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GLOSSARY OF TERMS 

 

Bone-Dry Tonnes (bdt): A Mass of one metric ton of material having zero percent moisture 

content (ASABE Standards, 2011). 

Cold Loading: Logging operations where the logs are decked for some time before being 

processed or hauled to the mill (ASABE Standards, 2014). 

Diameter at Breast Height (dbh): Tree diameter at 1.4 m (4.5 ft) above the ground (McKinley, 

2012a). 

Green Tonnes (gt): Mass of one metric ton of freshly collected biomass (ASABE Standards, 

2011). 

Higher Heating Value: The full energy content of a fuel. It is the amount of heat produced when 

a liquid fuel or oven dried solid fuel is fully combusted, all of the products of combustion are 

cooled to 25° C (77° F) and the water vapor formed during combustion is condensed into liquid 

water (ASABE Standards, 2011). 

Hot Loading: Logging operations where the logs go from stump to mill with minimal delay 

(ASABE Standards, 2014). 

Lignin: An amorphous polymer related to cellulose that provides rigidity and together with 

cellulose forms the woody cell walls of plants and the cementing material between them (Lignin, 

2015). 

Lignocellulose: Biomass composed primarily of cellulose, hemicelluloses and lignin (ASABE 

Standards, 2011). 

Merchantable Bole: The portion timber species tree where diameter is greater than or equal to 

5.0 inches in diameter, from a 1-foot stump to a minimum 4-inch top diameter of the central stem 

or where the central stem breaks into limbs all of which are less than 4.0 inches in diameter 

(McKinley, 2012a).  

Residue: Wood products remaining after lumber fraction has been harvested (ASABE Standards, 

2011). 

Saccharification: The process of breaking a complex carbohydrate (as starch or cellulose) into 

its monosaccharide components (Saccharification, 2015). 
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CHAPTER I 
 

 

INTRODUCTION 

In the last 100 years Eastern Redcedar has transitioned from being “conspicuous by its 

absence” (Harper, 1912, p. 145) in the Great Plains region to covering a projected 3.5 million ha 

(8.6 million ac) in Oklahoma alone by 2013 (Starks, Venuto, Eckroat, & Lucas, 2011). Eastern 

Redcedar is a native Oklahoma tree species that has become an invasive nuisance species through 

poor management strategies, reduced prescribed burns, and cost prohibitive treatment protocols. 

Its uncontrolled spread has resulted in millions of dollars in economic damage to the state of 

Oklahoma in the form of water, cattle forage, hunting, and wildlife losses, as well as fire damage. 

Removal treatments can range in cost from $7.40 to $395.00 ha
-1

 ($3.00 to $160 ac
-1

) depending 

on stand density and whether mechanical, fire-based, or herbicidal means are employed (Bidwell, 

Weir, & Engle, 2007). However, several commodities can be manufactured from Eastern 

Redcedar, which represent a potential method of removing the tree from native grasslands while 

aiding economic growth. Products that could be manufactured from Eastern Redcedar are mulch, 

lumber, biofuels, pharmaceuticals, cedar oil, animal bedding, particleboard, and wood flour 

(Drake et al., 2002; Gawde, Cantrell & Zheljiazkov, 2009; McNutt, 2012). As the value of end-

products increase, so do capital cost, risk, and manufacturing complexity. Figure 1 shows the 

relative value and risk of potential commodities, based on expected production from Oklahoma 

trees greater than 15.25 cm (6 in) in diameter. Halting the current spread of Eastern Redcedar 

would require clearing 112,000 ha
-1

 (277,000 ac
-1

) of land annually. Even more would be needed 

to reverse the spread (Drake et al., 2002). 
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To reverse the economic and ecological damage caused by Redcedar, the state of 

Oklahoma would need to develop industries that consume substantial quantities of Redcedar 

biomass. Due to the risk and uncertainty associated with production strategies with high 

throughput requirements, specialized industries utilizing Eastern Redcedar have not developed, 

despite public support for Redcedar removal and legislation, such as the Eastern Redcedar 

Initiative Act of 2010. Each stage of a hypothetical Redcedar supply chain presents unique 

implementation challenges. Eastern Redcedar is not generally grown in managed stands, and 

stand density may vary dramatically. These conditions make harvesting more difficult and raise 

concerns regarding the optimal location of processing facilities. Separating tree components, such 

as the needles and heartwood, to increase processing efficiency adds additional costs, but may 

ultimately result in a higher value product. The variability of a potential Redcedar supply chain is 

illustrated in Figure 2. 

 

Figure 1. In general, as the gross value of the product(s) manufactured from Eastern Redcedar increases so does the 

risk and uncertainty associated with implementing the business plan. 
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To develop Eastern Redcedar enterprises, the costs associated with each supply chain 

stage should be evaluated with minimal simplification to accurately capture the production 

relationships between each stage, e.g. facility size is impacted by biomass accessibility, and 

transportation costs are affected by facility throughput. The computational technology exists to 

create a simulation model that can quickly and accurately evaluate the supply chain as a whole. 

The model should cover location of a facility, feedstock availability, harvest, processing, 

transport, and refinement of raw material into a finished product, and should provide the option 

for a single refinery to output multiple product streams. Developing a supply chain model for 

Eastern Redcedar commodities could be an effective method of providing businesses, 

entrepreneurs, and government entities the ability to evaluate and optimize alternative production 

strategies for Redcedar-based industries.  

 



5 

 

CHAPTER II 
 

 

OBJECTIVES 

 The purpose of this project was to develop a web based model to evaluate the costs 

associated with utilizing Eastern Redcedar to produce value-added commodities, to help 

entrepreneurs, businesses, and government agencies better understand the economic potential of 

fully utilizing Eastern Redcedar. The specific objectives of this research were as follows: 

1. To create a baseline model to evaluate harvesting, transport, pre-processing, and refining 

scenarios, to better assess the production costs associated with specific commodities. 

  

2. To incorporate sensitivity analysis and economic optimization elements into the model to 

determine critical success factors. 

 

3. To develop and deploy a user-friendly, online interface that generates economic reports 

and graphical displays of sensitivity analysis, supply chain performance, and other 

economic results produced by the model. 
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CHAPTER III 
 

 

REVIEW OF LITERATURE 

 

3.1 Eastern Redcedar 

Eastern Redcedar is an evergreen that grows year-round when temperatures are above 5° 

C (40° F). It is semi-shade tolerant and can grow in forests and woodlands. It is easily ignitable 

because of its thin bark and fine flammable foliage, and will not sprout back when the top is 

killed by fire or when it is truncated below the lowest living branch (Division of Agricultural 

Science and Natural Resources [DASNR], 2012). However, as tree size increases, fire damage 

decreases (Buehring, Santelmann, & Elwell, 1971). It is a dioecious plant with seed reproduction 

beginning between 6 and 10 years of tree life. Seeds are spread extensively by small mammals 

and birds that eat the berries of the female tree (DASNR, 2012; Ferguson, Lawson, Maple, & 

Mesavage, 1968).  

Eastern Redcedar occurs naturally in Oklahoma and is found in all but three or four 

counties, being the most widely distributed conifer in the Eastern United States (McKinley, 

2012a) (Figure 3). It is slow-growing and typically not an aggressive competitor with hardwoods 

in deep soil. It is hardy, sprouting almost anywhere from dry rocks to swamps. Under high 

atmospheric demand, a 31 cm (12 in) Eastern Redcedar tree may use up to 150 liters (40 gal) of 

water per day from the soil profile when soil water content permits (Caterina, 2012; Truitt, 2011). 

It is susceptible to cedar-apple rust, but the disease is typically not life-threatening to Redcedar 

(Ferguson et al., 1968). Despite the tree’s resilience, it prefers deep, moist, well-drained, alluvial 
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soils and may reach heights of 18.3 m (60 ft), with a bole diameter of 30.5 to 61.5 cm (12.0 to 24 

in) within 50 years. This is a typical growth pattern, but on good sites, 1.22 m (4 ft) bole 

diameters and 36.6 m (120 ft) heights are possible.  

  Dr. David W. Stahle, University of Arkansas-Fayetteville, noted trees in Oklahoma 

from 500 to 1000 years old, with some of the oldest Eastern Redcedar stands in the south central 

United States located in Oklahoma (Drake et al., 2002). Individual Eastern Redcedar trees vary 

greatly in appearance based on stand density and competition from other species (Lawson & Law, 

1983). Denser stands produce proportionally taller trees while thinner stands  allow for more limb 

structure which has a slight effect on overall biomass. Ferguson et al. (1968) outlined equations 

for closed (3.1.1), dense (3.1.2) and open (3.1.3) stands,  

Figure 3. Native range of Eastern Redcedar in the United States. 
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H = 1.3716 + 23.317 · (1 – e-0.03307*dbh), (3.1.1) 

H = 1.3716 + 17.587 · (1 – e-0.03543*dbh), (3.1.2) 

H = 1.3716 + 15.24 · (1 – e-0.0315*dbh), (3.1.3) 

 

where H is height in m and dbh is diameter at breast height in cm. These equations suggest bole 

biomass increases relative to tree stand density (Figure 4).  Conversely, branch and foliage 

biomass decreases as stand density increases. Lambert, Ung, and Raulier (2005) developed tree 

biomass equations relating height and dbh (3.1.4), 

 Ywood = Βwood · dbh
Bwood2

 · H
Bwood3

 + ewood 

 Ybark = Βbark · dbh
Bbark2

 · H
Bbark3

 + ebark 

 Yfoliage = Βfoliage · dbh
Bfoliage2

 · H
Bfoliage3

 + efoliage  

 Ybranches = Βbranches · dbh
Bbranches2

 · H
Bbranches3

 + ebranches 

 Ytotal = Ywood + Ybark + Yfoliage + Ybranches + etotal (3.1.4) 

where H is height in m, dbh is diameter at breast height in cm, e is error and Yi is the dry biomass 

compoenent of a tree in kilograms, which enable comparison of tree biomass directly to stand 

density (Figure 5). The actual Eastern Redcedar biomass may vary, depending on location and 

other factors such as climate.  

Figure 4. Representation of tree height and diameter to stand density (Ferguson et al., 1968). 
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Hardwood competition has a significant impact on Redcedar stand density, increasing 

growth by 2 m
3
 ha

-1
 yr

-1
 (28 ft

3
 ac

-1
 yr

-1
) during a 14-year period in unthinned areas with 

hardwoods removed (Ferguson et al., 1968). Closed and dense stockings are optimal for post and 

saw log lumber, but given that seeds are commonly dispersed by birds and animals, low density 

stands could be expected (Lawson & Law, 1983). This would be especially true for Oklahoma, 

where unmanaged pastures are being taken over by Redcedar. Utilizing Eastern Redcedar in 

industrial markets could create a sustainable control strategy, but different products may prove 

more economically feasible for closed, dense, or open stands.  

 

3.2 Environmental and Economic Impact 

Eastern Redcedar is an aggressively spreading native species in Oklahoma grasslands and 

cross-timbers oak forests. The species reduces rangeland forage production and has been 

associated with stream flow and groundwater recharge reduction. As part of a project to quantify 

the projected growth and current quantities of Eastern Redcedar in Oklahoma, the Natural 

Figure 5. Graphical representation of equations to predict total biomass of Eastern Redcedar from 20.3 to 40.6 cm (8 to 

16 in) dbh (Lambert et al., 2005). 
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Resource Conservation Service (NRCS) evaluated 17 counties to determine the available biomass 

based on satellite imagery (Starks et al., 2011). Table 1 shows the biomass availability for each of 

the 17 counties. The tree has a deep root system which captures more water than other trees, 

resulting in a decrease in soil water, groundwater storage, and groundwater recharge (Zou, 

Turton, & Engle, 2010). Little research has been conducted on rainfall interception by Eastern 

Redcedar, but a related species, Ashe Juniper (Juniperus ashei), may intercept over 60% of 

rainfall during low intensity (1.27 cm [0.5 in] per 19 hour period) storm events (Smith, 2011). 

Eastern Redcedar trees reduce forage by roughly 2.75 kg (6 lb) for a 1.8 m (6 ft) crown diameter 

tree (Stritzke & Bidwell, 1989). Briggs, Hoch, and Johnson (2002) reported that at densities of 

1,500 trees ha
-1

 (607 trees ac
-1

), herbaceous plants were virtually eliminated. 

 

Table 1. Eastern Redcedar biomass data for selected Oklahoma counties as determined by the NRCS. The minimum, 

maximum and median expected biomass quantities were provided. (Starks et al., 2011). 

County Minimum Maximum Median 

,----------------------Tonnes---------------------- 

Blaine 875,667 1,434,271 1,154,969 

Canadian 511,550 872,693 692,122 

Dewey 1,478,173 2,642,928 2,060,551 

Eliss 280,872 525,222 403,047 

Garfield 237,985 420,806 329,396 

Kingfisher 312,615 501,404 407,009 

Lincoln 445,342 862,444 653,893 

Logan 355,580 688,701 522,140 

Major 438,851 789,240 614,046 

Murray 483,698 796,548 640,123 

Noble 203,616 347,688 275,652 

Okfuskee 117,275 241,712 179,493 

Oklahoma 322,075 509,764 415,919 

Pawnee 763,224 1,395,217 1,079,221 

Payne 643,436 1,224,562 933,999 

Pottawatomie 210,730 403,953 307,342 

Woodward 615,070 1,088,737 851,904 

Total 8,295,760 14,745,891 11,520,825 
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Eastern Redcedar does have benefits.  As a wind break, NRCS promoted Eastern 

Redcedar after the Dust Bowl to reduce wind erosion (Smith, 2011). However, the NRCS now 

estimates that with no control strategy and a takeover rate of 0.12 million ha yr
-1

 (0.3 million ac 

yr
-1

), 28% of Oklahoma could be covered with Redcedar by 2013 (Drake et al., 2002). This land 

encroachment is expected to greatly alter the grassland water cycle (Hung, 2012). Eastern 

Redcedar leaf litter can alter soil-microbial feedbacks, resulting in reduction of post oak (Quercus 

stellata) and blackjack (Quercus marilandica), dominant oak species in the Oklahoma Cross-

Timbers (Williams, Hallgren, Wilson, & Palmer, 2013). Since the 1950’s, Redcedar tree density 

has increased over 3,100%, and sapling density has increased more than 4,400%. In contrast, the 

two dominant oak species increased in tree density by 19%, but the sapling density decreased by 

66% (DeSantis, Hallgren, Lynch, Burton, & Palmer, 2010). Perhaps the most detrimental and 

noticeable impact comes at the expense of Oklahoma wildlife. The “Redcedar Task Force” 

(Drake et al., 2002) evaluated the impact of Redcedar on native wildlife to summarize wildlife 

displacement. Their comprehensive literature review on the subject cited these statistics:  

 Invasion of junipers into native plant communities changes habitat 

structure and composition, resulting in displacement of some wildlife 

species (Bidwell, Engle, Moseley, & Masters, 1996). 

 Juniper infestation in turkey roost sites has been known to displace entire 

turkey flocks (Smith, 2001). 

 Grassland bird abundance and richness approached nonexistence with 

only 25% juniper cover present (Coppedge et al., 2002). 

 At the current invasion rate of Eastern Redcedar and Ashe Juniper, 

Oklahoma could be losing up to 5,680 bobwhite quail coveys per year 

(Guthery, 2001). 
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 Junipers are a dominant factor in the displacement of grassland birds and 

songbirds from the native prairie, and only three junipers per acre will 

displace some birds from their habitat (OSU Rangeland Ecology and 

Management, 2001). 

The effects of Eastern Redcedar advancement on Oklahoma’s prairie ecology, hydrology, and 

economy have been well noted by multiple studies. Without the implementation of control 

practices, Redcedar will continue its invasion of Oklahoma prairie, rangeland, and hardwood 

forests. 

The Oklahoma insurance industry considers the Redcedar invasion a problem, similar to 

mold issues, which have cost other state insurance companies millions. Drake et al. (2002) stated 

the insurance industry expects higher financial costs as Redcedar becomes more prevalent and 

increases severe fire risks. As prairie and grasslands are overtaken by Eastern Redcedar, 

Oklahomans can expect to see the severity and frequency of severe fire outbreaks increase, 

incurring substantial monetary losses. Fire suppression alone can average $420 ha
-1

 ($170 ac
-1

), 

excluding property losses, environmental damage, and loss of human life (Perlack et al., 2005). 

While increased fire danger is a real and legitimate concern (Table 2), in 2001 an estimated $107 

million was lost in lease hunting because of Redcedar, and another $100 million was lost in 

forage production. Additionally, Eastern Redcedar may exacerbate drought conditions by 

depleting soil water supplies. The average Eastern Redcedar tree uses 27 liters of water, although 

usage varies from 4 liters (1 gal) for a 2 cm (0.75 in) dbh tree to 150 liters (40 gal) for a 31cm (12 

in) dbh tree (Caterina, 2012). Forecasts in 2002 estimated multi-million dollar losses in several 

key economic areas by 2013 (Drake et al., 2002). Table 2 indicates that Eastern Redcedar has a 

negative impact on the Oklahoma economy. 
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Table 2. Estimated economic losses resulting from Redcedar spread in Oklahoma for 2013. (Drake et al., 2002). 

Classification 
Cost    

 (Millions of $) 

Wildfire 107 

Cattle Forage 205 

Lease Hunting 107 

Recreation 17 

Water 11 

Total 447 

 

The Oklahoma State University (OSU) department of Natural Resource Ecology and 

Management (NREM) reports that for land areas greater than 260 ha (640 ac) with Redcedar trees 

1.8 to 6.1 m (6 to 20 ft) tall and 620 trees ha
-1

 (250 trees ac
-1

), treatment can cost $24.70 to $42.00 

ha
-1

 ($10 to 17 ac
-1

), depending on the prescribed burn technique implemented (Bidwell et al., 

2007). For the same scenario, with trees greater than 6.1 m (20 ft) tall, NREM suggests helicopter 

ignition with helitorch and the application of paraquat herbicide, at a total cost of $49.40 ha
-1

 ($20 

ac
-1

). Fire is the cheapest treatment but is not recommended for areas greater than 260 ha (640 

ac). In comparison, mechanical treatment of smaller areas can range from $27.20 to $395 ha
-1

 

($11 to $160 ac
-1

) depending on the exact mechanical technique used (Bidwell et al., 2007). 

 

3.3 Biofeedstock Supply Chain 

Harvesting forestry biomass for energy is not a new concept, and extensive research has 

been conducted to determine the economics of harvest programs and the resulting environmental 

effects. Pine species are the most common biomass harvested for energy wood, but other tree 

species, such as Douglas-fir are commonly used (Mitchell & Gallagher, 2007; Conrad, Bolding, 

Aust, Smith, & Horcher, 2013; Pan, Han, Johnson, & Elliot, 2008; Adebayo, Han, & Johnson, 

2007). A majority of these studies in the literature have focused on variations of integrated 

harvesting or thinning of undersized trees as a silviculture plan, although several evaluated new 
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harvesting processes and techniques. The studies in the literature cover a multitude of geographic 

regions, soil types, and machinery. 

The primary concern for a Redcedar based biofuel industry in Oklahoma is the ability to 

profitably harvest, transport, and process raw material. The delivery price of wood feedstock is 

typically the largest cost incurred when operating a biomass plant (Sessions, Tuers, Boston, 

Zamora, & Anderson 2012). Conrad et al. (2013) estimated the delivered cost of energy wood for 

a North Carolina whole tree chipping operation in 2010 was $51.19 bdt
-1

 ($46.44 bdt
-1

), a loss of 

$10.85 bdt
-1

 ($9.84 bdt
-1

) at the 2010 market price of $40.34 bdt
-1

 ($36.60 bdt
-1

).
1
 Similar delivery 

prices have been reported in other studies (e.g., Aman, Baker, & Greene, 2011; Mitchell & 

Gallagher, 2007). This suggests that traditional logging operations are not optimally suited for 

energy wood harvesting, and modifications need to be made to improve the economic feasibility 

of energy wood collection. However, the U.S. Billion-Ton Study Update considers a roadside 

cost of $66.14 bdt
-1

 ($60 bdt
-1

) to be a “realistic, reasonable price” (p. 29), although the authors 

acknowledge that the actual market price will be dictated by numerous inputs (U.S. Department 

of Energy [DOE], 2011). This price does not include costs incurred through handling, transport, 

and preprocessing of material. An assumption of $66.14 bdt
-1

 ($60 bdt
-1

) is reasonable 

considering the final delivered cost of comminuted Eastern Redcedar should be below $110.23 

bdt
1
 ($100 bdt

1
), with freight costs comprising roughly 30% of the delivered cost (J. Meibergen, 

personal communication, September 5, 2013). Considerable effort has been made to improve 

energy harvesting productivity through the use of specialized equipment, such as biomass balers, 

whole tree bundlers, and robust swath harvesters (Felker, McLauchlan, Conkey, & Brown, 1999; 

Patterson, Pelkki, & Steele, 2008; do Canto, Klepac, Rummer, Savoie, & Seixas, 2011). 

                                                           
 

1 Price was adjusted from green ton to bone dry ton based on an assumed 50% moisture content for Loblolly Pine 

(Clark III and Daniels, 2000). 
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3.3.1 Transportation 

A large expense in energy wood logging operations is transportation of raw material to 

the refinery, which can be nearly half of total operating costs (Hall, Gigler, & Sims, 2001; Harrill 

& Han, 2012; Mitchell & Gallagher, 2007; Pan et al., 2008; Perlack et al., 2005). Factors noted to 

increase hauling rates include travel distance, fuel prices, load size, and material moisture 

content. Travel distance is the primary reason for high delivery costs in most instances. Pan et al. 

(2008) noted that for each additional mile of travel on spur or logging roads, production costs 

increased by $8.66 bdt1 ($7.86 bdt-1). Mileage increases on highway and unpaved roads also 

raised the bdt transport cost of energy wood, but at less than $0.47 km-1 ($0.75 mi-1). Forest 

roads and long round trip distances can lower hauling production rates appreciably (Harrill & 

Han, 2012).  

To be profitable, the delivery price of energy wood should be no more than $22.05 gt-1 

($20 gt-1) (Conrad et al., 2013). In Arizona, Pan et al. (2008) reported delivery costs between 

$54.23 to $79.56 bdt-1 ($49.20 to $72.18 bdt-1) for a one-way hauling distance of 47.5 to 57.9 

km (29.5 to 36 mi). With current energy wood chip prices, material can be transported 145 to 161 

km (90 to 100 mi) before shipment becomes profit limiting (Ashton, Jackson, & Schroeder, 2007; 

J. Meibergen, personal communication, September 5, 2013; Rummer et al., 2003). Although 145 

km (90 mi) is a relatively short distance, it encompasses over 20,000 km
2
 (25,000 mi

2
). A survey 

of researchers, industrialists, land owners, and policy makers involved in lignocellulosic 

bioenergy production (Bailey, Dyer, & Teeter, 2011) suggested that business models similar to 

pulp and paper mills, which have  raw material transport radiuses of approximately 80.5 km (50 

mi), would be good base models for a biomass industry. Although stand density and delays 

accounted for some price variation, biomass transportation comprised over 43% of total costs for 

the four study sites evaluated by Pan et al. (2008) in Springerville and Black Mesa Arizona 

(Table 3 and Table 4). 
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Table 3. Stump to market production costs for harvest units (Pan et al., 2008). 

 Cost ($/bdt) 

 

Feller-Buncher 

 

Skidder 

 

Loader 

 

Grinder 

 

Chip Van 

 

Total 

Unit 1 6.23 

 

11.06 

 

2.40 

 

13.05 

 

39.44 

 

72.18 

Unit 2 5.01 

 

6.96 

 

4.72 

 

12.06 

 

32.70 

 

61.45 

Unit 3 7.45 

 

5.86 

 

5.35 

 

12.54 

 

23.95 

 

55.15 

Unit 4 7.62 

 

3.79 

 

3.93 

 

12.58 

 

21.28 

 

49.20 

Overall 6.37 

 

6.08 

 

4.08 

 

12.63 

 

26.11 

 

55.27 

 

 

Table 4. Stump to market production percentages for harvest units (Pan et al., 2008). 

 Percent of Total 

 

Feller-Buncher 

 

Skidder 

 

Loader 

 

Grinder 

 

Chip Van 

Unit 1 8.63 

 

15.32 

 

3.33 

 

18.08 

 

54.64 

Unit 2 8.15 

 

11.33 

 

7.68 

 

19.63 

 

53.21 

Unit 3 13.51 

 

10.63 

 

9.70 

 

22.74 

 

43.43 

Unit 4 15.49 

 

7.70 

 

7.99 

 

25.57 

 

43.25 

Overall 11.53 

 

11.00 

 

7.38 

 

22.85 

 

47.24 

 

Conrad et al. (2013) suggested that railway access was one of the main reasons traditional 

energy facilities were more competitive than bioenergy facilities, which truck material. Rail 

transport was considered feasible beyond 500 km (310 mi) and could potentially increase the 

quantity of available biomass to a facility (Searcy, Flynn, Ghafoori, & Kumar, 2007). Railway 

transport would also limit the impact of fuel fluctuations on hauling prices. Harrill and Han 

(2012) reported a $0.86 bdt
-1

 ($0.78 bdt
-1

) increase in production cost for every $0.10 l
-1

 ($0.38 

gal
-1

) increase in fuel cost. Fuel costs impacts total production costs less than travel distance and 

can be compensated for by utilizing fuel efficient vehicles. Loading trucking vehicles to the 

maximum legal limit will also ensure a lower delivery price (Figure 6). In a study by Aman et al. 

(2011), underweight trucks (19.4 gt [17.6 gt]) resulted in a total delivery cost of $32.85gt
-1

 

($29.80 gt
-1

) for whole tree chipping operations, while increasing the load to 40 gt (36.3 gt) 

decreased delivery costs by $10.14 gt
-1

 ($9.20 gt
-1

). The importance of maximizing load weight is 

critical, but raw material moisture content and material density significantly affect load weight 
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and total system cost (Figure 6). Redcedar heartwood is approximately 33% moisture in green 

wood, meaning only two-thirds of transported material is useable (Simpson & TenWolde, 1999). 

Field drying for approximately one year could reduce cut tree moisture content to near zero 

percent (Starks et al., 2011).  If material is chipped onsite, density will depend on chip size, chip 

moisture and whether any attempt is made to pack the chips. Wood chip bulk density can range 

from 150 to 200 kg m
-3

 (9.4 to 12.5 lb ft
-3

), but densification can increase bulk density tenfold 

(Tumuluru, Wright, Kenny, & Hess, 2010a).  

There are a variety of methods to increase biomass density; including baling, 

pelletization, extrusion, and briquetting (do Canto et al., 2011; Tumuluru et al., 2010a; Clarke, 

Eng, & Preto, 2011). Densification would increase the economic feasibility of long distance 

transport by addressing technical limitations resulting from low density(150 to 200 kg m-3 [9.4 to 

12.5 lb ft-3]) (Tumuluru et al., 2010a). The additional processing would increase energy 

consumption and therefore cost (Table 5) although some of the monetary loss would be reclaimed 

in reduced transportation expense (Clarke et al., 2011). Based on a specific energy consumption 

of 36.8 to 150 kW hr t
-1

 (40.6 to 165 kW hr t
-1

) reported by Tumuluru et al. (2010a) and an 

Figure 6. Sensitivity analysis of key factors that determine overall system cost for an energy wood harvesting 

operation (Hall et al., 2001). 
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electric rate of $0.0667 kW hr (Energy Information Administration [EIA], 2015), biomass 

densification using a screw press could increase costs by $2.45 to $10 t
-1

 ($2.70 to $11 t
-1

). This 

estimate does not include installation, maintenance, repairs, or labor, making this estimate 

conservative. However, unless chipping/pre-processing is conducted in the field, tree stand 

density and tree size will be the primary load density influence when transporting whole trees and 

residues to a central processing location. Closely grouped trees grow taller for a given dbh 

(Ferguson et al., 1968), suggesting more biomass concentrated in the bole compared to the limbs. 

An individual tree’s volume increases as its dbh increases, from roughly 65.5 to 238 cm
3
 (4.0 in

3
 

to 14.5 in
3
) when comparing a 20.3 cm (8.0 in) and 35.6 cm (14.0 in) tree (McKinley, 2012a). 

Table 5. Advantages and disadvantages of certain densification equipment (Tumuluru et al., 2010a). 

  

Screw Press Piston Press Roller Press Pellet Mill Agglomerator 

Optimum moisture content 

of the raw material 
8 to 9% 10 to 15% 10 to 15% 10 to 15% 

No 

information 

Particle size Smaller Larger Larger Smaller Smaller 

Wear of contact parts High Low High High Low 

Output from machine Continuous In strokes Continuous Continuous Continuous 

Specific energy 

consumption (kWh t
-1

 ) 
36.8 to 150 37.4 to 77 29.91 to 83.1 16.4 to 74.5 

No 

information 

Through puts (t hr
-1

 ) 
0.5 2.5 5 to 10 5 

No 

information 

Density of briquette 

 (g cm
-3

) 
1.0 to 1.4

 
1 to 1.2 0.6 to 0.7 0.7 to 0.8 0.4 to 0.5 

Maintenance Low High Low Low Low 

Combustion performance of 

briquettes 
Very Good Moderate Moderate Very good 

No 

information 

Carbonization of charcoal 
Makes good 

charcoal 
Not possible Not possible Not possible Not possible 

Suitability in gasifiers Suitable Suitable Suitable Suitable Suitable 

Suitability for co-firing Suitable Suitable Suitable Suitable Suitable 

Suitability for biochemical 

conversion 
Not Suitable Suitable Suitable Suitable 

No 

information 

Homogeneity of densified 

biomass 
Homogenous 

Not 

homogenous 

Not 

homogenous 
Homogenous Homogenous 
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3.3.2 Harvest 

Machine utilization rates have been noted to greatly affect a harvest operation’s ability to 

profitably deliver raw material to a processing facility (Aman et al., 2011; Harrill & Han, 2012; 

Mitchell & Gallagher, 2007). Increasing chipper utilization rates by 5% up to 70% has been 

shown to reduce delivered costs by $1.10 bdt
-1

 ($1.00 bdt
-1

) (Harrill & Han, 2012). Aman et al. 

(2011) concurred with this finding, stating that a utilization rate of 70% would have reduced 

delivered cost by $3.00 bdt
-1

 ($2.72 gt
-1

), compared to the average utilization rate of 40%. 

Maximizing utilization rates for other machinery can have even greater improvements. By 

maintaining all machines in a harvest system at a utilization rate of 85% versus an observed rate 

of 41%, Harrill and Han (2012) predicted savings up to $35.33 bdt
-1

 ($32.05 bdt
-1

). A whole tree 

chipping operation, similar to what might be expected for Redcedar collection, would have lower 

delivery costs (Conrad et al., 2013). The average chipper machine utilization rate is about 73.8%, 

based on a study of 63 chipping productivity studies, of which 35 were whole tree chipping 

operations (Spinelli & Visser, 2009). This utilization rate is typical of other studies, but Spinelli 

and Visser (2009) also noted that organizational and miscellaneous delay accounted for 16.6% of 

lost productivity, with mechanical and operator delays comprising 8.0% and 1.6% of delay time 

respectively. Assuming mechanical and operator delays were a result of chance and could not be 

reduced, utilization rates near 90% were theoretically possible by minimizing organization 

delays. Skidding and felling components of energy wood harvest units were proportionately 

affected by similar delays. Pan et al. (2008b) reported waiting on load out trucks was the largest 

delay for skidder, loader, and grinder operation. Reducing delay, specifically organizational 

delays, would greatly reduce overhead costs (Mitchell & Gallagher, 2007; Pan et al., 2008b; 

Vitorelo, Han, & Elliott, 2011). 
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Hall et al. (2001) evaluated seven delivery systems on the three different forest density 

types most common in New Zealand (Figure 7). The most effective delivery model identified was 

to purchase forest residue → load of residue into trucks → transport to the refinery → truck 

unloading → chip residue. This model had a delivery price of $13.95 bdt
-1

 ($12.66 bdt
-1

) (Hall et 

al., 2001). This method incorporates cold loading, which has been noted to improve efficiency 

compared to hot loading (Pan et al., 2008; Spinelli & Visser, 2009). A whole tree chipping 

operation would increase the quantity of energy wood biomass, compared to an integrated 

chipping and roundwood harvesting operation, further reducing price (Conrad et al., 2013). 

Incorporating a drying period raised the total delivery cost slightly (Hall et al., 2001). Hot and dry 

summers in Oklahoma could make field drying more feasible, reducing cedar moisture to near 

20% (J. Meibergen, personal communication, September 5, 2013). Figure 8 shows the effects of 

moisture content on the heating value of woody biomass.  

 

Figure 7. Cost of delivery systems according to site. 1 NZ$ = $0.42 USD in 2000. Full descriptions of site classification 

and delivery scenario can be seen in Appendix I (Hall et al., 2001). 
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Many factors influence the cost and productivity of logging and energy wood harvesting 

operations. Two studies (Conrad et al., 2013; Vitorelo et al., 2011) determined that loggers with 

lower capital and more fuel efficient equipment could process energy wood more productively. 

Pan et al. (2008) estimated a $0.64 bdt
-1

 ($0.58 bdt
-1

) increase in cost per 30.5 m (100 ft) of 

skidding distance. Terrain and topography conditions could also hinder energy wood production 

economically, although ground conditions were typically not technologically limiting (Perlack et 

al., 2005). A primary concern for traditional logging/skidding of Eastern Redcedar is tree size, 

since harvest cost is inversely related to dbh. As dbh decreases, production cost increases, often 

dramatically (Adebayo et al., 2007; Felker et al., 1999; Mitchell & Gallagher, 2007). Adebayo et 

al. (2007) specifically noted that harvest cost was affected by machine productivity, which in turn 

was a function of tree size and extraction distance (Figure 9).  

Given that two thirds of Oklahoma Eastern Redcedar trees are 12.7 to 27.7 cm (5.0 to 

10.9 in) in diameter and the relationship between tree dbh and machine productivity, Eastern 

Redcedar harvesting operations may have low productivity rates (McKinley, 2012a; Adebayo et 

al., 2007). Minimizing machine travel and utilizing fuel efficient equipment will aid in total 

system cost reduction (Conrad et al., 2013; Vitorelo et al., 2011; Pan et al., 2008). 

Figure 8. Heat energy in typical wood fuel per pound of wet fuel (Ince, 1979).  
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3.3.3 Processing 

After the raw material (Eastern Redcedar) is harvested, chemical and/or mechanical pre-

processing steps may be necessary prior to final product production. The type of pre-processing 

required is dependent upon the desired end-product. Biofuel, pharmaceutical, and cedar oil 

production may require several mechanical and chemical processing steps, such as grinding, 

chipping, dilute acid treatment, steam explosion, etc. to improve conversion or extraction 

efficiency (Zhu & Pan, 2010; Tumuluru et al., 2010b; Dunford, Hiziroglu, and Holcomb 2007). 

3.3.3.1 Mechanical 

Material size reduction may be necessary to effectively remove oils, bio-chemicals or 

produce biofuels. The smaller size allows for more effective penetration of pretreatment 

chemicals into the biomaterial, making the overall process more efficient (Zhu & Pan, 2010). 

There are a plethora of machines designed for size reduction of woody biomass, including 

hammer mills, chippers, knife mills, and disk or attrition mills (Ramachandriya, 2013). Each 

machine has distinct advantages and disadvantages, making it more or less suited for 

comminution of woody material. The desired end product is also a primary selection criterion for 

Figure 9. Representation of machine productivity to tree diameter for three distinct types of harvesting machines 

(Adebayo et al., 2007). 
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wood milling machinery. A chipper is commonly used in the field to produce hog fuel or energy 

chips, or occasionally a hammer mill, as shown by several productivity studies (Conrad et al., 

2013; Spinelli & Visser, 2009; Vitorelo et al., 2011). The chippers are typically used in integrated 

harvest operations to comminute residues onsite, while merchantable bole wood is logged. In a 

mill setting, hammer or knife mills are typically used (Cadoche & Lopez, 1989). Dry biomass is 

easily refined by hammer and knife mills, but wet materials are better suited for disk mills (Schell 

& Harwood, 1994). Hammer mills are designed to exploit the shattering effect that occurs at low 

moisture content (Dooley, Lanning, & Lanning, 2013).  Both hammer and disk mills are 

optimized for large scale production, with hammer mills commonly used in industry for 

production of pellets and composites, while disk mills are used for fiberization in pulping 

industries (Schell & Harwood, 1994).  

One of the Eastern Redcedar pre-processing concerns is the size distribution of chipped 

particles (J. Meibergen, personal communication, September 5, 2013). While different strategies 

exist to reduce average particle size (mill type, screen filter size, two-stage processing, etc.) to the 

desired dimensions, they may have a broad particle size distribution. A study by Schell & 

Harwood (1994) found a particle size distribution of 1 to 4.8 mm for a hammer mill, and 0.4 to 

2.3 mm for a disk mill. The energy consumption of these machines is a concern, since energy 

consumption equates to cost. The hammer mill and disk mill in the study by Schell and Harwood 

(1994) consumed 288 to 367 and 439 to 1984 MJ Mg
-1

 of dry wood respectively. Cadoche and 

Lopez (1989) reported 468 MJ Mg
-1

 of dry wood to comminute hardwood chips to 1.6 mm for 

both hammer and knife mills (Figure 10).  
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Specific energy consumption is inversely proportional to mill screen size and influenced 

by biomass moisture (Miao, Grift, Hansen & Ting, 2011). Zhu, Pan, and Zalesny (2010) reported 

milling wood chips typically requires 1800 to 2880 MJ Mg
-1

 of dry wood, 25 to 40% of the 

thermal energy of ethanol. Assuming a mechanical conversion efficiency of 30%, the authors 

calculated a net energy gain of zero. Another study found wood biomass size reduction for 

lignocellulosic ethanol production to be 32.9% of total refinery electric costs (Hinman, Schell, 

Riley, Bergeron, & Walter, 1992). Utilization of wood chips as a supplemental power source in 

coal-fired plants would not require substantial size reduction (25 x 75 x 12 mm chips); hence, 

preprocessing energy and cost would be less (Cadoche & Lopez, 1989; Toms & Lewis, 1987). 

However, this does not impact transportation fuel dependency (Perlack et al., 2005).  

Figure 10. Specific energy consumption for comminution of hardwoods using a hammer and knife mill 

(Cadoche & Lopez, 1989). 



25 

 

Comminution of wood has traditionally been performed using methods detailed above, 

but Forest Concepts, LLC has developed a unique method of producing uniform feedstock 

particles from woody biomass. The system uses a rotary veneer lathe to peel the wood log, before 

passing the peeled surface through a rotary shear configurable Crumbler®
2
 (Lanning, Dooley, & 

Lanning, 2012). Dooley et al. (2013) noted several advantages to using a veneer/Crumbler® 

combination, including the ability to process high moisture material, as well as reduced size 

distribution, energy consumption, and transport costs. Transportation of veneer is less expensive 

than chip transportation, primarily because veneer can be moved using flatbed trucks and does 

not require customized chip vans. It also has a higher bulk density than wood chips (150-200 kg 

m
-3

) because there is no air space (Lanning et al., 2012; Tumuluru et al., 2010). The veneer has a 

Solid Volume Ratio of 1.0, much higher than slash (0.15 to 0.25), chips (0.35 to 0.45), or logs 

(0.70), making it more economical to transport (Dooley et al. 2013; Rummer, 2007).  

While this in itself could increase the feasible transportation radius beyond 90 miles, the 

primary advantage is in reduced comminution energy and uniform size distribution (Figure 11and 

Figure 12). Figure 12 shows that 80% of chip particles are retained in No. 10 and No. 16 mesh by 

the Crumbler® technology, compared to 55% for traditional hammer milling. A more uniform 

chip size provides an opportunity for increased standardization in the refining process and 

addresses a key concern for the refining industry. Compared to traditional comminution methods, 

crumbling is much more efficient. The Crumbler® technique produces consistently-sized 

particles at a specific energy consumption of 150 MJ Mg
-1

 of dry wood, one-thirteenth the energy 

consumption of traditional comminution methods (Lanning et al., 2012). 

                                                           
 

2
 Crumbler® is a registered trademark of Forest Concepts, LLC, Auburn, WA 
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Figure 12. Size distribution for Crumbles compared to hammer mill processing for 2-mm nominal 

particle size. 

Figure 11. Crumbles produced using techniques developed by Forest Concepts, LLC (Lanning et 

al., 2012). 
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Utilizing a Crumber® in pre-processing would enable separation of heartwood and 

sapwood from Eastern Redcedar, which has several benefits. Ethanol yield from Eastern 

Redcedar heartwood is lower than that of sapwood (Ramachandriya, 2013), and heartwood 

contains more essential oils than sapwood (Dunford et al., 2007; Semen & Hiziroglu, 2005). 

Separation of heartwood and sapwood would allow processes to be optimized for each tree 

component, improving oil and biofuel yield efficiency (Dunford et al., 2007; Ramachandriya, 

2013). Despite the benefits of crumbing technology, there are several caveats for its 

implementation as the sole size reduction machinery in a pre-processing system. Oklahoma 

contains 8.2 million tonnes (7.4 million tons) of Eastern Redcedar biomass in trees 12.7 cm (5 in) 

or larger, of which 13% is tops, limbs, and stumps that cannot be processed in the same manner 

(McKinley, 2012a). Additionally, the Vermeer lathe can only process the log down to a 5 cm (2 

in) diameter core, and the amount of material that can be recovered per log is proportional to log 

diameter (COE, 2013). However, the dowels could be utilized in other market areas.  

3.3.3.2 Chemical 

Representative pre-processing steps, especially for biofuel production or chemical 

extraction, typically include physical and chemical stages (Zhu & Pan, 2010). Dilute acid, steam 

explosion, and Sulfite pretreatment to overcome the recalcitrance of lignocellulose (SPORL) 

treatments are some common pretreatments for softwoods (Ramachandriya, 2013). Many other 

treatment methods exist, including concentrated acid, hydrothermal, auto-hydrolysis, wet 

oxidation, and various alkaline treatments (Carvalheiro, Duarte, & Gírio, 2008). The main 

purpose of dilute acid pretreatments is to make cellulose more accessible to enzymes without 

overly degrading products (Alvira, Tomás-Pejó, Ballesteros, & Negro, 2010). Hemicellulose 

breakdown using dilute acid is a promising chemical pretreatment process, despite the cost of 

acid and the production of fermentation inhibitors during the process (Carvalheiro et al., 2008). 

This method has been known since 1819 and can be conducted with several acids, including 
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formic, nitric, phosphoric, sulphurous, sulphuric, hydrochloric, and hydrofluoric (Galbe & 

Zacchi, 2002). Table 6 shows conditions for acid pretreatment of certain softwoods. 

Table 6. Acid pretreatment conditions for softwoods (Galbe & Zacchi, 2002). 

Substrate Pretreatment Conditions 

 

Catalyst Temperature ( °C) Time (min) 

Pine 4.44% SO2 200 10 

Spruce + Pine 2.0 to 2.6% SO2 188 to 204 2 

Pine 0.5 to 12% SO2 182 to 248 0.5 to 18 

Pine 2.0 to 2.6% SO2 150 to 208 2 to 20 

Spruce 0.5 to 5% SO2 190 to 220 0.8 to 4.2 

Spruce 0.35% H2SO4 215 2.3 

Fir + Pine 0.4% H2SO4 200 to 230 2.1 to 5.1 

Spruce + Pine 1 to 6% SO2 190 to 230 2 to 15 

Spruce 0.5 to 4% H2SO4 180 to 240 1 to 20 

Fir + Pine
a
 0.5 to 4% H2SO4 & 2.5% H2SO4 180 to 215, 210 1.7 to 4 & 1.7 to 2 

Spruce
a
 0.5 to 4% H2SO4 & 1 to 2% H2SO4 180, 180 to 220 10 & 2 to 10 

 

Steam explosion uses high pressure steam (20 to 50 bar, 210 to 290 °C [290 to 725 psi, 

410 to 554 °F]) to break down the lignocellulose matrix (Carvalheiro et al., 2008).  The technique 

is described as a “thermomechanochemical” process because of its mode of action (Chornet & 

Overend, 1988; Carvalheiro et al., 2008; Jacquet et al., 2012). The woody material’s structure is 

broken down via heat, shear forces, and hydrolysis of glycosidic bonds (Carvalheiro, et al., 2008). 

Shear forces are generated during explosive decompression, after the material has been exposed 

to steam for several seconds to several minutes and rapidly depressurized (Alvira, et al., 2010). 

Jacquet et al., (2012) showed that char increased 16% after pyrolysis when the severity factor was 

increased from 5.14 to 5.55. This was quantified using a severity factor equation (3.3.1), 

 S=log
10
∫ exp (

T(t)-100

14.75

) dt
t1

t2
, (3.3.1)  

where S is the severity factor, T(t) is process temperature (°C) and t1 and t2 are the start and end 

times of the reaction. Below a severity factor of 5.2, char levels ranged from 7.5 to 9.5% (Figure 

13). Compared to other treatment technologies, steam explosion has less environmental impact, 

lower capital investment, and fewer hazardous chemicals (Alvira, et al., 2010). 
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In SPORL, wood material is mixed with a bisulfite solution (pH 2 to 5) at a temperature 

of 160 to 190 °C (320 to 374 °F) for 10 to 30 minutes (Zhu & Pan, 2010). The SPORL process is 

a recent chemical treatment processes, although pulp and paper industries have used similar 

processes for over 100 years (Zhu, Pan, Wang, Gleisner, 2009; Zhu & Pan, 2010). For this 

reason, much of the information produced in the study of sulfite pulping is transferable to SPORL 

pretreatments (Ramachandriya, 2013). In a study by Shuai et al. (2010), SPORL treatments had 

91% cellulose to glucose conversion yields after 24 hours. In contrast, dilute acid yielded 55% 

conversion after 48 hours. Lodgepole pine was prepared for simultaneous fermentation and 

saccharification using SPORL, resulting in a calculated ethanol yield of 285 l t
-1

 (68.3 gal t
-1

). 

Additionally, Shuai et al. (2010) noted 32% of lignin was dissolved to form lignosulfonate, a 

valuable co-product. Combining mechanical and chemical pretreatment, Zhu et al. (2010) 

examined the energy consumption of a post-chemical pretreatment size reduction, and found that 

energy consumption was reduced up to 80% (< 180 MJ Mg
-1

 of dry wood) by using a low pH 

SPORL pretreatment. 

Figure 13. Carbonaceous residue levels after pyrolysis for cellulose C200 (control) and steam exploded 

samples (Jacquet et al., 2012). 
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3.3.4 Industrial Market Potential 

Eastern Redcedar is traditionally used for a variety of products, including wood furniture, 

fence posts, and mulch. Other more novel uses for the tree have been proposed including biofuel, 

pharmaceutical, particleboard, and essential oil production (Ramachandriya, 2013; Gawde et al., 

2009; Hiziroglu et al., 2002; Hiziroglu, 2011).  However, the current consumption of Redcedar 

for traditional end uses is not impacting the 121,000 ha yr
-1

 (300,000 ac yr
-1

) encroachment rate 

and non-traditional industries have not developed (Drake et al., 2002). To begin restoration of 

land overrun with Redcedar and prevent its continued spread, 0.8 to 1.6 million ha yr
-1

 (2 to 4 

million ac yr
-1

) need to be treated (Drake et al., 2002). There are an estimated 462 million 

Redcedar trees in Oklahoma, approximately 6.5 million dry tonnes (5.9 million tons) in trees with 

diameters greater than 12.7 cm (5 in) (McKinley, 2012a). Expanding the use of low grade 

Redcedar logs in Oklahoma would aid in reducing the detrimental economic impact of this tree 

(Zhang & Hiziroglu, 2010).  Figure 14 shows Potential Eastern Redcedar products while Figure 

15 shows what would be considered a mature tree, with sections having significant economic 

potential labeled.  

       

10.2 cm 

Figure 14. Commodities that can be produced from Eastern Redcedar. Top left to right: lumber, cedar oil, mulch, 

posts, medical chemicals, biofuel, veneer, and biofuel pellets. 
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Figure 15. Components of an Eastern Redcedar tree. Different components may be more profitable for a specific end 

use, such as lumber for the merchantable bole or energy chips for the residue. Image from TAMU. 

Residue: The top portion of 

a tree less than 10.2 cm (4 

in) diameter and all limbs 

trimmed from the 

merchantable bole. 

Leaves: Fine, 

scaly leaves. 

Bluish berries 

are found on 

female trees. 

Merchantable Bole: 

Portion of a tree where 

diameter is greater than 12.7 

cm (5 in), from a 30.5 cm 

(12 in) stump to a minimum 

10.2 cm (4 in) top diameter. 

Stump Height: Assumed to 

be 0.3 m (1 ft) above the 

ground after tree has been 

removed. 

 

Diameter Breast Height 

(DBH): Tree diameter in 

inches at 1.4 m (4.5 ft) 

above the ground. 

 
Eastern Redcedar 

Copyright © Robert O’ Brien 

18.3 m 

(60 ft) 
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3.3.4.1 Wood Products 

The largest source of demand for Redcedar in Oklahoma is for lumber products 

(Oklahoma Forestry Service [OFS], 2013). There are eight companies listed on the Eastern 

Redcedar Registry as of 2014 that purchase Redcedar logs to produce lumber, cants, posts, and 

poles (Figure 16). Demand for redcedar logs greater than 11.4 cm (4.5 in) in diameter and 244 cm 

(96 in) in length is over 100,000 for these businesses. Although this is a large quantity of redcedar 

logs, the vast majority (roughly 75%) of cedar trees in Oklahoma are 10.2 cm (4 in) dbh or 

smaller (McKinley, 2012a), making them unsuitable for posts. Only about 10% of Redcedar trees 

in Oklahoma can be marketed as quality lumber (McNutt, 2012). However, the marketable 

lumber can be sold for $5.91 and $7.28 per board meter ($1.80 and $2.25 per board feet) (T & A 

Sawmill, 2014) for lumber and beams respectively. 

According to Drake et al. (2002), wood industry products would be more attractive 

business ventures than extraction of essential oil or bioenergy production, which were not 

evaluated. In 2002 a method to produce particleboard from Redcedar was developed and the 

material properties of the new particleboard quantified (S. Hiziroglu, personal communication, 

December 3, 2013).  Using Redcedar is cheaper and faster than traditional methods because the 

Figure 16. Oklahoma businesses utilizing Eastern Redcedar 

(OFS, 2013). 
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entire tree is used, including limbs, bark, and even the needles. The material is structurally similar 

to those already on the market and has the added benefit of creating a “cedar chest” effect 

because of natural oils in the wood (Hiziroglu, Holcomb, & Wu, 2002; Zhang & Hiziroglu, 

2010). However, to implement this technology, a particleboard mill would need to be constructed 

in Oklahoma at a cost of $3 million to $3.5 million (Mabra, 2002). Hiziroglu et al. (2002) 

estimated that the total delivered cost of material would be $1145 m
-3

 ($32.42 ft
-3

), although this 

did not consider limbs or leaves that could be used in the manufacture of Redcedar particleboard. 

Although there is interest in these panels, there has been no major economic analysis or demand 

study conducted in Oklahoma (Zhang & Hiziroglu, 2010). 

 

Table 7. Commercialization Attractiveness Index for potential Eastern Redcedar industries (Drake et al., 2002). 

Oklahoma Redcedar Commercialization Attractiveness Indexing 

Industry 

Startup 

Capital 

(Millions) 

Research 

Investment 

(Millions) 

Net Annual 

Income 

(Millions) 

Probability 

of Success 

Time to 

Implement 

(Years) 

Barriers CAI
x
 

Particleboard 7 0.5 1 80% 5 Est. Cos. 2.47 

Wood Flour 1 0 0.25 90% 1 Est. Cos. 3.6 

Mulch 1 0 0.25 95% 1 Est. Cos. 3.8 

Cedar Oil for 

Perfume 
1 0.1 0.2 70% 2 Est. Cos. 2.43 

Cedar Oil for 

Preservative 
2 0.5 0.4 70% 4 

Unproven 

Tech. 
1.58 

Wood/Plastic 

Composite 
2 0 0.25 80% 2 Est. Cos. 4.53 

Paneling 1 0 0.25 80% 2 

Est. Cos. 

& Raw 

Material 

2.26 

Lumber 0.5 0 0.1 80% 2 

Est. Cos. 

& Raw 

Material 

2.83 

 

xCommercialization Attractiveness Index:  

    
CAI=(((Startup Capital + Research Investment)/Net Annual Income) x Probability of Success)/(Time to Implement)0.5 
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3.3.4.2 Biochemical 

One of the more interesting potential uses of Redcedar is biochemical extraction of 

compounds from plant material. Redcedar leaves contain cedar oil and podophyllotoxin, an 

anticancer compound (Figure 17). This compound is typically harvested from the Indian 

Mayapple because of the high podophyllotoxin concentration. However, the Indian Mayapple has 

been declared endangered, renewing interest in alternative sources such as the American 

Mayapple and Eastern Redcedar. The chemical is found in concentrations of 56 mg g
-1

 plant 

matter in American Mayapple and 1.45 mg g
-1

 plant matter in Redcedar.  

Experimentation by Gawde et al. (2009) showed it was possible to extract 

podophyllotoxin from Eastern Redcedar leaves with 72% recovery using steam distillation. 

Despite the low concentration of podophyllotoxin, Redcedar leaf biomass is more readily 

available, and available in larger quantities than American Mayapple, making it more desirable 

for chemical extraction (Cushman et al., 2003; Gawde, Zheljazkov, Maddox, & Cantrell, 2009). 

Aside from cancer treatment, podophyllotoxin is also used to treat rheumatoid arthritis, genital 

warts, psoriasis, and multiple sclerosis, making it a highly sought after commodity (Cushman et 

al., 2003).  

Figure 17. Podophyllotoxin structure 

(Gawde et al., 2009). 
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 Perhaps one of the most important products of Redcedar is cedar oil. Refined oil can be 

sold for up to $11.9 l
-1

 ($45 gal
-1

) and has a wide range of applications, including pesticides, 

pharmaceuticals, and fungicides (McNutt, 2012). It is an active ingredient in five pesticide 

products used to control moths and fleas, and retard the growth of mildew (Environmental 

Protection Agency [EPA], 1993). It is also a major component of many non-pesticide products 

marketed in the U.S. It is a mixture of organic compounds and, as a food additive, is classified as 

GRAS or Generally Recognized as Safe. It repels insects via non-toxic modes of action, and the 

EPA does not consider its regulation worthwhile (EPA, 1993). Cedar wood oil is contained in 

varying concentrations throughout the tree, but most oil is obtained from shavings created during 

furniture manufacture. The highest concentrations of oil (2.2 to 3.8%) are found in the heartwood, 

with a lesser amount (1.3 to 2.3%) in sapwood. Older trees typically contain higher oil 

concentrations in each tree component (Dunford et al., 2007). Steam distillation is the most 

common method of Redcedar oil extraction, although continuous distillation is used by some 

commercial entities (Hiziroglu, 2011). 

3.3.4.3 Bioenergy 

Corporate interest in the growth of biofuel production from innovative feed stocks is 

being fueled by the Energy Independence and Security Act of 2007. This act mandates that 136 

billion liters (36 billion gal) of renewable fuel be used annually by 2022 (U.S. Congress, 2007), a 

substantial portion of which must come from cellulosic ethanol production (EISA, 2007). Ethanol 

production could be a potential end use for harvested Redcedar in Oklahoma, eliminating a 

nuisance species, promoting economic growth, and safeguarding environmental resources. 

Studies have shown that Redcedar invasion rates and current biomass availability could support a 

substantial Redcedar-based economy (Drake et al., 2002; McKinley, 2012a; Starks et al., 2011). 

There are an estimated 462 million Redcedar trees in Oklahoma, roughly 8.7 million bdt (9.6 

million bdt), with an additional 1.6 million bdt (1.8 million bdt) available in Ashe juniper, one-

seed juniper, Pinchot juniper and pinyon pine (McKinely, 2012b). About 77% of Redcedar 
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Figure 18. Estimate of Eastern Redcedar biomass availability (McKinley, 2012). 

biomass is contained in trees with a diameter greater than 12.7 cm (5.0 in). From this 77%, 

merchantable bole is considered to be 80% of the biomass, while the remaining 13% is tops and 

limbs, and 7% is stumps. Figure 18 and Figure 19 show estimates made by NREM for total 

Eastern Redcedar biomass in Oklahoma and the estimated energy that could be produced 

(McKinley, 2012a). Approximately 143 billion MJ’s (134 trillion btu) are available in trees with 

diameters greater than 2.54 cm (1.0 in), but 77% of this is contained in trees greater than 12.7 cm 

(5.0 in) in diameter. An assumed 16.28 MJ kg
-1

 (7,000 btu lb
-1

) was used for the energy 

calculations, which takes into account potential heat losses during combustion (McKinley, 

2012a). Although Eastern Redcedar is not listed, Table 8 shows higher heating values for similar 

wood species, such as Douglas-fir and Western Redcedar. 

 

Figure 19. Estimate of potential energy available from Eastern Redcedar (McKinley, 2012). 
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Sessions et al. (2012) stated that the energy value of wood varies within a narrow range. 

This suggests that the energy estimates by McKinley (2012) may be conservative. The Redcedar 

Task Force determined that to break even with current Redcedar infestation in Oklahoma, juniper 

control measures need to be practiced on 121,400 ha yr
-1

 (300,000 ac yr
-1

) (Drake et al., 2002). 

This would not reclaim infested lands, only prevent further infestations. To restore lands and keep 

them free of encroachment, 0.8 to 1.6 million ha yr
-1

 (2 to 4 million ac yr
-1

) must be treated. For a 

6-megawatt power plant, it would take 40,800 bdt (45,000 bdt) of wood, which could be removed 

from 800 to 1,000 ha (2,000 to 2,500 ac) annually (Drake et al., 2002). The initial investment for 

a plant of this magnitude would be between $2 million and $5 million per megawatt hour 

(Sessions et al., 2012). 

 

Table 8. Higher heating values for certain wood species. (Sessions et al., 2012). 

  Wood MJ kg
-1 

Bark MJ kg
-1 

Douglas-Fir 20.8 23.0 

Pseudotsuga menziesii var, menziesii 

  Western hemlock 19.5 21.7 

Tsuga heterophylla 

  Ponderosa Pine 21.2 22.4 

Pinus ponderosa 

  White Fir 19.0 --- 

Abies concolor 

  Lodgepole Pine 20.0 23.4 

Pinus contorta 

  Bigleaf Maple 19.6 --- 

Acer macrophyllum 

  Oregon White Oak 18.9 --- 

Quercus garryana 

  Red Alder 18.6 20.7 

Alnus rubra 

  Western Redcedar 22.6 20.2 

Thuja plicata     
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There are several possibilities for wood chip energy production, including co-firing in 

coal plants, co-generation of steam and electricity, or liquid fuel production (Toms & Lewis, 

1987). Wood chips act as a combustion promoter, reducing boiler slag, emissions, annual fuel 

costs, and the need for equipment modifications to meet clean air standards. Incorporating wood 

chips as a combustion promoter would allow for increased use of Oklahoma coal (which is high 

in sulfur) without violating clean air standards (Toms & Lewis, 1987). Alternatively, a facility 

such as Sun Rays 2 Oil using 40,800 bdt (45,000 bdt) of wood could produce 1,225 t (1,350 t) of 

cedar oil and 34 million liters (9 million gal) of jet fuel (McNutt, 2012). Yet another alternative 

would be production of cellulosic ethanol from Eastern Redcedar.  

Nesbit, Alavatapati, Dwivedi, and Marinescu (2009) researched the economics of ethanol 

production from slash pine biomass, which is similar to Redcedar in some respects. Two 

conversion processes were simulated: a two-stage dilute sulfuric acid (2SDSA) process, and a 

synthesis gas ethanol catalytic conversion (SGECC). The former is well established, and 

commercial data was used in the model. The latter has not been used on an industrial scale, but 

showed promise to reduce ethanol prices. Nesbit et al. (2009) based the SGECC model 

parameters on a National Renewable Energy laboratory study conducted by Phillips, Aden, 

Jechura, Dayton, and Eggerman (2007). A delivery cost of $47.60 gt
-1

 ($43.18 gt
-1

) was assumed 

for energy wood. Using standards typical for processing energy wood chips for ethanol, the 

2SDSA and SGECC methods produced ethanol at $0.93 l
-1

 ($3.55 gal
-1

) and $0.46 l
-1

 ($1.74 gal
-1

) 

respectively. This included a price compensation factor to adjust for the higher energy content of 

gasoline. Nesbit et al. (2009) noted that the final delivered price of energy wood was a major 

component of unit ethanol cost (Table 9). 
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Table 9. Sensitivity analysis for price variations in ethanol production for two distinct processes (Nesbit et al., 2009). 

            2SDSA Process SGECC Process 

Parameter Tested Original Value 
New 

Value 

Unit Cost 

($/liter) 

Original 

Value 

New 

Value 

Unit Cost 

($/liter) 

      

($/tonne) 

 

($/tonne) 

 Feedstock stumpage rate 

(equivalent to PW rate) 
5.51 8.94 0.66 5.51 8.94 0.32 

Delivered feedstock cost 

(equivalent to corn ethanol) 
47.60 0.00 0.32 47.60 47.60 0.31 

Delivered feedstock cost 

(equivalent to switchgrass ethanol) 
47.60 30.31 0.52 47.60 85.43 0.52 

Delivered feedstock cost (+25%) 47.60 59.50 0.71 47.60 59.50 0.38 

Delivered feedstock cost (-25%) 47.60 35.70 0.55 47.60 35.70 0.24 

Ethanol conversion efficiency 

(liters/tonne) (+25%) 
237 296 0.55 334 418 0.30 

Ethanol conversion efficiency 

(liters/tonne) (-25%) 
237 178 0.71 334 251 0.31 

 

3.3.5 Additional Concerns 

There are numerous minor parameters that have economic impacts on woody biomass 

utilization. Among these are biomass ash content and trash content, which affect refinery 

equipment maintenance costs, and the ability to quantify raw material moisture content for price 

adjustments. The ash content of woody biomass overall is about 2% by weight, but trash (dirt, 

rocks, etc.) increase ash content considerably (Ince, 1979; Naimi et al., 2009). The needles and 

bark comprise the majority of ash in pine and spruce, roughly 5% and 4% by weight, 

respectively. In comparison, the trunk is 1% by weight (Melin, 2008). As an evergreen, Eastern 

Redcedar should have comparable ash values. Ash content can be reduced to 1% of total weight 

by removing bark and tree needles. This would reduce particulates and slag in furnaces (Wood 

Pellet Association of Canada [WPAC], 2008). Beneficiation technology could be implemented to 

remove bark and leaves from chipped energy wood, reducing ash and improving yield for second 

generation cellulosic biofuel (Dooley et al., 2012). Trash should not be a major issue except for 

operations that involve extensive skidding and piling of material. Sessions et al. (2012) suggest 
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eliminating this concern by separating residues into piles, for chipping and not for chipping. 

Moisture content affects several cost parameters, but in the southeastern U.S., most buyers do not 

adjust for moisture weight (Sessions et al., 2012). Compensation for feedstock moisture content is 

necessary, because the moisture evaporates and absorbs combustion energy (Ince, 1979). Sessions 

et al. (2012) found the cost of evaluating wood feedstock moisture content was $2 to 3 per 

sample. Another study by Olson (2006) showed moisture variability between truck loads 

warranted sampling each truck. The variability was such that, despite decreased sampling costs 

inherent in alternating sampling, sample bias resulted in increased cost to pulp chip purchasers 

(Table 10).  Within a chip load there is considerable variability, and sampling protocols have not 

been standardized (Sessions et al., 2012). Sample location variability between sections of a chip 

trailer can be seen in Table 11. Each van had a sample moisture content range greater than 5%, 

indicating multiple samples are necessary to accurately estimate moisture.  

 

Table 10. Unfavorable error from alternating chip moisture sampling in delivery trucks (Olson, 2006). 

Trials 
Two 

Trucks 

Three 

Trucks 

Five 

Trucks 

Ten 

Trucks 

10 0.12% -0.04% -0.18% 0.00% 

50 0.10% 0.11% -0.05% -0.10% 

100 0.15% 0.09% 0.08% 0.19% 

250 0.12% 0.14% 0.12% 0.23% 

500 0.11% 0.17% 0.17% 0.24% 

1,000 0.11% 0.18% 0.19% 0.24% 

1,500 0.10% 0.16% 0.19% 0.19% 

2,500 0.10% 0.17% 0.18% 0.18% 

5,000 0.11% 0.16% 0.17% 0.20% 

8,000 0.11% 0.16% 0.19% 0.20% 

10,000 0.11% 0.15% 0.19% 0.20% 

20,000 0.11% 0.15% 0.19% 0.20% 

30,000 0.11% 0.15% 0.19% 0.21% 
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Table 11. Moisture content for front and rear sections of 17 chip vans. (Sessions et al., 2012). 

Van 

Average 

for Van 

% dry 

Average 

for van 

%MC 

Front 

trailer 

%MC 

Rear 

trailer 

%MC 

Min 

%MC 

Max 

%MC 

Range 

%MC 

1 65.0 35.0 34.1 35.9 32.0 37.0 5.0 

2 66.0 34.0 38.7 29.3 28.1 40.0 11.9 

3 76.1 23.9 27.2 20.6 19.8 29.0 9.3 

4 74.9 25.1 22.9 27.3 16.8 32.8 16.0 

5 79.6 20.4 19.0 21.9 18.5 25.3 6.8 

6 74.2 25.8 29.2 22.4 21.6 30.4 8.8 

7 70.5 29.5 32.8 26.3 25.1 35.3 10.2 

8 77.6 22.4 22.5 22.2 21.3 25.8 4.6 

9 62.3 37.7 44.6 30.8 29.7 47.0 17.4 

10 72.7 27.3 23.4 31.1 21.7 32.2 10.5 

11 71.2 28.8 27.7 29.9 26.6 30.8 4.1 

12 65.0 35.0 36.2 33.8 31.4 37.1 5.7 

13 65.4 34.6 36.7 32.4 31.9 38.8 6.9 

14 67.4 32.6 30.5 34.7 26.3 37.3 11.0 

15 73.7 26.3 25.7 26.8 24.1 27.8 3.7 

16 62.2 37.8 34.4 41.3 33.0 42.9 9.9 

17 75.2 24.8 30.7 19.0 18.0 31.7 13.7 

 

3.4 Available Biomass and Logistics Models 

Several models are available to estimate economic feasibility and logistics parameters for 

biomass transportation, processing, and biofuel production (Holcomb & Kenkel, 2008; Lau & 

Baldwin, 2014; Norris, 2009; Baker & Green, 2010). However, these models focus primarily on 

the evaluation of factors related to the utilization of energy crops for biofuels. There are no 

models to evaluate woody biomass utilization for bioenergy that account for harvesting, transport, 

storage, pre-processing, and end use variables. A potential reason for this lack of development is 

that fuel wood, wood wastes, and pulping liquors are already used for energy production in some 

way (DOE, 2011). Although the Integrated Biomass Supply Analysis and Logistics Model 

(IBSAL) provides methods to calculate costs incurred using woody biomass as a feedstock, 

review of the user manual indicates it is to be used primarily for energy crops such as wheat 

straw, switchgrass, and corn stover (Kumar, Sokhansanj, & Flynn, 2006; Sokhansanj, Turhollow, 

& Wilkerson, 2008). 
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Eastern Redcedar is also unique from other woody biomass in that it has multiple 

potential uses. Perfumes, pesticides, furniture, posts, bioenergy, mulch, preservatives, 

particleboard, and wood flour are all marketable commodities that could be products of a 

redcedar industry (Drake et al., 2002; EPA, 1993; McKinley, 2012a). Evaluating the economic 

feasibility of a redcedar-based industry for bioenergy alone would severely underestimate the 

economic potential of the industry. Essential oils can be produced from Eastern Redcedar using 

simple processes, such as steam distillation (Semen & Hiziroglu, 2005). This oil can then be sold 

at retail for $53.95 kg
-1

 ($24.47 lb
-1

), representing a significant economic incentive (Texarome, 

2013). Additionally, it is possible to extract podophyllotoxin, an anti-cancer compound, from the 

leaves. This chemical retails for $6.29 mg
-1

 (Sigma-Aldrich, 2013) and would not be accounted 

for as a potential income in traditional biomass models. 

 

3.4.1 Integrated Biomass Supply Analysis and Logistics Model (IBSAL) 

IBSAL was developed by Oak Ridge National Laboratories to analyze biomass feedstock 

supply systems. The model simulates collection, transport, storage, and pre-processing of biomass 

and provides estimates of potential cost and energy consumption. The model’s goal is to aid 

development of a sustainable and viable bioenergy industry in the United States (Sokhansanj et 

al., 2008). The IBSAL model uses spatial information such as weather data, farm size, crop yield, 

and transport data to evaluate relevant outputs. The platform used to develop IBSAL is 

EXTEND
TM

, which has been linked with Microsoft Excel
TM

 for data input and output 

(Sokhansanj et al., 2008).  

This biomass model has been used to analyze the economic feasibility of a variety of 

potential biomass crops, harvesting, and transport techniques, and to develop new methods of 

collecting, storing, processing, and transporting biomass. An and Searcy (2012) developed 

parameters for a forage harvester pulling a module former, the module former itself and a module 

hauler. Using the newly developed machine elements, An and Searcy (2012) simulated the 
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harvest of grass-type biomass for a refinery. A separate study (Kumar & Sokhananj, 2007) used 

IBSAL to evaluate multiple supply options for switchgrass: round and square bales, loaf piling of 

chopped material (a 2.4 x 6 x 3.6m compressed stack), and storage of silage. This study also 

reviewed three transportation options (bale, ground material, and chopped material transport) and 

evaluated several combinations of collection and transport methods. Delivered cost, energy 

consumption, and carbon emissions were the primary determinants for a best case scenario, which 

was to loaf material, grind the biomass using a mobile grinder, and transport it to the refinery. 

Factors other than cost have also been evaluated using IBSAL. Kumar et al. (2006) used both 

quantitative and qualitative information generated by IBSAL to rank biomass collection systems. 

The criteria included energy consumption, quality of material, maturity of technology, emissions, 

and delivered cost. However, despite the generally accepted performance of the IBSAL model, it 

was created to model straw and corn stover (Kumar et al., 2006). It has options to estimate woody 

biomass collection, transport, and pre-processing costs but it was not designed specifically for 

that task. A more focused model that explores in detail the costs associated with woody biomass 

utilization for energy would provide a more accurate estimate of feasibility. 

 

3.4.2 Transportation Routing Analysis Geographic Information System (TRAGIS) 

Transportation is a major factor in the economic analysis of biomass delivery for energy 

production. Numerous variables need to be accounted for when determining routes, including 

legal load limits. The Transportation Routing Analysis Geographic Information System 

(TRAGIS) has a database of 146,000 km’s (235,000 mi) of roadways, including all interstate 

highways and most U.S. and major state highways (Johnson, 2005).  Building on two previous 

transportation models, HIGHWAY and INTERLINE, the TRAGIS model provides a graphical 

display of the route and allows for extra geographic route analysis (Johnson & Michelhaugh, 

2000). The user interface and map data files are stored on the client’s personal computer, while 

the remaining data files and routing program are located on a network server (Shih et al., 2009). 
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The model is straightforward and allows the user to select options such as rail, highway, or 

waterway transport, road type, and avoidance of tolls (Johnson & Michelhaugh, 2000). However, 

one disadvantage of the model is that it cannot calculate routes for multiple transport modes, so 

highway, rail, and waterway routes can only be modeled singularly (Shih et al., 2009). It is an 

extensive and robust model, originally designed primarily for Department of Energy Operations 

(Dilger & Halstead, 2003). Although it is a useful model, the TRAGIS program was not designed 

for commercial use, and access is limited to registered users, of which there are just over 225, 

typically government agencies, subcontractors, and stakeholders (Johnson, 2005).  

There are other transport routing models in addition to TRAGIS, such as GeoFreight, 

MOBCON, and ArcGIS for Transportation Analytics (Department of Transportation [DOT], 

2014; Oak Ridge National Laboratory [ORNL], 2014; Environmental Systems Research Institute 

[ESRI], 2014). Although each one is different, they perform essentially the same function.  The 

output data, distance, travel time, and road type/conditions can be used to estimate travel costs for 

freight material. These are powerful logistics models that could be used in conjunction with 

biomass harvesting and processing simulation functions to great effect.    

 

3.4.3 Auburn Harvesting Analyzer (AHA) 

The Auburn Harvesting Analyzer (AHA) estimates roundwood production costs 

according to specific harvesting parameters (Baker & Green, 2010). The primary parameters 

include quadratic mean diameter, tract size, tonnage per hectare, and quantity of trees removed 

per hectare (Baker Westbrook & Greene, 2010). Developed in 1984, the model uses Excel
TM

 to 

estimate logging costs and can model virtually any system with few modifications (Wang, 2008). 

The main outputs of the model are loads and tons of wood produced day
-1

 and the cost to cut and 

load this material ton
-1

 (Baker et al., 2010).  

The AHA was used by Bolding, Kellog & Davis (2009) to evaluate integrated fuel 

reduction operations in southwest Oregon. Using information collected during a productivity 
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study, the AHA was used to calculate system productivity for the entire operation, and for 

harvesting or thinning saleable components of the stand only. Other studies have used the AHA to 

estimate total harvesting costs. Conrad et al. (2013) used the AHA to quantify harvest costs for 

integrated, energy wood, and conventional harvesting strategies. Comparison of integrated, 

conventional and energy chip only harvesting strategies employed the AHA to quantify harvest 

costs for each harvest prescription for comparison (Conrad et al., 2013). The system analysis by 

Bolding et al. (2009) using the AHA was extensive, including a feller-buncher, two skidders, 

loader, chipper, tub-grinder, and transport. The machine inputs by Conrad et al. (2013) were all-

inclusive. The model was used to estimate costs for a feller-buncher, two skidders, two delimbers, 

two loaders, and two bucksaws, in addition to a chipper for the energy chip only prescription 

(Conrad et al. 2013). In a similar study evaluating integrated harvesting systems in pine stands 

(Baker et al., 2010), the AHA was used to estimate harvest costs for roundwood production and a 

modification to the program for chipping treatments. The model was used to conclude that 

biomass chips were less valuable than conventional wood products to landowners and loggers, 

and that the ratio of merchantable bole to chip weight ha
-1

 harvested was significant (Baker et al., 

2010).  

The AHA is a robust harvesting model that allows the user to simulate a wide variety of 

harvesting machines and harvesting scenarios. The model has been modified to evaluate chipping 

operations (Bolding et al. 2009; Conrad et al. 2013), but the main cost model generates 

roundwood production costs according to defined harvesting systems (Baker et al., 2010).  

 

3.4.4 Other Models 

One model of interest is the Cellulosic Ethanol Feasibility Template (CEFT). This model 

was developed at Oklahoma State University to aid agricultural producers, investors, leaders, and 

other decision makers in determining the feasibility of a cellulosic ethanol plant (Holcomb & 

Kenkel, 2008). The model provides a detailed analysis of costs associated with the development 
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of an ethanol bio-refinery, but does not delve into harvesting, transportation, storage, or pre-

processing of material. The CEFT accepts numerous inputs, such as equipment costs, up to four 

feedstocks, personnel costs, and even user-defined pre-treatment options (Holcomb & Kenkel, 

2008). The large quantity of inputs and variable constraints necessitates that the model be 

complex and require some business and technical knowledge.  

Although it is more simplistic than the TRAGIS routing model, the BioSAT Trucking 

Cost Model (BTCM) could be easily incorporated into any cost model that utilizes a similar 

software platform, such as Excel
TM

 (Figure 20).  The program accepts nineteen variable costs that 

affect transportation costs, including pay load, fuel cost, labor, maintenance, and tire cost (Norris, 

2009). Trucking operation and trip characteristics must be defined by the user, and based on this 

information, the model calculates costs. Sensitivity analysis can be conducted using the BTCM, 

varying multiple options to determine the optimum trucking configuration (Berwick & Farooq, 

2003). The ability to conduct sensitivity analysis on transportation costs represents a significant 

benefit to users. 

Figure 20. The BTCM trucking model  utilizes Microsoft Excel™ and has one data input sheet (Norris, 2009). 
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3.5 Summary 

Eastern Redcedar is a rapidly spreading juniper tree in Oklahoma, occurring naturally in 

all but three or four counties (McKinley, 2012a). It is spread largely through small mammals and 

birds that eat the berries of female trees (Ferguson et al., 1968). Although it is native to the state, 

Redcedar is aggressively spreading through Oklahoma grasslands and cross-timbers. This rapid 

spread is causing extreme changes in native ecology through displacement of native flora and 

fauna. Herbaceous plants are eliminated at roughly 1500 trees ha
-1

 (600 trees ac
-1

) , and a 1.8 m 

(6.0 ft) crown diameter tree can reduce aboveground plant biomass by 2.75 kg (6.0 lb) (Briggs et 

al., 2002; Stritzke & Bidwell, 1989). While certain birds benefit from Redcedar, Oklahoma’s 

obligate grassland bird species do not. Five bird species are negatively impacted by the spread of 

Eastern Redcedar, including the Bobwhite Quail, Song Sparrow, House Sparrow, American 

Goldfinch, and White-crowned Sparrow (Coppedge et al., 2001; Engle, Coppedge, & Fuhlendorf, 

2008; Guthery, 2001). Beyond these detrimental impacts, Redcedar is a water wasting tree and 

increases wildfire hazards. Eastern Redcedar has a deep root system which allows a 31 cm (12.2 

in) diameter tree to capture up to 150 liters (40 gal) of water per day from the soil profile, which 

can significantly change the grassland water cycle (Caterina, 2012; Hung, 2012; Zou et al., 2010). 

The tree’s thin bark and fine flammable foliage make it easily ignitable and can complicate 

wildfire control according to the Division of Agricultural Sciences and Natural Resources 

(DASNR, 2012). Drake et al. (2002) estimated the economic damage directly resulting from 

Redcedar was $447 million annually. Costly management techniques, which ranged from $7.40 

to $395 ha
-1

 ($3.00 to $160 ac
-1

) depending on stand condition and treatment technique, have 

resulted in the uncontrolled spread of Redcedar throughout Oklahoma (Bidwell et al., 2007).  

Many studies have estimated the cost of transporting energy wood to a refinery to be 

nearly half the total operating cost (Felker et al., 1999; Hall et al., 2001; Harrill & Han, 2012; 

Mitchell & Gallagher, 2007; Pan, Han, Johnson, & Elliott, 2008; Perlack et al., 2005). Estimates 
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for energy wood delivery cost vary from $22 gt
-1

 ($20 gt
-1

) (Conrad et al., 2013) to $100 bdt
1
, 

with freight costs comprising roughly 30% of the delivered cost (J. Meibergen, personal 

communication, September 5, 2013). The high variability in cost estimates was due to the many 

factors noted to increase hauling rates, including travel distance, fuel prices, load size, and 

material moisture content. Travel distance is the primary reason for high delivery costs in most 

instances. By minimizing non-highway transportation, the total cost of material transport can be 

effectively minimized and transport distance increased (Pan et al., 2008). A survey by Bailey et 

al. (2011) suggested that a raw material transport radius of approximately 80.5 km (50 mi) would 

be a good base model for the biomass industry. Machine utilization rates have a significant effect 

on the profitability of delivering raw material to processing facilities (Aman et al., 2011; Harrill 

& Han, 2012; Mitchell & Gallagher, 2007). Increasing chipper utilization rates by 5% up to 70% 

have been shown to reduce delivered costs by $1.10 bdt
-1

 ($1.00 bdt
-1

) and predicted total savings 

up to $35.33 bdt
-1

 ($32.05 bdt
-1

) if utilization were maintained at 85% for all machines in the 

system. Conrad et al. (2013) noted that whole tree chipping operations had lower energy wood 

delivery costs compared to integrated harvesting systems. Spinelli & Visser (2009) also noted that 

organizational and miscellaneous delays accounted for 16.6% of lost productivity and that 

utilization rates near 90% were theoretically possible by minimizing the delay. Reducing delays, 

specifically organizational delays, would greatly reduce overhead costs (Mitchell & Gallagher, 

2007; Pan et al., 2008; Vitorelo et al., 2011). 

Eastern Redcedar presents additional complications, considering it is not grown in 

managed stands. Additionally, the wide array of value-added commodities which can be produced 

from Eastern Redcedar, including biofuel, cedar oil, wood flour, lumber, mulch, pesticides, 

particleboard, animal bedding, and pharmaceuticals (Drake et al., 2002), further complicates 

supply chain logistics. An incipient Redcedar industry exists in Oklahoma, with the largest 

demand being for lumber products (OFS, 2013). However, only about 10% of Redcedar trees in 

Oklahoma can be marketed for lumber (McNutt, 2012). Biofuel and pharmaceutical production 
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from Eastern Redcedar are possible but are much riskier than other commodities. Drake et al. 

(2002) reported that a 6-megawatt power plant could consume 49,600 bdt
-1

 (45,000 bdt
-1

) from 

800 to 1000 ha (2,000 to 2,500 ac) annually. The capital cost would be between $2 million and $5 

million per megawatt hour (Sessions et al., 2012). Experimentation by Gawde et al. (2009) 

showed it was possible to extract podophyllotoxin from Eastern Redcedar leaves using steam 

distillation with a 72% recovery rate. Redcedar leaf biomass is available in higher quantities than 

the current source, Indian Mayapple, despite the lower chemical concentration. This makes it 

much more desirable for chemical extraction (Cushman et al., 2003; Gawde et al., 2009). 

Essential oils could be removed from Redcedar using steam distillation for additional revenue 

(Hiziroglu, 2011), with a lesser amount (1.3 to 2.3%) in sapwood (Dunford et al., 2007).   

Several logistics models are available to evaluate transportation, harvesting/processing, 

and refinement costs.  TRAGIS is a GIS based transportation model that provides graphical 

displays of routes and includes all major U.S. highways (Johnson, 2008; Johnson & Michelhaugh, 

2000). The model is straightforward and allows the user to select options such as rail, highway, or 

waterway transport, road type, and avoidance of tolls (Johnson & Michelhaugh, 2000). Other 

models such as GeoFreight, IBET, and MOBCON provide similar capabilities and are more 

readily accessible than TRAGIS, which is not intended for commercial use. The AHA can be 

used to estimate logging costs and models many different logging systems (Wang, 2008). It can 

be used to evaluate wood production and production costs for thinning operations and integrated 

logging systems (Baker et al., 2010; Bolding et al., 2009; Conrad et al., 2013).  

A more comprehensive model, IBSAL, was developed by Oak Ridge National 

Laboratories to analyze biomass feedstock supply systems. It has been linked with Excel™ for 

data input and output and can simulate collection, transport, storage, and pre-processing of 

biomass (Sokhansanj et al., 2008). It has been used to model grass-type bio-refineries (An & 

Searcy, 2012), to multiply supply options for switchgrass (Kumar & Sokhananj, 2007), and to 

rank supply systems (Kumar et al., 2006). However, it was created to model straw and corn stover 
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(Kumar et al., 2006), and while it has options to evaluate a woody biomass supply chain, it was 

not specifically designed for that task. 

A concern with the reviewed logistics models is that, with the exception of IBSAL, they 

focus only on a single stage of the supply chain, i.e. harvest or transport. In reality, each stage of 

the supply chain will be influenced by the previous stage, depending on the raw material, whether 

it is dried in-field, pre-processing steps, storage losses, handling losses, facility location, and 

other factors. IBSAL provides this capability to a degree, but its complexity may hinder its use in 

evaluating business ventures. Furthermore, there is no simple method of optimizing parameters or 

conducting extensive sensitivity analysis without considerable effort on the part of the user. An 

attempt should be made to incorporate probability distributions into the model to capture the real 

world variability inherent in any supply chain. Providing a simple yet comprehensive model with 

sensitivity analysis and optimization capabilities is essential to evaluate an Eastern Redcedar 

commodity supply chain and realize the full potential of Eastern Redcedar-based industries. 
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Abstract 

The ability to model a supply chain in its entirety, i.e. determining biomass availability, 

location selection, and the harvest, transport, processing, and refining costs, is a critical 

component of determining the economic feasibility of a given production strategy.  To facilitate 

development of Eastern Redcedar commerce, a comprehensive, modular, commodity based 

supply chain model was developed as a computational tool. The conceptual model is web-based 

and has a modular design structure that gives it the flexibility to evaluate niche markets. 

Geospatial programming is used to perform location allocation, develop service areas, routes, and 

biomass yield maps. This data and user input data was employed to approximate costs at each 

stage in the supply chain. Users are provided the option to input their own operational data into 

the model or use distribution based data provided in the model. The distribution based data uses 

rejection sampling to generate random numbers according to empirical probability distribution 

functions for key cost variables in the Monte Carlo simulations. The interdependency, cost impact 

and sensitivity of variables on total system cost are derived from one-way sensitivity analysis. All 

results are displayed as interactive bar graphs, line charts, and maps. The conceptual model is 

focused on fully utilizing Eastern Redcedar by providing the user the ability to evaluate the 

economic feasibility of producing multiple end products simultaneously. The dynamic and 

modular framework of the model provides a strong foundation for expanding the model to other 

biomass feedstocks. 

 

4.1 Introduction 

Eastern Redcedar is a naturally occurring Oklahoma evergreen and the most widely 

distributed conifer in the Eastern USA (McKinley, 2012). Formerly limited to rocky outcrops and 

islands of land untouched by fire, it is rapidly spreading throughout the Great Plains region and 

currently covers an estimated 3.5 million ha (8.6 million ac) in Oklahoma (Starks, Venuto, 
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Eckroat, & Lucas, 2011). The unchecked spread of Eastern Redcedar has incurred significant 

economic losses to the Oklahoma Economy in the form of enhanced wildfire, lost cattle forage, 

lost wildlife habitat, and decreased water availability. Volatile oils, thin bark, and fine foliage 

make it easily ignitable, complicating wildfire control efforts (Division of Agricultural Sciences 

and Natural Resources [DASNR], 2012). A tree with a 1.8 m (6 ft) crown may reduce plant 

biomass in the direct vicinity of the tree by 2.75 kg (6 lb); herbaceous plants are virtually 

eliminated at a density of 1500 trees ha
-1

(600 trees ac
-1

) (Briggs, Hoch, & Johnson, 2002; Stritzke 

& Bidwell, 1989). Eastern Redcedar is known to negatively impact Bobwhite Quail, Song 

Sparrow, House Sparrow, American Goldfinch, and White-Crowned Sparrow populations 

(Coppedge, Engle, Masters & Gregory, 2001; Engle, Coppedge, & Fuhlendorf, 2008; Guthery, 

2001). In 2001, the economic impact of Eastern Redcedar on the Oklahoma economy was 

estimated at $218 million and expected to increase to $447 million annually by the year 2013 

(Drake et al., 2002). Costly management techniques, ranging from $7.40 to $395 ha
-1

 ($3 to $160 

ac
-1

) are dependent on stand density and treatment method. These high management costs have 

led to Eastern Redcedar to spreading rampantly, despite the obvious economic, environmental, 

and social implications (Bidwell, Weir, & Engle, 2007). Reducing and reversing the advancement 

of Eastern Redcedar requires an alternative solution. 

Eastern Redcedar lumber has long been valued for its color, aroma, decay resistance, and 

insect repellant attributes. As an industrial biofeedstock, tree components can be used to 

manufacture essential oils, wood flour, pesticides, particleboard, pharmaceuticals, animal 

bedding, and biofuels, in addition to traditional wood products such as lumber and posts. Many of 

the higher value products, e.g. composite panels, essential oils, or pharmaceuticals could be 

manufactured on an industrial scale to control the spread of Eastern Redcedar while 

simultaneously providing economic stimulus.  Due to the risk and uncertainty associated with the 

industrial scale production of these bio-products, commercial ventures have not developed despite 

public support and business interest.  
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A biofeedstock supply chain presents unique logistical challenges, depending on the 

facility location, existence of processing hubs, transport, processing, harvest, storage, and refining 

costs. To garner confidence in Eastern Redcedar and other biofeedstock enterprises, the cost, 

variance, and risk of each stage in the supply chain must be characterized without over 

simplification. The purpose of this project was to develop an online, dynamic, robust, whole-

system supply chain model to provide techno-economic data for a variety of alternative Eastern 

Redcedar supply chain scenarios. 

 

4.2 System Architecture 

Development of the Geospatial Logistics and Agricultural Decision Integration System 

(GLADIS) consisted of three stages: literature review current biofeedstock supply-chain systems 

and identify key model requirements, database development, and decision support system (DSS) 

development. The purpose of the literature review was to identify and gather information needed 

to create a biofeedstock model that uses specific user input data, model generated stochastic data 

or a combination user and model generated data. It was decided the supply chain model should be 

modular, i.e. individual cost sections for each supply chain stage: location, transport, 

harvest/process, and refining. Software and specific costing equations for each module were 

identified during this stage. The second stage focused on empirical data acquisition to develop 

probability distribution functions (PDFs) for costing variables, e.g. equipment, tire, and fuel, and 

the collection of biomass, potential facilities and finished product information.  

The decision support system (DSS) was created using a MySQL database, HTML, CSS, 

JavaScript, and PHP. MySQL was selected to store production and distribution data because it is 

open-source, and capable of storing a large number of records. HTML, CSS, and JavaScript are 

the de-facto programming languages for web development. The web interface was built and 

styled using HTML and CSS. JavaScript functions and sub-modules process user inputs and data 
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from the MySQL database before uploading the outputs to a server. This data is processed in 

PHP, a server side scripting language compatible with MySQL, and stored in the MySQL 

database. 

The DSS refers to the modeling system as a whole and is divided into modules, e.g. site 

selection, transportation, harvesting, processing, and refining. A module is an independent 

component of the system that includes all database information, user inputs, and models required 

to generate specific outputs. The modules capture aspects of specific supply chain nodes, such as 

site selection or material harvesting. A module is composed of models, which provide abstraction 

from the main module. One or more modules exist within a module to evaluate sub-components 

of the supply chain node, e.g. labor, fuel, and maintenance costs, or to enhance functionality in 

another model. Each module was developed using a bottom up approach; outputs were defined, 

Figure 21. Hierarchy of system components. The system is broken into modules which comprise data inputs, 

functions, and sub-modules to produce module specific outputs. Not all variables or components are shown. 
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used to identify required inputs, and the database structure defined based on the required inputs 

and desired outputs. This approach facilitated development by providing a defined information 

and structural template. A basic outline of the modules, models, and module interaction were 

delineated as shown in Figure 21. 

The site selection, harvesting/processing, transportation, and refining modules represent 

the primary nodes in a supply chain. The first step in GLADIS is to identify the optimal location 

for a biofeedstock facility. The ArcGIS JavaScript API (Environmental Systems Research 

Institute [ESRI], 2014a) includes network analysis tools which provided a straightforward means 

of implementing location-allocation. The location-allocation feature is a complex combinatorial 

problem that requires, at a minimum, a highway network, impedance limit, biomass supply, and a 

list of potential facilities (ESRI, 2014b). This information is formatted in JavaScript Object 

Notation (JSON) and transferred to ArcGIS servers via a PHP proxy page. Results from the 

analysis are used to generate visual representations of facility service area, calculate average 

annual truck mileage and approximate the number tractor-trailer combinations. 

The transportation module uses the Husseign and Petering (2009) Milwaukee fuel cost 

approximation model and a modification of the Berwick and Farooq (2003) truck costing model 

for transportation managers. Harvesting and processing costs are evaluated in a similar manner 

using a machine rate model (Miyata, 1980). Using the database compiled during literature review 

and additional data (Table 12) listed in Brinker, Kinard, Rummer, and Lanford (2002), the 

machine rate variables are automatically populated when the client selects a machine and an 

approximate machine size, namely small, medium, and large. The models within the harvesting 

module were validated by comparing cost outputs with the machine rate form in Brinker et al. 

(2002). 
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Table 12. Subset of data obtained from Brinker et al. (2002) used in the machine rate model. 

Machine Size Insurance
1
 

Lube & 

Oil
2
 

Repair & 

Maint.
3
 

Fuel 

Cons.
4
 

Hp 
Salvage 

Value
1
 

Life 

(yrs) 
Util.

5
 

Skidder L 10 0.3677 90 0.028 
14

8 
20 5 60 

Feller 

Buncher 
M 10 0.3677 100 0.02633 

14

0 
20 5 65 

Harvester NA 10 0.3677 30 0.02633 
12

0 
20 6 80 

1Pct. of retail price, 2Pct. of fuel cost, 3Pct. of annual depr., 4gal per hp-hr, 5Pct. of scheduled machine hours 

 

The refining cost module is comparable to the Holcomb and Kenkel (2008) Cellulosic 

Ethanol Feasibility Template but more general, e.g. there is not a cost breakdown of the chemical 

products or physical steps required to manufacture a specific commodity. However, multiple 

product streams can be evaluated with specific product inflation rates, tax credits, production 

rates, and unit production cost. This is achieved by dynamically adding a data input form for each 

commodity output specified by the client. Additionally, the refining cost equations include 

variables for land, equipment, labor, construction, wage inflation, time value of money, tax rates, 

and product market value among other items. The JavaScript costing models in the refining 

module were checked for validity against the original template outputs.  

To quantify variability within the supply chain, Monte Carlo and one-way sensitivity 

analysis were implemented for the harvesting and transportation modules. This required 

development of probability distribution functions (PDFs) for model variables. Determining the 

PDF for cost variables began with the compilation of raw, empirical data from the literature and 

online equipment listings. Distributions were fitted to the data using MATLAB® data analysis 

software (MATLAB, 2014) and a specialized program written by Sheppard (2012) for selecting 

the best fitting distribution. MATLAB® provides built-in functions to fit distributions to 

empirical data and rank them using Bayesian Information Criterion (BIC) (MATLAB, 2014). The 

program written by Sheppard (2012) utilizes these functions, but loops through all valid 

parametric probability distributions provided in MATLAB® and sorts them by BIC. These 
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empirical distributions were stored in a MySQL database with the PDF name, range, and 

parameter values. 

Monte Carlo simulations were conducted using a JavaScript distribution library which 

implemented rejection sampling to generate random values following a specific PDF. One-way 

sensitivity analysis characterized the impact of individual variables on overall system cost by 

incrementing cost variables through a plausible range and holding all other variables constant. 

From these analysis methods, relative cost impact, relative sensitivity, and the expected mean, 

variance, and quartile cost values were derived. 

 

4.3 System Interface 

Users enter information for simulations through a series of forms as shown in Figure 22 

Clients may use a default input values or modify inputs to match their actual or estimated 

operating structure and costs; including distributed pre-processing hubs, drop and hook transport, 

custom harvesting machines, and/or multi-product production facilities. An auto-fill data option is 

available in the harvesting module for small, medium, and large skidders, feller-bunchers, 

forwarders, loaders, harvesters, dozers, chippers, and grinders, while the refining module 

provides auto-fill data for employee salaries and benefits. Relevant data from each module feeds 

into subsequent modules for calculations, e.g. facility throughput is used by the transportation 

module to estimate the tractor-trailers required for biomass transport. This layout enables users to 

run simulations using default values or customize data inputs. The user interface allows the user 

to auto-populate all required inputs, however, they are provided the ability to adjust system input 

data based on their actual or planned operation. 
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4.4 System Outputs 

Economic results produced by GLADIS include graphical cost outputs for 

harvest/processing, transport, and refining. Currently, the output interface provides limited 

drilldown capabilities to view individual cost variables and system costs. If deemed important, 

this capability will be expanded in a future release. Harvesting costs are presented on a per hour 

basis and include total cost estimates for productive machine hours (PMH) and scheduled 

machine hours (SMH). The analysis represents the aggregate costs for all machines in the 

harvesting operation. These costs include fuel, labor, maintenance and machine ownership costs 

for the harvesting system. Transportation costs are displayed in a similar format with different 

cost components. The average fixed, labor, fuel, maintenance, and tire cost estimates for tractor-

trailers is provided on a per mile basis. 

Outputs generated from the refining module include loan amortization, and discounted 

expense/profit cash flows. For these projections, discounted cash flow is calculated using the loan 

term and a discount rate. The expense cash flow provides projected labor, production, 

maintenance, insurance, property, loan interest and miscellaneous costs. Profit projection includes 

the present value of income, gross sales, after tax profit and present value of expenses for 

Figure 22. Model home page (left) and transportation module interface (right). 
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comparison. To compare expenses across the supply chain, a composite chart is provided which 

contains the total cost of harvest/processing, transportation, and refining on an annual basis. 

Annual harvest/processing and transportation costs are calculated using default or user specified 

information such as facility throughput, scheduled machine hours, and number of tractor-trailers 

to convert per hour and per mile units to annual costs. Average annual refining expense was 

calculated by dividing the net present expense by the projection periods. An example of the 

techno-economic outputs produced is shown in Figure 23. Large cost components, such as labor 

or maintenance cost, may be removed to compare smaller cost components, such as property or 

miscellaneous costs. Hovering their computer mouse over the chart bars allows users to see the 

exact cost for each item. 

Geospatial outputs include map representations of location allocation, service area and 

county level biomass yield maps. Spatial analysis determines biomass accessibility, maximum 

transport distance, and optimal facility location by maximizing biomass resources within a 

service area cutoff distance. The geocoding, location-allocation, service area and mapping tools 

incorporated in this model are a key component of the overall supply chain analysis, especially 

Figure 23. Example of refining discounted expense cash flow in the grouped view style. 



71 

 

for facility location. Location allocation provides a means of location selection for a biomass 

facility based on the accessibility of raw feedstock material, such as Eastern Redcedar. This 

model minimizes biomass transportation distance and thus the overall cost of feedstock delivery. 

The model can be used to conduct a global or local optimization. The global optimization defines 

a population center as a city with a population greater than 500 and within the borders of  

Oklahoma. The local optimization includes only specified locations entered by the user. This 

configuration provides greater flexibility and provides the user the ability to account for 

qualitative parameters such as personal preference, community support, and government 

incentive. Both global and local analysis options may included distributed processing hubs in the 

simulation. Distributed processing hubs are smaller depot stations strategically located around the 

main facility preprocess biomass, thereby reducing transportation costs. 

The maps generated in the site selection module provide users with much more than an 

optimized facility location address (Figure 24). The location allocation output indicates the 

distribution of biomass allocated to the facility or processing hub through lines connecting 

biomass points (circles) and the facility or hub (square).  The relative quantity of biomass at each 

location is represented by the circle size, indicating how biomass quantities vary within the 

service area. The service area polygon map shows regions of inaccessibility and is broken into 

three equal distances, with the outer limit being the full service area. A county map with Eastern 

Redcedar data indicates the biomass quantity in each county by color intensity from green (low) 

to red (high). Clicking on a county displays Eastern Redcedar tonnage and acreage for the county. 
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Despite the algorithmic complexitity of this analysis, the user may run a simulation by, at 

a minimum, selecting “optimize” and specifying a service area limit. The model will identify a 

single facility location that minimizes biomass hauling distance within the service area limit. 

Results generated from this analysis include allocated biomass, average weighted transportation 

distance, and the location  of each the facility and/or  pre-processing hubs. 

Variability in baseline data used in biofeedstock logistics systems like GLADIS is a 

critical issue that impacts the system’s capability to provide reliable techno-economic outputs. 

This is due to uncertainty in cost factors such as fuel, machine life, productivity, and labor costs. 

The uncertainty of a given system can be quantified through Monte Carlo simulation and one-way 

Figure 24. Location allocation, service area and county based Eastern Redcedar biomass maps. 
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sensitivity analysis, which are done automatically for the transportation and harvesting modules 

and based on the baseline data input into the system. This provides users the ability to determine 

the expected system cost based on stochastic probability distribution functions. The relative 

impact of variables on total cost, system sensitivity to variable changes and the overall dollar 

impact on system cost are also determined (Figure 25). 

The Monte Carlo simulations use PDFs selected in stage two of development and a 

JavaScript library to generate random values that follow a specified distribution. Rejection 

sampling is used to generate the random values and allows virtually any PDF to be modeled.  

10,000 simulations are run for the transportation and harvesting modules, using a randomly 

chosen value for variables with PDFs. A lack empirical of data prevents the use of distributions 

for all variables, but harvesting machine horsepower, truck weight, fuel, tire, and labor costs 

represent some of the model variables with distributions. Summary statistics reveal the expected 

cost variance, average, quartiles, and distribution of the supply chain stage. One-way sensitivity 

analysis provides an additional level of detail. This is done by incrementing a single variable is 

Figure 25. Monte Carlo analysis (top left), one-way sensitivity spider chart (top right), system sensitivity ranking 

(bottom left) and cost impact ranking (bottom right) of key transportation variables. 
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through its range while holding all other values constant. The range of values is assumed to be 

from the minimum to the maximum value in the empirical data compiled for the variable. This 

describes the relationship of the selected variable to total cost and indicates where efforts should 

be focused to minimize cost or maximize profit. 

 

4.5 Conclusion 

The GLADIS provides techno-economic, geospatial, and sensitivity analysis data for an 

Eastern Redcedar supply chain. Techno-economic data is generated for harvesting, processing, 

transport, and refining of Eastern Redcedar. Modeling information is entered through a simple 

user interface or default values from a database may be used. Results are displayed in interactive 

graphics with drill-down capability. Geospatial analysis provides an optimized facility location, 

facility service area, and county maps of Eastern Redcedar biomass. Uncertainty within supply 

chain nodes is quantified through Monte Carlo simulations and one-way sensitivity analysis, 

which ranks variables by cost impact and sensitivity. The modular design of GLADIS allows for 

quick expansion of analytical capacity and the inclusion of additional feedstocks, such as 

switchgrass or miscanthus. The model is expected to facilitate development of Eastern Redcedar 

industries and aid businesses, entrepreneurs, and government entities in stimulating the state 

economy. A beta version of the model is available at www.gladis.okstate.edu.  

http://www.gladis.okstate.edu/
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Abstract 

Interactive GIS analysis is a key feature missing from the majority of biofeedstock supply 

chain models due to software costs and the need for specialized training. Incorporating GIS 

analysis into supply chain models could enhance their capabilities and value. Oklahoma State 

University has developed the Geospatial Logistics and Agricultural Decision Integration System 

(GLADIS) to provide facility selection, service area, and mapping features in a web-based supply 

chain model. Some of the primary analysis features included in GLADIS are location-allocation, 

service area determination, and mapping functionality. Location-allocation is used to identify the 

optimal location for a biofeedstock facility based on highway networks, trucking restrictions, 

service area distance cutoff, and biomass supply. Distributed processing hubs are modeled using a 

two level location-allocation solver to optimize their location relative to the main facility. The 

solver identifies total biomass available to the facility and processing hubs, and determines an 

average weighted transportation distance. A service area around the central facility is calculated 

to identify inaccessible regions according to the user specified distance cutoff limit. The results of 

each function are then displayed in interactive maps. 

 

5.1 Introduction 

There is a robust body of literature examining the various components of a biofeedstock 

supply chain, such as facility design and location, harvesting, transport, processing, storage, 

refinement, and distribution of bio-products. Despite this information, biofeedstock supply chain 

uncertainty continues to limit the development of bio-industries. The primary reason for this is a 

lack of consolidated information to accurately estimate a system’s economic feasibility. A 

comprehensive method of applying existing research data to evaluate the interdependency of 

supply chain components, and the impact of these relationships on end product cost is needed. An 

effective means of closing the gap between economic potential and economic reality is the 
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development of a logistics model to evaluate supply chain strategies. One of the most important 

aspects in supply chain development is bio-facility location. 

Several software and modeling systems exist with the ability to optimize facility locations 

and several studies have detailed facility optimization procedures using these systems. One 

research group used a two stage GIS process to optimize facility location (Zhang, Johnson & 

Sutherland, 2011). The first stage identified potential facility locations based on specific criteria 

including population, rail and highway access. The second stage used a transportation cost 

relationship to identify the optimal location. Another study by Voets, Neven, Thewys, and 

Kuppens (2013) followed a similar methodology as Zhang et al. (2011) to identify the optimal 

location for a biomass refinery for phytoremediation of heavy metals. Integrated suitability 

analysis and location-allocation was used by Sultana & Kumar (2012), to identify facility size, 

location, and material transport costs. 

Other site selection models include a mathematical model that considered distributed and 

centralized facility configurations simultaneously (Bowling, Ponce-Ortega, & El-Halwagi, 2011). 

The model was programmed using the General Algebraic Modeling System (GAMS, 2014) and 

included 38 binary variables, 219 continuous variables and 325 constraints (Bowling, et al., 

2011). Another mixed integer linear programming model used GIS software to generate a 

distance matrix, biomass availability and production costs which are stored in a spreadsheet (Lin, 

Rodriguez, Shastri, Hansen, & Ting, 2013). This information can be read by GAMS, which can 

solve the optimization model. Data outputs can then be visualized using GIS software after 

exporting results to a spreadsheet. Location optimization with uncertain demand over multiple 

periods is considered by Baron, Milner, and Naseraldin (2011) in a capacitated facility location 

problem. Taking into account environmental sustainability concerns, Xifeng, Ji, and Peng (2013) 

developed a model which included CO2 emissions as a minimization parameter. 

These models provide robust methods of identifying an optimal facility location based on 

a given set of criteria. However, individuals without technical training in mathematical modeling, 
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or modeling software may find use of the models challenging. In general, these models are 

limited by a) complexity, b) software availability and/or c) model versatility. Mathematical 

models (Bowling et al., 2011; Baron et al., 2011; Xiefeng et al., 2013) may need to be 

incorporated into programming or spreadsheet software to be useable. Bowling et al. (2011) and 

Lin et al. (2013) overcome this limitation by presenting the facility location optimization models 

in GAMS, but simulation of customized scenarios may be challenging and software accessibility 

to the user is a concern. GIS software reduces the complexity of location-allocation problems by 

providing a user interface to set parameters and manipulate data, but a substantial knowledge base 

is still required. The usability of site selection models could be increased by limiting model 

complexity from a user perspective, utilizing widely available software technologies, developing 

a scalable and customizable modeling system, while retaining the GIS software and location 

optimization model benefits. 

Geospatial analysis has been incorporated into an Oklahoma State University’s (OSU) 

web-based, techno-economic model, the Geospatial Logistics and Agricultural Decision 

Integration System (GLADIS). This system is currently focused on biofeedstock supply chain 

modeling with the target feedstock being Eastern Redcedar. The current use of GIS in this web 

application is focused on optimizing the location of a facility, the first stage of supply chain 

development. However, the modular framework of GLADIS has been designed so GIS analytics 

could be expanded to provide additional functionality such as multi-modal transport and spatial 

statistics. The objective for the GIS module in GLADIS was to provide GIS location-allocation 

and service area analysis to users in a simple interface without the need for additional software or 

technical training.  
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5.2 Database Development 

The location-allocation component requires biomass supply points, potential facility 

locations, and potential preprocessing hub locations as input variables. Biomass supply points 

represent geographic locations with a quantity of Eastern Redcedar biomass associated with the 

point. This supply may be transferred according to a defined street network to geographic points 

that represent the location of a hypothetical preprocessing station or biofeedstock facility. To 

minimize user input requirements, a MySQL database of biomass supply points, potential 

facilities, and preprocessing hub locations was created. Biomass supply points for Eastern 

Redcedar were produced from canopy coverage maps made available by the Natural Resources 

Conservation Service (NRCS) using ArcGIS 10.2 (Environmental Systems Research Institute 

[ESRI], 2014a). These maps are comprised of approximately 2.3 million polygons representing 

Eastern Redcedar groves in three classes: 10 to 30%, 30 to 70%, and greater than 70% canopy 

cover in 18 Oklahoma counties (Staks, Venuto, Eckroat, & Lucas, 2011). An allometric equation 

relating canopy cover to aboveground dry biomass was developed by Starks et al. (2011) and is 

provided in Equation 5.2.1. 

 

y = 639.1x + 4962.1 5.2.1 

Where y is aboveground dry biomass in t per ha and x is percent canopy cover. Available 

tonnage for each map polygon was estimated using the median canopy cover of the classes, i.e. 

20%, 50% and 85%. To reduce data storage and processing overhead requirements, polygons 

were converted to centroid points. Each centroid point was grouped in a grid of 16.2 km
2
 cells, 

and the biomass associated with each point summed. The total tonnage was stored in a MySQL 

database using the centroid of each grid cell as a point location, resulting in 2,343 supply points. 

Potential facility and processing hub locations were developed using a similar approach. 

A dataset of Oklahoma population areas was downloaded and converted to centroid points (ESRI, 



82 
 

2014b). Although Zhang et al. (2011) used a population cutoff of 1,000 to constrain potential 

facility locations, 67% of the locations in the Oklahoma population areas dataset had a population 

below 1000, so a cutoff of 500 was chosen (ESRI, 2014b). All population centers meeting this 

criterion were stored in a MySQL database as potential facility locations. Potential processing 

hub locations included both potential facility locations and transportation network nodes, points 

where vehicles may enter or change route, from the Freight Analysis Framework Network 

(Department of Transportation [DOT], 2013).  The transportation network nodes were included as 

potential processing hub locations because the hubs require highway access but do not have the 

labor demands of the main facility. The database tables contain 360 potential facility locations 

and 3,116 potential processing hub locations. 

 

5.3 Application Development 

GLADIS leverages the network analyst functions available through ArcGIS for 

Developers (ESRI, 2014c). Specifically, GLADIS uses the location-allocation, service area, and 

geocoding features to determine the optimal facility location and then generates map 

visualizations. The location-allocation solver identifies the optimal facility location by 

minimizing impedance (biomass quantity multiplied by transport distance) from supply points to 

the main facility (ESRI, 2014c; ESRI, 2014d). This procedure selects a facility such that the 

largest quantity of biomass is available within a given service area, which will minimize biomass 

acquisition costs (Searcy, Flynn, Ghafoori, & Kumar, 2007). 

Users interact with the site selection component of GLADIS through a web interface 

(Figure 26). At a minimum, the user must select “optimize” and specify a service area limit to run 

a simulation. Alternatively users can run a more complex analysis by selecting a facility type, 

service area, product(s) to manufacture, estimated throughput, or entering user identified potential 

facility locations. The interface enables users to simulate distributed processing hubs or a single 
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central processing facility using the database of potential facility locations (global) or user 

specified locations (local). To prevent entry of non-real locations, a Google Maps API predicts 

the location being entered based on the user’s keystrokes (Google, 2014). The Google Maps API 

also ensures custom locations are in the proper format to be geocoded into latitude and longitude 

coordinates by the ArcGIS JavaScript API. After data entry is completed, potential facility 

locations, biomass supply points, and other parameters (Table 13) are converted to a JSON 

object. Currently, only the facilities to find and impedance limit are specified by the user; other 

values are preprogrammed into the model. 

 

Table 13. Analysis options specified for location-allocation solver. 

Parameter Value 

Format JSON 

Measurement Units Miles 

Travel Mode Trucking 

Facilities to Find 1
a
 

Analysis Region North America 

Problem Type Minimize Impedance
a
 

Impedance Limit Integer, i.e. 35 

aDependent on facility model 

Figure 26. Web interface for users to enter parameters for optimizing a facility location. 
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 A Hypertext Preprocessor (PHP) Proxy is used to transfer the JSON object variable to 

ArcGIS servers for processing (ESRI, 2014e). A proxy configuration file routes data for each GIS 

service to the appropriate server using web urls specific to the location-allocation, service area, 

and geocoding services. The PHP proxy is responsible for appending an identification token to 

the GIS service request and entering the JSON object into a processing queue on the server. The 

identification token is generated using OAuth 2.0 standards, enabling application authentication, 

i.e. users do not need to be associated with ArcGIS Online to use the services. The data transfer is 

asynchronous, so a job status query is sent to the server once per minute until the job is completed 

(1-3 min.) and the optimal facility location(s) returned. 

A simplified schematic of this process is shown in Figure 27. Solving for the globally or 

locally optimal facility is a straightforward process, and requires data formatting, transfer to ESRI 

servers, and result retrieval. Optimizing the location of a central facility with distributed 

processing hubs is a two stage process. The first stage is identical to the process for optimizing a 

single facility location and determines the primary facility location for the second stage. The next 

step creates a buffer around the optimized location calculated in stage one that is 25% larger than 

the user specified service area, primarily to improve processing performance. Supply points and 

potential processing hub locations within the buffer are used to create a new JSON object 

variable. The location returned by the solver in stage one is specified as a required facility in the 

new JSON object.  

Three solver parameters are modified before transferring the variable to the GIS server: 

facilities to find, problem type and service area. The “facilities to find” option is set to one plus 

the number of satellite stations specified by the user and the “problem type” is specified as 

maximize coverage.  The service area limit for each processing hub and main facility is set to 

two-thirds of the original service area, effectively increasing the transport range of the main 

facility by 33%. This increase in the effective service area of the main facility is conservative 

considering the expected increase in biomass availability when utilizing a distributed processing 
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hub facility model (Hess, Kenney, Ovard, Searcy, & Wright, 2009). Specifying these options 

distributes the processing stations around the main facility such that the maximum land area is 

accessible within the adjusted service area distance limit. 

The final GIS analytical component creates a visual service area outline for the optimal 

facility and distributed processing hub locations generated by the location-allocation function. 

The service area is calculated using the same general procedure as the location allocation; create a 

JSON variable, specify parameters, transfer data to a GIS service, and retrieve the result. It uses 

the same service area distance limit specified by the user and all other applicable parameters 

remain constant. 

Start

Global 

Optimization?
Geocode 

Locations
No

Format Data as 

JSON Object

Yes
Biomass 

Demand

Potential 

Facilities

Optimize Facility 

Location(s)

Done

No

Potential 

Satellite 

Stations

Yes

ESRI Operation

Database Input

System Logic

LEGEND

Hub Stations to 

Locate?

Figure 27. Schematic of operations to determine the optimal facility location and satellite station 

locations. 
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5.4 Outputs 

The results generated from the location-allocation provide the optimal facility location, 

its service area, accessible biomass, and weighted transportation distance (biomass tonnage 

multiplied by distance). The weighted transportation distance is used in the GLADIS trucking 

module to estimate the number of tractor-trailers required for a facility. A summary of the 

location-allocation results include the main facility location, available biomass, how long the 

facility can be supplied with biomass, and a brief statement of assumptions. However, the 

primary benefit is the graphical representation of facility service area and biomass allocation.  

Figure 29 shows the location-allocation result for a single facility in Seiling Oklahoma, 

with a 48 km (30 mi) service area distance cutoff. The biomass supply allocation is shown by 

straight lines from the facility. The biomass assigned to the facility is represented as a point, the 

size of which indicates the relative quantity of biomass in that location. Although the location-

allocation solver provides an indication of biomass accessibility, experimentation during the 

development of GLADIS suggested additional analysis was needed. Using the location-allocation 

parameters, a generalized service area representation was created for the facility (Figure 28). The 

added geospatial analysis was done for two reasons. First, the online location-allocation service 

has a snap tolerance of 20 km (12.4 mi) (ESRI, 2014c). Therefore, all supply points within 20 km 

(12.4 mi) of a street may be allocated to a facility location if the supply point is within the service 

area distance limit. Secondly, biomass data used for analysis is currently at least 10 years old 

(Starks et al., 2011). During that time, the quantity and location of available Eastern Redcedar 

biomass may have shifted due to new tree growth, controlled burns, and drought. GLADIS 

currently cannot account for new growth; however, the service area (Figure 28) provides an up-

to-date graphic of accessible land. ESRI (2014f) states the highway network used for site 

selection and service area analysis is updated every four months, making old Eastern Redcedar 

biomass data the primary source of uncertainty when determining the facility location. 
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Figure 28. Service area for a hypothetical facility located in Seiling, OK. 

Figure 29. Biomass allocation to a hypothetical facility located in Seiling, OK. 
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GLADIS provides the ability to simulate distributed processing stations, which was noted 

to increase the feasibility of transporting biomass over long distances (320 km) (Hess et al., 

2009). The resulting facility model is presented in Figure 30. Satellite stations are represented by 

blue squares and the main facility by a green square. The corresponding service area 

representation is shown in Figure 31. For the same location (Seiling, OK) and service area 

distance limit (48 km [30 mi]), the distributed hub model (Figure 31) results in fewer regions of 

inaccessibility and encompasses a greater overall area than the central facility model (Figure 28). 

This is most likely the result from a combination of the specified problem type, maximize 

coverage versus minimize impedance, and the addition of processing hubs. Future versions of 

GLADIS will provide advanced options allowing the user to modify more of the default 

parameters, e.g. problem type, highway restrictions, travel mode, and impedance transformations.

Figure 30. Biomass allocation for a facility with five processing hubs in Seiling, OK. 
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5.5 Conclusion 

GIS network analysis provides a method of determining the optimal location of a 

biofeedstock facility that maximizes available biomass and minimizes transport cost.  The GIS 

analysis is complemented by the creation of a facility service area to provide a more detailed 

representation of accessible land regions within a specified impedance limit. The inclusion of 

processing hubs can be modeled using a two level location-allocation solver to identify the best 

regional location and then the optimal location of hubs to maximize service area coverage. 

Incorporating these features into a web-based supply chain model makes high level GIS analysis 

available in a simple format to non-GIS specialists, without reducing the viability of results. The 

generated outputs are used in other sectors of the web-module and improve the overall 

simulation. Future work includes expansion to model multi-modal transportation networks, 

suitability analysis, and crop yield predictions. A beta version of the GLADIS model has been 

released and is available at www.gladis.okstate.edu.  

Figure 31. Service areas for a hypothetical five processing hub facility in Seiling, OK. 

http://www.gladis.okstate.edu/
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Abstract 

There is a high degree of uncertainty in biofeedstock supply chains that is not easily 

quantified in current modeling systems. Monte Carlo and one-way sensitivity analysis can be 

used to quantify supply chain uncertainty and identify critical cost factors. To improve current 

supply chain modeling capabilities, Monte Carlo and one-way sensitivity analysis were 

incorporated into an online, modular, commodity based supply chain model. Empirical data was 

compiled to create distribution functions for key system variables so a stochastic solution could 

be determined using Monte Carlo simulations. The sensitivity analysis programs were written in 

JavaScript to facilitate online development. Sensitivity analysis results for biofeedstock 

transportation indicated the system was most sensitive to changes in fuel cost while truck weight 

had the highest potential cost impact. Minimum, maximum, average, and quartile cost estimates 

were calculated from the Monte Carlo simulation. Analysis results are displayed graphically and 

include the system cost distribution, variables ranked by both sensitivity and potential cost 

impact. The inclusion of robust sensitivity analysis techniques in a web-based supply chain 

modeling system is an improvement over current systems. Additional value is provided to users 

for better quantitative analysis of biofeedstock supply chains. 

 

6.1 Introduction 

Monte Carlo analysis is a deterministic method of evaluating a complex system by 

calculating a finite number of outcomes using parameter values randomly generated according to 

their defined probability distribution (Metropolis & Ulam, 1949). The law of large numbers 

indicates that subsequent statistical analysis of the resulting outcomes will be representative of 

the overall system. The effect of system parameter value inaccuracies can be quantified using 

one-way sensitivity analysis, which systematically varies each parameter through its probability 

range (Kjaerulff & van der Gaag, 2000). Each of these methods has been used to evaluate 
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uncertainty in biofeedstock supply chain systems in prior studies (Hess, Kenney, Ovard, Searcy & 

Wright, 2009; Awudu & Zhang, 2012; Kim, Realff, & Lee, 2011; Awudu & Zhang, 2013). Hess 

et al. (2009) outlines an approach to transition biofuels industries to an advanced supply chain 

infrastructure, designed to overcome current economic, sustainability, and logistics concerns. 

Researchers used Monte Carlo and one-way sensitivity analysis to determine the cost distribution 

and rank supply chain variables by their relative sensitivity and cost impact. Kim et al. (2011) 

used sensitivity analysis to determine high impact variables as part of a two stage process to 

maximize profit for a given scenario. The identified high impact variables were then incorporated 

into a Mixed Integer Linear Programing (MILP) model programmed in the General Algebraic 

Modeling System (GAMS, 2014). Another methodology was also used to solve a deterministic 

and stochastic model (Awudu & Zhang, 2013). The stochastic model was solved using Monte 

Carlo simulation, specifically due to the existence of uncertainties in the model parameters. These 

techniques are useful for ranking system variables by importance and determining the overall 

system distribution. Each of these outputs are integral to understanding a biofeedstock supply 

chain and implementing best management practices. 

Oklahoma State University (OSU) has developed the Geospatial Logistics and Decision 

Integration System (GLADIS) a modular, systems-based logistics and techno-economic model to 

evaluate biofeedstock supply chain components, with a specific focus on Eastern Redcedar. A 

biofeedstock supply chain presents unique logistical challenges, depending on the facility 

location, existence of processing hubs, transport, processing, harvest, storage, and refining costs. 

Companies looking to invest in Eastern Redcedar industries have expressed a need for 

characterization of the cost and cost variance at each stage in the supply chain, without over 

simplification. An effective means of addressing this critical, stakeholder identified need is 

through the development of an online, whole chain logistics system that is flexible and 

sufficiently robust to provide techno-economic data for a variety of alternative supply chain 
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scenarios. One of the primary outputs required by users of this web-based model is quantitative 

information from sensitivity analysis for risk management, such as cost variance, and the 

minimum and maximum possible costs. The impact of individual variables on total cost can be 

determined and system variability quantified to evaluate the likelihood of specific outcomes. The 

purpose of this manuscript is to describe the approach used to develop and implement single-

factor sensitivity analysis in an online supply chain model and provide an overview of analysis 

results. 

 

6.2 System Distribution Development 

Prior to implementing Monte Carlo simulation and one-way sensitivity analysis in the 

supply chain model, it is necessary to know the properties of certain system variables. 

Specifically, it is desirable to know the probability distribution function (PDF) that characterizes 

each variable. Determining the PDF for cost variables began with the compilation of raw, 

empirical data from the literature and online equipment listings. Distributions were fitted to the 

data using MATLAB® data analysis software (MATLAB, 2014) and a specialized program 

written by Sheppard (2012) for selecting the best fitting distribution. MATLAB® provides built-

in functions to fit distributions to empirical data using maximum likelihood estimates and 

determining rankings for model selection, such as Bayesian Information Criterion (BIC) 

(MATLAB, 2014). The program written by Sheppard (2012) utilizes these functions, but loops 

through all valid parametric probability distributions provided in MATLAB® and sorts them 

according to a specified ranking parameter. BIC was chosen as the ranking criterion because it 

penalizes for model complexity (number of parameters), considers goodness-of-fit, and sample 

size. The equation for BIC is given in Equation 6.2.1. 

 

BIC = -2(logL) + (X * log(Y)) 6.2.1 
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Where logL is the log-likelihood, X is the number of parameters, and Y is the number of 

observations (MATLAB, 2014). It should be noted that the BIC does not determine the “best” 

probability distribution, but serves as quantitative method of choosing one distribution over 

another. These empirical distributions were stored in a MySQL database with the PDF name, 

range, and parameter values. 

 

6.3 System Implementation 

To perform Monte Carlo simulations, the PDF data was extracted as an associative array, 

and the distribution name matched to a random number generator. Simulating a specific 

distribution was achieved through the implementation of rejection sampling as illustrated in 

Figure 32. Rejection sampling entails defining a grid from zero to the maximum probability value 

of the distribution on the y-axis, and constraining the x-axis to the minimum and maximum 

values of the empirical data. Programmatic implementation of rejection sampling was performed 

in JavaScript and a PDF specific random number generator programmed for each distribution. 

The pseudo-code for the procedure is given by: 

 

Procedure (Continuous Case) 

 Choose g(x) (a density function that is easy to sample from) 

 Determine a constant c such that: c · g(x) ≥  f (x) 

1. Let Y ~ g(y) 

2. Let U ~ Unif [0, 1] 

3. If U ≤  f (x) / c·g(x) then X=Y; else reject and return to step 1 
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 To improve processing performance, step two in the pseudo-code is modified to be a 

uniform distribution from zero to the distributions mode. Closed form equations for each 

distributions mode were determined from the literature. If a closed form equation could not be 

identified, the maximum probability of occurrence was set to one. To verify correct programmatic 

implementation, simulation values were downloaded into Microsoft Excel™ and compared 

against native Excel™ distribution functions as shown in Figure 33. By visual inspection, it was 

determined generated values approximated a distribution, e.g. normal, exponential, or gamma.  

Figure 32. Graphical example of rejection sampling. Points beneath the probability density 

function (dashed line) are kept while points above are rejected. 

Figure 33. A histogram of simulated data is overlaid with a Microsoft Excel™ generated distribution curve for 

programming verification. 
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The second major component of sensitivity analysis for the supply chain modules was a 

one-way sensitivity analysis. This was accomplished by incrementing a single variable through its 

distribution range while holding all other variables constant. Sufficient data to derive the relative 

cost and sensitivity impact of each variable was generated by dividing each variable’s distribution 

range into 100 increments. Relative sensitivity of the supply chain to changes in a single variable 

was determined by calculating the rate of change in system cost incurred by the variable, and then 

normalizing it against the other cost variables. Similarly, relative cost impact was calculated from 

the difference in total system cost at the upper and lower end of the variable’s cost range and then 

normalizing the result against the other variables. Pseudo-code for the procedure is given by the 

following: 

 

Procedure 

 Let N be the number of distributions to analyze 

 Let Dist[N] be an array of distributions 

1. For i = 0 to N 

2.     Let UB = upper range limit of Dist[i] 

3.     Let LB = lower range limit of Dist[i] 

4.     Let Step = (UB – LB) / 100 

5.     # Increment through the distributions range 

6.     # Keep all other variables constant at the baseline 

7.     For j = 0 to 100 

8.         Let value = LB + Step 

9.         Data[j] = Function( value ) 

10.     Next j 

11. Next i 

 

Data generated during the Monte Carlo and one-way sensitivity analysis are kept in 

ordered arrays and stored in a MySQL database. One-way sensitivity analysis data is stored in 

data columns for each variable; however, to minimize storage requirements, the Freedman-
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Diaconis bin size rule (Equation 6.3.1) was used to transform the Monte Carlo data prior to 

storage (Freedman & Diaconis, 1981). 

Bin size = 2·IQR·n
-0.333

 6.3.1 

Where IQR is the interquartile range of the sample and n is the number of observations in the 

sample. Bin midpoint, sample frequency, and probability of occurrence are then stored in the 

database. The information is later extracted to generate visualizations of the analysis results. 

 

6.4 Results and Discussion 

There are three major requirements for incorporating Monte Carlo simulation into a web 

model. Namely, evaluation of mathematical equations for the system, probability distributions for 

system variables, and a method of generating stochastically independent random variables for 

each distribution. Additionally, the website structure, user interface and database interactions 

should also be created. The backbone of the online Monte Carlo analysis is a JavaScript random 

number generator to simulate specific distributions. There are several mathematical methods of 

simulating continuous random variables such as the inverse transformation method, rejection 

method, hazard rate method, and other special techniques for the normal, gamma, beta, and 

exponential distributions (Ross, 2010). Each of these methods has advantages; however, rejection 

sampling was chosen for its relative simplicity and robustness. It must be noted that it is a less 

efficient approach than other methods and may require multiple iterations. However, modern 

computer processors have rendered this a trivial concern.  

Currently, PDF data for key system variables are stored in a MySQL database to be 

extracted for simulation. During the Monte Carlo simulation, programming logic evaluates each 

database variable in a loop to determine if it has an assigned distribution. If a match is found a 

JavaScript Object Notation (JSON) variable containing the minimum and maximum empirical 

data values, PDF name, and its parameters is created. If no match is identified the variable’s value 
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is not changed from the original default or user specified value. The JSON variable is then passed 

to a JavaScript function that can generate random numbers following the distribution curve. 

Including additional variables such as equipment utilization, wages, or interest rates in the Monte 

Carlo analysis requires adding a logic check for the new variable. The same logic check controls 

one-way sensitivity analysis, so no additional program modifications are required after the initial 

update. Currently, the primary limitations of the system are a lack of empirical data to develop 

PDFs for variables and the inability of users to specify distributions for variables within 

GLADIS. Incorporating additional variable distributions in the model would make GLADIS more 

robust and enhance its capabilities, while allowing distributions to be specified by the user would 

make it more customizable.  

6.4.1 System Application to a Transportation Operation 

The results of Monte Carlo simulation and one-way sensitivity analysis are given in the 

context of a truck transportation system to more effectively demonstrate the outputs generated by 

the modeling system. The algorithms used to calculate costs are derived primarily from Berwick 

& Farooq (2003) with the exception of fuel cost which utilizes the method outlined by Hussein & 

Petering (2009). Distributions developed for system analysis included truck weight, fuel cost, 

truck retail value, trailer retail value, and tire costs. The distribution functions and corresponding 

parameters can be seen in (Table 14). Based on the original Monte Carlo data, the cost 

distribution is provided, as shown in Figure 34.  

Table 14. Transportation variables with assigned PDF and parameter values used in Monte Carlo simulation. 

Variable Distribution Parameters 

Steer Tire Gamma a = 19.5,        b = 21.2 

Drive Tire Weibull a = 500,         b = 4.9 

Trailer Tire Gamma a = 14,           b = 28.1 

Fuel Cost Rician s = 3.9,          σ = 0.11 

Truck Cost Birnbaum Saunders Β = 39730,    γ = 0.59 

Trailer Cost Gamma a = 10.7,        b = 2570 

Truck Weight Generalized Extreme Value k = 0.28,       σ = 5730,      µ = 36000 
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Based on the generated data, several important factors can be determined regarding the 

distribution of cost for transportation. The mean transportation cost is $1.70 per mile with a 

standard deviation of $0.22. Therefore, the model user can expect total transportation costs to be 

between $1.26 and $2.14 approximately 95% of the time. This range covers nearly the entire 

distribution of probable values, indicating high variance in the system. Given this information, a 

user can compare their base cost estimate to the systems distribution to determine if their 

underlying cost variable inputs are reasonable. The base cost is determined from the user’s initial 

inputs for costing variables, e.g. truck retail, trailer retail, insurance, and tax rates. One-way 

sensitivity analysis provides additional information regarding the interrelation of cost variables. 

This analysis indicates the interdependency of variables, their relative impact on total system cost 

and the relative sensitivity of total system cost to changes in the variables as shown in Figure 35. 

Relationships between variables can be seen as the curvature of the lines, where non-linear 

variable relationships have a more noticeable curve. The maximum change in total cost on the y-

axis indicates the variables cost impact, effectively the cost change incurred by a variable change.  

Figure 34. Transportation system cost distribution derived from Monte Carlo simulation. 
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This contrasts with the variables sensitivity, represented by the rate of change in total cost 

resulting from base changes in the variable. These last two sensitivity measures can be separated 

to rank the variables relative to one another (Figure 37 and Figure 36). As an be observed from 

these figures, diesel fuel cost is ranked as the transportation cost variable that is most sensitive 

while it is ranked fourth in terms of overall cost impact. This is somewhat intuitive considering 

small changes in the cost of diesel may cause a large change in total operating cost, indicating 

high sensitivity; however, the limited range of expected diesel fuel prices constrains its effect 

somewhat resulting in a much lower cost impact ranking than, for instance, truck cost. 

Additionally, these rankings can reveal unexpected results, such as the ranking of truck weight as 

the most significant influence on total transport cost. Such findings reflect the algorithms used to 

calculate total transportation cost, for which truck weight is a variable in the maintenance, fuel 

and tire cost equations. This means truck weight affects cost in three areas, while changes in other 

variables may only affect one or two sectors. Including Monte Carlo and one-way sensitivity 

analysis in GLADIS enhances the models functionality and provides users a method of 

quantifying supply chain uncertainty. 

Figure 35. Spider chart representation of one-way sensitivity analysis results. 
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Figure 37. Relative sensitivity of transportation cost variables. 

Figure 36. Relative cost impact of transportation cost variables. 
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6.5 Conclusion 

The Monte Carlo and single-factor sensitivity analysis built into GLADIS provides users 

with quantitative information about the harvesting and transportation stages of a supply chain. 

Variables are ranked by their relative sensitivity and cost impact using one-way sensitivity 

analysis. Monte Carlo analysis provides the systems expected cost distribution and summary 

statistics that include the minimum, maximum, mean, median, standard deviation, and quartiles. 

The results are displayed graphically so users may see a visual representation of the analysis. 

Algorithms were programmed in JavaScript, so the user is not required to download any software 

packages. As an online modeling system, the sensitivity analysis components of GLADIS may be 

accessed from any electronic device with a data connection. Future work will supplement the 

model by adding the ability to specify custom variable distributions and increasing the number of 

variables that have an assigned distribution. The beta version of the model has been deployed and 

is available at www.gladis.okstate.edu for review and supply chain simulation. 

http://www.gladis.okstate.edu/
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CHAPTER VII 
 

 

CONCLUSION 

The beta version of GLADIS provides users with techno-economic, geospatial, and 

sensitivity analysis for an Eastern Redcedar supply chain. Techno-economic data is generated for 

the harvesting, processing, transport, and refining of Eastern Redcedar. Modeling information is 

entered through a simple user interface or default values from a database may be used. This gives 

GLADIS more flexibility and allows users to select default values or enter inputs based on 

personal knowledge of their operation. The analysis results are displayed in interactive graphics 

with drill-down capability. 

GIS network analysis provides a method of determining the optimal location of a 

biofeedstock facility that maximizes available biomass and minimizes transport cost.  The GIS 

analysis is complemented by the creation of a facility service area to provide a more detailed 

representation of accessible land regions within a specified impedance limit. The inclusion of 

processing hubs can be modeled using a two level location-allocation solver to identify the best 

regional location and then the optimal location of hubs to maximize service area coverage. 

Incorporating these features into a web-based supply chain model makes high level GIS analysis 

available in a simple format to non-GIS specialists, without reducing the viability of results. 

Uncertainty within supply chain nodes is quantified through Monte Carlo simulations and 

one-way sensitivity analysis. The Monte Carlo and single-factor sensitivity analysis built into 

GLADIS provides users with quantitative information about the harvesting and transportation 

stages of the supply chain. Variables are ranked by their relative sensitivity and cost impact using 



107 

 

one-way sensitivity analysis. Monte Carlo analysis provides the systems expected cost 

distribution and summary statistics that include the minimum, maximum, mean, median, standard 

deviation, and quartiles.  

The modular design of GLADIS allows for quick expansion of analytical capacity and 

the inclusion of additional feedstocks, e.g. switchgrass, forage sorghum, miscanthus, and canola. 

As an online modeling system, GLADIS may be accessed from any electronic device with a data 

connection. The analysis results are displayed in interactive graphics with drill-down capability.  

It is expected that the model will facilitate development of Eastern Redcedar industries and aid 

businesses, entrepreneurs, and government entities in stimulating the state economy. The beta 

version of the model has been deployed and is available at www.gladis.okstate.edu for review and 

supply chain simulation. 

 

 

  

http://www.gladis.okstate.edu/
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CHAPTER VIII 
 

 

FUTURE WORK 

 

8.1 Overview 

Currently, the primary focus is review and incorporation of client comments and 

suggestions to enhance the usability of GLADIS. Additional steps are being taken to enhance 

database security and improve processing performance, such as transitioning to server processing, 

consolidating the model into a PHP framework, and utilizing CSRF tokens. Expanding the model 

to include multiple feedstocks is a key objective for future versions. Many of the models current 

features could be improved, such as increased options for location-allocation, geospatial yield 

statistics, projected biomass yields, discount cash flow for all modules, and custom stochastic 

distributions for cost variables. Future editions will see more calculations implemented server 

side to provide greater processing power and limit lag. 

8.2 Geospatial Information System 

The GIS components included in GLADIS are a limited example of the capabilities that 

can be provided to government, business, and research institutions. Foremost, the location-

allocation feature could be expanded to provide options for the client to specify solver type, 

custom travel restrictions, alternative demand points, competing facilities, facility capacity, and 

measurement transformations (Environmental Systems Research Institute [ESRI], 2014a). Adding
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 GIS data for alternative biomass feedstocks would have the greatest impact on the 

current system and be the simplest modification to implement. Expanding the solver types 

available for analysis would provide users a means of tailoring the model simulation to better 

match their business objectives, such as maximizing their market share or minimizing the number 

of facilities. The measurement transformation could be used to more accurately represent the 

impact of travel distance on transportation cost by specifying a linear, exponential or power 

relationship. These variables should be incorporated as options so the user may control the 

complexity and level of detail in their analysis. With the current foundation, these improvements 

should be straightforward to incorporate into the GLADIS model. To add additional detail to the 

model, optimized routes could be incorporated from any processing hubs to the main facility or 

facilities then to distribution centers. This could be used to account for shipping and handling 

costs associated with distribution of the final product(s). 

 In the literature, multi-modal transportation networks are considered in biomass 

transportation logistics when selecting a facility location (Bowling, Ponce-Ortega, & Halwagi, 

2011; Zhang, Johnson, & Sutherland, 2011; Voets, Neven, Thewys & Kuppens, 2013; Hess, 

Kenney, Ovard, Searcy, & Wright, 2009). This functionality should be incorporated into 

GLADIS in future versions to provide advanced options to clients for supply chain analysis, 

without requiring a high level of technical knowledge or software expertise. The additional 

network datasets would allow GLADIS to determine the feasibility of multi-modal transport 

and/or the range at which multi-modal transport becomes feasible. Per mile costs, fixed costs, and 

variable handling costs could be accounted for with minimal input. Aside from network analyst 

functions, the most obvious benefit of GIS in an online modeling system is mapping. Biomass 

yield maps for forage sorghum, switchgrass, miscanthus, corn stover or any other biomass could 

be approximated for a given year, land area or soil type using a technique known as fuzzy logic. 

Fuzzy logic is typically used in suitability analysis (ESRI, 2014b) but it could be used to estimate 
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biomass yield with Oklahoma Mesonet and USGS data such as precipitation, temperature, solar 

radiation, relative humidity and soil composition. A similar concept was presented by Kenkel 

(2014) which used Mesonet data to simplify estimation of switchgrass biomass yields. Using 

fuzzy logic, each variable could be assigned a distribution specific to how it affects a certain 

feedstock yield, e.g. switchgrass growth is highest when temperatures in a certain range. The 

primary advantages of using fuzzy logic to estimate yield is that it accounts for spatial variance, 

may include many (or few) variables, and is ideal for circumstances where a variable has a known 

impact but the relationship is not clear. The generalized methodology would involve conducting 

suitability analysis for specific biomass crops under known conditions with fuzzy logic and then 

determining empirical relationships between crop yield and the fuzzy membership calculated 

from all variables. Once this relationship is established, yield estimates could be obtained for that 

crop in any location where data for the fuzzy membership variables is available. 

8.3 Sensitivity Analysis 

There remains considerable room for improvement and expansion in the current 

sensitivity analysis module. One such change is server side processing which would increase the 

speed of processing and reduce the client’s computer lag during analysis of very large systems. 

Additionally, simulations are currently limited to variables with a distribution assigned in the 

model’s database. Including a method for the user to assigned distributions to specific variables 

would enhance the analysis detail and enable them to more closely simulate a specific scenario. 

This would also make it possible to provide analysis data for sub-systems, e.g. maintenance, fuel, 

tire wear, etc. The ultimate goal for future model versions is to link the model with a robust and 

extensive database repository that stores empirical data for the system variables. Distributions 

could be determined dynamically from this information for simulation, limiting input 

requirements from the user. These modifications would make the Monte Carlo simulation and 

one-way sensitivity analysis more robust, detailed and accurate, resulting in a better 
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quantification of risk in supply chain systems. More sophisticated sensitivity analysis could also 

be easy incorporated into the model since the programming foundation has been laid. This could 

include n-way analysis to determine the joint impact of parameters, non-parametric statistics to 

model systems using fewer assumptions, and geometric Brownian motion to model commodity 

prices. Inclusion of these capabilities would provide a very robust set of analysis tools for 

modeling complex systems. 
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APPENDIX I – DELIVERY SYSTEMS FOR FOREST RESIDUE 

Site Descriptions 

Site I: A large forest area (> 125,000 ha) covered by private forest roads which allows high 

transport speeds (> 100 km/h) and large payloads (up to 60 tonnes). These sites are not open to 

the public. The total amount of arisings available in such an area would be sufficient to supply up 

to 100,000 green tonnes per annum of feedstock to a centrally located energy plant without the 

need to use public roads. Hence the system is not constrained by legal maximum axle weights on 

transport vehicles. Total transport distance is 25 km on average of which 2 km is on forest tracks 

and 23 km on good forest roads. 

 

Site II: A large forest area (200,000+ ha) consisting of a number of separate forests, small and 

large (3000–140,000 ha), within a small region. Arisings from the different forest areas would be 

combined to achieve enough feedstock to supply an energy plant. Transport on public roads is 

necessary which requires maximum transport vehicle weights and dimensions to comply with 

New Zealand legislation. Total transport distance is 50 km on average of which 4 km is on forest 

tracks, 26 km on good forest roads and 20 km on public roads.  

 

Site III: Scattered forests (from 100 to 20,000 ha each to give a regional total of 150,000 ha) 

necessitating public road transport over larger distances. Total transport distance is 75 km on 

average of which 4 km is on forest tracks, 26 km on good forest roads and 45 km on public roads. 
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Scenario Descriptions 

Delivery systems for landing residues: 

A: load residues into truck—transport to power plant—unload truck—chip residues; 

B: load residues into truck—transport to a central processing yard—store residues for 3 months—

chip into truck—transport to power plant—unload truck;  

Delivery systems for cutover residues: 

C: forward residues to landing—unload forwarder—store residues for 3 months—load into 

truck—transport to power plant—unload truck—chip residues; 

D: forward to landing by chipper-forwarder—unload chips from chipper-forwarder—store chips 

for 1 month—load into truck—transport to power plant—unload truck; 

E: forward to landing by chipper-forwarder—transfer chips into truck—transport to power 

plant—unload truck; 

F: forward to landing—unload forwarder—store residues for 6 months—chip residues—store 

chips for 1 month—load into truck—transport to power plant—unload truck; 

G: forward to road side—unload forwarder—store residues for 6 months—chip into truck—

transport chips to power plant—unload truck. 

 

This is a partial methodology description of research conducted by:  

Hall, Peter, Jörg K. Gigler, and Ralph E. H. Sims. 2001. Delivery Systems of Forest Arisings for 

Energy Production in New Zealand. Biomass and Bioenergy. 21 (2001) 392-399. 
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APPENDIX II – DATABASE INFORMATION 

Harvesting Module Data 
Table 15. Database information for the harvesting module. Input are provided for by machine size and type if the user specifies the automatic inputs option. 

Machine Class Tracked Size Hp Life (yrs) Salvagea Utilization%) Repairb Ins. (%)c Fuel Cons.d Lubricatione Interest (%) Tax (%) 

feller_buncher F s 175 3 20 65 100 5 0.02633 36.77 10 0 

feller_buncher F m 200 4 20 65 100 5 0.02633 36.77 10 0 

feller_buncher T l 225 5 15 60 75 5 0.02633 36.77 10 0 

forwarder F m 180 4 20 65 100 4 0.02488 36.77 10 0 

slasher_loader F m 150 4 0 65 35 2 0.03104 36.77 10 0 

iron_gate_delimber F m 0 5 20 90 65 0 0 36.77 10 0 

harvester F m 250 4 20 65 110 4 0.02917 36.77 10 0 

loader F s NA 5 30 65 90 1.5 0.02166 36.77 10 0 

loader F m NA 5 30 65 90 1.5 0.02166 36.77 10 0 

loader F l NA 5 30 65 90 1.5 0.02166 36.77 10 0 

chipper F s 100 5 20 75 100 NA NA 36.77 10 0 

chipper F m 150 5 20 75 100 NA NA 36.77 10 0 

chipper F l 200 5 20 75 100 NA NA 36.77 10 0 

crawler_tractor T s 100 5 20 25 100 3.5 0.03932 36.77 10 0 

crawler_tractor T m 150 5 20 60 100 3.5 0.03932 36.77 10 0 

crawler_tractor T l 200 5 20 60 100 3.5 0.03932 36.77 10 0 

skidder F s 80 4 20 65 75 5 0.028585 36.77 10 0 

skidder F m 90 4 20 65 90 5 0.028585 36.77 10 0 

skidder F l 120 5 10 60 90 5 0.028585 36.77 10 0 

grinder F s 600 5 20 75 100 NA NA 36.77 10 0 

grinder F m 700 5 20 75 100 NA NA 36.77 10 0 

grinder F m 700 5 20 75 100 NA NA 36.77 10 0 
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Probability Distribution Data 
Table 16. Distributions used in Monte Carlo analysis, with the minimum and maximum values used in one-way sensitivity analysis. Distributions were developed using 

MATLAB™ 

Description Distribution Name 
Distribution 

Parameters 
Parameter values Minimum Maximum 

chainsaw_cost rayleigh B 575 143 2030 

chainsaw_horsepower birnbaumsaunders beta;gamma 4.34;0.365 2.2 8.6 

chainsaw_weight loglogistic mu;sigma 2.54;0.113 8.6 22.7 

chipper_cost generalizedextremevalue k;sigma;mu 0.80;22,516;32,150 10,900 569,700 

chipper_weight generalizedextremevalue k;sigma;mu 0.60;4,007;6,713 2,425 84,000 

chipper_current_life exponential mu 1,324 0 11176 

diesel_cost rician s;sigma 3.90;0.108 3.58 4.15 

drive_tire_cost weibull A;B 499;4.9 162 683 

feller_buncher_cost inversegaussian mu;lambda 147,318;519,170 49,999 550,000 

feller_buncher_weight generalizedextremevalue k;sigma;mu 2.0;4,740;27,117 24,900 244,000 

feller_buncher_current_life rayleigh B 5,364 127 16,400 

forestry_tire_cost gamma a;b 2.29;1047 168 9,585 

forwarder_cost inversegaussian mu;lambda 200,928;2,049,913 125,000 339,116 

forwarder_weight extremevalue mu;sigma 38,108;8,410 3,600 50,900 

forwarder_current_life rayleigh B 7,703 2,036 16,500 

grinder_cost rayleigh B 228,514 49,900 595,000 

grinder_weight extremevalue mu;sigma 72,955;17,505 5,540 100,000 

grinder_current_life weibull A;B 2,764;1.25 100 8,000 

harvester_cost inversegaussian mu;lambda 234,259;1,974,993 115,500 455,000 

harvester_weight tlocationscale mu;sigma;nu 40,000;0.000227;0.24 30,644 66,690 

harvester_current_life rayleigh B 5005 566 12,900 

skidder_cost birnbaumsaunders beta;gamma 120372;0.54646 38,000 335,598 
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Table 15 (cont.) 

Description Distribution Name 
Distribution 

Parameters 
Parameter values Minimum Maximum 

skidder_weight logistic mu;sigma 36156;2604 22,780 48,281 

skidder_current_life nakagami mu;omega 0.42;60,956,436 2 17,226 

skidsteer_cost inversegaussian mu;lambda 35,136;144,143 10,250 86,000 

skidsteer_weight weibull A;B 8,394;3.9 1,800 11,630 

skidsteer_current_life nakagami mu;omega 0.3;2,804,177 1 4,988 

skidsteer_tire_cost birnbaumsaunders beta;gamma 245;0.45 105 526 

steer_tire_cost gamma a;b 19.5;21 230 643 

trailer_cost gamma a;b 10.7;2,572 7,500 69,500 

trailer_tire_cost gamma a;b 14;28 163 763 

truck_cost birnbaumsaunders beta;gamma 39,727;0.585 8,700 130,422 

truck_finance_cost birnbaumsaunders beta;gamma 29,796;0.585 6,525 97,817 

truck_weight generalizedextremevalue k;sigma;mu 0.28;5,731;35,991 26,001 69,000 

 

A
 units given as percent of purchase price. 

B
 units given as a percent of yearly purchase price. 

C
 units given as a percent of purchase price. 

D
 units given as gallons per horsepower hour. 

E
 units given as a percent of fuel costs. 
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Employee Salary Data 

 

Table 17. Database information used to populate labor inputs for users. 

Title Employees Salary 

Plant Manager 1 100,000 

Plant Engineer 1 80,000 

Maintenance Supervisor 1 75,000 

Lab Manager 1 60,000 

Shift Supervisor 1 45,000 

Maintenance Technician 1 35,000 

Shift Operator 20 30,000 

Yard Hand 32 25,000 

General Manager 1 120,000 

Secretary 5 23,000 
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Depreciation Data 

 

Table 18. Annual depreciation rates used for calculating discounted cash flows in the refining module. 

Year 
Equipment 

Depreciation 

Special 

Building 

1 0.1429 0.1 

2 0.2449 0.14 

3 0.1749 0.14 

4 0.1249 0.14 

5 0.0893 0.14 

6 0.0892 0.14 

7 0.0893 0.14 

8 0.0446 0.14 

9 0 0.14 

10 0 0.14 
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