1.8 BD BD 0.7 48.5 BD BD 129 

32 0.8 5.8 BD BD 1.1 13.4 BD BD 660 

33 0.5 2.2 BD BD 0.5 8.8 0.5 BD 1065 

34 0.6 2.0 BD BD 0.7 7.5 1.1 BD 1357 

35 0.3 0.5 BD BD 0.6 4.0 0.2 BD 58 

36 0.3 0.7 BD BD 0.8 5.2 0.9 BD 243 

37 5.3 6.1 BD BD 6.1 28.5 BD BD 515 

† Below Detection Limit 
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Table B10. Continued 

Sample Ni B As Cd Cr Ba Pb Co TDS 

38 1.3 6.5 BD† BD 2.0 15.8 BD BD 322 

39 2.4 3.3 BD BD 1.8 3.1 0.8 BD 40 

40 3.6 5.3 BD BD 3.5 17.2 BD 1.3 733 

41 4.7 6.6 BD BD 4.6 20.2 BD 1.8 1288 

42 0.3 1.2 BD BD 0.4 2.3 BD 0.1 351 

43 2.2 4.5 BD BD 2.4 26.2 BD 0.9 77 

44 0.3 1.2 BD BD 0.9 2.7 BD 0.2 46 

45 1.8 3.8 BD BD 0.8 19.5 BD 0.9 3723 

46 0.5 1.6 BD BD 0.2 6.4 BD 0.2 256 

47 0.5 2.5 BD BD 0.5 120.3 BD 0.5 1101 

48 0.9 3.4 BD BD 1.0 18.1 BD 0.5 1066 

49 2.8 7.1 BD BD 3.6 14.1 BD 1.9 39 

50 0.6 1.3 BD BD 1.1 4.4 BD 0.2 14 

51 0.4 5.8 BD BD 3.0 6.2 BD 0.4 69 

52 2.1 2.6 BD BD 1.6 4.3 BD 0.5 919 

53 1.7 1.5 BD BD 1.3 4.3 BD 0.6 71 

54 0.4 1.5 BD BD 0.3 3.1 BD 0.1 1091 

55 2.2 3.8 BD BD 2.3 13.2 BD 0.7 114 

56 2.9 4.5 BD BD 1.5 13.2 BD 1.3 791 

57 BD 17.9 BD BD 1.7 49.1 BD 1.2  

58 BD 24.0 BD BD 4.3 24.2 BD 1.9 - 

† Below Detection Limit 
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APPENDIX C 

Table C3.  Primary elemental concentrations in mg L-1 and SAR of saturated paste extractions at day 7 with mud application rates 

equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid on pastureland at depths 0-5 cm and 5-15 cm.  † Below Detection Limit 

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

C1 40 0-5 93.1 92.6 22.4 26.4 71.4 BD† 0.9 0.1 BD 0.1 0.2 0.1 2.3 

C1 40 5-10 18.9 87.5 17.0 8.1 46.9 BD 0.3 0.5 0.1 0.1 0.3 0.7 0.5 

C1 0 0-5 11.7 81.5 24.5 35.3 40.2 BD 1.3 0.2 0.1 0.1 0.4 0.2 0.3 

C1 0 5-10 9.5 30.0 6.5 4.7 23.1 0.1 0.5 0.2 BD 0.6 0.1 0.2 0.4 

C1 30 0-5 64.4 119.8 30.6 30.2 77.4 BD 1.2 0.2 0.1 0.2 0.3 0.1 1.4 

C1 30 5-10 16.1 72.5 14.8 5.8 34.4 BD 0.3 BD BD 0.1 0.2 0.1 0.5 

C1 40 0-5 65.6 120.0 29.2 41.5 91.6 BD 1.3 0.2 0.1 0.2 0.3 0.1 1.4 

C1 40 5-10 17.5 96.3 18.3 12.4 56.3 BD 0.4 0.1 BD 0.1 0.2 0.1 0.4 

C1 20 0-5 48.1 110.8 25.4 31.8 72.5 BD 0.9 0.4 0.1 0.1 0.4 0.4 1.1 

C1 20 5-10 13.2 78.8 15.2 8.1 41.7 BD 0.5 0.1 BD 0.1 0.2 0.1 0.4 

C1 50 0-5 137.5 108.2 24.7 31.9 151.7 BD 1.1 0.5 0.3 0.2 0.3 0.2 3.1 

C1 50 5-10 16.2 89.0 16.8 7.2 73.6 BD 0.4 BD BD BD 0.3 0.1 0.4 

C2 30 0-5 67.8 111.1 29.9 45.8 75.2 BD 1.3 0.4 0.1 0.1 0.4 0.5 1.5 

C2 30 5-10 18.2 63.8 13.7 12.4 46.6 BD 0.4 0.3 0.2 0.1 0.3 0.4 0.5 

C2 40 0-5 94.7 95.7 25.2 31.8 95.1 BD 1.1 0.5 0.1 0.1 0.2 0.2 2.2 

C2 40 5-10 18.4 84.3 15.4 10.3 57.2 BD 0.5 0.4 0.2 BD 0.3 0.1 0.5 

C2 50 0-5 126.9 103.9 27.2 45.6 107.1 BD 1.2 0.2 0.1 0.1 0.2 0.1 2.9 

C2 50 5-10 20.8 76.6 13.8 9.5 55.6 BD 0.4 0.4 0.1 BD 0.2 0.5 0.6 
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Table C1. Continued 

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

C2 40 0-5 112.9 87.6 22.5 37.4 87.0 BD† 1.0 0.1 BD 0.1 0.2 0.1 2.8  

C2 40 5-10 21.3 92.1 16.2 10.8 57.4 BD 0.3 0.1 BD BD 0.2 0.1 0.5 

C2 0 0-5 10.4 106.5 31.8 39.2 43.6 BD 1.1 0.2 0.1 0.2 0.6 0.2 0.2 

C2 0 5-10 8.7 32.4 7.0 5.3 22.5 BD 0.5 0.1 BD BD 0.2 0.2 0.4 

C2 10 0-5 32.6 124.3 32.6 36.2 58.6 BD 1.1 0.4 0.1 0.1 0.4 0.1 0.7 

C2 10 5-10 12.9 84.2 15.1 4.8 30.0 BD 0.3 BD BD BD 0.2 0.1 0.3 

C3 0 0-5 8.1 95.4 25.1 31.7 50.2 BD 0.9 0.7 0.1 0.1 0.4 1.0 0.2 

C3 0 5-10 5.8 31.2 6.5 4.9 26.8 BD 0.5 0.5 0.1 BD 0.2 0.7 0.2 

C3 30 0-5 58.1 106.9 24.6 31.6 71.6 BD 1.0 0.1 0.1 0.2 0.3 0.1 1.3 

C3 30 5-10 18.4 83.1 15.0 8.4 44.5 BD 0.4 0.1 BD 0.1 0.2 0.1 0.5 

C3 20 0-5 38.7 127.5 29.3 39.3 72.3 BD 1.1 0.1 0.1 0.8 0.3 0.1 0.8 

C3 20 5-10 11.5 75.9 13.7 8.0 34.7 BD 0.4 0.3 0.1 BD 0.2 0.4 0.3 

C3 20 0-5 53.3 117.5 28.9 32.9 76.3 BD 1.1 0.2 0.1 0.1 0.3 0.1 1.1 

C3 20 5-10 12.3 80.2 14.8 6.1 42.0 BD 0.4 BD BD BD 0.1 BD 0.3 

C3 10 0-5 27.0 126.9 28.3 20.0 57.3 BD 0.9 0.1 0.1 0.3 0.2 0.1 0.6 

C3 10 5-10 12.1 71.3 10.7 3.5 35.7 0.1 0.5 0.3 0.1 0.1 0.1 0.5 0.4 

C3 10 0-5 15.8 119.2 24.6 24.8 46.4 0.1 1.0 0.4 0.1 0.1 0.1 0.2 0.3 

C3 10 5-10 10.1 68.9 9.5 3.3 32.4 0.1 0.4 0.2 0.1 BD 0.1 0.3 0.3 

C3 50 0-5 103.3 102.1 22.2 22.5 86.0 BD 1.2 0.3 0.1 0.1 0.2 0.1 2.4 

C3 50 5-10 20.8 74.1 13.3 4.9 53.1 BD 0.5 0.2 BD 0.1 0.1 0.1 0.6 

† Below Detection Limit 
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Table C4.  Primary elemental concentrations in mg L-1 and SAR of saturated paste extractions at day 30 with mud application rates 

equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid on pastureland at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

C1 40 0-5 62.8 110.3 27.6 47.4 61.6 BD† 0.6 0.6 0.1 0.1 0.2 0.3 1.4 

C1 40 5-10 31.7 77.0 15.4 9.4 25.7 BD 0.4 0.2 BD 0.1 0.1 BD 0.9 

C1 0 0-5 9.4 63.4 21.6 44.0 49.3 0.1 2.4 0.7 0.1 BD 0.4 0.3 0.3 

C1 0 5-10 6.7 18.9 4.7 5.1 16.0 0.1 0.2 0.2 0.1 BD 0.1 0.1 0.4 

C1 30 0-5 43.7 137.2 37.0 50.7 87.0 BD 2.4 0.6 0.1 0.1 0.3 0.2 0.9 

C1 30 5-10 18.3 33.5 8.1 5.3 24.3 BD 0.3 0.2 BD 0.1 0.2 0.2 0.7 

C1 40 0-5 42.5 105.7 26.3 42.9 75.8 BD 1.8 0.5 0.1 0.1 0.2 0.1 1.0 

C1 40 5-10 17.4 46.0 9.7 9.8 30.8 BD 0.4 0.2 0.1 0.1 0.1 0.1 0.6 

C1 20 0-5 19.6 124.3 33.2 61.1 71.7 BD 2.0 0.8 0.2 0.1 0.3 0.2 0.4 

C1 20 5-10 11.0 43.1 9.5 11.3 25.6 BD 0.4 0.2 0.1 0.1 0.2 0.1 0.4 

C1 50 0-5 61.5 107.8 23.8 28.3 77.2 BD 0.8 0.2 BD 0.1 0.1 0.2 1.4 

C1 50 5-10 18.6 40.2 8.4 6.4 31.0 BD 0.4 0.1 BD BD 0.1 0.1 0.7 

C2 30 0-5 48.8 117.7 33.8 52.5 56.4 BD 1.5 0.3 BD 0.1 0.2 0.2 1.0 

C2 30 5-10 24.1 76.5 16.5 11.2 27.2 BD 0.3 0.1 BD BD 0.2 BD 0.7 

C2 40 0-5 47.3 106.6 29.1 34.0 53.7 BD 2.0 0.5 0.1 0.1 0.2 0.2 1.0 

C2 40 5-10 16.2 57.4 11.2 8.3 23.2 BD 0.2 0.1 BD BD 0.1 BD 0.5 

C2 50 0-5 74.1 101.9 26.0 46.4 60.9 BD 1.0 0.4 0.1 0.1 0.2 0.2 1.7 

C2 50 5-10 29.5 76.0 14.1 12.0 44.0 BD 0.4 0.2 0.1 0.1 0.2 0.1 0.8 

C2 40 0-5 53.6 105.3 29.4 46.4 60.9 BD 0.8 0.4 0.1 BD 0.2 0.2 1.2 

† Below Detection Limit 
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Table C2. Continued 

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

C2 40 5-10 26.6 70.0 14.0 15.8 31.9 BD† 0.4 0.1 0.1 0.1 0.2 0.1 0.8 

C2 0 0-5 7.8 115.5 36.3 49.3 48.7 BD 1.6 0.7 0.1 0.1 0.7 0.3 0.2 

C2 0 5-10 6.1 20.2 4.5 3.5 14.5 BD 0.5 0.2 BD BD 0.1 0.1 0.3 

C2 10 0-5 15.8 133.6 36.2 45.7 75.2 BD 1.6 0.5 0.1 BD 0.7 0.2 0.3 

C2 10 5-10 9.9 28.4 5.9 3.4 20.1 BD 0.3 0.1 BD BD 0.1 0.1 0.4 

C3 0 0-5 5.7 84.8 24.5 50.1 57.4 BD 1.5 0.7 0.1 BD 0.4 0.4 0.1 

C3 0 5-10 5.3 48.8 9.7 13.9 22.8 BD 0.6 0.2 BD BD 0.2 0.1 0.2 

C3 30 0-5 50.0 94.8 23.0 37.8 54.9 BD 1.3 0.2 BD BD 0.2 0.2 1.2 

C3 30 5-10 19.9 44.4 9.0 9.3 23.4 BD 0.5 0.3 BD 0.1 0.1 0.2 0.7 

C3 20 0-5 24.5 98.3 24.3 26.2 51.6 BD 1.1 0.2 0.1 0.1 0.1 0.1 0.6 

C3 20 5-10 10.5 35.5 7.3 5.9 19.0 BD 0.3 0.4 BD BD 0.1 0.3 0.4 

C3 20 0-5 29.3 121.7 29.2 33.6 68.9 BD 1.3 0.6 0.1 0.1 0.2 0.2 0.6 

C3 20 5-10 12.4 38.5 7.8 4.0 18.2 BD 0.3 0.1 BD BD 0.1 BD 0.5 

C3 10 0-5 20.1 94.7 20.0 19.2 45.2 0.1 0.9 0.2 0.2 0.2 0.2 0.1 0.5 

C3 10 5-10 13.8 65.2 9.8 2.7 34.5 0.1 0.2 BD BD BD BD BD 0.4 

C3 10 0-5 17.5 126.9 28.3 27.0 44.5 0.1 1.4 0.3 0.1 0.1 0.1 0.3 0.4 

C3 10 5-10 11.2 53.7 8.5 3.3 24.3 0.1 0.3 0.1 BD 0.1 BD 0.2 0.4 

C3 50 0-5 64.6 90.1 20.0 21.6 64.9 BD 1.1 0.2 0.1 0.2 0.1 0.1 1.6 

C3 50 5-10 30.1 46.7 9.1 5.0 30.2 BD 0.3 0.3 BD BD 0.1 0.1 1.1 

† Below Detection Limit 
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Table C5.  Primary elemental concentrations in mg L-1 and SAR of saturated paste extractions at day 93 with mud application rates 

equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid on pastureland at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

C1 40 0-5 24.0 128.3 29.5 30.5 55.7 BD† 2.6 0.2 BD 0.1 0.2 0.1 0.5 

C1 40 5-10 31.4 66.5 14.0 7.5 29.9 BD 1.1 0.1 BD BD 0.3 BD 0.9 

C1 0 0-5 7.4 71.9 23.5 32.9 47.7 BD 4.2 0.3 BD 1.1 0.4 0.1 0.2 

C1 0 5-10 13.4 41.8 9.6 9.2 25.1 BD 0.9 0.2 BD 0.1 0.4 0.2 0.5 

C1 30 0-5 29.9 135.1 37.1 29.9 56.4 BD 3.4 0.2 BD 0.4 0.4 0.2 0.6 

C1 30 5-10 23.6 55.2 13.2 8.7 29.7 BD 1.3 0.4 BD 0.1 0.5 0.6 0.7 

C1 40 0-5 27.0 192.4 45.8 83.6 124.7 BD 7.4 0.3 BD 0.2 0.5 0.2 0.5 

C1 40 5-10 19.0 51.5 11.5 12.4 28.3 BD 1.2 0.1 BD BD 0.3 BD 0.6 

C1 20 0-5 15.6 138.1 33.5 180.6 67.9 BD 3.8 0.2 BD 0.1 0.3 0.1 0.3 

C1 20 5-10 18.3 46.8 10.1 7.2 24.8 BD 1.2 0.3 BD BD 0.3 0.5 0.6 

C1 50 0-5 26.2 152.3 33.2 48.3 81.2 BD 5.1 0.2 BD 0.1 0.2 0.2 0.5 

C1 50 5-10 42.7 60.6 12.4 6.9 31.9 BD 1.3 0.1 BD BD 0.3 BD 1.3 

C2 30 0-5 20.9 167.3 43.9 46.0 73.3 BD 4.8 0.4 BD 0.2 0.4 0.3 0.4 

C2 30 5-10 27.1 81.9 17.4 11.1 28.7 BD 0.9 0.1 BD BD 0.3 0.1 0.7 

C2 40 0-5 31.4 103.0 23.4 21.7 38.0 BD 1.3 0.1 BD 0.1 0.2 0.1 0.7 

C2 40 5-10 26.9 55.2 10.8 12.2 31.5 BD 1.1 0.1 BD BD 0.3 0.2 0.9 

C2 50 0-5 27.5 148.8 37.3 39.6 67.3 BD 2.9 0.2 BD 0.1 0.3 0.2 0.5 

C2 50 5-10 40.7 70.5 13.6 11.7 30.9 BD 1.4 0.1 BD BD 0.2 0.1 1.2 

C2 40 0-5 56.9 118.1 28.1 29.0 62.7 BD 2.4 0.2 BD 0.1 0.3 BD 1.2 

† Below Detection Limit 
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Table C3. Continued 

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

C2 40 5-10 61.1 78.5 16.0 13.8 52.2 BD† 1.6 0.1 BD 0.1 0.4 0.2 1.6 

C2 0 0-5 6.6 70.7 24.0 28.8 45.9 BD 3.4 0.2 BD 0.1 0.6 0.4 0.2 

C2 0 5-10 7.9 40.3 8.7 6.8 23.7 BD 1.4 0.1 BD BD 0.4 0.1 0.3 

C2 10 0-5 12.1 114.8 31.4 20.1 55.2 BD 2.8 0.2 BD 0.1 0.5 0.2 0.3 

C2 10 5-10 14.2 46.8 9.4 5.2 24.6 BD 1.3 0.1 BD BD 0.3 0.1 0.5 

C3 0 0-5 5.5 88.7 27.8 33.2 64.9 BD 3.0 0.4 BD 0.1 0.5 0.5 0.1 

C3 0 5-10 8.0 64.0 14.0 10.7 38.1 BD 1.3 0.1 BD 0.1 0.6 0.1 0.2 

C3 30 0-5 18.3 135.4 32.0 30.4 64.1 BD 3.1 0.2 BD 0.1 0.2 0.2 0.4 

C3 30 5-10 23.9 81.3 15.4 10.9 32.8 BD 0.9 0.1 BD BD 0.4 0.1 0.6 

C3 20 0-5 13.7 116.8 26.5 22.7 57.3 BD 2.4 0.1 BD 0.1 0.2 BD 0.3 

C3 20 5-10 15.5 51.8 9.8 9.0 26.5 BD 1.0 0.1 BD 0.1 0.3 0.2 0.5 

C3 20 0-5 17.7 126.0 32.5 25.5 62.5 BD 2.8 0.2 BD 0.1 0.2 0.3 0.4 

C3 20 5-10 18.5 52.4 10.8 7.6 25.5 BD 1.1 0.2 BD 0.1 0.3 0.3 0.6 

C3 10 0-5 9.2 116.5 27.7 15.6 54.5 BD 2.5 0.3 BD 0.6 0.2 0.2 0.2 

C3 10 5-10 16.2 72.3 13.0 5.6 34.6 BD 1.1 BD BD 0.1 0.1 BD 0.5 

C3 10 0-5 7.5 112.6 24.6 13.7 38.6 BD 2.5 0.1 BD 0.1 0.1 BD 0.2 

C3 10 5-10 12.4 79.5 11.8 4.4 31.3 BD 1.2 BD BD BD BD BD 0.3 

C3 50 0-5 27.8 136.0 28.0 24.6 70.1 BD 3.5 0.1 BD 0.3 0.1 0.2 0.6 

C3 50 5-10 32.9 62.2 10.9 15.7 28.2 BD 1.2 0.1 BD BD 0.1 BD 1.0 

† Below Detection Limit 
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Table C6.  Secondary elemental concentrations in mg L-1 of saturated paste extractions at day 7 with mud application rates equivalent to 0, 

20, 30, 40, and 50 tons acre-1 solid on pastureland at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

C1 40 0-5 0.02 0.01 0.03 0.29 BD† BD 0.01 BD 

C1 40 5-10 0.02 BD 0.01 0.38 0.01 BD 0.02 BD 

C1 0 0-5 0.02 BD BD 0.35 BD BD 0.01 BD 

C1 0 5-10 0.05 BD BD 0.14 BD BD 0.01 BD 

C1 30 0-5 0.03 BD BD 0.39 BD BD 0.01 BD 

C1 30 5-10 0.03 BD BD 0.32 BD BD 0.01 BD 

C1 40 0-5 0.03 BD BD 0.44 BD BD 0.02 BD 

C1 40 5-10 0.01 BD BD 0.46 BD BD 0.02 BD 

C1 20 0-5 0.01 BD BD 0.42 BD BD 0.01 BD 

C1 20 5-10 0.03 BD BD 0.37 BD BD 0.01 BD 

C1 50 0-5 0.04 BD BD 0.35 BD 0.01 0.01 BD 

C1 50 5-10 0.03 BD 0.02 0.39 BD BD 0.01 BD 

C2 30 0-5 0.05 0.01 0.01 0.34 BD 0.01 0.02 BD 

C2 30 5-10 0.04 BD BD 0.32 BD BD 0.02 BD 

C2 40 0-5 0.03 0.01 BD 0.29 BD 0.01 0.01 BD 

C2 40 5-10 0.04 BD BD 0.35 BD BD 0.01 BD 

C2 50 0-5 0.04 0.01 BD 0.36 BD 0.01 0.01 BD 

C2 50 5-10 0.02 BD BD 0.35 BD BD 0.01 BD 

C2 40 0-5 0.02 0.02 0.03 0.33 BD BD 0.01 BD 

† Below Detection Limit 
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Table C4. Continued 

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

C2 40 5-10 0.03 BD† BD 0.40 BD BD 0.01 BD 

C2 0 0-5 0.03 BD 0.01 0.55 BD BD 0.01 BD 

C2 0 5-10 0.02 BD BD 0.18 BD BD 0.01 BD 

C2 10 0-5 0.03 BD BD 0.51 BD BD 0.02 BD 

C2 10 5-10 0.02 BD 0.01 0.36 BD BD 0.01 BD 

C3 0 0-5 0.02 BD BD 0.44 BD BD 0.02 BD 

C3 0 5-10 0.02 BD BD 0.18 BD BD 0.01 BD 

C3 30 0-5 0.06 BD 0.02 0.37 BD BD 0.01 BD 

C3 30 5-10 0.15 BD BD 0.34 BD BD 0.01 BD 

C3 20 0-5 0.04 0.01 0.01 0.49 BD BD 0.01 BD 

C3 20 5-10 0.02 BD BD 0.35 BD BD 0.01 BD 

C3 20 0-5 0.02 0.01 BD 0.46 BD 0.01 0.02 BD 

C3 20 5-10 0.01 BD BD 0.34 BD BD 0.01 BD 

C3 10 0-5 0.04 0.02 BD 0.83 BD BD 0.02 BD 

C3 10 5-10 0.02 BD BD 0.40 BD BD 0.02 BD 

C3 10 0-5 0.02 0.03 BD 0.86 BD BD 0.01 BD 

C3 10 5-10 0.02 BD BD 0.40 BD BD 0.01 BD 

C3 50 0-5 0.03 0.03 BD 0.48 BD BD 0.02 BD 

C3 50 5-10 0.02 BD BD 0.33 BD BD 0.01 BD 

† Below Detection Limit 
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Table C7.  Secondary elemental concentrations in mg L-1 of saturated paste extractions at day 30 with mud application rates equivalent to 

0, 20, 30, 40, and 50 tons acre-1 solid on pastureland at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

C1 40 0-5 BD† 0.01 0.04 0.35 BD BD 0.02 BD 

C1 40 5-10 BD BD 0.02 0.32 BD BD 0.01 BD 

C1 0 0-5 BD BD BD 0.29 BD BD 0.02 BD 

C1 0 5-10 BD BD BD 0.11 BD BD 0.01 BD 

C1 30 0-5 BD 0.02 0.02 0.47 BD BD 0.02 BD 

C1 30 5-10 BD BD BD 0.19 BD BD 0.01 BD 

C1 40 0-5 BD BD BD 0.41 BD BD 0.02 BD 

C1 40 5-10 BD BD BD 0.29 BD BD 0.01 BD 

C1 20 0-5 BD BD BD 0.44 BD BD 0.02 BD 

C1 20 5-10 BD BD BD 0.25 BD BD 0.02 BD 

C1 50 0-5 BD BD 0.02 0.33 BD BD 0.01 BD 

C1 50 5-10 BD BD BD 0.21 BD BD 0.01 BD 

C2 30 0-5 BD BD BD 0.39 BD BD 0.02 BD 

C2 30 5-10 BD BD BD 0.38 BD BD 0.01 BD 

C2 40 0-5 BD 0.02 BD 0.32 BD BD 0.02 BD 

C2 40 5-10 BD BD BD 0.26 BD BD 0.01 BD 

C2 50 0-5 BD 0.02 BD 0.36 BD BD 0.01 BD 

C2 50 5-10 BD BD BD 0.37 BD BD 0.01 BD 

C2 40 0-5 BD 0.02 BD 0.41 BD BD 0.02 BD 

† Below Detection Limit 
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Table C5. Continued 

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

C2 40 5-10 BD† BD BD 0.38 BD BD 0.01 BD 

C2 0 0-5 BD BD BD 0.58 BD BD 0.01 BD 

C2 0 5-10 BD BD BD 0.11 BD BD 0.01 BD 

C2 10 0-5 BD BD BD 0.63 BD BD 0.02 BD 

C2 10 5-10 BD BD 0.02 0.15 BD BD 0.01 BD 

C3 0 0-5 BD BD 0.02 0.42 BD BD 0.02 BD 

C3 0 5-10 BD BD BD 0.27 BD BD 0.01 BD 

C3 30 0-5 BD BD BD 0.34 BD BD 0.01 BD 

C3 30 5-10 BD BD BD 0.23 BD BD 0.02 BD 

C3 20 0-5 BD 0.02 BD 0.35 BD BD 0.01 BD 

C3 20 5-10 BD BD BD 0.18 BD BD 0.01 BD 

C3 20 0-5 BD 0.02 0.01 0.49 BD BD 0.02 BD 

C3 20 5-10 BD BD BD 0.19 BD BD 0.01 BD 

C3 10 0-5 BD 0.02 BD 0.65 BD BD 0.01 BD 

C3 10 5-10 BD BD BD 0.41 BD BD 0.01 BD 

C3 10 0-5 BD 0.04 0.03 0.96 BD BD 0.02 BD 

C3 10 5-10 BD 0.01 BD 0.31 BD BD 0.02 BD 

C3 50 0-5 BD 0.05 BD 0.37 BD BD 0.01 BD 

C3 50 5-10 BD BD BD 0.25 BD BD 0.02 BD 

† Below Detection Limit 



117 
 

Table C8.  Secondary elemental concentrations in mg L-1 of saturated paste extractions at day 93 with mud application rates equivalent to 

0, 20, 30, 40, and 50 tons acre-1 solid on pastureland at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

C1 40 0-5 BD† BD BD 0.33 BD BD BD BD 

C1 40 5-10 BD BD BD 0.27 BD BD BD BD 

C1 0 0-5 0.13 BD BD 0.27 BD BD BD BD 

C1 0 5-10 BD BD BD 0.22 BD BD BD BD 

C1 30 0-5 BD BD BD 0.39 BD BD BD BD 

C1 30 5-10 BD BD BD 0.27 BD BD BD BD 

C1 40 0-5 BD BD BD 0.58 BD BD BD BD 

C1 40 5-10 BD BD BD 0.26 BD BD BD BD 

C1 20 0-5 BD 0.02 BD 0.39 BD BD BD BD 

C1 20 5-10 BD BD BD 0.21 BD BD BD BD 

C1 50 0-5 BD BD BD 0.39 BD BD BD BD 

C1 50 5-10 BD BD BD 0.24 BD BD BD BD 

C2 30 0-5 BD 0.02 BD 0.47 BD BD BD BD 

C2 30 5-10 BD 0.01 BD 0.32 BD BD BD BD 

C2 40 0-5 BD 0.01 BD 0.35 BD BD BD BD 

C2 40 5-10 BD 0.01 BD 0.24 BD BD BD BD 

C2 50 0-5 BD 0.01 BD 0.40 BD BD BD BD 

C2 50 5-10 BD 0.02 BD 0.28 BD BD BD BD 

C2 40 0-5 BD 0.02 BD 0.33 BD BD BD BD 

† Below Detection Limit 
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Table C6. Continued 

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

C2 40 5-10 BD† 0.02 BD 0.34 BD BD BD 0.01 

C2 0 0-5 BD 0.02 BD 0.33 BD BD BD 0.02 

C2 0 5-10 BD 0.02 BD 0.20 BD BD BD BD 

C2 10 0-5 BD 0.02 BD 0.42 BD BD BD BD 

C2 10 5-10 BD 0.02 BD 0.23 BD BD BD BD 

C3 0 0-5 BD 0.02 BD 0.36 BD BD BD BD 

C3 0 5-10 BD 0.03 BD 0.32 BD BD BD BD 

C3 30 0-5 BD 0.03 BD 0.37 BD BD BD BD 

C3 30 5-10 BD 0.03 BD 0.32 BD BD BD BD 

C3 20 0-5 BD 0.03 BD 0.34 BD BD BD BD 

C3 20 5-10 BD 0.03 BD 0.22 BD BD BD BD 

C3 20 0-5 BD 0.03 BD 0.45 BD BD BD BD 

C3 20 5-10 BD 0.03 BD 0.20 BD BD BD BD 

C3 10 0-5 BD 0.03 BD 0.66 BD BD BD BD 

C3 10 5-10 BD 0.04 BD 0.38 BD BD BD BD 

C3 10 0-5 BD 0.04 BD 0.63 BD BD BD BD 

C3 10 5-10 BD 0.04 BD 0.41 BD BD BD BD 

C3 50 0-5 BD 0.04 BD 0.62 BD BD BD BD 

C3 50 5-10 BD 0.04 BD 0.30 BD BD BD BD 

† Below Detection Limit 
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Table C9.  Primary elemental concentrations in mg L-1 and SAR of saturated paste extractions at day 7 with mud application rates 

equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid on bare soil at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

B1 40 0-5 429.8 234.9 49.4 13.5 588.3 0.08 0.29 0.05 0.03 0.03 BD† 0.09 6.7 

B1 40 5-15 22.7 90.2 17.4 5.5 74.5 0.11 0.15 0.02 0.06 0.02 0.04 0.01 0.6 

B1 20 0-5 211.0 177.1 30.0 9.7 253.9 0.11 0.21 0.04 0.06 0.07 0.07 0.05 3.9 

B1 20 5-15 21.9 73.5 12.9 3.7 65.7 0.09 0.17 0.01 0.03 0.02 0.04 0.04 0.6 

B1 30 0-5 379.4 288.8 34.2 11.6 353.1 0.36 0.21 0.02 0.03 0.08 0.02 0.07 5.6 

B1 30 5-15 14.7 64.6 7.7 3.8 43.9 0.21 0.20 0.03 0.01 0.01 0.01 0.04 0.5 

B1 10 0-5 124.6 168.6 21.3 5.5 118.9 0.18 0.23 0.04 0.01 0.06 BD 0.10 2.4 

B1 10 5-15 16.3 53.7 7.5 2.9 33.4 0.26 0.13 0.02 0.01 0.03 BD 0.07 0.6 

B1 50 0-5 568.5 307.4 48.2 21.1 518.6 0.13 0.22 0.03 0.02 0.03 BD 0.07 8.0 

B1 50 5-15 25.5 94.8 15.5 8.9 61.0 0.16 0.15 0.01 0.01 0.04 BD 0.04 0.6 

B1 0 0-5 23.9 89.3 13.5 5.9 51.8 0.19 0.16 0.01 0.01 0.05 BD 0.04 0.6 

B1 0 5-15 28.6 61.3 11.4 3.3 41.6 0.23 0.13 BD 0.01 0.03 BD 0.07 0.9 

B2 10 0-5 106.7 165.6 27.1 4.1 122.0 0.17 0.21 0.04 0.01 0.02 BD 0.05 2.0 

B2 10 5-15 19.8 50.3 8.0 3.8 30.3 0.32 0.21 0.02 0.02 0.03 BD 0.07 0.7 

B2 20 0-5 289.2 200.9 45.6 9.8 377.0 0.04 0.22 0.02 0.01 0.03 0.01 0.03 4.8 

B2 20 5-15 18.3 57.0 12.9 3.6 47.2 0.08 0.25 0.03 0.04 0.04 0.04 0.05 0.6 

B2 50 0-5 580.1 271.4 75.1 18.6 724.2 0.06 0.24 0.05 0.02 0.02 0.30 0.11 8.0 

B2 50 5-15 31.8 49.3 18.1 5.3 50.4 0.12 0.21 0.06 0.07 0.02 0.03 0.08 1.0 

B2 30 0-5 643.7 251.2 63.7 19.7 680.6 0.26 0.31 0.02 0.07 0.41 BD 0.03 9.4 

† Below Detection Limit 
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Table C7. Continued 

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

B2 30 5-15 406.0 31.2 11.7 4.6 445.2 1.25 0.48 0.12 0.02 0.09 BD† 0.13 15.7 

B2 40 0-5 637.3 195.1 54.6 15.4 634.6 0.22 0.24 0.01 BD 0.05 BD 0.05 10.4 

B2 40 5-15 195.2 19.4 6.1 4.4 153.3 0.75 0.33 0.24 0.03 0.37 BD 0.07 9.9 

B2 0 0-5 215.1 22.1 7.4 6.2 137.8 0.63 0.33 0.50 0.10 0.10 BD 0.28 10.1 

B2 0 5-15 358.3 14.5 5.2 3.3 432.0 1.97 0.35 0.46 0.05 0.09 BD 0.33 20.5 

B3 50 0-5 356.0 257.2 48.8 9.3 465.0 0.11 0.14 BD 0.04 0.04 BD 0.02 5.3 

B3 50 5-15 22.3 52.3 14.1 4.8 42.3 0.15 0.10 BD 0.02 0.03 BD 0.04 0.7 

B3 30 0-5 422.1 227.6 54.7 10.3 489.6 0.08 0.15 BD 0.01 0.02 BD 0.05 6.5 

B3 30 5-15 56.0 40.9 12.8 6.1 41.8 0.15 0.22 0.03 0.06 0.02 BD 0.04 2.0 

B3 0 0-5 51.5 41.0 12.4 3.2 52.6 0.57 0.16 0.01 0.02 0.03 BD 0.04 1.8 

B3 0 5-15 109.6 13.2 6.1 2.3 34.9 1.01 0.22 0.03 0.01 0.06 BD 0.11 6.2 

B3 20 0-5 266.4 197.1 38.7 9.0 262.4 0.19 0.30 0.02 0.03 0.06 BD 0.05 4.5 

B3 20 5-15 109.5 21.2 5.4 2.7 49.5 0.31 0.30 0.15 0.03 0.04 0.01 0.11 5.5 

B3 40 0-5 521.1 241.0 43.2 8.6 625.2 0.27 0.15 BD 0.01 0.02 0.01 0.05 8.1 

B3 40 5-15 38.0 53.0 10.8 3.4 45.6 0.31 0.18 0.03 0.01 0.03 0.02 0.06 1.2 

B3 10 0-5 131.6 151.6 24.5 8.5 149.7 0.33 0.15 0.01 BD 0.02 BD 0.09 2.6 

B3 10 5-15 21.9 51.0 10.1 3.8 33.4 0.29 0.10 0.04 0.07 0.04 0.02 0.06 0.7 

† Below Detection Limit 
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Table C10. Primary elemental concentrations in mg L-1 and SAR of saturated paste extractions at day 29 with mud application rates 

equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid on bare soil at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

B1 40 0-5 354.6 132.4 28.9 13.2 429.1 0.04 0.44 0.04 0.01 0.06 BD† 0.05 7.3 

B1 40 5-15 56.2 184.2 36.6 5.9 114.4 0.05 0.17 BD 0.01 0.02 0.32 BD 1.0 

B1 20 0-5 183.9 102.6 13.0 7.2 172.8 0.13 0.22 0.01 0.02 0.07 BD 0.10 4.5 

B1 20 5-15 49.1 221.4 27.7 4.6 100.4 0.14 BD BD BD 0.03 0.01 0.03 0.8 

B1 30 0-5 303.3 159.5 25.4 11.6 398.5 0.27 0.38 0.02 BD 0.06 BD 0.08 5.9 

B1 30 5-15 48.7 225.9 33.7 6.4 93.8 0.11 0.13 BD 0.01 0.01 0.10 0.02 0.8 

B1 10 0-5 59.5 61.1 8.0 2.4 72.7 0.20 0.20 0.04 0.01 0.06 BD 0.10 1.9 

B1 10 5-15 27.1 94.9 11.4 2.1 58.6 0.22 0.10 BD BD 0.03 BD 0.04 0.7 

B1 50 0-5 252.0 79.9 13.5 7.3 265.2 0.12 0.27 0.04 0.01 0.11 BD 0.14 6.9 

B1 50 5-15 98.5 184.6 22.7 3.3 134.3 0.21 0.13 0.02 0.01 0.02 0.04 0.23 1.8 

B1 0 0-5 26.2 81.1 8.6 4.4 102.6 0.40 0.11 0.01 BD 0.05 BD 0.10 0.7 

B1 0 5-15 20.1 49.3 6.9 1.8 29.6 0.34 0.09 BD BD 0.04 BD 0.11 0.7 

B2 10 0-5 79.7 84.9 11.0 2.8 95.4 0.17 0.29 0.05 0.01 0.22 BD 0.07 2.2 

B2 10 5-15 20.1 96.0 12.8 2.5 55.6 0.18 0.09 BD 0.01 0.04 0.02 0.06 0.5 

B2 20 0-5 195.7 89.4 20.0 5.7 235.9 0.05 0.21 0.03 0.04 0.07 0.21 0.06 4.9 

B2 20 5-15 37.4 118.8 28.2 4.1 95.8 0.06 BD BD 0.02 0.01 0.34 0.03 0.8 

B2 50 0-5 227.3 81.0 21.7 9.2 245.6 0.07 0.35 0.03 0.01 0.07 BD 0.05 5.8 

B2 50 5-15 57.7 116.1 42.2 6.6 84.7 0.11 0.22 BD 0.01 0.03 0.24 0.05 1.2 

B2 30 0-5 576.7 112.5 34.2 11.8 567.8 0.27 0.20 0.01 BD 0.07 BD 0.10 12.2 

† Below Detection Limit 
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Table C8. Continued 

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

B2 30 5-15 358.3 24.3 10.0 4.4 247.8 0.80 0.30 0.19 0.01 0.06 BD† 0.14 15.5 

B2 40 0-5 572.8 81.0 25.3 9.7 563.9 0.45 0.30 0.03 0.01 0.12 0.07 0.09 14.2 

B2 40 5-15 556.1 37.4 16.3 4.6 476.9 1.50 0.60 0.07 0.01 0.41 0.01 0.16 19.1 

B2 0 0-5 172.1 18.0 5.0 3.7 88.4 0.51 0.32 0.24 0.02 0.08 BD 0.14 9.2 

B2 0 5-15 271.4 11.3 3.4 1.8 223.8 1.54 0.90 1.07 0.03 0.12 BD 0.29 18.2 

B3 50 0-5 269.2 88.6 13.8 5.5 301.6 0.17 0.17 0.01 BD 0.12 BD 0.07 7.0 

B3 50 5-15 60.0 181.3 42.2 4.7 143.7 0.20 BD BD BD 0.03 0.01 0.02 1.0 

B3 30 0-5 271.5 85.4 19.0 6.2 314.0 0.06 0.24 0.02 BD 0.14 0.03 0.12 6.9 

B3 30 5-15 136.7 216.2 64.5 6.4 269.2 0.14 BD BD 0.03 0.01 0.01 BD 2.1 

B3 0 0-5 39.2 42.4 9.6 2.5 34.2 0.49 0.11 BD BD 0.04 BD 0.09 1.4 

B3 0 5-15 76.2 29.2 10.4 1.9 38.9 0.57 0.13 0.02 0.01 0.03 BD 0.07 3.1 

B3 20 0-5 266.2 87.6 18.0 4.4 300.4 0.15 0.13 0.01 BD 0.09 BD 0.08 6.8 

B3 20 5-15 185.8 65.8 17.3 2.9 132.4 0.32 0.08 BD BD 0.03 BD 0.02 5.3 

B3 40 0-5 288.1 83.6 13.8 4.6 318.1 0.28 0.11 BD BD 0.04 BD 0.11 7.7 

B3 40 5-15 90.3 113.2 27.5 3.2 98.0 0.38 0.07 BD BD 0.03 BD 0.04 2.0 

B3 10 0-5 76.8 51.1 7.1 3.1 61.2 0.30 0.24 0.06 0.02 0.10 BD 0.11 2.7 

B3 10 5-15 35.3 44.4 7.6 2.0 38.7 0.24 0.15 0.03 0.02 0.03 BD 0.02 1.3 

† Below Detection Limit 
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Table C9. Primary elemental concentrations in mg L-1 and SAR of saturated paste extractions at day 96 with mud application rates 

equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid on bare soil at depths 0-5 cm and 5-15 cm.   

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

B1 40 0-5 240.2 121.9 23.7 21.1 276.0 BD† 3.2 0.3 BD 0.1 0.2 0.2 5.2 

B1 40 5-15 125.4 162.7 29.6 9.1 232.8 0.1 1.3 0.2 BD BD 0.3 0.3 2.4 

B1 20 0-5 83.9 90.7 17.3 12.6 120.5 BD 2.3 0.3 BD 0.1 0.2 0.4 2.1 

B1 20 5-15 38.9 56.1 10.7 5.8 74.3 BD 1.3 0.3 BD BD 0.1 0.4 1.2 

B1 30 0-5 212.7 117.3 21.5 18.5 218.6 BD 3.7 0.2 BD 0.2 0.2 0.1 4.7 

B1 30 5-15 115.8 147.8 26.5 11.0 199.3 BD 1.4 0.1 BD BD 0.3 0.1 2.3 

B1 10 0-5 69.7 115.7 10.3 6.1 106.7 0.2 2.5 0.1 BD 0.1 BD 0.1 1.7 

B1 10 5-15 36.0 105.6 10.8 5.1 103.5 0.3 1.4 BD BD 0.1 BD 0.1 0.9 

B1 50 0-5 220.3 93.0 8.6 7.0 267.0 0.3 2.7 0.2 BD 0.2 BD 0.3 5.9 

B1 50 5-15 90.5 131.9 12.7 4.6 151.4 0.3 0.9 0.3 BD BD BD 0.5 2.0 

B1 0 0-5 34.9 177.6 16.2 8.7 279.0 0.6 1.6 0.1 BD 0.1 BD 0.3 0.7 

B1 0 5-15 20.8 79.8 9.1 3.7 51.1 0.4 0.9 BD BD 0.1 BD 0.1 0.6 

B2 10 0-5 57.3 120.4 12.6 4.3 109.9 0.2 2.3 0.2 BD 0.1 BD 0.3 1.3 

B2 10 5-15 34.9 97.2 11.6 4.5 71.9 0.2 1.6 0.1 BD 0.1 BD 0.1 0.9 

B2 20 0-5 83.9 64.2 13.4 6.9 111.5 BD 1.9 0.4 BD 0.1 0.2 0.4 2.5 

B2 20 5-15 55.6 118.4 24.3 6.4 125.5 BD 1.4 0.1 BD BD 0.3 0.1 1.2 

B2 50 0-5 189.5 92.1 22.1 113.3 220.1 0.1 2.3 0.3 BD 0.1 0.2 0.3 4.6 

B2 50 5-15 93.6 103.9 32.1 7.9 180.0 0.1 1.2 0.1 BD BD 0.2 0.1 2.1 

B2 30 0-5 347.3 60.3 17.1 9.7 305.2 0.3 2.6 0.6 BD 0.1 0.1 0.7 10.2 

† Below Detection Limit 
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Table C11. Continued 

Rep Rate Depth Na Ca Mg K S B P Fe Zn Cu Mn Al SAR 

B2 30 5-15 582.8 83.9 31.4 11.3 574.5 0.7 1.8 0.1 BD† 0.1 BD 0.1 13.8 

B2 40 0-5 283.4 118.1 26.6 18.2 278.8 0.2 4.1 0.3 BD 0.2 0.2 0.2 6.1 

B2 40 5-15 207.6 69.7 18.3 7.3 259.2 0.2 1.4 0.1 BD BD BD 0.1 5.7 

B2 0 0-5 200.4 30.0 8.0 5.4 150.6 0.4 2.7 0.6 BD 0.1 BD 0.6 8.4 

B2 0 5-15 343.3 22.1 7.5 3.4 350.3 1.1 3.2 0.7 BD 0.1 BD 0.5 16.1 

B3 50 0-5 177.2 82.9 9.7 6.9 216.2 0.1 1.7 0.1 BD 0.1 BD 0.2 4.9 

B3 50 5-15 99.8 147.3 24.0 6.8 187.7 0.1 0.7 BD BD BD BD BD 2.0 

B3 30 0-5 162.8 72.2 14.7 7.3 162.3 0.1 1.6 0.2 BD 0.1 BD 0.3 4.6 

B3 30 5-15 119.0 117.2 30.5 7.2 213.7 0.1 0.6 BD BD BD BD BD 2.5 

B3 0 0-5 41.9 99.2 17.3 7.9 100.8 0.4 1.8 0.1 BD 0.1 BD 0.1 1.0 

B3 0 5-15 86.5 31.3 9.6 3.7 45.4 0.5 1.3 0.2 BD BD BD 0.3 3.5 

B3 20 0-5 117.1 68.4 9.2 7.3 116.5 0.2 2.0 0.5 BD 0.1 BD 0.9 3.5 

B3 20 5-15 111.2 67.0 12.5 4.5 116.0 0.2 1.1 BD BD 0.1 BD 0.1 3.3 

B3 40 0-5 120.2 64.9 8.5 5.8 126.1 0.3 2.1 0.1 BD 0.1 BD 0.1 3.7 

B3 40 5-15 83.5 50.4 10.2 4.2 89.7 0.3 1.1 0.1 BD BD BD 0.1 2.8 

B3 10 0-5 58.3 125.0 14.9 8.4 161.0 0.5 1.6 0.1 BD 0.1 BD 0.2 1.3 

B3 10 5-15 41.1 73.3 11.8 4.2 56.0 0.3 1.1 0.2 BD BD BD 0.3 1.2 

† Below Detection Limit 
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Table C12. Secondary elemental concentrations in mg L-1 of saturated paste extractions at day 7 with mud application rates equivalent to 

0, 20, 30, 40, and 50 tons acre-1 solid on bare soil at depths 0-5 cm and 5-15 cm. 

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

B1 40 0-5 BD† BD BD 0.32 BD BD 0.02 BD 

B1 40 5-15 BD BD BD 0.32 BD BD 0.02 BD 

B1 20 0-5 BD BD BD 0.60 BD 0.01 0.02 BD 

B1 20 5-15 BD BD BD 0.32 BD BD 0.02 BD 

B1 30 0-5 BD 0.03 BD 0.76 BD BD 0.02 BD 

B1 30 5-15 BD 0.02 BD 0.33 BD BD 0.02 BD 

B1 10 0-5 BD 0.03 BD 0.70 BD BD 0.01 BD 

B1 10 5-15 BD 0.04 BD 0.29 BD BD 0.02 BD 

B1 50 0-5 BD 0.02 BD 0.59 BD BD 0.01 BD 

B1 50 5-15 BD BD BD 0.56 BD BD 0.02 BD 

B1 0 0-5 BD 0.01 BD 0.61 BD BD 0.02 BD 

B1 0 5-15 BD BD BD 0.33 BD BD 0.02 BD 

B2 10 0-5 BD 0.01 BD 0.67 BD BD 0.02 BD 

B2 10 5-15 BD 0.02 BD 0.21 BD BD 0.02 BD 

B2 20 0-5 0.02 BD BD 0.33 BD BD 0.02 BD 

B2 20 5-15 BD BD BD 0.25 BD BD 0.02 BD 

B2 50 0-5 BD BD BD 0.24 BD BD 0.02 BD 

B2 50 5-15 BD BD BD 0.27 BD BD 0.02 BD 

B2 30 0-5 0.03 0.01 BD 0.45 BD BD 0.02 BD 

† Below Detection Limit 
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Table C10. Continued 

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

B2 30 5-15 BD† 0.02 BD 0.11 BD BD 0.02 BD 

B2 40 0-5 BD 0.01 BD 0.33 BD BD 0.02 BD 

B2 40 5-15 0.03 BD BD 0.07 BD BD 0.02 BD 

B2 0 0-5 0.03 BD BD 0.11 BD BD 0.02 BD 

B2 0 5-15 0.02 0.01 BD 0.07 BD BD 0.02 BD 

B3 50 0-5 0.03 BD BD 0.29 BD BD 0.02 BD 

B3 50 5-15 BD BD BD 0.21 BD BD 0.02 BD 

B3 30 0-5 BD BD BD 0.25 BD BD 0.02 BD 

B3 30 5-15 BD BD BD 0.19 BD BD 0.01 BD 

B3 0 0-5 BD 0.04 BD 0.18 BD BD 0.02 BD 

B3 0 5-15 BD 0.10 BD 0.06 BD BD 0.02 BD 

B3 20 0-5 BD BD BD 0.43 BD BD 0.01 BD 

B3 20 5-15 BD 0.01 BD 0.10 BD BD 0.02 BD 

B3 40 0-5 BD 0.02 BD 0.29 BD BD 0.02 BD 

B3 40 5-15 BD 0.01 BD 0.18 BD BD 0.02 BD 

B3 10 0-5 BD 0.04 BD 0.58 BD BD 0.02 BD 

B3 10 5-15 BD 0.02 BD 0.20 BD 0.01 0.02 BD 

† Below Detection Limit 
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Table C13. Secondary elemental concentrations in mg L-1 of saturated paste extractions at day 29 with mud application rates equivalent to 

0, 20, 30, 40, and 50 tons acre-1 solid on bare soil at depths 0-5 cm and 5-15 cm. 

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

B1 40 0-5 BD† BD BD 0.20 BD BD BD BD 

B1 40 5-15 BD BD BD 0.56 BD BD BD BD 

B1 20 0-5 BD BD BD 0.34 BD BD BD BD 

B1 20 5-15 BD BD BD 0.88 BD BD BD BD 

B1 30 0-5 BD BD BD 0.37 BD BD BD BD 

B1 30 5-15 BD BD BD 0.98 BD BD BD BD 

B1 10 0-5 BD 0.05 BD 0.32 BD BD BD BD 

B1 10 5-15 BD BD BD 0.49 BD BD BD 0.02 

B1 50 0-5 BD BD BD 0.24 BD BD BD BD 

B1 50 5-15 BD BD BD 0.67 BD BD BD BD 

B1 0 0-5 BD BD BD 0.59 BD BD BD 0.01 

B1 0 5-15 BD 0.03 BD 0.29 BD BD BD BD 

B2 10 0-5 BD 0.03 BD 0.39 BD BD BD BD 

B2 10 5-15 BD BD BD 0.42 BD BD BD BD 

B2 20 0-5 BD BD BD 0.17 BD BD BD BD 

B2 20 5-15 BD BD BD 0.42 BD BD BD BD 

B2 50 0-5 BD BD BD 0.17 BD BD BD BD 

B2 50 5-15 BD BD BD 0.45 BD BD BD BD 

B2 30 0-5 BD BD BD 0.18 BD BD BD BD 

† Below Detection Limit 
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Table C11. Continued 

Rep Rate Depth Ni Mo As Ba Cd Co Cr Pb 

B2 30 5-15 BD† BD BD 0.09 BD BD BD BD 

B2 40 0-5 BD BD BD 0.13 BD BD BD BD 

B2 40 5-15 BD BD BD 0.10 BD BD BD BD 

B2 0 0-5 BD BD BD 0.09 BD BD BD BD 

B2 0 5-15 BD BD BD 0.05 BD BD BD BD 

B3 50 0-5 BD BD BD 0.18 BD BD BD BD 

B3 50 5-15 BD BD BD 0.56 BD BD BD BD 

B3 30 0-5 BD BD BD 0.19 BD BD BD BD 

B3 30 5-15 BD BD BD 0.46 BD BD BD BD 

B3 0 0-5 BD 0.05 0.03 0.19 BD BD BD 0.03 

B3 0 5-15 BD 0.04 BD 0.10 BD BD BD BD 

B3 20 0-5 BD BD BD 0.17 BD BD BD BD 

B3 20 5-15 BD BD BD 0.22 BD BD BD BD 

B3 40 0-5 BD 0.03 BD 0.18 BD BD BD BD 

B3 40 5-15 BD BD 0.03 0.29 BD BD BD BD 

B3 10 0-5 BD 0.04 BD 0.26 BD BD BD BD 

B3 10 5-15 BD BD BD 0.16 BD BD BD BD 

† Below Detection Limit 
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Table C14. Mehlich 3 extractable element concentrations in mg kg-1 at day 7 with mud 

application rates equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid applied to pastureland, 

sampled at depths 0-5 cm and 5-15 cm. 

Rep Rate Depth K P Mg Ca Na Mn Fe Al 

C1 40 0-5 193 18 268 5973 98 122 178 7 

C1 40 5-15 107 7 159 1419 30 124 168 530 

C1 0 0-5 176 44 194 1111 21 74 222 385 

C1 0 5-15 86 10 141 971 25 128 158 519 

C1 30 0-5 143 26 232 4761 62 95 194 22 

C1 30 5-15 77 9 154 1244 26 133 169 522 

C1 40 0-5 215 21 249 5061 65 113 184 20 

C1 40 5-15 121 9 160 1434 25 137 169 560 

C1 20 0-5 161 16 210 4138 48 106 169 45 

C1 20 5-15 100 7 152 1339 21 143 149 537 

C1 50 0-5 150 16 235 5686 116 118 176 19 

C1 50 5-15 92 5 155 1358 22 146 150 553 

C2 30 0-5 211 15 276 8217 69 120 176 21 

C2 30 5-15 113 8 142 1016 21 116 162 525 

C2 40 0-5 195 11 300 10346 107 127 175 BD† 

C2 40 5-15 98 7 146 1329 23 130 164 529 

C2 50 0-5 202 4 296 14942 112 142 166 BD 

C2 50 5-15 101 6 136 1182 25 131 148 506 

C2 40 0-5 216 6 279 12702 111 142 151 0 

C2 40 5-15 115 8 143 1259 30 148 155 553 

C2 0 0-5 214 34 257 1624 18 133 187 458 

C2 0 5-15 80 9 148 1002 19 139 130 537 

C2 10 0-5 187 23 254 4021 35 129 134 83 

C2 10 5-15 77 6 158 1457 23 141 115 615 

C3 0 0-5 195 20 222 1653 19 109 133 398 

C3 0 5-15 98 6 150 1060 16 118 109 583 

C3 30 0-5 167 14 225 4982 55 121 131 11 

C3 30 5-15 99 5 144 1324 23 122 113 522 

C3 20 0-5 183 18 231 4297 39 117 133 37 

C3 20 5-15 102 6 147 1412 21 130 122 498 

C3 20 0-5 162 23 250 4117 47 116 130 37 

C3 20 5-15 85 6 154 1347 20 142 115 495 

C3 10 0-5 172 59 362 5207 42 110 233 916 

C3 10 5-15 66 37 253 2494 27 108 235 937 

C3 10 0-5 205 75 387 4487 36 117 254 1128 

C3 10 5-15 70 45 297 3149 32 108 266 1201 

C3 50 0-5 142 20 262 5423 95 138 133 25 

C3 50 5-15 72 8 170 1380 25 173 118 530 

† Below Detection Limit 
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Table C15.  Mehlich 3 extractable element concentrations in mg kg-1 at day 30 with mud 

application rates equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid applied to pastureland, 

sampled at depths 0-5 cm and 5-15 cm. 

Rep Rate Depth K P Mg Ca Na Mn Fe Al 

C1 40 0-5 202 11 287 11283 95 132 169 BD† 

C1 40 5-15 103 9 154 1512 51 108 158 450 

C1 0 0-5 186 47 238 1311 31 70 225 365 

C1 0 5-15 88 11 128 836 27 103 144 433 

C1 30 0-5 205 31 270 5435 59 110 185 15 

C1 30 5-15 90 12 157 1069 40 109 172 475 

C1 40 0-5 206 23 295 6433 72 119 178 23 

C1 40 5-15 137 19 206 1441 44 128 217 706 

C1 20 0-5 235 26 281 4557 38 106 175 92 

C1 20 5-15 132 7 152 1112 30 126 148 485 

C1 50 0-5 163 20 268 5596 83 109 179 15 

C1 50 5-15 98 6 153 1206 38 129 150 510 

C2 30 0-5 181 23 273 5314 65 99 174 11 

C2 30 5-15 107 9 150 1267 39 101 158 448 

C2 40 0-5 164 22 291 5429 67 111 170 17 

C2 40 5-15 103 7 152 1357 35 129 148 448 

C2 50 0-5 182 3 315 18611 91 157 167 BD 

C2 50 5-15 112 7 139 1254 43 123 148 468 

C2 40 0-5 200 19 295 5283 74 120 136 12 

C2 40 5-15 133 8 144 1257 39 119 136 440 

C2 0 0-5 198 28 261 1629 28 109 151 378 

C2 0 5-15 109 16 163 1069 28 131 123 478 

C2 10 0-5 150 22 246 3331 37 116 132 365 

C2 10 5-15 71 6 153 1115 33 134 116 507 

C3 0 0-5 198 24 248 1564 30 108 120 349 

C3 0 5-15 103 5 138 1136 24 107 100 467 

C3 30 0-5 186 14 272 4855 71 103 112 14 

C3 30 5-15 112 6 139 1109 36 108 104 441 

C3 20 0-5 139 17 255 4514 46 101 115 30 

C3 20 5-15 97 6 142 1099 30 113 108 442 

C3 20 0-5 156 16 252 4634 45 108 103 29 

C3 20 5-15 73 5 145 1160 36 125 99 418 

C3 10 0-5 174 66 388 5162 44 101 217 881 

C3 10 5-15 66 54 450 5671 56 45 312 1419 

C3 10 0-5 181 78 490 5827 47 84 260 1191 

C3 10 5-15 81 51 321 2776 44 98 256 1185 

C3 50 0-5 147 18 284 5512 87 121 104 15 

C3 50 5-15 77 8 164 1258 49 144 99 456 

† Below Detection Limit 
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Table C16.  Mehlich 3 extractable element concentrations in mg kg-1 at day 93 with mud 

application rates equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid applied to pastureland, 

sampled at depths 0-5 cm and 5-15 cm. 

Rep Rate Depth K P Mg Ca Na Mn Fe Al 

C1 40 0-5 144 22 239 4438 19 80 104 BD† 

C1 40 5-15 88 7 149 1233 29 82 90 307 

C1 0 0-5 163 38 222 1310 6 53 139 222 

C1 0 5-15 83 12 135 940 9 69 93 293 

C1 30 0-5 130 30 241 3688 22 64 118 20 

C1 30 5-15 81 9 139 940 20 72 92 291 

C1 40 0-5 234 28 284 4547 18 87 113 3 

C1 40 5-15 113 9 152 1130 15 90 107 338 

C1 20 0-5 167 24 272 4624 13 79 105 BD 

C1 20 5-15 97 7 155 1199 22 91 89 331 

C1 50 0-5 164 13 243 4460 24 82 84 BD 

C1 50 5-15 91 6 153 1236 31 91 90 343 

C2 30 0-5 168 28 267 4381 17 68 103 BD 

C2 30 5-15 91 11 154 1258 18 70 97 302 

C2 40 0-5 114 12 216 4058 26 80 90 BD 

C2 40 5-15 98 9 137 1159 24 91 95 302 

C2 50 0-5 160 11 274 4030 20 80 83 BD 

C2 50 5-15 105 8 139 1361 30 78 84 248 

C2 40 0-5 165 20 248 4573 46 88 90 BD 

C2 40 5-15 95 10 124 1083 42 72 83 293 

C2 0 0-5 182 26 255 1420 8 83 93 296 

C2 0 5-15 75 7 143 1048 8 90 84 321 

C2 10 0-5 126 19 260 2672 18 84 80 356 

C2 10 5-15 69 8 150 1190 18 93 87 391 

C3 0 0-5 182 19 254 1509 12 83 87 247 

C3 0 5-15 101 7 148 1045 5 90 71 363 

C3 30 0-5 156 16 254 4632 22 86 77 BD 

C3 30 5-15 106 7 139 1350 19 83 77 327 

C3 20 0-5 138 15 241 4150 13 87 82 BD 

C3 20 5-15 92 6 132 1104 12 89 75 313 

C3 20 0-5 164 20 277 3698 14 91 87 13 

C3 20 5-15 70 6 149 1177 14 105 74 309 

C3 10 0-5 138 50 313 3115 11 90 115 492 

C3 10 5-15 72 20 203 1729 16 104 121 621 

C3 10 0-5 147 59 335 3810 10 87 141 658 

C3 10 5-15 76 27 223 2211 16 118 141 710 

C3 50 0-5 162 37 306 4789 29 96 98 14 

C3 50 5-15 75 24 198 1837 36 126 124 570 

† Below Detection Limit 
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Table C17.  Mehlich 3 extractable element concentrations in mg kg-1 at day 7 with mud 

application rates equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid applied to bare soil, sampled 

at depths     0-5 cm and 5-15 cm. 

Rep Rate Depth K P Mg Ca Na Mn Fe Al 

B1 40 0-5 11 3 30 219 32 14 22 74 

B1 40 5-15 7 1 20 147 5 19 12 51 

B1 20 0-5 10 5 34 321 21 10 29 118 

B1 20 5-15 7 2 21 189 5 16 16 69 

B1 30 0-5 12 3 59 1080 35 2 32 181 

B1 30 5-15 7 5 32 381 6 11 29 123 

B1 10 0-5 9 3 55 998 17 2 35 178 

B1 10 5-15 6 5 48 672 7 3 35 162 

B1 50 0-5 15 5 50 584 41 3 35 163 

B1 50 5-15 9 5 46 494 7 3 37 154 

B1 0 0-5 8 4 52 724 8 3 35 170 

B1 0 5-15 6 5 39 347 7 9 32 111 

B2 10 0-5 8 3 61 915 15 2 35 175 

B2 10 5-15 8 3 33 313 7 13 28 97 

B2 20 0-5 8 1 24 162 22 16 18 50 

B2 20 5-15 7 1 26 167 5 20 15 53 

B2 50 0-5 11 1 29 175 39 19 14 44 

B2 50 5-15 9 1 35 142 7 24 16 52 

B2 30 0-5 13 3 38 269 43 14 25 95 

B2 30 5-15 9 1 42 146 56 28 14 53 

B2 40 0-5 11 2 32 179 44 18 20 69 

B2 40 5-15 7 BD† 33 118 28 27 12 47 

B2 0 0-5 11 1 29 111 35 23 19 58 

B2 0 5-15 9 1 34 87 66 26 11 42 

B3 50 0-5 7 1 24 168 26 26 15 58 

B3 50 5-15 8 BD 36 164 4 31 10 48 

B3 30 0-5 8 1 27 152 29 29 13 48 

B3 30 5-15 8 BD 33 139 9 57 12 51 

B3 0 0-5 7 2 44 248 9 22 22 75 

B3 0 5-15 11 BD 65 261 26 26 9 41 

B3 20 0-5 9 3 35 247 21 18 26 99 

B3 20 5-15 6 1 27 139 17 23 17 56 

B3 40 0-5 8 3 39 379 35 16 29 116 

B3 40 5-15 6 1 23 151 6 24 13 48 

B3 10 0-5 11 3 69 931 17 4 37 189 

B3 10 5-15 7 1 25 178 5 20 17 60 

† Below Detection Limit 
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Table C18.  Mehlich 3 extractable element concentrations in mg kg-1 at day 29 with mud 

application rates equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid applied to bare soil, sampled 

at depths     0-5 cm and 5-15 cm. 

Rep Rate Depth K P Mg Ca Na Mn Fe Al 

B1 40 0-5 11 2 27 203 29 10 19 59 

B1 40 5-15 8 1 21 157 5 16 11 49 

B1 20 0-5 11 5 46 713 20 3 31 151 

B1 20 5-15 7 6 41 468 6 5 34 140 

B1 30 0-5 13 5 42 446 26 5 31 124 

B1 30 5-15 8 3 24 205 4 12 20 73 

B1 10 0-5 7 5 49 730 10 2 32 162 

B1 10 5-15 5 6 44 610 5 3 34 149 

B1 50 0-5 11 5 45 476 27 5 32 134 

B1 50 5-15 6 5 43 572 9 3 34 155 

B1 0 0-5 10 3 51 1194 6 2 33 194 

B1 0 5-15 4 5 47 788 5 3 35 161 

B2 10 0-5 6 4 52 698 11 3 33 176 

B2 10 5-15 6 4 30 296 3 10 27 87 

B2 20 0-5 8 1 20 149 16 14 13 36 

B2 20 5-15 6 BD† 23 149 3 15 11 39 

B2 50 0-5 10 1 22 141 18 15 11 37 

B2 50 5-15 7 1 32 132 4 19 12 38 

B2 30 0-5 11 1 31 183 44 16 12 38 

B2 30 5-15 7 BD 37 111 49 22 11 40 

B2 40 0-5 11 1 28 146 50 16 14 51 

B2 40 5-15 6 1 36 102 60 21 11 45 

B2 0 0-5 9 1 28 108 24 19 14 49 

B2 0 5-15 6 1 34 93 50 21 11 41 

B3 50 0-5 8 4 44 383 25 9 32 112 

B3 50 5-15 9 BD 33 180 5 24 10 43 

B3 30 0-5 8 1 25 175 21 20 15 49 

B3 30 5-15 7 BD 31 138 8 31 12 43 

B3 0 0-5 7 4 45 357 7 13 29 87 

B3 0 5-15 6 BD 39 144 9 23 10 39 

B3 20 0-5 6 2 28 210 24 16 21 66 

B3 20 5-15 6 1 26 122 17 19 12 43 

B3 40 0-5 8 3 57 644 31 7 32 157 

B3 40 5-15 6 1 28 165 7 20 11 40 

B3 10 0-5 7 4 56 768 11 5 33 172 

B3 10 5-15 6 3 28 228 5 16 23 81 

† Below Detection Limit 
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Table C19.  Mehlich 3 extractable element concentrations in mg kg-1 at day 96 with mud 

application rates equivalent to 0, 20, 30, 40, and 50 tons acre-1 solid applied to bare soil, sampled 

at depths 0-5 cm and 5-15 cm. 

Rep Rate Depth K P Mg Ca Na Mn Fe Al 

B1 40 0-5 10 2 20 156 23 4 11 46 

B1 40 5-15 7 1 18 134 14 5 9 40 

B1 20 0-5 11 2 21 160 12 4 13 49 

B1 20 5-15 9 1 17 133 9 5 9 41 

B1 30 0-5 12 3 25 204 25 3 19 65 

B1 30 5-15 9 1 17 133 14 4 9 43 

B1 10 0-5 7 6 37 665 13 1 30 147 

B1 10 5-15 7 6 37 566 11 1 33 146 

B1 50 0-5 10 5 44 1015 33 1 31 161 

B1 50 5-15 5 4 44 982 16 BD† 34 168 

B1 0 0-5 10 3 46 1435 11 1 29 166 

B1 0 5-15 5 5 43 805 9 1 34 161 

B2 10 0-5 7 4 46 749 13 1 32 159 

B2 10 5-15 8 5 31 329 10 3 29 96 

B2 20 0-5 7 1 17 117 13 5 9 32 

B2 20 5-15 8 1 21 139 9 5 11 39 

B2 50 0-5 10 1 21 119 20 5 9 34 

B2 50 5-15 8 1 26 111 11 6 8 31 

B2 30 0-5 10 1 25 113 38 6 10 36 

B2 30 5-15 8 1 35 120 55 7 12 39 

B2 40 0-5 11 3 26 170 26 4 17 64 

B2 40 5-15 9 1 26 125 24 7 10 40 

B2 0 0-5 9 1 25 98 30 6 10 35 

B2 0 5-15 7 1 33 103 56 7 12 39 

B3 50 0-5 8 4 29 295 23 5 24 91 

B3 50 5-15 10 1 24 161 13 7 8 36 

B3 30 0-5 9 1 21 156 19 6 9 35 

B3 30 5-15 9 BD 29 138 15 19 11 40 

B3 0 0-5 9 5 42 378 10 4 28 102 

B3 0 5-15 9 1 40 164 17 7 13 47 

B3 20 0-5 8 4 34 346 18 4 27 95 

B3 20 5-15 7 1 25 162 16 6 12 48 

B3 40 0-5 9 5 37 436 19 4 27 102 

B3 40 5-15 7 1 23 147 14 6 10 37 

B3 10 0-5 10 4 55 925 14 2 32 163 

B3 10 5-15 8 5 41 388 11 4 32 110 

† Below Detection Limit 
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