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Zc and a time-varying component ẐTV . The time-varying component has
been expanded into an equivalent two-port network and the antenna impedance
at the harmonic frequency Z1

a . The antenna has an input impedance Z0
a and

input power Pin that change with the frequency and excitation as a function
of the antenna geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Equivalent circuit model of single-port antenna loaded with a port impedance
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Abstract

Nearly all contemporary antenna systems are Linear Time-Invariant (LTI) devices, and al-

low for assumptions of frequency independence and reciprocity, but are governed by strict

bounds on their performance. Recently, nonlinear and time-varying (non-LTI) antennas

have become a common path of research in an attempt to break the LTI assumption and

improve antenna performance beyond these limits, but lack a general modeling technique

to develop fundamental equations for antenna design. The adaptability of the established

method of moments (MoM) allows for a complete model of virtually any structure. Con-

versely, the conversion matrix method allows the expansion of circuit and network param-

eters to model time-varying structures. The combination of the two methods allows for a

generalized model of a time-varying antenna while granting insight into their design. In

a similar way, MoM can be combined with the harmonic balance method and allow for

the accurate simulation of nonlinear components and pumped nonlinearities on antennas of

arbitrary structure. These aspects of MoM, conversion matrices, and harmonic balance are

leveraged in this work to provide a better understanding of non-LTI antennas and develop

several models for achieving better performance or different capabilities.
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Chapter 1

Introduction

Linear and time-invariant (LTI) structures have been used in electromagnetic systems to

great effect because they allow engineers to assume frequency independence and reci-

procity as well as simplify Maxwell’s equations. Even structures that are not strictly LTI

can generally be assumed to be LTI for some region of operation (e.g., amplifiers). Specif-

ically for antennas, fundamental performance bounds have been derived using the LTI as-

sumption [1]–[5], but recently, time-varying and nonlinear (non-LTI) structures have be-

come a common path of research in an attempt to break these LTI performance bounds [6]–

[11].

Non-LTI electromagnetic structures are capable of exhibiting unique behaviors beyond

the capabilities of their LTI counterparts. The interaction between a time-varying or non-

linear structure and a time-varying voltage creates currents on harmonic frequencies which

may not be present in the original excitation. This phenomenon is called the “Rusty Bolt

Effect” [12]. Examples of non-LTI antenna systems include the use of active and non-

Foster matching [6]–[8], direct antenna modulation [9]–[11], and time-varying loading

whose modulation rate is comparable to the carrier or antenna resonant frequency (as op-

posed to the symbol rate) [13]–[17]. These methods all involve locally time-varying or

nonlinear loading, though the effects of distributed time-variation, i.e., space-time modu-

lated materials, have also been explored [18]–[25]. While non-LTI structures may offer

1



an improvement over the typical LTI systems, their modeling and simulation is generally

more difficult. To fully explore the combination of non-LTI structures on antennas, robust

electromagnetic solvers must first be established. This dissertation investigates a couple of

solvers and discusses their application to non-LTI antennas.

Nonlinear components have a nonlinear voltage-current relationship, such as in the case

of a diode, but do not necessarily change with time. Occasionally it is possible to analyze

a nonlinear component in a predefined linear range of operation so that it can easily be

incorporated into another linear system [26], removing the need for a specialized solver.

However, other applications require further analysis, such as in mixers and frequency mul-

tipliers, where the nonlinear behavior of the component is necessary. There are many differ-

ent nonlinear circuit solvers in use today. They can be largely grouped into three different

categories: time domain, frequency domain, and hybrid methods [26]–[29]. Time-domain

methods are useful in that they directly solve numerical equations that describe nonlinear

currents and accurately calculate both the transient and steady-state responses, but they

are unable to easily solve transmission lines or sub-networks defined by network parame-

ters [26]–[28], [30]. Frequency domain methods, such as Volterra-series and power-series,

are designed for frequency and network analysis and can easily handle transmission lines

and network parameters, but struggle to model strong nonlinearities [27]. Hybrid meth-

ods, specifically harmonic balance, combine the advantages of time and frequency domain

solvers and operate in both domains, and are common solvers for complex nonlinear cir-

cuits and networks of impedances [27], [28]. Expansion of harmonic balance to model a

full electromagnetic structure should be possible through integration with a circuit or net-

work model of the structure.

Time-varying devices, on the other hand, change their properties over time but main-

tain their linearity at any given point in time. Most of the modeling of time-varying elec-

tromagnetic structures relies on time-domain techniques such as the finite difference time
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domain method (FDTD), transient circuit co-simulation, and time-domain method of mo-

ments [12]. While these techniques are accurate and extremely general, they have certain

disadvantages that motivate the development of alternative modeling strategies [31]. For

example, full-wave transient analyses have few opportunities for partial simulation re-use

between variations of time-varying properties. Additionally, these methods do not directly

represent frequency domain phenomena frequently employed in the design of LTI systems

(e.g., steady-state radiated power, network parameters), though these can be obtained via

Fourier transformations. By contrast, frequency-domain techniques often afford significant

opportunities for partial simulation re-use and their formulations naturally align with many

common frequency domain metrics. In particular, conversion matrices enable the analysis

of time-varying structures in the frequency domain by modeling the mixing properties and

harmonic generation of time-varying structures as interactions between networked ports,

allowing integration with strictly LTI-based solvers. Early uses combined conversion ma-

trices with the method of moments (MoM) to model time-varying electromagnetic struc-

tures, but have focused on sparse loading or the reduction of an antenna to a single lumped

impedance, ignoring the potential interaction between multiple or distributed time-varying

loads. But by leveraging the multiport formulation of conversion matrices, it can be fully

integrated with MoM, preserving the full MoM analysis of electromagnetic structures and

providing a framework to efficiently model any number of lumped or distributed loads and

the interactions between them [32], [33].

The capabilities of non-LTI circuits and their integration with electromagnetic struc-

tures have been modeled with both frequency- and time-domain approaches[26], [27], [29],

but a versatile method that can incorporate arbitrary loading with non-LTI components

while still providing design insight is not currently established. This dissertation seeks to

define methods of analyzing non-LTI electromagnetic structures by combining a non-LTI

circuit solver (harmonic balance or conversion matrices) with a full LTI electromagnetic
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solver (MoM). First, in Chapters 2 and 3, the key aspects of harmonic balance and conver-

sion matrices are reviewed before expanding them with MoM into their full form. Then,

in Chapter 4, a brief analysis is performed on parametric amplifiers to gain insight into

how non-LTI structures can be utilized, followed by an investigation in Chapter 5 into the

structures of the resulting non-LTI solvers to determine how non-LTI loading can affect

the performance of an electromagnetic scatterer. Additionally, a method of determining

fundamental bounds on several performance metrics based on MoM is derived and applied

to different case studies. Finally Chapter 6 concludes with an analysis of the methods and

a discussion of future work in this area.
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Chapter 2

Nonlinear Modeling

There are many different nonlinear circuit solvers in use today. They can be largely grouped

into three different categories: time-domain, frequency-domain, and hybrid methods [26]–

[29]. Time-domain methods are useful in that they directly solve numerical equations that

describe nonlinear currents and accurately calculate both the transient and steady-state re-

sponses, but they are unable to easily solve transmission lines or subnetworks defined by

network parameters [26]. As a special kind of time-domain analysis, the Shooting method

is a method of analyzing transmission line parameters with nonlinear circuits in the time

domain, but it assumes a periodic input and only a steady-state solution [27], [28], [30].

Frequency-domain methods, on the other hand, such as Volterra-series and power-

series, are designed for frequency and network analysis and can easily handle transmis-

sion lines and network parameters, but have their own problems. Their main focus is to

model the interaction of multiple input signals in a weakly-nonlinear system, but cannot

handle strong nonlinearities. Another frequency-domain solver, frequency-domain spec-

tral balance (FDSB) takes a similar approach to the harmonic balance methods described

in the following chapters and seeks to balance out the spectra of the linear and nonlinear

components [27]. Originally needing a power-series description of the nonlinear system to

utilize these methods, this restriction was later removed, enabling the use of these methods

in more diverse systems.
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Hybrid methods, such as harmonic balance, combine the advantages of time- and frequency-

domain solvers and operate in both domains [27], [28]. Specifically, harmonic balance an-

alyzes the linear components, such as transmission lines and other network parameters, in

the frequency-domain where they are more easily defined. The nonlinear components, on

the other hand, are analyzed in the time domain where virtually any equation can be used

to describe their steady-state functionality. The solutions from the different components

are brought back together in the same domain with a Fourier transform and compared. In

this way, harmonic balance is able to take the best parts from the other nonlinear analysis

methods and combine them into a powerful nonlinear circuit solver. The following sections

seek to provide understanding in the basic theory of harmonic balance and the related Co-

simulation and provide examples of how they can be used.

2.1 Harmonic Balance Circuit Analysis

Harmonic balance, in general terms, is the method of analyzing a nonlinear, steady-state

system and balancing the harmonics produced by different parts of the system [27], [34].

For electrical circuits in particular, this method balances out the voltages and currents pro-

duced by any linear and nonlinear lumped component in the circuit using Kirchoff’s voltage

and current laws [28], [35]. The major differences between the harmonic balance methods

are primarily in how parts of the circuit are combined and the type of solver used [26]. In

this chapter, a general overview of the history of harmonic balance will be presented, then

the two primary methods of harmonic balance for electrical circuits will be discussed in

further detail.
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2.1.1 History and Development

2.1.1.1 Initial Conception and Application to Electrical Circuits

The term “harmonic balance” was first used by Kryloff and Bogoliuboff as a part of their

book “Introduction to Nonlinear Mechanics” originally published in 1937 and translated

into English in 1943 [34], [36]. Based on a Galerkin Method [27], [37]–[39], they approx-

imate the solutions to nonlinear systems as the summation of harmonic sinusoids because

nonlinear systems usually have a response with a period that is a rational multiple of the

input period [40]. With this method they were able to solve systems such as the oscillatory

shaft, the pendulum, as well as a couple of simple electrical circuits with resistance.

In 1968 and 1969, the theory was further developed for electrical networks composed

of nonlinear lumped elements by Baily [40] and Lindenlaub [41]. Referred in this com-

munication as “classic harmonic balance”, this method assumes a solution to a nonlinear

circuit as a number of weighted harmonic sinusoids governing the electrical charge and

magnetic flux through nonlinear capacitors and inductors. It then applies Kirchoff’s volt-

age and current laws in the time domain and sums up all of the currents leaving a node and

the voltage changes in a loop. Because these should add up to zero, any different result is

calculated as a mean-square error [35]. The charge and flux is then modified based on this

error to obtain a more accurate solution. This process is repeated through a minimization

technique until the error is suitably low [40].

2.1.1.2 Problems and Small Improvements

At this time, the method of harmonic balance was not widely accepted because of several

issues with the initial implementation [30]. The assumed solution could be unstable, be

missing an important harmonic, or have no relation to the actual solution and were highly

dependent on the initial guess [30]. The optimization techniques had convergence problems
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stemming from the mean-square error and the low computational power of computers at

that time. Additionally, these techniques could only produce steady-state solutions and

could not provide the transient response. Finally, the implementation of the method resulted

in some configurations producing invalid matrices and breaking the process [40].

While the initial harmonic balance method had some problems, changes were gradually

made to help mitigate them, primarily focusing on the method of optimization. In 1974,

the Newton Iteration procedure was used to minimize the error in the harmonic balance

method in a Schottky diode mixer [42]. While this method depended greatly on the initial

guess and sometimes could not converge with large voltages, it helped bring attention to

the method. A year later, the Relaxation Iteration procedure was used on a similar diode

mixer, but improved on the convergence and the allowed larger voltages to be used [43].

2.1.1.3 New Methods

The harmonic balance method was further improved significantly in 1976 with the new

piecewise harmonic balance [44]. This is the method that is commonly known as har-

monic balance today [27], [28], but here it will still be referred to as “piecewise harmonic

balance”, while “harmonic balance” will refer to the general theory. The new piecewise

harmonic balance method took advantage of the fact that usually most of an electrical net-

work is linear. The network could then be split up into a linear subcircuit and a nonlinear

subcircuit and evaluated as two separate networks with connecting ports. The linear sub-

circuit could be analyzed as a normal linear network in the frequency domain, while the

nonlinear subcircuit could still be analyzed in the time domain [26], [44]. Once evaluated,

the nonlinear subcircuit could then converted back to the frequency domain using a Fourier

transform. The solution set became the voltages across each of the nonlinear ports, and the

currents resulting from each subcircuit would then be solved independently. From here,

a similar analysis to classic harmonic balance could be done to balance out the resulting
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voltages and currents that appear at the terminals of each port using Kirchoff’s Laws and

optimization techniques, but could now be done in the frequency domain [26], [44], [45].

This allowed the the final cost equation to have an multi-variable error function for each

harmonic so that later, in 1990 [29], the optimization function could balance out each har-

monic instead of the resulting time-domain waveform. The piecewise method’s primary

improvements over the classic method is that it simplifies the linear subcircuit, reduces the

number of variables to be optimized, and allows the analysis of Kirchoff’s Laws in the fre-

quency domain [28]. This method is discussed in more detail in Section 2.1.2.

Later, in 1986, another method, called nodal harmonic balance, was introduced [45].

When many nonlinear components are considered, such as in MMICs, removing the non-

linear subcircuit can sometimes result in a linear network with singular-network param-

eters [26]. Nodal harmonic balance fixed many of these cases by changing the solution

set of piecewise harmonic balance from the voltages on each port to the voltages on each

node. This method was more tolerant of circuit disconnections, but did not always solve

the problem [26]. Outside of these cases, nodal harmonic balance has not seen much use

because there are usually more nodes in a circuit than nonlinear components, so the greater

number of variables to be solved takes longer for the solution to converge.

2.1.1.4 Further Improvements and Applications

Over the years since, several modifications and improvements were made to improve con-

vergence such as the continuation method, which gradually increases the power from the

source so that the circuit appears linear at first, then gradually becomes nonlinear with more

power [26], [46]. More recently, the addition of the Block Newton Algorithm introduced in

1990 enabled the simultaneous solution of error functions for each harmonic, instead of a

single mean-squared error for the entire system, and allowed the harmonic balance method

to converge faster and more accurately [29].
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Additionally, while piecewise and nodal harmonic balance both assume there is only

one primary signal input frequency and all others are harmonically related, there is a large

class of nonlinear problems that require multiple inputs from very different frequencies,

such as mixers and power amplifiers [26]. For many of these cases, a kind of “Large-

Signal/Small-Signal” analysis can be used to approximate a solution. This approximation

uses conversion matrices and assumes that when a large signal is modulated with a van-

ishingly small signal, the impact of the small signal on the circuit can be approximated as

linear. First, in the “Large-Signal” analysis, harmonic balance is performed on the circuit

with the large signal. The resulting voltages and currents can be combined to approximate

a time-varying impedance or conductance. Then the “Small-Signal” analysis can be done

over the approximately-linear circuit with the time-varying impedance and just the small

signal so that an approximate solution can be obtained [26]. This method cannot be used in

determining saturation or intermodulation distortion, but can be used for mixer conversion

efficiency, port impedances, and adding time-varying components.

When there are multiple input signals of different frequencies and significantly large

magnitude, the “Large-Signal/Small-Signal” approximation will not work. For these cases,

a different method called multi-tone harmonic balance or generalized harmonic balance

can be used to account for all of the possible harmonics [26], [47]. This modified harmonic

balance method solves for all possible linear combinations of the input frequencies. Solving

such a system often requires using the almost periodic discrete Fourier transform [48], [49],

the multi-dimensional Fourier transform [50], or special frequency mapping [26], which are

not simple processes. With these changes and the additional piecewise and nodal methods,

harmonic balance has managed to become one of the preferred nonlinear microwave circuit

techniques [27]–[29].
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2.1.2 Harmonic Balance Methodology

While the different harmonic balance methods all vary in terms of assumptions, applica-

tions, and specific steps, every harmonic balance method has the same basic procedure:

1. Guess a solution (usually a set of zeros).

2. Solve the electrical circuit with the assumed solution.

3. Apply Kirchoff’s Laws and calculate the error.

4. If the error is too large, modify the assumed solution and start again.

These steps are usually placed inside an optimization function set to minimize the error.

The primary differences between harmonic balance methods are the types of solution, how

the electrical circuit is solved, and what kind of minimization function is used. In this

section, the piecewise and nodal harmonic balance methods will be discussed and will

point out the assumptions that are made, how they have been used in the past, and what

kinds of structures they were designed for.

2.1.2.1 Theory

Assume a network exists that can be split into two subnetworks, as in Figure 2.1.a. Addi-

tionally, assume that the two subnetworks are not identical and that there are no sources in

one subnetwork which are dependent on a voltage or current in the other. This split, but

connected, network has a specific, time-varying voltage across the connecting port, v(t),

and a related current flowing between the two subnetworks, i(t) or i(v(t)). If the two sub-

networks are completely disconnected, and a source is placed at each port that mimics the

voltage or current of the connected network at the port, as in Figure 2.1.b, then the voltages

and currents inside each of the subnetworks will match those of the connected circuit in

Figure 2.1.a [44].
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(a) Network composed of two subcircuits (b) Disconnected network with equivalent
sources

Figure 2.1: Arbitrary networks representing different subcircuits. The networks can be
disconnected and additional sources added to keep the voltages and currents inside each
network identical [44].

In the same way, if a different voltage source, v1(t), is connected to the disconnected

network S1 of Figure 2.1.b so that v1(t) 6= v(t), a resulting current i1(t) will flow through

the terminal. Similarly, if the same voltage source v2(t) = v1(t) 6= v(t) is connected to S2,

a current i2(t) will flow through its terminal. Because the two subnetworks, S1 and S2, are

not identical, the resulting currents will not be equal, or in other words i2(t) 6= i1(t).

For example, consider the network in Figure 2.2.a. The resulting voltage v and current

i at the terminals of R2 are easily determined as

v = VD
R2

R1 +R2

and i =
VD

R1 +R2

. (2.1)

So for VD = 6 V , R1 = 5 Ω, and R2 = 10 Ω, the resulting voltage and current are v = 4 V

and i = 0.4 A, respectively. In the same way described above, the circuit can be split

into two subcircuits as shown in Figure 2.2.b. If each of the voltages on the terminals are

also set as v1 = v2 = 4V = v, then the currents across each terminal can be calculated

as i1 = i2 = 0.4 A. As described previously, the voltage sources on the terminals of a

subcircuit are mimicking the effect of the other subcircuit. However, if a different voltage

is chosen, for example v1 = v2 = 5V 6= v, then the resulting currents are i1 = 0.2 A

and i2 = 0.5 A. By defining the error as ε = i2 − i1, a metric can be obtained to evaluate

the accuracy of the voltage. If the correct voltage was unknown, this error could then be
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(a) Connected circuit

VD

R1 i1
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+v1 −

+v2

i2

R2

(b) Disconnected circuit with added voltage sources

Figure 2.2: Simple DC circuit illustrating the subcircuit concept.

minimized using optimization techniques to solve for the correct voltage.

The process described above is simply a rederivation of Kirchoff’s Current Law [35]. If

all positive currents were defined as entering a network (or leaving a port), then all currents

in a port must sum to zero, or

0 =
∑
m

imn(t) (2.2)

for every m current on port n. Additionally, because (2.2) is a linear operation, the same

can be said for the currents in the frequency domain as

0 =
∑
m

Imn(kωp) (2.3)

where Imn(ω) = F{imn(t)} and Imn(kωp) is the k-th harmonic of the fundamental fre-

quency ωp of Imn.

In most cases, the voltage at all N ports will not be known. If a guess is made, a current

will appear at each node, as described in the example from Figure 2.2. The resulting cur-

rents will probably not satisfy Kirchoff’s Current Law, so the error function of the voltage

guess can be defined in the frequency domain as

εn,k =
∑
m

Imn(kωp) (2.4)

where εn,k is defined as the error for the k-th harmonic on the n-th port and the error vector
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can be defined as

ε =
∑
m

Im (2.5)

where ε is a column vector of length N(K + 1) containing all of the errors of K harmonics

(including DC) and N ports. Likewise, Im is a similar column vector containing all of the

K harmonics of the m-th current leaving all N of the ports. These vectors are organized as

X =



X1

X2

X3

...

XN


where Xn =



Xn,0

Xn,1

Xn,2

...

Xn,K


(2.6)

and Xn,k is the k-th harmonic on the n-th port. The error vector, ε, can now be minimized

through an optimization function to solve for the K voltage harmonics on N ports. In this

way, the harmonics are almost literally being “balanced”.

At this point, the piecewise and nodal harmonic balance methods begin to diverge.

Specifically, the piecewise method deals with the voltages and currents on each port, while

the nodal method deals with the voltages and currents on each node. Because of this, the

nodal method tends to have more variables and takes longer to solve, but is less likely to

have to use singular matrices. The derivation will continue to be discussed in terms of

ports, but the nodal method has a similar process.

The next step is to define the individual subnetworks or subcircuits and the m currents

on each port as functions of the voltages on each port. It is useful at this point to split the

network into linear and nonlinear subnetworks or subcircuits as in Figure 2.3. The new
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Figure 2.3: Circuit divided into linear and nonlinear subcircuits with N ports connecting
them and two additional source/load ports. Source and load ports can also be added with
the source and load impedances absorbed into the subcircuits [26].

error vector for all N ports, originally defined in (2.5), becomes

ε = ILIN + INL (2.7)

where ILIN is a column vector of the current harmonics on each port entering the linear

subcircuit and INL is a column vector of the current harmonics on each port entering the

nonlinear subcircuit. Both vectors are of the same format as in (2.6). Each subnetwork or

subcircuit can be handled separately and must be handled differently.

The linear subcircuit can be analyzed like a normal network, but must also take into

account the current coming from the sources. Because it is desired to calculate current as

a function of voltage, admittance parameters are used. The admittance matrix of the linear
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subcircuit takes the form



I1

I2

I3

...

IN

IN+1

IN+2



=



Y1,1 Y1,2 . . . Y1,N Y1,N+1 Y1,N+2

Y2,1 Y2,2 . . . Y2,N Y2,N+1 Y2,N+2

Y3,1 Y3,2 . . . Y3,N Y3,N+1 Y3,N+2

...
... . . . ...

...
...

YN,1 YN,2 . . . YN,N YN,N+1 YN,N+2

YN+1,1 YN+1,2 . . . YN+1,N YN+1,N+1 YN+1,N+2

YN+2,1 YN+2,2 . . . YN+2,N YN+2,N+1 YN+2,N+2





V1

V2

V3

...

VN

VN+1

VN+2



(2.8)

where In and Vn contain K harmonics of the n port as in (2.6). Yn, on the other hand, is

a K + 1 diagonal matrix of the form

Ym,n =



Ym,n(0) 0 0 . . . 0

0 Ym,n(ωp) 0 . . . 0

0 0 Ym,n(2ωp) . . . 0

...
...

... . . . ...

0 0 0 . . . Ym,n(Kωp)


(2.9)

where Ym,n(kωp) is the admittance between ports m and n at ω = kωp. While this is the

complete matrix for the linear subcircuit, it would be better to absorb the source ports and

be left with an N × N matrix. This can be done by modifying the network diagram of

Figure 2.3 to that of Figure 2.4. This format removes the source and load ports and adds

an effective current source at each of the ports. The resulting current at each of the ports is
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then



ILIN ;1

ILIN ;2

ILIN ;3

...

ILIN ;N


=



Y1,N+1 Y1,N+2

Y2,N+1 Y2,N+2

Y3,N+1 Y3,N+2

...
...

YN,N+1 YN,N+2



VN+1

VN+2

+



Y1,1 Y1,2 . . . Y1,N

Y2,1 Y2,2 . . . Y2,N

Y3,1 Y3,2 . . . Y3,N

...
... . . . ...

YN,1 YN,2 . . . YN,N





V1

V2

V3

...

VN


(2.10)

and in vector form

ILIN = YsVs + YN×NV = Is + Il (2.11)

where ILIN is the total current from the linear subcircuit from (2.7), Is is the current con-

tribution from the voltage source, Il is the current contribution from the linear Y -matrix,

Ys and YN×N are the portions of the linear Y -matrix as shown in (2.10), Vs is the source

voltages, and V is the voltage guess for each harmonic on each port.

For the nodal method, the same steps can be accomplished with nodal admittance pa-

rameters [51]. While constructed differently, the result is nearly identical to the network

admittance parameters, but produce nodal currents from an input of nodal voltages.

While the linear subcircuit could be completely analyzed in the frequency domain from

the guessed voltage, the harmonic balance method analyzes the nonlinear subcircuit in the

time domain and then converts it back to the frequency domain. This requires an equation

of current as a function of voltage in the time domain to be known before harmonic balance

begins. In order to obtain the time-domain guessed voltages, an inverse Fourier transform

is needed as in

vn(t) = F−1{Vn} (2.12)

where vn(t) is the time-domain voltage guess and Vn is the frequency-domain voltage
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Figure 2.4: Circuit divided into linear and nonlinear subcircuits with N ports connecting
them. The source/load ports have been absorbed into the linear subcircuit so a current
source appears at each port [26].

guess at the n-th node. The time-domain current is then obtained by the predetermined

equation

inl;n(t) = fn(v1(t), v2(t), v3(t), ..., vN(t)) (2.13)

where fn(v1(t), ..., vN(t)) is the function that calculates the nonlinear current inl;n(t) of the

n-th node from the guessed voltages at each of the ports. This equation must be known

prior to the harmonic balance method. A Fourier transform converts the current back into

the frequency domain as in

Inl;n = F{inl;n(t)} (2.14)

where Inl;n is the nonlinear current at the n-th node in the frequency domain as calculated

from the predetermined equation.

If a nonlinear capacitor is in the circuit, a slightly different method can be used to

calculate the resulting nonlinear current from the voltage guess. Because current is the
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time derivative of charge (i(t) = δq/δt), the predetermined equation can be altered to solve

for charge instead and then taken immediately into the frequency domain as in

Qn = F{qn(t)} = F{fqn(v1(t), v2(t), v3(t), ..., vN(t))} (2.15)

where qn(t) is the time-domain capacitor charge and Qn is the frequency-domain capacitor

charge at the n-th node. The nonlinear capacitor current Ic can then be calculated from Qn

by

Ic = jΩQ (2.16)

where j is the imaginary number, Q is of the same format as (2.6), and Ω is a diagonal

matrix of the form

Ω =



0 0 0 . . . . . . . . . . . . . . . 0

0 ωp 0 . . . . . . . . . . . . . . . 0

0 0 2ωp . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . . . . . ...

0 . . . . . . . . . Kωp 0 0 . . . 0

0 . . . . . . . . . 0 0 0 . . . 0

0 . . . . . . . . . 0 0 ωp . . . 0

... . . . . . . . . . . . . . . . . . . . . . ...

0 . . . . . . . . . . . . . . . . . . . . . Kωp



(2.17)

where ωp is the fundamental frequency. This N(K + 1)×N(K + 1) matrix has N cycles

of each harmonic to be solved for. Combining (2.14) and (2.16) results in

INL = Inl + Ic . (2.18)
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Finally, by combining (2.7), (2.11), and (2.18), a complete form of the error equation

can be shown as

ε = Is + Il + Inl + Ic (2.19)

where every term in the above equation is a function of the initial voltage guess V, and

are of the same format as shown in (2.6). An optimization function can then be defined to

minimize ε as a function of V. This method was created in MATLAB for the examples

in the next chapter and implements the fsolve.m function and uses the Trust-Region-

Dogleg algorithm, which is a form of the Powell and Gauss-Newton methods, discussed

further in Section 2.1.3.

2.1.2.2 Assumptions

Over the course of this derivation, a few fundamental assumptions are made about the

solution set that should be highlighted. The method can only handle steady-state conditions

and the solution is assumed to be a linear combination of a finite number of harmonic

sinusoids, but the number can be large with modern optimization techniques.

The circuit itself is not limited in shape, as long as admittance parameters can be formed

of the linear subnetworks with ports in meaningful locations. It additionally assumes that

all inputs are harmonics of the base frequency, ωp, but this can be overcome by using Large-

Signal/Small-Signal analysis or multi-tone harmonic balance.

Finally, this method assumes that every component can either be absorbed into an ad-

mittance matrix or modeled with a time-domain equation describing the relationship be-

tween voltage and current. It normally cannot handle any switching or time-varying com-

ponents, but it is possible with a slight modification discussed in the next chapter.
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2.1.2.3 Historical Use and Typical Structures

Although classic harmonic balance is largely overshadowed by more useful transient solvers,

the harmonic balance methods were still explored and further developed because they are

able to solve some problems that are difficult in the time domain. Now it is one of the

more common and widely applicable nonlinear solvers used. Piecewise and nodal har-

monic balance specialize in circuits with distributed elements such as transmission lines

and circuits utilizing subnetworks with network parameters. They are also particularly use-

ful when multiple harmonic frequencies are used with large differences in their periods,

though they could be non-harmonic with the use of multi-tone harmonic balance. Con-

versely, a time-domain solution would need a small step over a long range of time to solve

the same problem. Both piecewise and nodal harmonic balance can be used in professional

microwave circuit simulators such as Keysight’s Advanced Design System (ADS), National

Instruments’ Microwave Office (AWR), Ansoft’s Nexxim, Cadence Virtuoso Spectre, and

Agilent’s GoldenGate [52]–[55].

Piecewise harmonic balance is currently the most common form of harmonic balance

simulating transistors [56], mixers [49], and amplifiers [57]. Nodal harmonic balance is

not as common as the piecewise method, but has been more often used when there are a

significant number of nonlinearities so that defining the system in terms of port admittance

parameters become less useful than nodal admittance parameters, such as in MMICs [45],

[58] or in noise analysis and power systems [59], [60].

2.1.3 Solvers

Previous sections have described the process of several versions of harmonic balance and

how to set up the problem, while the actual calculation of the solutions was left to a min-

imization function of the user’s choice. In this section, a couple of common solvers are
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introduced before integrating harmonic balance into a larger system in the next section.

2.1.3.1 Parallel-Chord

For a real-valued, single-variable function f with a root at x∗, a linear approximation of f

at x0 can be created as

l(x) = α(x− x0) + f(x0) (2.20)

where x0 is an initial guess of the root x∗ and α is a suitable slope and α 6= 0 [61]. A

new approximation x1 of the root x∗ can be formed by solving for the root of the linear

approximation as

x1 = x0 − α−1f(x0) (2.21)

and future approximations can be calculated with a constant α as

xk+1 = xk − α−1f(xk), k = 0, 1, ... . (2.22)

This creates a series of approximations that gradually converge to the x∗, even with a con-

stant α [61]. For a system of equations or a function with an equal number of inputs and

outputs expressed in matrix form as

[
f(x1, x2, ...)

]
= Fx, (2.23)

a linear approximation at xk similar to (2.20) can be written as the affine transformation

Lx = A(x− xk) + Fxk (2.24)

where L is a strictly lower triangular matrix and A is a constant non-singular matrix that

replaces α [61]. By setting Lx = 0, the n-dimensional parallel-chord method can be
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written as

xk+1 = xk −A−1Fxk, k = 0, 1, ... . (2.25)

The crux of the problem now lies in defining the matrix A. The primary requirement

for A is that (2.25) be locally convergent. In other words, it is required that for x0 close to

x∗, then limk→∞ xk = x∗. One simple solution is A = αI [61].

2.1.3.2 Newton

The Newton method uses the same process as the previous parallel-chord method, but se-

lects α and A as a derivative of f or F [61]. In the simplified Newton method for 1-

dimensional functions, the derivative of the initial guess x0 is chosen as α so that

xk+1 = xk − f ′(x0)−1f(xk), k = 0, 1, ... (2.26)

where f ′(x) is the derivative of the function f at x. This can be expanded to an n-

dimensional function F using the Gateaux derivative F′(x) as in

xk+1 = xk − F′(x0)−1Fxk, k = 0, 1, ... . (2.27)

These equations allow for convergence on the root of the function f or F with an intelligent,

but constant slopes α or A [61].

The simplified Newton method depends heavily on a good initial guess x0 to rapid

computation and convergence, but a better alternative would allow the slopes α and A

to change with each step of the iteration. This would allow the simulation to adjust as

subsequent values of xk converged to a solution. Modifying (2.22) and (2.25) to include
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changing slopes become

xk+1 = xk − f ′(xk)−1f(xk), k = 0, 1, ... (2.28)

and

xk+1 = xk − F′(xk)−1Fxk, k = 0, 1, ... (2.29)

which is more likely to converge, and is known as the Newton method. Note that now the

derivative of an n-dimensional system must be calculated for each step.

Block Newton A modified form of the Newton method, called the block Newton method [29],

partitions the function matrix F into sub-matrices to make the computation more efficient.

Specifically for harmonic balance, the system matrices are split by harmonic, enabling the

solver to minimize each harmonic in the system simultaneously instead of evaluating the

entire system as a unit. This allows for a faster and more accurate convergence [29].

2.2 Combining with MoM

Harmonic balance has now been established as a versatile solver for nonlinear circuits, but

it has yet to be shown to solve nonlinear electromagnetic structures of arbitrary shape and

excitation. Because of the hybrid nature of harmonic balance and the separation between

the linear and nonlinear sub-circuits, a pre-existing linear solver can be used as a base

model and develop the linear structure that is loaded with nonlinear components.

MoM is a full electromagnetic solver that uses basis functions to produce an impedance

matrix of an arbitrary structure, making integration with harmonic balance straightforward.

Additionally, the modal nature of MoM makes it useful in applications of modal current

analysis and fundamental bounds. For these reasons, MoM was chosen as the method to
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model an arbitrary LTI structure as the linear sub-circuit of harmonic balance.

2.2.1 Partition the Matrix

Referring back to Section 2.1.2, there are three portions of a nonlinear-loaded electromag-

netic structure or antenna: nonlinear load, linear loaded, and linear unloaded/driven. The

method described here uses harmonic balance to balance the currents from these three sec-

tions using the equation

ε = INL + ILL + ILU (2.30)

where INL, ILL, and ILU refer to the currents at the nonlinear loads due to voltages on the

nonlinear loads, the linear loaded sections, and the linear unloaded/driven sections. Note

that MoM produces an impedance matrix, while the harmonic balance method described

here uses the admittance matrix. This can be obtained through a simple inversion as

Y = Z−1. (2.31)

The nonlinear load is handled the same way as in the previous versions of harmonic

balance. An equation must be predetermined to represent the relationship between voltage

and current, such as in (2.13), reproduced below as

inl;n(t) = fn(v1(t), v2(t), v3(t), ..., vN(t)) (2.32)

where fn(v1(t), ..., vN(t)) is the function that calculates the nonlinear current inl;n(t) of the

n-th node from the guessed voltages at each of the ports. A Fourier transform converts

the current back into the frequency domain for harmonic balance analysis as in (2.14) to

produce INL.

The linear, loaded section corresponds to the portion of the electromagnetic structure
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where the nonlinear load is applied, represented by YLL,LL, similar to YN×N in (2.11).

Note that this is not a reduced matrix, but a specific partition that relates the current at the

nonlinear loads generated by a voltage at those locations due to the LTI structure, as shown

in (2.10). The resulting current, ILL, is then calculated with

ILL = YLL,LLV (2.33)

where V is the voltage vector used as the independent variable in the harmonic balance

optimization.

The linear, unloaded section handles the effect the rest of the linear structure has on the

loaded sections. This includes any excitation that may be present on the structure, either

as a lumped voltage source or a plane wave. Similar to the external source matrix Ys

in (2.11), the submatrix YLL,LU can be used to calculate the current at the linear loaded

locations from the rest of the structure. This is accomplished with

ILU = YLL,LUVLU (2.34)

where VLU is the voltage vector corresponding to the excitation of the linear unloaded

portion of the structure independent of the nonlinear loading.

Once each of the sections of the electromagnetic structure are defined, (2.30) can be

minimized over the independent variable V to balance the harmonics of the system.

2.2.2 Equivalent Source Model

The analysis discussed in Sections 2.1.2 and 2.2 solve electromagnetic circuits and struc-

tures with nonlinear loading. Specifically, the harmonic balance method solves for the

voltages and currents on the nonlinear loading, but often the voltages and currents over the
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Z

(a) Network composed of two subcir-
cuits

Z

(b) Network composed of two subcir-
cuits

Figure 2.5: Equivalent source model using the solved voltages at the nonlinear loads as
additional voltage sources at the harmonic frequencies.

entire structure are needed for complex electromagnetic analysis. When combined with

MoM this can be easily done using the MoM matrix of the full linear system by using the

results from harmonic balance analysis as equivalent voltage sources, as in Figure 2.5.

From the previous sections, there are two voltage vectors: the linear unloaded voltage

VLU and the independent variable used in the harmonic balance V. Concatenating the two

voltages into a single vector allows it to be used with the full MoM admittance matrix as in

ILL

ILU

 =

YLL,LL YLL,LU

YLU,LL YLU,LU


 V

VLU

 (2.35)

where YLL,LL and YLL,LU are the partitioned matrices from (2.33) and (2.34), YLU,LL and

YLU,LU fill out the rest of the MoM admittance matrix, and ILL and ILU are the currents of

the linear loaded and linear unloaded sections.

2.3 Examples

In this section, several different kinds of circuits are analyzed using harmonic balance. For

every example, harmonic balance code created by the author is compared to the harmonic
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balance solver in Microwave Office (AWR). For each configuration, the voltage and cur-

rent through the nonlinear device is a function of time for two periods of the input. The

impedance of the device is calculated by dividing the voltage and current and can be used

for Large-Signal/Small-Signal analysis with conversion matrices. The first 128 harmonics

are calculated for each example and is also shown, as well as a plot with just the first 10

shown to make it easier to compare magnitudes. For the classic harmonic balance calcu-

lations, only the first 11 harmonics are calculated in the same amount of time (about 3

seconds) and a DFT is used to complete the plot of the other 117 harmonics.

2.3.1 Resistor, Inductor, and Capacitor Configurations

A circuit composed of resistors, inductors, and capacitors is a classic example to start

with. Many more complicated devices can be analyzed with a combination of these three

components, so being able to predict the response of the basics is useful. In this section,

two different circuit configurations are considered: a series RC circuit and an RLC circuit.

In each case, the capacitor is the only nonlinear component because it is more commonly

nonlinear. Any of the other components could have been made nonlinear. A graphical

representation of the difference between a linear capacitor and a nonlinear capacitor are

shown in Figure 2.6.

2.3.1.1 RC Circuit

The first set of circuit examples have the simple RC circuit configuration shown in Fig-

ure 2.7. This basic circuit has one resistor set to 2 Ω and a capacitor which will be assumed

to be linear or nonlinear in the following sections. AWR’s harmonic balance solver is com-

pared to the classic and piecewise harmonic balance methods as written by the author.
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(a) Small Voltages (b) Large Voltages

Figure 2.6: Comparison of the charge-voltage relationship of linear and nonlinear capaci-
tors.

Figure 2.7: Circuit diagram of the series RC circuit. The voltage and current were measured
at the node between the resistor and capacitor.
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Linear Capacitor: This example simplifies the RC circuit further by assuming every

component is linear, as in

Q = CV (2.36)

where Q is the charge on the capacitor, V is the voltage across the capacitor, and C is the

capacitance whose linear relationship is shown in Figure 2.6. The voltage source has an

amplitude of 2 V at a frequency of 0.5 GHz and the capacitor has a capacitance of 500 pF.

Figure 2.8 shows the resulting voltage and current across the capacitor and the time-domain

impedance of the capacitor by dividing voltage and current. The harmonics of the voltage

are also shown, and as expected only the first harmonic is significant. This example is

shown mostly for comparison purposes and verification of the harmonic balance method.

Nonlinear Capacitor: When the capacitor is made nonlinear, the equations that govern it

change slightly. From the traditional equation of Q = CV , the charge-voltage relationship

is now modeled as

Q = C

(
V +

1

3
V 3

)
(2.37)

which is shown in Figure 2.6 and will generate power in the third harmonic. This is a

simple model for a nonlinear capacitor, with more complex forms have a higher order

polynomial and weights on each indeterminate [26], [62]. Like the previous example, the

voltage source has an amplitude of 2 V at a frequency of 0.5 GHz and the capacitor has a

linear capacitance of 500 pF. The response of the nonlinear capacitor is shown in Figure 2.9.

There is not much of a difference between this example and the linear capacitor, but there

is a slight nonlinearity to the voltage and a slight increase in the third harmonic.

While this is a successful model of a nonlinear RC circuit, it is not very impressive as a

nonlinear circuit. The next example increased the voltage to a 10 V peak while every other

parameter remained the same. This pushed the capacitor further into the nonlinear region
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(a) (b)

(c) (d)

(e)

Figure 2.8: Response of a linear capacitor in an RC circuit where R = 2 Ω, C = 500 pF ,
and the voltage source has an amplitude of 2 V at a frequency of 0.5 GHz.

31



(a) (b)

(c) (d)

(e)

Figure 2.9: Response of a nonlinear capacitor in an RC circuit where R = 2 Ω, C =
500 pF , and the voltage source has an amplitude of 2 V at a frequency of 0.5 GHz.
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shown in Figure 2.6. The response of this capacitor is shown in Figure 2.10 the voltage is

clearly more distorted and has a much larger third harmonic with even the fifth showing

some significance.

2.3.1.2 RLC Circuit

The final example in this section is an LC tank resonator with series resistance, shown

in Figure 2.11. At this point, the classic harmonic balance method was dropped as this

example, and the later examples, are an invalid configuration for that model. Most of the

circuit is the same as before, with a voltage amplitude of 10 V at a frequency of 0.5 GHz, a

resistance of 2 Ω, and a capacitance of 500 pF. The added shunt inductor has an inductance

of 0.15 nH, which makes the resonant frequency of the tank resonator around 0.58 GHz.

The response of the capacitor in the circuit is shown in Figure 2.12. The current is more

triangular than before and even more harmonics can be seen to have a slight significance.

2.3.2 Diodes and Switches

Moving on to more complex circuit components, diodes and switches challenge the har-

monic balance method and push it toward the limits of what it can do. Diodes are very

simple, but very nonlinear. Switches, on the other hand, are time-variant and not steady-

state.

2.3.2.1 Diode

The ideal diode has an infinite impedance when reverse biased and a zero impedance when

forward biased. This example uses a more realistic and more complex model of

Id = I0

(
e

eV
kT − 1

)
(2.38)
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(a) (b)

(c) (d)

(e)

Figure 2.10: Response of a nonlinear capacitor in an RC circuit where R = 2 Ω, C =
500 pF , and the voltage source has an amplitude of 10 V at a frequency of 0.5 GHz.
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Figure 2.11: Circuit diagram of the tank LC circuit with a series resistance. The voltage
and current were measured on the capacitor on the end near the resistor and inductor.

where Id is the current through a diode, I0 is the diode’s saturation current, e is the charge

of an electron, T is the temperature in Kelvin, k is Boltzmann’s constant, and V is the

voltage across the diode. This curve is shown in Figure 2.13

The circuit used is a very simple series resistor and diode configuration, shown in Fig-

ure 2.14. The diode is set to have a saturation current of 1 nA at a temperature of 295

K while the resistor had a resistance of 2 Ω. The response of the diode is shown in Fig-

ure 2.15. Now there is a DC component shown in the harmonics, but the higher harmonics

die off much faster than in the nonlinear capacitor. Also, the discrepancy in the impedance

between AWR and the piecewise method is because of some additional oscillations in the

current of AWR that crossed zero. When the current rises again, the impedances agree.

2.3.2.2 Switch

Implementing a switch in harmonic balance was an interesting problem because harmonic

balance is a steady-state nonlinear solver and switches are not steady-state. In AWR, it was

accomplished with the transient solver and the Switch AP component with nodes 3 and

4 connected to a pulse train that opens and closes the switch, shown in Figure 2.16, which

is set to oscillate at 4 GHz. Both resistors have a resistance of 1 Ω and the voltage source

has a 1 V peak magnitude at 0.5 GHz. The harmonic balance solver in AWR would not
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(a) (b)

(c) (d)

(e)

Figure 2.12: Response of a nonlinear capacitor in an RLC circuit where R = 2 Ω, C =
500 pF , L = 0.15 nH , and the voltage source has an amplitude of 10 V at a frequency of
0.5 GHz.
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(a) Small Voltages (b) Large Voltages

Figure 2.13: The voltage-current relationship of a realistic diode shown at two different
scales. Note that in (a), the current is in µA.

Figure 2.14: Circuit diagram of the series resistor and diode circuit. The voltage and current
were measured at the node between the resistor and the diode.
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(a) (b)

(c) (d)

(e)

Figure 2.15: Response of a diode in series with a 2 Ω resistor and the voltage source has an
amplitude of 10 V at a frequency of 0.5 GHz.
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Figure 2.16: Circuit diagram of the series resistors and switch circuit. The voltage and
current were measured at the node between the first resistor and the switch.

simulate the switch.

In the implementation of the piecewise harmonic balance method in MATLAB, the

nonlinear circuit is analyzed using a function that maps voltage to current in the time do-

main, as described in Section 2.1.2. Because it is in the time domain that this takes place,

it is possible to create a function that changes with time. The change over time must have

a period that is harmonically related to the base frequency, but this modification allows

harmonic balance to model switches that open and close periodically.

The response of the switch is shown in Figure 2.17. It is important to remember that

this response was measured between the switch and the resistor next to the voltage source,

which is why the impedance plot shows a 1 Ω resistance and the voltage only shows a 0.5

V drop at the peak. Also, shown in the impedance plot, note that the impedance approaches

infinity when the switch opens.

2.3.3 Transistors

The final set of examples cover a MOSFET amplifier, shown in Figure 2.18, biased to dif-

ferent voltages to display linear and nonlinear behavior. The type of transistor amplifier

used is a common-source amplifier and utilizes a voltage divider on the gate to control the
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(a) (b)

(c) (d)

(e)

Figure 2.17: Response of a 4 GHz triggered switch in series with two resistors where
R = 1 Ω and the voltage source has an amplitude of 1 V at a frequency of 0.5 GHz.
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Figure 2.18: Common-source MOSFET amplifier with a biasing voltage divider. The volt-
age bias on the gate is controlled by changing the grounded gate resistor, RG2.

biasing. The magnitude of the current flowing through the MOSFET is directly propor-

tional to the voltage at the gate, but it pulls current through a 10 kΩ resistor and a 15 V

DC power source, making the output voltage an amplified signal with a 180° phase shift.

The MOSFET has a 1.5 threshold voltage, a trans-conductance parameter of 0.25 mA/V2,

a channel length modulation parameter of 0.02 V−1, and a load resistor of 10 kΩ. The DC

biased MOSFET was then modulated with a 0.1 peak voltage source at 0.5 GHz, which

was isolated from the DC circuit with 1 F capacitors. While Harmonic Balance works with

the full circuit in Figure 2.18, the circuit can also be modeled with the small signal approx-

imation but with added nonlinearities, shown in Figure 2.19. Both of these models will be

analyzed when linearly and nonlinearly biased.

2.3.3.1 Linearly Biased Amplifier

The amplifier can be linearly biased by setting RG1 and RG2 to 10 MΩ and 3 MΩ, re-

spectively. This biasing scheme results in a DC bias of 3.46 V at the gate and results in an

almost linear response, as shown in Figure 2.20.

41



Figure 2.19: Small signal model of the amplifier shown in Figure 2.18. This model assumes
no DC bias, but uses a current source that has the parameters of a biased transistor.

(a) (b)

(c) (d)

Figure 2.20: Drain current and voltage for given gate voltages. The vertical red line shows
the bias voltage for linear operation at 3.46 V, and the two purple lines show the limits of
the small signal modulation.
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Full Circuit: The response of the linearly biased MOSFET is shown in Figure 2.21. This

example is different from the others in that two input ports had to be implemented instead

of just one. The current at the drain iD pulled through a MOSFET in the saturation region

is defined as

iD =
1

2
kn (vGS − Vt)2 (2.39)

where kn and Vt are the transconductance parameter and threshold voltage of the MOSFET

respectively and vGS is the DC biased, input sinusoidal voltage at the gate. The amplifier

had a gain of about -2.45 V/V but has a large DC bias. This bias is removed on the other

side of the 1 F capacitor, but the intent was to show the response of the MOSFET transis-

tor. Additionally, the harmonics in Figure 2.21.d and 2.21.e are overshadowed by the DC

component, but the amplitude of the 0.5 GHz components can still be seen.

Modified Small Signal Approximation: The small signal approximation can be useful

to obtain a similar response to the full circuit, but without needing both input ports. This

method usually assumes a linear response, but it can be modified to still include the non-

linear effect from approaching the threshold voltage. With the linear approximation, the

equation for the drain current is expanded to

iD =
1

2
kn (vGS − Vt)2 (2.40)

=
1

2
kn (VGS + vgs − Vt)2 (2.41)

=
1

2
kn (VGS − Vt)2 + kn (VGS − Vt) vgs +

1

2
knv

2
gs (2.42)

where VGS is the DC bias between the gate and the source, vgs is the high frequency input

signal at the gate, and vGS = VGS + vgs [63]. The first term of (2.42) is the DC component,

second is the linear component, and third is the nonlinear component. Usually in small
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(a) (b)

(c) (d)

(e)

Figure 2.21: Response of a linearly biased MOSFET amplifier. The voltage was amplified
by about 2.45 times to achieve a 0.245 V peak.
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signal analysis, both the DC component and the nonlinear component are excluded, but

here only the DC component will be removed. The response of the small signal model is

shown in Figure 2.22. The response is very similar to that of the full circuit analysis, but

with the DC offset already removed so the harmonics can be clearly seen.

2.3.3.2 Nonlinearly Biased Amplifier

The amplifier can be nonlinearly biased by setting RG1 and RG2 to 10 MΩ and 1.2 MΩ,

respectively. This biasing scheme results in a DC bias of 1.61 V at the gate and the proxim-

ity to the threshold voltage of 1.5 V results in an almost very nonlinear response, as shown

in Figure 2.23. Unfortunately, this biasing scheme also leads to a very small gain.

Full Circuit: The response of the nonlinearly biased MOSFET is shown in Figure 2.21.

This example also has two ports to power and bias the circuit. The amplifier has a gain of

about -0.13 V/V which is significantly smaller than the linear circuit. Again, the harmonics

in Figure 2.24.d and 2.24.e are overshadowed by the DC component, and the amplitude of

the 0.5 GHz components can barely be seen.

Modified Small Signal Approximation: The small signal approximation was used again

to model the transistor. The nonlinear component is much stronger so it is easier to see that

the small signal approximation is still valid for highly nonlinear biases. The response of

the small signal model is shown in Figure 2.25. Again, the response is very similar to that

of the full circuit analysis, but without the DC bias so the harmonics can be seen.

2.3.4 Diode-loaded Dipole Antenna

The previous examples show several cases of nonlinear loads and biasing schemes on sim-

ple circuits. In a similar way, an LTI antenna with nonlinear loads can be modeled by
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(a) (b)

(c) (d)

(e)

Figure 2.22: Response of a small signal model of the linearly biased MOSFET amplifier.
The voltage was amplified by about 2.45 times to achieve a 0.245 V peak.
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(a) (b)

(c) (d)

Figure 2.23: Drain current and voltage for given gate voltages. The vertical red line shows
the bias voltage for nonlinear operation at 1.61 V, and the two purple lines show the limits
of the small signal modulation.
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(a) (b)

(c) (d)

(e)

Figure 2.24: Response of a nonlinearly biased MOSFET amplifier. The voltage was ampli-
fied by about 0.13 times to achieve a 0.013 V peak.
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(a) (b)

(c) (d)

(e)

Figure 2.25: Response of a small signal model of the nonlinearly biased MOSFET ampli-
fier. The voltage was amplified by about 0.13 times to achieve a 0.013 V peak.
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expanding harmonic balance to a multiport LTI network, as in Section 2.2. For this exam-

ple, a dipole with a length of 75 mm was loaded with a diode at its center and driven with

a plane wave at 2 GHz.

The linear subcircuit consists of the unloaded dipole antenna and is modeled by MoM

as an impedance/admittance matrix. The nonlinear subcircuit consists of the single diode

load, equivalent to the diode used in Section 2.3.2.1 and evaluated in the time-domain.

Using the harmonic balance method with MoM, the currents through the diode load and

along the dipole are calculated and shown in Figure 2.26.a and 2.26.b. It can be seen that

the time-domain current through the diode agrees with typical diode behavior, where the

current is truncated in one direction and flows freely in the other. In Figure 2.26.c, the

current on the dipole is used to calculate the total power radiated at each frequency and, in

Figure 2.26.d, the backscatter pattern across the elevation angle θ for the first five radiated

frequencies.

2.4 Limitations and Advantages

Over the course of the derivation and analysis, a few fundamental advantages and limi-

tations were discussed previously. Here, they are highlighted and brought into a larger

context. While the harmonic balance method is useful and can accurately simulate strongly

nonlinear structures, defining the areas where the method can be most useful will help di-

rect the path of future research.

2.4.1 Nonlinear Devices

Harmonic balance is an excellent solver for any nonlinear device. It circumvents the limi-

tations of purely time- or frequency-domain solvers by merging them in a hybrid method,

allowing for the integration of nonlinear components defined in the time domain with more
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(a) (b)

(c) (d)

Figure 2.26: Current distribution and radiation characteristics for a 75 mm wire dipole
loaded with a diode at its center. The time- and frequency domain current through the diode
is shown in (a), and the current distribution across the dipole at each simulated frequency
is shown in (b) in a logarithmic scale to show the magnitude at each harmonic. The total
power radiated is shown in (c) with the backscatter pattern shown in (d).
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conventional LTI devices that are more easily defined in the frequency domain. This gives

the added advantage of using a time-domain relationship between voltage and current for

the nonlinear component, which is easily obtained.

It is generally assumed in the harmonic balance method that the solution is steady-

state and composed of a linear combination of sinusoids, which are multiples of a single

base frequency, similar to the Fourier series assumptions. Generally, it is assumed that all

inputs and excitations are also harmonics of the base frequency, but this an be overcome by

using Large-Signal/Small-Signal analysis or multi-tone harmonic balance. In theory, the

number of harmonics used can be large, but this is primarily limited by the efficiency of the

minimization function and computational resources.

Finally, the circuit itself is not limited in shape, as long as admittance parameters can

be formed of the linear subnetworks with ports in the locations of the nonlinear loading.

Every component added to the circuit can either be absorbed into an admittance matrix

or modeled with a time-domain equation describing the relationship between voltage and

current.

2.4.2 Time-varying Devices

Harmonic balance normally cannot handle any switching or time-varying components, but

it is possible with a slight modification to the voltage-current relationship of the device,

as mentioned in Section 2.3.2.2. In the implementation of the piecewise harmonic balance

method in MATLAB, the nonlinear circuit can be analyzed using a function that maps

voltage to current in the time domain. Because it is in the time domain that this takes place,

it is possible to create a function that changes with time. The change over time must have

a period that is harmonically related to the base frequency. In other words, one period of

the base frequency contains an integer multiple of the period of the change over time. This
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modification allows harmonic balance to model switches that open and close periodically.

2.5 Concluding Remarks

In this chapter the harmonic balance method was analyzed and combined with MoM, cre-

ating a technique that can model nonlinear loading on an arbitrarily shaped structure. This

method can be directly expanded for multiple nonlinear loads of any kind. Various ex-

amples are presented that demonstrates different nonlinear loading and how they can be

implemented with harmonic balance as well as verify its accuracy against other nonlinear

circuit solvers.

While this method has limitations, discussed previously in Section 2.4, it remains a ver-

satile nonlinear solver that allows for accurate modeling by using both the frequency and

time domain to analyze the LTI and nonlinear subcircuits. Expanding harmonic balance

with MoM allows for the simulation of electromagnetic structures with nonlinear compo-

nents. The next chapters discuss conversion matrices as a method to model time-varying

systems and allows for a combination of harmonic balance and conversion matrices to

model pumped nonlinearities, briefly discussed in Section 5.5.
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Chapter 3

Time-Variant Modeling

Recently, a hybrid method of modeling time-varying electromagnetic structures based on

conversion matrices and the method of moments (MoM) has been developed [32], [64].

While time-domain modeling, such as the finite difference time domain method (FDTD),

transient circuit co-simulation and time-domain method of moments are accurate and ex-

tremely general [12], the direct connection between MoM and the dyadic Green’s function

makes MoM-based modeling favorable in applications such as modal current analysis [65],

[66], automated design synthesis [67]–[69], and the development of fundamental bounds

on LTI system performance [70], [71]. Meanwhile, conversion matrices enable the analysis

of time-varying structures in the frequency domain by modeling the mixing properties and

harmonic generation of time-varying structures as interactions between networked ports,

allowing integration with strictly LTI-based solvers. Early combinations of conversion

matrices and MoM have focused on sparse loading or the reduction of an antenna to a sin-

gle lumped impedance, ignoring the potential interaction between multiple or distributed

time-varying loads. Conversely, the hybrid conversion matrix / MoM model (CMMoM)

preserves the full MoM analysis of electromagnetic structures and provides a framework to

efficiently model any number of lumped or distributed loads and the interactions between

them [32], [33].

While CMMoM is versatile and can be applied to any electromagnetic object, many of
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the fundamental advantages of MoM, such as developing performance bounds, have yet to

be explored. In this chapter, key aspects of conversion matrices and the CMMoM model

are reviewed before investigating the structure of the resulting impedance matrices in order

to determine how a passive time-varying structure affects the impedance and power of an

electromagnetic scatterer, as well as extracting a model for the interaction between multiple

time-varying loads in the form of an equivalent loading matrix. Additionally, a method of

determining fundamental bounds on extincted power and efficiency based on MoM are

derived for CMMoM and several case studies are investigated.

3.1 Conversion Matrix Circuit Analysis

Conversion matrices enable frequency-domain modeling of systems with time-varying com-

ponents by describing the coupling between voltages and currents at multiple frequen-

cies [26]. Their use in circuit design is well documented, but these techniques are rarely

applied to electromagnetic scattering problems. The fundamentals of conversion matrix

methods on multiport networks are reviewed in preparation for their application to open,

distributed electromagnetic systems via MoM.

3.1.1 Lumped Time-Varying Components

When a time-varying voltage is impressed across a time-varying load, the spectral con-

tent of the resulting current corresponds to a mixing of the applied voltage with the time-

variation of the load. This can be seen by applying the convolution theorem to Ohm’s law,

as in

i(t) = v(t)g(t) (3.1)
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and

I(ω) =

∫ ∞
−∞

V (ω − ω′)G(ω′)dω′ (3.2)

where i(t), v(t), and g(t) are the time-domain current, voltage, and conductance of the load,

and I(ω), V (ω), and G(ω) are their Fourier transforms. In an LTI system, the conductance

has only a static componentG(ω) ∼ δ(ω), and the current can only contain frequencies that

are present in the voltage excitation. When the conductance g(t) is not static, the resulting

current includes sum- and difference-mixing products of the voltage and load frequency

content.

The preceding discussion is valid for loads with arbitrary time dependence. If the load’s

time variation is periodic, it may be represented by a Fourier series as

g(t) =
K∑

k=−K

Gke
jkω0t (3.3)

and

G(ω) =
K∑

k=−K

Gkδ(ω − kω0), (3.4)

where g(t) is the time-varying conductance of the load, Gk is the kth Fourier coefficient,

ω0 is the fundamental frequency of the time-varying component, and K is large enough

to contain sufficient frequency-domain content. Similarly, we may expand the voltage in

terms of a series of ω0 harmonics centered about a reference frequency ωc,

v(t) =
K∑

k=−K

Vke
j(ωc+kω0)t (3.5)

and

V (ω) =
K∑

k=−K

Vkδ(ω − ωc − kω0) (3.6)

so long as the baseband representation of the driving voltage is periodic in the fundamental
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frequency ω0. If the voltage is not periodic in ω0, then the excitation can be decomposed

into multiple problems with different center frequencies. In this chapter, a single frequency

excitation is assumed, where this condition is naturally satisfied as Vk = 0 for all k 6= 0. As

a consequence of centering the harmonics about a reference frequency ωc, as in (3.6), the

negative frequency components of the excitation signal are ignored. Instead we focus on

the upper sideband as shown in Fig. 3.1. If desired, contributions from negative frequencies

may be calculated by a secondary calculation [26].

Adopting the same expansion and notation for the current i(t), the conductance rela-

tionship in (3.2) may be written as

Ik =
L∑

`=−L

Vk−`G` (3.7)

and in matrix form as



I−K

I1−K

...

IK


=



G0 G−1 . . . G−2K

G1 G0 . . . G1−2K

...
... . . . ...

G2K G2K−1 . . . G0





V−K

V1−K

...

VK


(3.8)

or more compactly

Î = ĜV̂ (3.9)

where Ĝ is the conversion matrix representation of the time-varying conductance g(t).

This matrix models the modulating effect of the time-varying component, where the kth

element of the current vector contains contributions from every GpVq product that satisfies

p+ q = k.

An expression similar to (3.8) can be derived using a time-varying resistance, rather
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ω

F (ω)

0

G0

kω0

Gk

−kω0
ωc

V0

I0

ωc + kω0

Vk

ωc − kω0

V−k

Ik
I−k

Figure 3.1: Frequency convention used throughout this chapter. Time-varying loads are
represented in Fourier series of the fundamental frequency ω0, e.g., {Gk}, while current
and voltage indexing centers around a modulation frequency ωc.

than conductance [26]. This illustrates an inverse relationship between resistive and con-

ductive conversion matrices, similar to that of their LTI counterparts,

R̂ = Ĝ−1. (3.10)

Conversion matrices may also be generated for time-varying inductors and capacitors,

with the general structure

Î = jΩ̂ĈV̂ and V̂ = jΩ̂L̂Î (3.11)

where

Ω̂ =



ω−K 0 . . . 0

0 ω1−K . . . 0

...
... . . . ...

0 0 . . . ωK


, ωk = ωc + kω0, (3.12)

and the matrices Ĉ and L̂ are capacitance and inductance conversion matrices of the form

of the matrix Ĝ in (3.8). The conversion matrices of conductances Ĝ, resistances R̂, capac-

itances Ĉ, and inductances L̂, can be treated as basic lumped components and combined

into larger networks by following usual series and parallel circuit rules [26]. For real-
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valued time-varying circuit elements, the matrices Ĝ, R̂, L̂, and Ĉ are naturally Hermitian

symmetric. However, multiplication of Ĉ or L̂ by the frequency matrix Ω̂ or its inverse, as

in (3.11), breaks the Hermitian symmetry of the impedance conversion matrices of time-

varying inductive or capacitive elements.

3.1.2 Loaded Multi-port Networks

The time-domain representation of an LTI, N -port network with time-varying resistors on

each port may be written as

vα(t) = iα(t)rα(t) +
N∑
β=1

zαβ(t) ? iβ(t) (3.13)

where vα(t), iα(t), and rα(t) are the time-varying voltage, current, and resistance across

port α, and zαβ(t) is the open-circuit impedance impulse response between ports α and β.

This translates to a frequency-domain representation

Vα(ω) =

∫ ∞
−∞

Iα(ω − ω′)Rα(ω′)dω′ +
N∑
β=1

Zαβ(ω)Iβ(ω) (3.14)

where Vα(ω), Iα(ω),Rα(ω), and Zαβ(ω) are the frequency-domain forms of the parameters

in (3.13).

After manipulations closely resembling those in (3.4) and (3.6), the equation for voltage

becomes

Vα(ωc + kω0) =
L∑

`=−L

Iα(ωc + (k − `)ω0)Rα(`ω0)

+
N∑
β=1

Zαβ(ωc + kω0)Iβ(ωc + kω0), (3.15)
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(b)

fK

f−K

f1−K
Ẑ...

(a)

ZKfK

...
...

Z−Kf−K

Z1−Kf1−K

N ports

Figure 3.2: Diagram of LTI multiport system (a) and periodically time-varying multiport
system (b) as represented by a conversion matrix. Double slash across port symbol denotes
N physical ports. Each physical port supports voltages and currents at each of the 2K + 1
harmonic frequencies. An LTI system with 2K + 1 frequencies can be represented by
2K + 1 independent linear systems, or a block diagonal conversion matrix, because there
is no conversion between frequencies.

and after including the frequency notation from (3.8) as superscripts, the previous expres-

sion may be rewritten as

V k
α =

L∑
`=−L

Ik−`α R`
α +

N∑
β=1

Zk
αβI

k
β . (3.16)

Equations of this form can be collected into a matrix form by grouping the port voltages

and currents at each frequency. The resulting system of equations reads



V−K

V1−K

...

VK


=



R0 R−1 . . . R−2K

R1 R0 . . . R1−2K

...
... . . . ...

R2K R2K−1 . . . R0





I−K

I1−K

...

IK



+



Z−K 0 . . . 0

0 Z1−K . . . 0

...
... . . . ...

0 0 . . . ZK





I−K

I1−K

...

IK


(3.17)
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and has a similar structure to the conversion matrices of (3.8), with the key difference

that every element within each matrix or vector is replaced by a submatrix or subvector of

dimension N . The submatrices and subvectors take the forms

Rk =



Rk
1 0 . . . 0

0 Rk
2 . . . 0

...
... . . . ...

0 0 . . . Rk
N


, (3.18a)

Zk =
[
Zk
αβ

]
, Vk =

[
V k
α

]
, Ik =

[
Ikα
]
. (3.18b)

Thus, Rk is a diagonal matrix consisting of the k-th harmonic of the time-varying resis-

tances at all N ports, Zk is the open-circuit impedance matrix of the N -port LTI network at

the k-th harmonic centered about ωc, and Vk and Ik contain voltages and currents existing

on all N ports at the k-th harmonic, as illustrated in Fig. 3.2(b). The system of equations

in (3.17) may be expressed in a more compact form as

V̂ =
(
R̂ + Ẑ

)
Î. (3.19)

For the case of purely LTI loading, we have R̂k 6=0 = 0 and the matrices in (3.17) reduce to

a block diagonal matrix as shown in Fig. 3.2(a). As a result, the system is represented by

2K + 1 decoupled matrix equations at each harmonic. While reciprocal LTI networks lead

to symmetric conversion matrices Ẑ, the conversion matrices for real-valued loads are Her-

mitian symmetric based on the conjugate symmetry of their Fourier representations. Thus,

unless loads are selected specifically to have real-valued Fourier spectra, the system conver-

sion matrix Ẑ + R̂ is neither symmetric nor Hermitian. Representations similar to (3.19)

may be constructed for arbitrary networks of time-varying resistances, capacitances, and
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inductances using the forms in (3.10) and (3.11) along with standard circuit element com-

bination rules [26].

If desired, the multi-port conversion matrix can be grouped by port rather than by fre-

quency [26]. This arrangement would lead to an overall matrix structure that resembled an

open-circuit impedance matrix, with each element in the matrix replaced by a small con-

version matrix, i.e.,



V̂1

V̂2

...

V̂N


=



Ẑ11 Ẑ12 . . . Ẑ1N

Ẑ21 Ẑ22 . . . Ẑ2N

...
... . . . ...

ẐN1 ẐN2 . . . ẐNN





Î1

Î2

...

ÎN


(3.20)

where V̂α, Îα, and Ẑαβ are conversion matrix parameters as defined in (3.8), but specific

to the α and β ports of the N -port network. The matrices in (3.17) and (3.20) share the

same elements, but are re-ordered to emphasize different relationships. While other work

in multiport conversion matrices use a port-wise arrangement [26], [72], this work uses

the format of (3.17) to facilitate compatibility with standard MoM techniques, as will be

discussed in the next section.

3.2 Conversion Matrix / Method of Moments

The previous section derived the equations for conversion matrices on basic circuits and

provided a method to combine lumped LTI and time-varying components together. This

section directly applies conversion matrices to the method of moments, allowing for the

modeling and simulation of time-varying electromagnetic structures [32].
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Ω

Ei

[Ei − L(J)]tan = 0

J

ψα

V = ZI

ψβ

Figure 3.3: Discretization of a structure Ω (left) into finite elements supporting localized
basis functions {ψn} (right). RWG basis functions [74] are depicted, with each basis func-
tion centered on one mesh edge and spanning two adjacent triangles.

3.2.1 Formulation

A broad class of LTI electromagnetic scattering problems may be recast as LTI network

problems through the use of the method of moments (MoM) [73]. Consider a problem

involving a perfectly conducting (PEC) surface Ω supporting surface currents J , as shown

in the left panel of Fig. 3.3. To solve for the surface currents induced by a monochromatic

incident fieldEi, we may expand the surface current into an appropriate basis {ψn} in order

to convert Maxwell’s equations into a matrix form of the electric field integral equation

V(ω) = Z(ω)I(ω) (3.21)

where V and I are vectors containing coefficients related to the incident field and induced

current, respectively, ω is the excitation frequency, and Z is the impedance matrix repre-

senting the scattered field operator L(J) [73]. Throughout this chapter, Galerkin testing

is applied such that the impedance matrix is transpose symmetric. The frequency depen-

dence of all quantities, to be dropped in all future expressions, explicitly describes the LTI

nature of the scatterer and indicates that currents will only exist at the excitation frequency.

Induced currents due to multi-tone excitation can be analyzed by direct superposition of

weighted monochromatic solutions, i.e., Fourier series or transforms.

63



3.2.2 Loading

When the chosen basis is sufficiently localized, e.g., when pulse [75], or RWG basis func-

tions [74] are used, the elements of the vectors V and I may be interpreted as voltages and

currents present at discrete locations, or ports, on the structure, as shown in the right panel

of Fig. 3.3. For example, in the case of RWG basis functions, each port corresponds to one

edge within the triangularized mesh created from the original structure Ω.

With the aforementioned network interpretation of the electromagnetic scattering prob-

lem in Fig. 3.3, lumped loading at any combination of the scatterer’s ports is straightforward

to model via the addition of a diagonal loading matrix to the impedance matrix ZL,

Z→ Z + ZL, (3.22)

whose elements are related to the lumped element loading at each port [76]. Loads of

finite size spanning multiple basis functions may also be modeled through the use of non-

diagonal loading matrices [77]. An identical approach also allows for the modeling of non-

PEC surfaces, which may be inhomogeneous and/or anisotropic, characterized by surface

impedance Zs through a non-diagonal loading matrix related to the Gram matrix of the

chosen basis [70], [76].

3.2.3 Lumped Time-Varying Loads

The techniques outlined in Sections 3.1.2 and 3.2.2 may be combined to model time-

varying lumped elements loading any or all ports of a MoM network representation of

the structure Ω. The resulting conversion matrix system takes on precisely the same form

as (3.17)–(3.19), where V̂ and Î are stacked vectors containing fields and currents at all har-

monic frequencies, and R̂ and Ẑ are the dynamic (associated with time-varying loading)
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and static (associated with the underlying LTI structure) conversion matrices, respectively.

Here we again note that the static conversion matrix Ẑ is block diagonal and contains

impedance matrices representing the structure Ω at each harmonic frequency. The individ-

ual blocks Rk of the dynamic loading matrix R̂ are diagonal for localized bases, with off

diagonal blocks Rk 6=0 representing Fourier components of each element’s time variation.

In the special cases when the structure is unloaded or if all loading elements are static, the

system becomes LTI and the system conversion matrix becomes block diagonal, reducing

to a set of 2K + 1 decoupled matrix equations, each involving only quantities at a single

frequency. Generalization to capacitive and inductive loads follows the form of (3.12), and

again combinations of LTI and/or time-varying components may be synthesized by stan-

dard circuit analysis rules [26].

3.3 Examples

In this section, a selection of example problems solved using the hybridized conversion

matrix / method of moments (CMMoM) technique are presented [32]. Like conventional

method of moments, the proposed method is capable of modeling a broad range of practical

antenna and scattering problems. The examples included here highlight the method’s appli-

cation to scattering, transmission, and reception using structures with lumped time-varying

loads.

3.3.1 Scattering from a singly-loaded bowtie dipole

The first examples is a bowtie antenna loaded at its center by a time-varying switch, as

shown in the inset of Fig. 3.4. The bowtie length ` is 36 mm and the angle α between the
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Figure 3.4: Cross-frequency backscatter spectra from CMMoM, transient circuit co-
simulation, FDTD, and measurement, compared to backscatter from LTI bowtie. Inset
schematic.

two arms is 155◦. The central switch is modeled by

RL(t) =


r0 tL/2 ≤ t− ntL < tL

0 else

(3.23)

with an off-resistance r0 of 10 kΩ and switching frequency fL = 1/tL of 10 MHz.

The excitation is an incident plane wave from broadside at 3 GHz co-polarized with the

long dimension of the bowtie and is defined as

einc(t, r) = ẑE0 sinωinct, ∀ r = ŷy + ẑz (3.24)
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in the plane of the bowtie antenna (x = 0) where t is the same time variable shared by the

load. Fig. 3.4 shows the monostatic backscatter produced by this system. Note that while

the excitation in this example is monochromatic, the scattered fields consist of multiple

harmonics due to the time-varying load. Similar to polarization-specific scattering analysis,

here we adopt the following notation for multi-harmonic backscatter,

Ψ(ωinc, ωobs) = lim
r→∞

4πr2 |Esc(ωobs)|2
|Einc(ωinc)|2

(3.25)

whereEinc andEsc are incident and backscattered fields, r is a distance from the scattering

object, and ωinc and ωobs are the incident and observation angular frequencies, respectively.

A CMMoM model of the bowtie example structure was constructed with 170 triangles,

220 RWG basis functions, and 201 harmonic frequencies. Fig. 3.4 shows the agreement

between CMMoM, a commercial FDTD code [78], and transient circuit co-simulation [79].

CMMoM results from a static bowtie with no time-varying load are also included for com-

parison. The CMMoM, FDTD, and circuit co-simulation results of the time-varying bowtie

model agree within 0.3 dB at the zeroth harmonic (incident frequency) and 0.9 dB at the

first-order harmonics. There is larger relative (dB) error in the higher order harmonics,

though the linear magnitudes of these differences are relatively small due to the much

smaller absolute magnitude of these higher order harmonics.

We observe that the backscatter spectrum contains primarily odd-numbered harmon-

ics of the 500 MHz square wave switching waveform, which is to be expected since the

Fourier series of a square wave contains only odd numbered harmonics. It should be noted

that physical systems with linear time-varying loads contain only intermodulation frequen-

cies of the excitation signal and time-varying loading waveform. By definition, CMMoM

produces output only at these discrete harmonic frequencies, which are known a priori.

Time-domain methods, on the other hand, can produce additional, spurious spectral con-
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Table 3.1: Comparison of backscatter (dBsm) data from Fig. 3.4
Static Time-varying
k = 0 −2 −1 0 1 2

Co-sim -21.5 -66.9 -31.6 -27.4 -31.6 -67.2
CMMOM -21.5 -63.0 -31.5 -27.7 -31.5 -63.3

FDTD -21.1 -68.4 -30.7 -27.5 -30.8 -68.6

tent due to transient and windowing effects.

Figure 3.5 shows the normalized backscattered power as a function of declination angle

θ due to an excitation field incident from θ = 90◦. The pattern of the reflected field for each

harmonic has the shape of a center-fed dipole, with nulls in endfire directions and peaks at

broadside. The magnitude of each harmonic pattern at broadside corresponds to the peak

values in Fig. 3.4 and the values listed in Table 3.1.

3.3.2 Harmonic generation in a multiply-loaded transmit system

The second example is a square wire loop antenna loaded on opposite sides by two sinusoidally-

varying time-varying loads, selected either as time-varying resistors or time-varying capac-

itors. The loop has a side length ` of 82.8 mm and a radius of 1 mm. The time-varying

loads are defined by

RL(t) = R0 (1 + γ cosωLt) , (3.26)

and

CL(t) = C0 (1 + γ cosωLt) , (3.27)

where

R0 = 150 Ω, C0 = 5 pF, (3.28)

and the frequency of the loads is set to fL = ωL/(2π) = 30 MHz. The modulation co-

efficient γ prevents the resistance and capacitance from reaching zero, which would lead
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Figure 3.5: Normalized backscattered power (dBsm) of the bowtie example from CM-
MoM vs. declination angle θ in the xz plane for the frequencies of greatest returned power.
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to divergent Fourier representations of the conductance and elastance. In this example, the

modulation coefficient γ is set to 0.95. The excitation is a voltage gap feed at 1 GHz located

next to one of the loads and defined as

vinc(t) = V0 cosωinct (3.29)

where V0 = 1 V and t is the same time variable shared by the loads. The voltage source

location, as well as the locations of the resistive and capacitive loads, are shown in Fig. 3.6.

The CMMoM model of the square loop is constructed with 66 rooftop basis functions

with 191 harmonic frequencies. The radiated electric field in the direction normal to the

loop for a 1 GHz excitation is shown in Fig. 3.6. Similar to the bowtie example, the exci-

tation frequency is modulated by the load frequency to produce harmonics, but in this case

both even and odd harmonics are prominent because of the sinusoidal load waveform. The

capacitive loads show more radiated power compared to the resistive loads, which are lossy

by nature.

3.4 Rederiving Basic Network Relations with CMMoM

Incorporating time-varying devices into other LTI structures typically defined in the fre-

quency domain, such as transmission lines, can be done by modifying the governing equa-

tions with conversion matrices. Similar to the derivation of CMMoM, parameters must be

reconstructed from the base voltage and current distributions defined in conversion matrices

and accounting for any cross-frequency terms. This section describes a loaded transmis-

sion line and shows the calculation of several key parameters when it is loaded with a

time-varying element. The model of the loaded transmission line is shown in Figure 3.7.
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propagation constant β that is loaded with a time-varying impedance ẐL.

71



3.4.1 Loading

The load on the transmission line can be a single time-varying element or an effective input

impedance from a combination of LTI elements with one or more time-varying components

combined into a single conversion matrix, as discussed in Section 3.1.1. This section uses a

generalized time-varying load ẐL, which is a single port conversion matrix with a structure

similar to (3.8).

3.4.2 Reflection Coefficient

This derivation for transmission line equations is very similar to any transmission line set

up, but here matrices are used in place of scalars. Beginning with a conversion matrix

representation of voltage, impedance, and current defined as

V̂ = ẐinÎ, (3.30)

the voltage and current vectors are replaced as the sum of two propagating waves: toward

the load V̂+, Î+ and away from the load V̂−, Î− so that the equation becomes

V̂+ + V̂− = Ẑin

(
Î+ − Î−

)
. (3.31)

On a transmission line, the voltage and current waves are related by the characteristic

impedance of the line Ẑ0, letting us define the previous equation in terms of voltage only

as

V̂+ + V̂− = ẐinẐ
−1
0

(
V̂+ − V̂−

)
. (3.32)
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The reflection coefficient Γ̂ defines the relationship between the magnitudes of the forward

and backward waves at the load location as

V̂− = Γ̂V̂+ (3.33)

and can be calculated by analyzing (3.32) at the location of the load, where Ẑin = ẐL, so

that

V̂+ + V̂− = ẐLẐ−1
0

(
V̂+ − V̂−

)
(3.34)

which, by solving for V̂− becomes

V̂− =
(
Ẑ−1

0 + Ẑ−1
L

)−1 (
Ẑ−1

0 − Ẑ−1
L

)
V̂+ (3.35)

and, by combining the previous equations, we can calculate the reflection coefficient as

Γ̂ =
(
Ẑ−1

0 + Ẑ−1
L

)−1 (
Ẑ−1

0 − Ẑ−1
L

)
. (3.36)

Similarly, the transmission coefficient T̂ can be calculated with

V̂+ + V̂− = V̂T (3.37)

where V̂T = T̂V̂+ is the transmitted voltage wave, resulting in

T̂ = Î + Γ̂. (3.38)
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3.4.3 Input Impedance

The relationship between forward and backward traveling waves on the transmission line

at a distance of L from the load can then be calculated using the reflection coefficient as

V̂− = Φ̂Γ̂Φ̂V̂+ (3.39)

where Φ̂ is a phase shift term that accounts for the phase of the wave as it travels down the

transmission line, reflects off of the load, and travels back. It is defined as

Φ̂ =



e−jβ1L 0 . . . 0

0 e−jβ2L . . . 0

...
... . . . ...

0 0 . . . e−jβNL


(3.40)

where βn is the propagation constant at the n-th frequency. The new equation becomes

V̂+ + Φ̂Γ̂Φ̂V̂+ = ẐinẐ
−1
0

(
V̂+ − Φ̂Γ̂Φ̂V̂+

)
(3.41)

and can be reduced to

(
1̂ + Φ̂Γ̂Φ̂

)
V̂+ = ẐinẐ

−1
0

(
1̂− Φ̂Γ̂Φ̂

)
V̂+ (3.42)

then

1̂ + Φ̂Γ̂Φ̂ = ẐinẐ
−1
0

(
1̂− Φ̂Γ̂Φ̂

)
(3.43)

and finally rearranged to

(
1̂ + Φ̂Γ̂Φ̂

)(
1̂− Φ̂Γ̂Φ̂

)−1

Ẑ0 = Ẑin (3.44)
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which gives a matrix representation of the open-circuit impedance looking into a time-

varying loaded transmission line.

3.5 Concluding Remarks

In this chapter a hybridized conversion matrix / MoM (CMMoM) technique capable of

modeling periodically time-varying linear loads on arbitrarily shaped structures is pre-

sented. We formulate the method for multiple lumped time-varying loads. Numerical

results from several examples demonstrate the flexibility of the proposed method and ver-

ify its accuracy against general purpose time-domain solvers.

The hybridized CMMoM method allows flexible frequency-domain analysis of a wide

class of structures, but is not without limitations. First, while this method can be applied to

small-signal analysis of nonlinear loads operated under locally linear conditions, it cannot

model large-signal nonlinear effects. Second, very large distributed time-varying structures

with large numbers of harmonics quickly lead to systems of equations requiring enormous

computational effort to solve. Despite these limitations, the method has a variety of uses in

the modeling of electromagnetic problems ranging from direct antenna modulation to spa-

tiotemporally modulated materials and allows for a versatile method solving time-varying

electromagnetic structures.
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Chapter 4

Parametric Amplifiers

In previous chapters, methods of analyzing non-LTI components on electromagnetic struc-

tures has been presented, but there has not been much discussion of how these components

might be implemented in a realized system. For insight into potential non-LTI antenna de-

sign, we turn to parametric amplifiers which have been used since the 1950s. Parametric

amplifiers are a class of low noise amplifiers that add power to a system by transferring en-

ergy from an oscillating resonator [80]–[82]. They use the harmonic generation property of

a time-varying varactor or nonlinear diode to store and discharge energy from a resonator to

“pump” power into the excitation frequency. Parametric amplifier analysis typically takes

the form of a time-domain method or a matrix method reminiscent of the conversion ma-

trix method presented in Chapter 3. In order to get insight into how time-varying antennas

can be effectively designed, we looked to how they have been used and re-derived some

fundamental equations of parametric amplifiers.

4.1 Configurations

Parametric amplifiers can take several forms, but they are mostly variations of a series or

shunt configuration, shown in Figure 4.1 and 4.2 respectively. Both configurations and their

design equations are derived below.
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Figure 4.1: Basic design of a parametric amplifier.

4.1.1 Series Configuration

A parametric amplifier uses three primary frequencies: the signal frequency ω1, the idler

frequency ω2, and the frequency of the time-varying load ω3. These frequencies are related

by ω1 − ω3 = ω2. Let us define a time-varying capacitance with the equation

C3(t) = C sinω3t (4.1)

and with the Fourier coefficients

C− = −j0.5C, C0 = 0, C+ = j0.5C (4.2)

with a fundamental frequency of ω3. The conversion matrix of the time-varying capacitor

is then

Ĉ3 =

 0 C+

C− 0

 (4.3)

and by evaluating the matrix at frequencies ω1 and ω2, the resulting admittance and impedance

conversion matrices become

Ŷ3 = jΩ̂Ĉ3 =

 0 jω1C+

jω2C− 0

 (4.4)
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and

Ẑ3 = Ŷ−1
3 =

1

ω1ω2|C+|2

 0 −jω1C+

−jω2C− 0

 =

 0 1
jω2C−

1
jω1C+

0

 (4.5)

and can be treated as a lumped time-varying circuit component and interacts with the other

subcircuits of the parametric amplifier.

The series configuration of the parametric amplifier puts the time-varying element in

series with the other subcircuits, as shown in Figure 4.1. The idler subcircuit consisting of

a shunt resistor G2, inductor L2, and capacitor C2 is designed to have a very high quality

factor and resonate at the idler frequency ω2 so that it is a short at all frequencies except

ω2. This results in an impedance conversion matrix of

Ẑidler ≈

 1

G2+jω1C2− j
ω1L2

0

0 1

G2+jω2C2− j
ω2L2

 ≈
0 0

0 1
G2

 . (4.6)

Similarly, the signal subcircuit consisting of a shunt resistor G1, inductor L1, and capacitor

C1 and only resonates at the signal frequency ω1 and has an impedance conversion matrix

of

Ẑsignal ≈

 1

G1+jω1C1− j
ω1L1

0

0 1

G1+jω2C1− j
ω2L1

 ≈
 1
G1

0

0 0

 . (4.7)

Combing the conversion matrices in series, the conversion matrix of the time-varying

capacitor and idler subcircuit works out to

Ẑ3,idler = Ẑidler + Ẑ3 =

 0 1
jω2C−

1
jω1C+

1
G2

 (4.8)

and is now the input impedance looking toward the time-varying capacitor and the idler

subcircuit from the signal subcircuit. Since the signal subcircuit looks like a short circuit
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at the idler frequency (and every frequency other than the signal frequency ω1), the input

impedance presented by the time-varying element and idler circuit at the signal frequency

can be found using MoM impedance matrix identities as

Zin(ω1) = Z11 −
Z12Z21

Z22

=
G2

ω1ω2|C+|2
(4.9)

and the input admittance as

Yin(ω1) =
1

Zin(ω1)
=
ω1ω2|C+|2

G2

. (4.10)

For amplification to occur, it is necessary for the input admittance/impedance to be neg-

ative, which can only occur when ω2 is negative, so ω1 < ω3. Evaluating the circuit for

C = 0.0302 pF, G1 = 0.02 Ω−1, G2 = 10−6 Ω−1, ω1 = (2π) 2 GHz, ω2 = −(2π) 1 GHz,

and ω3 = (2π) 3 GHz results in an input admittance at ω1 of

Yin(ω1) = −0.018 (4.11)

Combining the input admittance with the signal subcircuit results in cancellation of

most of the signal subcircuit conductance, leading to amplification of the signal. The total

input admittance/impedance is then

Ytotal(ω1) = 0.002 (4.12)

and, given an excitation of 1 A, results in a current at the load of

IL = VLG1 =
I0

Ytotal

G1 = 10.0 A. (4.13)
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Figure 4.2: Shunt configuration of a parametric amplifier.

4.1.2 Shunt Configuration

Another potential parametric amplifier design is realized by placing the time-varying capac-

itor in shunt instead of series [83], [84]. For the previous series configuration, the overlying

theory is that the two filters only allow a voltage to exist at their frequency, and the time-

varying capacitor connects the two. In the shunt configuration shown in Figure 4.2, the

opposite is true. The time-varying capacitor splits two filters, each only allowing a current

to exist at their frequency. The circuit as a whole can be thought of as two loops of current,

with the time-varying capacitor in the middle.

Similar to the previous design, the goal is to make the input impedance of the second

loop to be near the negative resistance of the load.

As before in (4.1)-(4.4), we define the admittance conversion matrix of the time-varying

capacitor as

Ŷ3 =

 0 jω1C+

jω2C− 0

 (4.14)

and there is no need to convert to an equivalent conversion matrix impedance yet.

The idler and signal subcircuits series resonators, shown in the red and blue boxes of

Figure 4.2, but are still designed to resonate at ω2 and ω1, respectively. They have an
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admittance conversion matrix of

Ŷidler ≈

 1

R2+jω1L2− j
ω1C2

0

0 1

R2+jω2L2− j
ω2C2

 ≈
0 0

0 1
R2

 (4.15)

and

Ŷsignal ≈

 1

R1+jω1L1− j
ω1C1

0

0 1

R1+jω2L1− j
ω2C1

 ≈
 1
R1

0

0 0

 . (4.16)

The conversion matrix of the combined admittance of the idler and time-varying capacitor

then becomes

Ŷ3,idler = Ŷidler + Ŷ3 =

 0 jω1C+

jω2C−
1
R2

 (4.17)

looking toward the time-varying load and the idler subcircuit from the signal subcircuit.

Since the signal subcircuit looks like an open circuit at the idler frequency, the input

impedance presented by the time varying element and idler circuit at the signal frequency

is

Yin(ω1) = Y11 −
Y12Y21

Y22

= ω1ω2R2|C+|2 (4.18)

which, when evaluated at C = 0.0336 pF, R1 = 50 Ω, R2 = 10−6 Ω, ω1 = (2π) 2 GHz,

ω2 = −(2π) 1 GHz, and ω3 = (2π) 3 GHz results in an input admittance and impedance at

ω1 of

Yin(ω1) = −0.0222, Zin(ω1) = −45.0 (4.19)

Combining the input impedance/admittance with the signal subcircuit results in cancel-

lation of most of the signal subcircuit conductance, leading to amplification of the signal.
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The total input admittance/impedance is then

Ytotal(ω1) = 0.2, Ztotal(ω1) = 5 (4.20)

and, given an excitation of 1 V, results in a voltage at the load of

VL = ILRL = YtotalV0RL = 10.00 V (4.21)

4.2 Realistic Time-varying Capacitor

The ideal time-varying capacitor in (4.1) assumes a capacitor can have both positive and

negative capacitance, but actual capacitors cannot have a negative capacitance. Instead, a

more realistic time-varying capacitance can be modeled with

C3(t) = C (1 + b sinωLt) (4.22)

where b < 1. Without changing the parametric amplifier design, the input impedance

looking toward the time-varying capacitor and the idler subcircuit from the signal subcircuit

cannot be negative, keeping the signal from being amplified. One solution, as shown in

[85], is to add a tuning circuit in series with the time-varying capacitor, such as the one

shown in Figure 4.3. This tuning circuit should be designed so that it cancels out the

diagonal of the capacitor conversion matrix.

For example, the capacitance conversion matrix of the time-varying capacitor defined

in (4.22) is

Ĉ3 =

C0 C+

C− C0

 (4.23)
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Figure 4.3: Tuning circuit ZT shown in series with the time-varying capacitance C3.

with the Fourier coefficients

C− = −j0.5bC, C0 = C, C+ = j0.5bC (4.24)

and a fundamental frequency of ω3. By evaluating the matrix at frequencies ω1 and ω2 as

before, the resulting admittance and impedance conversion matrices become

Ŷ3 = jΩ̂Ĉ3 =

 jω1C0 jω1C+

jω2C− jω2C0

 (4.25)

and

Ẑ3 = Ŷ−1
3 =

1

ω1ω2(C2
0 − |C+|2)

−jω2C0 jω1C+

jω2C− −jω1C0

 . (4.26)

Then, the tuning circuit should have the impedance conversion matrix

ẐT =
1

ω1ω2(C2
0 − |C+|2)

jω2C0 0

0 jω1C0

 (4.27)

so that the combined impedance of the time-varying capacitor and the tuning circuit be-

comes

Ẑ3 + ẐT =
1

ω1ω2(C2
0 − |C+|2)

 0 jω1C+

jω2C− 0

 (4.28)
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and can be used in the same way as the ideal time-varying capacitance in (4.5). It is im-

portant to realize that while the tuning circuit ZT must be able to tune the time-varying

capacitor at both ω1 and ω2 and some bandwidth around them, it does not need to tune the

frequencies between them. In other words, if ω1 = (2π) 2 GHz and ω2 = −(2π) 1 GHz

with a 100 MHz bandwidth, then the tuning circuit must only tune the time-varying capac-

itor for the 100 MHz bandwidth around ω1 = (2π) 2 GHz and ω2 = (2π) 1 GHz.

Much of the rest of the derivation for the parametric amplifier with a realistic capacitor

is the same as before, but the input admittance at ω1 looking toward the time-varying ca-

pacitor and the idler subcircuit from the signal subcircuit changes to

Yin(ω1) =
ω1ω2(C2

0 − |C+|2)2

G2|C+|2
(4.29)

forcing a change in parameters, but can be used without other modifications.

4.3 Parametric Amplifier-Based Antenna Designs

With the two configurations of parametric amplifiers derived above, there are a few insights

and basic antenna design schemes that can be directly applied. This section describes a few

of them and their basic concepts so that they can be expanded upon in future research.

4.3.1 Amplifier

The first design is a direct application of a parametric amplifier onto an antenna. This would

provide amplification directly on the antenna, instead of later in the receive chain, which

could bypass the loss in an antenna, or cable loss between the antenna and a low-noise am-

plifier, and provide a better signal-to-noise ratio. Additionally, as shown in Section 4.2, a

tuning circuit needs to be added to a time-varying capacitance to cancel out the static reac-
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tance. The static reactance could instead be used to help tune the antenna, either allowing

a simpler tuning circuit to be used or removing its need entirely.

4.3.2 Merging with an LTI System

The previous chapters show that conversion matrices and harmonic balance can be used to

implement non-LTI components into an LTI system. Conversion matrices can be further

applied to form an equivalent impedance matrix of a time-varying system, but eventually

the time-varying device will need to be merged with an LTI system. Parametric amplifiers

accomplish this by implementing the signal filter, shown as the red box in Figures 4.1, 4.2,

and 4.3. This allows us to terminate the harmonics that are not desired and think of the

antenna with a customary input impedance [15], [86].

4.3.3 Frequency Conversion

The final design scheme is a common variation on the typical parametric amplifier design.

In the series configuration in Figure 4.1, the output of the amplifier is generally taken off

of the signal filter conductance G1, which results in an amplified signal at the excitation

frequency. If the output is instead taken off of the idler filter conductance G2, then the

signal is converted to the harmonic frequency and used as the output signal, instead of

being used to amplify the excitation frequency. If this configuration is implemented on an

antenna, then an incoming signal can be mixed to a different frequency before propagating

through the receive chain.

4.4 Concluding Remarks

This chapter analyzes parametric amplifiers as an example implementation of a time-varying

component and gains insight from the different subcircuits and configurations. The conver-
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sion matrix method presented in Chapter 3 was used to analyze the amplifier structure in

order to extract design equations and establish the need for the tuning circuit and model its

effect on the time-varying capacitor. Additionally, several antenna designs based on para-

metric amplifier configurations were identified to guide further research in this area. The

next chapter seeks to expand on this insight and develop further design methods.
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Chapter 5

Non-LTI Antenna Design

Previously, Chapters 2 and 3 derived different solvers that can be used to analyze antennas

with non-LTI components and Chapter 4 discussed a few applications of time-varying com-

ponents that give insight into how non-LTI components may be used. This chapter expands

on the previous discussions and derives several design equations that highlight the effect

that a non-LTI component has on an antenna, including the effect on impedance, extincted

power, and matching. It then concludes with a discussion on performance bounds and re-

alized non-LTI components.

5.1 CMMoM Design Equations

From the notation derived in Section 3.1, we can define a CMMoM impedance matrix Ẑ of

a time-varying antenna as

V̂ = ẐÎ (5.1)

where V̂ and Î are the voltage and current on each port of the impedance matrix as defined

in (3.17). Let us now sort and partition the block frequencies into driven and non-driven

frequencies as

Ẑ =

Ẑaa Ẑab

Ẑba Ẑbb

 (5.2)
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so that V̂a

V̂b

 =

Ẑaa Ẑab

Ẑba Ẑbb


Îa

Îb

 (5.3)

where Ẑaa are the driven frequencies, Ẑbb are the non-driven frequencies, and Ẑab, Ẑba

are the cross-frequency terms of the time-varying loading between frequencies of a and

b. Additionally let us set the voltage excitation to be a single tone at k = 0 so that the

excitation frequency ωex = ωc from (3.6). Using the quadratic form of (5.3), the voltage-

current relationship over the equivalent network can be written out as

V̂a = ẐaaÎa + ẐabÎb (5.4)

and

V̂b = ẐbaÎa + ẐbbÎb (5.5)

resulting in equations for current of

Îa =
(
Ẑaa − Ẑab(Ẑbb)−1Ẑba

)−1 (
V̂a − Ẑab(Ẑbb)−1V̂b

)
(5.6)

and

Îb = (Ẑbb)−1Ẑba
(
Ẑaa − Ẑab(Ẑbb)−1Ẑba

)−1 (
Ẑab(Ẑbb)−1V̂b − V̂a

)
+ (Ẑbb)−1V̂b

(5.7)

for a given voltage excitation
[
V̂a V̂b

]T

. These expressions for current can be further

simplified as

Îa =
(
Ẑaa − Ẑab(Ẑbb)−1Ẑba

)−1

V̂a (5.8)

88



and

Îb = −(Ẑbb)−1Ẑba
(
Ẑaa − Ẑab(Ẑbb)−1Ẑba

)−1

V̂a (5.9)

because the frequencies of b are not driven, or V̂b = 0.

The previous two equations show how a voltage excitation on one frequency maps to

currents on the same frequency as well as other harmonic frequencies in the presence of

a time-varying load. While there are many interesting phenomena that could be analyzed

by expanding the equation for the current at the generated harmonics, this sections focuses

on the current produced at excitation frequencies, which is required for the analysis in

Section 5.2.1.

In the case of an LTI antenna, or other structure, loaded with time-varying elements,

an expression for an equivalent load can be derived. First, the impedance matrix of the

time-varying antenna in (5.1) is redefined as

Ẑ = ẐU + ẐTV =

Ẑaa
U 0̂

0̂ Ẑbb
U

+

Ẑaa
TV Ẑab

TV

Ẑba
TV Ẑbb

TV

 (5.10)

which has a similar structure to (3.17). Inspecting the structure of Ẑab and Ẑba in the above

equation and (3.18b), it can be observed that they consist of diagonal submatrices with

nonzero elements only where a time-varying load is placed on the structure. By sorting the

frequency blocks Ẑxy
U and Ẑxy

TV by unloaded and loaded sections as in

Ẑxy
U =

Ẑxy
U,uu Ẑxy

U,ul

Ẑxy
U,lu Ẑxy

U,ll

 and Ẑxy
TV =

0̂ 0̂

0̂ Ẑxy
TV,ll

 (5.11)

where Ẑxy
uu and Ẑxy

ll correspond to the unloaded and loaded submatrices of the xy frequency
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block and Ẑxy
ul and Ẑxy

lu are the cross-impedance terms between them, (5.8) can be written

as

Îa =

Ẑaa
U +

0̂ 0̂

0̂ Ẑaa
TV,ll − Ẑab

TV,llŶ
bb
ll Ẑba

TV,ll



−1

V̂a (5.12)

where

Ŷbb
ll =

(
Ẑbb

U,ll + Ẑbb
TV,ll − Ẑbb

U,lu(Ẑ
bb
U,uu)

−1Ẑbb
U,ul

)−1

, (5.13)

resulting in an expression for the total effect of the time-varying loading of

Ẑaa
TV,total = Ẑaa

TV,ll − Ẑab
TV,llŶ

bb
ll Ẑba

TV,ll (5.14)

where the effect of the generated harmonics b on the driven frequencies a takes the form of

an equivalent complex loading Ẑab
TV,llŶ

bb
ll Ẑba

TV,ll with the static loading of Ẑaa
TV,ll.

Note that the impedance matrix at the excitation frequencies remains unchanged by

the loading except for the specific locations that have a time-varying structure, and the

equivalent load is determined by the time-varying structure’s static component Ẑaa
TV,ll, the

harmonic content Ẑab
TV,ll, Ẑba

TV,ll, and by the admittance of the scatterer at harmonic fre-

quencies that arise due to the time-varying loading Ŷbb
ll .

Some of the implications and design insight of the equivalent loading is difficult to

extract without making assumptions about the load and the generated harmonics. In the

next few sections, several assumptions will be made that will reduce the impedance matrix

of the time-varying system. The insight gained from these assumptions can then be brought

back to the full expression and utilized there.
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5.1.1 Single Time-Varying Load

If it is assumed that the time-varying loading consists of a single time-varying load, then (5.12)

reduces to

Îa =

Ẑaa
U +

0̂ 0̂

0̂ Zaa
TV,ll −

∑
b

Zab
TV,llZ

ba
TV,ll

Zbb
in



−1

V̂a (5.15)

where Zbb
in is the input impedance to the antenna at the location of the time-varying load,

calculated similarly to (5.13) as

Zbb
in =

1

Y bb
ll

= Zbb
U,ll + Zbb

TV,ll − Ẑbb
U,lu(Ẑ

bb
U,uu)

−1Ẑbb
U,ul. (5.16)

This shows that the effect of each harmonic is added to the effect of the others. Then, if

there is a desired behavior in one harmonic, it must be balanced against the other harmonics

that are generated. This strategy is implemented later in Section 5.3.

5.1.2 Interaction Between Multiple Loads

If more than one time-varying load is placed on a scatterer, the Ẑbb matrix cannot be reduced

to an input impedance as it was for a single load. Here, it is assumed that there are two

time-varying loads located at m and n. Referring back to (5.12), the effective load of two
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time-varying loads becomes

Ẑaa
TV,ll − Ẑab

ll Ŷbb
ll Ẑba

ll =

Ẑaa
mm 0

0 Ẑaa
nn

−
Ẑab

mm 0

0 Ẑab
nn


Ŷbb

mm Ŷbb
mn

Ŷbb
nm Ŷbb

nn


Ẑba

mm 0

0 Ẑba
nn


(5.17)

=

Ẑaa
mm − Ẑab

mmŶbb
mmẐab

mm −Ẑab
mmŶbb

mnẐ
ab
nn

−Ẑab
nnŶ

bb
nmẐba

mm Ẑaa
nn − Ẑab

nnŶ
bb
nnẐ

ab
nn

 (5.18)

where Ŷbb
mn is the loaded admittance between ports m and n.

By observation, the main diagonal of the loading matrix above is equivalent to the

equations derived for single time-varying loads, where the phase is solely dependent on

the admittance of the scatterer at the harmonic frequency Ŷbb
ll . However, the off-diagonal

elements’ phase can be completely controlled by the relative phase of the two time-varying

loads, allowing for more versatility than single time-varying loads can provide. Utilizing

the off-diagonal loading may allow for more efficient tuning of scatterers.

5.2 Power Transfer and Loss

Now that an equivalent impedance matrix of a time-varying antenna has been derived,

it can be used to design the time-varying aspect to improve the antenna and evaluate its

performance. Specifically, here the power, loss, and efficiency of a time-varying antenna is

analyzed and circuit models are used to determine where the power is lost or transferred in

the antenna.
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5.2.1 Extincted Power

One fundamental metric that is easily obtained from MoM-based models is the extincted

power Pext, which contains the sum of all power absorbed and scattered by the system.

Extincted power is a measure of how much power from a given lumped source or incident-

wave excitation interacts with the scatterer in any way, and increasing this quantity can

indicate an improvement in performance. Extincted power is expressed in terms of the

MoM current I and voltage V as [73]

Pext =
1

2
<
{
VHI

}
. (5.19)

Expanding this definition to CMMoM and partitioning the network as in (5.3), the expres-

sion becomes

Pext =
1

2
<


[
(V̂a)H (V̂b)H

]Îa

Îb


 (5.20)

and

Pext =
1

2
<
{

(V̂a)HÎa + (V̂b)HÎb
}

=
1

2
<
{

(V̂a)HÎa
}
. (5.21)

Using (5.12) to write Îa in terms of V̂a and assuming that V̂b = 0 as before, the extincted

power becomes

Pext =
1

2
<
{

(V̂a)H
(
Ẑaa − Ẑab(Ẑbb)−1Ẑba

)−1

V̂a

}
(5.22)
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and in the case of time-varying loading, the extincted power simplifies to

Pext =
1

2
<

(V̂a)H

Ẑaa
U +

0̂ 0̂

0̂ Ẑaa
TV,ll − Ẑab

TV,llŶ
bb
ll Ẑba

TV,ll



−1

V̂a

 (5.23)

where the equivalent loading matrix can be analyzed as in Sections 5.1.1 and 5.1.2. In

order to maximize the extincted power of a passive system, it is necessary to cancel the

non-Hermitian part of the impedance matrix, which results in an imaginary Pext, while

minimizing the losses and keeping the real part as small as possible. This is typically

achieved with a tuning circuit and a network of capacitors and inductors, but it may be

possible to accomplish it with a passive, time-varying component instead.

5.2.2 LTI Antenna Circuit Model

Now that the power extincted by the time-varying antenna has been calculated, the ques-

tion remains as to what the antenna does with that power. Depending on the time-varying

loading and the antenna, there could be more power lost using a time-varying component

than power converted to something useful. As previously shown in section 5.1.1, the an-

tenna can be made to resonate at the excitation frequency using a time-varying antenna,

but much of its power is lost to the time-varying resistor. This section seeks to expand on

the model of the time-varying loading and further develop expressions for how the power

is used. For this derivation, a square loop antenna is configured to receive power from a

plane wave excitation using a port with a characteristic impedance Zc located on one side.

In general, this configuration can be represented with an equivalent circuit model, such as

the one shown in Figure 5.1. The power delivered to the load Zc can be calculated with

Pc = (1− |Γ|2)Pin (5.24)
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Pin

Za

Zc

Γ

Figure 5.1: Equivalent circuit model of single-port antenna loaded with a port impedance
Zc. The antenna has an input impedance Za and input power Pin that change with the
frequency and excitation as a function of the antenna geometry.

where Γ is the reflection coefficient between the antenna and the load and the power input

to the antenna Pin can be calculated using the extincted power expression from the previous

section, as

Pin =
1

2
<
{

V̂HÎ
}

=
1

2
<
{

V̂HẐ−1V̂
}
. (5.25)

Similarly, the reflection coefficient Γ can be calculated with the impedances on either side

of the boundary with

Γ =
Zc − Z∗a
Zc + Za

(5.26)

where Za is the input impedance to the antenna at the location of the port.

At low frequencies, the reactance of the loop antenna can be much greater than its

resistance, leading to little power reaching the load Zc due to the impedance mismatch.

One common solution is to add a capacitor or inductor to the load to offset the reactance of

the antenna, forcing a resonance at the operating frequency, as shown in Figure 5.2. With

the added component, the expression for the reflection coefficient and power must change.

Instead,

Γ =
Ztot − Z∗a
Ztot + Za

(5.27)

and

Ptot = (1− |Γ|2)Pin (5.28)
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Pin

Za
CT

Zc

Γ

Figure 5.2: Equivalent circuit model of single-port antenna loaded with a tuning capaci-
tance CT and a port impedance Zc. The added capacitance forces the antenna to resonate
at the excitation frequency. The antenna has an input impedance Za and input power Pin
that change with the frequency and excitation as a function of the antenna geometry.

where Ztot is the total impedance of the load defined as

Ztot = Zc + ZT (5.29)

with ZT = RT + 1
jωCT

and RT is the series resistance of the tuning capacitor and CT is its

capacitance. Finally, the power across Zc can be found with

Pc = <{Zc}|I|2 (5.30)

where I is the current through the total load Ztot calculated with

|I|2 =
Ptot
<{Ztot}

. (5.31)

As a special note, in the case of a lossless tuning element (RT = 0), then Pc = Ptot, and in

the case of perfect tuning to create a matched load, Pc = Pin.

5.2.3 TV Antenna Circuit Model

In a similar way, the power in a time-varying structure can be calculated. The equiva-

lent circuit for the power relations for an antenna loaded with a time-varying component is
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Pin

Za ZTV,in

Zc

Γ

Figure 5.3: Equivalent circuit model of single-port antenna loaded with a port impedance
Zc and a time-varying component with an input impedance ZTV,in. The time-varying com-
ponent takes the place of the capacitor in Figure 5.2 and forces the antenna to resonate at
a broad range of frequencies around the excitation frequency. The antenna has an input
impedance Za and input power Pin that change with the frequency and excitation as a func-
tion of the antenna geometry.

shown in Figure 5.3 and is similar to the circuit of the reactively-tuned antenna of the previ-

ous section. This model can be used to accurately determine the effect of the time-varying

element on the circuit once its input impedance is found at the excitation frequency, but it

provides no insight as to what might be happening at the generated harmonic frequency or

whether the power is simply being dissipated as heat. To that end, the derivation continues

with the conversion matrix of the element.

For this example, the time-varying element is restricted to only generate a single har-

monic so that its conversion matrix becomes

ẐTV =

Z00
TV Z01

TV

Z10
TV Z11

TV

 (5.32)

where the superscripts 0 and 1 refer to the excitation frequency and the generated har-

monic, respectively. This matrix implies that the time-varying element can be modeled as

a two-port network connecting the antenna at the excitation frequency to the antenna at

the generated harmonic. The circuit model of the loaded antenna can then be expanded

with the new realization of the time-varying element, shown in Figure 5.4. Note that the

notation for the antenna impedance has changed to add a superscript 0 or 1 to represent
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ẐTV

Pin

Z0
a

Zc

Z1
a

Zc

Γ

ZTV,in

Figure 5.4: Equivalent circuit model of single-port antenna loaded with a port impedance
Zc and a time-varying component ẐTV . The time-varying component has been expanded
into an equivalent two-port network and the antenna impedance at the harmonic frequency
Z1
a . The antenna has an input impedance Z0

a and input power Pin that change with the
frequency and excitation as a function of the antenna geometry.

the impedance at the excitation frequency or the generated harmonic, respectively. Now it

can be seen that the time-varying element acts as a coupler between the antenna circuit at

the excitation frequency 0 and the antenna circuit at the generated harmonic 1. The port

impedance Zc has been included in the harmonic circuit here, but a filter could have been

implemented to remove it at the harmonic frequency so that no power from the generated

harmonic would be accepted by the port. Additionally, the input impedance of the time-

varying element ZTV,in is shown to be the input impedance of the two-port network ẐTV

loaded with the equivalent circuit at the harmonic Z1
a + Zc.

Expanding further on the model, we can represent the two-port network using dual

resistors and dependent voltage sources in series on each port, shown in Figure 5.5. The

model can now be analyzed as two separate, but interdependent, circuits. The input impedance

of the time-varying load at the excitation frequency can be calculated as

ZTV,in = Z00
TV −

Z01
TVZ

10
TV

Z11
TV + Z1

a + Zc
(5.33)
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Pin

Z0
a

I0

Z00
TV

+

−
Z01
TV I

1

Zc

Z1
a

I1

Zc

−

+
Z10
TV I

0

Z11
TV

Γ

ZTV,in

Figure 5.5: Equivalent circuit model of single-port antenna loaded with a port impedance
Zc and a time-varying component ẐTV . The time-varying component has been fully ex-
panded into a dependent source model with the parameters from the time-varying compo-
nent in (5.32). The antenna has an input impedance Z0

a and input power Pin that change
with the frequency and excitation as a function of the antenna geometry.

which corresponds to the calculated effective load impedance from Section 5.1.1. Using the

equations for power in Section 5.2.2, the expression for power across the port impedance

Zc at the excitation frequency can be calculated as

P 0
c = Pin

(
1− |Γ|2

) <{Zc}
<{Zc + ZTV,in}

(5.34)

and similarly, the power across the port impedance Zc at the harmonic frequency can be

found with the current at the excitation circuit as

P 1
c = Pin

(
1− |Γ|2

) <{Zc}
<{Zc + ZTV,in}

∣∣∣∣ Z10
TV

Z11
TV + Z1

a + Zc

∣∣∣∣2 . (5.35)

Other useful power expressions are the power lost to the time-varying element and the

power radiated at the generated harmonic frequency. Power radiated at the harmonic fre-

quency can be found using the real part of the antenna impedance at the harmonic fre-

quency, assuming a lossless antenna. Similar to the equation for power across the port
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impedance Zc at the harmonic frequency, the power radiated at the harmonic can be written

as

P 1
rad = Pin

(
1− |Γ|2

) <{Z1
a}

<{Zc + ZTV,in}

∣∣∣∣ Z10
TV

Z11
TV + Z1

a + Zc

∣∣∣∣2 . (5.36)

The power loss can then be determined with

Ploss =Ptot −
(
P 0
c + P 1

c + P 1
rad

)
(5.37)

=Pin
(1− |Γ|2)

<{Zc + ZTV,in}

(
<{ZTV,in} −

∣∣∣∣ Z10
TV

Z11
TV + Z1

a + Zc

∣∣∣∣2<{Zc + Z1
a}
)

(5.38)

and efficiency using

η =
P

Pin
. (5.39)

By comparing (5.33) and (5.38), it can be determined that the loss in the antenna is propor-

tional to <{Z00
TV } and should be minimized to increase the efficiency of the antenna.

These power quantities have been derived for an antenna with the time-varying load ẐL

and the receive port Zc located at the same location on the antenna and with a single gener-

ated harmonic. If they are located on different parts of the antenna, similar power quantities

can be derived using the CMMoM method described in Chapter 3 and reducing the MoM

impedance matrix of the antenna to a two-port matrix for the locations of the time-varying

load and the receive port. If multiple harmonics are used, the two-port representation of

the time-varying load becomes a 1+K port system, where K is the number of generated

harmonics. Each of the additional ports is then loaded with mirrors of the excitation circuit

evaluated at each of the harmonic frequencies. For example, a time-varying element on an

antenna with K harmonics would have an input impedance of

ZTV,in = Z00
TV −

K∑
k=1

Z0k
ll Z

k0
ll

Zkk
TV + Zk

a + Zc
. (5.40)
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5.3 Impedance Matching

It has been previously determined that a time-varying load can utilize the characteristics of

an antenna at a generated harmonic frequency to produce a reactance. Now this property

is utilized in order to attempt to replicate the tuning of the ideal reactance in Section 5.2.2

with a time-varying load.

Canceling the reactance allows a resonant structure at the excitation frequency, but

the solution may have a narrow band. In order to achieve a broadband match using a

complex load, the load must have the opposite reactance as the unloaded antenna over a

broad spectrum of frequencies.

As shown in (5.33), the effective reactance of the time-varying load does not only de-

pend on the time-varying element, but also the input impedance of the antenna at the gen-

erated harmonics. Using the natural resonances of the unloaded antenna, a time-varying

element can be designed to utilize the antenna’s impedance at other frequencies to tune the

impedance at the excitation frequency.

Consider the loop antenna in Figure 5.6. It has a lumped port excitation on one side

with a natural resonant frequency at 3 GHz. If this antenna needs to be used at 100 MHz

or a similarly low frequency, the reactance of the antenna must be canceled to be used

effectively. Let us assume we can use a sinusoidally time-varying resistor defined by

rL(t) = r0 (1 + |γ| cos(ω0t+ ∠γ)) (5.41)
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(a) Loop Antenna (b) Input Impedance

Figure 5.6: A square loop antenna with a side length of 12mm and driven by a lumped port
excitation on one side. Its input impedance is shown in (b) and has a resonance at 3 GHz.

resulting in a conversion matrix of

R̂L = r0



1 γ/2 0 . . . 0

γ∗/2 1 γ/2 . . . 0

0 γ∗/2 1 . . . 0

...
...

... . . . ...

0 0 0 . . . 1


(5.42)

where r0 is a real, positive constant and γ is a complex number with |γ| < 1 defined as

the modulation coefficient. This specific load type was chosen because it does not add any

power to the system, as a negative r(t) or a time-varying reactance would. From the effec-

tive input impedance (5.33), the time-varying resistor defined above can be implemented

to use the 3 GHz resonance with a lower frequency excitation. For this antenna, a resistor

with a magnitude of r0 = 860 Ω was used with γ = 0.9 and a pumping frequency of 3 GHz.

Shown in Figure 5.7.a, the reactance of the time-varying resistor almost entirely cancels
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(a) Reactance (b) Resistance

Figure 5.7: The square loop antenna from Figure 5.6 now tuned with a time-varying resistor
at the excitation port. The time-varying resistor had a magnitude of r0 = 860 Ω and a
frequency of 3 GHz. The reactance has been canceled for the lower frequencies as shown
in (a), but the efficiency has been greatly reduced by the resistance of the load, shown in
(b).

the reactance of the loop antenna for frequencies lower than 200 MHz, with a gradual

increase at higher frequencies. But a time-varying resistor has a conversion matrix with

a diagonal with a large real part, as shown in (5.42), that severely increases the loss of

the antenna, shown in (5.38), and creating a large mismatch between the antenna and the

effective load. Figure 5.7.b shows the comparison between the unloaded resistance of the

antenna and the time-varying resistor. Figures 5.8, 5.9, and 5.10 show the power quantities

for Zc = <{Z1
a}, 50 Ω, and r0, respectively, for the cases of the unloaded antenna from

Figure 5.1, the antenna tuned with a capacitor from Figure 5.2, and the antenna tuned with

a time-varying resistor from Figure 5.5. Note that for Zc = <{Z1
a} and 50 Ω in Figures 5.8

and 5.9, the tuned case out-performs the unloaded and time-varying load cases. However

when Z0 = r0, the time-varying load improves the average power received, though the

tuned case still has a higher peak at the excitation.

One way to help mitigate the high impedance of the time-varying element is to allow

more harmonics to be generated. Using a switching resistance instead of a sinusoidally
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a
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Z11
TV
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ZTV,in

(a) Loading case

(b) Power quantities

(c) Power recieved for each loading case

Figure 5.8: Power quantities on the square loop antenna from Figure 5.6 tuned with a
sinusoidally time-varying resistor at the excitation port. The time-varying resistor had a
magnitude of r0 = 860 Ω and a frequency of 3 GHz with one negative harmonic used
and the port impedance Zc is equal to the resistance of the antenna. The different power
quantities derived in Section 5.2 are shown in (b) for different loading types and the power
received by the port impedance Zc is compared in (c).
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+
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(a) Loading case

(b) Power quantities

(c) Power recieved for each loading case

Figure 5.9: Power quantities on the square loop antenna from Figure 5.6 tuned with a
sinusoidally time-varying resistor at the excitation port. The time-varying resistor had a
magnitude of r0 = 860 Ω and a frequency of 3 GHz with one negative harmonic used
and the port impedance Zc is equal to 50 Ω. The different power quantities derived in
Section 5.2 are shown in (b) for different loading types and the power received by the port
impedance Zc is compared in (c).

105



Pin

Za

Zc

Γ

Pin

Za
CT

Zc

Γ

Pin

Z0
a

I0

Z00
TV

+

−
Z01
TV I

1

Zc

Z1
a

I1

Zc

−

+
Z10
TV I

0

Z11
TV

Γ

ZTV,in

(a) Loading case

(b) Power quantities

(c) Power recieved for each loading case

Figure 5.10: Power quantities on the square loop antenna from Figure 5.6 tuned with a
sinusoidally time-varying resistor at the excitation port. The time-varying resistor had a
magnitude of r0 = 860 Ω and a frequency of 3 GHz with one negative harmonic used and
the port impedance Zc is equal to the magnitude of the time-varying resistor. The different
power quantities derived in Section 5.2 are shown in (b) for different loading types and the
power received by the port impedance Zc is compared in (c).
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varying resistor and using 10 negative harmonics allowed the cancellation of the reactance

of the loop with a magnitude of r0 = 687 Ω, which reduces the loss by a small amount.

Figures 5.11, 5.12, and 5.13 show the power quantities for Zc = <{Z1
a}, 50 Ω, and r0,

respectively, for the cases of the unloaded antenna from Figure 5.1, the antenna tuned with

a capacitor from Figure 5.2, and the antenna tuned with a switching time-varying resistance

from Figure 5.5. Similar to the sinusoidal resistance, the tuned case receives more power at

the excitation frequency of 100 MHz, with the time-varying load receiving a higher average

power for Zc = r0. Additionally, compared to the sinusoidal resistance, the switching

resistance shows a slight increase in total received power, due to the reduction in loss.

It is possible to circumvent the loss of efficiency entirely by using a time-varying capac-

itor instead of a resistor. The time-varying capacitor has a very small <{Z00
TV } from (5.33),

reducing the loss significantly. Additionally, as shown in Chapter 4, a time-varying capac-

itor can be tuned to reduce its effect on the system and amplify the incoming signal. Using

the method shown here, it may also be possible to use it as a matching network for an an-

tenna, allowing an effective means of broadband impedance matching and amplification.

5.4 Bounds on Performance Metrics

While the design equations and matrix manipulations in previous sections have provided in-

sight into how a scatterer could be loaded with a time-varying structure and how one might

be utilized, discovering what kind of scatterer would benefit from time-varying loads is also

of importance. It has been shown for other MoM problems that currents on a given struc-

ture can be optimized for different performance metrics subject to a set of constraints using

Lagrange multipliers [71], [87]. By analyzing the optimal current distributions, insight can

be gained into how a particular kind of antenna can be designed. However, before these

bounds can be used, they need to be expanded with conversion matrices and computed with
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Figure 5.11: Power quantities on the square loop antenna from Figure 5.6 tuned with a
switching time-varying resistor at the excitation port. The time-varying resistor had a mag-
nitude of r0 = 687 Ω and a frequency of 3 GHz with 10 negative harmonics used and the
port impedance Zc is equal to the resistance of the antenna. The different power quantities
derived in Section 5.2 are shown in (b) for different loading types and the power received
by the port impedance Zc is compared in (c).
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Figure 5.12: Power quantities on the square loop antenna from Figure 5.6 tuned with a
switching time-varying resistor at the excitation port. The time-varying resistor had a mag-
nitude of r0 = 687 Ω and a frequency of 3 GHz with 10 negative harmonics used and the
port impedance Zc is equal to 50 Ω. The different power quantities derived in Section 5.2
are shown in (b) for different loading types and the power received by the port impedance
Zc is compared in (c).
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Figure 5.13: Power quantities on the square loop antenna from Figure 5.6 tuned with a
switching time-varying resistor at the excitation port. The time-varying resistor had a mag-
nitude of r0 = 687 Ω and a frequency of 3 GHz with 10 negative harmonics used and the
port impedance Zc is equal to the magnitude of the time-varying resistor. The different
power quantities derived in Section 5.2 are shown in (b) for different loading types and the
power received by the port impedance Zc is compared in (c).
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new constraints.

5.4.1 Perfectly Tuned Structures - R Bound

The first bound explored here, the R bound [87], finds an upper limit on the extincted

power of a scatterer for a given excitation, assuming it can be perfectly tuned with lossless

components. The bound was originally set up to maximize the extincted power Pext with

the constraint that all power had to come from the excitation and that power was conserved.

In matrix form, this translates to

maximize <
{
IHV

}
subject to IHRI−<

{
IHV

}
= 0

(5.43)

where V is the excitation voltage, I is the resulting current vector on the scatterer, R =

<{Z}, and Z is the MoM impedance matrix. Expanding this bound with conversion matri-

ces requires converting each of the MoM matrices to CMMoM, as well as including another

bound that restricts power from being created at a non-driven frequency, so that the new

constraints for a time-varying scatterer with one generated harmonic at k = 1 become

maximize <
{

ÎHV̂
}

subject to ÎHR̂0Î−<
{

ÎHV̂
}

= 0

ÎHR̂1Î = 0

(5.44)

where R̂0 and R̂1 are matrices containing the rows for an excitation at k = 0 and k = 1,

respectively, and zeros elsewhere so that R̂0 +R̂1 = R̂. Solving this bound using Lagrange

multipliers produces a solution of

P opt
ex = V̂HR̂−1V̂ (5.45)
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Figure 5.14: Optimal extincted power P opt
ex using the R bound for a sphere of radius a =

1 cm at 100 MHz with a surface resistance Rs = 0.01 Ω. Results shown for the LTI case
of a static load resistance and two different load frequencies f0.

where P opt
ex is the upper bound for extincted power. The R bound for CMMoM has been

analyzed over a couple of cases, shown in Figure 5.14. Some improvement is seen when

harmonics are present on the scatterer, but for the perfectly-tuned case, it is better to have

a low-loss system, even if the loss is time-varying.

5.4.2 Efficiency Bound

One of the benefits from time-varying passive components is that they produce reactive

power that can be used to tune scatterers. This final bound looks for an optimal utilization

of this property by optimizing for efficiency and requiring that the scatterer is self-resonant.

Specifically, the bound minimizes power loss for a specified radiated power, while main-

taining no reactive power. For an LTI MoM scatterer, the constraints take the form

minimize IHRΩI

subject to IHRrI = 1

IHXI = 0

(5.46)
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where RΩ is the loss matrix, Rr is the radiation matrix, and X is the reactance matrix

defined so that RΩ + Rr + jX = Z. Note that the load in this case is purely resistive, and

is contained inside the loss matrix as RΩ = Rs + RL where Rs is the surface resistance

of the structure. As before, expanding this bound to CMMoM requires some modification.

The expression for power loss in nearly unchanged so that it takes into account power lost

at all frequencies, but the radiated power and reactive power now contain a selection matrix

Ŝ to specify the radiation and reactance of the excitation frequency, so that

minimize ÎHR̂ΩÎ

subject to ÎHŜR̂rÎ = 1

ÎHŜX̂Î = 0

(5.47)

where the reactance matrix is redefined as

ŜX̂ = =
{

ŜẐ
}

+
1

2j

(
ŜR̂L − R̂H

LŜ
)

(5.48)

to take into account the reactive power produced by the time-varying load. The solution

to this bound is more difficult to calculate and requires optimization functions to complete

with the final expression of

P opt
Ω = max

ν
min eig

(
R̂Ω − νŜX̂, ŜR̂r

)
(5.49)

where P opt
Ω is the minimum bound for power loss. The maximum efficiency bound of the

system ηopt can then be calculated with ηopt = (1 + P opt
Ω )−1.

The efficiency bound for CMMoM has been analyzed over a couple of cases, shown

in Figures 5.15. In the case of a low loss structure (Rs = 0.01 Ω), we can draw a similar

conclusion as before, that it is better to remove any source of loss, even if it is time-varying.
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Figure 5.15: Efficiency bound for a sphere of radius a = 1 cm at 100 MHz with a surface
resistance Rs = 0.01 Ω (left) and Rs = 100 Ω (right). Results shown for the LTI case of a
static load resistance and two different load frequencies f0.

However, in a high-loss structure (Rs = 100 Ω), we see an increase in efficiency with the

addition of time-varying loading.

5.5 Realized Non-LTI Antenna Challenges

The previous sections and chapters have assumed that a nonlinear or time-varying compo-

nent and load an electromagnetic structure could be obtained without difficulty or support-

ing components. In reality, non-LTI components are difficult to implement with a specific

magnitude, nonlinearity, or frequency. This section discusses a few methods of realizing

specific non-LTI components and the difficulties related to each.

5.5.1 Realized Components

There are a few high-speed switches available for purchase such as the ADG901/902 from

Analog Devices which can be controlled with a voltage waveform to trigger their switching.

These types of switches come in two varieties, reflective and absorptive, which determine

how they treat the incoming signal in the open state. Reflective switches present an open-

circuit impedance, leading to a high reflection, while an absorptive switch shorts to a 50 Ω
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load to keep a constant VSWR. In applications specific to this work, these switches allow

for a reconfigurable design for the switching frequency, but it can only switch up to 20

MHz and cannot change the open-switch resistance, limiting its application.

A more versatile implementation uses a MOSFET or a varactor with a voltage bias and

pumping circuit to realize a non-LTI resistance or capacitance, respectively [63]. Shown in

Section 2.3, MOSFETs and varactors can be biased to operate in a nonlinear region, allow-

ing for a configurable design. Additionally, if an external pumping voltage is applied to the

bias of the MOSFET or varactor, each can be reduced to a time-varying component using

large-signal/small-signal analysis from [26]. This method assumes the pumping voltage

on the nonlinear component is significantly larger than the signal, allowing the pumped

nonlinear component to be analyzed separately using the harmonic balance method from

Chapter 2. The solution from harmonic balance can then be used as a time-varying com-

ponent in a conversion matrix analysis because the small incoming signal will not have a

large effect on the pumped component.

5.5.2 Non-LTI Measurements

Antenna measurements typically rely on LTI assumptions to accurately and rapidly extract

the impedance, gain, and behavior of a device. Instruments drive the antenna with a single

frequency at a time and measure the response at those frequencies, assuming there is no

power generated at the non-driven frequencies. This approach works if there are no sig-

nificant generated harmonic frequencies or if the driven frequency is the only interest. If

the frequencies generated by the non-LTI behavior must be measured, another approach is

necessary. Shown in [88], one method is to use a single-tone excitation and measure the

response of a large bandwidth, and then change the excitation if a sweep is required. In

this case, special calibration is required, often including cross-frequency terms as derived
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in [88].

5.6 Concluding Remarks

This chapter discusses several applications of non-LTI antennas such as power, impedance

matching, and performance bounds based on the conversion matrix method from Chap-

ter 3 and the parametric amplifier discussion from Chapter 4. The conversion matrix of the

time-varying system was analyzed by partitioning the matrix into driven and generated fre-

quencies to enable analysis of input impedance and extincted power, and the time-varying

components were analyzed as networks to calculate the power transfer.

While this chapter concludes the analysis and derivation of design equations for this

dissertation, this is not a closed topic. Several possible models were derived here to model

the effectiveness of a time-varying component, allowing conventional design techniques to

be utilized. These models came from a direct application of CMMoM to design problems

of impedance and power, and demonstrate the versatility and usefulness of analyzing time-

varying structures in this way.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Interest into non-LTI antennas and other devices continues to grow as we seek to push

beyond the capabilities and bounds of LTI systems. In order to accelerate the design of

future non-LTI antennas, a versatile model must be established that enables the derivation of

fundamental properties leading to rapid antenna design and analysis. To that end, harmonic

balance and conversion matrices were combined with MoM, enabling the simulation and

modeling of non-LTI electromagnetic structures.

Harmonic Balance

Harmonic balance is a well-known nonlinear circuit solver that uses a hybrid method to

accurately model LTI and nonlinear components in the frequency or time domain. When

expanded with MoM in Chapter 2, an antenna with nonlinear elements can effectively be

solved for a given excitation. It was additionally shown that, with a modification, harmonic

balance can be used to simulate periodically time-varying components as well, allowing

harmonic balance to solve any non-LTI antenna.

Despite the versatility of harmonic balance, there is little insight that can be gained

from its solution. This is due to the nature of nonlinear components where the response
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depends nonlinearly on the magnitude of the excitation, removing the ability to model the

device in the frequency domain. However, if nonlinearities are pumped with an external

source, harmonic balance can be used to convert the nonlinear components into equivalent

time-varying components with large-signal/small-signal analysis.

CMMoM

Conversion matrix-method of moments (CMMoM), derived in Chapter 3 is a recently-

developed technique that combines conversion matrices and MoM to model periodically

time-varying linear loads on an antenna. Due to the linearity inherent in both of the meth-

ods, their combination allows for the analysis of different frequencies as “ports” on the an-

tenna allowing common frequency-domain methods to be applied. This connection can be

directly utilized to derive equations for input impedance, reflection coefficient, and power

that are important parameters in antenna design. Two different antenna designs with time-

varying components were simulated with CMMoM to demonstrate its versatility and accu-

racy in comparison to common time-domain solvers.

Preliminary Designs

While CMMoM can accurately model time-varying scatterers, it is not immediately appar-

ent how to derive design principles or fundamental bounds of the system. As a starting

point, Chapter 4 analyzed different configurations of parametric amplifiers to determine

how time-varying components have been used previously. The parametric amplifier design

equations were re-derived using conversion matrices and established a need for a tuning

circuit. Additionally, preliminary designs of time-varying antennas based on parametric

amplifiers were established for future work.

In Chapter 5, the CMMoM matrix of the time-varying antenna was reduced in order

to determine the effect of a time-varying load on an antenna. This included an analysis
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of extincted power, power transferred to harmonic frequencies, and the input impedance

at the antennas excitation. Additionally, a time-varying resistor was implemented to tune

an antenna at the excitation frequency using the generated harmonics, but it was shown to

generate too much loss to be an effective match. It was theorized that using a time-varying

capacitor instead could provide a more efficient match, or amplify the signal if desired.

Finally, several performance bounds were derived by optimizing over a set of constraints,

providing an opportunity for future work.

6.2 Future Work

The work in this dissertation has opened up other opportunities for research on this topic,

often outlining preliminary designs of antennas that utilize non-LTI loads. Additionally,

there are topics that have been uncovered in this work, but need additional study to un-

derstand. This section specifies many of the future areas of research planned after this

dissertation.

6.2.1 Combination of Harmonic Balance and CMMoM

Harmonic balance and CMMoM are presented in this work as two independent non-LTI

solvers that focus on nonlinear and time-varying devices, respectively. The only overlap

between them is when harmonic balance converts a pumped nonlinearity into an equivalent

time-varying component for use in a conversion matrix analysis. However, the admittance

matrix Y in (2.11) of the harmonic balance method is similar in structure to the multiport

impedance conversion matrix Ẑ in (3.20). This implies that the two methods could be

combined in some way, enabling a versatile solution that can solve nonlinearities and time-

varying components simultaneously.
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6.2.2 Interactions between Time-Varying Components

Section 5.1.2 derives the equivalent loading on an antenna with two time-varying compo-

nents, showing that the off-diagonal loading is present with multiple time-varying loads.

Furthermore, the phase of the off-diagonal loading can be entirely controlled by varying

the relative phase between the two loads. This suggests that an additional parameter can

be utilized to improve the performance of an antenna so that distributed time-varying loads

can be designed with a specified phase distribution, potentially expanding the capability

of the system. Further research in this area will determine possible designs utilizing this

property.

6.2.3 Antenna Designs

Throughout this work, particularly in Chapters 4 and 5, preliminary antenna designs that

focus on a particular non-LTI characteristic were described for future work. Section 4.3

describes two antenna designs based on parametric amplifier configurations, including fre-

quency conversion and an amplifier implementation. The frequency conversion design is

further supported by the circuit model in Section 5.2.3, where the power transferred to a

harmonic frequency is directly calculated. Section 5.3 continues with the circuit model

and implements a basic time-varying resistor to tune the resonance of a loop antenna and

suggests that using a time-varying capacitor would provide better performance.

6.2.4 Fundamental Bounds

Several fundamental bounds for antennas with a time-varying resistance were derived for

a sphere in Section 5.4, including the R bound and the efficiency bound. Other bounds

could be derived to assist in antenna design, such as the Z bound, which is similar to the R

bound on extincted power, but does not assume a perfectly tuned structure. This allows the
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tuning capability of a time-varying load, shown in Section 5.3, to be utilized to improve the

antenna performance.

6.2.5 Data Integrity and Capacity

One goal in RF system design is the removal or mitigation of distortion or large sources of

noise. However in many of the methods described in this work, non-LTI properties have

intentionally been added to distort the incoming signal in specific ways. The intentional

nature of the non-LTI properties may allow for a simple mitigation through signal analysis

or matched filtering, but it has not yet been determined how data is distorted by a non-LTI

antenna or how it can be mitigated. This must be investigated before non-LTI antennas can

be used for communication.

6.3 Scientific Impact

As shown in the previous section, the work in this dissertation has opened up several new

avenues of research with multiple planned articles based on the research done here. This

section will describe the scientific contribution this work has made and list out the different

publications and conferences that are planned or have already occurred. The publications

and conferences over my academic career will be listed as well.

6.3.1 Dissertation Contributions

This work on non-LTI antenna modeling has provided several scientific contributions. First,

two different methods of analyzing non-LTI antennas were established and tested. Each

covers a different field, nonlinearities or time-variance, but are combined with MoM en-

abling them to solve a wide range of problems.
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Parametric amplifiers were re-derived with conversion matrices, allowing for more ver-

satility in their design and emphasizing the need for tuning circuits in their implementation.

In the process, insight was gained on how to utilize time-varying structures in a system and

several preliminary antenna designs were created.

The extincted power and the power transferred to the harmonic frequencies was derived

using a partitioned CMMoM matrix. The derivation created an equivalent circuit model of

a time-varying load and highlighted the effect it can have on an antenna. Additionally, a

model for tuning an antenna was created based on the resulting input impedance.

Lastly, performance bounds for extincted power and efficiency, previously derived for

MoM, were modified to allow for the multi-frequency structure of CMMoM. These bounds

can help determine whether a given antenna structure can benefit from time-varying loading

and provide an upper limit to the antenna’s performance.

6.3.2 Publications and Conferences

Finally, this section details the publications and conferences over the course of my aca-

demic career to date. It includes work started at the undergraduate level up to the current

work presented here.

6.3.2.1 Non-LTI Antenna Modeling

For the work in this dissertation, two conferences have been attended in the past two years

and six articles are planned, including one that has already been submitted and is currently

under review.

Articles - Accepted

• Bass, S., Cook A., Schab K., Kerby-Patel K., and Ruyle J., “Conversion matrix
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method of moments for time-varying electromagnetic analysis,” IEEE Transactions

on Antennas and Propagation, Under Review. Estimated 2022.

Articles - Planned

• Bass, S., Kerby-Patel K., and Ruyle J., “On the theory of frequency-domain modeling

of nonlinear loads on antennas,” In Progress. Estimated 2022.

• Bass, S. and Schab, K., Correction to “Time-varying metamaterials based on graphene-

wrapped microwires: Modeling and potential applications,” In Progress. Estimated

2022.

• Bass, S., Kerby-Patel K., and Ruyle J., “Network relations between time-varying

structures using conversion matrices,” In Progress. Estimated 2023.

• Bass, S., Kerby-Patel K., and Ruyle J., “Conversion matrix analysis of parametric

amplifiers for use in non-LTI antenna design,” In Progress. Estimated 2023.

• Bass, S., Schab K., Kerby-Patel K., and Ruyle J., “Fundamental bounds of time-

varying antennas using CMMoM,” In Progress. Estimated 2024.

Conferences

• Bass, S., “Analyzing antennas with non-LTI loads using MoM”. In 2020 Sixth An-

nual Intelligence Community Academic Research Symposium (ICARS), Sept. 2020.

• Bass, S., Schab, K., Kerby-Patel K., and Ruyle, J., “Investigation of electrically small

antennas with time-varying elements to improve performance,” in Proc. 2021 An-

tenna Applications Symposium, Allerton Park, Monticello, IL, Sept. 2021.
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6.3.2.2 Unrelated Work

Conferences and articles unrelated to the work in this dissertation are listed here. There has

been one article published with three conference submissions. An additional article is in

process, nearing completion.

Articles - Published

• Bass, S., Ruyle, J., “Adaptation of Babinet’s principle for complementary antennas

in a dielectric half-space,” IEEE Antennas and Wireless Propagation Letters, 18.2

(2019): 333-337.

Articles - In Progress

• Bass, S. and Ruyle J., “Frequency and pattern reconfigurable slot array utilizing ring

resonator end loads,” In Progress. Estimated 2022.

Conferences

• Bass, S., Hennessy, B., Szolc, L., and Ruyle, J., “Analysis of circularly polarized an-

nular slot antennas to determine reconfiguration mechanism,” in Proc. 2014 Antenna

Applications Symposium, Allerton Park, Monticello, IL, Sept. 2014.

• Bass, S., Szolc, L., and Ruyle, J., “Investigation of pattern reconfigurability using

three-element loaded slot array,” in Proc. 2015 Antenna Applications Symposium,

Allerton Park, Monticello, IL, Sept. 2015.

• Bass, S. and Ruyle, J., “Investigation of analytical solution for radiated fields of

slot Yagi-Uda array through mutual coupling analysis”. In 2017 IEEE International

Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting,

APSURSI 2017. Institute of Electrical and Electronics Engineers Inc.
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