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Abstract

Type II supernovae (SNe) are the cataclysmic and very luminous last stage
in the evolutionary track of very high mass stars, resulting in the destruction of
the star and the ejection of large amounts of material into their surroundings,
with initial velocities in excess of 10,000 km s~! . SNe II are the primary sources
responsible for the production and distribution of elements with atomic masses
larger than iron throughout their host galaxies. There also are significant contrib-
utors of elements lighter than iron, in particular oxygen and calcium. The creation
of these elements has a large impact on the chemical evolution of the host spiral
galaxies. Not much is known about the later development of the progeniter stars
of SNe II, as they are an extremely small subset of the stars in our Universe and
are difficult to distinguish from other stars prior to the SN events. One of the best
methods to study the properties of the progenitor star is to study the interaction
of the SN ejecta with the circumstellar material around the SN, presumably lost
in the years proceeding the SN event. This interaction produces radio and X-ray
emission, which among other things is influenced by the speed of the outward
shock and the density of the circumstellar material. By observing this emission

over the course of decades, I garner insight into the late evolution of the very



massive stars. Only a few SNe II have been detected and monitored in the radio
(22) and X-ray (12) wavelengths. In this study, I have detected radio emission
from five historical, decades-old SNe II (nearly doubling the radio sampling size
of such events) and established X-ray upper limits for two.

Using the Very Large Array (VLA), we have detected radio emission from
the site of SN 1961V in the Sc galaxy NGC 1058. With a peak flux density of
0.063 £ 0.008 mJy/beam at 6 cm and 0.147 + 0.026 mJy/beam at 18 cm, the
source is non-thermal, with a spectral index of —0.79 4 0.23. Within errors, this
spectral index is the same value reported for previous VLA observations taken
in 1984 and 1986. The radio emission at both wavelengths has decayed since
the mid 1980’s cbservations with power-law indices of [f20em = —0.69 £ 0.23 and
Bsem = —1.75 £0.16. We discuss the radio properties of this source and compare
them with those of Type II radio SNe and luminous blue variables.

Using the VLA, we have detected radio emission from the site of SN 1970G in
the Sc galaxy M101. These observations are 31 years after the SN event, making
SN 1970G the longest monitored radio SN. With flux densities of 0.12 + 0.020
mJy at 6 cm and 0.16 £ 0.015 mJy at 20 cm, the spectral index of —0.24 4 0.20
appears to have flattened somewhat when compared with the previously reported
value of —0.56 £ 0.11, taken in 1990. The radio emission at 20 cm has decayed

since the 1990 observations with a power-law index of fsgem = —0.28 =0.13.

xii



We have also detected radio emission from the sites of SNe 1923A, 1950B,
and 1957D in the SABc galaxy M83. These observations are 75 years after the
first detection of SN 1923A, making it the oldest monitored radio supernova.
With flux densities of 0.20 £+ 0.03 mJy at 20 cm and 0.15 # 0.03 mJy at 6 cm,
the spectral index of —0.24 £ 0.26 appears to have flattened considerably when
compared with the previously reported value of —1.00 £ 0.24, taken in 1990. The
radio emission from SN 1923A at 20 cm has decayed since the 1990 observations
with a power-law index of fygemn = —4.54 + 0.22 and increased at 6 cm with a
decay index of Bgen = +4.24 £0.38. The flux densities of SN 1950B at 20 cm and
6 cm are 0.52 0.03 mJy and 0.42 +0.03 mJy, respectively, resulting in a spectral
index of —0.18 £ 0.12. The radio emission from SN 1950B has evolved since 1990
and 1992, with decay indices of Byem = —2.27 £ 0.08 and Bgern = +0.70 £ 0.11.
The flux densities of SN 1957D at 20 cm and 6 cm are 0.82 + 0.03 mJy and
0.34 £ 0.03 mJy, respectively, resulting in a spectral index of —0.73 &= 0.12. The
radio emission from SN 1957D has evolved since 1990 and 1992, with decay indices
of Bogermn = —2.29 £0.07 and Bger, = —6.42 £0.09. I also report that emission was
not detected from the Type II supernovae, SNe 1945B and 1968L, nor from the
Type Ib supernova, SN 1983N. We discuss the radio properties of these sources
and compare them to those of other Type II radio SNe.

Using the High Resolution Imager (HRI) on the Roentgen Satellite (ROSAT)

x1ii



I have made the first deep X-ray observations of NGC 7331, discovering a nuclear
X-ray source coincident with the previously determined radio and optical nuclear
centers. Positions, luminosities, and fluxes of X-ray sources in the field are com-
pared to previously identified radio and optical sources. The nucleus of NGC 7331
has been analyzed to discern any new evidence supporting the presence of a mas-
sive black hole (MBH), and comparisons are made with other Low-Ionization
Nuclear Emission-line Region (LINER) galaxies. The flux ratio of core radio to
soft X-ray emission in NGC 7331 is lower than in other LINERs included in our
sample.

Using the HRI on ROSAT I have made the first deep X-ray observations of
NGC 1058, discovering a nuclear X-ray source coincident with the previously de-
termined optical nuclear center. We report an upper limit on the X-ray luminosity
of SN 1961V, in NGC 1058, of 1 x 1038 erg s™L, but this limit cannot differentiate
between the two possible explanations for the nature of this unusual object. We
also report the X-ray detection of a source, which might be a previously unre-
ported galaxy cluster in the field near NGC 1058. Positions and fluxes of other

X-ray sources in the field are also presented.



Chapter 1

Introduction

Supernovae (SNe) are arguably the most popular and most studied astrophysical
phenomena. The first historical SN was observed by Chinese astronomers in
386 A.D. and recovered as a pulsar, G 11.2-0.3, with a rotation period of 0.54s
(Trimble 2001; Kothes & Reich 2001). There are nine confirmed historical SNe,
over the course of ~ 1,500 years, whose discoveries pre-date the first modern
optically recovered SN, SN 1885A in the galaxy M31 (Trimble 2001). Since then,
the number of objects identified as SNe through 1998 is well over 1,400 (although
a small fraction of these sources were later proven to not be actual SNe) with 134
identifications in 1998 alone (Barbon et al. 1998).

The first modern recovery of a radio supernova (RSN) was SN 1970G (Gottes-
man et al. 1972; Allen et al. 1976). This was made with the National Radio As-

tronomy Observatory (NRAO) three-element interferometer, resulting in poorer



resolution and higher noise than the best current interferometer (the Very Large
Array' [VLA]) allows. The first SN to be detected and observed with the VLA
was SN 1979C (Weiler et al. 1986; Weiler et al. 1991; Montes et al. 1998). There
have been 30 RSNe, with low radio upper limits established for over 100 others.
As one can see, the radio sampling is quite small compared to the optical c-letec-
tions. The total number of observed X-ray SNe is currently 12. The reason for
the low number of X-ray detections has primarily been due to instrumentational
limits in spatial resolution and photon sensitivity. With the recent launch of the
Chandra X-Ray Observatory, this will change dramatically, as this instrument is
far more sensitive than any previous X-ray mission and has a spatial resolution

comparable to that of the VLA.

1.1 Types of Supernovae

There are two distinct optical classifications of SNe, Type I and Type II (Minkow-
ski 1941). The key difference between them is that Type [ SNe have no conspic-
uous hydrogen absorption lines in their optical spectra, unlike Type II SNe. The
Type I SNe are also divided into three further classifications. The first, Type

Ia SNe, are the result of the thermo-nuclear detonation of a white dwarf. These

IThe National Radio Astronomy Observatory is a facility of the National Science Foundation
operated under cooperative agreement by Associated Universities, Inc.




SNe are characterized by blue shifted Si II (A 6347, 6371) absorption lines. The
other two groups, SNe Ib and Ic, are the result of core collapse of a very mas-
sive star with initial Main Sequence masses in excess of ~ 10 Mg. SNe Ib, Ic,
and II are usually detected near H II regions and are indicators of recent star
formation, given that their progenitor stars have Main Sequence lifetimes on the
order of 1—10 million years (Filippenko et al. 1995). What distinguishes SNe Ib
and Ic from SNe II, is that both SNe Ib and Ic lost their hydrogen envelopes
prior to the core collapse (Filippenko 1997). This is usually due to either inter-
action with a companion star which strips the SN progenitor star of its outer
envelope, as the progenitor exceeds its Roche lobe, or in the case of a single
star, extreme mass loss preceding the explosion. SNe Ic also have no strong he-
lium lines in their spectra, evidence of even greater pre-detonation mass loss.
Also, SNe Ia have practically no circumstellar material (CSM) when they explode
(Branch et al. 1995; Cumming et al. 1996), while SNe Ib and Ic, have some CSM
due to the progenitor’s stellar wind and the fact that not all of their envelopes
accrete onto their companion stars (Filippenko 1997).

The subjects of this dissertation, SNe II, are the result of the core collapse
of massive stars with more CSM present than for SNe . SNe II can be bro-
ken down into three main subclasses based on their optical decay rates (Barbon

et al. 1979; Doggett & Branch 1985). Type II-L. SNe decay linearly for the first



100 days following maximum optical light, similar to SNe Ia. Type II-P SNe de-
cay very slowly, maintaining a plateau within ~ 1 mag of maximum brightness in
the same intervening period. The key difference between these two types is that
the progenitors of SNe II-L have either a more extended or lower mass hydro-
gen envelope than SNe II-P, which is the cause of the plateau (Filippenko 1997).
A third classification has recently been added, Type II-n SNe (Schlegel 1990;
Filippenko 1991a; Filippenko 1991b; Leibundgut 1994), whose ejecta is interact-
ing with a dense CSM. They are characterized by a narrow Hea line, resulting
from the slow-moving CSM, superimposed upon a broader component (typical

velocities of 200 km s™! and 2,000 km s~!, respectively; Filippenko 1997).

1.2 Radio Properties of Supernovae

Of the RSNe detected, there are no Ia’s, only three SNe Ib, five SNe Ic, and 22
SNe II. The radio emission from SNe Ib and Ic is quite luminous and homoge-
neous with steep spectral indices (¢ < —1; S o< v*<, with S standing for the
radio flux density and v standing for frequency) and a fast radio turn-on/turn-off
time, on a timescale equivalent with the optical emission (Weiler et al. 2001). On
the other hand, SNe II are rather heterogeneous. They have a range of radio
luminosities with flatter spectral indices (@ > —1) and slow turn-on/turn-offs,

sometimes lagging the optical light curves by 1—10 years (Weiler et al. 2001).



Regardless of these differences, all RSNe share the following common properties

(Weiler et al. 1996; Weiler et al. 1990):
1. non-thermal synchrotron emission with a high brightness temperature;

2. a decrease in absorption with time, resulting in a smooth rapid turn-on at

low wavelengths and later at lower wavelengths;

3. a power-law decline of the flux density with time, after radio maximum light

is reached at each wavelength (optical depth ~ 1); and

4. a final asymptotic approach of the spectral index to an “optically thin”,

non-thermal, constant value.

At the end of the last century, only 12 SNe had been positively detected at
X-ray wavelengths. Of this group, SN 19941 (Immler et al. 1998b) is a Type Ic
SN and the others [SNe 1978K (Ryder et al. 1993; Schlegel et al. 1998), 1979C
(Immler, Pietsch, & Aschenbach 1998a), 1980K (Canizares, Kriss, & Feigelson
1982), 1986J (Houck et al. 1998), 1987A (Hasinger, Aschenbach, & Triimper 1996;
Burrows et al. 2000), 1988Z (Fabian & Terlevich 1996), 1993J (Zimmerman et al.
1994), 1994W (Schlegel 1999), 1995N (Lewin, Zimmerman, & Aschenbach 1996)
1998S, and 1999em (Pooley et al. 2001)] are Type II SNe. Only four of these SNe
have been bright enough to obtain an X-ray spectra (SNe 1978K, 1986J, 1987A,

and 1993J). The fact that X-ray emission from all four sources is quite luminous,



is the result of a sampling bias due to the poor photon sensitivity of past X-
ray missions. Only three of these sources (SNe 1978K, 1979C, and 1987A) have
been followed in the X-ray for more than 10 years. SNe 1978K and SN 1979C
are exceptionally bright and SN 1987A is in our backyard (located in the Large

Magellanic Cloud).

1.2.1 Theory of Radio Emission

Chevalier (1982b, 1982c) proposes that the source of emission from RSNe is syn-
chrotron emission from relativistic electrons interacting with enhanced magnetic
fields. These fields arise from the SN shock interacting with either the expanding
photosphere (in the case of SNe Ib & Ic and young SNe II) or a relatively dense
CSM (in the case of older SNe II). The interacting media has been heated and
ionized by the initial UV/X-ray flash associated with the core collapse. The Main
Sequence mass of the progenitors for RSNe is likely to exceed 15 Mg, in order to
produce sufficient CSM for radio emission to be detected (Chevalier 1990). The
ionized CSM (free-free absorption) is the primary source of all the initial absorp-
tion in young SNe II, with synchrotron self-absorption (SSA) playing a role in
some specific cases (Chevalier 1998). Under the simplest of models, the CSM is
presumed to have been established by a constant, spherical mass-loss rate (M' )y

constant velocity wind (w) from a massive progenitor or companion star result-



ing in a uniformly declining density (assuming free-free absorption), i.e., p o
r~2 (Chevalier 1982a, 1982b). Many observed SNe demonstrate p o 715 ~r=L7
which can either be attributed to non-spherical and irregular mass loss or to SSA
being the dominant absorption mechanism which yields the simple decay model of
pcsy o< 7-2 (Montes et al. 2000; Fransson et al. 1996; Chevalier 1998; Fransson &
Bjornsson 1998). Chevalier (1998) identifies two cases where SSA plays an impor-
tant role in SNe II, SN 1993J and 1987A, while most RSNe (e.g. SN 1979C and
1980K) are better explained by free-free absorption. In both absorption processes,
a rapid initial rise in the observed radio flux density results from a decrease in
the absorption processes as the radio emitting region expands with the outward
moving shock front, however the turn-on is later and steeper the more free-free
absorption dominates.

Weiler et al. (1990) propose that this CSM could be “clumpy” or “filamen-
tary”, contributing to slower turn-on times, as is evident with some SNe II. Montes
et al. (1997) further propose that the possible presence of a disassociated ionized
medium (i.e., an HII region) along the line-of-sight, which is time-independent,
can cause a spectral turn-over at longer wavelengths. Cowan, Roberts, & Branch
(1994) observed this phenomena with SN 1957D in M83. Further, the CSM may
also be structured, with rings, disks, shells, or gradients, which have yet to be

properly incorporated into the current mathematical models.



Following Weiler et al. (1986,1990,2001) and Montes et al. (1997), the param-
eterized model, shown below, is commonly used to describe the emission from

RSNe:

B8 —T )
o+ ¢ 1 — CSMcjumps — —Tinternal
S(mJY) = K, ( 2 ) ( o) g Texternal ( ° i ) <1 c
5 GHz 1 day TCSMaumps Tinternal

(1.1)

Texternal = TCSMynirorm + Tdistant (1.2)
= ) (2) o
ot = 16 (55) " (55)' =

with the parameters K, K,, K3, and K, corresponding, formally, to the flux den-
sity (K1) and uniform (K5 and K}) and clumpy (K3) absorption, at 5 GHz one day
after the supernova explosion (£,). The terms TcsMyppm 204 TCSMaumps deScribe
the attenuation of the local, uniform CSM and clumpy CSM that are near enough
Is

uniform

to the SN progenitor that they are altered by the outward shockwave. 7csn



produced by an ionizing medium which uniformly covers the emitting region, and
the (1 — e~ "CSMeiumps) TC?SlMdump, term describes the attenuation produced by an
inhomogeneous medium with optical depths evenly distributed from 0 to TCSMetumps
(i.e., smooth to clumpy absorption). The Tyistan: term describes the attenuation
produced by a homogeneous medium which uniformly covers the emitting region,
but is constant with time and is a sufficient distance from the SN progenitor so as
not to be affected by the expanding shockwave. All absorbing media are assumed
to be purely thermal, singly ionized gas (e.g., H II) which absorbs via free-free
transitions with frequency dependence (v~2!). The parameters § and & describe
the time dependence of the uniform and clumpy “optical” depths for the local,
uniform and clumpy CSM, respectively.

To account for processes which would affect early observations of RSNe at
high frequencies [although outside the scope of this dissertation, but included for

completeness], it becomes necessary to include a term in Eq. 1.1 for internal

absorption (Tipterna:):

Tinternal = Tinternalgsa + Tinternalg (16)

v -25 (¢t \%
estin = 5 (57575 <1 day) 7



y —21 P s
intern = K, ( ) 2 .
Tinternalg $\5 GHz (1 day) (1.8)

with the parameters K5 and Kj corresponding, formally, to the internal, non-
thermal (v~25) SSA (Ks) and the internal, mixed with non-thermal, thermal
(v~2!) free-free absorption (Kj) respectively, at 5 GHz one day after the supernova
explosion (%,). The parameters 6” and & describe the time dependence of the
SSA and free-free absorption components, respectively. Free-free absorption is
the dominant process in most SNe II, while SSA is the dominant process in SNe
Ib and Ic. It should be noted that radio emission from SN 1993J appears to
be influenced by both both processes, while the radio SN 1987A appears to be
primarily influenced by SSA.

A cartoon of the structure of the emission mechanism for RSNe is shown in
Figure 1.1 (Weiler et al. 2001). The radio emission is believed to originate at the

blastwave, as indicated in the figure (Chevalier & Fransson 1994).

1.2.2 Theory of X-ray Emission

The two mechanisms by which X-rays have been detected from SNe are Compton-
scattered y-rays from the radioactive decay of °®Co and by the interaction of the
SN shock with CSM, which is also the source of radio emission in SNe (Chevalier

& Fransson 1994). The former has only been observed for SN 1987A, due to
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Figure 1.1: Cartoon drawing (not to scale) of a SN and its shocks along with
the stellar-wind created CSM and more distant ionized material. The regions
of absorption mentioned in Egs. 1-8 are indicated above. Figure from Weiler

et al. (2001).

the early monitoring of this object (Hasinger, Aschenbach, & Triimper 1996).
But as SN 1987A evolves, the X-ray contribution from Compton-scattered y-rays
continues to diminish, and the shock-CSM interaction is expected to become the

dominant process within 2 years (Burrows et al. 2000).
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Radioactive Decay of *Co

SN explosions produce large amounts of Ni (Colgate & McKee 1969). 56Nj
decays with a half-life of 6.5 days into *Co which decays with a half-life of 78.5
days into °Fe. Each of these decay processes produces a y-ray which Compton-
scatters and is converted into an X-ray. These hard (i.e., high energy) X-rays are
the dominant source of X-ray emission in the early stages of the SN explosion,
prior to the CSM-shock interaction turning on. The first X-rays from this process
should become visible within ~400 days following the explosion, as the radioactive
nuclei are predominately deeper within the star, and this is the time for the typical
SN II envelope to become optically thin to X-rays (Sutherland 1990). This time
may be shortened to 100+ days with the mixing of these radio-active elements

into the hydrogen envelope, as was the case for SN 1987A (Dotani et al. 1987).

SN Shock-CSM Interaction

Pursuant to the discussion in the previous section regarding the radio emission
resulting from the interaction of the outward moving SN shock and the CSM, a re-
verse shock is also produced. This is due to the pressure of the swept-up material
on the outgoing shock, and it propagates back into the shocked SN gas (Cheva-
lier 1982b,1982¢,1998; Fransson 1994; Chevalier & Fransson 1994; Schilegel 1995).

The reverse shock is produced sometime shortly after the explosion in SN with

12



extremely dense envelopes, and usually after one year or so, as the shock catches
up with the progenitor wind. So, as the radio emission probes the CSM, the X-ray
emission can tell us about the progenitor’s atmosphere. Models by Chevalier &
Fransson (1994) and Fransson (1994) with a uniformly-produced CSM, predict

the velocities and temperatures of the forward and reverse shocks to be:

n—3

VFor. shock = VMax. Ejecta (m) (1.9)

A% ax. jecta
VRev. Shock = -—M;:Eé—t' (1.10)
T = 136 x10° (P73 (Voiex sjera)® 1.11
For. tode = 1 n=2) \iokmst (1)

T Qar. (o]

TRev. Shock = #%;-k‘ (1.12)

where n ~7—12, is a parameter determined from the hydrodynamic models and
the power law exponent relating pejecta ~ (Vejecta (t —£0)/Toss.)™ (Chevalier & Soker
1989). Typically the reverse and outward shock velocities are 500-1,000 km s~!
and 10,000-20,000 km s~!, respectively, and the reverse and outward shock tem-
peratures about ~10"K and ~10°K, respectively (Chevalier 1982a;Chevalier &
Fransson 1994). The forward shock is too diffuse to produce any noticeable X-
rays, so the cooler shocked CSM behind the blastwave is the dominant source of
the soft (i.e. low energy photons) X-rays produced by the SN shock-CSM interac-

tion. With the exception of SN 1987A, this is the dominant mechanism of X-ray
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production in detected X-ray SNe. Perhaps associated with this mechanism is the
possibility of a prompt thermal burst producing hard (100 keV) X-ray emission
with a black body continuum of ~0.02 keV, which are produced ~1,000 s follow-
ing the initial explosion (Chevalier 1990). This X-ray burst would be produced by
the shock interacting with the progenitor’s dense hydrogen envelope and should
have a luminosity in excess of 10*® erg s~!. Due to the briefness of this event, no

X-ray emission has been detected as a result of a prompt thermal blast (Schlegel

1995).

1.2.3 Measurable Results

The current models for radio & X-ray emission from SNe has been very successful
in the cases where there are sufficient radio observations to accurately determine
the many independent parameters included in Eqs. 1-8. This has been possible for
RSNe in each of the 3 subtypes which radio emission is expected, e.g., the Type
Ib SN 1983N (Sramek et al. 1984), the Type Ic SN 1990B (van Dyk et al. 1993a),
and the Type II SNe 1979C (Montes et al. 2000) and 1980K (Montes et al. 1998).
The agreement for the more slowly evolving Type II SNe, however, departs from
the theoretical model discussed in the previous subsection ~ 4,000 days (¢t < 10
yrs) following the supernova event. The implications of this deviation will be

addressed in subsequent chapters. With such a small sample of X-ray events and
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the fact that only four have observed spectra needed to derive an accurate energy
flux, the X-ray study of SNe has been a difficult one. However, X-ray detections
of SNe are now entering a Renaissance with the first Chandra X-ray results being
published. The vast improvement in instrumentation has drastically increased the

energy sensitivity and spatial resolution of X-ray astronomy.

Mass-Loss Rate

For younger SNe (¢ < 10 yrs), the Chevalier (1982b,1982c) model provides a way
to determine the ratio of the mass-loss rate and the progenitor wind velocity (M /
w). For the case with external absorption being entirely dependent on a uniform

medium, Weiler et al. (1986) was able to the derive the following expression:

M / Mg yr™! -6 _05 -15 U; L5
(w / 10 km s—! =3 X 107" TC8Munitorm ™ (104 km s‘l) x

t; L5 4\ Lsm T 0.68
(45 days> (t_> (104 K> (1.13)

Because it is often many days before the appearance of optical lines from
which the ejecta velocities (v;) are measured, ¢; is arbitrarily measured in units
of 45 days. With observational evidence that further constrains 0.8 < m < 1.0
(m = —6&/3) and, from Eq. 1.9, M o /™™ the dependence of the mass-
loss rate on the date, upon which the ejecta velocity is measured, is very weak

(M o t£03) (Weiler et al. 1996). Typical mass-loss rates assume a temperature of
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20,000 K, CSM ejecta velocities of 10 km/s (standard for red super giant winds),
and fitted data from RSNe studies, including ¢ = teempeak — o days, Toms,,., form
from Eq. 1.3, and m = —4§/3 also from Eq. 1.3.

The Chevalier (1982b,1982¢) model is incomplete because it assumes a smooth
CSM and does not account for the relatively slow turn-on for some SNe II, as com-
pared to SNe Ib and Ic. Weiler et al. (1990) have incorporated the “clumpiness

or filamentation” phenomena by the inclusion of Tcgnm in Eqs. 1.1 and 1.5.

clumps
This improvement was essential in modeling the early radio light curves of SNe
1988Z (van Dyk et al. 1993b) and 1993J (van Dyk et al. 1994). From these pre-
dictions, the typical pre-SN mass-loss rates for the SNe Ib and Ic and the first 10
years of SNe II are typically ~ 1078 Mgyr~—! and ~ 107 Mgyr~!, respectively
(Weiler et al. 2001). van Dyk et al. (1994), employing very early light curve data,
found the mass-loss rate of SN 1993J was initially ~ 107% Mgyr~! 1,000 yrs before
explosion and then declined to ~ 10~ Mgyr~! just prior to explosion. Further
complicating the situation, this result may not account for the correct contribution
of SSA in the evolution of the radio light curve (Fransson & Bjdrnsson 1998).

A careful analysis of the light curve for SN 1979C has indicated quasi-periodic
fluctuations in its radio luminosity of order 15%, with a period of 1,575 days

(Weiler et al. 1991,1992). Weiler et al. (1991,1992) attribute this phenomenon to

minor (8%) density modulations in the CSM with a period of 4,000 yrs. This
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is much too long a time to be attributed to any sort of stellar pulsations and is
now considered to have been caused by interaction with an eccentric binary and
the SN progenitor’s stellar wind. Further theoretical work by Schwarz & Pringle
(1996) and Boffi & Panagia (2001), and observations of SNe 1993J (Podsiadlowski
et al. 1993) and 19941 (Nomoto et al. 1994) indicate that binaries may be common
in pre-SN systems.

X-ray emission from SNe provides additional information to the radio obser-
vations about the SN event and its environment. The earliest period in which
detectable X-ray emission are produced is the early interaction with a very dense
CSM close to the SN progenitor. This was the case for SN 1993J, which was
detected in the X-ray 6 days following maximum optical light (Zimmerman et al.
1993a, 1983b, 1983c, 1983d). SN 1980K was also detected in the X-ray within 2
months of maximum optical light (Canizares et al. 1982), while SN 1987A did pro-
duce detectable X-ray emission for more than five months after explosion (Makino
et al. 1987a,1987b). This early emission could indicate a denser stellar wind for
SNe or more likely (as mentioned in the previous section) the possible presence
of a binary companion. Further, X-ray studies of SN 1993J, in conjunction with
radio observations, have indicated the need for steeper density profiles in the CSM

in order to explain the rapid turn-on of the early X-ray SNe (Fransson et al. 1996).
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Intervening HII Regions

SN 1978K follows the characteristic radio light curve for a Type II SN (Ryder
et al. 1993; Schlegel et al. 1998), but there appears to be a constant absorption
term which may indicate either the presence of an intervening HII region or a
distant CSM shell associated with the SN progenitor (Montes et al. 1997). Ryder
et al. (1993) note the lack of optical emission lines broader than ~1,000 km s~1,
suggesting the presence of slow moving CSM. Chu et al. (1999) measure the [N II]
6583/Ha ratio of this absorbing region in a high dispersion spectrum to be 0.8
— 1.3. Their observations support the Ryder et al. (1993) contention that the

absorbing region is a stellar ejecta nebula.

Shape of Supernova Blast

It has been suggested by many that SN explosions are non-spherical, with the
possibilities of jets, lobes, and conical ejecta among the many competing theories
for directed mass loss (Weiler et al. 2001; Schlegel et al. 2001). Radio astronomy
offers a unique insight into this topic, with the highest resolution imaging available
at any wavelength using the Very Long Baseline Interferometer (VLBI). Marcaide
et al. (1997) demonstrate this most clearly, with a series of time lapse images of
the expanding SN shock of SN 1993J. Their images, over 2 years, shows a ring-

shaped emission region indicative of a spherical blast, while optical polarimetry
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studies indicate a non-spherical structure (Hoeflich et al. 1996). This dichotomy
remains a mystery to be solved. The Fransson et al. (1996) X-ray observations
of SN 1993J also appear to indicate that the density of the CSM is o< 7—1° and
not r~2. This could be an indication that the CSM is not distributed spherically,
but rather in a more toroidal shape. This interpretation has been questioned by
the fact that increasing the SSA contribution into the modeling of the light curve

yields a fit which supports a spherical distribution (Fransson & Bjérnsson 1998).

Pre-Supernova Stellar Evolution

Radio emission from SNe with constant spectral index, but deviation in flux den-
sity from the standard decay curve, is an indication of variation in the density
of CSM from the canonical 7=2 law expected with a pre-SN wind with constant
velocity of mass-loss rate. Chevalier (1982b) demonstrates that the luminosity of
RSNe is proportional to the logarithm of pcgas. Since the SN blast wave travels
with a speed ~10,000 km s~! and the CSM was ejected with a speed ~10 km
s~!, every one year of monitoring a RSNe monitors ~1,000 years of stellar wind

evolution (Weiler et al. 2001).

Deceleration of Shock Wave

Radio astronomy currently offers the only method to directly measure the decel-

eration of the SN shock over long periods of time. By fitting a model to radio
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light curves of SN 1987A, Manchester et al. (2001) were able to measure a drop in
the velocity of ~32,000 km s~! in the time between the explosion and the shock
reaching the prominent optical ring, to a current speed of 3,000 km s~!. As men-
tioned above, Marcaide et al. (1997) were able to dirgctly detect a deceleration
from SN 1993J, but not as significant as that for SN 1987A. SN 1993J is currently
expanding with a velocity of ~15,000 km s~!, as measured in 1996 (Marcaide

et al. 1997).

Peak Radio Luminosities as Distance Indicators

Weiler et al. (1998,2001) have demonstrated that the radio emission from SNe
evolves in a systematic fashion with a distinct flux density at each frequency
and a well defined time between the explosion and the optical and radio peak
luminosities. In particular, they have found a relationship between the peak
spectral luminosity at 6 cm (Lg cm peax) and the time after explosion to reach
the 6 cm peak (¢, — &5 cm peak)- With 5 SNe Ib and Ic sampled so far, there
appears to be very good agreement on a standard 6 cm peak luminosity:

L6 cm peak = 1.3 x 10*7 erg s™! Hz L. (1.14)

With 17 SNe II in their sample, Weiler et al. (1998,2001) have found a rela-

tionship for



t, — t Lo
LG cm peak = 6.0 x 1023 ( 1 Cﬁla‘.:}r’n peak) €erg S—1 HZ-I. (1.15)

These are still preliminary results, but they could prove invaluable in con-
junction with future observations, especially in galaxies with Cepheid-derived dis-

tances, in establishing SNe Ib, Ic, and II as standard candles.
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Chapter 2

The Fading Radio Emission From
SN 1961V: Evidence for a Type

IT Peculiar Supernova?

2.1 Introduction

SN 1961V, the prototype of Zwicky's Type V SNe (now classified as either a
Type II Peculiar SN or a luminous blue variable (LBV)), was unique in several
respects (Branch & Greenstein 1971). Its progenitor was visible as an 18th mag-
nitude star from 1937 to 1960. It is the first SN, prior to SN 1987A, whose
parent star was identified before it exploded (assuming a SN interpretation is
correct for this event). The bolometric correction, the exact distance, and the

extinction are all uncertain, but its pre-outburst luminosity apparently exceeded
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10! ergs s~!, which is the Eddington limit for a 240 Mg star. After the ex-
plosion in late 1961, the initial peak of the optical light curve was more com-
plex and much broader than for any supernova ever observed. Subsequently,
the optical light curve decayed more slowly, by about 5 magnitudes in 8 years.
Few SNe have been followed optically for more than 2 years. Optical spec-
tra taken during this extended bright phase showed that the characteristic ex-
pansion velocity of SN 1961V was 2,000 km s~!, which differs from the typ-
ical value of 10,000 km s~! for most SNe. This velocity is similar to novae
expansion velocities. However, no novae are this strong and none have per-
sisted for this long in the radio. This velocity is in fact consistent with the
measurements of SN 1986J (another Type II Peculiar SN), which had an ex-
pansion velocity (taken well after maximum optical brightness) of 1,000 km st
(van Gorkom et al. 1986; Rupen et al. 1987; Weiler & Sramek 1988).

Using the VLA, observations of SN 1961V were made in the mid 1980s, with the
most definitive search in 1986 (Cowan, Henry, & Branch 1994; hereafter referred
to as CHB). CHB detected a non-thermal radio source at the precise position of
SN 1961V. Fesen (1985) also reported recovering SN 1961V in the optical. CHB
later detected an optical counterpart to SN 1961V, which was identified as an
H II region using filter photometry. [CHB also detected another slightly fainter

radio source to the west of SN 1961V with a similar non-thermal spectral index.
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This source was identified as a SNR not previously identified. This SNR also
has an associated optical counterpart (i.e., an H II region).] At the distance of
NGC 1058 (9.3 Mpc; Tully 1980; Silbermann et al. 1996), SN 1961V is as radio
luminous as the bright Galactic SNR Cas A. SN 1961V’s luminosity is also com-
parable to several historical decades-old (also known as intermediate-age) radio
supernovae (RSNe) including SNe 1923A, 1950B, 1957D, 1968D, 1970G and 1986J
(Cowan et al. 1991; Cowan et al. 1994; Eck et al. 1998; Eck et al. 2001; Hyman
et al. 1995; Weiler & Sramek 1988).

Recently, however, there has been some question about whether the event
identified as SN 1961V was actually a supernova. Goodrich et al. (1989) sug-
gest instead that this event was an LBV similar to n Carinae, and that the
supposed supernova was an outburst of the variable star. Subsequently, Filip-
penko et al. (1995) observed SN 1961V using the Hubble Space Telescope (HST),
although at that time the HST had not been refurbished. Those observations
seemed to suggest a (very faint) star is still present at the site, which might or
might not argue against a supernova origin. Among the brightest LBVs (e.g.
n Car, P Cygni, and V 12 in NGC 2403), n Car is reported to have been the
most luminous, reaching Mg, =~ —14. In comparison, SN 1961V was reported
to have peaked at Mp, =~ — 17 (Humphreys & Davidson 1994). This peak

estimate for SN 1961V is likely underestimated by 1.2 magnitudes if one accounts
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for the more recently derived Cepheid distance (Silbermann et al. 1996). This
would make SN 1961V nearly 50x brighter in the optical than  Car at maximum
brightness (Humphreys & Davidson 1994).

To assess the exact nature of this event I have performed a series of observations
at various wavelengths, employing the phased-VLA with the Very Large Baseline
Array (VLBA) and the ROSAT X-ray satellite. In this Chapter I report on our
recent VLA radio observations of SN 1961V and what they indicate about the
nature of this event. The Very Long Baseline Interferometer (VLBI) [VLA and

VLBA] and ROSAT results are reported in Stockdale (2001).

2.2 VLA Observations and Results

The new VLA data on SN 1961V are taken from three observing runs. In the first,
SN 1961V was observed for 12 hours on 14 September 1999 at 18cm (1.67 GHz)
using the VLA’s most extended (A) configuration, with a maximum baseline of
34 km. These data were taken while the VLA was being used in phased-array
mode for a VLBA run, and the total bandwidth was 50 MHz in each of the two
orthogonal circular polarizations. The phase calibrator was J0253+3835, and both
3C286 and 3C48 were used to set the flux density scale. The total time on-source

was 4.7 hours.

During the second pair of observing runs, on 21 and 25 January 2000, the
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VLA was in its B configuration (maximum baseline of 10km), and observed at
6cm (4.89 GHz) for a total of 12 hours. Here I used the standard VLA continuum
mode, obtaining a total of 100 MHz bandwidth in each of the two orthogonal
circular polarizations. The phase calibrator was J0251+4+4032, and 3C48 was used
to set the flux density scale. In all observations the pointing center was CHB’s
radio position for SN 1961V, and flux densities for 3C48 and 3C286 were taken
from Perley, Butler, & Zijlstra (2000).

Data were Fourier transformed and deconvolved using the CLEAN algorithm
as implemented in the AIPS routine IMAGR. The data were weighted using
Brigg’s robustness parameter of —1, which yields a reasonably small point-spread
function at the cost of a few percent loss in sensitivity. We have also re-analyzed
the CHB observations of the region, using the same data reduction procedures
and inputs as were used on the current data. The results of our analyses are pre-
sented in Table 2.5 and Figures 2.1 & 2.2. To derive the flux density and position
for SN 1961V, a JMFIT two source Gaussian fit yielded the best results for all 4
observations, while a single source Gaussian model yielded the best results for the
other sources in the field of view. The positions reported in Table 2.5 are weighted
averages of the radio positions for these sources at the various wavelengths and
epochs. Uncertainties in the peak intensities are reported as the rms noise from

the observations. To check that changes in measured flux densities are real, I also



measured the flux density of a resolved background source present at all epochs.
The background source’s integrated flux densities for each wavelength band are
relatively unchanged at both epochs. Our re-measurements of the CHB data are

consistent, within the error bars, with those of Cowan et al. (1991).

2.3 VLBI Observations and Results

SN 1961V was observed at 18 cm with the VLBA in conjunction with the 18 cm
VLA observations described in the previous Section. 3C286 and 3C48 were used
to set the flux density scale and J0253+-3835 was used as a phase calibrator. We
expected SN 1961V to be an extremely faint source, so J0230+4032 was used
in embedded scans of the calibrators to serve as a check for the accuracy of the
calibrations that were also applied to SN 1961V. The pointing center was CHB'’s
radio position for SN 1961V, and flux densities for 3C48 and 3C286 were taken
from Perley et al. (2000).

The data reduction was performed at the Array Operations Center in Socorro,
NM, over the course of 5 weeks, beginning in October 1999 and continuing through
July 2000 with the assistance of Michael Rupen. The reduction process included
applying the a priori amplitude and phase calibration, basic spectral flagging based
on the auto-correlation (total power) data, and running a preliminary fringe-fit on

the whole run with the AIPS routine KRING. Further flagging of the calibrator,
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J0253+-3835, was required for the the bad gain solutions and then the AIPS routine
CLCAL was used to interpolate the solutions. Due to the overwhelming amount of
data that was taken ~8 Gigabytes, the AIPS routine SPLAT was used to average
down in frequency, to get 1 channel per IF (an IF consists of a set of one or more
equally spaced frequency channels; a total of 8 IF’s were used in this stage of the
analysis) for the calibrated data. The calibrated data was then further flagged
using the AIPS routine EDITR, examining each baseline pair for amplitude and
phase discrepancies. The phase calibrator was then mapped for one IF using only
the VLBA antennae with numerous self-calibrations cycles to produce a. common
amplitude scale. The model for this map was then applied to the other IF’s,
resulting in a final VLBA only map. This model was used to calibrate the VLA
data for the VLBI run. (The 27 VLA antennae were sampled every 10 seconds,
and this sampling was used for the VLBI data set.) All of the data for J0253+3835
from 10 VLBA antennae and the VLA were combined and then calibrated further
to achieve the best possible phase solutions. The result of this calibration effort
for J0253+3835 is shown in Figure 2.4 (see Figure 2.4). (A brief discussion of
this fascinating source can be found in Chapter 6.) Finally, these solutions were
applied to SN 1961V, and the resulting image is shown in Figure 2.5.

As is evident in Figure 2.5, the source was not clearly detected. There are

two potential interpretations for this result. The first is that the emission from



SN 1961V is resolved by the VLBA. This would imply that the source is extended
beyond the minimum beam size of 7.56 milli-arcseconds. Accounting for the age of
SN 1961V and the Silbermann et al. (1996) distance, this would establish a lower
limit for the expansion velocity of SN 1961V to be 18,000 km s~!. This velocity is
very high, given the age of the source and the deceleration one would expect as the
shock propagates out through a relatively dense CSM. The second interpretation
is that the source is unresolved and indistinguishable with the noise limits of the
VLBI image. There are at least five unresolved sources with flux densities above

the 3 sigma limit of 90 pJy within 0”1 of the VLA position for SN 1961V.

2.4 Discussion

We have recovered a radic source at the position of SN 1961V at 18 cm and 6 cm,
coincident, within the error limits, with the CHB position. Our measured flux
densities at both wavelengths indicate a clear decline in the radio emissions from
SN 1961V from the previous CHB observations, as indicated in Figures 2.1 &
2.2. The recently measured 18 cm flux, when scaled to 20 cm using the newly
determined spectral index, indicates a reduction in the 20 cm peak flux intensity
by 36% from 1984 to 1999 (see Table 2.5). The 6 cm peak flux intensity has
also dropped by 54% in the interval from 1986 to 2000. (The western source

shows no change in peak intensity for either the 6 cm or the 20 cm measurements
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within noise limits.) The radio emission from the vicinity of SN 1961V appears
to be much more complicated than originally thought. Our new observations and
re-analysis of the CHB data indicate there is at least one previously undetected
radio source within 0”79 of SN 1961V. The radio emission from this source is non-
thermal at both epochs and has decayed by 50% at 20 cm and by 33% at 6 cm.
The region where SN 1961V is located in NGC 1058 is clearly one of recent star
formation. The peak flux density of this new source near SN 1961V is 0.040+0.008
mJy/beam (at 6 cm) and 0.082 £ 0.026 mJy/beam (at 20 cm). These values are
comparable to that of the distinct western source reported by CHB, so this new
source may likely be a previously undetected SNR.

The decline in the radio flux density of SN 1961V is consistent with models for
radio emission from SNe (Chevalier 1984). Synchrotron radiation is produced in
the region of interaction between the ejected supernova shell and the circumstel-
lar shell that originated from the prior mass loss of the progenitor star. In such
models the radio emission drops as the expanding shock wave propagates outward
through the surrounding and decreasingly dense circumstellar material. The de-
cline in the flux density of SN 1961V is also consistent with Gull's (1973) model
for radio emission from SNRs. This predicts an initial decline in the emission of
RSNe for the first 100 years as the shock overcomes the circumstellar material

(CSM) and a later turn-on as the build up of material from the ISM results in an
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increase of synchrotron emission, as the object enters the SNR. phase. Thus, the
radio emission from these intermediate-age SNe, sources with ages comparable to
SN 1961V, probes the transition region between fading SNe and the very youngest
SNRs. In Figure 2.3, I illustrate the radio light curves of several intermediate-aged
SNe along with a few SNRs, plotting the time since supernova explosion versus
the lnminosity at 20cm. It is clear that the radio emission of SN 1961V at an
age of ~ 38 years is very similar to known radio SNe at comparable ages, and
particularly that the radio luminosities of SN 1961V, in NGC 1058, and the Type
II SN 1950B, in M83, are virtually identical at similar ages.

As shown in Table 2.5, our new observations indicate that SN 1961V remains a
non-thermal radio source. The spectral index, a, is relatively unchanged although
the error bars are rather large. The spectral index was derived using the peak
intensities, in order to limit the contribution from the surrounding H II region.
We might expect a possible flattening of the radio spectrum as the emission from
SN 1961V continues to fade. This would be an indication of the increasing con-
tribution from the thermal emission of the associated H II region. Such was the
case for the radio (Cowan et al. 1994a) and optical (Long et al. 1992) emissions
of SN 1957D, in M83, which has now faded below the level of an associated H II
region. The current and previous values of a for SN 1961V are still consistent

with spectral indices of intermediate-age RSNe at similar wavelengths, as shown
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in Table 2.5. The non-thermal nature of these sources is well-documented, as
are those for young radio SNRs, with Cas A, the youngest, whose spectral index
ranges from —0.92 to —0.64 (Anderson et al. 1991).

We can also compare the rate of decline of radio emission for SN 1961V, as
measured by a power-law index (S oc t#), with decline rates of known Type II
RSNe (see Figure 3). The power-law indices for SN 1961V were determined from
the peak intensities to be fygen = —0.69 +0.23 and Bgemn = —1.75 £ 0.16. The
decay indices for SN 1961V fall within a range of previously measured indices
for some intermediate-age RSNe (see Table 2.5). In particular, SN 1957D and
SN 1970G both have fairly rapid decline rates, while the younger Type II RSNe
(SN 1979C and SN 1980K) indicate a slower rate of decline. I also note that while
the radio emission from SN 1980K has abruptly dropped after approximately ten
years (Weiler et al. 1992; Montes et al. 1998), SN 1979C (at a greater distance
than SN 1980K) is still emitting at detectable levels (Weiler et al. 1991). Recently
the radio emission of SN 1979C appears to have flattened, as indicated in Figure
2.3. This may be a result of the shock wave hitting a denser region of CSM
(Montes et al. 2000). The implications of these comparisons with SN 1961V are
that its shock may be traveling through considerably more circumstellar material
(CSM) than similarly-aged RSNe, e.g., SN 1957D. As a result, its radio flux

continues to drop at a slower rate more akin to the younger RSNe, i.e. SNe



1979C, 1980K, and 1986J (the only other identified Type II,.. SN). Consistent
with this interpretation is the very rapid decline in the radio emissions of Type Ib
RSNe, e.g. SN 1983N and and SN 1984L, which presumably have less circumstellar
material (see Table 2.5). Based on these comparisons the radio observations of
SN 1961V are consistent with Type II RSNe.

Radio comparisons between n Car, the super-luminous LBV, and SN 1961V are
more problematic since the first radio observations of 77 Car were made 100 years
after its eruption. n Car, with a 20 cm flux density of 0.9+0.3 Jy (Retallack 1983),
is in fact not a strong radio source when compared to SN 1961V. In order to de-
termine 1 Car’s 20 cm flux at the current age of SN 1961V, we have naively
assumed a range of potential 3 values for n Car from —1, our measured index for
the decline of the flux at 20 cm of SN 1961V, to —3, the index for the decline
of SN 1957D. Applying these constant decay rates to n Car, its 20 cm flux (40
years after outburst) would range from 5 to 65 times the Retallack (1983) mea-
surement. This would result in n Car being at least 1,000 times weaker than the
radio source at the position of SN 1961V reported in this Chapter. n Car’s 3 cm
flux was measured over a period of 5 years by Duncan, White, & Lim (1997) and
found to vary between 0.5 Jy and 2.8 Jy, well below the levels of 6 cm & 20 cm
emissions of SN 1961V. They further report that n Car’s spectral index between

3 cm and 6 cm appears to peak at +1.8 at the position of n Car and then drops
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radially toward an index of 0. The source of the radio emission is believed to
be thermal radiation from H II regions associated with n Car (Retallack 1983).
The spectral index derived from radio observations at 2 cm and 6 cm of Skin-
ner et al. (1998) of P Cyg, another LBV, is 0.47 + 0.12. (P Cyg’s last reported
outburst was in the 17th century.) The positive values of the LBV spectral in-
dices are obviously very different from the negative (i.e. non-thermal) indices for
such events as SN 1961V, SN 1923A [the oldest RSN], and Cas A [the youngest
radio SNR] (Anderson et al. 1991; Cowan et al. 1991; Eck et al. 1998). The non-
thermal spectral indices for SNe and SNRs result from a shock front interacting
with the CSM and ISM. It is possible that P Cyg and n Car may have been
non-thermal radio sources immediately following their initial outbursts. Unfor-
tunately, there is no observational evidence to support or refute this possibility.
Further, it is uncertain whether the radiation from an LBV event would remain
non-thermal this long after the outburst. One of the most recent LBV events in
the Small Magellanic Cloud, HD 5980, was observed in the radio by Ye, Turtle,
& Kennicutt (1991) prior to LBV outbursts in 1993 and 1994. It was later ob-
served in 1996 using the Australian Telescope Compact Array at 3 cm and 6 cm
for ~ 1 hour. No compact radio emission was detected from the vicinity of the

star, with an upper limit threshold of a few mJys (S. M. White 2001, private

communication).
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2.5 Conclusions

Our radio measurements have detected a source at the position of SN 1961V. The
source’s radio luminosity, its spectral index, and its decay index are all consistent
with values reported for Type II RSNe and thus appear to support a supernova
interpretation. However, the lack of radio observations of similarly-aged bright
LBVs prevents a definitive identification of the true nature of SN 1961V. Addi-
tional multiwavelength observations of SN 1961V, as it evolves, will clearly be
needed to make a final judgment about the nature of this enigmatic event. These
should include further monitoring with the VLA and using the Space Telescope
Imaging Spectrograph (STIS) to analyze nebular emission lines from the region
near SN 1961V to discriminate LBV ejecta nebulae ([N IIJ-bright), decades old
SNe ([O III] and [O I]-bright), and mature SNRs ([S II]-bright). The latter obser-

vations could be very useful in ruling out one of the two scenarios for SN 1961V.
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Table 2.1: Radio Observations of the Region Near SN 1961V.

Parameters SN 1961V Western Source

Right Ascension (J2000) 02743m36546 + 0502 02743™36%24 4 0501

Declination (J2000) +37°20'4372 £ 072  +37°20'43"8 074
18 cm® (14 Sept. 1999) 0.147 +0.026 0.117 £ 0.026
6 cm?® (21 & 25 Jan. 2000) 0.063 + 0.008 0.056 £ 0.008
Spectral Index? 3™ —0.79 +0.23 —0.64 £0.28
20 cm” (15 Nov. 1984) 0.229 £+ 0.020 0.160 + 0.020
6 cm® (13 Aug. 1986) 0.135 £ 0.013 0.070 £ 0.013
Spectral Index? o2%™ —0.44 +£0.15 —0.98 +0.22

@ peak flux density (mJy beam™!)
5 Obtained by S o« v*
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Table 2.2: Comparison of SN 1961V with Other Radio Supernovae.

Name SN Type Spectral Index (a)? Decay Index (3)°

SN 1923A  IIp —1.00 & 0.24 —7.90 + 0.42 (6 cm)

SN 1950B  II? —0.57 +0.08 +0.12 + 0.13 (20 cm)
+0.22 £ 0.04 (6 cm)

SN 1957D I1? —0.30 £ 0.02 —2.66 + 0.07 (20 cm)
—2.44 + 0.04 (6 cm)

SN 1961V IIpec —0.79 £ 0.23 —0.69 £ 0.23 (20 cm)
—-1.75£0.16 (6 cm)

SN 1970G II ~0.55 +0.13 —1.95 + 0.17 (20 cm)

SN 1979C Il —0.72 £0.05 —0.71 £ 0.08 (20 cm & 6 cm)

SN 1980K I, —0.50 + 0.06 ~0.65 £ 0.10 (20 cm & 6 cm)

SN 1986J I ec —0.30 + 0.06 —1.18%97 (20 cm & 6 cm)

SN 1983N s —1.0+02 —1.5+0.3 (20 cm & 6 cm)

SN 1984L Isz —1.03 £+ 0.06 ~1.59 £ 0.08 (20 cm & 6 cm)

¢ Obtained by S o tP
® Obtained by S o« v*
References — (Cowan et al. 1991, Cowan et al. 1994a; Eck et al. 1998;

Panagia et al. 1986; Rupen et al. 1987; Weiler et al. 1986; Weiler et al. 1992;
Weiler et al. 1991)
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Figure 2.1: (a.) (left) Radio contour map at 20 cm (1.5 GHz) of SN 1961V (the
strong eastern source) and a neighboring SNR (western source). Contour levels
are -0.11, -0.08, -0.06, 0.06, 0.08, 0.11, 0.16, 0.23, and 0.32 mJy beam™!, with
a beam size of 1726 x 1705, p.a. = 89°, and rms noise of 0.020 mJy beam™!.
Observations taken with the VLA in A configuration 15 November 1984. (b.)
(right) Radio contour map at 18 cm (1.7 GHz) of the same region. Contour levels
are -0.11, -0.08, -0.06, 0.06, 0.08, 0.11, 0.16, 0.23, and 0.32 mJy beam™!, with
a beam size of 1720 x 1701, p.a. = 82°, and rms noise of 0.020 mJy beam™!.

Observations taken with the VLA in A configuration 14 September 1999.

38



372048 |- T - 372048 |- -

Bt
:
46— S - a6 .

DECLINATION (42000)
3
T
o
O
DECLINATION (J2000}
S
T
@
]

R
T
1

%
v o
- - e .
O | LO i
1 1 1 [l ! I 1 1 1 ! 1 1 ] 1 ] ! 1 !

0243369 368 367 I8 365 164 I3 362 361 360 0243369 368 367 366 365 364 363 I62 I61 360
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)

Figure 2.2: (a.) (left) Radio contour map at 6 cm (4.9 GHz) of SN 1961V (the
strong eastern source) and a neighboring SNR (western source). Contour levels
are -0.07, -0.05, -0.03, 0.03, 0.05, 0.07, 0.10, 0.14, and 0.19 mJy beam™!, with
a beam size of 1739 x 1717, p.a. = —89°, and rms noise of 0.013 mJy beam™!.
Observations taken with the VLA in B configuration 13 August 1986. (b.) (right)
Radio contour map at 6 cm (4.9 GHz) of the same region. Contour levels are -0.07,
-0.05, -0.03, 0.03, 0.05, 0.07, 0.10, 0.14, and 0.19 mJy beam™!, with a beam size
of 117 x 1”13, p.a. = —35°, and rms noise of 0.008 mJy beam~!. Observations
taken with the VLA in B configuration 21 & 25 January 2000.
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Figure 2.3: Radio light curve for SN 1961V at 20 cm compared to several RSNe
and SNRs. Data, fits and distances for SN 1923A, from Eck et al. (1998) and
Saha et al. (1995); for SNe 1950B & 1957D, from Cowan et al. (1994) and Saha
et al. (1995); for SN 1961V, from this Chapter and Silbermann et al. (1996); for
SN 1970G, from Cowan et al. (1991) and Kelson et al. (1996); for SN 1979C, from
Weiler et al. (1986, 1991), Montes et al. (2000), and Ferrarese et al. (1996); for
SN 1980K, from Weiler et al. (1986, 1992), Montes et al. (1998), and Tully (1988);
and for SN 1986J, from Rupen et al. (1987), Weiler et al. (1990), and Silbermann
et al. (1996). Luminosities for Cas A and the Crab from Eck et al. (1998).
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Figure 2.4: VLBI radio contour map at 18 cm (1.7 GHz) of J0253+3835. Contour
levels are -0.26, 0.26, 0.52, 1.0, 2.1, 4.2, 8.3, 17, 33, 67, 133, and 266 mJy beam ™},
with a beam size of 9.4 milli-arcsec x 6.9 milli-arcsec, p.a. = 5°, and rms noise
of 0.065 mJy beam™!. The beam is shown to scale in the lower left of the plot.
QObservations taken with the VLBA 14 September 1999.
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Figure 2.5: VLBI radio contour map at 18 cm (1.7 GHz) of SN 1961V. Contour
levels are -0.07, -0.05, -0.03, 0.03, 0.05, 0.07, 0.10, 0.14, and 0.19 mJy beam™!,
with a beam size of 11. 5 milli-arcsec x 7.56 milli-arcsec, p.a. = 0°, and rms noise
of 0.030 mJy beam™!. The beam is shown to scale in the lower left of the plot.
Observations taken with the VLBA 14 September 1999.
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Chapter 3

The Evolution of
Intermediate-aged Radio

Supernovae

3.1 Introduction

Intermediate-age radio supernovae (RSNe) have been defined as having ages from
~ 10-100 years old (Cowan & Branch 1985), spanning the period well after the
optical emission fades (usually about 2 years) and before the turn-on of radio
emission from the supernova remnant (SNR). Chevalier (1984) proposes that syn-
chrotron radiation is produced in the region of interaction between the ejected
supernova shell and the circumstellar shell that originated from the prior mass

loss of the progenitor star. In such models the radio emission drops as the ex-
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panding shock wave propagates outward through the surrounding and decreasingly
dense circumstellar material (CSM). Radio emission from SNRs is normally ob-
served long after the supernova phase. Such factors as the density of the local
interstellar medium affect the turn-on time in models such as those of Cowsik &
Sarkar (1984) based upon the Gull (1973) piston model. These models typically
suggest a minimum of 100 years for the formation and brightening of an SNR.. Re-
cent observations of M31, may have detected emission from the site of SN 1885A
indicating the turn-on of radio emission from the SNR 1885A (Sjouwerman &
Dickel 2001). They report a very faint radio source (28 pJy ~6.1 x 10?2 erg s~*
Hz~!) within 174 of the position reported by Fesen et al. (1996). However, final
confirmation of this emission being linked to a forming SNR. will require multi-
wavelength radio measurements to determine the spectral nature of this source.
The intermediate-age time period is, therefore, critical in understanding the iater
stages of stellar evolution. In particular, the circumstellar mass-loss rate for the
supernova progenitors is a crucial component in the initiation and duration of
radio emission in models, such as those of Chevalier (1984).

To study this transition period from SN to SNR, I and others have attempted to
detect radio emission from intermediate-age SNe. While there have been a number
of unsuccessful searches, a few supernovae have been detected in the radio more

than a decade after explosion [SNe 1923A, 1950B, & 1957D in M83 (Cowan &
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Branch 1985; Cowan et al. 1994; Eck et al. 1998), SN 1961V in NGC 1058 (Cowan
et al. 1988; Stockdale et al. 2001a), SN 1968D in NGC 6946 (Hyman et al. 1995),
and SN 1978K in NGC 1313 (Ryder et al. 1993)]. One of the motivations for
these studies has been that individual decades-old supernovae, such as SN 1970G,
can undergo abrupt and rapid changes in flux densities on a timescale of only
a few years. Such variability was seen in the radio emission from SN 1980K,
which abruptly dropped after ten years of slow decline (Weiler et al. 1992; Montes
et al. 1998). Also the radio luminosity from SN 1979C, after declining steadily
for years, has flattened and become relatively constant, perhaps as a result of the
supernova shock wave hitting a denser region of the CSM (Montes et al. 2000).
Observations also indicate that SN 1957D, after being relatively constant (~ 3
mJy), suddenly appeared to have faded (in two years) below (< 1 mJy) the level
of an associated HII region (Cowan et al. 1994a). However, new observations
presented in this Chapter may cast doubt on this interpretation.

In this chapter, I report new radio observations of SNe 1970G, 1957D, 19508,
and 1923A, including their current flux densities and spectral indices and examine
how their radio emission have varied during the time they have been monitored.

SN 1970G, a Type II supernova (SN) in M101 (Lovas 1970; Kirshner et al.
1973), was the first SN to be detected in the radio (Gottesman et al. 1972; Allen

et al. 1976). It then faded from view (Weiler et al. 1986), until it was recov-
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ered again in 1990 (Cowan, Goss & Sramek 1991; hereafter referred to as CGS).
SN 1970G is one of a very rare group of SNe that have been recovered in the radio
more than a decade following maximum optical light and is now - 31 years after
outburst - the longest monitored such object.

M83, an SABc galaxy, is host to 5 historical supernovae (SNe) of the last
100 years: SN 1923A (Lampland 1936), SN 1945B (Liller 1990), SN 1950B (Haro
1950), SN 1957D (Gates 1958), and SN 1968L (Bennett 1967). The detection of
SN 1923A, a Type II SN, makes it the oldest radio supernova (RSN) observed
(Eck et al. 1998). SNe 1923A, 1950B, 1957D, and 1968L are classified by ra-
dio and optical properties as Type II SNe (Barbon et al. 1998; Eck et al. 1998;
Cowan, Roberts, & Branch 1994; Wood & Andrews 1974), while the designation
of SN 1945B is uncertain as it was detected by archival studies. This rich sam-
pling of intermediate-age SNe makes M83 the ideal galaxy to study the evolution
of SNe, removing any uncertainties involving accurate distance measurements and
differences in the host galaxy’s evolution (Rosa & Richter 1988; Cowan & Branch

1985; Bartunov, Tsvetkov, & Filimonova 1994).
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3.2 Observations

3.2.1 SN 1970G in M101

The new VLA data on SN 1970G were taken from six observing runs. In the
first three, SN 1970G was observed for 4.5 total hours on 4 and 6 November
and 3 December 2000, at 20 cm (1.425 GHz) using the VLA’s most extended
(A) configuration, with a maximum baseline of 34 km. During the second group
of observing runs, SN 1970G was observed on 10 January 2001 with the VLA
in its A configuration and on 5 and 21 February 2001 with VLA in its BnA
configuration (maximum baseline of 24 km) at 6cm (4.860 GHz) for a total of 6.5
hours. These observations were done using the standard VLA continuum mode,
obtaining a total of 100 MHz bandwidth in each of the two orthogonal circular
polarizations. The phase calibrator was J1400+621, and 3C286 was used to set
the flux density scale. In all observations the pointing center was 14*03™00° and
+54°14’33" (J2000), and flux densities for 3C286 were taken from Perley, Butler,
& Zijlstra (2001).

Data were Fourier transformed and deconvolved using the CLEAN algorithm
as implemented in the AIPS routine IMAGR. The data were weighted using
Brigg’s robustness parameter of 0, which minimizes the point-spread function

while maximizing sensitivity. [ have also re-analyzed the CGS observations of
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the region, using the same data reduction procedures and inputs as were used on
the current data. The 6 cm observations were combined using the AIPS routine
DBCON, and a final 6 cm image was produced using the AIPS routine CONVL to
correct for differences in the beam size and shape since they were taken in different
array configurations. To derive the peak flux density and position for SN 1970G,
a series of one dimensional plots of flux densities vs. position were made using
the AIPS routine SLICE at constant right ascension and then at constant dec-
lination. This was necessary due to the relative brightness of the nearby H II
region, NGC 5455 [centered =~ 5 sec from SN 1970G], which artificially introduced
a modest slope in the flux density baseline from the HII region outward. This
artifice resulted in minor reductions in the peak flux density when employing the
AIPS routines, IMFIT and JMFIT, for all of the observations.

The position measured for SN 1970G, from the new images and the re-analysis
of the 20 cm observations taken in 1990, is 14*03™00388 +-0301 and +54°14'33"1 +
0”2. Uncertainties in the peak intensities are reported as the rms noise from the
observations. At 20 cm, the beam size is 1742 x 1721, p.a. = —39.18°, and the
rms noise is 0.015 mJy beam™!. At 6 cm, the beam size is 1720 x 1720, p.a. =

0.00°, and the rms noise is 0.020 mJy beam™!. The results of my analyses are

presented in Table 3.1 and Figure 3.1.
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3.2.2 SNe 1923A, 1950B, and 1957D in MS83

M83 was monitored over the course of four VLA observing runs. In the first two,
M83 was observed for 8.7 total hours on 13 and 15 June 1998 at 20cm (1.450 GHz),
using the VLA in its BnA configuration (the southern arms in B configuration
and the northern arm in A configuration), with a maximum baseline of 24 km.
During the second group of observing runs, M83 was observed on 31 October and
1 November 1998 with the VLA in its CnB configuration (maximum baseline of
~11 km) at 6cm (4.860 GHz) for a total of 8.9 hours. These were done using
the VLA spectral observing mode 4. For the purposes of this study, we are only
interested in the continuum observations of the SNe. So we have only analyzed
the only the continuum data taken during these observations, obtaining a total
of 100 MHz bandwidth in each of the two orthogonal circular polarizations. The
phase calibrator was J1313-333, and 3C286 was used to set the flux density scale.
Flux densities for 3C286 were taken from Perley, Butler, & Zijlstra (2000). It
should be noted that J1313-333 is a slightly resolved source with the VLA in
these configurations. This rules out the direct application of simple gaussian
model for this source. In order to correct for this, J1313-333 was self-calibrated
using an iterative process to ensure that all of its emission was properly modelled
for the 20 cm observations. The problem was not as pronounced at 6 cm, so

the standard VLACALIB routine was applied with minimal weighting applied to
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baselines larger than 50 kilo-wavelengths. This resulted in an acceptable model to
be applied to the M83 data. J1313-333 was also used as a phase calibrator in the
earlier observations discussed in Cowan et al. 1994, although there is no indication
of any such resolution problems in those observations. In all observations, the
pointing was (B1950) 13%34™11° and —29°36'48", centered on the nuclear region
of M&3.

Data were Fourier transformed and deconvolved using the CLEAN algorithm
as implemented in the AIPS routine IMAGR. The data were weighted using a
Brigg’s robustness parameter of 0, which minimizes the point-spread function
while maximizing sensitivity. Uncertainties in the peak intensities are reported as
the rms noise from the observations. The measured positions (B1950) from these
new maps are listed as follows: for SN 1957D 13”34™14536 and —29°34/24”3, for
SN 1950B 13"34™035€7 and —29°36'39”0, and for SN 1923A 13%34™20%00 and
—29°35'44”9. At 20 cm, the beam size is 3”29 x 2771, p.a. = 59.0°, and the rms
noise is 0.030 mJy beam™!. At 6 cm, the beam size is 3749 x 2795, p.a. = 66.51°,

1

and the rms noise is 0.030 mJy beam™". The results of my analyses (positions

and peak flux densities) are presented in Table 3.1 and Figures 3.2, 3.3, 3.4.
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3.3 Results

3.3.1 SN 1970G

I have detected a radio source at the position of SN 1970G at 20 cm and 6 cm,
coincident, within the error limits, with the CGS position. My measured flux
density at 20 cm indicates a reduction in the 20 cm flux density of 11% from 1990
to 2000 (see Table 3.1). Extrapolating from the 3.5 and 20 cm measurements
and assuming the spectral index reported by CGS, the 6 cm flux density in 1990
would have been 0.11 mJy, which is virtually identical to the current value of
0.12 £ 0.020 mJy (see Table 3.1). The CGS observations indicated that the flux
density of SN 1970G had dropped between 1974 and 1990 with a power-law index
(S o< t?) of B = —1.95+0.17 at 20 cm. Assuming the CGS power-law decline and
spectral index from 1990, we would expect a much lower 6cm flux density, ~ 0.050
mJy, and 20 cm flux density, ~ 0.090 mJy than we now measure. The radio light-
curve for SN 1970G between 1990 and 2000 has flattened considerably and (based
upon the 20 cm flux densities) the power-law index is now 8 = —0.28 £ 0.13
(see Table 3.2). As indicated in Table 3.2 (and shown in Figure 3.1), our new
observations indicate that SN 1970G is still a (marginally) non-thermal radio
source. The current spectral index, «, of —0.24 £+ 0.20 has flattened from the

value of —0.56 +=0.11 reported in 1990 by CGS, although the error bars are rather
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large.

3.3.2 SN 1957D

I have detected radio emission from the site of SN 1957D at 20 cm and 6 cm,
coincident, within the error limits, with the source detected by Cowan et al. (1994)
which has faded from 1992 to 1998 by 33%, at 20 cm, and by 76%, at 6 cm (see
Table 3.2). The 20 cm and 6 cm power-law indices (S o t?) for SN 1957D are
B = —2.29 £ 0.07 and —6.42 + 0.09, respectively, indicating a dramatic decline
in the flux density. We illustrate the radio evolution of these SNe in Figure 3.4,
where we show the radio light curves of several intermediate-age SNe along with
a few SNRs, plotting the time since supernova explosion versus the luminosity at
20 cm (i.e.. the monochromatic luminosity).

As shown in Table 1 and Figures 3.2, SN 1957D is now non-thermal with a
spectral index of —0.73 £ 0.12. Previous determinations for SN 1957D’s spectral
index in the early 1990s and mid 1980’s yielded very different values of +0.1140.06
and —0.23 £ 0.04, respectively (Cowan et al. 1994). The thermal spectral indices
reported by Cowan et al. (1994) for SN 1957D were attributed to an intervening
HII region whose brightness is comparable to that of the faded SN. A possible
explanation for the change of the spectral index could be that the SN shock has

overrun a portion of this HII emission region, resulting in a partial decline of



the thermal emission. The current non-thermal spectral index and steep decline
in measured flux densities of SN 1957D closely model the predictions of Weiler

et al. (1986, 1990, 2001).

3.3.3 SNe 1923A and 1950B

I have detected radio emission from the sites of SNe 1923A, and 1950B at 20 cm
and 6 cm, coincident, within the error limits, of the sources detected by Cowan
et al. (1994) and Eck et al. (1998). My measured flux densities at 20 cm indicate
a reduction from 1992 to 1998 for these SNe, SN 1923A by 33% and SN 1950B
by 28%. The 6 cm peak flux densities for these two SNe have remained the same,
within the error limits (see Table 3.2). The 20 cm power-law indices (S « t°)
for SNe 1923A and 1950B between 1992 and 1998 are f = —4.54 + 0.22 and
—2.27 4+ 0.08, respectively. The 20 cm power-law index for SN 1923A is steeper
than the values reported for the younger SNe. The 6 cm power-law index for
SN 1950B (8 = +0.70 £ 0.11) and SN 1923A (§ = +4.24 + 0.38) indicate a
modest brightening, but no substantial change.

As indicated in Table 3.2 (and shown in Figures 3.2, 3.3, and 3.4), our new
observations indicate that SNe 1923A and 1950B are still marginally non-thermal
radio sources. Their current spectral indices, (@; S o v*), of —0.24 £ 0.26 and

—0.18 £ 0.12, respectively, have flattened from the values of —1.00 &+ 0.24 and
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—0.57 = 0.08 reported for each source in 1992 by Cowan et al. (1994). The evolu-
tion of SNe 1923A and 1950B is consistent with the theoretical models of Weiler
et al. (1986, 1990, 2001) and Montes et al. (1997) in that the 6 cm emission is
weaker than the 20 cm emission, the 20 cm flux continues to decay at a rapid
rate, and the sources are non-thermal. In the case of these two older SNe, their
6 cm emission is likely already at or below the level of the thermal emission from
an intervening HII region along the line-of-sight (Montes et al. 1997). The 20 cm
emission from these two SNe continues to decline and will likely also fade below

the level of this thermal emission as well.

3.3.4 SNe 1945B, 1968L and 1983N

There was no detection of emission from either the Type Ib SN 1983N nor from
the Type II SNe 1945B and 1968L. Upper limits for emission at both 6 ¢m and
20 cm from SNe 1983N and 1945B are 0.90 mJy, at the three sigma noise level.
SN 1968L is located within the diffuse emission region at the center of M83. Three
sigma upper limits for emission from SN1968L are 4.60 mJy at 6 cm and 6.8 mJy
at 20 cm. Turner & Ho (1994) attribute the brightest nuclear source in M83 to
SN 1968L. However, after years of monitoring this s'ource by Cowan & Branch
(1982), Cowan & Branch (1985), and Cowan et al. (1994), the measured flux

density of this source has not varied significantly, which would be very atypical
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behavior for a RSN. Given the age of SN 1945B, the fact that it has not been
detected in these and prior observations is unusual with emission having been
observed from SNe 1923A, 1950B, and 1957D. The most likely reason for it not
being detected is a lack of CSM around the object. It’s initial detection made
by archival studies of plates taken of M83 by Liller (1990), indicate it was a very
faint optical SN as well.

The lack of detectable emission from SN 1993N was expected. As mentioned
before, SNe Ib & Ic are not long-term radio sources due to the lack of CSM
associated with these events (see discussion in Introduction for radio emission
from SNe). SN 1983N was detected as a strong radio source by Sramek, Panagia,
& Weiler (1984) and Weiler et al. (1986) who were able to measure a steep decline
in its radio emission within a year following explosion and Cowan et al. 1994 in
their 1983 and 1984 searches who detected emission ~2 years after the event, with
measured flux densities of 4.4 £ 0.15 mJy (20 cm) and 0.52 £ 0.05 mJy (6 cm).

All subsequent searches have detected no emission from this source.

3.4 Discussion

The current and previous values of the spectral indices, luminosities, and de-
cay indices for SNe 1970G, 1957D, 1950B, and 1923A are consistent with values

reported for other intermediate-age RSNe at similar ages and wavelengths (See
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Table 3.2, Figure 3.5, and Stockdale et al. 2001a). Figures 3.6 and 3.7 identify
the positions of the historical SNe in M83 in relation to the rest of the galaxy. It
is clear, for example, from Figure 3.5 that the radio luminosities of SNe 1970G,
1957D, and 1950B at an age of ~ 30—40 years is very close to that of the Type II
SN 1968D, in NGC 6946, and SN 1961V, in NGC 1058, at the same stage in their
evolution (Cowan et al. 1994; Hyman et al. 1995; Stockdale et al. 2001a). This
correlation in luminosity also lends credence to the identification of SNe 1950B
and 1961V as Type II SNe. In particular, there. has been some uncertainty in
the optical position of SN 1950B that prevented a conclusive identification of the
supernovae with the radio source (Cowan & Branch 1985; Cowan et al. 1994a).
As discussed in the previous chapter concerning SN 1961V, recent optical obser-
vations have caused some debate whether it was a supernova event or a luminous
blue variable (LBV) (Goodrich et al. 1989). On the other hand, recent radio ob-
servations of SNe 1961V strongly suggest a supernova interpretation for this event
(Stockdale et al. 2001a).

The evolution of the radio flux density of these four SNe is consistent with the
current models for radio emission from SNe, which predict a general decline in
radio luminosity with age and declining density of CSM. Figure 3.5 illustrates a
interesting trend for some of the intermediate-age RSNe, with a general flattening

of the radio light curve 10-40 years after the supernova event.
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The differences in the behavior of the individual SNe (e.g. the rates at which
their radio luminosities fade) could, therefore, be explained in terms of the den-
sity of the material encountered by the supernova shock. For example, the shocks
associated with some RSNe (e.g. SNe 1979C, 1970G, and 1961V) might be trav-
eling through considerably denser CSM than other similarly-aged RSNe (e.g.,
SNe 1980K and 1957D). One scenario which might explain this increased den-
sity of CSM around some Type IT RSNe could be that the progenitors underwent
large-scale eruptions, akin to LBVs, prior to the supernova event. This is not to
say that we are detecting emission from the ejecta of any LBV outburts, which as
mentioned in Chapter 2 are weak radio emitters. But, we may be detecting emis-
sion as the SN shock interacts with this dense ejecta. The mass loss rates during
an LBV eruption can be 10—100x larger than the typical supergiant mass-loss
rate (Humphreys & Davidson 1994). Determing the exact epoch at which this
may have occurred depends on the ejection velocities of the CSM during these
events, the rate of expansion of the supernova shock, and the density of the CSM.
Unfortunately, these intermediate-age RSNe are too under sampled to make any
definitive statements as to the exact nature of such a possible outburst or mass
loss.

SN 1950B appears to bridge this differentiation, demonstrating a plateau in its

light curve followed by a decline in its emission comparable to that of SN 1957D
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(see Figure 3.5). Consistent with this interpretation is the very rapid decline and
disappearance of the radio emissions of Type Ib RSNe, e.g. SNe 1983N and 1984L,
which presumably have lower density CSM than Type II SNe (Weiler et al. 1986;
Sramek et al. 1984; Panagia et al. 1986). Clearly, additional radio monitoring of
these events, and other RSNe, will be important in understanding the continuing

evolution and nature of these relatively rare objects.
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Table 3.1: Observations of Intermediate-Age Radio Supernovae.

SN 1970G

SN 1957D SN 1950B SN 1923A

Distance (Mpc) 7.4

4.1 4.1 4.1

Most Recent 20 cm

Flux density (mJy) 0.16 4+ 0.015
Supernova age (yrs) 30.29
Luminosity® 1.1 x10%

0.824+0.03 0.52+0.03 0.20+0.03

1.

40.49 48.24 75.09
6 x10%® 1.0 x10% 3.9 x10%

Previous 20 cm

Flux density (mJy) 0.18 +£0.017
Supernova age (yrs) 19.74
Luminosity® 1.2 x10%

1.22 +£0.07 0.724+£0.04 0.30%+0.05

2.

34.04 41.80 68.67
4 x10% 1.4 x10% 5.9 x10*

Most Recent 6 cm

Flux Density (mJy) 0.12 4 0.020
Supernova age (yrs) 30.50
Luminosity® 7.9 x10%

0.34 £0.03 0.42+0.03 0.15x0.03

6.

40.87 48.62 75.48
7 x10# 8.3 x10* 3.0 x10%#

Previous 6 cm
Flux density (mJy)
Supernova age (yrs)
Luminosity®

1.39 £0.04 0.37+0.03 0.093 +£0.03

2.

32.82 40.58 67.43
8 x10% 7.4 x10% 2.6 x10%*

@ Units are (ergs s™' Hz™).
References — (Cowan et al. 1991;

Cowan et al. 1994a; Eck et al. 1998;

Kelson et al. 1996; Saha et al. 1995; Silbermann et al. 1996;

Stockdale et al. 2001b)
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Table 3.2: Radio Properties of Intermediate-Age Radio Supernovae.

SN 1970G SN 1957D SN 1950B SN 1923A

Spectral Index®
Most Recent —0.24+0.20 —-0.73+0.12 —-0.18+0.12 —0.24+0.26
Previous —0.56 +0.11® +40.11 +£0.06 ——0.57+0.08 ——1.004+0.24

Decay Index®
Most Recent

20 cm —0.28+£0.13 -2.29+0.07 -—-227+0.08 —4.54+0.22

6 cm —-6.42+0.09 +0.70+0.11 +4.24 4+0.38
Previous

20 cm —1.95+0.17 -266+0.07 +0.12+0.13

6 cm —2.44 +£0.04 +0.224+£0.04 —7.90+£0.42

¢ o obtained by S «x .

b taken from 20 cm and 3.5 cm observations

© 3 obtained by S o tP.

References — (Cowan et al. 1991; Cowan et al. 1994a; Eck et al. 1998)
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Figure 3.1: Radio contour images at 20 cm (in red) and 6 cm (in blue) of SN 1970G
(the source above and to the right of the central H II region, NGC 5455). Contour
levels at both wavelengths are -0.060, 0.060, 0.086, 0.12, 0.17, 0.24, 0.34, 0.48, 0.68,
and 0.96 mJy beam™!. At 20 cm, the beam size is (shown in lower right) and, at
6 cm, the beam size is (shown in lower left).
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Figure 3.2: Radio contour images at 20 cm (in red) and 6 cm (in blue) of SN 1957D
(the central bright source). Contour levels at both wavelengths are -0.12, 0.12,
0.17, 0.24, 0.34, 0.48, 0.68, and 0.96 mJy beam™!. At 20 cm, the beam size is
shown in the lower left, and at 6 cm, the beam size is shown in the lower right.
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Figure 3.3: Radio contour images at 20 cm (in red) and 6 cm (in blue) of SN 1950B
(the central bright source). Contour levels at both wavelengths are -0.12, 0.12,
0.17, 0.24, 0.34, 0.48, 0.68, and 0.96 mJy beam™!. At 20 cm, the beam size is
shown in the lower left, and at 6 cm, the beam size is shown in the lower right.
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Figure 3.4: Radio contour images at 20 cm (in red) and 6 cm (in blue) of SN 1923A
(the source indicated by the cross). Contour levels at both wavelengths are -0.12,
0.12, 0.17, 0.24, 0.34, 0.48, 0.68, and 0.96 mJy beam~!. At 20 cm, the beam size
is shown in the lower left, and at 6 cm, the beam size is shown in the lower right.
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Figure 3.5: 20 cm radio light curve of several RSNe and SNRs. Data, fits and
distances for SN 1923A, from this paper, Eck et al. (1998) and Saha et al. (1995);
for SNe 1950B (cyan hoops) & 1957D, from this paper, Cowan et al. (1994) and
Saha et al. (1995); for SN 1961V (blue squares), Stockdale et al. (2001a) and Sil-
bermann et al. (1996); for SN 1968D (yellow diamond), from Hyman et al. (1995)
and Tully (1988); SN 1970G (orange circles), from Stockdale et al. (2001b), Cowan
et al. (1991), and Kelson et al. (1996); for SN 1978K, from Ryder et al. (1993),
Schlegel et al. (1999), and Tully (1988); for SN 1979C, from Weiler et al. (1986,
1991), Montes et al. (2000), and Ferrarese et al. (1996); for SN 1980K, from Weiler
et al. (1986, 1992), Montes et al. (1998), and Tully (1988); and for SN 1986J, from
Rupen et al. (1987), Weiler et al. (1990), and Silbermann et al. (1996). Luminosi-
ties for Cas A and the Crab from Eck et al. (1998).
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Figure 3.6: Radio contour images at 20 cm of M83, with the historical SNe iden-
tified by crosses. Contour levels are -0.12, 0.12, 0.17, 0.24, 0.34, 0.48, 0.68, 0.96,
1.36, 1.92, 2.72, 3.84, 5.44, and 7.68 mJy beam™!. The beam size is shown in the

lower left.
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Figure 3.7: Radio false color image of M83, with the positions of the historical
SNe shown.
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Chapter 4

X-ray Search For Supernovae

1959D & 1961V

4.1 No X-rays from the Supernovae

Only 4 decades-old SNe have been recovered in the X-ray using the Roentgen Satel-
lite (ROSAT) and earlier X-ray missions (SNe 1978K (Ryder et al. 1993; Schlegel
1995; Schlegel et al. 1999), 1979C (Immler et al. 1998a), 1980K (Canizares et
al. 1982), and 1986J (Houck et al. 1998). With Chandra, there have been 5
detected X-ray SNe: SNe 1979C (Ray, Petre, & Schlegel 2001), 1987A (Bur-
rows et al. 2000), 1998S (Pooley et al. 2001), 1999em (Pooley et al. 2001), and
SN 1999gi (Schlegel 2001). SN 1979C is now the oldest monitored X-ray SN, with

emission having been detected for the first time by ROSAT 16 years after the SN
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explosion in 1995 in the 0.1 — 2.4 keV energy band (Immler et al. 1998a). Subse-
quent observations with Chandra in 1999 once again detected soft X-ray emission
from SN 1979C but no hard X-ray emission (Ray et al. 2001). The source of X-ray
emission for these objects is believed to be due to the interaction between a SN
shock wave and the SN progenitor’s CSM, as discussed in Chapter 1. With the
exception of SN 1979C and SN 1987A, both detected recently with Chandra, no

X-ray SNe have been detected later than a decade following explosion.

4.1.1 Observations, Data Reduction, and Results

In order to probe this hereto unexplored group of intermediate-age SNe in the
X-ray, observations were attempted to detect X-ray emission from SN 1961V,
in NGC 1058, and from SN 1959D, in NGC 7331. [SN 1961V was also the
subject of the radio study mentioned in Chapter 2, and a discussion of the re-
duction for the SN 1959D data can be found in the following Section.] The
reduced image of NGC 7331 is shown in Figure 4.1. SN 1961V, in NGC 1058, an
SA(rs)c spiral galaxy, was observed with the ROSAT HRI in February 1996 for
61 ks and later by Schlegel in September 1999 for an additional 43 ks. The
HRI is an X-ray photon collector with no spectral resolution, collecting pho-
tons with energies ranging from 0.12 keV to 2.4 keV. The first observations were

centered on the CHB radio source of SN 1961V at R.A.(2000) = 22433630,

69



Decl.(2000)= +37°21'0070. The second observations were centered at R.A.(2000)
= 22743™36%0, Decl.(2000)= +-37°21’3670. The two images were analyzed with
assistance provided by A. Prestwich at the Harvard Center for Astrophysics and
Karen Leighly, which I gratefully acknowledge, and are shown in Figure 4.2.
Neither SN 1959D nor SN 1961V were detected, and the 3 sigma upper limits
are provided in Table 4.1 along with the X-ray luminosities of those SNe with X-ray
spectra available. The later observations on SN 1961V by Schlegel yielded a ~20
detection near the position of SN 1961V. While this may be emission from the SN,
the transient nature of the source would argue against such an interpretation. The
3 sigma upper-limits for these two SNe were derived from the ROSAT HRI count
rate, using a Thermal-Bremsstrahlung Model with a temperature of 2 keV, similar
to the models derived from the spectra of the other X-ray SNe presented in Table
4.1, including SN 1979C by Ray et al. (2001). The X-ray upper limits are also
plotted on Figure 4.3, with light curves of the other X-ray SNe mentioned in Table
4.1. The fact the neither SNe 1959D nor 1961V was detected with the ROSAT
HRI, although disappointing, does not come as a complete surprise. Both SNe are
radio weak compared to SN 1979C (Cowan et al. 1994b; Stockdale et al. 2001),
and the ROSAT sensitivity was rather poor. Future X-ray observations with
instruments such as Chandra may be able to detect X-ray emission from these

sources, as there have been detections with Chandra of very faint X-ray emission
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from SNe, well below the upper limits established by ROSAT for these two SNe.

4.2 A Nuclear X-ray Source in NGC 7331:

Evidence for a Massive Black hole

Deep radio observations of NGC 7331 were first made in an attempt to search
for the supernova remnant (SNR) from SN1959D (Cowan, Romanishin, & Branch
1994, hereafter = CRB). Although the SNR was not identified in those observa-
tions, an unresolved nuclear source was detected (see Figure 4.4; CRB). Optical
observations of the nucleus of NGC 7331 identified an optical LINER spectrum
(Keel 1983; Bower 1992). These two discoveries support the possibility that
NGC 7331 harbors an MBH. Rubin et al. (1965) and Afanasiev, Silchenko, &
Zasov (1989) made kinematic studies, measuring rotational motion from [NII] and
Ha emission lines. These observations were analyzed by Afanasiev et al. (1989)
suggested an MBH of ~ 5 x 108 Mg in NGC 7331. Bower et al. (1993), how-
ever, suggested that this rotational motion could be explained by models with-
out an MBH and with a constant mass-to-light ratio as a function of radius.
Bower et al. (1993) were only able to exclude an MBH with a mass greater than
5—10 x 108 My (CRB), a result which is relatively insensitive to small differences
in the assumed distance to the galaxy. The Bower et al. (1993) mass limit is

also near the upper limit of measured masses for Massive Dark Objects found in
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LINER galaxies, which have X-ray and radio properties similar to those found in
NGC 7331 (Ho 1998).

In this Chapter, I report on the first deep ROSAT X-ray observations of
NGC 7331 and their impact in understanding the nature of its LINER nucleus.
In Subsection 2, I discuss the results of the observations and the techniques used
to reduce these data. Classically, the possible indicators for an MBH are the de-
tection of an unresolved nuclear source, a non-thermal radio and X-ray spectral
index, variability in the nuclear flux over months to years, and an anti-correlation
between X-ray and radio variability (Melia 1992). The fact that NGC 7331 pos-
sesses an unresolved nuclear source and has a non-thermal radio spectral index was
confirmed by CRB. This Chapter identifies a similarly unresolved X-ray source,
but can make no statement as to the nature of the X-ray spectra. Confirma-
tion of a non-thermal X-ray spectra and the last two criteria for an MBH require
further X-ray and radio observations. While starburst galaxies can also have non-
thermal, unresolved sources, there is no evidence for an anti-correlation in X-ray
and radio variability in such galaxies. Other indicators of the presence of an
MBH in NGC 7331 will be discussed later in Subsection 3 of this Chapter. Also
in Subsection 3, I will provide comparisons of our results with current theories and
observations of low luminosity active galactic nuclei (LLAGN) powered LINERs

and make our conclusions.
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4.2.1 Observations and Data Reduction

NGC 7331 is an Sbc spiral galaxy, which was observed with the ROSAT High
Resolution Imager (HRI) in December 1995 to study the nuclear source that had
been previously observed in the radio with the Very Large Array (VLA) (CRB).
The HRI is an X-ray photon collector with no spectral resolution, collecting pho-
tons with energies ranging from 0.12 keV to 2.4 keV. The observations were made
over a two day period with a total observation time of 30.5 ks. The search was
centered on the CRB radio center of NGC 7331 at R.A.(2000) = 22737™4s8,
Decl.(2000)= +34°25'11”5.

Raw data reduction was provided by the ROSAT Standard Data Processing
Center. Standard ROSAT tests for short term variability are not applicable due to
insufficient counts. The data were further reduced using the IRAF routine GAUSS
which convolved the data with a circularly symmetric Gaussian function, with
the parameter sigma set to one pixel, effectively 0”5. The image was smoothed
with a Gaussian because of concerns from the Data Processing Center that the
standard analysis system was not very reliable in properly identifying sources in
complex emission regions. Sources that were initially reported as individual point
sources by the Center, are actually part of a more complex X-ray emission region.
The data were then evaluated with the NOAO-IRAF routine QPHOT to obtain

object counts, count noise, and accurate position measurements. The aperture
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radius used to determine the count flux from the galaxy was set to 24”, and sky
background measurements were determined with the specified parameters of an
inner annulus of 80” and an outer annulus of 102”.

Lacking direct X-ray spectral data, a value for the logN(H) = 21.3 (Burstein &
Heiles 1978; van Steenberg et al. 1988; Stark et al. 1992; Smith 1998) and a photon
index, I’ (dF/dE « E~T), of 1.0 and 2.0 (similar to values for other such objects
listed in Table 4.3) for the central sources in NGC 7331 were assumed to determine
the unabsorbed X-ray flux. The total column density of hydrogen includes both
the Galactic column density (8.61 x 10%° ¢cm~2?; Burstein & Heiles 1978) and
the column density for the bulge of NGC 7331 (Smith 1998). The ROSAT HRI
energy-to-count conversion factors were taken from the ROSAT Users Handbook,
assuming a power law spectrum (Zimmerman 1994). The assumption of an X-ray
power law spectrum is consistent with both the possible presence of an MBH, as
well as for a post starburst galaxy (Fabbiano 1996). The X-ray luminosity for
the galaxy was calculated assuming the Cepheid-derived distance to NGC 7331
as 15.1 Mpc (Hughes et al. 1998). The detections reported in Table 4.2 all meet
at least a 30 detection threshold. Since little is known about the other detected
sources in Table 4.2, a power law spectrum, a photon index of 1.0 and the same
line-of-sight, Galactic column density, which was used for NGC 7331, were used

to determine their energy flux measurements.
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Sources of uncertainty in ROSAT positions include a known attitude solu-
tion error, which causes X-ray position offsets of order 6” (ROSAT Users Guide).
Since any correction would require knowing X-ray positions and this is the first
high resolution image of the field, it is not possible to accurately correct for this
error. Table 4.4 compares the optical, radio, and X-ray positions of the nucleus
of NGC 7331. The values for the nuclear positions agree to well within 57 and are

definitely coincident within the acceptable ROSAT error.

4.2.2 Results and Discussion

The observations of the X-ray nuclear source in NGC 7331 support the likelihood
of an MBH in its core. In Table 4.3, I compare the luminosity of the nuclear source
in NGC 7331 with luminosity values for other LINER galaxies. Also included in
this table for comparison are the reported luminosities for two identified starburst
galaxies.

An assumed power-law spectrum and photon indices of 1.0 and 2.0 were used
to analyze our ROSAT observations of NGC 7331, because these are typical of
other observed X-ray LINERs in the energy range from 0.1 keV to 2.4 keV. The X-
ray luminosity of NGC 7331 in this bandpass region is within the observed range
found in other LINERs and somewhat larger than those luminosities observed in

typical starburst galaxies. I note that these LINER X-ray luminosities are near
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the upper limit of X-ray luminosities typically found in normal spiral galaxies
(Fabbiano 1996), and therefore an X-ray luminosity cannot be used solely to
identify possible MBHs.

The radio spectrum of a typical LLAGN is predicted to be powered by cyl-
cosynchrotron emissions in the advection dominated accretion flow (ADAF') model
used by Mahadevan (1997). The observed spectral index, a, of —0.6 (S, o< v+%)
for NGC 7331 indicates a non-thermal source powering the radio spectrum be-
tween 6 cm and 20 cm and is in agreement with observations of similar sources
listed in Table 4.5. The value reported by CRB for the spectral index of NGC 7331
agrees closely with the theoretical value of the spectral index of M31, which was
modeled with an MBH by Melia (1992). It should also be noted that this value of
a is only slightly greater than the spectral index normally associated with SNRs,
—0.8, and this might suggest a post starburst nature (Condon 1996).

Table 4.5 also lists radio fluxes from other LINERs with identified nuclear radio
sources. The same value of the spectral index found for NGC 7331 is reported for
M51 and M81 by Turner & Ho (1994), and M81 has been confirmed to harbor
an LLAGN by Ho et al. (1996). While the CRB spectral index alone does not
confirm the exact nature of the nuclear source in NGC 7331, it does suggest that
NGC 7331 is an LLAGN, given the galaxy’s identification as a LINER galaxy and

the similarity of its spectral index with other LINER galaxies confirmed to harbor
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MBHs.

For a sample of LINER nuclei Table 4.6 lists the ratio of soft X-ray and 6 cm
radio fluxes. The X-ray fluxes listed in Table 4.6 are averaged over their stated
bandpasses listed in Table 4.3. Among this limited sample there appears to be
a range for galaxies, from being relatively radio quiet (or X-ray loud) (log [X-
Ray/Radio] oc —1.8) to relatively radio loud (or X-ray quiet) (log [X-Ray/Radio]
o —4.6). It must be noted that this is a small sample and that these observations
were taken at various epochs and with different instruments. (Radio observa-
tions are from the VLA and the Westerbork Synthesis Radio Telescope and X-ray
observations are from ROSAT and ASCA.)

Another predicted indicator of an MBH is the bipolar outflow, which is believed
to develop as the result of convective instabilities in the thin disk approximation.
This in turn leads to a quasi-spherical accretion flow, characteristic of the advec-
tive model (Narayan & Yi 1995). In the case of NGC 7331, these outflows have

_not been positively identified in any observations to date. If these features do ex-
ist, they are likely to extend only a few parsecs. For NGC 3079, a LINER galaxy
16 Mpc away, jets were identified which extended only 1.5 pc from the central
engine (Trotter et al. 1998). Trotter et al. (1998) detected a molecular disk with
a binding mass of ~ 108 M. The radio observations of NGC 7331 indicate only

a compact nuclear source with a ring of non-thermal sources extending beyond
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the optical galaxy (CRB). The fact that similar jets have not been detected in
NGC 7331 can be attributed to the galaxy being 15.1 Mpc away (1”7 = 73 pc),
which makes resolution of parsec-scale outflows beyond the capability of the CRB
observations.

Further evidence supporting the existence of a LINER nucleus in NGC 7331,
similar to the one in M31, has been presented by Mediavilla et al. (1997) and
further confirmed by Heckman (1996). M31 was identified as harboring an MBH
of 3 x 107 Mg by Kormendy & Richstone (1995). Mediavilla et al. (1997) and
Ciardullo et al. (1988) report that the kinematics of the stars and ionized gas
are decoupled in NGC 7331 and M31 respectively. This is in contrast to the
conditions found in Seyfert galaxies. Also, Tosaki & Shioya (1997) and Young &
Scoville (1982) found no CO emission near the nuclei of NGC 7331 and M31. This
is atypical for post starburst galaxies. Their results do support the possibility that
this absence of CO emission may be due to the presence of a MBH.

Also identified in the HRI image was a source which is within 9” of the optical
position of NGC 7335 (Klemola et al. 1987). The observed flux was 2.15 x 10713
erg sec”! cm~? (assuming a power-law spectrum, a photon index of 1.0, and the
same line of sight, Galactic column density of hydrogen used in the previous
section). If this X-ray source is associated with NGC 7335, this would indicate an

X-ray luminosity of 3.1 x 10%! erg s™!, assuming a distance to NGC 7335 of 110
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Mpc (2=6315 km/s de Vaucouleurs et al. (1991) and a Hubble Constant of 55 km
s~! Mpc™!). Few observations have been made of this galaxy, and little is known
about it. Based upon this derived X-ray luminosity, however, this galaxy warrants
further study to determine if it is also a possible candidate for AGN activity.
There are a number of testé associated with X-ray studies that could more
definitively determine the nature of the nucleus of NGC 7331 (see e.g., Fabbiano
1996; Serlemitsos et al. 1996; Nandra et al. 1997; Ho 1998). Such tests will
require deep observations, which could provide resolution of the spectrum at mul-
tiple wavelengths and identify any form of variability in the observed flux from

NGC 7331.
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Table 4.1: Soft X-Ray Supernovae Luminosities & Upper Limits

Source Age (yrs) Luminosity® Reference
SN 1978K 1.6 1.5x10% Schlegel et al. 1996
12.1 6.3 x 1038 —

12.8 4.3 x 10%8 —

12.9 7.0 x 1038 —

15.1 5.4 x 1038 —

16.0 1.9 x 10%8 —_

16.7 2.5 x 10%8 Schlegel et al. 1999

16.7 2.0 x 10% —

16.9 2.3 x 1038 —

17.1 2.2 x 1038 —

17.1 2.4 x 1038 —_

19.4 2.2 x 10% —

19.9 2.1 x 1038 —

SN 1979C 162 6.2 x 10% Ray et al. 2001
20.6 1.4 x 10%° —

SN 1980K 0.1 3.4x10% Canizares et al. 1982
0.2 5.3 x 10%7 —

11.6 2.0 x 109 Schlegel 1994

SN 1986J 50 8.2 x10% Houck et al. 1998
6.9 5.1 x10% —

84 4.1 x10%® —

SN 1987A 0.9 3.4 x 10% Inoue et al. 1991
4.1 9.5%10% Beuermann et al. 1995

74 1.6 x 10% Hasinger et al. 1996

8.3 2.0x10% —

126 1.5 x 10% Burrows et al. 2000

SN 1959D 36.7 < 1.2x10% this work
SN 1961V 343 < 1.5x10% this work

a. Units are erg s!
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Table 4.2: X-Ray Sources in the Field of NGC 7331

Source Decl. Counts Flux®
(2000) (ksec™1)
1° 227373564  +34°24'59”27 4.17+ .4 41.3 + .63
2¢ 22h37m1586  +34°26'53”90 1.3+.3 2.15 £+ .36
3 22h36™29538 +34°25'56”78 0.9+ .3 1.49 & .50
4 22h36™3313 +34°30'11749 194+ .4 3.16 +.66
5 22h37mM28597 +34°25/25749 1.0+ .3 1.66 £ .50
6 22h37m38515 4-34°22/27"36 0.5+.3 0.83 +.50
7 22h37m3548 +34°9'47”85 14+.7 233%x1.16
8 22h37M51593 4-34°28'29743 094+ 4 1.49 + .66
9 22h35M54560 +34°13/51734 9.2+ 9 1534 1.5
10 22h36™3%43 434°12'14795 594+ .9 9.80+ 1.50
a. Units are 10'3 erg s7! cm™2

b. NGC 7331
c. NGC 7335
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Table 4.3: Comparisons of NGC 7331 & Similar X-ray Sources

Source Type Luminosity Photon Bandpass Ref
(RC3) 10% erg s—! Index (keV)
LINERs
NGC 7331 SAab 2.7—8.5 1.0—2.0 0.1-24
NGC 4258 SABbc 0.51 3.7 0.1-24 1
NGC 4736 R SA(r)ab 0.34 2.3 0.1-2.0 2
NGC 4594 SAa 5.3 1.80 0.5-2.0 3
M51 SAbc 2.5 1.76 0.5-2.0 3
NGC 3079 SBc 4.4 1.76 0.5-2.0 3
M81 SAab 1.2 1.9 0.5-2.0 3
NGC 3642 SA(r)bc 3.9 2.84 0.2-2.2 4
NGC 3147 SA(r)bc 24 1.74 0.5-2.0 3
NGC 4579 SAB(rs)b 28 1.87 0.5-2.0 3
Starburst
M33 SAcd 0.1248 0.74 0.1-24 5
NGC 3628 SAb < 0.06—1.7 0.27—1.16 0.1-2.0 6
References:

Pietsch et al. (1994)
Cui et al. (1997)
Serlemitsos et al. (1996)
Koratkar et al. (1995)
Long et al. (1996)
Dahlem et al. (1995)

O Oh W=
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Table 4.4: Nuclear Positions for NGC 7331

Observation R.A. (2000)

X-ray 22737m3564
Radio 22M37m4500
Optical 22m37m4501
Optical 22R37m 4504

Decl.(2000) Reference
+34°24'59"27

+34°24/57"07 CRB (1994)
+34°24'56" 07 Klemola (1994)

+34°24'56"47 Argyle & Clements (1990)
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Table 4.5: Core Radio Flux Comparisons of NGC 7331 & Similar Sources

Source 2cm 3.6cm 6cm 20cm Spectral
Type mJy ulJy mJy mJy Index
NGC 7331} . 0.121 0.234 —0.6
SAab - (B array) (A array)
NGC 4258*3° 3.2 2.4 <10 +0.4
ce 1.5 2.0 —0.2
SABbc (C array) (B array) (A array)
NGC 45792 .- 40
SAB(rs)b “ee .- .- (see ref)
NGC 4736*° 3.2 “e 6.1 27 —-0.3
2.2 .- 3.6 . —0.4
R SA(r)ab  (C array) - (B array) (see ref)
M314 .. 28 & 39
SA(s)b (A array)
M51° 2.3 fe 1.6 —0.6
SAbc (C array) (B array)
M81° 45 .- 92 —0.6
SAbc (C array) (B array)
References:
1. CRB

2. Hummel (1980) (Westerbork Synthesis Radio Telescope)

3. Vila et al. (1990)
4. Crane et al. (1992); Crane et al. (1993)
5. Turner & Ho (1994)
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Table 4.6: Soft X-ray & 6 cm Radio Flux Ratios for Selected LINERs

Source  Radio Flux* X-ray Flux® log [X=Bay] Ref
10—27 10—30

NGC 7331 0121 193 —500 (-1.80) — (=L31) 1
NGC 4258 2.4 7.4 —2.1 2&3
M51 1.6 3.2 2.7 5&6
NGC 4736 3.6 41 -2.9 3& 4
NGC 4736 6.1 4.1 —-3.2 3&4
NGC 4579 40 5.3 -3.9 3&6
M81 92 2.3 —4.6 S5&6

a. erg s~! cm~2 Hz!

References:

CRB

Pietsch et al. (1994)
Hummel (1980)

Cui et al. (1997)
Turner & Ho (1994)
Serlemitsos et al. (1996)

S AN
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Figure 4.1: A grey-scale X-ray image of SN 1961V and the field. SN 1961V is
the circled object in the center, with the annulus used for background counts also
indicated.
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Figure 4.2: A grey scale X-ray image of NGC 7331 and the field. NGC 7331 is
the circled object labeled #1 and NGC 7335 is the circled object labeled #2. The
X-ray detection of the nuclear source in NGC 7331 is within 570 of prior radio
observations of the nucleus given in Table 4.2. The remaining eight unidentified
sources listed in Table 4.2 (#3 - #10) are indicated on this figure.
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Figure 4.3: Soft X-ray Light Curve of Supernovae & SNRs. References given in
Table 4.1.
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Figure 4.4: Radio Image of NGC 7331 at 20 cm with the location of the nucleus
and the site of SN 1959D indicated.
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Chapter 5

Conclusions

5.1 Summary of Results

Through this study, I am able to report the radio rediscovery of five intermediate-
age SNe and upper limits for the detection of three other RSNe and two X-ray
SNe. Further, the VLA observations of SNe 1961V and 1950B appear to clearly
identify these sources as Type II SNe. All of the radio properties of these two
sources are consistent with those of other established Type II SNe. SN 1961V’s
radio luminosity has faded at both 20 cm and 6 cm in a manner consistent with
similarly-aged SNe. In particular, its rate of decline lies between the decay indices
of SNe 1970G and 1957D, both of which are confirmed Type II SNe (Tully 1988).
Also, the non-thermal nature of SN 1961V at this late epoch in its evolution is

inconsistent with evolutionary models of LBVs, which predict thermal emission
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as the weak eruption of the LBV dissipates into the CSM of the progenitor star
(White 2001). The question of SN 1950B’s exact nature was due to a lack of
good optical spectra following the SN event. Through radio studies well after the
optical peak, I am able to identify SN 1950B and 1961V as Type II SNe.

I am able to conclude that the observed radio and X-ray emission from SNe
do appear to be related to one another, as outlined in the theoretical models of
Weiler et al. (1986, 1990, 1996, 2001). This can be most clearly demonstrated in
Figures 5.1 and 5.2, which illustrate the radio and X-ray light curves for these
sources. As illustrated by these two light curves, there is an obvious correlation
between the X-ray and radio luminosities of supernovae. The most radio luminous
are also exceptionally bright in their X-ray emission, as is evident for SNe 1978K,
1979C, and 1986J. The dimmest supernova ever detected in the radio, SN 1987A,
is also the weakest X-ray SN observed [It was only detectable due to being ~100x
closer than the next nearest SN (Mitchell et al. 2001).] The lack of previous X-
ray SNe with measured spectra and luminosities, as compared to the number of
RSNe, will soon be remedied by new and pending Chandra observations. These
new measurements will also help to explain the peculiar differences between the
radio and X-ray evolution of these events.

Figure 5.1 also illustrates a potential wrinkle in the Weiler et al. (1986, 1990,

1996, 2001) models for the evolution of RSNe. Their models all assume a uni-
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formly ejected CSM with which the SN shock interacts. While this seems to be
case for the first ten years, the intermediate-age evolution demonstrates a degree
of heterogeny amongst Type II SNe. There appear to be two distinct behavioral
patterns. The first is the continual decay predicted by Weiler et al. (1986, 1990,
1996, 2001), which can be demonstrated through the linear declines of SNe 1957D,
1980K, and 1981K (this Dissertation; Eck et al. 1998; Cowan et al. 1994a; Weiler
et al. 1986,1992; Van Dyk et al. 1992). The second group appears to fall off at
varying rates, as shown by the light curves for SN 1950B and 1970G (this Disser-
tation; Cowan et al. 1994a,1994b). The reason for this difference is likely due to
the nature of the CSM surrounding the SN event and how it was ejected. The dif-
ferent progenitor stars could have undergone a variety of phases prior to the SN
explosion, possibly including either a Wolf-Rayet phase and/or an LBV phase.
SN 1987A experienced neither and has a very sparse CSM (Ball et al. 1995).
SN 1979C has also experienced a flattening of its light curve, but this is likely due
to the presence of a binary companion (Montes et al. 2000). SN 1961V could be-
long in either of these categories, as its decay index falls between values reported
for SNe in each of these categories (see Tables 2.2, 3.1, and 3.2). The emission
from SN 1923A appears to follow the Weiler et al. (1986) predictions closely as it
begins to transition into a SNR. But due to a lack of previously detected emis-

sion, these measurements do not rule out the possibility that it too could have
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experienced a short term flattening of its light curve, as is evident for SN 19508,

which is now decaying at a rate similar to that of SN 1957D.
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Figure 5.1: 20 cm radio light curve of several RSNe and SNRs. Data, fits
and distances for SN 1923A, from this Dissertation, Eck et al. (1998) and Saha
et al. (1995); for SNe 1950B (black hoops) & 1957D, from this Dissertation,
Cowan et al. (1994) and Saha et al. (1995); for SN 1961V (blue squares), Stock-
dale et al. (2001a) and Silbermann et al. (1996); for SN 1968D (yellow diamond),
from Hyman et al. (1995) and Tully (1988); SN 1970G (red crosses), from Stock-
dale et al. (2001b), Cowan et al. (1991), and Kelson et al. (1996); for SN 1978K,
from Ryder et al. (1993), Schlegel et al. (1999), and Tully (1988); for SN 1979C,
from Weiler et al. (1986, 1991), Montes et al. (2000), and Ferrarese et al. (1996);
for SN 1980K, from Weiler et al. (1986, 1992), Montes et al. (1998), and Tully
(1988); for SN 1981K from Van Dyk et al. (1992) and Freedman et al. (2001);
for SN 1986J, from Rupen et al. (1987), Weiler et al. (1990), and Silbermann
et al. (1996); for SN 1987A from Ball et al. (1995) and Mitchell et al. 2001; and
for SN 1993J from Van Dyk et al. (1994) and Freedman et al. (2001). Luminosi-
ties for Cas A and the Crab from Eck et al. (1998).
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Figure 5.2: Soft X-ray Light Curve of Supernovae & SNRs. References given in
Table 4.1.
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5.2 Future Plans

I will continue to focus my efforts toward the study of extragalactic SNe, SNRs,
and galactic centers, using the VLA, the VLBA, and the Chandra X-ray QObser-
vatory. With Dr. Kurt Weiler at the Naval Research Laboratory (NRL), I will
be studying young SNe before the intermediate-age. As discussed in the Intro-
duction, in this phase the SNe are intrinsically brighter and therefore much easier
to detect and study. This work will provide a deeper understanding of high-
mass stellar evolution, especially the final stages of the SN progenitor star and
the physical processes responsible for the supernova explosion. These short-lived
stars comprise an exceptionally small subset of a galaxy’s stellar population, but
play extremely important roles in heavy element enrichment and in the triggering
of star formation within their host galaxies. The combination of X-ray and ra-
dio emission from SNe provides an unparalleled opportunity to study the nature
of SNe & SNRS and their CSM. Through continual monitoring of these sources,
it becomes possible to probe the early mass-loss rates and ejection velocities of
the progenitor star, as the SN shock encounters CSM ejected at earlier epochs of
the star’s life. As is indicated in Figures 5.1 and 5.2, few young SNe have been
observed in radio and X-ray frequencies, so the need for further studies is clear.
Further, the search for SNe will often provide opportunities to also monitor the

nuclei in the host galaxies of these SNe. This will provide an excellent opportunity
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to detect variability in these sources, a possible sign for MBHs.

Dr. Weiler and his research group at the NRL have pioneered efforts in the
radio monitoring of young SNe and in developing new techniques and instrumen-
tation for expanding the frontiers of radio astronomy. At the NRL, I will make
new VLA observations of radio SNe, with observing time already allocated to
Dr. Weiler and his research group. And, I will have access to their VLA archival
data of previously observed sources. I also intend to apply for Chandra observa-
tions with Dr. Weiler in an attempt to detect X-ray emission from both new and
historical SNe.

My work will also include ongoing VLA and Chandra observations to detect
radio and X-ray emission from SNe and SNRs [of which I am a Co-Investigator].
These two observatories are ideal tools to probe this complex subject, offering com-
plimentary sensitivity and spatial resolution. We will utilize the high sensitivity
and spatial resolution of Chandra to identify X-ray point sources in a number of
nearby (low-inclination) spiral galaxies, chosen to span a range of Hubble types.
Our radio observations, particularly spectral index information, will be critical in
determining the nature of these sources. We will be able to identify previously
undetected SNRs in these galaxies. Multiwavelength comparisons will provide
a number of important scientific clues about the nature of SNRs. For example,

the observations will provide constraints on the density of the local interstellar
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medium, which affects the turn-on time and duration of radio emission in theoret-
ical SNR models such as those of Cowsik & Sarkar (1984). Our observations will
be important in addressing other important questions such as how are the radio,
X-ray and optical emissions related? Are they from the same region, and how do
the mechanisms differ in terms of energy efficiencies for particle acceleration at
the shock interface, shock energies or even presupernova mass-loss rates, all im-
portant parameters in models of radio emission such as those by Chevalier (1984).
Additionally, we will be able to determine variability in any known SNRs, as well
as perhaps recover known historical supernovae. We also note that the detection
of a number of SNRs in any of the spiral galaxies would also demonstrate (or
confirm) an unusual star formation history. My observations of M83 and M101
(included in Chapter 3) will be incorportated into this study, along with proposed
observations of eight other spiral galaxies. The Chandra observations are cur-
rently being made, and Figure 5.3 illustrates the recent X-ray observations made
of M83. While the results are still preliminary, there are obvious correlations with
the X-ray and radio images of M-83 (see Figure 3.7), especially noteworthy are
the nuclear region, the spiral arms (with an X-ray source near SN 1950B), and

other point sources in the field.
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Figure 5.3: Chandra X-ray false color image of M83, with bluer emission indicating
higher energy photons.
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I also look forward to working with Dr. Namir Kassim, a member of the
NRL radio astronomy group, to improve the observational capabilities of Low
Frequency Radio Astronomy (LFRA). The efforts currently being pursued at the
NRL, especiaily the proposed Low Frequency Array, exhibit a great potential for
future scientific exploration. LFRA has been one of the most poorly observed
portions of the EM spectrum. LFRA probes the 15 MHz to 150 MHz (or 2-20
meter) region of the radio spectrum, previously limited to short baselines (and
subsequent poor resolution) by ionospheric distortions. An innovative answer to
this problem was developed by N. E. Kassim and researchers at the NRL involving
self-calibration techniques. It has been successfully demonstrated with a joint
NRL-NRAO project, installing new Q-band (74 MHz) receivers at the VLA. This
advancement in LFRA has been successful in allowing new discoveries in the fields
of planetary, solar, Galactic, and extragalactic astronomy. The latest advance in
LFRA is the Low Frequency Array (LOFAR), a proposed facility that will allow
for high resolution observations through the LFRA frequency band. LOFAR will
fill an important role in radio astronomy with the VLA and the proposed Square
Kilometer Array (Kassim, Lazio, & Erickson 1999).

The particular aspect of LE'RA which intrigues me the most is being able to
probe the structure of Galactic SNRs. Observations in this frequency range will

allow us to better understand the environment in which SNe occur by observing
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their interactions between the expanding shock front and the local ISM. They
will also provide an unprecedented look into the inner dynamics of SNRs. And,
in the case of many SNRs, LFRA will allow us to search for hereto undiscovered
stellar corpses such as neutron stars and black holes due the low extinction at
these frequencies. Observations could also be made of extragalactic SNRs, which
would allow us to determine the relationship between the ISM and high mass
stellar evolution in different galaxies. Further, the observations will constrain
models concerning the acceleration of cosmic rays, which has been clearly linked
to SNRs.

Although my experience in radio astronomy has centered primarily on obser-
vations and imaging, I look forward to developing new skills in assisting in the
design and development of the instrumentation for the new LOFAR facility. This
will undoubtly give me a better understanding of radio interferometry and new
insights into its observational capabilities. My new position offers a unique oppor-
tunity to engage in making extremely important observations of radio SNe and in
designing cutting-edge technology to further study these rare objects.

A long-term prospect for the study of intermediate-age SNe is the eventual
completion of the Expanded VLA (EVLA). This project will strongly enhance the
VLA'’s scientific capabilities, especially in the search for very faint radio sources

like intermediate-age SNe. The project is split into two phases, improving the
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current VLA antennae and replacing the correlator and the construction of eight
new receiving stations (the New Mexico Array) with maximum baselines of ~300
km linked to the current VLA. The first stage is currenty being implemented and
the second has been proposed and is awaiting funding. When completed, the new
array will be 5—20 times more sensitive and have a resolution of 0”2 at 20 cm.
Such improvements will allow for a more extensive study of intermediate-age SNe,
reducing the necessary observing time for such faint sources from ~10—12 hours
to less than 2 hours for a comparable signal to noise ratio. The EVLA will also
be more compatible with the VLBA antennae, making combined VLA/VLBA
observations (such as my study of SN 1961V) much less complicated. With Chan-
dra and the upcoming EVLA, the study of intermediate-age SNe and young SNRs
will become much more fruitful as astronomers continue to explore the fascinating

transition period between supernova and supernova remnant.
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Appendix A

Radio Astronomy With the VLA

A.1 What is the Very Large Array?

This appendix contains a description of the VLA (theoretical and instrumenta-
tional) and a general description of the steps involved in reducing continuum radio
data with the VLA.

The Very Large Array is an aperture synthesis radio telescope with a resolv-
ing power similar to most ground-based optical telescopes. The VLA is able to
observe the entire northern sky and has a limited capability to observed some
southern objects (Dec. > —30°). For sources below this declination, observations
have limited resolution. The VLA consists of 27 individual antennae (diameter
= 25 m) in a large “Y” pattern (9 antennae per arm). They are linked together

electronically and, in the VLA largest configuration, have a resolving power equiv-
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alent to a a telescope with a diameter of 36 km and sensitivity of an antennae
with a diameter of 130 m.

The principles by which the 27 single antennae of the VLA are able to act as
one large receiver are interferometry and aperture synthesis. A pair of antennae
with cross-correlated signals observing the same source is called an interferom-
eter. The resulting signal is equivalent to the interference pattern of a two-slit
optical interferometer. With the 27 antennae of the VLA, there are 351 pairs of
interferometers with different baselines (distances between antennae). The cross-
correlation of the signals from each baseline pair provides information about the
intensities of each source in the beams of the antennae and their positions in the
sky relative to the pointing of the baseline pairs. In order to make sense of this
information, it becomes essential to accurately measure the time delays and lo-
cation of each antenna (Hjellming 1992). The distribution of radio emission in
an antenna beam can be considered as the superposition of many components
of varying size, position, and orientation. One can describe the relation between
intensity distributions and individual components in terms of a Fourier integral
relationship, where each baseline pair measures a single Fourier component of the
apparent angular distribution of sources in the antenna beam. Many such compo-
nents are needed to reconstruct an spatially-accurate image of the sources. These

are “provided” by the Earth’s rotation, as the geometric configuration between
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the antennae on the Earth and the source in the sky are constantly changing, i.e.
aperture synthesis (Hjellming 1992).

The VLA has four main configurations: A (baselines: max.~36.4 km; min.
~0.68 km), B (baselines: max. ~11.4 km; min. ~0.21 km), C (baselines: max.
~3.4 km; min. ~0.035), and D (baseline: max. ~1.03 km; min. ~0.035 km).
The antennae are moved by a large loader on railroad tracks to specific concrete
pads for each configuration. Each configuration is specifically designed to provide
optimal resolution at different wavelengths, (beginning with the A config.) 20 cm,
6 cm, 2 cm, and 1.3 cm. Each array configurtion provides comparable resolu-
tion with its primary observing wavelength due to the relationship between the
observed wavelength and the distances between each baseline pair of antennae.
Because radio emission from intermediate-age SNe is brightest at longer wave-
lengths (i.e. 6 and 20 cm), the SNe discussed in this dissertation were observed
in the A and B configurations to optimize spatial resolution and sensitivity.

Because the geometry of each array is very well known, it is possible to de-
termine the precise time delay (~0.5 pico-seconds for 1.5 cm) between signals
received at each antenna in a baseline pair as a function of the pointing direction
for the array. This delay be can be as large as 125 us for the longest baselines in
the A configuration (Hjellming 1992). Figure A.l illustrates the basic concept of

the delay time as function of the geometry between a baseline pair of antennae.
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Because the required timing accuracy of 0.5 ps is too difficult to achieve, the raw
radio frequency (RF) signals are mixed with a local oscillator signal and then con-
verted into intermediate frequencies (IF's) which convey the phase and amplitude
information from the raw signal. The signal from the “closer” antenna is then
delayed by the appropriate time factor to insure proper phase coherence, and now
the information from each baseline pair can be cross-correlated (multiplied and fil-
tered). Because of the range in time delays for each baseline pair and the number
of baselines in the VLA, it is extremely complicated (although by no means im-
possible) to convert the incoming signals into measurements of the amplitude and
phase of the incoming wavefront. Hjellming (1992) provides a detailed discussion
of the processes involved in converting the raw data into a more useful format.
The VLA antennae also have two feeds of orthogonal polarizations for each fre-
quency which are normally circular (right and left) but can also be converted to
linear polarization with the insertion of linear polarizers. Most observations only
use right-right (R-R) and left-left (L-L) polarizations, but it is useful to request
cross polarization be applied to observations if interested in whether the emission
is polarized and to what extent. The observations discussed in the dissertation do
not include such measurements, as the sources were all very faint and do not pro-
duce sufficient emission for useful polarization studies. Typical VLA continuum

observations are centered on two IF's separated by 100 MHz about the central
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Figure A.1: Schematic of a basic two dish radio interferometer. Figure from
Hjellming (1992).

wavelength with bandpasses of 50 MHz, with R-R and L-L polarizations for each

IF.

A.2 Calibrating and Flagging VLA Data Sets

Prior to making observations with the VLA, it is necessary to select a primary flux
calibrator and secondary phase calibrator to accurately determine the positions

and flux densities of the observed sources. To ensure that these calibrations are
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accurate, it is important to accurately model the chosen calibrators. It is therefore
useful to select sources which are unresolved, as the can be most simply modeled
as point sources. In the event that the calibrator is resolved, it is necessary to
self-calibrate. This possibility, along with the need to minimize the time spent
observing the calibrators to get a high signal-to-noise, are the key reasons that
calibrators should be fairly luminous radio sources (~1 Jy). The primary flux
calibrator, usually either 3C48 or 3C286, is used to set the flux density scale for
the observations. Both of these sources have been extensively studied and their
emission at the observable VLA frequencies are well understood. It is typical to
observe the primary flux calibrator at the beginning of a typical VLA “run” and,
for longer observations, at the end of the observing run. The secondary phase
calibrator is usually observed for 2 to 4 minutes at 20 to 30 minute intervals
during the observing runs at 20 and 6 cm. Phase calibrators should be selected
according to their suitability at the observed wavelength and array configuration.
Phase calibrators should also be within ~1 degree of the primary source so that
the phase solutions derived from them will accurately reflect the “viewing” for the
source and that minimal time will be spent slewing the array between the source
and the phase calibrator. Since the flux densities of these calibrators usually vary
with time, it is necessary to bootstrap their flux densities using the primary flux

calibrator. This is accomplished using the Astronomical Image Processing System
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(AIPS) routines SETJY and GETJY. SETJY is used to set the flux density scale
for the primary flux calibrator and GETJY “bootstraps” the flux density of the
phase calibrator. SETJY is run before any other calibrations are made. Following
this step, the AIPS routine VLACALIB is used to apply the initial gain calibration.
VLACALIB should be run for each calibrator, with special care to set the NRAO
recommended limits for maximum baseline lengths for each calibrator to ensure
a point source model will accurately describe the modeled data. It may also
be necessary to restrict the number of antennae per arm depending upon the
individual calibrator, array configuration, and observed wavelength.

After initial gain calibrations, it is important to “flag” the data for each cali-
brator and source for anomalous amplitude variations, which can be caused by a
number of things including cosmic rays, instrumentational glitches, weather, and
radio frequency interference (RFI). Flagging by phase variations is generally not
necessary for the calibrators and is not recommended for the source, since faint
sources may have large phase discrepancies prior to calibration. Flagging can be
with a variety of AIPS routines, the most commonly used is TVFLG. TVFLG
writes the locations of bad data to a flag table (without actually deleting them)
so that later when calibrating and imaging the sources, these data are not selected.
TVFLG can be used to flag data in a variety of ways. It is important to note that

each IF and each polarization should be carefully checked to ensure the integrity
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of the data set. This is usually the most time intensive part of the reduction pro-
cess. Once the data has been flagged, then GETJY is run to set the flux density
scale of the flux calibrator. VLACALIB should now be re-run if extensive flagging
was made to the calibrators, keeping in the baseline length restrictions for each
calibrator. Final calibrations are then applied using the AIPS routine CLCAL,
which produce a CL table with calibration and model information. CLCAL is
generally run on the primary flux calibrator with self-calibration. Then, it is run
with the phase calibrator, applying the model from the flux calibrator to the gain
solutions of the phase calibrator. Finally, the source data is calibrated with the
model produced for the the phase calibrator. If all has gone well, it is now possi-
ble to produce an image of the source. It is useful at this point to use the AIPS
routine SPLIT, to SPLIT the calibrated source data from the rest of the data
set, as the smaller data set makes imaging faster. It is also essential to do this if
the observations have been taken on separate observing runs, as was the case for
most of the data in this dissertation. The source data needs to be SPILT off from

the multi-source data set and then combined into one set using the AIPS routine

DBCON.
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A.3 Imaging VLA data

To actually produce an image, all of the Fourier components are transformed
together using the Cooley-Tukey Fast Fourier Transform (FFT), which takes a
mere fraction of the computing time required when using a direct Fourier trans-
form (Hjellming 1992). This can be accomplished using the AIPS routine IMAGR.
IMAGR can be used to image a field as well as applying calibrations for multi-
source or self-calibrated single-source data sets. Also for wide-field imaging,
IMAGR can accomplish data imaging in 512 simultaneous fields, which allows
for three dimensional mapping, as each field is centered on a different tangent
plane (such was case for the M83 observations discussed in Chapter 3).

IMAGR has number of user adjustable adverbs which must be carefully chosen
to ensure an accurate image is produced with reasonable positions and flux den-
sities, one the most important of which is CELLSIZE. This allows you set the the
dimension of each pixel in terms of angular size. The recommended scheme which
I have used is to set the cell size so that 3 to 4 pixels cover the beam. Making
the cell size too large, may cause some data to be omitted (IMAGR will inform
you when this is case). Making the cell size too small will change the beam size,
even if no additional data samples are included. Linked to this, is the image size,
determined by the adverb IMSIZE. IMSIZE allows you to set the size of your field

by pixels, and should always be in powers of two. If the field is too large, as was

122



the case for the 20 cm map of M83, it may be necessary to set a number of fields
to image in order to allow for 3-D corrections. Running the task, SETFC, will
provide you with recommended cell size, image size, and other pertinent informa-
tion to accomplish this. You must also set the adverb DO3DIMAG to TRUE.
This will require a lot of computing power and disk space and only need be done
in rare instances where wide-field imaging is required.

The next most important details in producing a radio image are the weighting
schemes. They are applied to the u-v data when they are being Fourier trans-
formed into an accurate representation of the source. With most interferometers,
including the VLA and VLBA, there a large number of short baseline pairs and
fewer long baseline pairs. With Natural weighting, each baseline is weighted
equally, producing a central beam with a core-halo source with a broad halo pro-
duced by the shorter baselines. There are also large sidelobes caused by the large
gaps in the u-v coverage at longer baselines. This results better imaging of fine
structure, as there are many more shorter baselines. Uniform weighting attempts
to maximize spatial resolution by weighting each data cell equally, resulting in
higher weighting for longer baselines and effectively filling in gaps in the u-v cov-
erage. The “increased” coverage results in some-what (~1—2x) higher noise
levels and provides better imaging of large-scale structure. It has recently become

possible to combine the two weighting schemes using the Brigg’s robustness pa-
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rameter which tempers the uniform weights. By varying the parameter from —5
(uniform weighting) to +5 (natural weighting) one can attempt to maximize the
spatial resolution while minimizing the noise levels for the image. The ROBUST
parameter is especially important for faint radio sources (e.g., intermediate-age
RSNe).

The last step for imaging radio observations is Cleaning. All AIPS Clean tasks
implement a Clean deconvolution devised for array processors by Clark (1980).
The IMAGR routines uses this Clean deconvolution with enhancements by Cotton
and Schwab (Griesen 2001). The basic Clean routine applies the following steps

(Clark 1980):

1. locate the maximum in the image;

2. generate a “Clean component”, a d-function at this location, and of an

intensity which is some fraction of the maximum of the image (the “gain”);

3. calculate the convolution of this component with the instrumental point

source response (PSR) function;
4. subtract this instrumental PSR function from the map;
5. repeat steps 1-4 until the remaining map is satisfactorily small; and

6. generate and restore the clean components, convolved, not with an instru-

mental PSR function, but with an aesthetically pleasing function (usually a
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Gaussian).

For VLA observations, this process is divided into minor and major cycles. Major
cycles begin by constructing a histogram of map values and a plot of of the maxi-
mum sidelobe in the PSR outside a Clean cell. It is then possible to choose a beam
patch size and a map limiting flux value (S;m,) such that the largest map point
with a flux density less than the limiting value is the same fraction of the map
peak as the largest beam value outside the the beam patch. And, both map points
above the limiting value and the beam patch will fit the available main memory.
A minor iteration cycle consists of Cleaning the brightest parts of the residual
image with a “beam patch” of relative size. More precise Cleaning is achieved
at the ends of major iteration cycles when the Fourier Transform of the Clean
components is computed, subtracted from the visibility data, and a new residual
dirty image computed. Major cycles can be run until the the maximum point in
the map is smaller than S;;,. As this is far from an exact science, many more
conservative approaches are discussed in Clark (1980). Over-Cleaning, which re-
sults in flux densities lower than they actually are, is caused by running too many
major iterations, so it is important to be cautious in Cleaning. Once your image

is sufficiently Cleaned, you are now ready to do real science!
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Appendix B

Radio Images

This appendix is a compilation of images that were made but not included in
the body of this dissertation. Some of these images were previous observations
of sources discussed in Chapter 3 and whose flux densities can be found in Table
3.1; Cowan, Roberts, & Branch (1994); and CGS. The remainder of these images
are of cbservations discussed in this dissertation with different weighting schemes,
ranging from completely natural to completely uniform weighting. [For a detailed
discussion of weighting schemes, see Appendix A.]

Figures B.1 — B.8 are images of SN 1961V and the nearby SNR at both
epochs and wavelengths with the Brigg’s robustness parameter set to 0 (weighted
evenly between natural and uniform) and +1 (slightly natural). Figures 2.1 and
2.2 are similar images with the parameter set to —1 (slightly uniform). Figures

B9 and B10 are uniformly weighted images of SN 1970G and the neighboring HII
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region at 20 cm and 3.5 cm from the CGS observations in 1990. Figures B.11 —
B.14 are uniformly weighted images of M83 (with the historical SNe indicated by
crosses) made from prior observations originally presented in Cowan et al. (1994a)
and Cowan & Branch (1985). Figures B.15 and B.16 are uniformly and naturally
weighted images, respectively, of the most recent 6 cm observations of M83, dis-
cussed in Chapter 4. Figure B.17 is a 20 cm image of the phase calibrator used for

the recent M83 observations, J1313-333, with the Brigg’s robustness parameter

set to 0.
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Figure B.1: Radio contour image of SN 1961V at 18 cm with the Brigg’s robustness
parameter set to 0 {Sept. 1999). Contour levels are -0.12, -0.09, 0.09, 0.12, 0.15,
and 0.18. The beam size is shown in the lower right.
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Figure B.2: Radio contour image of SN 1961V at 18 cm with the Brigg’s robustness
parameter set to +1 (Sept. 1999). Contour levels are -0.12, -0.09, 0.09, 0.12, 0.15,
and 0.18. The beam size is shown in the lower right.
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Figure B.3: Radio contour image of SN 1961V at 20 cm with the Brigg’s robustness
parameter set to 0 (Nov. 1984). Contour levels are -0.10, -0.07, 0.07, 0.10, 0.14,
0.20, 0.28, 0.40, 0.57, and 0.80. The beam size is shown in the lower right.
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Figure B.4: Radio contour image of SN 1961V at 20 cm with the Brigg’s robustness
parameter set to +1 (Nov. 1984). Contour levels are -0.10, -0.07, 0.07, 0.10, 0.14,
0.20, 0.28, 0.40, 0.57, and 0.80. The beam size is shown in the lower right.
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Figure B.5: Radio contour image of SN 1961V at 6 cm with the Brigg’s robustness
parameter set to 0 (Jan. 2000). Contour levels are -0.048, -0.036, 0.036, 0.048,
0.060, and 0.072. The beam size is shown in the lower right.
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Figure B.6: Radio contour image of SN 1961V at 6 cm with the Brigg’s robustness
parameter set to +1 (Jan. 2000). Contour levels are -0.048, -0.036, 0.036, 0.048,
0.060, and 0.072. The beam size is shown in the lower right.
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Figure B.7: Radio contour image of SN 1961V at 6 cm with the Brigg’s robustness
parameter set to 0 (Aug. 1986). Contour levels are -0.060, -0.042, 0.042, 0.060,
0.085, 0.12, 0.17 and 0.24. The beam size is shown in the lower right.
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Figure B.8: Radio contour image of SN 1961V at 6 cm with the Brigg’s robustness
parameter set to +1 (Aug. 1986). Contour levels are -0.060, -0.042, 0.042, 0.060,
0.085, 0.12, 0.17 and 0.24. The beam size is shown in the lower right.
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8, 11.30, 16, 22.60, 32, 45.30, 64, 90.50, 128, 181,

Figure B.9: Radio contour image at 20 cm of SN 1970G in Apr. 1990, with the
Brigg’s robustness parameter set to 0 (the source above and to the right of the
central H II region, NGC 5455). Contour levels are -0.068, -0.048, 0.048, 0.068,
0.096, 0.14, 0.19, 0.27, 0.38, and 0.54. The beam size is shown in the lower right.
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Figure B.10: Radio contour image at 3.5 cm (uniformly weighted) of SN 1970G in
Nov. 1990 (the source above and to the right of the central H II region, NGC 5455).
Contour levels are -0.052, -0.037, 0.037, 0.052, 0.074, 0.10, 0.15, 0.21, 0.29, 0.42,
0.59, and 0.83. The beam size is shown in the lower right.
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Figure B.11: Radio contour image at 20 cm of M83 made Dec. 1983, (uniformly
weighted, with the historical SNe identified by crosses). Contour levels are -0.44,
-0.31, 0.31, 0.44, 0.62, 0.88, 1.24, 1.8, 2.5, 3.5, 5.0, 7.0, 10, 14, 20, and 28 mJy
beam™!. The beam size is shown in the lower right.
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Figure B.12: Radio contour image at 20 cm of M83 made Dec. 1983, (uniformly
weighted, with the historical SNe identified by crosses). Contour levels are -0.32,
-0.22, 0.22, 0.32, 0.44, 0.63, 0.90, 1.3, 1.8, 2.5, 3.6, 5.1, 7.2, 10, 14, 20, and 29 mJy
beam~!. The beam size is shown in the lower right.
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Figure B.13: Radio contour image at 6 cm of M83 made Mar. 1984, (uniformly
weighted, with the historical SNe identified by crosses). Contour levels are -0.12,
-0.085, 0.085, 0.12, 0.17, 0.24, 0.34, 0.48, 0.68, 0.96, 1.4, 1.9, 2.7, 3.8, 5.4, 7.7, 11,
and 15 mJy beam™!. The beam size is shown in the lower right.
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Figure B.14: Radio contour image at 20 cm of M83 made Oct. 1990, (uniformly
weighted, with the historical SNe identified by crosses). Contour levels are -0.84,
-0.059, 0.084, 0.12, 0.17, 0.24, 0.34, 0.48, 0.67, 0.95, 1.3, 1.9, 2.7, 3.8, 5.4, 7.6, 11,
and 15 mJy beam~!. The beam size is shown in the lower right.
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Figure B.15: Radio contour image at 6 cm of M83 made Nov. 1998, (uniformly
weighted, with the historical SNe identified by crosses). Contour levels are -0.12,
0.12, 0.17, 0.24, 0.34, 0.48, 0.68, 0.96, 1.4, 1.9, 2.7, 3.8, 5.4, 7.7, and 11 mlJy
beam™!. The beam size is shown in the lower right.
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Figure B.16: Radio contour image at 6 cm of M83 made Nov. 1998, (naturely
weighted, with the historical SNe identified by crosses). Contour levels are -0.24,
0.24, 0.34, 0.48, 0.68, 0.96, 1.4, 1.9, 2.7, 3.8, 5.4, 7.7, 11, 15, and 22 mJy beam™!.
The beam size is shown in the lower right.
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Figure B.17: Radio contour image at 20 cm of J1313-333 made Jun. 1998, with
the Brigg’s robustness parameter set to 0. Contour levels are logarithmic, with a
base of 2, the base contour level of 0.26 mJy, an integrated flux density of 1.32
Jy, and a peak flux density of 1.24 Jy/beam. The beam size is shown in the lower

right.
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